

Joanna Maria Teixeira de Azeredo Ramos

Estudo estrutural e espectroscópico vibracional de complexos bioinorgânicos metal – aminoácidos, com os metais Zn, Cd e Ni.

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requesito parcial para obtenção do títutlo de Doutor em Ciências – Química.

Orientadores: Judith Felcman

Claudio Alberto Téllez Soto

Volume I

Rio de Janeiro, junho de 2009

Joanna Maria Teixeira de Azeredo Ramos

Estudo estrutural e espectroscópico vibracional de complexos bioinorgânicos metal – aminoácidos, com os metais Zn, Cd e Ni.

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Ciências pelo Programa de Pós-graduação em Química da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof^ª. Judith Felcman** Orientadora Departamento de Química – PUC – Rio

> > Prof. Claudio Alberto Téllez Soto Orientador UFF

> > > Prof. Otávio Versiane Cabral IFRJ

Prof. Juan Omar Machuca Herrera UFRJ

Prof^a Martha Teixeira de Araújo UFF

> Prof. Eduardo Ariel Ponzio UFF

Prof. Carlos Bauer Boechat UFF

Prof. Nicolás Adrián Rey Departamento de Química – PUC – Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 18 de junho de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Joanna Maria Teixeira de Azeredo Ramos

Graduou-se em Farmácia e Bioquímica pela USS. Ingressou no Mestrado em Química na UFF onde trabalhou na área de espectroscopia vibracional aliado a cálculos mecânico-quânticos. Têm artigos publicados na área de química computacional, espectroscopia vibracional e bioinorgânica.

Ficha Catalográfica

Ramos, Joanna Maria Teixeira de Azeredo

Estudo estrutural e espectroscópico vibracional de complexos bioinorgânicos metal - aminoácidos, com os metais Zn, Cd e Ni / Joanna Maria Teixeira de Azeredo Ramos ; orientadores: Judith Felcman, Cláudio Alberto Téllez Soto. – 2009.

2 v. : il.(color.) ; 30 cm

Tese (Doutorado em Química)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

A Deus por ter permitido alcançar o meu objetivo. À minha mãe, pela compreensão e incentivo durante a realização deste trabalho. À minha avó, que sempre torceu muito por mim.

Agradecimentos

A Deus, acima de tudo e de todos!

À professora orientadora Dr^a Judith Felcman, pela excelente acolhida, oportunidade e orientação, fazendo-me crescer cada dia mais.

Ao professor orientador Dr. Cláudio A. Téllez Soto pela imensurável amizade, orientação, apoio e incentivo constantes, compartilhando o seu conhecimento e por mostrar-me a beleza da Ciência, tornando viável a execução deste trabalho.

Ao Dr. Otávio Versiane, pelo ajuda, troca de experiência e pelas longas conversas permitindome refletir sobre os mais diversos temas.

À amiga Bárbara, hoje, amanhã e sempre...amiga.

Aos amigos do laboratório: Luciana, Pedro, Vanessa, Natalie, Felipe, Luciene, e todos os outros, pela amizade que deixa saudades.

À Fátima Almeida, secretária da pós-graduação, pela gentileza em resolver todos os assuntos burocráticos.

À Prof. Isabel Moreira pela agradável amizade e acolhida no Departamento de Química.

Aos professores da PUC-Rio e membros da banca examinadora.

Ao CNPq pelo apoio financeiro.

À minha mãe, que esteve o tempo todo ao meu lado, comemorando as vitórias e ensinando-me a aprender com as dificuldades.

À minha avó, que mesmo distante sempre esteve em pensamento ao meu lado, desejando-me todas as glórias.

À minha família, tios, tias, primos, primas, que vibraram comigo a cada conquista.

Aos meus verdadeiros amigos...e à aqueles "não tão amigos", que indiretamente me motivavam a ir mais longe...

A todos aqueles, que de uma forma direta ou indireta, fizeram parte dessa trajetória em busca de um objetivo maior, meus sinceros agradecimentos.

Resumo

Ramos, Joanna Maria; Felcman, Judith; Soto, Cláudio Alberto Téllez. **Estudo** estrutural e espectroscópico vibracional de complexos bioinorgânicos metal – aminoácidos, com os metais Zn, Cd e Ni. Rio de Janeiro, 2009. 365p. Tese de Doutorado – Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho representa um estudo espectroscópico vibracional de complexos metálicos com aminoácidos. Foram analisados complexos ternários com os íons metálicos Zn(II), Cd(II) e Ni(II), com os seguintes aminoácidos: glicina, serina, metionina, cisteína, ácido aspártico e ácido guanidoacético, e somente um complexo binário do íon Ni(II) com o ácido guanidoacético. A análise vibracional rigorosa, aliada às caracterizações dos complexos e à utilização de cálculos teóricos foram recursos fundamentais e preciosos neste trabalho científico. Os trabalhos existentes em espectroscopia vibracional realizados para complexos metálicos com aminoácidos como ligantes são incompletos no que diz respeito à caracterização vibracional e à análise estrutural completa desses compostos. Aliado a isso, a escassez de informação na literatura científica sobre espectros vibracionais de complexos de metais, tendo aminoácidos como ligantes contribuiu significativamente na escolha do tema. Para a caracterização dos compostos foram utilizadas as seguintes técnicas: espectroscopia no infravermelho, análise termogravimétrica, análise elementar e espectroscopia Raman. Os cálculos mecânico-quânticos utilizados fundamentaram-se basicamente na utilização da Teoria do Funcional de Densidade (DFT) com o método B3LYP e o conjunto de base 6-311G (d,p). Foi determinado também por procedimento mecânicoquântico a Análise dos Orbitais Naturais de Ligação (NBO), para dois complexos de níquel (II), com o intuito de conhecer a real hibridização do cátion metálico na formação do complexo, assim como a hibridização dos átomos que formam parte da esfera de coordenação do complexo. Paralelamente à utilização desses recursos, foi realizada a interpretação da segunda derivada espectral tanto do espectro infravermelho quanto do espectro Raman, além da Análise de Deconvolução de Bandas que nos permitiu evidenciar as bandas recobertas e/ou sobrepostas de forma a elucidar corretamente o espectro vibracional estudado. O trabalho apresenta ainda uma nova

proposta de atribuição vibracional, baseada na geometria distorcida dos diferentes modos normais, ou geometrias de não equilíbrio, ou perturbadas da molécula, concluindo com a atribuição teórica experimental dos diferentes espectros vibracionais. Por fim, as conclusões nos levam a perceber quão complexa e importante se faz a atribuição dos espectros vibracionais de complexos de compostos de coordenação bioinorgânicos, com o intuito de elucidar essencialmente a região de baixa energia, onde os modos vibracionais metal-ligante acontecem. O procedimento de integração das metodologias empregadas resultam em uma análise espectroscópica precisa e bem fundamentada.

Palavras-chave

Complexos bioinorgânicos de Zn(II), Cd(II) e Ni(II); espectroscopia vibracional; DFT; B3LYP.

Abstract

Ramos, Joanna Maria; Felcman, Judith; Soto, Claudio Alberto Téllez (Advisor). Structure spectroscopy and vibrational study of bioinorganics complexes metal – ligands, with the metals Zn, Cd and Ni. Rio de Janeiro, 2009. 365p. Dr. Thesis – Departamento de Química, Pontifícia Universidade do Rio de Janeiro.

This work represents a spectroscopic vibrational study of metal complexes having amino acids as ligands. Here, were analyzed ternary complexes having Zn(II), Cd(II) and Ni(II) as central metallic ions with the following amino acids: cysteine, methionine, aspartic acid, serine, and with guanido acetic acid. The study was extended to one binary complex of Ni(II) with the guanidoacetic acid acting as ligand. The rigorous vibrational analyses allied to the complexes characterizations and to the theoretical calculations, were the fundamental and precious recourses in this research work. The infrared and/or vibrational spectroscopic information of metal – amino acids complexes are incomplete related to the vibrational characterization of all the normal modes, also we find lack of information referred to characterization and structural analysis. Allied to this fact, the lack of information or references in scientific literature on vibrational spectra of metal complex having amino acids as ligands, had a great contribution to elect the subject of this research. For the complexes characterization were used the following techniques: infrared analysis, thermo gravimetric analysis, elementary analysis and Raman spectroscopy. The quantum mechanical procedures were basically substantiated on the Density Functional Theory (DFT) with the B3LYP method and with the basis set 6-311G (d, p). The Natural Bond Orbital (NBO) was also determinate for two Ni(II) complexes. The intention here was to know the real hybridization of the metallic cation in the complex formation as well as the hybridization of the atoms which are inside of the coordination sphere of the central metallic ion. Joint to the utilization of these research sources, concerning the vibrational spectra, we carried out the second derivative interpretation for the infrared and Raman spectra, and using this information we extended the interpretation study of the normal modes to the deconvolution band analysis. This technique allowed us to put in evidence the overlapped bands, in such a way we are

able to obtain almost all the fundamental bands in the vibrational spectrum. The research work present also a new way to assign the normal modes based on the characterization of the distorted geometry of the different normal modes, concluding with the theoretical and experimental assignment of the different vibrational spectra of these complexes. The conclusions point out to the consideration of the great importance which has the correct interpretation or assignment of the fundamental bands in the vibrational spectra of bioinorganic coordination compounds, essentially with the purpose to elucidate the low energy region where the metal – ligand vibrational modes are localized. The procedure of the integrated methodologies used here result in a precise and well substantiated vibrational analysis.

KEYWORDS

Bioinorganic complex of Zn(II), Cd(II) and Ni(II); vibrational spectroscopy; DFT; B3LYP.

Sumário

1. Introdução	30
2. Metais	34
2.1. Níquel	34
2.1.1 Aspectos biológicos	34
2.2. Zinco	35
2.2.2 Aspectos biológicos	35
2.3 Cádmio	36
2.3.1 Aspectos biológicos	36
3. Ligantes	38
3.1 Aspectos biológicos	38
3.2. Aspectos químicos	41
3.2.1 Glicina	41
3.2.2. Serina	41
3.2.3 Metionina	42
3.2.4 Cisteína	43
3.2.5 Ácido aspártico	43
3.2.6 Ácido guanidoacético	44
4. Cálculos Teóricos	45
4.1. Química Computacional	45
4.2 Métodos ab-initio e semi-empírico	46
4.3. Teoria do Funcional de Densidade	47
4.4. Cálculos NBO: Orbitais Naturais de Ligação	49
5. Espectroscopia vibracional	55
5.1. Espectroscopia no infravermelho	55
5.2. Espectroscopia Raman	57
6. Objetivos	59

7. Metodologia	61
7.1. Parte Experimental	61
7.1.1. Obtenção e síntese dos compostos	61
7.1.2. Espectroscopia no infravermelho e no Raman	62
7.2. Cálculos Teóricos	66
7.3. Percentagem de Desvio dos Parâmetros Geométricos-PDPG	66
8. Resultados e Discussões: complexos de Zn(II)	72
8.1. Determinação estrutural e parâmetros geométricos	72
8.2. Parte experimental	80
8.3. Atribuição vibracional	84
9. Resultados e Discussões: complexos de Ni(II)	137
9.1. Bis-guanidoacetato de níquel (II): [Ni(Gaa)2]. 2H2O	137
9.1.1 Introdução	137
9.1.2 Parte experimental	138
9.1.3 Otimização dos parâmetros geométricos	139
9.1.4 Análise dos Orbitais Naturais de Ligação (NBO)	142
9.1.5 Atribuição vibracional	143
9.2. Aspartato guanidoacetato de níquel (II): [Ni(Asp)(Gaa)]. H_2O	158
9.2.1 Introdução	158
9.2.2 Parte experimental	159
9.2.3 Otimização dos parâmetros geométricos	161
9.2.4 Análise dos Orbitais Naturais de Ligação (NBO)	163
9.2.5. Resultados e discussões	166
9.3 Glicinato guanidoacetato de níquel (II): Ni(Gaa)(Gli)].2H ₂ O	181
e aspartato serinato de níquel (II): [Ni(Asp)(Ser)].2H ₂ O	
9.3.1 Introdução	181
9.3.2 Parte experimental	184
9.3.3 Otimização dos parâmetros geométricos	186
9.3.4 Atribuição vibracional	190

9.3.4.1 Atribuição vibracional do espectro infravermelho do complexo	192
[Ni(Gaa)(Gli)]	
9.3.4.2 Atribuição vibracional do espectro infravermelho do complexo	201
[Ni(Asp)(Ser)]	
10 Resultados e Discussões: complexos de Cd(II)	216
10.1 Introdução	216
10.2 Determinação estrutural e parâmetros geométricos	217
10.3 Espectro FT-IV e Raman	223
10.4 Atribuição vibracional	228
11. Conclusões	293
12. Referências bibliográficas	302

Lista de figuras

Figura 3.1 Esquema de síntese do aminoácido glicina	39
Figura 3.2 Esquema das reações enzimáticas resultando na formação	40
da creatinina e participação do ácido guanidoacético.	
Figura 3.3 Estrutura do aminoácido glicina	41
Figura 3.4 Estrutura do aminoácido serina	42
Figura 3.5 Estrutura do aminoácido metionina	42
Figura 3.6 Estrutura do aminoácido cisteína	43
Figura 3.7 Estrutura do ácido aspártico	44
Figura 3.8 Estrutura do ácido guanidoacético	44
Figura 4.1 Estrutura da metilamina	49
Figura 4.2 Esquema dos resultados da análise de NBO	52
para o átomo de carbono	
Figura 4.3 Análise de NBO	53
Figura 4.4 Forma dos orbitais resultantes	
combinação de orbitais híbridos	
Figura 5.1 Modos de vibração molecular	57
Figura 5.2 Esquema dos mecanismos de espalhamento Raman	58
Figura 7.1 Regiões de absorções mais características dos	64
grupos funcionais mais comuns presentes nos aminoácidos.	
Figura 7.2 Molécula de amônia indicando a numeração dos átomos	68
Figura 7.3 Formas dos modos normais da amônia	70
Figura 8.1 DFT:B3LYP/6-311G (d,p) Geometria estrutural do	74
complexo [Zn(Cis)(Gli)]	
Figura 8.2 DFT:B3LYP/6-311G (d,p) Geometria estrutural do	74
complexo [Zn(Gli)(Met)]	
Figura 8.3 DFT:B3LYP/6-311G (d,p) Geometria estrutura do	75
complexo [Zn(Cis)(Met)]	
Figura 8.4 Espectro no infravermelho do complexo cisteinato – glicinato	80
de Zn(II): [Zn(Cis)(Gli)].H ₂ O	
Figura 8.5 Espectro Raman do complexo	81
cisteinato - glicinato de Zn(II): [Zn(Cis)(Gli)].H ₂ O	

Figura 8.6 Espectro no infravermelho do complexo	81
metiotinato- glicinato de Zn(II): [Zn(Gli)(Met)].H ₂ O	
Figura 8.7 Espectro no infravermelho na região e baixa energia	82
para o complexo metiotinato glicinato de Zn(II): [Zn(Gli)(Met)].H ₂ O.	
Figura 8.8 Espectro Raman do complexo glicinato metiotinato	82
de Zn(II): [Zn(Gli)(Met)].H ₂ O	
Figura 8.9 Espectro no infravermelho do complexo	83
cisteinato - metiotinato de Zn(II): [Zn(Cis)(Met)].H ₂ O	
Figura 8.10 Espectro no infravermelho na região de baixa energia do	83
complexo cisteinato - metiotinato de Zn(II): [Zn(Cis)(Met)].H ₂ O	
Figura 8.11 Espectro Raman do complexo cisteinato –	84
metiotinato de Zn(II): [Zn(Cis)(Met)].H ₂ O	
Figura 8.12 Espectros no infravermelho dos complexos	85
[Zn(Cis)(Gli)]H ₂ O, [Zn(Gli)(Met)].H ₂ O e [Zn(Cis)(Met)].H ₂ O, na região	
espectral entre 3600 – 2500 cm ⁻¹	
Figura 8.13 Análise de deconvolução de bandas nas regiões de	86
números de onda compreendidos entre 3800 – 2800 cm ⁻¹ , no	
infravermelho, e entre 3500-2800 cm ⁻¹ no espectro Raman, para o	
complexo [Zn(Cis)(Gli)].H ₂ O	
Figura 8.14 Análise de deconvolução de bandas nas regiões de	87
números de onda compreendidos entre 3600 – 3000 e 3100 – 2750	
cm ⁻¹ ,no infravermelho para o complexo [Zn(Gli)(Met)].H ₂ O.	
Figura 8.15 Análise de deconvolução de bandas nas regiões de	88
números de onda compreendidos entre 3600 – 3000 e	
$3000 - 2800 \text{ cm}^{-1}$, no IV para o complexo [Zn(Cis)(Met)].H ₂ O.	
Figura 8.16 [Zn(Cis)(Gli)].H ₂ O: Gráfico DFT: Números de onda	92
calculados versus números de onda experimentais [cm ⁻¹]	
Figura 8.17 [Zn(Gli)(Met)].H ₂ O: Gráfico DFT : Números de onda	92
calculados versus números de onda experimentais [cm-1]	
Figura 8.18 [Zn(Cis)(Met)].H ₂ O: Gráfico DFT: Números de onda	93
calculados versus números de onda experimentais [cm-1]	
Figura 8.19 Espectro no infravermelho do grupo carboxila	95
Figura 8.20 Espectros no infravermelho dos complexos ternários	96
de Zn(II): Zn(Cis)(Gli)]H ₂ O, [Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O	

na região espectral entre 1800 até 1000 cm ⁻¹	
Figura 8.21 Análise de deconvolução de bandas do espectro	97
Infraverrmelho do complexo [Zn(Cis)(Gli)].H2O, na região entre	
1800– 1450 cm ⁻¹ .	
Figura 8.22 Análise de deconvolução de bandas do espectro	97
infravermelho do complexo [Zn(Gli)(Met)].H2O, na região entre	
$1800 - 1450 \text{ cm}^{-1}$	
Figura 8.23 Análise de deconvolução de bandas do espectro	98
infravermelho do complexo [Zn(Cis)(Met)].H2O, na região entre	
$1800 - 1400 \text{ cm}^{-1}$	
Figura 8.24 [Zn(Cis)(Gli)].H ₂ O: Segunda derivada na região espectral	99
no infravermelho entre 1540 – 1460 cm ⁻¹	
Figura 8.25 [Zn(Cis)(Gli)].H ₂ O. Espectro Raman e segunda espectral	100
indicando o posicionamento dos picos observados.	
Região entre 1560 – 1240 cm ⁻¹	
Figura 8.26 [Zn(Cis)(Met)].H ₂ O. Espectro infravermelho e segunda	100
derivada espectral indicando o posicionamento dos picos	
observados, na região entre 1580 – 1240 cm ⁻¹	
Figura 8.27 Diferentes tipos de modos normais de variações	101
angulares	
Figura 8.28 [Zn(Cis)(Gli)]H ₂ O: ADB nos espectros infravermelho e	103
Raman nas regiões de 1800 – 1450 cm ⁻¹ (IV), e 1450 – 1150 cm ⁻¹ (R)	
Figura 8.29 [Zn(Cis)(Met)].H ₂ O: ADB nos espectros infravermelho e	104
Raman nas regiões entre 1450 – 1200 cm ⁻¹ (IV), e 1800– 1100 (R)	
Figura 8.30 [Zn(Gli)(Met)].H ₂ O ADB nos espectros infravermelho e	105
Raman nas regiões entre 14300 – 1250 cm ⁻¹ (IV), e 1500– 1100 (R)	
Figura 8.31 [Zn(Cis)(Gli)].H2O. Forma do modo normal $v(CC) + v(CO)$;	108
banda observada no espectro Raman aos 1047 cm ⁻¹	
Figura 8.32 Espectros infravermelho dos complexos	108
[Zn(Cis)(Gli)]H ₂ O, [Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O. na região	
espectral entre 1300 – 600 cm ⁻¹	
Figura 8.33 [Zn(Cis)(Gli)].H2O. Espectro Raman na região metal –	109
ligante compreendida entre 700 – 0 cm ⁻¹	
Figura 8.34 [Zn(Cis)(Gli)].H ₂ O: Forma dos modos normais do	112

esqueleto estrutural, com seus respectivos números de onda	
Figura 8.35 [Zn(Cis)(Gli)].H2O: Forma das vibrações do esqueleto	113
estrutural com seus respectivos números de onda	
Figura 8.36 [Zn(Cis)(Gli)].H2O: Espectro Raman na região anti-Stokes	114
entre -50 até -270 cm ⁻¹	
Figura 8.37 [Zn(Cis)(Met)].H ₂ O. Espectro infravermelho e Raman na	118
região metal – ligante compreendida entre 700 –50 cm ⁻¹	
Figura 8.38 [Zn(Cis)(Met)].H ₂ O. Espectros infravermelho e Raman,	121
junto a segundas derivadas, indicando o posicionamento das bandas.	
Figura 8.39 Forma das vibrações normais do esqueleto estrutural	122
do complexo [Zn(Cis)(Met)].H ₂ O, números de onda em (cm ⁻¹)	
Figura 8.40 Forma das vibrações normais do esqueleto estrutural	123
do complexo [Zn(Cis)(Met)].H ₂ O, e seus respectivos números de onda.	
Figura 8.41 [Zn(Gli)(Met)].H2O. Espectro infravermelho na região	128
metal – ligante compreendida entre 700 – 50 cm ⁻¹	
Figura 8.42 [Zn(Gli)(Met)].H2O. Espectro Raman na região metal –	128
ligante ilustrando a região anti-Stokes.	
Figura 8.43 Modo normal acoplado encontrado aos 571 (R) cm ⁻¹	130
Figura 8.44 [Zn(Gli)(Met)].H ₂ O. Espectros infravermelho e Raman	131
junto aos espectros das segundas derivadas	
Figura 8. 45 [Zn(Gli)(Met).H ₂ O. Forma dos modos normais do	132
esqueleto estrutural	
Figura 8.46 [Zn(Gli)(Met).H ₂ O. Forma dos modos normais do	133
esqueleto estrutural (números de onda em cm ⁻¹)	
Figura 9.1 Espectros infravermelho com transformada de Fourier	139
nas regiões 4000 – 370 cm ⁻¹ e entre 700 – 30 cm ⁻¹	
Figura 9.2 Geometria estrutural do complexo [Ni(Gaa)2] (sem água de	142
hidratação), obtida pelo procedimento DFT:B3LYP/6-311G (d, p)	
Figura 9.3 Análise NBO: a) sobreposição entre um orbital antiligante	144
$\pi*$ C=O e um orbital p _z do oxigênio da ligação Ni-O. b) orbital de	
ligação natural entre o níquel e o átomo de nitrogênio, e c) orbital de	
ligação natural entre os átomos de níquel e de oxigênio.	
Figura 9.4 ADB na região do infravermelho entre 3700 – 2700 cm ⁻¹	145
do complexo [Ni(Gaa) ₂]. 2H ₂ O.	

Figura 9.5 ADB na região do infravermelho entre 1850 – 1500 cm ⁻¹	146
do complexo [Ni(Gaa) ₂]. 2H ₂ O.	
Figura 9.6 [Ni(Gaa) ₂]. 2H ₂ O: ADB nas regiões espectrais entre	148
1550 – 1200 e entre 1200 – 900 cm ⁻¹	
Figura 9.7 [Ni(Gaa) ₂]. 2H ₂ O: ADB nas regiões espectrais entre	149
950 – 500 cm ⁻¹	
Figura 9.8 ADB do espectro infravermelho do complexo [Ni(Gaa)2]	155
nas regiões espectrais entre 500 – 300 cm ⁻¹ e entre 320 – 200 cm ⁻¹	
Figura 9.9 ADB do espectro infravermelho do complexo [Ni(Gaa)2]	156
na região espectral entre 220 – 40 cm ⁻¹	
Figura 9.10 Forma dos modos normais onde as coordenadas internas	157
de estiramento Ni-N e Ni-O têm participação significativa.	
Figura 9.11 Espectro FT-IV de [Ni(Asp)(Gaa) ₂].H ₂ O, teórico e	160
calculado na região entre 4000 – 370 cm ⁻¹ e entre 700 – 50 cm ⁻¹	
Figura 9.12 Estrutura calculada pelo procedimento DFT/	163
B3LYP:6-311G (d,p) para o complexo [Ni(Asp)(Gaa)]	
Figura 9.13 Análise NBO (a) orbital de ligação natural entre o íon	165
níquel e átomo de oxigênio (b) orbital de ligação natural entre o	
átomo de níquel e o átomo de nitrogênio (c) sobreposição entre os	
orbitais π^* C=N anti ligante e o orbital híbrido $sp^{4.63}$ sobre o átomo	
de nitrogênio (d) outro ângulo de (c) mostrando o efeito de	
ressonância entre o orbital anti ligante π^* Ni=N9 e o orbital híbrido	
<i>sp</i> ^{4.63} sobre o N9.	
Figura 9.14 Espectro de deconvolução de bandas na região	168
espectral entre 3700-2700 cm ⁻¹	
Figura 9.15 Espectro de deconvolução de bandas na região	169
espectral entre 1800 - 1450 cm ⁻¹	
Figura 9.16 [Ni(Asp)(Gaa)]:ABD na região espectral entre	170
1460–1280 cm ⁻¹	
Figura 9.17 [Ni(Asp)(Gaa)]: ADB no espectro infravermelho nas	171
regiões 1270 – 1200 cm ⁻¹ e 1200 – 950 cm ⁻¹	
Figura 9.18 [Ni(Asp)(Gaa)]: análise de deconvolução de bandas no	172
espectro infravermelho nas regiões 960 – 800 e 800 – 450 cm $^{-1}$	

Figura 9.19 [Ni(Asp)(Gaa)]: análise de deconvolução de bandas no	173
espectro infravermelho nas regiões 400 – 200 e 220 – 40 cm ⁻¹	
Figura 9.20 [Ni(Asp)(Gaa)]: ADB na região espectral entre	178
550 – 370 cm ⁻¹	
Figura 9.21 [Ni(Asp)(Gaa)]: ADB na região espectral entre	179
550 – 370 cm ⁻¹	
Figura 9.22 [Ni(Asp)(Gaa)]: ADB na região espectral entre	179
$220 - 40 \text{ cm}^{-1}$	
Figura 9.23 Geometrias distorcidas de alguns modos normais do	180
esqueleto estrutural do complexo [Ni(Asp)(Gaa)]	
Figura 9.24 [Ni(Gaa)(Gli)].2H ₂ O Espectros infravermelho com	184
transformada de Fourier nas regiões de elevada e baixa energia	
Figura 9.25 [Ni(Asp)(Ser)].2H ₂ O Espectros infravermelho com	185
transformada de Fourier nas regiões de elevada e baixa energia	
Figura 9.26 Estrutura calculada pelo procedimento DFT:B3LYP/6-31G	188
para o complexo [Ni(Gaa)(Gli)] mostrando a numeração dos átomos	
Figura 9.27 Estrutura calculada pelo procedimento DFT:B3LYP/6-31G	189
para o complexo [Ni(Asp)(Ser)] mostrando a numeração dos átomos	
Figura 9.28 [Ni(Gaa)(Gli)], gráfico comparativo entre os números de	190
onda calculados pelo procedimento DFT/B3LYP:6-31G e os	
valores experimentais	
Figura 9.29 [Ni(Asp)(Ser], gráfico comparativo entre os números de	191
onda calculados pelo procedimento DFT/B3LYP:6-311G e os	
valores experimentais	
Figura 9.30 [Ni(Gaa)(Gli)], espectro IV na região entre 3700 e	195
2700cm ⁻¹ e segunda derivada espectral	
Figura 9.31 Espectro infravermelho e segunda derivada das bandas	196
do complexo [Ni(Gaa)(Gli)] na região entre 1800 – 1500 cm ⁻¹	
Figura 9.32 [Ni(Gaa)(Gli)]: Espectro no infravermelho e sua segunda	197
derivada nas regiões entre 1500 – 900 e 850 – 400 cm ⁻¹	
Figura 9.33 Geometrias distorcidas de alguns modos normais do	200
esqueleto estrutural apresentado os vetores de deslocamento	
Figura 9.34 [Ni(Asp)(Ser)], ADB do espectro IV na região entre	205
3700 – 3000 cm ⁻¹ e entre 3000 – 2800 cm ⁻¹	

Figura 9.35 [Ni(Asp)(Ser)] ADB na região no infravermelho entre	206
$1800 - 1500 \text{ cm}^{-1}$	
Figura 9.36 [Ni(Asp)(Ser): ADB do espectro infravermelho na região	207
entre 1500 – 1100 cm ⁻¹	
Figura 9.37 [Ni(Asp)(Ser)]: 1277 cm ⁻¹ (ADB). Modo ν (CO) + δ (HCH)t.	208
Figura 9.38 [Ni(Asp)(Ser)]: 1229 cm ⁻¹ (ADB). Modo $v_{as}(CO) + \delta(HCH)t$	208
Figura 9.39 [Ni(Asp)(Ser)]: 1114 cm ⁻¹ (ADB). Modo ν(CO) +	209
$\delta(\text{HCH})$ twist. + $\delta(\text{HNH})$ wagg. + $\delta(\text{COH})$.	
Figura 9.40 [Ni(Asp)(Ser)] Forma dos modos normais com	210
componentes principais de estiramentos C-O e C-N	
Figura 9.41 [Ni(Asp)(Ser)] Forma dos modos normais com	211
componentes principais de estiramentos C-C	
Figura 9.42 [Ni(Asp)(Ser)]: ADB no espectro no infravermelho nas	212
regiões espectrais entre 1200 – 1000 e 1000 - 800 cm ⁻¹	
Figura 9.43 [Ni(Asp)(Ser)] Forma dos modos normais do esqueleto	215
estrutural com intensa participação das coordenadas internas	
de estiramento Ni-N e Ni-O	
Figura 10.1 DFT:B3LYP/3-21G (6d,7f): Geometria estrutural do	218
complexo [Cd(Cis)(Gli)]	
Figura 10.2 DFT:B3LYP/3-21G (6d, 7f): Geometria estrutura do	218
complexo [Cd(Gli)(Met)]	
Figura 10.3 DFT:B3LYP/3-21G (6d, 7f): Geometria estrutura do	219
complexo [Cd(Cis)(Met)]	
Figura 10.4 Espectro Raman do complexo [Cd(Cis)(Gli)]	223
Figura 10.5 Espectro Raman do complexo [Cd(Cis)(Met)]	223
Figura 10.6 Espectro Raman do complexo [Cd(Gli)(Met)]	224
Figura 10.7 Espectro no infravermelho do complexo [Cd(Cis)(Gli)],	225
região de alta e de baixa energia, respectivamente	
Figura 10.8 Espectro no infravermelho do complexo [Cd(Cis)(Met)],	226
região de alta e de baixa energia, respectivamente	
Figura 10.9 Espectro no infravermelho do complexo [Cd(Gli)(Met)],	227
região de alta e de baixa energia, respectivamente	
Figura 10.10 Espectros no infravermelho dos complexos	228

[Cd(Cis)(Met)].H ₂ O (azul) e [Cd(Cis)(Gli)].H ₂ O (vermelho), na	
região espectral entre 3600 – 2500 cm ⁻¹	
Figura 10.11 [Cd(Gli)(Met)]: Análise de deconvolução de bandas	230
no IV nas regiões entre 3500 – 3100 cm $^{-1}$ e entre 3100-2850 cm $^{-1}$	
Figura 10.12 ADB no espectro Raman nas regiões entre	231
3360 – 3200 cm ⁻¹ e entre 3000 – 2800 cm ⁻¹ , para o	
complexo [Cd(Gli)(Met)].H ₂ O	
Figura 10.13 Análise de deconvolução de bandas no IV nas	232
regiões de números de onda compreendidos entre 3600 – 2800 cm ⁻¹	
para o complexo [Cd(Cis)(Met)].H ₂ O.	
Figura 10.14 ADB no espectro Raman nas regiões de números	232
de onda compreendidos entre 3600 – 2800 cm ⁻¹ para o	
complexo [Cd(Cis)(Met)].H ₂ O	
Figura 10.15 ADB nos espectros IV e Raman nas regiões de números	233
de onda compreendidos entre 3600 – 2800 cm ⁻¹ para o complexo	
[Cd(Cis)(Gli)].H ₂ O	
Figura 10.16 [Cd(Cis)(Gli)].H ₂ O: Gráfico do número de onda DFT	237
versus números de onda experimentais, em [cm ⁻¹]	
Figura 10.17 [Cd(Gli)(Met)].H ₂ O: Gráfico do número de onda DFT	237
versus números de onda experimentais, em [cm ⁻¹]	
Figura 10.18 [Cd(Cis)(Met)].H ₂ O: Gráfico do número de onda DFT	238
versus números de onda experimentais, em [cm ⁻¹]	
Figura 10.19 Espectros no infravermelho dos complexos ternários de	240
Cd(II): [Cd(Cis)(Gli)]H ₂ O (azul), [Cd(Cis)(Met)].H ₂ O (verde),	
[Cd(Gli)(Met)].H ₂ O (vermelho) na região entre 1800 até 1000 cm ⁻¹	
Figura 10.20 ADB dos espectros Raman e infravermelho do	241
complexo [Cd(Cis)(Gli)].H ₂ O, na região entre 1750– 1500 cm ⁻¹ e	
1700 -1400 cm ⁻¹ , respectivamente.	
Figura 10.21 ADB do espectro infravermelho do complexo	242
[Cd(Gli)(Met)].H ₂ O, na região entre 1700 – 1500 cm ⁻¹ , e do espectro	
Raman entre as regiões 1680 – 1550 e entre 1480 – 1300 cm ⁻¹	
Figura 10.22 Análise de deconvolução de bandas dos espectros	243
infravermelho do complexo [Cd(Cis)(Met)].H2O, nas regiões entre	
1700-1500cm ⁻¹ e 1550-1450 cm ¹	

$[Cd(Cis)(Met)].H_2O$ nas regiões de 1700-1500 cm ⁻¹ e 1500-1300 cm ¹ Figura 10.24 $[Cd(Cis)(Gli)].H_2O$: ADB nos espectros infravermelho e Raman na região espectral entre 1700-1400 cm ⁻¹ Figura 10.25 $[Cd(Cis)(Met)].H_2O$: ADB nos espectros infravermeho e Raman na região espectral entre 1700-1500 cm ⁻¹	246 247 248 251
Figura 10.24 [Cd(Cis)(Gli)].H ₂ O: ADB nos espectros infravermelho e Raman na região espectral entre 1700-1400 cm ⁻¹ Figura 10.25 [Cd(Cis)(Met)].H ₂ O: ADB nos espectros infravermeho e Raman na região espectral entre 1700-1500 cm ⁻¹	246 247 248 251
Raman na região espectral entre 1700-1400 cm ⁻¹ Figura 10.25 [Cd(Cis)(Met)].H ₂ O: ADB nos espectros infravermeho e Raman na região espectral entre 1700-1500 cm ⁻¹	247 248 251
Figura 10.25 [Cd(Cis)(Met)].H ₂ O: ADB nos espectros infravermeho e Raman na região espectral entre 1700-1500 cm ⁻¹	247 248 251
Raman na região espectral entre 1700-1500 cm ⁻¹	248 251
	248 251
Figura 10.26 [Cd(Gli)(Met))].H ₂ O: ADB nos espectros infravermeho e	251
Raman na região espectral entre 1700-1500 cm ⁻¹	251
Figura 10.27 [Cd(Cis)(Gli)].H ₂ O: ADB do espectro infravermelho na	
região entre 1450 – 1200 cm ⁻¹	
Figura 10.28 [Cd(Cis)(Gli)].H ₂ O: ADB do espectro Raman nas regiões	251
espectrais entre 1540 - 1260 cm ⁻¹	
Figura 10.29 [Cd(Cis)(Met)].H ₂ O: ADB do espectro infravermelho nas	252
regiões espectrais entre 1500 -1200 cm ⁻¹	
Figura 10.30 [Cd(Cis)(Met)].H ₂ O: ADB do espectro Raman nas regiões	252
espectrais entre 1500 - 1100 cm ⁻¹	
Figura 10.31 [Cd(Gli)(Met)].H ₂ O: ADB do espectro infravermelho na	253
região entre 1400-1200 cm ⁻¹	
Figura 10.32 [Cd(Cis)(Met)].H ₂ O: ADB do espectro Raman nas	254
regiões entre 1480-1300, 1310-1250 e 1165-1140 cm ⁻¹	
Figura 10.33 [Cd(Cis)(Gli)].H ₂ O: formas dinâmicas do modo normal	256
Atribuído como v(CO) + δ (HNH) + δ (HCH), e observado aos 1162 cm ⁻¹	
no espectro Raman	
Figura 10.34 [Cd(Cis)(Gli)].H ₂ O: formas dinâmicas do modo normal	257
atribuído como $\nu(CO) + \nu(CC) + \nu(CN) + \rho(OH)^{\downarrow}$, e observado aos	
1041 e 1047 cm ⁻¹ nos espectros infravermelho e Raman	
Figura 10.35 [Cd(Cis)(Gli)].H ₂ O: formas dinâmicas dos modos	258
Normais atribuídos como $\nu(CN)$ + $\delta(HNH)$ wagg., e observados	
aos 911(IV)/906(R) (parte superior) e 893(cm ⁻¹) (parte inferior)	
Figura 10.36 [Cd(Cis)(Gli)].H ₂ O. Forma do modo normal calculado	259
aos 820 cm ⁻¹ e observado aos 792 cm ⁻¹ no espectro infravermelho	
e aos 795 cm ⁻¹ no espectro Raman	
Figura 10.37 [Cd(Cis)(Gli)].H ₂ O. Forma do modo normal calculado	259

aos 808 cm ⁻¹ e observado aos 746 cm ⁻¹ (2ª. derivada no IV) aos	
756 cm ⁻¹ (2ª. derivada no espectro Raman)	
Figura 10.38 [Cd(Cis)(Met)].H ₂ O: Forma de alguns modos normais e	261
as contribuições das coordenadas internas que contêm as ligações	
C-C, C-N e C-O são significativas	
Figura 10.39 [Cd(Gli)(Met)].H ₂ O: Forma de alguns modos normais	263
onde as contribuições das coordenadas internas que contêm as	
ligações C-C, C-N e C-O são significativas.	
Figura 10.40 Espectros infravermelhos e Raman dos complexos	265
[Cd(Cis)(Gli)]H ₂ O (azul), [Cd(Cis)(Met)].H ₂ O (vermelho), e	
[Cd(Gli)(Met)].H ₂ O (verde). na região espectral entre 1200 – 500 cm ⁻¹ .	
Figura 10.41 Geometrias distorcidas de alguns modos normais do	268
esqueleto estrutural do complexo [Cd(Cis)(Gli)].H ₂ O	
Figura 10.42 [Cd(Cis)(Gli)].H ₂ O: Espectro infravermelho na região de	269
baixa enegia mostrando as bandas da segunda derivada espectral,	
e espectro Raman na região anti-Stokes entre 0 até - 400 cm ⁻¹	
Figura 10.43 [Cd(Cis)(Met)].H ₂ O. Espectro infravermelho na região	273
metal – ligante compreendida entre 700 –50 cm ⁻¹	
Figura 10.44 [Cd(Cis)(Met)].H2O. Espectro Raman na região	273
metal – ligante compreendida entre 700 – 300 cm ⁻¹	
Figura 10.45 [Cd(Cis)(Met)].H ₂ O. Espectros infravermelho e Raman	276
indicando o posicionamento das bandas, junto aos espectros das	
segundas derivadas colocando as energias em unidades de [cm ⁻¹]	
em evidência.	
Figura 10.46 [Cd(Cis)(Met).H ₂ O. Forma das vibrações normais	278
do esqueleto estrutural dos modos 581, 574, 549 e 511 cm ⁻¹	
Figura 10.47 [Cd(Cis)(Met).H ₂ O. Forma das vibrações normais	279
do esqueleto estrutural dos modos 509, 469, 445 e 396 cm ⁻¹	
Figura 10.48 [Cd(Cis)(Met).H ₂ O. Forma das vibrações normais	280
do esqueleto estrutural dos modos 345, 335 e 318 cm ⁻¹	
Figura 10.49 [Cd(Gli)(Met)].H ₂ O. Espectros infravermelho e Raman	285
na região metal – ligante compreendida entre 700 –50 cm ⁻¹	
Figura 10.50 Modos normais acoplados do esqueleto estrutural do	287
complexo [Cd(Gli)(Met)]. H ₂ O	

Figura 10.51 [Cd(Gli)(Met)].H₂O. Espectro infravermelho na região 288 de baixa energia indicando o posicionamento de bandas da segunda derivada

Lista de tabelas

Tabela 4.1 Descrição dos orbitais de ligação híbridos da metilamina	51
Tabela 7.1 Bandas de grupos funcionais característicos para os	65
complexos de Zn(II), Cd(II) e Ni(II) com aminoácidos como ligantes	
Tabela 7.2 Coordenadas cartesianas para o estado de equilíbrio	68
da molécula de NH3	
Tabela 7.3 Matriz dos modos normais (L) para a molécula de NH_3	69
Tabela 7. 4 Matriz da representação das geometrias distorcidas	70
geradas pelo modo normal (L), com energia vibracional de 1132cm ⁻¹	
Tabela 8.1 DFT:B3LYP/6-311G (d,p) parâmetros geométricos	76
calculados para o esqueleto estrutural do complexo metiotinato	
glicinato zinco (II) [Zn(Gli)(Met)]	
Tabela 8.2 DFT:B3LYP/6-311G (d,p) parâmetros geométricos	77
calculados para o esqueleto estrutural do complexo cisteinato	
glicinato zinco (II) [Zn(Cis)(Gli)]	
Tabela 8.3 DFT:B3LYP/6-311G (d,p) parâmetros geométricos	78
calculados para o esqueleto estrutural do complexo cisteinato	
metiotinato zinnco (II) [Zn(Cis)(Met)]	
Tabela 8.4 Análise comparativa das distâncias interatômicas	79
dos compostos [Zn(Gli)(Met)], [Zn(Cis)(Gli)] e [Zn(Cis)(Met)]	
Tabela 8.5 Análise das distâncias de ligação Zn(II)-átomo ligante	79
Tabela 8.6 Atribuição vibracional para os modos de estiramento N-H	89
Tabela 8.7 Atribuição vibracional para os diferentes modos de	91
estiramento C-H dos complexos [Zn(Cis)(Gli)]H ₂ O, [Zn(Gli)(Met)].H ₂ O	
e [Zn(Cis)(Met)].H ₂ O	
Tabela 8.8 Atribuição vibracional dos modos $v(C=O)$ nos complexos	95
[Zn(Cis)(Gli)]H ₂ O, [Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O	
Tabela 8.9 Atribuição vibracional dos modos $\delta({\sf HNH})$ sciss nos	96
complexos [Zn(Cis)(Gli)]H ₂ O, [Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O	
Tabela 8.10 Atribuição vibracional dos modos $\delta(HCH)$ sciss. dos	99
complexos [Zn(Cis)(Gli)]H ₂ O, [Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O	

Tabela 8.11 Atribuição vibracional de diferentes modos $\delta(HCH)$ nos	102
complexos [Zn(Cis)(Gli)]H ₂ O, [Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O	
Tabela 8.12 Atribuição vibracional dos modos de estiramento C-O,	107
C-N,C-C e C-S nos complexos [Zn(Cis)(Gli)]H ₂ O,	
[Zn(Cis)(Met)].H ₂ O, [Zn(Gli)(Met)].H ₂ O	
Tabela 8.13 Modos normais do complexo [Zn(Cis)(Gli)].H ₂ O e	110
atribuição vibracional do esqueleto estrutural	
Tabela 8.14 Atribuição vibracional completa do complexo	114
[Zn(Cis)(Gli)].H ₂ O	
Tabela 8.15 Modos normais do complexo [Zn(Cis)(Met)].H ₂ O e	119
atribuição vibracional do esqueleto estrutural	
Tabela 8.16 Atribuição vibracional do complexo [Zn(Cis)(Met)].H ₂ O	124
Tabela 8.17 Modos normais do complexo [Zn(Gli)(Met)].H ₂ O e	129
atribuição vibracional do esqueleto estrutural	
Tabela 8.18 Atribuição vibracional completa do complexo	134
[Zn(Gli)(Met)].H ₂ O	
Tabela 9.1 Parâmetros geométricos do esqueleto estrutural do	141
complexo bis-guanidoacetato de níquel (II) determinados pelo	
método DFT/B3LYP: 6-311 G (d,p)	
Tabela 9.2 Atribuição do espectro calculado pelo procedimento	150
DFT/ B3LYP:6-311G (d, p), e espectro IV com transformada de	
Fourier experimental do complexo [Ni(Gaa)2] (unidades: cm-1)	
Tabela 9.3 Parâmetros geométricos do esqueleto estrutural do	162
complexo aspartato guanidoacetato de níquel (II),	
[Ni (Asp)(Gaa)], determinados pelo procedimento DFT/B3LYP:	
6-311 G (d, p).	
Tabela 9.4 Espectro calculado pelo procedimento	174
DFT/B3LYP-6-311G (d, p), e espectro infravermelho com	
Transformada de fourier experimental do complexo	
[Ni(Asp)(Gaa)] (unidades: cm ⁻¹)	
Tabela 9.5 Comprimentos e ângulos de ligação selecionados para	188
o complexo glicinato-guanidoacetato de níquel (II)	
Tabela 9.6 Comprimentos e ângulos de ligação selecionados para	189

o complexo aspartato - serinato de níquel (II)

Tabela 9.7 [Ni(Gaa)(Gli)]: Espectro FT-IV experimental, e espectro 193 calculado pelo procedimento DFT: B3LYP/6-31G . Números de onda em [cm⁻¹]. Tabela 9.8 [Ni(Asp)(Ser)]: Espectro FT-IV experimental, e espectro 202 calculado pelo procedimento DFT: B3LYP/6-311G . Números de onda em [cm⁻¹] Tabela 9.9 Atribuição dos modos normais do esqueleto estrutural 214 do complexo [Ni(Asp)(Ser)] Tabela 10.1 DFT: B3LYP/3 - 21G (6d, 7f): Parâmetros geométricos 220 do esqueleto estrutural do complexo [Cd(Cis)(Gli)] (sem água de hidratação) Tabela 10.2 DFT: B3LYP/ 3 - 21G (6d, 7f): Parâmetros geométricos 221 do esqueleto estrutural do complexo [Cd(Gli)(Met)] (sem água de hidratação) Tabela 10.3 DFT: B3LYP/3 – 21G (6d, 7f): Parâmetros geométricos 222 do esqueleto estrutural do complexo [Cd(Cis)(Met)] (sem água de hidratação) Tabela 10.4 Atribuição vibracional para os modos de 234 estiramento N-H para os aminoácidos complexos ternários de Cd(II) Tabela 10.5 Atribuição vibracional para os diferentes modos 236 de estiramento C-H dos complexos [Cd(Cis)(Gli)]H₂O, [Cd(Gli)(Met)].H₂O e [Cd(Cis)(Met)].H₂O Tabela 10.6 Atribuição vibracional dos modos v(C=O) nos 239 complexos [Cd(Cis)(Gli)].H₂O, [Cd(Cis)(Met)].H₂O, [Cd(Gli)(Met)].H₂O Tabela 10.7 Atribuição vibracional dos modos δ (HNH)sciss nos 240 complexos [Cd(Cis)(Gli)]H₂O, [Cd(Cis)(Met)].H₂O, [Cd(Gli)(Met)].H₂O 245 Tabela 10. 8 Atribuição vibracional dos modos δ (HCH)sciss. nos complexos [Cd(Cis)(Gli)]H₂O, [Cd(Cis)(Met)].H₂O, [Cd(Gli)(Met)].H₂O Tabela 10.9 Atribuição vibracional dos modos δ (HNH) e δ (HCH) 250

nos complexos [Cd(Cis)(Gli)]H ₂ O, [Cd(Cis)(Met)].H ₂ O,	
[Cd(Gli)(Met)].H ₂ O	
Tabela 10.10 Atribuição vibracional dos modos C-N, C-O e C-C do	260
complexo [Cd(Cis)(Met)]	
Tabela 10.11 Atribuição vibracional dos modos C-C, C-N e C-O do	262
complexo [Cd(Gli)(Met)]	
Tabela 10.12 Modos normais acoplados que contêm a participação	264
expressiva da coordenada interna de estiramento C-S, q(CS)	
Tabela 10.13 Atribuição vibracional completa pelo procedimento:	270
B3LYP/3-21G (6d, 7f) para o complexo [Cd(Cis)(Gli)] .H ₂ O.	
Tabela 10.14 Atribuição vibracional do esqueleto estrutural do	274
complexo [Cd(Cis)(Gli)].H ₂ O	
Tabela 10.15 Atribuição vibracional completa pelo procedimento:	281
B3LYP/3-21G (6d, 7f) para o complexo [Cd(Cis)(Met)].H ₂ O	
Tabela 10.16 Atribuição vibracional do esqueleto estrutural do	285
complexo [Cd(Gli)(Met)].H ₂ O	
Tabela 10.16 Atribuição vibracional completa pelo procedimento:	289
B3LYP/3-21G (6d, 7f) para o complexo [Cd(Gli)(Met)].	

Lista de símbolos

- Asp ácido aspártico
- Gaa ácido guanidoacético
- Ser serina
- Gli glicina
- Met metionina
- DFT Teoria do Funcional de Densidade
- NBO Orbitais Naturais de Ligação
- PDPG Percentagem de Desvio dos Parâmetros Geométricos
- ACN Análise de Coordenadas Normais
- ADB Análise de Deconvolução de Bandas

PUC-Rio - Certificação Digital Nº 0621172/CA

"A simetria se encontra tanto no belo, quanto no intrínseco belo do quântico." Alberto Loritto