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Abstract

Arrieta Castro, Abel; Ingo Weber, Hans (Advisor); Rill, Georg (Co-
Advisor). Development of a robust and fault tolerant inte-
grated control system to improve the stability of road ve-
hicles in critical driving scenarios. Rio de Janeiro, 2017. 106p.
Tese de Doutorado – Departamento de Engenharia Mecânica, Pon-
tifícia Universidade Católica do Rio de Janeiro.
Nowadays new technologies are pushing the road vehicle limits further.

Promising applications, e.g. self-driving cars, requires control systems that
are able to ensure the vehicle’s stability during autonomous driving or under
dangerous scenarios. In most of modern cars, the control systems actuates
independently, i.e. there is no coordination or data sharing between them.
This approach can produce conflicts between these standalone controllers,
thereby no improvements on the vehicle’s stability are achieved or even
a worse scenario can be produced. In order to overcome these problems,
an integrated approach is designed in this work. This integration, defined
as Integrated control system (IC), use a rule to coordinate the Electronic
stability program (ESP) and the Four-wheel steering system (4WS). The
ESP performs a selective braking depending of the current state of the
vehicle. This condition is estimated by the difference between the desired
yaw rate, obtained using a linear vehicle model, and the actual yaw rate. In
addition, the braking pressures at each wheel are computed by the Anti-lock
braking system (ABS). In this work, an on-off switching logic and a first-
order hydraulic model are employed to model the ABS system. To model
the 4WS, a simple feed-forward control strategy that consider the front
steering as input is used. Finally, in order to test the advantages of the IC
system against the non-integrated one, simulations considering a nonlinear
vehicle model under critical driving scenarios were performed. The vehicle
model was derived employing the multibody approach and the Jourdain’s
principle, and then it is validated using a set of experimental data obtained
by sensors mounted on a scaled car.

Keywords
Multibody vehicle model; ABS; ESP; 4WS; Integrated control

system; Critical driving scenarios.
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Resumo

Arrieta Castro, Abel; Ingo Weber, Hans; Rill, Georg. Desenvolvi-
mento de um sistema de controle integrado robusto e
tolerante a falhas para melhorar a estabilidade de veículos
em cenários críticos de condução. Rio de Janeiro, 2017. 106p.
Tese de Doutorado – Departamento de Engenharia Mecânica, Pon-
tifícia Universidade Católica do Rio de Janeiro.
Atualmente, as novas tecnologias estão estendendo os limites físicos

dos veículos automotivos em busca de mais segurança e comforto. Novas
aplicações, como por exemplo veículos autônomos, exigem sistemas de
controle capazes de garantir a estabilidade do veículo durante a condução
autônoma ou em cenários perigosos. Na maioria dos carros modernos,
os sistemas de controle atuam de forma independente, ou seja, não há
coordenação ou compartilhamento de dados entre eles, pois poderiam
produzir conflitos entre esses controladores. Desse modo, nenhuma melhoria
na estabilidade do veículo é alcançada ou inclusive, piores cenários podem
ser produzidos. Para superar esses problemas, uma abordagem integrada é
projetada neste trabalho. Esta integração, definida como sistema de controle
integrado (IC), usa uma regra para coordenar o programa eletrônico de
estabilidade (ESP em inglês) e o sistema de direção de quatro rodas (4WS
em inglês). O ESP realiza uma frenagem seletiva dependendo do estado
atual do veículo. Esta condição é estimada pela diferença entre a taxa de
guinada desejada, obtida usando um modelo linear do veículo, e a taxa
de guinada real. Adicionalmente, as pressões de frenagem em cada roda
são calculadas pelo sistema de travagem antibloqueio (ABS em inglês).
Neste trabalho, uma lógica de comutação on-off e um modelo hidráulico
de primeira ordem são empregadas para modelar o sistema ABS. Para
projetar o 4WS, usou-se uma estratégia por alimentação direta que considera
o ângulo de esterçamento das roas frontais. Finalmente, para testar as
vantagens do sistema IC proposto nesta tese contra o enfoque não integrado,
realizaram-se simulações considerando um modelo não-linear do veículo em
cenários críticos de condução. O modelo do veículo foi derivado empregando
a abordagem multicorpos e o princípio de Jourdain, e depois é validado
usando um conjunto de dados experimentais obtidos por sensores montados
em um carro a escala.

Palavras-chave
Modelo multicorpo do veículo; ABS; ESP; 4WS; Controle

integrado; Cenários críticos de condução.
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Mathematical objects within this thesis are denoted as follows:

m – scalar,

m – vector,

M – matrix.

When present, symbols in sub- and superscripts of a variable r are employed
in the form r3

1,2. The numbers denote the position of the following optional
assignments:

1 – a position, e.g. W for wheel center

2 – the coordinate system in which the variable is measured, e.g. V for
vehicle-fixed axis system

3 – an exponent or an additional assignment, e.g. rmin for the minimum value
of r
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{OV , xV , yV , zV } origin and Cartesian coordinate axes of vehicle-fixed
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1SI units are used throughout this manuscript. Unless specifically noted otherwise, the
unit radians was used for all angles.
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Wisdom must be intuitive reason combined
with scientific knowledge.

Aristotle, Nicomacheian Ethics, VI.7.
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