10 Resultados e discussões: complexos de Cd(II)

Neste capítulo serão apresentados os resultados, bem como a discussão pertinente, obtidos para os complexos metal - ligantes tendo o íon Cd(II) como elemento central. Os complexos em estudo são: cisteínatoglicinato de Cd(II), [Cd(Cis)(Gli)]; glicinatometioninato de Cd(II), [Cd(Gli)(Met)] e cisteínatometioninato de Cd(II), [Cd(Cis)(Met)].

10.1 Introdução

O presente estudo é uma extensão do nosso trabalho com relação à síntese, determinações estruturais e análise vibracional de complexos de cádmio (II) tendo aminoácidos como ligantes. É fato conhecido que a maioria dos complexos de cádmio (II) são octaédricos [10.1], no entanto, complexos que apresentam coordenação quatro ou cinco estão limitados a poucos casos impostos por restrições aos átomos [10.2 – 10.4] tais como o entorno estérico ao redor dos ligantes [10.5]. Esta diversidade estrutural é particularmente evidente nos halo complexos de Cd(II). Tem se escrito excelentes monografias com relação aos compostos de coordenação dos complexos de cádmio, e sobre sua toxicidade nos organismos vivos devido à imobilização do íon Cd(II) [10.6]. Na literatura também se informa a síntese de sólidos de Cd(II) com extensão dimensional em linha, num plano e tridimensional [10.7 – 10.11], compostos que tem sido sugeridos como candidatos para seu uso em catálise, em óptica ou em clathration tridimensional [10.12, 10.13].

A grande afinidade do cádmio para ligar – se com o enxofre faz com que a cisteína seja um excelente ligante que possa ser utilizado em processos de desintoxicação por metais pesados.

A cisteína constitui um dos aminoácidos residuais predominante em muitas proteínas, entre elas as metalotioninas, caracterizada pela presença de uma cadeia polipeptídica única de 61 ou 62 aminoácidos [10.14]. Devido a abundancia dos

resíduos da cisteína, as metalotioninas proporcionam ligantes sulfonados polarizáveis que são importantes pela elevada afinidades metálicas para a proteína [10.15].

Pelas razões acima expostas, entendemos que o estudo de novos complexos de Cd(II) tendo a cisteína e a metionina como ligantes portadores do enxofre, e a glicina virão a contribuir no entendimento das ligações químicas junto ao Cd(II), é importante determinação estrutural portanto, а dos complexos [Cd(Cis)(Gli)].H₂O, [Cd(Cis)(Met)].H₂O, e [Cd(Gli)(Met)].H₂O. O uso da espectroscopia vibracional, principalmente a espectroscopia no infravermelho em complexos já é alvo de estudos há muito tempo [10.16], e neste trabalho, objetivando a determinação estrutural desses complexos, foi aplicado o procedimento mecânico-quântico baseado na Teoria do Funcional da Densidade (DFT) [10.17 – 10.20], aliado à espectroscopia vibracional, técnica que permite explicar as principais características dos espectros desses complexos informando a atribuição completa deles.

10.2 Determinação estrutural e parâmetros geométricos

A determinação estrutural teórica, e ou a geometria espacial dos complexos metal - aminoácidos de cádmio (II), comprovada por métodos de espectroscopia vibracional, se realizou mediante o procedimento mecânico-quântico baseado na Teoria do Funcional da Densidade (DFT) [10.17 – 10.20], utilizando o funcional B3LYP e o conjunto de base 3-21G (6d, 7f) para todos eles.

As energias obtidas para a formação dos complexos foram as seguintes: [Cd(Cis)(Gli)]: E(RB+HF-LYP) = -6442,67784239 A. U. (Hartree) [Cd(Gli)(Met)]: E(RB+HF-LYP) = -6520,87202675 A. U. (Hartree) [Cd(Cis)(Met)]: E(RB+HF-LYP) = -6956,22426444 A.U. (Hartree)

Desses valores se desprende que o complexo glicinatometiotinato de Cd(II) é mais estável que os outros complexos ternários de Cd(II) com os aminoácidos cisteína e glicina, e com os outros aminoácidos cisteína e metionina.

Os aminoácidos cisteína e glicina coordenam ao cátion Cd(II) de forma pseudo-tetraédrica, sendo C_s a simetria do esqueleto estrutural CdN₂OS, com os

átomos de oxigênio, enxofre e zinco no plano de simetria. A geometria estrutural do complexo [Cd(Cis)(Gli)] se ilustra na figura 10.1.

Figura 10.1 DFT:B3LYP/3-21G (6d,7f): Geometria estrutural do complexo [Cd(Cis)(Gli)]. Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

Os átomos de oxigênio e nitrogênio dos aminoácidos metionina e glicina coordenam ao íon Cd^{2+} de forma pseudotetraédrica tendo o esqueleto estrutural a simetria C_{2v} .

A geometria estrutural do complexo glicinatometioninato de Cd(II) obtido pelo procedimento DFT:B3LYP/3-21G (6d,7f) se apresenta na figura 10.2.

Figura 10.2 DFT:B3LYP/3-21G (6d, 7f): Geometria estrutura do complexo [Cd(Gli)(Met)]. Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

Para o complexo cisteínatometioninato de Cd(II), os ligantes aminoácidos metionina e glicina, coordenam também ao íon Cd^{2+} de forma pseudo - tetraédrica e a simetria C_s se encontra para o esqueleto estrutural CdN₂OS. A figura 10.3 ilustra a geometria espacial do complexo [Cd(Cis)(Met)].

Figura 10.3 DFT:B3LYP/3-21G (6d, 7f): Geometria estrutura do complexo [Cd(Cis)(Met)]. Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

Nas tabelas 10.1, 10.2 e 10.3 apresentamos os parâmetros geométricos dos esqueletos estruturais dos complexos de Cd(II).

Distâncias		Ângulos i, j, k	
átomos i, j (Å)		(°)	
1-3	1,320	3-1-23	118,778
1 – 23	2,135	1-3-5	116,617
2 - 23	2,530	1 - 23 - 2	147,201
3 - 5	1,572	1 - 23 - 8	77,821
8 - 23	2,340	1 - 23 - 13	104,711
11 - 12	1,548	2 - 23 - 8	124,227
12 - 13	1,508	2 - 23 - 13	86,075
13 - 23	2,347	23 - 2 - 11	91,597
2 - 11	1,909	3 - 5 - 8	113,850
		5 - 8 - 23	104,676
		8 - 23 - 13	119,124
		11 - 12 - 13	110,914
		12 - 11 - 2	113,489
		12 - 13 - 23	108,335

Tabela 10.1 DFT: B3LYP/3 - 21G (6d, 7f): Parâmetros geométricos do esqueleto estrutural do complexo [Cd(Cis)(Gli)] (sem água de hidratação)

Distâncias		Ângulos i, j,	
átomos i, j (Å)		k (°)	
1 - 2	1,525	2-1-20	104,2812
1 – 20	2,323	1-2 - 3	109,475
2-3	1,575	1 - 20 - 5	78,362
3-5	1,320	1 - 20 - 21	127,704
5-20	2,125	1 - 2 - 23	117,590
20-21	2,323	2-3-5	115,508
20-23	2,117	3-5-20	117,925
21 - 22	1,514	5-20-21	116,835
22-28	1,572	5 - 20 - 23	145,315
23 - 28	1,323	21 - 20 - 23	79,196
		20 - 21 - 22	103,986
		20 - 23 - 28	118,166
		21 - 22 - 28	114,111
		22-28 - 23	116,731

Tabela 10.2 DFT: B3LYP/ 3 - 21G (6d, 7f): Parâmetros geométricos do esqueleto estrutural do complexo [Cd(Gli)(Met)] (sem água de hidratação)

Distâncias		Ângulos i, j,	
átomos i, j (Å)		k (°)	
1 – 2	1,527	2 - 1 - 10	103,310
1 – 10	2,342	1-2-3	107,717
2-3	1,573	1-10-4	78,012
3-4	1,316	1-10-11	125,344
4 - 10	2,147	1-10-12	118,826
10-11	2,527	3-4-10	116,200
10-12	2,342	4 - 10 - 11	147,387
12 – 13	1,508	4 - 10 - 12	102,345
13 - 14	1,548	11 - 10 - 12	86,659
11 - 14	1,910	10 - 11 - 14	91,356
		10-12-13	108,190
		12 – 13 – 14	110,942
		13 – 14 – 11	113,553
		2-3-4	114,499

Tabela 10.3 DFT: B3LYP/3 – 21G (6d, 7f): Parâmetros geométricos do esqueleto estrutural do complexo [Cd(Cis)(Met)] (sem água de hidratação)

Como no caso dos complexos ternários de Zn(II) com os aminoácidos cisteína, glicina e metionina, a água de hidratação foi excluída dos cálculos de estrutura e vibracionais pelo motivo de não formar parte da esfera de coordenação do cátion metálico.

Os 3n - 6 modos normais encontrados para os complexos [Cd(Cis)(Met)], [Cd(Gli)(Met)] e [Cd(Cis)(Gli)] são: 93, 81 e 63, respectivamente. Na análise vibracional para os cálculos de atribuição espectral do complexo [Cd(Cis)(Met)]. H₂O, se consideram 31 coordenadas internas de estiramento vibracional, 53 coordenadas internas para a descrição das variações angulares, e 12 coordenadas de torção O espectro vibracional do complexo [Cd(Gli)(Met)].H₂O pode ser analisado teoricamente através do uso de 28 coordenadas internas de estiramento vibracional, 50 coordenadas internas de variações angulares, e 12 coordenadas internas de torção. O espectro teórico do complexo [Cd(Cis)(Gli)].H₂O foi caracterizado utilizando 23 coordenadas internas de estiramento vibracional, 41 coordenas internas que descrevem as variações angulares, e 10 coordenadas internas para a análise dos modos de torção.

10.3 Espectro FT - IV e Raman

Os espectros no infravermelho e Raman registrados para complexos ternários de Cd(II) com diferentes aminoácidos se ilustram a continuação nas figuras 10.4 a 10.9.

Figura 10.4 Espectro Raman do complexo [Cd(Cis)(Gli)].

Figura 10.5 Espectro Raman do complexo [Cd(Cis)(Met)].

Figura 10.6 Espectro Raman do complexo [Cd(Gli)(Met)].

Figura 10.7 Espectro no infravermelho do complexo [Cd(Cis)(Gli)], região de alta e de baixa energia, respectivamente.

Figura 10.8 Espectro no infravermelho do complexo [Cd(Cis)(Met)], região de alta e de baixa energia, respectivamente.

Figura 10.9 Espectro no infravermelho do complexo [Cd(Gli)(Met)], região de alta e de baixa energia, respectivamente.

10.4 Atribuição vibracional

Estiramentos O-H

Somente os complexos [Cd(Cis)(Met)].H₂O e [Cd(Cis)(Gli)].H₂O apresentam as bandas correspondentes ao modo de estiramento O-H do grupo carboxilato. Em todos os espectros se observam as bandas características que correspondem as absorções da água de cristalização. Em particular, para esses complexos a atribuição vibracional dos espectros infravermelho foi a seguinte:

[Cd(Cis)(Met)]: 3488 (IV)cm⁻¹ v(OH)

[Cd(Cis)(Gli)]: 3422 (IV-ADB), 3404 (R-ADB) cm⁻¹ v(OH)

A figura 10.10 apresenta a região no infravermelho compreendida entre $3600 - 2500 \text{ cm}^{-1}$ para os complexos ternários de Cd(II).

Figura 10.10 Espectros no infravermelho dos complexos [Cd(Cis)(Met)].H₂O (cor azul) e [Cd(Cis)(Gli)].H₂O (cor vermelha),na região espectral entre 3600 - 2500 cm⁻¹.

Como observamos nos espectros da figura 10.10, as bandas correspondentes ao modo de estiramento O-H são perfeitamente identificáveis, no entanto, as bandas que podem atribuir-se aos diferentes modos de estiramento N-H e C-H se encontram sobrepostas no extenso perfil entre 3400 até 2800 cm⁻¹. Uma forma de inferir sobre as bandas de estiramento N-H e C-H é determinando a segunda derivada espectral, e procedendo à análise de deconvolução de bandas.

As figuras 10.11 e 10.12 ilustram a análise de deconvolução de bandas (ADB) dos espectros no infravermelho e Raman, respectivamente, na região de elevada energia para o complexo [Cd(Gli)(Met)].H₂O. As figuras 10.13 e 10.14 ilustram a ADB no infravermelho e Raman para o complexo [Cd(Cis)(Met)]. H₂O, e para o complexo [Cd(Cis)(Gli)]. H₂O, a ADB se ilustra na figura 10.15 (IV e R).

Figura 10.11 [Cd(Gli)(Met)]: Análise de deconvolução de bandas no IV nas regiões entre 3500 - 3100 cm⁻¹ e entre 3100 - 2850 cm⁻¹.

Figura 10.12 Análise de deconvolução de bandas no espectro Raman nas regiões entre 3360 - 3200 cm⁻¹ e entre 3000 - 2800 cm⁻¹, para o complexo [Cd(Gli)(Met)].H₂O.

Figura 10.13 Análise de deconvolução de bandas no IV nas regiões de números de onda compreendidos entre 3600 - 2800 cm⁻¹ para o complexo [Cd(Cis)(Met)].H₂O.

Figura 10.14 ADB no espectro Raman nas regiões de números de onda compreendidos entre $3600 - 2800 \text{ cm}^{-1}$ para o complexo [Cd(Cis)(Met)].H₂O.

Figura 10.15 ADB nos espectros IV e Raman nas regiões de números de onda compreendidos entre $3600 - 2800 \text{ cm}^{-1}$ para o complexo [Cd(Cis)(Gli)].H₂O.

Os espectros das segundas derivadas do perfil das bandas espectrais no infravermelho e Raman para os complexos ternários de Cd(II) se apresentam no Anexo B.

Estiramentos N-H e C-H

Como no caso dos complexos de Zn(II), todos os complexos ternários de Cd(II) estudados aqui apresentam dois grupos –NH₂, um de cada aminoácido participante na formação dos complexos. Para cada complexo esperamos observar portanto, quatro bandas correspondentes aos estiramentos N-H, as quais devem seguir em princípio a regra estabelecida por Bellamy e Williams [10.16] para as aminas primárias: v(a') = 345,5 + 0,876v(a''). Na tabela 10.4 apresentamos a atribuição vibracional para as bandas correspondentes aos modos normais de estiramento N-H.

Tabela 10.4 Atribuição vibracional para os modos de estiramento N-H para os aminoácidos complexos ternários de Cd(II)

	[Cd(Cis)(Met)].H ₂ O	[Cd(Gli)(Met)].H ₂ O	[Cd(Cis)(Gli)].H ₂ O
vas(NH)	3247(IV-ADB),	3448(IV), 3345 (IV),	3348(IV), 3285 (IV)
	3210(IV-ADB),	3341 (R)	
	3214 (R)		
v _s (NH)	3164(IV-ADB),	3297 (R), 3253 (R),	3229 (IV), 3231 (R)
	3168 (R), 3122 (IV),	3261 (IV)	3158 (IV-ADB)
	3149 (R)		

A atribuição vibracional para os valores experimentais 3448 cm⁻¹(IV) e 3345 cm⁻¹ (IV), do complexo [Cd(Gli)(Met).H₂O estão de acordo com a regra de Bellamy-Williams citada acima, apresentando um desvio de 0,6% com relação ao valor de 3345 cm⁻¹ (IV). Por sua vez, o valor de 3345 cm⁻¹, considerado como pertencente à banda de absorção do modo de estiramento assimétrico, também proporciona um desvio de 0,6% referido ao valor de 3297 cm⁻¹(R) atribuído ao modo de estiramento N-H simétrico. O conjunto de valores 3285 cm⁻¹ e 3229/3231 cm⁻¹ observados nos espectros infravermelho e Raman para o complexo [Cd(Cis)(Gli)].H₂O têm um desvio da ordem de 0,2%. Para o complexo [Cd(Cis)(Met)].H₂O, os valores 3247 cm⁻¹ e 3210 cm⁻¹ atribuídos às bandas de deformação linear N-H assimétricas, apresentam desvios da ordem dos 0,82 e 0,22%, respectivamente. No entanto, os valores calculados pelo procedimento

B3LYP/3-21G (6d, 7f), não se ajustam, à regra de Bellamy-Williams tendo um desvio da ordem do 2.9%.

A complementação das bandas sobrepostas e/ou mal definidas, no perfil da banda larga que agrupa os modos de estiramento v(OH), v(NH) e v(CH) dos grupos funcionais dos aminoácidos cisteína, glicina e metionina, se realizou calculando a segunda derivada espectral dos espectros no infravermelho e/ou Raman, e depois, baseado nos valores indicados pelos picos máximos das segundas derivadas se realizou a ADB, de forma a desvendar as bandas sobrepostas no perfil das bandas largas abrangentes com diferentes modos de estiramento. Os resultados dessas análises se apresentam na tabela 10.4 para os complexos [Cd(Cis)(Gli)], [Cd(Gli)(Met)] e [Cd(Cis)(Met)].

As bandas atribuídas aos modos normais de estiramento assimétrico e simétricos C-H, dos grupos $-CH_3$ e $-CH_2$, se consideram característicos e se encontram na faixa espectral entre 3000 cm⁻¹ – 2850 cm⁻¹. As bandas de estiramento C-H pertencentes aos grupos $-CH_3$ se encontram somente nos complexos [Cd(Cis)(Met)] e [Cd(Gli)(Met)] pela presença do aminoácido metionina que possui um grupo $-CH_3$ na cadeia alifática. Na tabela 10.5, apresentamos a atribuição vibracional para os distintos modos de estiramento C-H dos grupos $-CH_3$, $-CH_2$ e -CH metilênico para os três complexos de Cd(II) com diferentes aminoácidos como ligantes. Os espectros resultantes da ADB estão representados nas figuras 10.11 até 10.15 acima. Os espectros resultantes das segundas derivadas se apresentam no Anexo B.

	[Cd(Cis)(Gli)]	[Cd(Gli)(Met)]	[Cd(Cis)(Met)]
v(CH)(CH ₃)	3092(R),2954 (R),	2988(IV), 2973 (IV),	3101(IV), 3080 (R)
	2960 (IV)	2984 (R), 2975 (R),	3081(IV), 3060 (R)
		2958(R), 2959 (IV)	3066 (IV)
v (CH)(CH ₂)	2862(R), 2853(IV),	2958(R), 2959 (IV)	3035 (IV), 3000
	2823 (R)	2942 (IV), 2936 (R),	(IV), 3005 (R),
		2919 (IV), 2918 (R)	2980 (R),
		2854 (IV, R)	2924 (IV), 2923
			(R)
v(CH)(CH)		2825 (IV), 2827 (R)	2878 (R)
metilênico			

Tabela 10.5 Atribuição vibracional para os diferentes modos de estiramento C-H dos complexos [Cd(Cis)(Gli)]H₂O, [Cd(Gli)(Met)].H₂O e [Cd(Cis)(Met)].H₂O

A complementação das bandas não observadas diretamente nos espectros infravermelho e Raman, se obteve através das segundas derivadas espectrais e pela análise de deconvolução de bandas.

Para o complexo [Cd(Cis)(Gli)].H₂O, os números de onda calculados e corrigidos pelo fator de escala igual a 0.9613, lançados em gráfico versus (vs) os valores observados e/ou deduzidos pela segunda derivada espectral, ou pela análise de deconvolução de bandas, origina o gráfico apresentado na figura 10.16. A equação da reta resultante é: número de onda DFT (calc) = -657,86247 + 1,19157 x número de onda experimental com um coeficiente de correlação R = 0,95595.

Figura 10.16 [Cd(Cis)(Gli)].H₂O: Gráfico do número de onda DFT (calc) versus números de onda experimentais, em $[cm^{-1}]$.

Para o complexo [Cd(Gli)(Met)].H₂O o gráfico número de onda DFT (calc) x números de onda experimentais se ilustra na figura 10.17. A equação da reta neste caso é igual a: número de onda DFT(calc) = -3.906,33502 + 2,34383 x número de onda experimental, com um coeficiente de correlação R = 0,95011.

Figura 10.17 [Cd(Gli)(Met)].H₂O: Gráfico do número de onda DFT (calc) versus números de onda experimentais, em $[cm^{-1}]$.

10 Resultados e discussões: complexos de Cd(II)

A relação entre os números de onda calculados e os experimentais dos diferentes modos de estiramento C-H do complexo [Cd(Cis)(Met)].H₂O, apresenta um padrão similar dos casos anteriores, sendo a equação da reta é igual a: números de onda DFT (calc.) = 444,23607 + 0,84466 x números de onda experimentais, com um coeficiente de correlação R = 0,89131. O gráfico se ilustra na figura 10.18

Figura 10.18 [Cd(Cis)(Met)].H₂O: Gráfico do número de onda DFT (calc) versus números de onda experimentais, em [cm⁻¹].

Como nos casos anteriores, o desvio entre os valores de números de onda calculados e experimentais se deve a que os espectros registrados no IV e Raman, são espectros anarmônicos, onde cada molécula dos diferentes complexos estão sujeitas às perturbações inerentes do estado sólido, e neste caso específico observamos o maior desvio entre os números de onda calculados pelo procedimento DFT:B3LYP/3-21G (6d, 7f) para os estiramentos N-H, situados no extremo inferior esquerdo da curva apresentada na figura 10.18.

Estiramentos C=O

Uma discussão apurada sobre a faixa espectral de absorção no infravermelho dos modos de estiramento das carboxilas, C=O, foi apresentado no capítulo 8, onde se discutia o espectro vibracional dos complexos de Zn(II), de tal forma que não repetiremos aqui o escrito anteriormente. Na tabela 10.6 apresentamos a atribuição vibracional para os modos v(C=O) presentes nos complexos ternários de Cd(II) com diferentes aminoácidos.

Tabela 10.6 Atribuição vibracional dos modos v(C=O) nos complexos [Cd(Cis)(Gli)].H₂O, [Cd(Cis)(Met)].H₂O, [Cd(Gli)(Met)].H₂O.

	[Cd(Cis)(Gli)].H ₂ O	[Cd(Cis)(Met)].H ₂ O	[Cd(Gli)(Met)].H ₂ O	
v(C=O) exp.	1644 (R), 1637 (IV)	1655 (IV), 1658 (R)	1655 (IV), 1641 (R)	
	1631(IV-ADB),	1599 (IV), 1594 (R)	1619 (IV), 1572 (R)	
	1637 (R-ADB)			
v(C=O) calc.	1731, 1671	1676, 1643	1731, 1625	

Modos de deformação angular δ (HNH)

As bandas que se atribuem aos modos de deformação angular do tipo "tessouras" (scissoring) absorvem no infravermelho na mesma região que as carboxilas, e se encontram sobrepostas nos espectros. Apesar dessas dificuldades, por meio da segunda derivada espectral e ADB, elas podem ser identificadas e atribuídas experimentalmente. Na tabela 10.7 listamos os números de onda correspondentes às atribuições δ (HNH)sciss. para os três complexos ternários de Cd(II) junto aos valores calculados pelo procedimentos DFT:B3LYP/3-21G (6d, 7f). Como podemos observar os números de onda atribuídos aos modos de deformação angular H-N-H, nos três complexos ternários de Cd(II), são próximos com os números de onda atribuídos às carboxilas presentes nos aminoácidos, daí a dificuldade na atribuição. A figura 10.19 ilustra a região espectral entre 1800 até 1000 cm⁻¹ para os três complexos ternários de Cd(II).

239

Figura 10.19 Espectros no infravermelho dos complexos ternários de Cd(II): $[Cd(Cis)(Gli)]H_2O$ (azul), $[Cd(Cis)(Met)].H_2O$ (verde), $[Cd(Gli)(Met)].H_2O$ (vermelho) na região espectral entre 1800 até 1000 cm⁻¹.

Tabela	10.7	Atribuição	vibracional	dos	modos	δ(HNH)sciss	nos	complexos
[Cd(Cis)(Gli)]H ₂ O, [Cd(O	Cis)(Met)].H ₂	0, [Cd(Gli)	(Met)].H ₂ O		

	[Cd(Cis)(Gli)]	[Cd(Cis)(Met)]	[Cd(Gli)(Met)]
δ(HNH)sciss	1597(IV), 1589(R),	1642 (IV),	1645 (IV),
exp.	1559 (IV)	1561 (IV),	1641 (R),
		1566 (R)	1638 (IV)
δ(HNH)sciss	1651, 1644	1645, 1642	1651, 1640
calc.			

As figuras 10.20 a 10.23 apresentam os espectros deconvoluídos da região das absorções tanto das carboxilas, quanto dos modos de deformação angular H-N-H.

Figura 10.20 ADB dos espectros Raman e infravermelho do complexo [Cd(Cis)(Gli)].H₂O, na região entre 1750– 1500 cm⁻¹ e 1700 -1400 cm⁻¹, respectivamente.

Figura 10.21 ADB do espectro infravermelho do complexo [Cd(Gli)(Met)].H₂O, na região entre $1700 - 1500 \text{ cm}^{-1}$, e do espectro Raman entre as regiões 1680 - 1550 e entre $1480 - 1300 \text{ cm}^{-1}$.

Figura 10.22 Análise de deconvolução de bandas dos espectros infravermelho do complexo [Cd(Cis)(Met)].H₂O, nas regiões entre 1700 e1500 cm⁻¹ e entre 1550 e 1450 cm⁻¹.

Figura 10.23 ADB do espectro Raman do complexo [Cd(Cis)(Met)].H₂O nas regiões entre 1700-1500 cm⁻¹ e 1500-1300 cm¹.

Modos de deformação angular δ (HCH)

As variações angulares H-C-H do tipo "tessouras" (scissoring) se localizam em regiões de maior energia que as variações angulares H-C-H dos tipos de balanceio num plano estrutural, ou fora do plano. A atribuição desses modos, que apresentamos na tabela 10.8 teve como base o cálculo DFT:B3LYP/3-21G (6d, 7f) de forma que na tabela 10.16, onde apresentamos a nossa proposta de atribuição dos 3n – 6 modos vibracionais lançamos os valores em números de onda calculados, com o intuito de compará-los com os valores experimentais dos espectros no infravermelho e Raman.

Tabela 10. 8 Atribuição vibracional dos modos δ (HCH)sciss. nos complexos [Cd(Cis)(Gli)]H₂O, [Cd(Cis)(Met)].H₂O, [Cd(Gli)(Met)].H₂O.

	[Cd(Cis)(Gli)]H ₂ O	[Cd(Cis)(Met)].H ₂ O	[Cd(Gli)(Met)].H ₂ O
δ(HCH)	1491(IV), 1434(IV)	1509 (IV), 1505 (R),	1531 (IV), 1490 (IV),
sciss exp.	1494(R), 1433 (R)	1460 (IV), 1461 (R),	1485 (R), 1477 (IV),
		1444 (IV), 1445 (R),	1423 (R)
		1426 (IV, R), 1140 (IV),	
		1409 (R),	
δ(HCH)	1475, 1461	1480, 1477, 1472, 1462,	1513, 1474, 1473,
sciss calc.		1459.	1455.

As figuras 10.24, 10.25 e 10.26 ilustram as deconvoluções de bandas espectrais nos espectros infravermelho e Raman para os complexos de Cd(II). Espectros das segundas derivadas, tanto no infravermelho, quanto no espectro Raman se apresentam no Anexo B.

Figura 10.24 [Cd(Cis)(Gli)].H₂O: ADB nos espectros infravermeho e Raman na região espectral entre 1700-1400 cm⁻¹.

Figura 10.25 [Cd(Cis)(Met)].H₂O: ADB nos espectros infravermeho e Raman na região espectral entre 1700-1500 cm⁻¹.

Figura 10.26 [Cd(Gli)(Met)].H₂O: ADB nos espectros infravermeho e Raman na região espectral entre 1700 - 1500 cm⁻¹.

Variações angulares H-N-H e H-C-H

Já discutimos anteriormente a atribuição vibracional dos modos δ (HNH) do tipo "tessouras" (scissoring), que absorvem em números de onda mais elevados que os outros modos de variações angulares: balanceio (wagging), oscilação pendular (rocking) e de giro alternado (twisting).

Nos espectros infravermelho dos três complexos ternários de Cd(II) com aminoácidos observamos bandas largas de absorção. A ADB é a forma de estudar a presença dos diferentes modos de variações angulares δ (HNH) e δ (HCH), como também a presença das bandas que pertencem aos modos de balanceio fora do plano ou "rocking". A ADB é um procedimento baseado na posição dos picos revelados pela segunda derivada espectral, cujos gráficos se ilustram no Anexo C.

Devemos alertar que pela natureza dos movimentos vibracionais, os modos normais que contém as coordenadas internas vibracionais que definem as variações angulares que discutimos, se encontram acoplados com coordenadas internas de outras índoles, e nunca se apresentam puros com 100% de participação do movimento. A atribuição vibracional teve como base tanto a evidência experimental, quanto os cálculos teóricos fundamentados na Teoria do Funcional da Densidade (DFT) [10.17, 10.18]. A tabela 10.9 contém só os números de onda correspondentes as bandas observadas no espectro infravermelho e no espectro Raman. Nas tabelas 10.13, 10.15 e 10.16 apresentamos a análise total dos espectros vibracionais dos complexos ternários de Cd(II) com diferentes aminoácidos.

As figuras 10.27 a 10.32 apresentam a ADB dos espectros infravermelho e Raman dos complexos de Cd(II), na região de energia que corresponde a absorção dos modos de variações angulares δ (HNH) e δ (HCH). Tabela 10.9 Atribuição vibracional dos modos δ (HNH) e δ (HCH) nos complexos [Cd(Cis)(Gli)]H₂O, [Cd(Cis)(Met)].H₂O, [Cd(Gli)(Met)].H₂O

	[Cd(Cis)(Gli)]	[Cd(Cis)(Met)]	[Cd(Gli)(Met)]
δ(HNH)wagg.	1107 (IV),	1067(IV),1079 (R),	1077 (IV), 1071 (R),
	1110 (R-ADB),	956 (R)	1033 (IV), 926 (IV, R).
	961 (IV), 962 (R)		
δ(HNH)twist.	1409 (IV), 1410 (R)	1386(IV),1354 (R),	1360 (IV), 1386 (R),
	1385 (IV), 1372 (R)	1343 (R), 1258 (R).	1329 (R), 1318 (IV).
	1295 (IV), 1271 (R)		
	1262 (IV), 1253 (R)		
	1226(IV), 1217(R)		
	1129 (IV)		
δ(HCH)wagg.	1192 (IV), 1193 (R)	1397(IV),1242(IV)	1264 (IV), 1261 (R),
		1222 (IV)	
δ(HCH)twist.	1295(IV),1271(R)	131 (IV-2 ^a .d),	1343 (R), 1330 (IV)
	1262 (IV), 1253 (R)	1300(IV),1307 (R),	1329 (R), 1128 (IV, R)
	1226 (IV), 1217 (R)	1248(IV-2ª.d),	
		1164 (R)	

Figura 10.27 [Cd(Cis)(Gli)].H₂O: ADB do espectro infravermelho na região entre $1450 - 1200 \text{ cm}^{-1}$.

Figura 10.28 [Cd(Cis)(Gli)].H₂O: ADB do espectro Raman nas regiões espectrais entre 1540 - 1260 cm⁻¹.

Figura 10.29 [Cd(Cis)(Met)].H₂O: ADB do espectro infravermelho nas regiões espectrais entre 1500 -1200 cm⁻¹.

Figura 10.30 [Cd(Cis)(Met)].H₂O: ADB do espectro Raman nas regiões espectrais entre 1500 - 1100 cm⁻¹.

Figura 10.31 [Cd(Gli)(Met)].H₂O: ADB do espectro infravermelho na região entre 1400-1200 cm⁻¹.

Figura 10.32 [Cd(Cis)(Met)].H₂O: ADB do espectro Raman nas regiões entre 1480 - 1300, 1310 - 1250 e 1165 - 1140 cm⁻¹.

Modos normais de estiramento C-N, C-O, C-C e C-S.

Os modos normais que correspondem às variações infinitesimais das distâncias de ligação C-O, C-N, C-C e C-S, se apresentam acoplados, isto é, eles são descritos por várias coordenadas internas vibracionais definidas no contexto estrutural dos complexos ternários de Cd(II), compreendendo coordenadas que definem variações de distâncias infinitesimais, e aquelas que se referem às variações angulares, sendo assim, atribuir a um desses modos à variação de uma coordenada particular, constituirá um erro do ponto de vista espectroscópico.

Como apontávamos anteriormente ao discutirmos os espectros vibracionais dos complexos de Zn(II), da informação espectroscópica existente na literatura, no livro de Bellamy [10.16], a descrição dos espectros no infravermelho dos aminoácidos se faz em termos genéricos, indicando as vibrações NH, na região entre 3000 – 2000 cm⁻¹. A absorção C=O classificadas como AMIDA I para amidas primárias no estado sólido absorvem em 1650 cm⁻¹, e em solução em 1690 cm⁻¹. As amidas secundárias têm absorções C=O em 1680 - 1630, quando sólidas, e em solução absorvem na faixa espectral entre 1700 – 1670 cm⁻¹. As amidas terciárias estejam estas no estado sólido ou presentes em soluções diluídas, absorvem entre 1670 – 1630 cm⁻¹. A classificação de bandas do tipo amida II se refere às absorções angulares do agrupamento NH2. Bellamy aponta também um breve comentário sobre "outras correlações" onde se indica que uma banda perto dos 1225 cm⁻¹ pode pertencer a um estiramento C-O, ou a uma variação angular OH. Esta evidência experimental indicada por Bellamy [10.16], está de acordo com as bandas encontradas nos complexos ternários de Cd(II) com os aminoácidos cisteína, glicina e metionina.

Bellamy [10.16], também descreve as vibrações de estiramento C-S, e indica que se observam no infravermelho como bandas de intensidade fraca, numa faixa espectral compreendida entre $700 - 600 \text{ cm}^{-1}$, fato que está de acordo com a nossa evidência experimental.

Na tabela 10.10, listamos os números de onda que podem ser aproximadamente atribuídos aos modos de estiramento C-C, dando para a coordenada interna que o descreve, o benefício de ter uma participação significativa na descrição do modo normal. Para o complexo [Cd(Cis)(Gli)].H₂O, a banda observada no espectro Raman aos 1162 cm⁻¹, pode em princípio atribuir-se ao modo acoplado $v(CO) + v(CC) + \delta(HNH) + \delta(HCH)$ isto é, no movimento vibracional participam majoritariamente as coordenadas internas de estiramento C-O e C-C, e as coordenadas de variações angulares HNH e HCH. A descrição desse modo particular se ilustra na figura 10.33, onde podemos apreciar a contração e alongamento das distâncias C-O e C-C, como também podemos observar os movimentos de variações angulares H-N-H e H-C-H to tipo oscilação alternada ou "wagging". Observa-se também que o resto da estrutura molecular permanece quase sem movimento.

Figura 10.33 [Cd(Cis)(Gii)].H₂O: formas dinamicas do modo normal atribuido como $v(CO) + v(CC) + \delta(HNH) + \delta(HCH)$, e observado a 1162 cm⁻¹ no espectro Raman. Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

A banda espectral calculada aos 1044 cm⁻¹ (valor corrigido pelo fator 0,9613) se correlaciona com as bandas observadas aos 1041 e 1047 cm⁻¹, no espectros infravermelho e Raman, respectivamente. Este modo vibracional está composto principalmente pelo oscilador triplo N-C-C-O, mais a oscilação $\rho(OH)\uparrow\downarrow$, fora do plano do grupo carboxilato. Na figura 10.34 podemos apreciar várias fases do movimento vibracional do modo atribuído como: $v(CO) + v(CC) + v(CN) + \rho(OH)\uparrow\downarrow$: no lado esquerdo observamos contração da ligação C-C e alongamento das ligações C-N e C-O, no lado direito da figura observamos o movimento contrario, como também a oscilação da ligação O-H do grupo carboxilato.

Figura 10.34 [Cd(Cis)(Gli)].H₂O: formas dinâmicas do modo normal atribuído como $v(CO) + v(CC) + v(CN) + \rho(OH) \uparrow \downarrow$, e observado aos 1041 e 1047 cm⁻¹ nos espectros infravermelho e Raman. Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

O cálculo DFT/B3YP:3-21G (6d, 7f) indica que os valores de 957 e 948 cm⁻¹, corrigidos pelo fator de escala 0.9613 podem atribuir-se aos modos normais acoplados onde a coordenada interna de variação de distância C-N tem uma contribuição significativa. No espectro infravermelho observamos duas bandas que podem correlacionar-se aos valores calculados: 911 e 893 cm⁻¹, no entanto, no espectro Raman só observamos uma banda aos 906 cm⁻¹ correlacionada com o valor de 911 cm⁻¹ do espectro infravermelho. A figura 10.35 apresenta as formas dos modos normais atribuídos às bandas observadas.

Figura 10.35 [Cd(Cis)(Gli)].H₂O: formas dinâmicas dos modos normais atribuídos como $v(CN) + \delta(HNH)$ wagg., e observados aos 911(IV)/906(R) (parte superior da figura) e 893(cm⁻¹) (parte inferior). Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

Os modos normais onde as coordenadas internas vibracionais que incluem as ligações C-C com participação acentuada, se localizam nos espectros infravermelhos e Raman nos seguintes números de onda calculados: 820 cm⁻¹ e 808 cm⁻¹ correlacionados com: 792/795 cm⁻¹ do espectro infravermelho e do espectro Raman. As figuras 10.36 e 10.37 ilustram a forma desses dois modos normais de natureza acoplada onde se pode apreciar perfeitamente, tanto o encurtamento quanto o alongamento das ligações C-C.

Figura 10.36 [Cd(Cis)(Gli)].H₂O. Forma do modo normal calculado aos 820 cm⁻¹ e observado aos 792 cm⁻¹ no espectro infravermelho e aos 795 cm⁻¹ no espectro Raman. Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

Figura 10.37 [Cd(Cis)(Gli)].H₂O. Forma do modo normal calculado aos 808 cm⁻¹ e observado aos 746 cm⁻¹ (2^a. derivada no IV) aos 756 cm⁻¹ (2^a. derivada no espectro Raman). Código das cores: azul celeste = Cd; azul escuro = N; vermelho = O; amarelo = S; preto = C; laranja = H.

A atribuição vibracional para os modos descritos acima é a seguinte: 820 cm⁻¹(calc.)/792(IV), 794(R): v(C-C) + ρ (CH₂); 808 cm⁻¹ (calc.)/746(2^a.d.IV), 756(2^a.d.Raman): v(C-C) + δ (O=CO).

Para o complexo $[Cd(Cis)(Met)].H_2O$, a atribuição vibracional que propomos para os modos vibracionais acoplados que contêm contribuições significativas das coordenadas internas que incluem as distâncias interatômicas C-N, C-O e C-C é dada na tabela 10.10.

Tabela 10.10 Atribuição vibracional dos modos C-N, C-O e C-C do complexo [Cd(Cis)(Met)].

Modo vibracional	Atribuição
$1209 \text{ cm}^{-1*} / 1192 \text{ (IV)},$	$v(C-O) + \delta(O=CO) + \delta(HCH)$ twist.
$1196(R) \text{ cm}^{-1}$	
$1043 \text{ cm}^{-1}^{*}/1040 \text{ (IV) cm}^{-1}$,	v(C-O)(carboxilato) + v(C-C) + v(C-N)
$1045 (R) cm^{-1}$	(triplo oscilador) + $\rho(OH)\uparrow\downarrow$.
$1043 \text{ cm}^{-1*} / 1038 \text{ (ADB} - \text{IV) cm}^{-1}$	v(C-C) + v(C-N)
977 cm ^{-1*} / 985 (R) cm ⁻¹	ν (C-C) + ρ (CH ₃)
958 cm ^{-1*} / 949 (IV), 959 (R) cm ⁻¹	$v(C-N) + \delta(HNH)$ wagg.
914 cm ^{-1*} / 901 (IV), 898 (R) cm ⁻¹	$v(C-C) + \delta(HCH)$ twist
$900 \text{ cm}^{-1*} / 876 \text{ (IV) cm}^{-1}$	$v(C-N) + \delta(HNH)$ wagg.
$820 \text{ cm}^{-1*} / 833 \text{ (R) cm}^{-1}$	$v(C-C) + \rho(NH_2)$
$808 \text{ cm}^{-1*} / 825(\text{ADB-IV}) \text{ cm}^{-1}$	ν (C-C) + ρ (CH ₂)
$800 \text{ cm}^{-1*} / 787(\text{IV}), 783(\text{R}) \text{ cm}^{-1}$	$v(C-N) + \delta(NCC)$

calculado; parametrizado pelo fator 0,9613

Na figura 10.38 são ilustradas as formas de alguns modos normais onde as contribuições das coordenadas internas que contêm as ligações C-C, C-N e C-O são significativas.

Figura 10.38 [Cd(Cis)(Met)].H₂O: Forma de alguns modos normais onde as contribuições das coordenadas internas que contêm as ligações C-C, C-N e C-O são significativas. Atribuição dos números de onda de acordo a tabela 10.10. Código de cores: azul celeste = Cd; azul escuro = N; vermelho = O; preto = C; laranja = H.

Para o complexo [Cd(Gli)(Met)].H₂O, propomos a atribuição vibracional para os modos normais descritos em grande extensão através das coordenadas internas de estiramento C-C, C-N e C-O, demonstrado na tabela 10.11e cuja representação gráfica se apresenta na figura 10.39.

Tabela 10.11 Atribuição vibracional dos modos C-C, C-N e C-O do complexo [Cd(Gli)(Met)]

Modo normal	Atribuição vibracional
$1200 \text{ cm}^{-1*} / 1239 \text{ (IV)}, 1239 \text{ (R) cm}^{-1}$	v(CO) + v(C-C)
1191 cm ^{-1*} / 1193 (IV), 1191 (R) cm ⁻¹	$v(CO) + v(CC) + \delta(HCH)$ twist
945 cm ^{-1*} /905 (IV), 908(R) cm ⁻¹	v(CN)
$905 \text{ cm}^{-1*} / 825 \text{ (IV) cm}^{-1}$	$v(CN) + \delta(HNH)$ wagg.
809 cm^{-1*} / 771 (IV), 721 (R) cm ⁻¹	$v(CC) + v(CO) + v(CdO) + \delta(O-C=O)$
802 cm^{-1*} / 754 (R) cm ⁻¹	$v(CC) + \rho(CH_2) + \rho(NH_2) + \delta(OC=O)$

^{*}calculado; parametrizado pelo fator 0,9613

Figura 10.39 [Cd(Gli)(Met)].H₂O: Forma de alguns modos normais onde as contribuições das coordenadas internas que contêm as ligações C-C, C-N e C-O são significativas. Código de cores: azul celeste = Cd; azul escuro = N; vermelho = O; preto = C; laranja = H.

A descrição das vibrações C-S para os três complexos ternários de Cd(II), se encontram experimentalmente entre $766 - 541 \text{ cm}^{-1}$, e cuja atribuição vibracional apresentamos na tabela 10.12.

Tabela 10.12 Modos normais acoplados que contêm a participação expressiva da coordenada interna de estiramento C-S, q(CS)

[Cd(Cis)(Gli)].H ₂ O	744(calc. x 0.9613)/677(IV), 681(R): $v(CS) + \delta(CCC)$
	564(calc. x 0.9613)/: $v(CS) + \delta(CCN) + \delta(CCS)$
	559(calc. X 0.9613)/541(R): $v(CS) + \delta(CNCd) +$
	δ(CCN)
[Cd(Cis)(Met)].H ₂ O	744(calc. x 0.9613)/766(R): v(CS)
	664(calc. x 0.9613)/671(IV), 679(R): ν(CS)cadeia
	644(calc. x 0.9613)/659(IV), 643(R): ν (CS) + ρ (OH) $\uparrow\downarrow$
[Cd(Net)(Gli)].H ₂ O	677(calc. x 0.9613)/693(IV), 696(R): v(CS)
	610(calc. x 0.9613/635(IV), 638(R): v(H ₃ C-S)

A figura 10.40 ilustra por regiões de números de onda, ou faixas espectrais, as bandas no infravermelho e no Raman, que podem atribuir-se à presença significativa dos estiramentos C-O, C-N, C-C e C-S. Os espectros das segundas derivadas e aqueles obtidos da análise de deconvolução de bandas se apresentam nos Anexos B e C para os complexos ternários de Cd(II).

 $[Cd(Cis)(Gli)]H_2O$ (azul), $[Cd(Cis)(Met)].H_2O$ (vermelho), e $[Cd(Gli)(Met)].H_2O$ (verde), na região espectral entre 1200 - 500 cm⁻¹.

Modos normais do esqueleto estrutural

Por tratar-se da região espectral onde absorvem os modos normais metal – ligante, a descrição desses modos se tratará de forma individual para cada complexo ternário de Cd(II) com os diferentes aminoácidos.

Modos normais do esqueleto estrutural do complexo [Cd(Cis)(Gli)].H₂O na região de baixa energia

As atribuições vibracionais que tratam o átomo de Cd coordenado de forma pseudo-tetraédrica e com simetria C_s estão fundamentadas estritamente na análise por meio da Teoria do Funcional da Densidade – DFT:B3LYP/3-21G (6d, 7f). Os modos normais do fragmento estrutural formado pelos dois anéis de aminoácidos coordenados ao íon Cd⁺² podem ser descritos como: v(CdN), v(CdN), v(CdS), v(CdO), δ (NCdN), δ (OCdS), 2δ (NCdO), e 2δ (SCdN).

Para obtermos uma descrição precisa dos modos normais na região espectral metal-ligante usamos a técnica da percentagem de desvio dos parâmetros geométricos (PDPG) desde a posição de equilíbrio. Tal como tínhamos mencionado anteriormente, o PDPG pode ser normalizado para obter a percentagem de participação das coordenadas internas vibracionais que descrevem as vibrações do esqueleto estrutural. Definiremos aqui aos modos normais por meio de letras gregas, como é usual, e entre parênteses indicaremos um par de átomos para os estiramentos infinitesimais, três átomos para as variações angulares. Um modo normal pode representar-se como uma variação infinitesimal no tempo, de um ligação simples ou de um ângulo entre ligações, o que constitui a definição de coordenadas internas, ou com uma combinação linear de várias coordenadas, e neste caso diremos que o modo normal é acoplado, e ele será representado por várias letras gregas indicando as coordenadas que participam do movimento, e em nenhum caso diremos que é um modo acoplado composto por outros modos normais, os que estão inseridos no conjunto dos 3N-6 vibrações normais.

Naturalmente que neste complexo composto por um cátion central e de dois anéis de aminoácidos como ligantes, todos os modos do esqueleto estrutural poderão ser descritos pelas diferentes coordenadas internas que compõem o modo vibracional. Os cálculos DFT:B3LYP/3-21G (6d, 7f) indicam que o estiramento Cd-N participa principalmente nos modos normais com 509, 444, 395, 318 e 295 cm⁻¹ de energia vibracional com distorções da ordem dos 21, 20, 16, 10 e 13% do comprimento da ligação Cd-N, respectivamente, percentagens calculados entre as distorções de 28 parâmetros geométricos que definem o esqueleto estrutural.

A coordenada interna de estiramento Cd-S participa em modos normais com energias de 335 e 318 cm⁻¹, onde a apropriada descrição desses movimentos vibracionais é: δ (CdSC) 17% + v(CdS) 13% + δ (CCS) 10%, e δ (CCN) 16% + v(CdO) 12% + v(CdS) 12% + vCdN) 10%, respectivamente.

As contribuições dos estiramentos Cd-O podem encontrar-se nos modos normais com quantum de energia vibracionais iguais a: 549, 395, 318 e 295 cm⁻¹, com distorções da ordem dos 11, 8, 12 e 15%, respectivamente. A variação angular NCdN tem pequenas contribuições nos modos normais encontrados em: 166, 318 e 509 cm⁻¹. Da mesma forma as variações angulares OCdS tem pequenas contribuições nos modos normais encontrados em 213 e 142 cm⁻¹. A deformação angular NCdO pode atribuir-se tomando parte dos seguintes modos vibracionais acoplados, principalmente: δ (NCdO) 20% + δ (COCd) 13% + δ (CNCd) 10% + v(CdN) 9%, encontrado a 213 cm⁻¹; da mesma forma o modo normal da banda encontrada a 166 cm⁻¹ pode descrever-s como: δ (NCdO) 16% + δ (CNCd) 11% + v(CS) 10% + $\delta(CNCd)$ 10%, e para a banda encontrada aos 549 cm⁻¹ temos: v(CC) $20\% + v(CdO)11\% + \delta(OCdN) 10\% + \delta(COCd) 9\%$. A descrição $\delta(CCN) 11\% + \delta(OCdN) 10\% + \delta(COCd) 9\%$. $\delta(CCS)$ 9% + v(CS) 9% + v(CC) 8% + $\delta(OCdN)$ 8% corresponde à banda encontrada a 587 cm⁻¹, e a descrição v(CS) 25% + δ (CNCd) 12% + δ (CCN) 9% + $\delta(CCS)$ 7% + $\delta(OCdN)$ 7% corresponde à banda encontrada a 582 cm⁻¹. A coordenada interna δ (SCdN) se distribui nos seguintes modos normais acoplados: δ (SCdN) 17% + v(CN) 14% + δ (CdSC) 11% + δ (CNCd) 7% encontrada a 142 cm⁻ ¹. ; $\delta(SCdN) = 13\% + \delta(CCS) = 11\% + \delta(COCd) = 9\% + v(CdN) = 0\%$ encontrada a 251 cm^{-1} , e v(CdN) 21% + δ (CCS) 14% + δ (CCN) 12% + v(CN) 10% + δ (SCdN) 9%, encontrada a 549 cm⁻¹. Uma descrição detalhada dos modos normais do esqueleto estrutural do complexo [Cd(Cis)(Gli)]. H_2O se apresenta na tabela 10.13. As geometrias distorcidas dos modos normais que analisamos aqui se ilustram na figura 10.41.

Figura 10.41 Geometrias distorcidas de alguns modos normais do esqueleto estrutural do complexo [Cd(Cis)(Gli)].H₂O. A descrição dos modos normais se encontram em detalhe na tabela 10.13. Código das cores: celeste = Cd; azul = N; vermelho = O; amarelo = S; preto = C; bronze = H.

Concernente à parte experimental, a segunda derivada do espectro infravermelho na região de baixa energia, e a análise das bandas anti-Stokes no espectro Raman, que

se apresentam na figura 10.42 foram de grande utilidade para a atribuição vibracional.

Figura 10.42 [Cd(Cis)(Gli)].H₂O: Espectro infravermelho (azul) na região de baixa enegia mostrando as bandas da segunda derivada espectral (vermelho), e espectro Raman na região anti-Stokes entre 0 até -400 cm^{-1} .

A análise espectroscópica vibracional completa com base nos espectros infravermelho e Raman, segundas derivadas espectrais, e análise de deconvolução de bandas unido ao cálculo teórico dos espectros por médio do procedimento DFT/B3LYP:3-21G (6d, 7f), se apresenta na tabela 10.13.

Tabela 10.13 Atribuição vibracional completa pelo procedimento: B3LYP/3-21G

DFT·	DFT	FT-IR/	2d (IV/	ADB	Atribuição aproximada
B3LYP	x	Raman.	Raman)	(IV.R)	runouiçuo uproximuuu
3-21G	0.96		,	(- · ,)	
(6d,7f)	13				
calc.					
3491	3355	3655		3422,3404	v(OH)
3465	3331	3348	3311	,3289	v _{as} (NH)
3460	3326	3285	3256	,3259	v _{as} (NH)
3387	3256	3229	3212	3216	v _s (NH)
3382	3251	3080/3011	3165	3158,3177	v _s (NH)
3159	3037	2988/2996	3003/3010	3025,3006	v _{as} (CH)
3144	3022	2949/2967	2969/2968	2965,2960	v _{as} (CH)
3131	3010		2923/2928	2922,2929	v _{as} (CH)
3084	2965	2834/2928	2857	2885	v _s (CH)
3077	2958		2823	2827	v _s (CH)
1801	1731	1637/1644	1651	1650,1657	v(C=O) carbox.
1738	1671		1627	1631,1637	v(C=O)
1718	1651	1597/1589	1583/1586	1595,1590	δ(HNH)sciss
1710	1644	1559/1511	1560	1570	δ(HNH)sciss
1535	1475	1491/1494	1491/1494	1495,1492	δ(HCH)sciss
1520	1461	1434/1433	1438/1433	1435,1435	δ(HCH)sciss
1413	1358	1409/1410	1412/1410	1410,1408	$\delta(CH) + \delta(HNH)$ twist
1383	1329	1385/1372	1383	1384	$\delta(CH) + \delta(HNH)$ twist
1366	1313	1333/1342	1335/1345	1334,1344	δ (COH) carbox.
1321	1270	1295/1271	1294/1302	1298,1308	δ (HNH)twist+ δ (HCH)tw
					ist
1320	1269	1262/1253	1254/1254	1263,1253	δ (HNH)twist+ δ (HCH)tw
					ist
1302	1251	1226/1217	1219	,1207	δ (HNH)twist+ δ (HCH)tw
					ist
1265	1216	1192/1193	1190/1198	1195,1198	δ(HCH)wagg
1244	1196			1168	v(CO)
1178	1132	1129/1162	1127/1139	1130,1138	δ(HNH)twist
1157	1112	1107/1113		1109,1110	δ(HNH)wagg
1149	1104			1073	δ (HNH)twist+ δ (HCH)tw
					ist
1086	1044	1041/1047	1037/1005	1034,1050	$\rho(OH) + \nu(CO)$
1074	1032	961/962	961/962	961	δ(HNH)wagg
996	957	911/906	913/904	911, 903	$v(CN) + \delta(HNH)$ wagg
986	948	893	895	893	v(CN)
951	914	850	855/850	855, 877	$\delta(HCH)$ twist+ $\delta(HNH)$ tw
					ist
925	889	826/806	825	825, 831	ρ(CH ₂)
853	820	792/795	792/794	793, 796	$v(\overline{CC}) + \overline{\rho(CH_2)}$

(6d, 7f) para o complexo [Cd(Cis)(Gli)] .H₂O.

841	808		746/756	, 732	$v(CC) + \delta(O=CO)$
832	800	695/716	697/716	697, 715	$\rho(CH_2) + \nu(CN)$
774	744	677/681	673/677	672, 682	$\delta(CCC) + \nu(CS)$
688	661	669/649	632/631	637, 635	$\delta(O=CO) + \nu(CN)$
672	646	607/631	608	607	p(OH)
609	585	585/580	578	591, 583	$\rho(OH) + \rho(NH_2)$
600	577				$\rho(C=O) + \delta(NH_2)$ twist
587	564				$\delta(CCN) + \delta(CCS) + \nu(CS)$
582	559	/541	530	537, 531	$v(CS)+\delta(CNCd)+\delta(CCN)$
)
549	528	520/529		519, 528	$v(CC)+v(CdO)+\delta(OCdN)$
					$)+\delta(COCd)$
509	489	475/507	508	505	$v(CdN)+\delta(CCS)+\delta(CCN)$
					$+\nu(CNH_2)+\delta(SCdN)$
471	453	457	462	467, 441	$\delta(OCC) + \delta(CCN) + \delta(CN)$
					Cd)+v(CC)
444	427	426	424		$\delta(CNCd) + \delta(CCN) + \nu(Cd)$
					N)
395	380		388	, 389	$v(CdN)+\delta(CNCd)+$
					$\delta(COCd) + \delta(OCC) + \delta(C$
					CN)+v(CdO)
335	322	366		367	$\delta(CdSC)+\nu(CdS)+\delta(CC)$
					S)
318	306	301/317	299	, 301	$\delta(CCN)+\nu(CdO)+\nu(CdS)$
					$+\delta(CNCd)+\nu(CdN)$
295	283	275/282		277, 273	$v(CdO)+v(CdN)+\delta(CNC)$
					d)+ $\delta(CCS)$
251	241	239/240	225/240	237, 237	$\delta(SCdN) + \delta(CCS) + \delta(CO)$
					Cd)+ ν (CdN)
213	205	175/176		169, 165	$\delta(OCdN) + \delta(COCd) +$
					$\delta(CNCd) + \nu(CdN)$
166	159	153/160	/168	154, 154	$\delta(OCdN) + \delta(CNCd) + \nu(C$
					S)+ δ (CNCd)
142	136	/143	/147	141, 144	$\delta(SCdN)+\nu(CN)+\delta(CdS)$
					C)
135	130	/124	/123	/127	torção
123	118		0=/05	117	torção
81	78	90/88	87/87		torção
79	76	68		68	torção
49	47	44	/45		torção
32	31	/35			torção
25	24		/10		torção
18	17		/19		torção

Modos normais do esqueleto estrutural do complexo [Cd(Cis)(Met)].H₂O

Para a análise do espectro vibracional do esqueleto estrutural do complexo [Cd(Cis)(Met)].H₂O, se escolheram dez coordenadas internas de estiramento, e treze coordenadas internas de variações angulares, coordenadas estas que conformam o esqueleto da estrutura do complexo. Tal aproximação, como nos casos dos complexos [Cd(Cis)(Gli)].H₂O discutido anteriormente, e a do complexo [Cd(Gli)(Met)].H₂O que discutiremos na seção seguinte tem como base o procedimento denominado "Separação entre as freqüências de elevada e de baixa energia" (High Low Frequency Separation – HLFS), o que vem a significar, a modo de exemplo, o seguinte: um modo normal com quantum vibracional entre \pm 450 cm⁻¹, na sua forma geométrica distorcida, as coordenadas internas pertencentes aos grupos funcionais –COOH, -CH₃, CH₂, -SH, -NH₂, entre outros, só participam no movimento em extensão negligenciável. O mesmo pode afirmar para os quantum energéticos que correspondem às absorções no infravermelho, e/ou às dispersões no espectro Raman, das ligações químicas primárias características, tais como -C=O, -C=C-, -C=N, entre outras identificáveis nas regiões de elevada energia dos espectros. Devido ao fato de que as vibrações de torção são de identificação visual fácil através dos programas de visualização, elas são atribuídas sem maior dificuldade, por tal motivo não foi necessário quantifica-as.

Nas figuras 10.43 e 10.44, ilustramos os espectros no infravermelho e Raman na região de baixa energia.

Figura 10.43 [Cd(Cis)(Met)].H₂O. Espectro infravermelho na região metal – ligante compreendida entre 700 –50 cm⁻¹.

Figura 10.44 [Cd(Cis)(Met)].H₂O. Espectro Raman na região metal – ligante compreendida entre 700 - 300 cm⁻¹.

Determinadas as percentagens de desvio dos parâmetros geométricos (PDPG) dos modos normais que se encontram entre 597 - 227 cm⁻¹ (valores calculados) obtivemos os resultados descritos a continuação e que nos permitiu atribuir aproximadamente às vibrações metal ligante. A leitura dos resultados segue

a mesma nomenclatura de interpretação dada para as vibrações metal ligante do complexo [Cd(Cis)(Gli)].H₂O, e é demonstrada na tabela 10.14.

Tabela	10.14	Atribuição	vibracional	do	esqueleto	estrutural	do	complexo
[Cd(Cis)(Met)].H ₂ O. Números de onda calculados x 0.9613 (ve						13 (ver tabe	ela 1	0.15).

Modo normal	Atribuição vibracional
570 cm^{1} (calc.)	v(CdN) 30% + v(CdS)28%.
558 (calc.), 540 (ADB, R) cm ¹	$\rho(OH) + \nu(CS) 32\% + \nu(CC) 12\% +$
	$\delta(CCS) 12\% + \delta(CdNC) 11\%.$
552 cm^{-1} (calc.), 544 (R) cm^{-1}	v(CC) 32% + v(CN) 14% + v(CdO) 13%.
528 cm ⁻¹ (calc.), 523 (ADB, IV)	δ(CCO) 15% + δ(CNCd) 12% +
cm ¹	δ (COCd) 12% + δ (NCC) 11% + ν (CC) 10%.
491 cm ⁻¹ (calc.), 502 (R) cm ¹	$v(CdN) 23\% + \delta(CCS) 14\% + \delta(NCC) 12\%$
	+ v(CN) 10%.
451 cm ⁻¹ (calc.) 473 (R),	$v(CdN) 22\% + \delta(CNCd) 16\%$.
475 (IV) cm ¹	
428 cm ⁻¹ (calc.), 457 (R),	ν(CdN) 21% + δ(CdNC) 16% +
461 (IV) cm ¹	δ(COCd) 10%.
381 cm ⁻¹ (calc.), 411 (R),	$v(CdN) 16\% + \delta(COCd) 13\% + \delta(NCdO) 10\%$
420 (IV) cm ¹	
332 cm ⁻¹ , 385 (R), 399 (IV) cm ¹	$v(CdN) 17\% + \delta(COCd) 14\% + \delta(CCO) 10\%$
	$+\delta$ (CNCd) 11% + ν (CdO) 10%.
322 cm^{-1} (calc.), 361 (R) cm ¹	δ (CdSC) 14% + v(CdS) 12%.
306 cm^{-1} (calc.), 338 (R) cm^{1}	δ(NCdO) 12% + δ(NCC) 11% +
	δ(CNCd) 11%.
293 cm^{-1} (calc.), 300 (R) cm^{1}	torção.
286 cm ⁻¹ (calc.), 272 (R),	ν (CdO) 10% + δ (CNCd) 11% + δ (NCdO)
282 (IV) cm ¹	10%.
266 cm^{-1} (calc.), 259 (R) cm ¹	$\delta(NCC) 23\% + \nu(CdO) 10\%.$
240 cm ⁻¹ (calç.), 233 (R),	$v(CdS) 15\% + \delta((SCdN)12\% + \delta(CCS) 11\%.$
242 (IV) cm ¹	
218 cm^{-1} (calç.), 210 (IV) cm^{1}	$v(CdS) 15\% + \delta((SCdN)12\% + \delta(CCS) 11\%.$

Tal como discutíamos o espectro vibracional na região de baixa energia do complexo [Cd(Cis)(Gli)]. H_2O , e dos análogos de Zn(II), nenhum número de onda em particular pode ser atribuído a um modo de estiramento ou de variação angular puro, e frisamos novamente que a mistura das diferentes coordenadas internas é bastante elevada, de forma que são modos vibracionais acoplados. Dos valores determinados em percentagem de participação das diferentes coordenadas internas que compõem o modo normal podemos apreciar, tanto a dispersão dos estiramentos Cd-N, Cd-O e Cd-S, com também a dispersão das diferentes coordenadas de variação angular. Comparativamente, então, considerando somente as maiores percentagens de participação das distintas coordenadas internas, teríamos a seguinte ordem: 511, 469, 445, e 345 cm⁻¹: v(Cd) com percentagens de 22, 22, 20 e 17%, respectivamente. Para a participação percentual da coordenada interna de estiramento Cd-O temos os seguintes valores: 574, 390, 345, 297 e 277 cm⁻¹: v(CdO) com os respectivos seguintes percentagens: 13, 10, 10, 10 e 10%. A coordenada interna de estiramento Cd-S tem as seguintes participações percentuais: $335 \text{ cm}^{-1} \text{ com } 12\%$, e no modo normal que absorve em 250 cm^{-1} sua participação no movimento do esqueleto estrutural atinge os 15%.

Na figura 10.45 apresentamos uma porção do espectro infravermelho e uma parte do espectro Raman, na região de baixa energia, junto aos espectros da segunda derivada, como forma de ilustrar o posicionamento de bandas sobrepostas, e/ou mal resolvidas, que ajudaram o obtermos um maior numero de observáveis em ambos os espectros.

Figura 10.45 [Cd(Cis)(Met)].H₂O. Espectros infravermelhos e Raman indicando o posicionamento das bandas, junto aos espectros das segundas derivadas colocando as energias em unidades de [cm⁻¹] em evidência.

10 Resultados e discussões: complexos de Cd(II)

Nos Anexos B e C apresentamos os espectros das segundas derivadas e os espectros de deconvolução de bandas que assistiram na presente Atribuição vibracional. A tabela 10.15, apresenta uma comparação entre o espectro calculado pelo procedimento mecânico-quântico DFT:B3LY/3-21G (6d, 7fp), e os espectros experimentais no infravermelho e Raman, junto aos valores em números de onda obtidos pelas segundas derivadas espectrais e análise de deconvolução de bandas. Na mesma Tabela informamos a atribuição vibracional deduzida pela presente análise teórica/experimental do espectro vibracional do complexo [Cd(Cis)(Met)].H₂O. As Figuras 10.46, 10.47 e 10.48 ilustram a forma de algumas vibrações normais do esqueleto estrutural do complexo [Cd(Cis)(Met)].H₂O.

Figura 10.46 [Cd(Cis)(Met).H₂O. Forma das vibrações normais do esqueleto estrutural com os respectivos modos. Código das cores: celeste = Cd; azul = N; vermelho = O, amarelo = S; preto = C; laranja = H.

esqueleto estrutural dos modos 09, 469, 445 e 396 cm⁻¹. Código das cores: celeste = Cd; azul = N; vermelho = O, amarelo = S; preto = C; laranja = H.

Figura 10.48 [Cd(Cis)(Met).H₂O. Forma das vibrações normais pertencentes ao esqueleto estrutural dos modos 345, 335 e 318 cm⁻¹. Código das cores: celeste = Cd; azul = N; vermelho = O, amarelo = S; preto = C; laranja = H.

A análise espectroscópica vibracional completa com base nos espectros infravermelho e Raman, segundas derivadas espectrais, e análise de deconvolução de bandas unido ao cálculo teórico dos espectros por meio do procedimento DFT/B3LYP:3-21G (6d, 7f), se apresenta na tabela 10.15.

Tabela 10.15 Atribuição vibracional completa pelo procedimento: B3LYP/3-21G

(6d, 7f) para o complexo [[Cd(Cis)(Met)].H ₂ O
----------------------------	---------------------------------

DFT	DFT v	Paman	ADB	IV	∂ a		Atribuição
	0.9613	Exp	Raman	Exp	2 der	IV	Autoulçao
cuic	0,7015	цяр.	Rumun	цяр.	IV	1,	
3492	3357			3448	3448		v(OH)
3460	3326		3319		3269	3247	$v_{as}(NH)$
3452	3318	3214	3216		3215	3216	v _{as} (NH)
3383	3252	3168	3157		3161	3164	v _a (NH)
3368	3238	3149		3122	3121	3130	v _a (NH)
3187	3064	3080		3081		3090	$v_{as}(CH)(CH_2, CH_3)$
3185	3062	3060	3061	3066	3059	3061	v _{as} (CH)(CH ₃)
3180	3057						$v_{as}(CH)(CH_3)$
3159	3037			3035	3038		$v_{as}(CH)(CH_2)$
3145	3023			3022		3026	$v_{as}(CH)(CH_2)$
3123	3002	3005		3000	3000		$v_{s}(CH)(CH_{2})$
3107	2987	2980	2987		2987		$v_{s}(CH)(CH_{2})$
3086	2966		2942		2962	2961	$v_{s}(CH)(CH_{2})$
3079	2960	2932	2921	2924	2920	2918	$v_{\rm s}(\rm CH)(\rm CH_3)$
3077	2958	2878	2858		2873	2878	v _s (CH)metílico
3064	2945	2854	2831	2851	2853	2848	v _s (CH)(CH ₂)
1801	1731		1646	1655	1652	1655	v(C=O)
1718	1651	1641		1648	1632	1637	δ(HNH)sciss.
1706	1640	1605	1607	1619		1614	δ(HNH)sciss.
1691	1625	1578	1577	1584	1583	1577	v(C=O)
1574	1513	1528	1563		1547	1513	δ(HCH)(CH ₃)sciss.
1554	1494	1499	1504	1499	1510	1500	δ(HCH)(CH ₃)wagg.
1533	1474	1485		1490	1477	1494	δ(HCH)(CH ₂)sciss.
1532	1473			1477		1478	$\delta(\text{HCH})(\text{CH}_2)$ sciss.
1514	1455	1423	1432	1461	1431	1416	δ(HCH)(CH ₂)sciss.
1413	1358		1412	1397		1403	δ(HCH)(CH ₃)wagg
1411	1356			1386	1387	1384	δ(HNH)twist
1405	1351	1343	1348	1354	1354	1361	δ(HNH)twist
1390	1336					1334	δ(HCH)twist
1371	1318		1327		1318		δ(HCH)twist
1366	1313	1307	1309	1300	1298	1302	δ(HCH)twist +
							δ(CH)metílico
1328	1277					1298	δ(HCH)twist
1321	1270	1276	1264		1267	1271	δ(HCH)twist +
							δ(CH)metílico
1302	1252	1258			1257	1256	δ (HNH)twist +
							δ(HCH)twist
1301	1251			1242	1244	1240	δ(HCH)wagg.
1265	1216	1230		1222	1219	1233	δ (HCH)wagg +
							δ(CH)wagg.

1258	1209	1196	1198	1192	1189	1188	$v(CO) + \delta(OC=O) +$
							δ(HCH)twist.
1207	1160	1164					δ(HCH)twist.
1177	1131	1129	1138	1124	1124	1123	δ (HNH)twist. +
							δ(HCH)twist.
1156	1111		1128				$v(CC) + \delta(HNH)$ wagg.
1148	1103	1101					δ (HNH)twist. + δ (CH).
1129	1085	1079	1085	1067	1072	1079	δ(HNH)wagg. +
							δ(CCN)
1085	1043	1045	1050	1040			v(CO) carboxilato
1085	1043		1042		1036	1038	v(CC) + v(CN)
1049	1008				1000		ρ(CH ₃)
1016	977	985					$v(CC) + \rho(CH_3)$
1007	968	956					$\rho(CH_3) + \delta(HNH)$ wagg
997	958	959	940	949	951	948	$v(CN) + \delta(HNH)$ wagg.
984	946	919	914		917		ρ(CH ₃)
951	914	898		901	902	900	$v(CC) + \delta(HCH)$ twist
936	900		873	876	872	873	$v(CN) + \delta(HNH)$ wagg.
853	820	833	833			853	$v(CC) + \rho(CH_2)$
841	808			825	828	825	v(CC)
832	800	793	795	787	789	787	$v(CN) + \delta(NCC)$
792	761		754	771	764	768	$\delta(CC=O) + \nu(CdO)$
774	744	746			744		v(CS)
748	719	718	719	719	720	718	ρ(CH ₂)
691	664	679	680	671	692	675	v(CS) cadeia
670	644	643	646	659		635	$v(CS) + \rho(OH) \uparrow \downarrow$
622	598	591	587	591	588	598	$v(H_3C-S)$
608	584						ρ(OH)
597	574						$\rho(NH_2)$
593	570						v(CdN) 30% +
							v(CdS)28%
581	558		540		540	541	$\rho(OH) + \nu(CS) 32\% +$
							$v(CC)$ 12% + $\delta(CCS)$
							12% + δ(CdNC) 11%
574	552	544		535		532	v(CC) 32% + v(CN)
							14% + v(CdO) 13%
549	528				523	523	δ(CCO) 15% +
							δ (CNCd) 12% +
							δ(COCd) 12% +
							$\delta(NCC)$ 11% + $\nu(CC)$
							10%
511	491	502	503				$v(CdN)$ 23% + $\delta(CCS)$
							$14\% + \delta(NCC) 12\% +$
					1.0.5		v(CN) 10%
469	451	473	475	475	480		v(CdN) 22% +
							δ(CNCd) 16%

445	428	457	454	461	459	464	v(CdN) 21% +
							$\delta(CdNC)$ 16% +
							δ(COCd) 10%
396	381	411	409	420	420	418	v(CdN) 16% +
							$\delta(COCd)$ 13% +
							δ(NCdO) 10%
345	332	385		399	388	404	v(CdN) 17% +
							$\delta(COCd)$ 14% +
							$\delta(CCO)$ 10% +
							δ (CNCd) 11% +
							v(CdO) 10%
335	322	361	363		349	351	$\delta(CdSC)$ 14% +
000	0	001	000		0.17	001	v(CdS) 12%
318	306	338			330	345	$\delta(NCdO) = 12\% +$
510	500	550			550	515	$\delta(NCC) = 11\% +$
							$\delta(\text{CNCd})$ 11%
305	203	300	311		304		Torção
297	295	272	271	282	286		$\nu(CdO) = 10\% \pm$
271	200	212	2/1	202	200		$\delta(CNCd) = \frac{10}{6} + \frac{10}{6}$
							S(NCdO) = 10% +
277	266	250			250	252	8(NCC) 22% +(C1O)
211	200	239			230	233	0(NCC) 25% + V(CdO) 10%
250	240	233	234	242	244	242	$\nu(CdS) = 15\% +$
							$\delta((\text{SCdN}))$ +
							$\delta(CCS)$ 11%
227	218			210	210	210	$Torcão-CH_2 +$
	210			210	210	210	$\delta(NCdO)$ 13% +
							$\delta(SCdN) = 11\% +$
							$\delta(CdSC)$ 11%
190	183	196	186			197	Torcão
168	161	160	100	163	164	165	Torção
161	155	100	150	100	145	156	Torção
145	139					144	Torção
137	132	126	123				Torção
114	109	114		111	117	117	Torção
104	100			95	97	96	Torção
81	78						Torção
78	75	73		71	71	68	Torção
62	60	60					Torção
50	48	45		47	48		Torção
38	36						Torção
28	27	23					Torção
17	16						Torção
12	11						Torcão

Modos normais do esqueleto estrutural do complexo [Cd(Gli)(Met)].H₂O

A estrutura do complexo $[Cd(Gli)(Met)].H_2O$ apresenta dois anéis pentagonais ao redor do ion Cd^{+2} , totalizando dez ligações químicas primárias dando origem a dez coordenadas internas de diferentes estiramentos interatômicos: duas coordenadas de estiramento Cd-N, as quais originam os modos de estiramento simétrico Cd-N, $[v_s(CdN)]$, e o modo de estiramento assimétrico Cd-N, $(v_{as}(CdN))$, mais, pela estrutura anelada do complexo quaisquer movimento vibracional de estiramento das ligações de configuração dos anéis, virá acoplado com coordenadas de distorções angulares e/ou de estiramento diferentes das que originam o movimento principal. Encontramos também, uma coordenada interna de estiramento Cd-O, uma de estiramento Cd-S, duas de estiramento C-C, duas de estiramento C-N, e finalmente as coordenadas de estiramento C-S e C-O.

Para a descrição dos modos vibracionais de distorções angulares se escolheram treze coordenadas internas. Na aproximação para a análise dos desvios dos parâmetros geométricos que conformam o esqueleto estrutural do complexo [Cd(Gli)(Met)].H₂O, totalizamos vinte três coordenadas internas. Como nos casos anteriores, os modos de torção são de fácil identificação visual, por tal motivo somente selecionamos os números de onda correspondentes aos modos normais que nos seus movimentos as torções são de menor participação.

A figura 10.49 ilustra os espectros infravermelho e Raman na região de baixa energia entre 700 - 50 cm⁻¹.

Figura 10.49 [Cd(Gli)(Met)].H₂O. Espectros infravermelho e Raman na região metal – ligante compreendida entre 700 - 50 cm⁻¹.

Para a análise das percentagens de desvio dos parâmetros geométricos (PDPG) dos modos normais, escolhemos a região espectral entre $600 - 250 \text{ cm}^{-1}$. Os resultados descritos a continuação nos permitiu atribuir aproximadamente as vibrações metal ligante. A leitura dos resultados segue a mesma nomenclatura de interpretação dada para as vibrações metal ligante dos complexos [Cd(Cis)(Gli)].H₂O e [Cd(Cis)(Met)].H₂O e é dada na tabela 10.16

Modo normal	Atribuição vibracional
566 cm^{-1} (calc.); $560 (\text{R}), 562 (\text{IV})$	δ(NCC) 19% + $δ$ (CCO) 18% + $δ$ (CNCd) 12%
	+ $\nu(CC)$ 13% + $\nu(CO)$ 9% + $\nu(CdO)$ 8% +
	torção
545 cm ⁻¹ (calc.); 537 (R), 533 (IV)	$v(CC) 25\% + \delta(NCdO) 13\% + v(CdO) 12\% +$
	$v(NC) \ 10\% + \delta(COCd) \ 8\%.$
532 cm ⁻¹ (calc.); 530 (IV), 523 (R)	$\nu(CC) 21\% + \nu(CdO) 11\% + \delta(NCdO) 9\% +$
	δ (CdOC) 8% + ν (OC) 8%.

Tabela 10.16 Atribuição vibracional do esqueleto estrutural do complexo [Cd(Gli)(Met)].H₂O

526 cm^{-1} (calc.); 506 (R)	δ(CCO) 19% + $δ$ (NCC) 17% + $δ$ (CNCd) 16%
	+ δ (COCd) 14% + δ (NCdO) 9%.
464 cm ⁻¹ (calc.); 472 (IV), 489 (R)	$v(CdN) 23\% + \delta(CNCd) 17\% + v(CdO) 11\%$
	$+ \delta(CCO) 11\% + \delta(COCd) 10\%.$
452 cm ⁻¹ (calc.); 451 (IV), 456 (R)	δ (CNCd) 15% + δ (CCO) 14% + ν (CC) 13% +
	δ (NCdO) 11% + ν (CdN) 10% + δ (CdOC) 8%.
390 cm ⁻¹ (calc.); 398 (IV), 402 (R)	$v(CdN) 17\% + v(CdO) 14\% + \delta(CdNC) 13\%$
	+ δ (NCC) 11% + δ (CdOC) 10% + δ (CCO)
	10%.
372 cm ⁻¹ (calc.); 372(R), 375 (IV)	δ (CdOC) 14% + δ (CdCN) 13% + δ (NCC)
	$13\% + v(CdO) 11\% + \delta(NCdO) 10\%.$
323 cm ⁻¹ (calc.); 327 (IV), 326 (R)	$v(CdN) 17\% + v(CdO) 15\% + \delta(CdNC) 13\%$
	+ δ (NCC) 8% + δ (NCdO) 8%.
308 cm ⁻¹ (calc.); 313 (IV, R)	ν(CdO) 16% + ν(CdN) 12% + δ(CdNC) 17%
	+ δ (NCdO) 17% + δ (CCO) 9% + δ (CdOC) 9%
278 cm ⁻¹ (calc.); 296 (R), 279 (IV)	ν(CdN) 25% + ν(CdO) 24% +δ(NCdO) 19%
	+ δ (CNCd) 14% + δ (CNCd) 14% + δ (CdOC)
	11%.
262 (calc.); 252 (IV), 255 (R)	$v(CdN) 25\% + v(CdO) 14\% + \delta(CNCd) 13\%$
	+ δ (NCdO) 18% + δ (CCO) 10%
240 (calc); 235 (IV); 239 (R)	$\delta(NCdO) 25\% + \delta(COCd) 22\% + \nu(CdN)$
	$13\% + \delta(CNCd) 13\% + \delta(CCO) 8\% +$
	$\delta(H_3CSC)$ com contribuição expressiva
213 (calc); 205 (IV); 207 (R)	δ (NCdO) 29% + δ (COCd) 17% + ν (CdN)
	$13\% + \delta(NCC) 11\% + \delta(CNCd) 11\%$
157 (calc) ; 158 (R)	δ (NCdO) 29% + δ (NCC) 15% + δ (COCd)
	10% + v(CdN) 8%

Podemos observar que a participação das coordenadas internas de estiramento Cd-N e Cd-O oscila entre o 25 e 10% e entre 24 e 11%, respectivamente, na região espectral de baixa energia. Na figura 10.50 ilustramos as forma de algumas vibrações metal-ligante.

Figura 10.50 Modos normais acoplados do esqueleto estrutural do complexo [Cd(Gli)(Met)]. H₂O. Descrição dos modos de acordo com a tabela 10.16. Código das cores: celeste = Cd; azul = N; vermelho = O; amarelo = S; preto = C; laranja = H.
Na figura 10.51 apresentamos uma porção do espectro infravermelho na região de baixa energia, junto ao espectro da segunda derivada, como forma de ilustrar o posicionamento de bandas sobrepostas, e/ou mal resolvidas, que ajudaram o obtermos um maior numero de observáveis.

Figura 10.51 [Cd(Gli)(Met)].H₂O. Espectro infravermelho (azul) na região de baixa energia indicando o posicionamento de bandas da segunda derivada (vermelho) em unidades de [cm⁻¹].

A análise espectroscópica vibracional completa, com base nos espectros infravermelho e Raman, segundas derivadas espectrais, e análise de deconvolução de bandas unido ao cálculo teórico dos espectros por médio do procedimento DFT/B3LYP:3-21G (6d, 7f), se apresenta na tabela 10.16.

Tabela 10.16 Atribuição vibracional completa pelo procedimento: B3LYP/3-21G

(6d, 7f) para o comple	xo $[Cd(Gli)(Met)].H_2O$
------------------------	--------------------------

DFT	DFT x	Raman	ADB	IV	2ª	ADB	Atribuição		
	0,9613	Exp	Raman	Exp	der.	IV	3		
		-		-	IV				
3462	3328						vas(NH)		
3448	3314	3341	3344	3344	3344	3345	vas(NH)		
3385	3254	3297	3300		3312	3313	vs(NH)		
3368	3238	3253	3256	3260	3257	3259	vs(NH)		
3189	3065		3240		3224	3248	vas(CH)CH ₂		
3184	3061			3199	3198	3194	vas(CH)CH ₃		
3180	3057						vas(CH)CH ₃		
3137	3015	2984	2985	2988	2989		vas(CH)CH ₂		
3113	2992	2975	2971	2973			vas(CH)CH ₂		
3095	2975	2958	2958	2959		2959	vs(CH)CH ₂		
3087	2967	2936	2947	2942	2942	2941	vs(CH)CH ₃		
3079	2960	2918	2918	2915	2915	2917	vs(CH)CH ₂		
3061	2942	2905					vs(CH)CH ₂		
3057	2939	2854					vs(CH)CH ₂		
1743	1675	1658	1674		1677		v(C=O)glicina		
1711	1645		1639	1639	1642	1639	δ(HNH)sciss		
1709	1643	1599	1601		1593	1594	v(CO)metionina		
1708	1642	1566	1567		1556	1557	δ(HNH)sciss		
1540	1480	1523					δ (HCH) CH ₃ sciss		
1536	1476	1505		1509	1511	1512	δ (HCH)CH ₃ sciss +		
							δ(HCH)CH ₂		
1531	1472	1461	1463	1474	1472		δ (HCH)CH ₃ sciss +		
							δ(HCH)CH ₂		
1521	1462			1458			δ (HCH)CH ₂ sciss		
1518	1459	1444	1445	1446	1445	1440	δ (HCH)CH ₂ sciss		
1408	1353	1386	1400	1361	1382	1391	δ (HNH)twist +		
							δ(HCH)twist		
1397	1343	1357	1358	1341	1355	1357	δ (HCH)CH ₂ twist +		
							δ(HCH)CH ₃ twist		
1389	1335	1343	1343	1330	1331	1330	$\delta(\text{HCH})\text{CH}_3$ wagg +		
							δ (HCH)CH ₂ wagg		
1385	1331	1329	1330	1318		1317	δ (HNH)twist +		
							δ(HCH)twist		
1370	1317	1297	1298	1307	1304	1308	δ (HCH)twist +		
							δ(CCH) metílico		
1330	1278	1277	1282	1298		1299	δ(HCH)wagg.		
1323	1272	1261	1264	1264	1265	1264	δ (HNH)twist +		
1.0.0-	1.0.0 -	1000	100-	1			δ(HCH)twist		
1289	1239	1238	1239	1239	1238	1239	δ(HCH)wagg.		
1248	1200	1216	1216	1215	1209	1203	v(CO)		

1240	1192	1191	1191	1193		1192	v(CO) + v(CC)		
1208	1161	1159	1154	1142	1160	1141	δ(HCH)twist		
1180	1134	1128	1129	1128	1129	1128	δ(HNH)twist		
1176	1130	1113	1113	1113		1113	δ (HNH)twist +		
							δ(HCH)twist		
1131	1087	1096	1092	1093		1094	δ(HNH)wagg.		
1086	1044	1071	1075		1075		δ(HCH)(CH3)wagg.		
1083	1041	1049	1050	1041	1035	1042	δ(HNH)wagg.		
1032	992		987	988	988		ρ(CH ₃)		
1023	983		968	980		967	δ (HNH)wagg. +		
							v(CC)		
983	945		957	967		965	v(CN)		
981	943		950	960	963		$\rho(CH_3)$		
973	935	927	925	927	926	927	$\rho(CH_3)$		
945	908	893	893		903	909	v(CN)		
925	889	879	878	878	877	877	$\rho(CH_2) + \rho(NH_2)$		
842	809	828	822	825	830	825	$v(CC) + \delta(OC=O)$		
834	802	806	806	806	805	806	$v(CC) + o(CH_2) +$		
							$\rho(\rm NH_2)$		
793	762	754	763	764	769	771	$\delta(OC=O) + \rho(CH_2)$		
744	715	696		692	693	693	o(CH ₂)		
704	677			669		680	v(CS)		
694	667	654	658	659	658	658	$\delta(CCO) + \delta(NCC)$		
635	610	608	605	609	611	612	$v(H_3C-S)$		
608	584	580	594	591	589	591	$O(NH_2)$		
589	566	560	579	562	561	562	$\delta(NCC)$ 19% +		
							$\delta(CCO)$ 18% +		
							$\delta(CNCd)$ 12% +		
							$v(CC) \ 13\% \ + \ v(CO)$		
							9% + v(CdO) 8% +		
							torção		
567	545	537		533	533	530	v(CC) 25% +		
							δ(NCdO) 13% +		
							v(CdO) 12% + $v(NC)$		
							$10\% + \delta(COCd) 8\%$.		
553	531	523		520			v(CC) 21% + v(CdO)		
							$11\% + \delta(NCdO) 9\% +$		
							$\delta(CdOC)$ 8% + $\nu(OC)$		
							8%.		
547	526	506			503		δ(CCO) 19% +		
							δ(NCC) 17% +		
							δ (CNCd) 16% +		
							$\delta(\text{COCd})$ 14% +		
							δ(NCdO) 9%.		
483	464	489	489	472	481		v(CdN) 23% +		
							δ(CNCd) 17% +		

							v(CdO) 11% +
							δ(CCO) 11% +
							δ(COCd) 10%.
470	452	456	456	451	450	451	δ (CNCd) 15% +
							$\delta(CCO)$ 14% + v(CC)
							$13\% + \delta(NCdO)$ 11%
							+ v(CdN) = 10% +
							$\delta(CdOC)$ 8%
406	390	402	403	398	386	407	v(CdN) 17% + v(CdO)
400	570	402	-105	570	500	-07	$1/10^{\circ} + 8(CdNC) + 13\%$
							$14/0 \pm 0(CuNC) 15/0$
							+ 0(NCC) 1170 + S(CdOC) 100(+ 100(+ 100)) + 100(+ 100(+ 100)) + 100(+ 100(+ 100)) + 100(+ 100)) + 100(+ 100(+ 100))
							0(C(0)) = 10% + S(C(0)) = 10%
207	270	272	271	275	271	270	δ(CCO) 10%.
387	572	572	5/1	515	5/1	512	$\delta(CdOC) = 14\% + 12\%$
							$\delta(CdCN)$ 13% +
							$\delta(NCC)$ 13% +
							v(CdO) 11% +
							δ(NCdO) 10%.
336	323	327		326	325		v(CdN) 17% + $v(CdO)$
							$15\% + \delta(CdNC) 13\%$
							+ $\delta(NCC)$ 8% +
							δ(NCdO) 8%.
320	308	313	312	313	315		v(CdO) 16% + $v(CdN)$
							$12\% + \delta(CdNC)$ 17%
							+ δ(NCdO) 17% +
							δ(CCO) 9% +
							δ(CdOC) 9%.
289	278	296	271	279	281	274	v(CdN) 25% + v(CdO)
							$24\% + \delta(NCdO)$ 19%
							+ $\delta(CNCd)$ 14% +
							$\delta(CNCd)$ 14% +
							$\delta(CdOC)$ 11%
273	262	255		252	257	253	v(CdN) 25% + v(CdO)
275	202	200		202	201	200	$1/1\% \pm 8(CNCd)$ 13%
							$14.0 \pm 0(CINCd) 13.0$
							+ 0(1000) 10% + 8(CCO) 10%
250	240	220	244	225	225	227	S(NC4O) 250/
230	240	239	244	255	255	257	0(NCdO) 25% + S(COCI) 22% + S(COCI) 22% + S(COCI) 22% + S(COCI) 32% +
							0(UUCa) 22% + (CUN) 120(
							v(CdN) = 13% + 12%
							$\delta(CNCd)$ 13% +
							δ(CCO) 8% +
							$\delta(H_3CSC)$ com
							contribuição
				• • •			expressiva.
222	213	207		205	209	206	δ(NCdO) 29% +
							$\delta(\text{COCd})$ 17% +
							v(CdN) 13% +

							δ(NCC)	11%	+
							δ(CNCd) 11%.		
163	157	196	177		195	195	δ(NCdO)	29%	+
							δ(NCC)	15%	+
							δ(COCd)	10%	+
							v(CdN) 8%.		
160	154	158	161	161	157	158	Torção		
131	126	138	140	134	135	136	Torção		
119	114	123	123	121	123	127	Torção		
107	103	108	113	91	92	93	Torção		
84	81	86	88				Torção		
81	78	75		74	74	75	Torção		
60	58	55			50	54	Torção		
48	46	46		41	42	43	Torção		
39	37						Torção		
23	22						Torção		
20	19	19					Torção		
20	19						Torção		

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.