8 Resultados e discussões: complexos de Zn(II)

Neste capítulo serão apresentados os resultados, bem como a discussão pertinente, obtidos para os complexos metal-ligantess tendo o íon Zn(II) como elemento central. Os complexos em estudo são: cisteinatoglicinato de zinco (II) monoidratado, $[Zn(Cis)(Gli)].H_2O$, glicinatometiotinato de zinco (II) monidratado, $[Zn(Gli)(Met)].H_2O$ e cisteinatometioninato de zinco (II) monoidratado, $[Zn(Cis)(Met)].H_2O$.

8.1 Determinação estrutural e parâmetros geométricos

Com relação aos complexos de Zn(II) com aminoácidos existe na literatura uma ampla descrição de várias sínteses, análises químicas e espectroscópicas, como também informações sobre espectros de difração de raios X para substâncias obtidas como pó cristalino.

Com relação a trabalhos de espectroscopia vibracional, podemos citar o artigo de Shindo e Brown [8.1] sobre o espectro infravermelho de compostos de Zn(II), Hg(II) e Pb(II) tendo como ligante o aminoácido L-cisteína. Sobre a complexação zinco – cisteína, Foley e Enescu [8.2] discutem e analisam o espectro Raman do complexo obtido. Estudos sobre a estrutura eletrônica e geométrica do complexo zinco – cistina foi reportada por Neikovskii [8.3 – 8.4].

A formação de complexos binários tendo a penicilamina e a cisteína como ligantes fora informada nos trabalhos de Perrin [8. 5] e de Kang e colaboradores [8.6]. A seleção de espécies por métodos potenciométricos para sistemas formados Zn(II) e cisteína, e Zn(II) e cistina fora estudada por Arena e colaboradores [8.7]. Belcastro, Marino, Russo e Toscano, por sua vez, estudam a interação da cisteína com Cu(II) e com íons metálicos do grupo II B Zn(II), Cd(II) e Hg(II) [8.8]. Em um dos números do Journal of Mass Spectroscopy do ano 1998, Rabindra Reddy e colaboradores informam a interação do zinco com os aminoácidos cisteína, histidina e os seus ésteres em sítios de ligação R no fator de

transcrição IIIA [8.9]. Outros trabalhos de síntese de complexos de zinco com diferentes aminoácidos estão amplamente reportados na literatura [8.10 – 8.25], de onde cabe destacar as contribuições de Cavicchioli e colaboradores [8.17], Shibahara e colaboradores [8.20], e de Gockel e colaboradores [8.24]. A geometria das interações metal – ligante foi examinada por Hardig [8.25] para seis metais: Ca, Mg, Mn, Fe, Cu e Zn utilizando o Banco de Dados de Proteínas (Protein Data Bank) e comparadas com a informação precisa de estruturas determinadas de pequenos cristais de moléculas relevantes contida na Central de Dados Básicos de Estruturas de Cambridge (Cambridge Structural Database).

Uma referência clássica sobre a utilização analítica da espectroscopia vibracional, especialmente a espectroscopia no infravermelho, e que foi de grande assistência neste trabalho para a caracterização espectral de grupos funcionais, é o livro de Bellamy e Williams [8.26].

A determinação estrutural teórica (ou a geometria espacial) dos complexos metal-aminoácidos de zinco estudados neste trabalho foi comprovada por métodos de espectroscopia vibracional, mediante a utilização do procedimento mecânico-quântico baseado na Teoria do Funcional da Densidade (DFT) [8.27–8.30], utilizando a base B3LYP/6-311G (d, p) para todos eles. As energias obtidas para a formação dos complexos foram as seguintes:

[Zn(Cis)(Gli)]: E(RB+HF-LYP) = -2784.54483848 a. u. (Hartree)[Zn(Gli)(Met)]: E(RB+HF-LYP) = -2863.16440316 a. u. (Hartree)

[Zn(Cis)(Met)]: E(RB+HF-LYP) = - 3300.6729005 a.u. (Hartree)

Desses valores se desprende que o complexo [Zn(Cis)(Met)] é mais estável que o complexo [Zn(Gli)(Met)], sendo a diferença de energia igual a -437.508497 a.u (Hartree). A diferença de energia igual a -516.128062 a.u (Hartree) indica a diferença entre as estabilidades dos complexos [Zn(Cis)(Met)] e [Zn(Cis)(Gli)].

Os aminoácidos cisteína e glicina se coordenam ao cátion Zn(II) de forma pseudo - tetraédrica, sendo C_s a simetria do esqueleto estrutural ZnN₂OS, com os átomos de oxigênio, enxofre e zinco no plano de simetria. A geometria estrutural do complexo [Zn(Cis)(Gli)] se ilustra na figura 8.1.

Figura 8.1 DFT:B3LYP/6-311G (d,p) Geometria estrutural do complexo [Zn(Cis)(Gli)].Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

Os átomos de oxigênio e nitrogênio dos aminoácidos metionina e glicina coordenam-se ao íon Zn^{2+} de forma pseudo – tetraédrica, tendo o esqueleto estrutural a simetria C_{2v} .

A geometria estrutural do complexo glicinatometioninato de Zn(II) obtido pelo procedimento DFT:B3LYP/6-311G (d,p) se apresenta na figura 8.2.

Figura 8.2 DFT:B3LYP/6-311G (d,p) Geometria estrutura do complexo [Zn(Gli)(Met)]. Código de cores: azul celeste = Zn; azul escuro= N; vermelho = O; preto = C; amarelo = S; laranja = H.

Para o complexo cisteinatometioninato de Zn(II), os ligantes aminoácidos metionina e cisteína, coordenam-se também ao íon Zn^{2+} de forma pseudo - tetraédrica e a simetria C_s se encontra para o esqueleto estrutural ZnN₂OS. A figura 8.3 ilustra a geometria espacial do complexo [Zn(Cis)(Met)].

Figura 8.3 DFT:B3LYP/6-311G (d,p) Geometria estrutura do complexo [Zn(Cis)(Met)]. Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

Nas tabelas 8.1, 8.2 e 8.3 apresentamos os parâmetros geométricos dos esqueletos estruturais dos complexos de Zn(II). Na tabela 8.4 comparamos os valores das distâncias d_{Zn-O} , d_{Zn-N} , d_{Zn-S} , d_{C-C} , d_{C-O} , d_{C-N} e d_{N-O} encontradas nos complexos ternários de Zn(II) com os aminoácidos glicina, cisteína e metionina. A numeração que acompanha cada átomo corresponde à numeração das figuras respectivas, ilustradas acima. Na tabela 8.5 é feita uma comparação entre os dados obtidos por M.M. Harding [8.25] sobre as distâncias de ligação Zn(II)-Ligante, comparando os valores com as médias obtidas das distâncias d_{Zn-N} e d_{Zn-O} da tabela 8.4.

Tabela 8.1 DFT:B3LYP/6-311G (d,p) parâmetros geométricos calculados para o esqueleto estrutural do complexo glicinatometioninato de zinco (II) [Zn(Gli)(Met)]

	Distância		Distância
	Interatômica (Å)		Interatômica (Å)
N(1) - C(2)	1,509	O(5)- Zn(29)	1,919
N(1)- Zn(29)	2,090	N(20)- C(21)	1,505
C(2) – C(3)	1,559	N(20)-Zn(29)	2,111
C(3) – O(5)	1,324	C(21)–C(27)	1,546
O(22)-C(27)	1,327	O(22)-Zn(29)	1,908
	Ângulos de Ligação (9		Ângulos de Ligação (۹
N(1)-C(2)-C(3)	108,836	C(21)-N(20)-Zn(29)	103,357
N(1)-Zn(29)-O(5)	83,897	N(20)-C(21)-C(27)	111,419
N(1)-Zn(29)-N(20)	133,053	N(20)-Zn(29)-O(22)	84,779
N(1)-Zn(29)-O(22)	107,795	C(21)-C(27)-O(22)	114,320
C(2)-C(3)-O(5)	114,388	C(27)-O(22)-Zn(29)	117,488
C(3)-O(5)-Zn(29)	117,695	O(5)-Zn(29)-O(22)	152,152
O(5)-Zn(29)-N(20)	105,952		

	Distância		Distância
	Interatômica (Å)		Interatômica (Å)
Zn(1)-O(2)	1,930	C(4)-C(6)	1,547
Zn(1)-S(3)	2,314	C(6)-N(9)	1,502
Zn(1)-N(9)	2,124	C(12)-C(13)	1,545
Zn(1)-N(14)	2,107	C(13)-N(14)	1,494
O(2)-C(4)	1,321	S(3)-C(12)	1,902
	Ângulos de Ligação (9		Ângulos de Ligação (9
O(2)-Zn(1)-S(3)	146,689	Zn(1)-N(9)-C(6)	105,608
O(2)-Zn(1)-N(9)	83,419	Zn(1)-N(14)-C(13)	106,588
O(2)-Zn(1)-N(14)	98,755	<i>O</i> (2)- <i>C</i> (4)- <i>C</i> (6)	114,735
S(3)-Zn(1)-N(9)	116,733	C(4)-C(6)-N(9)	111,880
S(3)-Zn(1)-N(14)	93,248	C(12)-C(13)-N(14)	110,793
Zn(1)-S(3)-C(12)	91,278	C(13)-C(12)-S(3)	112,136
N(9)-Zn(1)-N(14)	120,296		

Tabela 8.2 DFT:B3LYP/6-311G (d, p) parâmetros geométricos calculados para o esqueleto estrutural do complexo cisteinatoglicinato de zinco (II) [Zn(Cis)(Gli)]

Tabela 8.3 DFT:B3LYP/6-311G (d,p) parâmetros geométricos calculados para o esqueleto estrutural do complexo cisteinatometioninato de zinco (II) [Zn(Cis)(Met)]

	Distância		Distância
	Interatômica (Å)		Interatômica (Å)
N(1)-C(2)	1,514	Zn(10)-S(11)	2,312
N(1)-Zn(10)	2,107	Zn(10)-N(12)	2,099
C(2)-C(3)	1,557	N(12)-C(13)	1,494
C(3)-O(4)	1,320	C(13)-C(14)	1,545
O(4)-Zn(10)	1,941		
	Ângulos de Ligação (9		Ângulos de Ligação (9
C(2)-N(1)-Zn(10)	103,526	O(4)-Zn(10)-S(11)	145,309
N(1)-C(2)-C(3)	107,828	O(4)-Zn(10)-N(12)	97,134
N(1)-Zn(10)-O(4)	82,755	S(11)-Zn(10)-N(12)	93,542
N(1)-Zn(10)-S(11)	119,260	Zn(10)-S(11)-C(14)	91,048
N(1)-Zn(10)-N(12)	120,646	Zn(10)-N(12)-C(13)	106,491
C(2)-C(3)-O(4)	113,399	N(12)-C(13)-C(14)	110,810
C(3)-O(4)-Zn(10)	117,580		

Os valores dos parâmetros geométricos correspondentes aos distintos aminoácidos ligantes estão colocados na mesma ordem escrita que figura na fórmula compacta de cada complexo ternário de Zn(II)

Tabela 8.4 Análise comparativa das distâncias interatômicas dos compostos [Zn(Gli)(Met)], [Zn(Cis)(Gli)] e [Zn(Cis)(Met)]

	[Zn(Gli)(Met)]	[Zn(Cis)(Gli)]	[Zn(Cis)(Met)]
N-C	1 509 / 1 505	1 494 / 1 502	1 494 / 1 514
Zn-N	2,090 / 2,111	2,107 / 2,124	2,099 / 2,107
С-С	1,559 / 1,546	1,545 / 1,547	1,545 / 1,557
С-О	1,324 / 1,327	/ 1,321	/ 1,320
Zn-O	1,919 / 1,908	/ 1,930	/ 1,941
Zn-S		2,314 /	2,312 /
S-C		1,902 /	1,902 /

Na tabela 8.5 reproduzimos a análise de M. M. Harding [8.25] sobre as distâncias de ligação Zn(II)-Ligante, comparando os valores com as médias obtidas (*dadas em caracteres itálicos*) das distâncias d_{Zn-N} e d_{Zn-O} da tabela 8.4.

Tabela 8.5 Análise das distâncias de ligação Zn(II) - átomo ligante

Dados estatísticos das distâncias Zn(II)-Ligante					
	Valor médio (Å)	Intervalo			
Zn-O/H ₂ O, n = 5	2,06	1,97 – 2,28			
ZnO/carboxilato	2,00; (1,925)	1,86 – 2,18; (1,908 – 1,941)			
Zn-N/imidazol	2,00; (2,106)	1,97 – 2,04; (2,090 – 2,124)			
]	Distâncias observadas				
Número de coordenação =	4				
Zn-O/Glu – 2,264	1,91; (1,925)				
Zn-O/Glu – 2,179	Zn-O/Glu – 2,179 2,13; (1,925)				
Zn-N/His – 2,074	Zn-N/His – 2,074 2,05 (+0,01); (2,106)				
Zn-N/His – 2,061 2,02; (2,106)					

Da análise comparativa podemos observar que os nossos valores calculados para as distâncias interatômicas d_{Zn-O} não apresentam um desvio superior ao 4,71% em média, e para a distância interatômica d_{Zn-N} o desvio não é

superior ao 3,58%. As razões para essas diferenças são óbvias: os valores calculados correspondem a uma molécula isolada considerada na fase gasosa independente de qualquer perturbação, além, é claro, da natureza dos diferentes aminoácidos.

Na análise espectroscópica vibracional dos complexos de Zn(II), a água de hidratação foi excluída dos cálculos de estrutura e vibracionais pelo motivo de não formar parte da esfera de coordenação do cátion metálico.

8.2 Parte Experimental

As sínteses dos compostos de Zn(II) em estudo neste trabalho, foi objeto de estudo proposto por Ondar [8.36]. Consideramos válidos todos os roteiros de síntese para a obtenção dos compostos, assim como os dados apresentados em relação à análise elementar e análise termogravimétrica.

Os espectros no infravermelho e Raman registrados para complexos ternários de Zn(II) com diferentes aminoácidos, se ilustram a continuação nas figuras 8.4 a 8.11.

Figura 8.4 Espectro no infravermelho do complexo cisteinatoglicinato de Zn(II): [Zn(Cis)(Gli)].H₂O.

Figura 8.5 Espectro Raman do complexo cisteinatoglicinato de Zn(II): [Zn(Cis)(Gli)].H₂O.

Figura 8.6 Espectro no infravermelho do complexo metiotinato- glicinato de Zn(II): [Zn(Gli)(Met)].H₂O.

Figura 8.7 Espectro no infravermelho na região de baixa energia para o complexo glicinatometioninato de Zn(II): [Zn(Gli)(Met)].H₂O.

Figura 8.8 Espectro Raman do complexo glicinatometioninato de Zn(II): [Zn(Gli)(Met)].H₂O.

Figura 8.9 Espectro no infravermelho do complexo cisteinatometioninato de Zn(II): [Zn(Cis)(Met)].H₂O.

Figura 8.10 Espectro no infravermelho na região de baixa energia do complexo cisteinatometioninato de Zn(II): [Zn(Cis)(Met)].H₂O.

Figura 8.11 Espectro Raman do complexo cisteinatometiotinato de Zn(II): [Zn(Cis)(Met)].H₂O.

8.3 Atribuição vibracional

Na análise espectroscópica vibracional dos complexos de Zn(II), a água de hidratação foi excluída dos cálculos estruturais e vibracionais por não formar parte da esfera de coordenação do cátion metálico.

Os 3n-6 modos normais para os complexos cisteinatometioninato de Zn(II), glicinatometioninato de Zn(II) e cisteinatoglicinato de Zn(II) são: 93, 81 e 63, respectivamente. Para cálculos de atribuição espectral do complexo [Zn(Cis)(Met)] se consideraram 31 coordenadas internas de estiramento vibracional, 53 coordenadas internas para a descrição das variações angulares e 12 coordenadas de torção. Para o estudo vibracional do complexo [Zn(Gli)(Met)] o espectro foi caracterizado teoricamente através do uso de 28 coordenadas internas de estiramento vibracional, 50 coordenadas internas de variações angulares, e 12 coordenadas internas de torção. O espectro teórico do complexo [Zn(Cis)(Gli)] foi caracterizado utilizando 23 coordenadas internas de estiramento vibracional, 41

coordenadas internas que descrevem as variações angulares e 10 coordenadas internas para a análise dos modos de torção.

Estiramentos O-H

Em todos os espectros se observam as bandas características que correspondem às absorções da água de cristalização. Em particular, somente os complexos [Zn(Cis)(Met)] e [Zn(Cis)(Gli)] apresentam as bandas correspondentes ao modo de estiramento O-H do grupo carboxilato. Para esses complexos, a atribuição vibracional dos espectros infravermelho foi a seguinte:

 $[Zn(Cis)(Met)]: 3464 \text{ cm}^{-1} v(OH)$ $[Zn(Cis)(Gli)]: 3477 \text{ cm}^{-1} v(OH)$

A figura 8.12 apresenta a região no infravermelho compreendida entre 3600 -2500 cm^{-1} para os complexos ternários de Zn(II).

Figura 8.12 Espectros no infravermelho dos complexos $[Zn(Cis)(Gli)]H_2O$ (azul claro), $[Zn(Gli)(Met)].H_2O$ (azul escuro) e $[Zn(Cis)(Met)].H_2O$ (vermelho), na região espectral entre 3600 – 2500 cm⁻¹.

A figura 8.13 ilustra a análise de deconvolução de bandas dos espectros no infravermelho e Raman na região de elevada energia para o complexo

[Zn(Cis)(Gli)]. Faz-se necessário advertir que em todos os casos no transcurso da tese, onde se apresentam figuras da análise de deconvolução de bandas, a curva superior dos gráficos corresponde ao perfil da banda observada no espectro infravermelho e/ou Raman, e em baixo dela, se ilustram as curvas resultantes da análise da deconvolução.

Figura 8.13 Análise de deconvolução de bandas nas regiões de números de onda compreendidos entre $3800 - 2800 \text{ cm}^{-1}$, no infravermelho, e entre $3500-2800 \text{ cm}^{-1}$ no espectro Raman, para o complexo [Zn(Cis)(Gli)].H₂O.

O resultado da análise de deconvolução de bandas na região de elevada energia para o complexo [Zn(Gli)(Met)].H₂O. ilustra-se na figura 8.14 e na figura 8.15 apresentamos a análise de deconvolução de bandas entre 3600 - 2750 para o complexo [Zn(Cis)(Met)].H₂O.

Figura 8.14 Análise de deconvolução de bandas nas regiões de números de onda compreendidos entre 3600 - 3000 e 3100 - 2750 cm⁻¹, no infravermelho para o complexo [Zn(Gli)(Met)].H₂O.

Figura 8.15 Análise de deconvolução de bandas nas regiões de números de onda compreendidos entre $3600 - 3000 e 3000 - 2800 cm^{-1}$, no infravermelho, para o complexo [Zn(Cis)(Met)].H₂O.

Os espectros das segundas derivadas do perfil das bandas espectrais no infravermelho e Raman para os complexos ternários de Zn(II), se apresentam no Anexo B.

Estiramentos N-H e C-H.

Em todos os complexos ternários de Zn(II) estudados aqui existem dois grupos –NH₂, um de cada aminoácido participante na formação dos complexos. Para cada complexo esperamos observar, portanto, 4 bandas correspondentes aos estiramentos N-H, as quais devem seguir em princípio a regra estabelecida por Bellamy e Williams [8.26] para as aminas primárias: v(a') = 345,5 + 0,876v(a''). No tabela 8.6, apresentamos a atribuição vibracional para as bandas correspondentes aos modos normais de estiramento N-H. As bandas encontradas no espectro infravermelho são representadas por (IV) e as bandas correspondentes ao espectro Raman são representadas por (R).

Tabela 8.6 Atribuição vibracional para os modos de estiramento N-H (espectros experimentais)

	[Zn(Cis)(Met)]	[Zn(Gli)(Met)]	[Zn(Cis)(Gli)]
$\nu_{as}(NH)$	3202 (R)	3398 (IV), 3383	3381 (R), 3283
		(R)	(R)
v _s (NH)	3165(IV), 3061	3330 (IV), 3294	3170 (R), 3149
	(IV)	(R)	(IV), 3231 (R)

A atribuição vibracional para os valores experimentais 3202 cm⁻¹(R) e 3165 cm⁻¹ (IV), do complexo [Zn(Cis)(Met)] estão de acordo com a regra de Bellamy-Williams: v(a') = 345.5 + 0.876x 3202 = 3150 cm⁻¹, apresentando um desvio de 0,5%. O conjunto de valores 3398 cm⁻¹ e 3330 cm⁻¹ observados no espectro infravermelho para o complexo [Zn(Gli)(Met)] têm um desvio da ordem de 0,2% e, para o mesmo complexo, o conjunto de valores 3383 cm⁻¹(R) e 3294 cm⁻¹ (R) apresentam um desvio de 0,4%. Portanto, a atribuição vibracional desses números de onda para os modos v_{as} (NH) e v(NH) estão corretos. Para o complexo [Zn(Cis)(Gli)], o valor de 3231 cm⁻¹(R) quando inserido na equação da reta fornece o valor calculado de 3176 cm⁻¹, o qual representa um desvio da ordem do 0,18% com relação ao valor experimental de 3170 cm⁻¹(R).

90

A complementação das bandas sobrepostas e/ou mal definidas dentro dos espectros no infravermelho, no perfil da banda larga que agrupa os modos de estiramento v(OH), v(NH) e v(CH), dos diferentes grupos funcionais presentes nos aminoácidos cisteína, glicina e metionina, foi feito calculando-se a segunda derivada espectral dos espectros no infravermelho e/ou Raman, e depois, baseado nos valores indicados pelos picos máximos das segundas derivadas se realizou a análise de deconvolução de bandas (ADB), de forma a evidenciar as bandas sobrepostas no perfil das bandas largas abrangentes com diferentes modos de estiramento. Os resultados da atribuição vibracional para os modos de estiramento C-H para os complexos [Zn(Cis)(Gli)], [Zn(Gli)(Met)] e [Zn(Cis)(Met)] se apresentam na tabela 8.7. No Anexo C encontram-se as análises de deconvolução de bandas dos complexos de Zn(II).

As bandas tanto nos espectros no infravermelho, quanto no Raman, atribuídas aos modos normais de estiramento assimétricos e simétricos C-H, dos grupos $-CH_3$ e $-CH_2$, se consideram característicos e se encontram na faixa espectral entre 3000 cm⁻¹ e 2850 cm⁻¹. As bandas de estiramento C-H pertencentes aos grupos $-CH_3$ se encontram somente nos complexos [Zn(Cis)(Met)] e [Zn(Gli)(Met)] pela presença do aminoácido metionina que possui um grupo $-CH_3$ na cadeia alifática. Na tabela 8.7 se apresenta a atribuição vibracional para os distintos modos de estiramento C-H dos grupos $-CH_3$, $-CH_2$ e -CH metilênico para os três complexos de Zn(II) com diferentes aminoácidos como ligantes. Os espectros resultantes das segundas derivadas se apresentam no Anexo B.

	Zn(Cis)(Gli)]H ₂ O	.H ₂ O	[Zn(Cis)(Met)].H ₂ O
ν(CH)(CH ₃)	3092 (R), 2954	2991 (IV), 2961	2966 (R)
	(R), 2960 (IV)	(IV), 2992 (R), 2983	
		(R), 2966(R), 2959	
		(R)	
v(CH)(CH ₂)	2862 (R), 2853	2915 (IV), 2917 (R),	3001 (R), 2917 (R)
	(IV), 2823 (R)	2857 (R)	
v(CH)(CH)	2927	2853 (IV), 2857 (R)	2853 (R)
metilênico			

Tabela 8.7 Atribuição vibracional para os diferentes modos de estiramento C-H dos complexos [Zn(Cis)(Gli)]H₂O, [Zn(Gli)(Met)].H₂O e [Zn(Cis)(Met)].H₂O

A complementação das bandas não observadas diretamente nos espectros infravermelho e Raman se obteve através das segundas derivadas espectrais e pela análise de deconvolução de bandas.

Para o complexo [Zn(Cis)(Gli)].H₂O, os números de onda calculados e corrigidos pelo fator de escala igual a 0.9613, foram lançados em um gráfico, no qual são apresentados também os valores observados e/ou deduzidos pela segunda derivada espectral ou pela ADB. Tal gráfico é apresentado na figura 8.16. A equação da reta resultante é dada da seguinte forma: número de onda DFT(calc.) = $-3.694,45211 + 2,22435 \times número de onda experimental, com um coeficiente de correlação R = 0,97426.$

Figura 8.16 [Zn(Cis)(Gli)].H₂O: Gráfico DFT: Números de onda calculados versus números de onda experimentais $[cm^{-1}]$.

Para o complexo [Zn(Gli)(Met)].H₂O o gráfico DFT: números de onda calculados versus número de onda experimentais se ilustra na figura 8.17. A equação da reta neste caso é igual a: DFT(calc.) = -3.906,33502 + 2,34383 x número de onda experimental, com um coeficiente de correlação R = 0,95011.

Figura 8.17 [Zn(Gli)(Met)].H₂O: Gráfico DFT : Números de onda calculados versus números de onda experimentais [cm⁻¹].

8 Resultados e discussões: complexos de Zn(II)

A relação entre os números de onda calculados e os experimentais dos diferentes modos de estiramento C-H do complexo [Zn(Cis)(Met)].H₂O apresenta um padrão similar aos casos anteriores, sendo a equação da reta igual a: DFT(calc.) número de onda = 255,97841 + 0,89853 x número de onda experimental, com um coeficiente de correlação R = 0,977097. O gráfico se apresenta na figura 8.18.

Figura 8.18 [Zn(Cis)(Met)].H₂O: Gráfico DFT: Números de onda calculados versus números de onda experimentais $[cm^{-1}]$.

Como nos casos anteriores, o desvio entre os valores de números de onda calculados e experimentais se deve ao fato de que os espectros registrados no IV e Raman são espectros anarmônicos, onde cada molécula dos diferentes complexos está sujeita às perturbações inerentes do estado sólido.

Estiramentos C=O

É conhecido que um grupo carboxílico originará pelo menos duas absorções principais no espectro infravermelho (estritamente falando, um grupo - COOH, de quatro átomos e de estrutura não linear, produzirá 3n-6 modos normais, ou 3n-6 bandas na suposição de não haver modos degenerados, isto é seis bandas no infravermelho se todos os modos vibracionais fossem ativos), com energias dependentes do estado de protonação do grupo carboxílico.

O ácido carboxílico protonado apresenta bandas de absorção que correspondem aos estiramentos da carbonila, v (C=O) na faixa de números de onda situada entre 1750 e 1690 cm⁻¹, e estiramentos C-OH, v (C-OH) situados entre 1300 e 1200 cm⁻¹, este último modo se apresenta naturalmente acoplado e descrito pelas coordenadas internas de estiramento: Q(O-H) e Q(C-O), e as coordenadas de variação angular δ (COH). Se o ácido carboxílico estiver desprotonado, as bandas v (C=O) se deslocam a regiões de menor energia e o modo vibracional apresenta o acoplamento de duas coordenadas internas: Q(C=O) e Q(C-O), as quais por ressonância podem ser definidas como 2Q(C::O), tal como se ilustra na figura 8.19. Para esta estrutura, o modo v_{as}(C:::O) se localiza entre 1650-1540 cm⁻¹, e a banda simétrica, v_s(C=O), se encontra na faixa espectral entre 1420 –1300 cm⁻¹.

Na tabela 8.8, apresentamos a atribuição vibracional para os modos v(C=O) presentes nos complexos ternários de Zn(II) com diferentes aminoácidos.

Figura 8.19 Espectro no infravermelho do grupo carboxila.

Tabela 8.8 Atribuição vibracional dos modos ν (C=O) nos complexos [Zn(Cis)(Gli)]H₂O, [Zn(Cis)(Met)].H₂O, [Zn(Gli)(Met)].H₂O

	[Zn(Cis)(Gli)]H ₂ O	[Zn(Cis)(Met)].H ₂ O	[Zn(Gli)(Met)].H ₂ O
v(C=O)	1664 (R), 1660 (IV)	1606 (IV)	1651 (IV), 1584
exp.	1579 (R), 1560 (IV)	1592 (IV), 1593 (R)	(IV), 1595 (IV)
v(C=O)	1665, 1617	1626, 1601	1665, 1584
calc.			

Modos de deformação angular δ(HNH)

As bandas que se atribuem aos modos de deformação angular do tipo "tessouras" (scissoring) absorvem no infravermelho na mesma região que as carbonilas e se encontram sobrepostas nos espectros. Apesar dessas dificuldades, por meio da segunda derivada espectral e análise de deconvolução de bandas, elas podem ser identificadas e atribuídas experimentalmente. Na tabela 8.9, listamos os números de onda correspondentes às atribuições δ (HNH)sciss. para os três complexos ternários de Zn(II) junto aos valores calculados pelo procedimentos DFT:B3LYP/6-311G (d,p). Como podemos observar, os números de onda atribuídos aos modos de deformação angular H-N-H, nos três complexos ternários de Zn(II), são próximos com os números de onda atribuídos às carbonilas presentes nos aminoácidos, dificultando a atribuição vibracional. A figura 8.20, ilustra a região espectral entre 1800 até 1000 cm⁻¹ dos três complexos ternários de Zn(II).

Tabela 8.9 Atribuição vibracional dos modos δ (HNH)sciss nos complexos [Zn(Cis)(Gli)]H₂O, [Zn(Cis)(Met)].H₂O, [Zn(Gli)(Met)].H₂O

	[Zn(Cis)(Gli)]H ₂ O	[Zn(Cis)(Met)].H ₂ O	[Zn(Gli)(Met)].H ₂ O
δ(HNH)sciss	1605 (R), 1617 (IV)	1671 (IV), 1692 (R)	1639 (IV), 1614
exp	1590 (R), 1560 (IV)	1652 (IV)	(IV)
δ(HNH)sciss calc	1652 , 1648	1645, 1644	1645, 1644

Figura 8.20 Espectros no infravermelho dos complexos ternários de Zn(II): Zn(Cis)(Gli)]H₂O (vermelho), [Zn(Cis)(Met)].H₂O (azul), [Zn(Gli)(Met)].H₂O (roxo) na região espectral entre 1800 e 1000 cm⁻¹.

As figuras 8.21, 8.22 e 8.23 apresentam os espectros deconvoluidos no infravermelho da região das absorções tanto das carbonilas, quanto dos modos de deformação angular H-N-H.

97

Figura 8.21 Análise de deconvolução de bandas do espectro infravermelho do complexo [Zn(Cis)(Gli)]. H_2O , na região entre 1800 e 1450 cm⁻¹.

Figura 8.22 Análise de deconvolução de bandas do espectro infravermelho do complexo [Zn(Gli)(Met)].H₂O, na região entre 1680 e 1520 cm⁻¹.

Figura 8.23 Análise de deconvolução de bandas do espectro infravermelho do complexo [Zn(Cis)(Met)].H₂O, na região entre 1800 e 1400 cm⁻¹.

Modos de deformação angular δ(HCH).

As variações angulares H-C-H do tipo "tessouras" (scissoring) se localizam em regiões de maior energia que as variações angulares H-C-H do tipo balanceio num plano estrutural, ou fora do plano. A atribuição desses modos teve como base o cálculo DFT:B3LYP/6-311G (d,p), de forma que na tabela 8.10, onde apresentamos a nossa proposta atribucional, lançamos os valores em números de onda calculados com o intuito de compará-los com os valores experimentais dos espectros no infravermelho e Raman. As figuras 8.24, 8.25 e 8.26 ilustram as segundas derivadas dos espectros vibracionais, por meio das quais determinamos o posicionamento das bandas sobrepostas.

_				
		[Zn(Cis)(Gli)]H ₂ O	[Zn(Cis)(Met)].H ₂ O	[Zn(Gli)(Met)].H ₂ O
	δ(HCH)sciss	1489 (IV), 1477(IV)	1491 (IV),1475 (IV),	1408 (IV), 1459 (R)
	exp.	1481(R), 1437 (R)	1458 (IV), 1496 (R),	1441 (R), 1413 (R)
	-		1481 (R), 1487 (R)	
ſ	δ(HCH)sciss	1454, 1453	1468, 1457, 1454	1465, 1455, 1452
	calc.			1446, 1440

Tabela 8.10 Atribuição vibracional dos modos δ(HCH)sciss. dos complexos

[Zn(Cis)(Gli)]H₂O, [Zn(Cis)(Met)].H₂O, [Zn(Gli)(Met)].H₂O

Figura 8.24 [Zn(Cis)(Gli)].H₂O: Segunda derivada na região espectral no infravermelho entre 1540 e 1460 cm⁻¹.

Figura 8.25 [Zn(Cis)(Gli)].H₂O. Espectro Raman e segunda derivada espectral onde se indica o posicionamento dos picos observados. Região entre 1560 e 1240 cm⁻¹.

Figura 8.26 [Zn(Cis)(Met)].H₂O. Espectro infravermelho e segunda derivada espectral indicando o posicionamento dos picos observados na região entre 1580 e 1240 cm^{-1} .

Variações angulares H-N-H e H-C-H

Já foi discutido anteriormente a atribuição vibracional dos modos δ (HNH) do tipo "tessouras" (scissoring), que absorvem em números de onda mais elevados que os outros modos de variações angulares: balanceio (wagging), oscilação pendular (rocking), e de giro alternado (twisting), modos que se ilustram na figura 8.27.

Figura 8.27 Diferentes tipos de modos normais de variações angulares.

Nos espectros infravermelho dos três complexos ternários de Zn(II) com aminoácidos observamos bandas largas de absorção, e a forma de estudar a presença dos diferentes modos de variações angulares δ (HNH) e δ (HCH), excluindo as bandas que pertencem aos modos de balanceio fora do plano ou "rocking", é fazendo a ADB, procedimento baseado na posição dos picos revelados pela segunda derivada espectral, cujos gráficos se ilustram no Anexo B. Devemos alertar que pela natureza dos movimentos vibracionais, os modos normais que contém as coordenadas internas vibracionais que definem as variações angulares que discutimos, se encontram acoplados com coordenadas internas de outras índoles, e nunca se apresentam puros com 100% de participação do movimento. A atribuição vibracional teve como base tanto a evidência experimental, quanto os cálculos teóricos fundamentados na Teoria do Funcional da Densidade (DFT) [8.27 –8.31]. A tabela 8.11 contém alguns números de onda correspondentes às bandas observadas no espectro infravermelho e no espectro Raman. Nas tabelas 8.14, 8.16 e 8.18 apresentamos a análise total dos espectros vibracionais dos complexos ternários de Zn(II) com diferentes aminoácidos.

As figuras 8.28, 8.29 e 8.30, apresentam a análise de deconvolução de bandas nos espectros infravermelho dos complexos de Zn(II), na região de energia que corresponde à absorção dos modos de variações angulares δ (HNH) e δ (HCH).

Tabela 8.11 Atribuição vibracional de diferentes modos δ (HCH) nos complexos [Zn(Cis)(Gli)]H₂O, [Zn(Cis)(Met)].H₂O, [Zn(Gli)(Met)].H₂O

	δ(HNH)wagg.	δ(HNH)twist.	δ(HCH)wagg.	δ(HCH)twist.
[Zn(Cis)(Gli)]	1126(R),1049(R)	1114(IV/R)	1049(R)	1114(IV/R)
	1048(R),988(IV)	1087 (R)	1048 (IV)	1087 (R)
[Zn(Cis)(Met)]	995(R),991(IV)	1378(R)	1342 (R)	1360(R)
	977(R),983(IV)	1354(IV)	1334(R)	1265(R)
	947(R)	1383(IV)	1269(IV)	1128(IV)
		1307(R)	1278(IV)	1097(IV)
[Zn(Gli)(Met)]		1402(R)	1390(R)	1402(R)
		1401(IV)	1358(R)	1401(IV)
		1383 (IV/R)	1359(IV)	1383 (IV/R)
			1145(IV)	

Figura 8.28 [Zn(Cis)(Gli)]H₂O: ADB nos espectros infravermelho e Raman nas regiões entre $1800 - 1450 \text{ cm}^{-1}(\text{IV})$, e $1450 - 1150 \text{ cm}^{-1}(\text{R})$.

Figura 8.29 [Zn(Cis)(Met)].H₂O: ADB nos espectros infravermelho e Raman nas regiões entre $1450 - 1200 \text{ cm}^{-1}$ (IV), e 1800– 1100 (R).

Figura 8.30 [Zn(Gli)(Met)].H₂O ADB nos espectros infravermelho e Raman nas regiões entre $1430 - 1250 \text{ cm}^{-1}$ (IV), e $1500 - 1100 \text{ cm}^{-1}$ (R).

Modos normais de estiramento C-N, C-O, C-C e C-S

Seria impróprio classificar as variações infinitesimais das distâncias de ligação C-O, C-N, C-C e C-S, como modos normais sem acoplamento de outras coordenadas internas vibracionais, definidas no contexto estrutural dos complexos ternários de Zn(II). De fato, nestes casos de modos acoplados, participam diferentes coordenadas internas: aquelas que definem variações de distâncias infinitesimais e aquelas que se referem às variações angulares. Sendo assim, atribuir um desses modos à variação de uma coordenada interna particular, constituirá um erro do ponto de vista espectroscópico.

Da informação espectroscópica clássica encontrada na literatura, por exemplo, no livro de Bellamy [8.26], a descrição dos espectros no infravermelho dos aminoácidos é feita somente em termos genéricos, indicando as vibrações NH, as regiões entre 3000 e 2000 cm⁻¹, as absorções das carbonilas, absorções das bandas classificadas como AMIDA I e II, e um breve comentário sobre "outras correlações" onde se indica que uma banda perto dos 1225 cm⁻¹ pode pertencer a um estiramento C-O, ou a uma variação angular OH. Esta evidência experimental apontada por Bellamy [8.26] está de acordo com as bandas encontradas nos complexos ternários de Zn(II) com os aminoácidos cisteína, glicina e metionina.

Bellamy [8.26] também descreve as vibrações de estiramento C-S, e indica que são observadas como bandas de intensidade fraca no infravermelho, numa faixa espectral compreendida entre 700 e 600 cm⁻¹, fato este que pudemos comprovar com a nossa evidência experimental.

Na tabela 8.12, listamos os números de onda que podem ser aproximadamente atribuídos aos modos de estiramento C-O, C-N, C-C e C-S, dando para as coordenadas internas que os descrevem o benefício de ter uma participação significativa na forma do modo normal.

Para o complexo [Zn(Cis)(Gli)].H₂O, a banda observada no infravermelho a 1221 cm⁻¹, pode em princípio atribuir-se ao modo acoplado $v(CO) + \delta(HNH) + \delta(HCH)$, isto é, no movimento vibracional participam majoritariamente as coordenadas internas de estiramento C-O e as coordenadas internas de variações angulares HNH e HCH.

Para o complexo [Zn(Cis)(Met)].H₂O, a banda Raman observada em 977 cm⁻¹, tendo o valor calculado em 994 cm⁻¹, pode atribuir-se a um modo normal onde a coordenada interna de estiramento C-N tem uma participação significativa.

Tabela 8.12 Atribuição vibracional dos modos de estiramento C-O, C-N, C-C e C-S nos complexos [Zn(Cis)(Gli)]H₂O, [Zn(Cis)(Met)].H₂O, [Zn(Gli)(Met)].H₂O

	v(CO)	v(CN)	v(CC)	v(CS)
[Zn(Cis)(Gli)]H ₂ O	1221(IV)	969(R)	1037(ADB,IV)	677(R)
	1202 (R)	963 (IV)	1047 (R)	670 (IV)
[Zn(Cis)(Met)].H ₂ O	1224 (R)	977 (R)	1036(IV)	717(R)
			1042(R)	680(IV)
			1010 (R)	680 (R)
[Zn(Gli)(Met)].H ₂ O	1227(ADB,IV)	976 (IV)	1046(IV)	686 (IV)
	1210 (IV)		1049 (R)	

 $[Zn(Cis)(Gli)]H_2O,$ [Zn(Cis)(Met)].H₂O Para complexos os e [Zn(Gli)(Met)].H₂O, as bandas no infravermelho e no Raman que podem atribuirse aos modos normais onde a coordenada interna de estiramento C-C tem participação significativa se encontram na faixa espectral entre 1049 e 1010 cm⁻¹. Assim, a banda Raman observada a 1047 cm⁻¹, e a banda correlativa no infravermelho encontrada a 1037 cm⁻¹ por meio de ADB pode atribuir-se a um modo normal cuja estrutura é a de um oscilador de três centros: O-C-C, e apresenta um movimento assimétrico; no entanto, a ligação C-C é encurtada e a ligação C-O alongada, e vice-versa, fato que ilustramos na figura 8.31. Os cálculos baseados na DFT [8.27 - 8.31] revelam que a variação da distância interatômica C-O é levemente maior em percentagem comparada à variação da distância interatômica C-C.

Figura 8.31 [Zn(Cis)(Gli)].H2O. Forma do modo normal v(CC) + v(CO); banda observada no espectro Raman a 1047 cm⁻¹. Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

A descrição das vibrações C-S para os três complexos ternários de Zn(II), se encontram experimentalmente entre 717 – 670 cm⁻¹, em excelente acordo com a observação de Bellamy [8.26]. A figura 8.32 ilustra, por regiões de números de onda, ou faixas espectrais, as bandas no infravermelho que podem atribuir-se à presença significativa dos estiramentos C-O, C-N, C-C e C-S. Os espectros das segundas derivadas e aqueles derivados da análise de deconvolução de bandas se apresentam nos Anexos B e C, respectivamente, para os complexos ternários de Zn(II).

Figura 8.32 Espectros infravermelho dos complexos $[Zn(Cis)(Gli)]H_2O$ (azul), $[Zn(Cis)(Met)].H_2O$ (vermelho) e $[Zn(Gli)(Met)].H_2O$ (roxo) na região espectral entre 1300 e 600 cm⁻¹.

Modos normais do esqueleto estrutural

Por tratar-se da região espectral onde absorvem os modos normais metal – ligante, a descrição desses modos se tratará de forma individual para cada complexo ternário de Zn(II) com os diferentes aminoácidos.

Modos normais do esqueleto estrutural do complexo [Zn(Cis)(Gli)].H₂O

O espectro Raman na região entre 700 e 0 cm⁻¹ se ilustra na figura 8.33. Baseados nesse espectro, iremos discutir a atribuição vibracional metal – ligante do complexo [Zn(Cis)(Gli)].H₂O.

Figura 8.33 [Zn(Cis)(Gli)].H₂O. Espectro Raman na região metal – ligante compreendida entre 700 e 0 cm⁻¹.

Consideraremos a região espectral compreendida entre 600 e 160 cm⁻¹, por ser aquela onde se evidenciam os modos normais do esqueleto estrutural. Para a atribuição deles, estudamos as configurações distorcidas do equilíbrio da estrutura, o que dá origem à forma das vibrações normais, e a atribuição desses modos se fez baseada na percentagem de desvio dos parâmetros geométricos (PDPG) [8.32 – 8.35]: variações de distâncias interatômicas e variações de ângulos de ligação que constituem as coordenadas internas cuja contribuição é majoritária na descrição do modo.

Para o complexo [Zn(Cis)(Gli)].H₂O, escolhemos 10 coordenadas internas que definem variações de ligações entre átomos diretamente ligados, e 13 ângulos presentes na estrutura bianelar do complexo de Zn(II). Na descrição dos modos normais indicaremos primeiro os números de onda calculados, e corrigidos pelo fator de escala 0,9613, e a continuação daremos os valores experimentais, sejam aqueles encontrados nos espectros no infravermelho, nos espectros Raman, por meio da segunda derivada espectral, ou por meio da ADB. Na tabela 8.13 se indicará a composição do modo, colocando em percentagem a participação das coordenadas internas comprometidas no movimento vibracional.

Tabela 8.13 Modos normais do complexo [Zn(Cis)(Gli)].H₂O e atribuição vibracional do esqueleto estrutural

Modo normal	Atribuição
$513 \text{cm}^{-1}(\text{calc.})$	$v(ZnN) 19\% + v(CN) 11\% + \delta(SZnN) 8\%.$
507(2 ^a .d.)	
509 (ADB.IV)	
478 cm^{-1} (calc.)	$\nu(ZnN) 10\% + \nu(CC) 10\% + \delta(ZnNC) 13\% + \delta(OCC) 16\%$
476 (IV, R)	$+ \delta(CCN) 12\%.$
$438 \text{ cm}^{-1}(\text{calc.})$	$v(ZnN) 28\% + v(CN) 8\% + \delta(ZnNC) 21\% + \delta(CCN) 19\%.$
420 (IV)	
421 (R)	
$410 \text{ cm}^{-1}(\text{calc.})$	$\nu(ZnN) 19\% + \nu(CN) 8\% + \delta(ZnNC) 17\% + \delta(CCN) 11\%$
399 (IV)	+ $\delta(OCC)$ 11%.
403 (R)	
353 cm^{-1} (calc.)	$\nu(\text{ZnS}) \ 16\% + \nu(\text{ZnN}) \ 10\% + \delta(\text{ZnNC}) \ 12\% + \delta(\text{OZnN}) \ 12\%.$
388 (IV)	
385 (ADB, R)	
$323 \text{ cm}^{-1}(\text{calc.})$	$v(ZnN)$ 14%+ $\delta(ZnNC)$ 12% + $\delta(CCN)$ 16%.
359 (R)	
$289 \text{ cm}^{-1}(\text{calc.})$	ν (ZnO) 12% + ν (ZnN) 10% + δ (ZnNC) 11%.
329 (ADB, R)	
$260 \text{ cm}^{-1}(\text{calc.})$	$\nu(\text{ZnN}) \ 16.\% + \delta(\text{OZnN}) \ 17\% + \delta(\text{SZnN}) \ 10\%.$
263 (R)	
233 cm^{-1} (calc.)	$\nu(ZnS) 12\% + \nu(ZnN) 19\% + \delta(OZnN) 20\%$.
237 (R)	
174 cm^{-1} (calc.)	$\delta(OZnN) 29\% + \delta(SZnN) 9\% + \delta(ZnNC) 11\%.$
178 (R)	
159 cm^{-1} (calc.)	$\delta(OZnN) 15\% + \delta(SZnN) 19\% + \delta(ZnSC) 10\% + v(ZnN) 19\%$.
154 (R)	

Da leitura acima se desprende que não podemos atribuir nenhum número de onda em particular a um modo vibracional exclusivamente puro. Nestes casos de complexos com forma de quelatos, tal situação é fisicamente impossível. A coordenada interna que define a variação da distância Zn-N, se encontra na descrição de vários modos normais, participando com percentagens diferentes. Majoritariamente, no modo 438 cm⁻¹(calc.); 420 (IV), 421 (R), com participação de 28%. O modo normal que descrevemos a 159 cm⁻¹ é majoritariamente composto de variações angulares de diferentes índoles, e apresenta algum caráter de estiramento Zn-N.

A forma dos modos normais que atribuímos aqui para o complexo $[Zn(Cis)(Gli)].H_2O$, se ilustram nas figuras 8.34 e 8.35. O espectro Raman na região entre -50 cm⁻¹ e -270 cm⁻¹ da região anti-Stokes se ilustra na figura 8.36.

Figura 8.34 [Zn(Cis)(Gli)].H₂O: Forma dos modos normais do esqueleto estrutural, com seus respectivos números de onda de acordo à tabela 8.13. Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

Figura 8.35 [Zn(Cis)(Gli)].H₂O: Forma das vibrações do esqueleto estrutural com seus respectivos números de onda de acordo à tabela 8.13. Código de cores: azul celeste = Zn; azul escuro= N; vermelho = O; preto = C; amarelo = S; laranja = H.

Figura 8.36 [Zn(Cis)(Gli)].H₂O: Espectro Raman na região anti-Stokes entre -50 e -270 cm⁻¹.

A análise espectroscópica vibracional completa com base nos espectros infravermelho e Raman, segundas derivadas espectrais, e ADB unido ao cálculo teórico dos espectros por médio do procedimento DFT:B3LYP/6-311G (d,p) se apresenta na tabela 8.14.

DFT	DFT x	Raman	ADB	IV	2ª	ADB	Atribuição
calc	0,9613	Exp.	Raman	Exp.	der.	IV	
					IV		
3652	3511			3477	3474	3498	v(OH)
3545	3408	3381	3382			3392	$v_{as}(NH)$
3542	3405	3283	3287				v_{as} (NH)
3465	3331	3231	3227		3247	3232	$v_{s}(NH)$
3461	3327	3170	3170	3149	3144	3135	$v_{s}(NH)$
3143	3021	3092	3094			3035	$v_{as}(CH)$
3111	2991	2954	2951	2960			$v_{as}(CH)$
3106	2986			2927	2930	2935	$v_s(CH)+v_s(CH)(CH_2)$
3062	2944	2862	2860	2853			v _s (CH)
3055	2937	2823	2824			2807	v(CH)
1732	1665	1664	1663	1660	1667	1662	v(C=O)
1719	1652	1605	1610				δ(HNH)sciss.
1714	1648	1590		1582		1584	δ(HNH)sciss.

Tabela 8.14 Atribuição vibracional completa do complexo [Zn(Cis)(Gli)].H₂O

1682	1617	1579	1568	1560	1566		v(C=O)
1513	1454	1478	1493	1489	1483	1480	δ(HCH)sciss.
1511	1453	1433	1442		1440	1441	δ(HCH)sciss.
1430	1375	1403		1389	1386	1384	δ(HCC)
1385	1331	1344	1349				$\delta(\text{HCH}) + \delta(\text{HNH})$
1357	1304	1311	1309	1304	1295	1302	δ(HCH) +
							δ(CH)metínico
1331	1279	1254			1255	1254	$\delta(\text{HNH}) + \delta(\text{HCH})$
1328	1277			1221	1222	1222	$\delta(\text{HCH})$ +
							δ(CH)metínico
1304	1254	1202		1194	1190	1194	$\delta(\text{HCH})$ +
							δ(CH)metínico
1276	1227		1154				$\nu(CO) + \delta(HCH) +$
							δ(HNH)
1274	1225	1134					$\delta(\text{HCH})$ +
							δ(CH)metínico
1187	1141		1126		1124	1123	δ(HNH)wagg.
1176	1130		1114	1114		1113	$\delta(HNH)$ twist +
							δ(HCH)twist
1150	1105	1087	1098				$\delta(HNH)$ twist +
							δ(HCH)twist
1127	1083	1049	1048	1048			δ(HNH)wagg. +
							δ(HCH)wagg.
1108	1065				1035	1037	v(CC) + v(CO) +
							δ(HOC)
1033	993				988	995	δ (HNH)wagg + ν (CN)
1010	0.71	0.60	0=1	0.50		0-0	+ v(CC)
1010	971	969	971	963	959	970	v(CN)
969	931		911			0.0.4	$\rho(CH_2) + \rho(NH_2)$
950	913	903	901	905	902	904	$\rho(CH_2) + \rho(NH_2)$
878	844	847		838			$\rho(CH_2) + \rho(NH_2)$
877	843	811	812	825		826	ρ(CH ₂)
841	808	798	786	788	786	786	δ(NCC)
765	735	717	718	(709)			$\rho(C=O)$ $\uparrow \downarrow + \nu(CS)$
717	689	677	678	670	676	676	δ(CCO)
679	653				638	640	$\nu(CS) + \rho(OH) \uparrow \downarrow$
675	649	635	624				$\rho(NH_2)$
631	607	614			611		$\rho(NH_2)$
614	590						ρ(OH)↑↓
594	571	570	566	568	570		ρ(OH)↑↓
577	555					566	$\rho(C=O)$ \downarrow + torção
534	513	520	520	533	531	543	$\nu(\text{ZnN})$ 19% + $\nu(\text{CN})$
							$11\% + \delta(SZnN) 8\%$.
497	478	476	475	476		477	v(ZnN) 10% + $v(CC)$
							$10\% + \delta(ZnNC) 13\%$
							+ δ(OCC) 16% +

8
Resultados e discussões: complexos de Zn(II)

							δ(CCN) 12%.
456	438	421		420	425		v(ZnN) 28% + v(CN)
							$8\% + \delta(ZnNC) 21\% +$
							δ(CCN) 19%.
426	410	403	385	399	385	406	v(ZnN) 19% + $v(CN)$
							$8\% + \delta(ZnNC) 17\% +$
							δ(CCN) 11% +
							δ(OCC) 11%.
367	353	359					ν (ZnS) 16% + ν (ZnN)
							10% + δ(ZnNC) 12%
							+ $\delta(OZnN)$ 12%.
336	323		329		329		v(ZnN) 14%+
							δ(ZnNC) 12% +
							δ(CCN) 16%.
301	289	281	273		273		ν (ZnO) 12% + ν (ZnN)
							$10\% + \delta(ZnNC) 11\%$.
270	260	263					v(ZnN) 16.% +
							δ(OZnN) 17% +
							δ(SZnN) 10%.
242	233	247	243		243		ν (ZnS) 12% + ν (ZnN)
							$19\% + \delta(OZnN) 20\%$.
181	174	178					δ(OZnN) 29% +
							$\delta(SZnN)$ 9% +
							δ(ZnNC) 11%.
165	159		163		160		δ(OZnN) 15% +
							δ(SZnN) 19% +
							δ(ZnSC) 10% +
							v(ZnN) 19%.
132	127	132	128		124		Torção
120	115	115			110		Torção
105	101	97					Torção
90	87				85		Torção
58	56	61					Torção
40	38						Torção
38	37						Torção
25	24	28					Torção

Modos normais do esqueleto estrutural do complexo [Zn(Cis)(Met)].H₂O

Para a análise do espectro vibracional do esqueleto estrutural do complexo [Zn(Cis)(Met)].H₂O, se escolheram dez coordenadas internas de estiramento, e treze coordenadas internas de variações angulares, coordenadas estas que conformam o esqueleto da estrutura do complexo. Tal aproximação, como no caso

8 Resultados e discussões: complexos de Zn(II)

do complexo [Zn(Cis)(Gli)].H₂O discutido anteriormente e a do complexo [Zn(Gli)(Met)].H₂O, que discutiremos posteriormente tem como base o procedimento denominado "Separação entre as freqüências de elevada e de baixa energia" (High Low Frequency Separation – HLFS) proposta por Wilson [8.31]. Isto significa, a modo de exemplo, o seguinte: para um modo vibracional com *quantum_vibracional entre* \pm 450 cm⁻¹, as coordenadas internas pertencentes aos grupos funcionais –COOH, -CH₃, CH₂, -SH, -NH₂, entre outros, só participam no movimento oscilatório em extensão desprezível. O mesmo podemos afirmar para os *quanta* energéticos que correspondem às absorções no infravermelho, e/ou às dispersões no espectro Raman, das ligações químicas primárias características, tais como –C=O, -C=C-, -C=N, entre outras identificáveis nas regiões de elevada energia dos espectros. Devido ao fato de que as vibrações de torção são de identificação visual fácil através dos programas de visualização, elas são atribuídas sem maior dificuldade. Por tal motivo, não foi necessário quantificá-las.

Na figura 8.37, ilustramos os espectros no infravermelho e Raman na região de baixa energia.

Figura 8.37 [Zn(Cis)(Met)].H₂O. Espectro infravermelho e Raman na região metal - ligante compreendida entre 700 e 50 cm⁻¹.

Determinadas as percentagens de desvio dos parâmetros geométricos (PDPG) dos modos normais que se encontram entre 600 e 170 cm⁻¹, obtivemos os resultados descritos a continuação e que nos permitiram atribuir aproximadamente as vibrações metal - ligante. A leitura dos resultados segue a mesma nomenclatura de interpretação dada para as vibrações metal ligante do complexo [Zn(Cis)(Gli)].H₂O e pode ser vista na tabela 8.15.

Modo	Atribuição
573 cm^{-1} (calc.)	$v(CC) 22\% + v(ZnO) 15\% + \delta(NZnO) 14\% + \delta(COZn) 12\%$
574 (IV)	$+ \delta(CCO) 8\%$
584 (R)	
570 cm^{-1} (calc.)	$v(CC) 21\% + \delta(ZnNC) 20\% + \delta(CCS) 19\%$
562 (R)	
531 cm^{-1} (calc.)	$\delta(CCO) 16\% + \delta(CNZn) 16\% + \delta(COZn) 11\% + v(NC) 10\%$
543 (IV)	+ v(CC) 8%
542 (R)	
514 cm^{-1} (calc.)	$v(ZnN)$ 15% + $\delta(NCC)$ 18% + $\delta(CCS)$ 14% + $v(NC)$ 10%
494 (IV)	$+ \delta(SZnN) 8\%$
496 (R)	
482 cm^{-1} (calc)	$v(ZnN) 34\% + \delta(CNZn) 23\% + \delta(NCC) 12\% \delta(COZn) 12\%$
482 (R)	+ $\delta(CCO)$ 10% + $\nu(ZnO)$ 10%.
440 cm^{-1} (calc.)	$v(ZnN) 25\% + \delta(CNZn) 19\% + \delta(NCC) 19\% + v(NC) 9\%$.
446 (IV)	
447 (R)	
390 cm^{-1} (calc.)	$v(ZnO) = 16\% + \delta(NCC) = 11\% \delta(COZn) = 10\% + v(ZnS) = 9\%$
417 (IV)	+ v(CO) 8% + v(NC) 8%
411 (R)	
344 cm^{-1} (calc.)	$v(ZnS) 15\% + \delta(NZnO) 15\% + \delta(CNZn) 12\% + \delta(ZnSC) 9\%$
366 (IV)	$+\delta(COZn) 9\%$
366 (ADB-IV)	
323 cm^{-1} (calc.)	$v(NC) 18\% + \delta(COZn) 12\% + v(ZnN) 11\%$.
335 (IV)	
321 cm^{-1} (calc.)	$\delta(NCC) 14\% + \delta(CSZn) 11 + \delta(CCS) 8\%.$
306 (ADB-IV)	
318 (ADB-R)	
290 cm^{-1} (calc.)	$\delta(CNZn) 13\% + \delta(NZnO) 13\% + v(ZnO) 12\% +$
301(2 ^a .derIV)	$\delta(\text{ZnSC}) 10\% + \delta(\text{SZnN}) 9\%.$
258 cm^{-1} (calc.)	$v(ZnN) 22\% + \delta(NZnO) 13\%$.
281(2 ^a .der-IV)	
271 (ADB-IV)	
248 cm ⁻¹ (calc.)	$\delta(SZnN) = 16\% + \nu(ZnN) = 14\% + \nu(ZnS) = 11\% + \delta(CCS) = 8\%.$
246 (2 ^a . derIV)	
241 cm^{-1} (calc.)	$\delta(OZnN)$ 18% + v(ZnN) 13% + v(ZnS) 12%.
225 (IV)	
207 cm ⁻¹ (calc.)	$v(ZnN) 15\% + \delta(SZnN) 14\% + \delta(ZnNC) 12\% + \delta(NZnO) 12\%$
201 (R)	
172 cm^{-1} (calc.)	$\delta(OZnN) 26\% + v(ZnN) 12\% + \delta(NZnN) 12\%$.
184 (R)	

Tabela 8.15 Modos normais do complexo [Zn(Cis)(Met)].H₂O e atribuição vibracional do esqueleto estrutural

Tal como discutíamos o espectro vibracional na região de baixa energia do complexo [Zn(Cis)(Gli)].H₂O, nenhum número de onda em particular pode ser atribuído a um modo de estiramento ou de variação angular puro. A mistura das

8 Resultados e discussões: complexos de Zn(II)

diferentes coordenadas internas é bastante elevada, de forma que são modos vibracionais acoplados. Os estiramentos Zn-N estão dispersos (ou participam) em vários modos normais, assim, o encontramos nos quantum de energia de 482 cm⁻¹ (Raman) participando com 34% na estrutura do modo normal, com 25% no modo observado a 447 cm⁻¹ no espectro Raman, e com 22% no modo observado a 281 cm⁻¹ mediante a segunda derivada espectral do espectro infravermelho. As variações da coordenada interna de estiramento Zn-O se encontram nos modos normais com quantum de energias de 574 (IV)/584 (R), 482 (R) e 417 (IV)/411(R) cm⁻¹, com percentagens iguais a 15%, 10% e 16%, respectivamente. Por sua parte, a coordenada de estiramento Zn-S se encontra participando nos modos normais com energias iguais a 417(IV)/411(R), 368 (IV), 246(2^a.der.IV) e com 225 cm⁻¹(IV), com as percentagens 9%, 15%, 11% e 12%, respectivamente. Comparativamente, então, considerando somente as maiores percentagens de participação das distintas coordenadas internas, teríamos a seguinte ordem: 482 (R) cm⁻¹: v(ZnN) 34%; 411 (R)/ 417 (IV) cm⁻¹: v(ZnO) 16%, e 368 (IV) cm⁻¹: v(ZnS) 15%, o que está de acordo com o previsto pela equação do oscilador armônico simples, $v = 1/2\pi \sqrt{f/\mu}$.

Na figura 8.38, apresentamos uma região compreendida aproximadamente entre 400 e 0 cm⁻¹ do espectro infravermelho e do espectro Raman, na região de baixa energia, junto aos espectros da segunda derivada como forma de ilustrar o posicionamento de bandas sobrepostas e/ou mal resolvidas, que ajudaram a obtermos um maior numero de observáveis em ambos os espectros.

Nos Anexos B e C apresentamos os espectros das segundas derivadas e os espectros de deconvolução de bandas que assistiram na presente da atribuição vibracional. A tabela 8.16, apresenta uma comparação entre o espectro calculado pelo procedimento mecânico-quântico DFT:B3LYP/6-311G (d, p), e os espectros experimentais no infravermelho e Raman, junto aos valores em números de onda obtidos pelas segundas derivadas espectrais e análise de deconvolução de bandas. Na mesma tabela, informamos a atribuição vibracional deduzida pela presente análise teórica/experimental do espectro vibracional do complexo [Zn(Cis)(Met)].H₂O.

As figuras 8.39 e 8.40 ilustram a forma das vibrações normais do esqueleto estrutural do complexo [Zn(Cis)(Met)].H₂O.

Figura 8.38 [Zn(Cis)(Met)].H₂O. Espectros infravermelho e Raman, junto a segundas derivadas, indicando o posicionamento das bandas.

Figura 8.59 Forma das vibrações normais do esquereto estruturar do complexo [Zn(Cis)(Met)].H₂O, números de onda em cm⁻¹ de acordo com a tabela 8-15. Código de cores: celeste = Zn; azul = N; vermelho = O; preto = C; amarelo = S; laranja = H.

Figura 8.40 Forma das vibrações normais do esqueleto estrutural do complexo [Zn(Cis)(Met)].H₂O, com seus respectivos números de onda em cm⁻¹ de acordo com a tabela 8-15. Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

8 Resultados e discussões: complexos de Zn(II)

A análise espectroscópica vibracional completa com base nos espectros infravermelho e Raman, segundas derivadas espectrais, e análise de deconvolução de bandas unido ao cálculo teórico dos espectros por meio do procedimento DFT/B3LYP:6-311G (d,p), se apresenta na tabela 8.16.

DFT	DFT x	Raman	ADB	IV	2ª	ADB	Atribuição
calc	0,9613	Exp.	Raman	Exp.	der.	IV	
					IV		
3653	3512			3464	3490	3461	ν(OH)
3541	3404				3311	3301	$v_{as}(NH)$
3536	3399	3202	3218		3238	3246	$v_{as}(NH)$
3460	3326		3149	3165	3170	3172	$v_s(NH)$
3449	3315		3086	3061	3057	3034	v _s (NH)
3158	3036	2992		2991		2998	$v_{as}(CH) CH_3$
3153	3031	2983	2979			2988	$v_{as}(CH) CH_3$
3149	3027	2966		2961			v _s (CH) CH ₂
3144	3022	2959					v _s (CH) CH ₂
3107	2987		2936				v(CH) metínico
3070	2951				2957	2958	v _s (CH) CH ₂
3063	2944	2917	2917	2915	2916	2920	$v_{s}(CH) CH_{2}$
3057	2939						$v_{s}(CH) CH_{2}$
3054	2936						v _s (CH) CH ₃
3021	2904	2857	2869	2854	2854	2869	$v_{s}(CH)$ metínico
3016	2899		2850		2830	2847	$v_{s}(CH) CH_{2}$
1732	1665		1655	1651	1662	1653	v(C=O)
1720	1653			1639			δ(HNH)sciss.
1706	1640		1626	1614	1615	1616	δ(HNH)sciss.
1663	1599	1595		1584	1584	1584	v(C=O)
1524	1465		1579	1562	1559	1562	δ(HCH)sciss.
1514	1455		1507	1512	1514	1512	δ(HCH)sciss
1511	1452	1459			1479	1487	δ(HCH)sciss
1504	1446	1441	1428		1444	1441	δ(HCH)sciss
1498	1440	1413		1408	1412	1409	δ(HCH)sciss
1429	1374	1378		1383	1383	1384	δ(HNH) twist
1420	1365	1360		1354	1350	1351	δ (HNH) twist +
							δ(HCH) twist
1390	1336	1342	1349				δ(HCH) wagg.
1389	1335	1334	1324				δ(HCH) wagg.
1369	1316	1307	1313	1318	1317	1319	δ(HNH) twist
1357	1304				1296	1296	$\delta(COH) + \delta(CCH)$
							metínico.
1329	1277	1278	1280				$\delta(COH) + \delta(HCH)$
							wagg. + δ (CCH)

Tabela 8.16 Atribuição vibracional do complexo [Zn(Cis)(Met)].H₂O

1327	1276	1269	1269		1270	1273	δ(HCH) wagg.
1303	1252	1265	1251				δ(HCH) twist.
1292	1242	1241	1246	1244	1242	1243	δ(HCH) twist.
1275	1226						δ(HCH) wagg.
1269	1220	1224	1227		1217		$v(C=O) + \delta(OC=O)$
1211	1164	1189	1188	1189	1187	1192	δ(HNH) twist.
1185	1139	1150			1149	1148	δ(HNH) twist.
1181	1135	1128	1135	1128	1124	1126	δ(HCH) twist. +
							δ(HNH) twist.
1157	1112	1106	1116				δ(HNH) twist.
1150	1105	1094	1098		1097	1097	δ(HCH) twist.
1109	1066			1068	1067	1067	$\delta(COH) + \nu(CO)$
1100	1057	1049		1036	1037	1042	$v(CC) + \delta(HCH)$
							twist.
1050	1009	1010					$v(CC) + \delta(CCH)$
1039	999	995		991			δ(HNH)wagg +
							v(CC)
1034	994	977			983	987	v(CN) +
							δ(HNH)wagg
988	950	955		952	954	954	ρ(CH ₃)
981	943	947					ρ(CH3) +
							δ(HNH)wagg +
							δ(HCH) twist.
968	930	924			916	921	$\rho(CH_2) + \rho(NH_2)$
960	923	873	873	871	871	866	$\rho(CH_2) + \nu(CN)$
878	844	842			851		$\rho(CH_2) + \nu(CC)$
855	822	834		825	826	826	$v(CC) + \delta(OC=O)$
841	808	786	783	787	787	788	$\nu(CN) + \rho(CH_2) +$
							δ(CCS)
794	763	762		760	766	767	$\rho(CH_2) + \delta(OC=O)$
764	734	717	716				$v(CS) + \delta(CCC)$
743	714	701		707	709	708	ρ(CH ₂)
698	671	680	678	680	680	682	v(CS)
679	653		658	666			$\rho(NH_2)$
678	652	655	654	656	653	650	$\nu(CO) + \delta(COH) +$
							v(CS)
663	637			643			$\rho(NH_2)$
635	610				622		v(S- CH ₃)
613	589						ρ(OH) ↑↓
596	573	584		574	576	579	v(CC) 22% + $v(ZnO)$
							$15\% + \delta(NZnO) 14\%$
							+ δ(COZn) 12% +
							δ(CCO) 8%.
593	570	562					v(CC) 21% +
							δ(ZnNC) 20% +
							δ(CCS) 19%.

553	531	542	539	543	542	541	δ(CCO) 16% + δ(CNZn) 16% + δ(COZn) 11% + ν(NC) 10% + ν(CC) 8%.
535	514	496		494	483		$v(ZnN) 15\% + \delta(NCC) 18\% + \delta(CCS) 14\% + v(NC) 10\% + \delta(SZnN) 8\%.$
502	482	462	464				$v(ZnN) 34\% + \delta(CNZn) 23\% + \delta(NCC) 12\% \delta(COZn) 12\% + \delta(CCO) 10\% + v(ZnO) 10\%.$
458	440	447		448	451		$v(ZnN) 25\% + \delta(CNZn) 19\% + \delta(NCC) 19\% + v(NC) 9\%.$
406	390	413	413	417	417	416	$v(ZnO) 16\% + \delta(NCC) 11\% \delta(COZn) 10\% + v(ZnS) 9\% + v(CO) 8\% + v(NC) 8\%.$
358	344			361	370	366	$v(ZnS) 15\% + \delta(NZnO) 15\% + \delta(CNZn) 12\% + \delta(ZnSC) 9\% + \delta(COZn) 9\%.$
336	323			338	335	338	v(NC) 18% + $\delta(COZn)$ 12% + v(ZnN) 11%.
334	321		318	310	317		δ(NCC) 14% + δ(CSZn) 11 + δ(CCS) 8%.
302	290		290		301	306	δ(CNZn) 13% + $δ(NZnO) 13% +ν(ZnO) 12% +δ(ZnSC) 10% +δ(SZnN) 9%.$
268	258	272	271		281	271	$v(ZnN) 22\% + \delta(NZnO) 13\%.$
258	248		241		246		δ(SZnN) 16% + ν(ZnN) 14% + ν (ZnS) 11% + δ(CCS) 8%.
251	241	233		225	227	221	δ(OZnN) 18% +

							v(ZnN) 13% +
							v(ZnS) 12%.
215	207	201		201	196		v(ZnN) 15% +
							δ(SZnN) 14% +
							δ(ZnNC) 12% +
							δ(NZnO) 12%.
179	172	184		190	181		δ(OZnN) 26% +
							v(ZnN) 12% +
							δ(NZnN) 12%.
171	164	161	166		161	169	Torção
142	136	144	154	156	145	145	Torção
136	131	132	134	136			Torção
120	115	124	123	123	119	121	Torção
113	109	109		101			Torção
102	98	93			95	97	Torção
92	88	87					Torção
63	61			78	73	74	Torção
55	53	62		69			Torção
47	45			49			Torção
38	36			40			Torção

Modos normais do esqueleto estrutural do complexo [Zn(Gli)(Met)].H₂O

A estrutura do complexo [Zn(Gli)(Met)].H₂O apresenta dois anéis pentagonais ao redor do íon Zn²⁺, totalizando dez ligações químicas primárias descritas por dez coordenadas internas de diferentes estiramentos interatômicos: duas coordenadas de estiramento Zn-N, as quais dariam origem em princípio aos modos de estiramento simétrico Zn-N, [v_s(ZnN)], e ao modo de estiramento assimétrico Zn-N, $[v_{as}(ZnN)]$. Mas, pela estrutura anelada do complexo qualquer movimento vibracional de estiramento das ligações que conformam os anéis virá acoplado com coordenadas de distorções angulares e/ou de estiramento diferentes das que originam o movimento principal. Encontramos, também, uma coordenada interna variação de distância Zn-O, uma de estiramento Zn-S, duas C-C, duas de estiramento C-N e, finalmente, as coordenadas de estiramento C-S e C-O. Para a descrição dos modos vibracionais de distorções angulares se escolheram treze coordenadas internas. Na aproximação para a análise dos desvios dos parâmetros geométricos que conformam 0 esqueleto estrutural do complexo [Zn(Gli)(Met)].H₂O, totalizamos vinte e três coordenadas internas. Como nos casos anteriores, os modos de torção são de fácil identificação visual, por tal

8 Resultados e discussões: complexos de Zn(II)

motivo somente selecionamos os números de onda correspondentes aos modos normais onde a contribuição das torções são de menor participação.

As figuras 8.41 e 8.42 ilustram os espectros infravermelho e Raman na região de baixa energia entre 700 e 50 cm^{-1} .

Figura 8.41 [Zn(Gli)(Met)].H₂O. Espectro infravermelho na região metal – ligante compreendida entre 700 e 50 cm⁻¹.

Figura 8.42 [Zn(Gli)(Met)].H₂O. Espectro Raman na região metal – ligante ilustrando a região anti-Stokes.

Para a análise das percentagens de desvio dos parâmetros geométricos (PDPG) dos modos normais, escolhemos a região espectral entre 600 e 250 cm⁻¹, por ser a região mais importante na atribuição de complexos inorgânicos. O resultado descrito a seguir nos permitiu atribuir aproximadamente as vibrações metal ligante. A leitura dos resultados segue a mesma nomenclatura de interpretação dada para as vibrações metal ligante dos complexos ternários de Zn(II) abordados anteriormente, e é ilustrada na tabela 8.17.

Tabela 8.17 Modos normais do complexo [Zn(Gli)(Met)].H₂O e atribuição vibracional do esqueleto estrutural

Modo	Atribuição
576 cm^{-1} (calc.)	$[v(CC) 22\% + v(ZnO) 18\% + \delta(CCO) 10\%]; \rho(C=O)\uparrow\downarrow$
571 (R)	
565 cm ⁻¹ (calc.)	v(CC) 20% + v(CO) 9%.
566 (IV)	
560 (R)	
531 cm ⁻¹ (calc.)	$\delta(NCC) 20\% + \delta(CCO) 16\% + \delta(NZnO) 9\% + \nu(ZnN) 8\%.$
547 (IV)	
533 (R)	
494 cm ⁻¹ (calc.)	$v(\text{ZnN}) 29\% + v(\text{NC}) 14\% + \delta(\text{CCO}) 11\%.$
495 (R)	
465 cm^{-1} (calc.)	δ (NCC) 18% + δ (ZnNC) 16% + δ (CCO) 12% + δ (ZnOC) 10%.
471 (R)	
420 cm^{-1} (calc.)	ν (ZnO) 16% + δ (ZnNC) 11% + δ (ZnOC) 11% +
422 (IV)	δ (CCO) 10% + δ (NCC) 8%.
390 cm^{-1} (calc.)	ν (ZnO) 17% + δ (ZnNC) 10% + δ (NCC) 13%.
404 (IV)	
383 (R)	
351 cm^{-1} (calc.)	$\delta(NZnO) \ 16\% + \delta(ZnNC) \ 10\% + \nu(ZnO) \ 17\% + \nu(ZnN) \ 9\%.$
343(R)	
330 cm^{-1} (calc.)	$\delta(\text{ZnOC}) \ 18\% + \delta(\text{NZnO}) \ 17\% + \nu(\text{ZnN}) \ 17\% + \delta(\text{CCO}) \ 8\%.$
327 (IV)	
277 cm^{-1} (calc.)	$\delta(NZnO) 22\% + \nu(ZnN) 14\% + \delta(ZnOC) 13\%.$
270 (R)	
264 cm^{-1} (calc.)	$\delta(NZnO) 26\% + \nu(ZnN) 14\% + \nu(ZnO) 17\% + \delta(ZnNC) 9\%.$
262 (IV)	

Podemos observar, das variações das distâncias interatômicas d_{Zn-N} e d_{Zn-O} que a coordenada interna de estiramento Zn-N participa nos modos normais encontrados a: 547 (IV), 533 (R) cm⁻¹; 495 (R)cm⁻¹; 422 (IV) cm⁻¹; 343(R) cm⁻¹; 270 (R) cm⁻¹, e a 262 (IV) cm⁻¹, com percentagens iguais a 8, 29, 16, 9, 17, 14 e 14%, respectivamente, o que induz a pensar que o modo vibracional encontrado a

495 (R) cm⁻¹ tem o caráter mais acentuado de estiramento Zn-N. Por sua vez, os modos normais com *quanta* energéticos iguais a 404 (IV)/ 383 (R) cm⁻¹ e 343 (R) cm⁻¹ têm maior caráter de estiramento Zn-O. Apesar do modo normal observado no espectro Raman a 571 cm⁻¹, ser atribuído como o modo acoplado v(CC) 22% + v(ZnO) 18% + δ (CCO) 10%, onde o estiramento Zn-O tem uma contribuição da ordem do 18%, não o consideramos como tal devido à aproximação feita nas escolha das coordenadas internas do esqueleto estrutural. Pela visualização gráfica do modo em movimento, na sua máxima amplitude, constatamos que a participação das coordenadas internas adjacentes, tais como a variação angular O-C=O e a coordenada interna de variação angular fora do plano ρ (C=O), têm uma contribuição significativa. Ilustramos este fato na figura 8.43, onde apreciamos o movimento de oscilação pendular da carbonila, descrita pela coordenada interna ρ (C=O) $\uparrow\downarrow$.

Figura 8.43 Modo normal acoplado encontrado a 571 (R) cm⁻¹

Na figura 8.44, apresentamos uma porção do espectro infravermelho sem correção da linha base, e uma parte do espectro Raman (números de onda em cm⁻¹), na região de baixa energia, junto às respectivas segundas derivadas como forma de ilustrar o posicionamento de bandas sobrepostas, e/ou mal resolvidas, que ajudaram a obtermos um maior número de observáveis em ambos os espectros.

Figura 8.44 [Zn(Gli)(Met)].H₂O. Espectros infravermelho e Raman junto às respectivas segundas derivadas.

A forma dos modos normais tratados na atribuição do esqueleto estrutural do complexo [Zn(Gli)(Met)].H₂O, se apresentam nas figuras 8.45 e 8.46.

Figura 8. 45 [Zn(Met)(Gli).H₂O. Forma dos modos normais do esqueleto estrutural. Interpretação de acordo com a tabela 8.17. Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

Figura 8.46 [Zn(Met)(Gli).H₂O. Forma dos modos normais do esqueleto estrutural (números de onda em cm⁻¹). Interpretação de acordo com a tabela 8.17. Código de cores: azul celeste = Zn; azul escuro = N; vermelho = O; preto = C; amarelo = S; laranja = H.

A análise espectroscópica vibracional completa com base nos espectros infravermelho e Raman, segundas derivadas espectrais, e análise de deconvolução de bandas unido ao cálculo teórico dos espectros por meio do procedimento DFT:B3LYP/6-311G (d, p) se apresenta na tabela 8.18.

DFT	DFDT	Raman	ADB	IV	2ª	ADB	Atribuição
calc	Х	Exp.	Raman	Exp.	der.	IV	
	0,9613				IV		
3555	3417				3446		$v_{as}(NH)$
3537	3400	3383	3384	3398	3392	3398	$v_{as}(NH)$
3472	3338	3294			3365	3378	v _s (NH)
3451	3317	3269	3283	3258	3256	3257	$v_{s}(NH)$
3159	3037	3099	3184	3085	3097		$v_{as}(CH) CH_3$
3154	3032			3035	3029	3029	$v_{s}(CH) CH_{3}^{*} +$
							$v_{as}(CH) CH_2$
3151	3029	3001	3006				$v_{s}(CH) CH_{3}^{*} +$
							$v_{as}(CH) CH_2$
3121	3000	2992			2997		$v_{as}(CH) CH_2$
	2950	2983		2975			$v_{as}(CH) CH_2$
3069							
3059	2940	2966					$v_{s}(CH) CH_{2}$
3055	2937	2959	2944	2956	2955	2956	$v_{as}(CH) CH_2$
3054	2936					2932	$v_{as}(CH) CH_3$
3017	2900	2917	2917	2917	2916	2916	v _s (CH) CH ₂
3011	2894	2857	2851	2864	2860	2859	v(CH) met.
1711	1645	1692		1671	1683	1672	δ(HNH)sciss.
1710	1644		1659	1652	1651	1652	δ(HNH)sciss.
1691	1626		1600	1606	1610	1608	v(C=O)
1666	1601	1593		1582	1581	1577	v(C=O)
1527	1468	1496		1491	1494	1489	δ(HCH)(CH ₂)sciss.
1516	1457	1481	1479	1475	1486	1474	δ(HCH)(CH ₃).
1513	1454	1457	1443	1458	1454	1436	δ(HCH)(CH ₂)sciss
1506	1448		1432			1425	$\delta(\text{HCH})(\text{CH}_3) +$
							δ(HCH)(CH ₂)
1500	1442	1422	1422	1422		1423	$\delta(\text{HCH})(\text{CH}_3)$ +
							δ(HCH)(CH ₂)
1418	1363	1402	1403	1401	1407	1418	δ (HNH) twist +
							$\delta(HCH)(CH_2)$ twist
1390	1336	1390	1394				$\delta(HCH)(CH_3)$ wagg.+
							$\delta(\text{HCH})(\text{CH}_2)$ wagg.
1389	1335	1383		1384	1383	1384	δ (HNH) twist +
							δ (HCH) twist
1389	1335	1358	1359		1359	1358	δ(HCH) wagg.
1366	1313	1343	1349				δ(HCH) wagg.
1332	1280	1329	1329				δ(HNH) twist
1323	1272		1302	1304	1303	1302	$\delta(COH) + \delta(CCH)$
							met.
1293	1243	1264	1268		1265	1266	$\delta(COH) + \delta(HCH)$
							wagg. + δ (CCH)

Tabela 8.18 Atribuição vibracional completa do complexo [Zn(Gli)(Met)].H₂O

1269	1220		1245				δ(HCH) wagg.
1261	1212		1217	1210	1206		δ(HCH) twist.
1212	1165	1187	1188				δ(HCH) twist.
1182	1136	1148	1144	1145	1148	1144	δ(HCH) wagg.
1179	1133	1125					$v(C=O) + \delta(OC=O)$
1150	1105	1112	1109	1105	1104	1104	δ(HNH) twist.
1121	1078	1089	1089				δ(HNH) twist.
1098	1056	1049	1050	1046	1045	1044	δ(HCH) twist. +
							δ(HNH) twist.
1050	1009				1010	1028	δ(HNH) twist.
1037	997						δ(HCH) twist.
1005	966			979	976	976	$\delta(COH) + \nu(CO)$
992	954	959					$v(CC) + \delta(HCH)$ twist.
984	946	948	928				ρ(CH ₃)
966	927	916	917	910	912	912	ρ(CH ₃)
945	908	889	882			880	$\rho(NH_2) + \rho(CH_2) +$
							v(CO)
881	847	853				836	δ(OC=O)
854	821			824	827	826	δ(OC=O)
795	764		784	809	796	782	$\rho(CH_3) + \rho(CH_2) +$
							δ(OC=O)
743	714		746	749	755	738	$\rho(CH_3) + \rho(CH_2)$
731	703	714	715	722	725	714	$\rho(CH_2) + \nu(CC)$
702	675		698	686	695	691	$v(CS) + \delta(CCC)$
678	652	656	657	669	671	671	ρ(NH ₂)
642	617	649	646	634	631	635	ρ(NH ₂)
637	612		615		608	617	$v(CS) + \delta(CCC)$
599	576	571	577		589	585	[v(CC) 22% + v(ZnO)]
							18% + δ(CCO) 10%];
							$\rho(C=O)\uparrow\downarrow$
588	565	560	559	566	568	570	v(CC) 20% + v(CO)
							8%
553	531	533	537	547	547	547	δ(NCC) 20% +
							δ(CCO) 16% +
							δ(NZnO) 9% +
							v(ZnN) 8%
514	494	495	517		508		v(ZnN) 29% + $v(NC)$
							14% + δ(CCO) 11%
484	465	471	471		449	451	δ(NCC) 18% +
							$\delta(\text{ZnNC})$ 16% +
							δ(CCO) 12% +
			100				δ(ZnOC) 10%.
437	420	(435)	438	422	422		v(ZnO) 16% +
							$\partial(\text{ZnNC})$ 11% +
							δ(ZnOC) 11% +
							δ(CCO) 10% +

							δ(NCC) 8%.
406	390	406	407	404	398	397	v(ZnO) 17% +
							δ(ZnNC) 10% +
							δ(NCC) 13%.
365	351	343	358		355	356	δ(NZnO) 16% +
							δ(ZnNC) 10% +
							v(ZnO) 17% + $v(ZnN)$
							9%.
343	330		341	327	327	326	δ(ZnOC) 18% +
							δ(NZnO) 17% +
							v(ZnN) 17% +
							δ(CCO) 8%.
288	277	292			296	295	δ(NZnO) 22% +
							v(ZnN) 14% +
							δ(ZnOC) 13%.
275	264	270	259	262	259	263	δ(NZnO) 26% +
							v(ZnN) 14% + $v(ZnO)$
							$17\% + \delta(ZnNC) 9\%$.
263	253	246	251				torção
246	236	226	228	239	239	239	torção
173	166		163	161	170	178	torção
162	156	159	154		158	155	torção
149	143	138	140	142	143	150	torção
136	131	125	123	131	127	122	torção
111	107	106		113	112	112	torção
109	105		105				torção
102	98	88		97	92	94	torção
62	60			69	72	70	torção
50	48						torção
49	47						torção
31	30						torção
30	29						torção
18	17						torção

* valor elevado para absorção dos modos C-H de estiramento em grupos metilo.