

Claudinei Marcheti Junior

Utilização de medidores ultrassônicos para medição fiscal de vazão de gás natural.

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia da PUC-Rio. Área de Concentração: Metrologia para Qualidade e Inovação.

Professor Orientador: Prof. Alcir de Faro Orlando

Rio de Janeiro Setembro de 2009

Claudinei Marcheti Junior

Utilização de medidores ultrassônicos para medição fiscal de vazão de gás natural.

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia para Qualidade Industrial da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Dr. Alcir de Faro Orlando

Orientador

Departamento de Engenharia Mecânica e Programa de Pós-Graduação em Metrologia Pontifícia Universidade Católica do Rio de Janeiro/PUC-Rio

Dr. Maria Helena Farias

INMETRO – Instituto de metrologia, Normalização e Qualidade Industrial

Prof. Dr. Eloi Fernandez Y Fernandes

Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro/PUC-Rio

Prof. Dr. Luiz Fernando Alzuguir Azevedo

Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro/PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 15 de setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Claudinei Marcheti Junior

Graduou-se em Engenharia Mecânica pela UFES – Universidade Federal do Espírito Santo – em 2002. Engenheiro de Tubulações da Cobrapi Engenharia Ltda de 2002 a 2003. Engenheiro de Equipamentos da Petrobras desde 2003, atuando nos sistemas de medição de vazão de petróleo, gás natural e água na Unidade de Negócios da Bacia de Campos.

Ficha Catalográfica

Marcheti Junior, Claudinei

Utilização de medidores ultrassônicos para medição fiscal de vazão de gás natural / Claudinei Marcheti Junior ; orientador: Alcir de Faro Orlando. – 2010.

132 f.: il.; 30 cm

Dissertação (Mestrado em Metrologia)--Pontifícia

Inclui bibliografia

Metrologia - Teses. 2. Metrologia. 3. Medição ultrassônica. 4. Diagnóstico do medidor. 5. Incerteza de medição.
Orlando, Alcir de Faro. II. Pontifícia Universidade Católica do Rio de Janeiro. Programa de Pós-Graduação em Metrologia para Qualidade e Inovação. III. Título.

Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

CDD: 389.1

Agradecimentos

A Deus, por tornar possível a realização deste projeto.

A minha esposa Solange, pelo amor imensurável, pela paciência interminável, e pelo companheirismo e apoio incondicionais.

Ao Prof. Alcir, pela valiosíssima orientação, pelo estímulo e pelas palavras de coragem nos momentos certos.

A PETROBRAS, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos meus pais, por sempre me ensinarem que a educação é a melhor herança que se pode deixar a um filho.

Aos colegas do Grupo de Medição da UN-BC, em especial ao amigo Ricardo Pessanha, pelo incentivo e apoio.

Aos meus colegas da PUC-Rio e a todos os professores e funcionários do Departamento.

Aos professores que participaram da Banca examinadora.

A todos os amigos e familiares que acreditaram na realização deste projeto, e cujos carinho e compreensão foram imprescindíveis para sua conclusão.

Resumo

Marcheti Junior, Claudinei; Orlando, Alcir de Faro. **Utilização de medidores ultrassônicos para medição fiscal de vazão de gás natural.** Rio de Janeiro, 2009. 132 p. Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia. Área de concentração: Metrologia para Qualidade e Inovação (PósMQI), Pontificia Universidade Católica do Rio de Janeiro.

A medição de gás natural pelo princípio do ultrassom se mostra competitiva, sob diversos aspectos, quando comparada com medidores deprimogênios, em especial a placa de orifício. O presente trabalho apresenta uma avaliação técnica da utilização de medidores ultrassônicos de múltiplos feixes em sistemas fiscais e para transferência de custódia. Uma avaliação de conformidade em relação às principais normas internacionais relativas à medição de vazão de gás natural pelo princípio do ultrassom é realizada através de dados coletados, para um mesmo medidor, durante sua calibração em laboratório e durante sua operação no campo. Apresenta também uma análise das ferramentas de diagnósticos disponíveis pelo medidor, comparando os resultados obtidos em laboratório e no campo. Foi proposta uma metodologia para a determinação das estimativas de incerteza da medição da vazão instantânea e do volume de gás em determinado intervalo de tempo. As avaliações de conformidade com as normas e as análises das ferramentas de diagnósticos disponíveis mostram que a utilização de medidores ultrassônicos na medição fiscal de gás natural é tecnicamente viável; além disto, considerando um intervalo de tempo conveniente para a totalização dos volumes medidos, a incerteza de medição pode ser bastante reduzida.

Palayras-chave

Metrologia; medição ultrassônica; diagnósticos do medidor; incerteza de medição.

Abstract

Marcheti Junior, Claudinei; Orlando, Alcir de Faro (Advisor). **Use of ultrasonic flow meters for transfer custody of natural gas.** Rio de Janeiro, 2009. 132 p. MSc. Dissertation – Programa de Pós-Graduação em Metrologia. Área de concentração: Metrologia para Qualidade e Inovação (PósMQI), Pontificia Universidade Católica do Rio de Janeiro.

The measurement of natural gas by the ultrasonic principle is shown to be competitive in several aspects when compared with orifice plate meters. This paper presents a technical evaluation of the use of multipath ultrasonic meters for custody transfer. The analysis of the meter performance matching with the requirements of principal international standards for measuring of natural gas flowrate by the ultrasonic principle is made using data collected for the same meter during the calibration in laboratory and during operation in the field. It also presents an analysis of the diagnostic tools available by the meter, comparing the results obtained in laboratory and field. A methodology for determining estimates of measurement uncertainty of flow rate and totalize gas in a given time interval is proposed. Evaluations of compliance with the standards and the analysis of the diagnostic tools available show that the use of ultrasonic meters in the fiscal measurement of natural gas is technically feasible, and that, by varying the time for measuring volumes, the uncertainty of measurement can be quite reduced.

Keywords

Metrology; ultrasonic measurement flowrate; meter's diagnostics; measurement uncertainty.

Sumário

1 Introdução	16
1.1. Definição do problema de pesquisa	22
1.2. Objetivos geral e específicos	24
1.3. Metodologia	25
1.4. Motivação	25
1.5. Estrutura da dissertação	26
2 Fundamentação teórica	27
2.1. Conceitos	27
2.1.1. Fluido	27
2.1.2. Massa especifica e densidade	27
2.1.3. Viscosidade	28
2.1.4. Coeficiente adiabático	29
2.1.5. Número de Reynolds	30
2.1.6. Perfil de velocidade	32
2.1.7. Fator de compressibilidade	34
2.2. Princípio de funcionamento de medidores ultrassônicos	34
2.2.1. A onda sonora	34
2.2.2. Cálculo da vazão para medidores ultrassônicos de trajetória	
única	36
2.2.3. Cálculo da vazão para medidores ultrassônicos de múltiplas	
trajetórias	39
2.3. Ferramentas de diagnóstico	39
2.3.1. Ganho	40
2.3.2. Qualidade do sinal	41
2.3.3. Relação sinal-ruído	42
2.3.4. Velocidade do escoamento	44
2.3.5. Velocidade do som	45
3 Metodologia	47
3.1. Medidores disponibilizados	47
3.2. Diagnósticos disponíveis nos medidores utilizados	49

3.2.1. Medição dos tempos de transito	50
3.2.2. Processamento do Sinal Digital	51
3.2.3. Processamento de grupos de sinais	54
3.2.4. Velocidade do som	57
3.2.4.1. Comparação entre os valores medidos em cada corda	58
3.2.4.2. Comparação do valor médio com o valor de cada corda	58
3.2.4.3. Comparação entre os valores medidos pelas cordas de	
comprimentos diferentes	58
3.2.4.4. A função Eta (η)	59
3.2.5. Perfil de Velocidades	60
3.3. Visão geral das normas AGA 9, ISO 17089	63
3.3.1. Escopo	63
3.3.2. Terminologia	63
3.3.3. Condições de operação	63
3.3.4. Requisitos do medidor	63
3.3.4.1. Corpo do Medidor	64
3.3.4.2. Transdutores	64
3.3.4.3. Eletrônica	64
3.3.5. Programas de computador	65
3.3.6. Desempenho do medidor	66
3.3.7. Testes do Medidor	70
3.3.8. Requisitos de Instalação	71
3.3.9. Verificação do medidor no campo	72
3.3.10. Material adicional das normas	75
3.4. Estimativas das incertezas	75
3.4.1. Estimativa da incerteza de medição de vazão nas condições	
de calibração	76
3.4.1.1. Incerteza de medição de vazão pelo medidor em calibração	77
3.4.1.2. Incerteza do <i>Meter Factor</i> MF	78
3.4.1.3. Incerteza do ajuste do MF	78
3.4.1.4. Incerteza expandida da medição de vazão pelo medidor	
em calibração	79
3.4.2. Estimativa da incerteza de medição de vazão nas condições	
de referência	80
3.4.2.1. Coeficientes de sensibilidade	81
3.4.2.2. Estimativas de incerteza da pressão e da temperatura de	

operação, u_P e u_T	82
3.4.2.3. Estimativa das incertezas dos fatores de compressibilidade,	
u_Z e u_{Zr}	82
3.4.3. Estimativa para a incerteza de medição da vazão média	
(incerteza de medição do volume)	84
4 Resultados Experimentais	87
4.1. Resultados das ferramentas de diagnóstico	87
4.1.1. Medição dos tempos de trânsito	87
4.1.2. Processamento do Sinal Digital	88
4.1.3. Processamento de grupos de sinais	88
4.1.4. Velocidade do som	92
4.1.4.1. Comparação entre os valores medidos em cada corda	93
4.1.4.2. A função Eta (η)	96
4.1.5. Perfil de Velocidades	97
4.2. Atendimento aos requisitos da AGA 9 e da ISO 17089	99
4.2.1. Condições de operação	99
4.2.2. Requisitos do medidor	101
4.2.2.1. Corpo do medidor	101
4.2.2.2. Transdutores	102
4.2.2.3. Eletrônica	102
4.2.2.4. Programas de computador (item 3.3.1.5)	107
4.2.2.5. Desempenho do medidor	108
4.2.2.6. Requisitos de instalação (item 3.3.1.8)	113
4.2.3. Análise do atendimento aos requisitos da AGA 9 e da	
ISO 17089	113
4.3. Resultados das estimativas de incerteza	114
4.3.1. Estimativa da incerteza de medição de vazão pelo medidor	
em calibração	114
4.3.2. Resultados para a incerteza de medição de vazão nas	
condições de referência	115
4.3.3. Análise dos resultados das estimativas de incerteza	118
5 Conclusões e recomendações	119
5.1. Recomendações	121
6 Referências bibliográficas	122

ANEXOS 123

ANEXO A – Certificado de Calibração do medidor 08-060434

ANEXO B – Certificados de calibração dos instrumentos de medição de pressão e temperatura

ANEXO C – Certificado de verificação sem escoamento

ANEXO D – Projeto da estação de medição para transferência de custódia onde os medidores utilizados nesta dissertação encontram-se instalados

Lista de figuras

Figura 1 – Fluxograma esquemático da cadeia de produção do	
petróleo e do gás natural.	17
Figura 2 – Representação de campos de produção de petróleo e	
gás natural que compartilham um mesmo sistema de medição fiscal.	19
Figura 3 – Esquema de estação de medição de gás natural	
baseada em placa de orifício.	20
Figura 4 – Esquema de estação de medição de gás natural com	
medidor ultrassônico.	21
Figura 5 – Deformação de um fluido	28
Figura 6 – Representação gráfica de um perfil de escoamento em	
regime laminar.	31
Figura 7– Representação gráfica de um perfil de escoamento em	
regime turbulento.	31
Figura 8 - Perfil de escoamento unidimensional.	32
Figura 9 – Escoamento com perfil assimétrico.	33
Figura 10 – Escoamento com <i>swirl</i> .	33
Figura 11 – Escoamento com <i>cross flow</i> .	33
Figura 12 – Espectro de freqüências sonoras	35
Figura 13 – Princípio de funcionamento de medidores ultrassônicos.	36
Figura 14 – Sinal típico de um transdutor ultrassônico [17].	43
Figura 15 – Sinal com excesso de ruído [17].	44
Figura 16 – Fluxograma simplificado da movimentação através	
da Estação de Tratamento de Gás de Cacimbas.	48
Figura 17 – Medidores utilizados no desenvolvimento desta dissertação.	49
Figura 18 – Disposição dos transdutores ultrassônicos dos	
medidores utilizados no desenvolvimento da dissertação.	50
Figura 19- Exemplo de pulso ultrassônico digitalizado no	
transdutor receptor.[22]	52
Figura 20 - Energia contida no pulso ultrassônico. [22]	53
Figura 21 - Detecção do primeiro movimento.[22]	54
Figura 22 - Detecção de ruído no sinal ultrassônico.[22]	56
Figura 23 - Exemplo de forma de onda de um sinal ultrassônico	
recebido.[22]	57

Figura 24 - Pertis de velocidade com <i>swiri</i> . [22]	62
Figura 25 - Ângulo do swirl. [22]	62
Figura 26 – Representação gráfica dos parâmetros de avaliação	
de medidores. [23]	69
Figura 27 - Configuração (A): Condições de referência	73
Figura 28 - Configuração (B): Duas curvas de 90° em planos	
perpendiculares.	
$\theta = 0^{\circ}$.	73
Figura 29 - Configuração (C): Duas curvas de 90° em planos	
perpendiculares.	
θ = 90°.	74
Figura 30 - Configuração (D): Curva única. θ = 0°.	74
Figura 31 - Configuração (D): Curva única. θ = 90°.	74
Figura 32 - Configuração (I): Redutor com pelo menos 1 D de	
redução do diâmetro da tubulação.	75
Figura 33 – Variação do MF do medidor 08-060434 durante sua	
calibração.	77
Figura 34 – Estimativas de incerteza sobre o algoritmo de cálculo	
para o fator de compressibilidade [12].	83
Figura 35 - Variação da turbulência do medidor 08-060434 durante	
sua calibração (100% de Q _{max}).	89
Figura 36 - Variação da turbulência do medidor 08-060434 durante	
sua operação (tempo total de coleta).	90
Figura 37 - Variação da turbulência do medidor 08-060434 durante	
sua operação (48 s).	90
Figura 38 - Variação da velocidade de escoamento do medidor	
08-060434 durante sua calibração (100% de Q_{max}).	91
Figura 39 - Variação da velocidade de escoamento do medidor	
08-060434 durante sua operação.	91
Figura 40 - Variação da SOS, por corda, do medidor 08-060434	
durante sua calibração (5% de Q _{max}).	94
Figura 41 - Variação da SOS, por corda, do medidor 08-060434	
durante sua operação.	94
Figura 42 - Parâmetros do perfil de velocidades para o medidor	
08-060434 durante sua calibração (40% de Q _{max}).	97
Figura 43 - Parâmetros do perfil de velocidades para o medidor	

08-060434 durante sua operação.	98
Figura 44 - Medidor e detalhe da tomada de pressão.	102
Figura 45 - Ganho, por canal, do medidor 08-060434 durante a	
calibração do ponto 100% Q _{max} .	103
Figura 46 - Ganho, por canal, do medidor 08-060434 durante	
sua operação.	104
Figura 47 - SNR, por canal, do medidor 08-060434 durante	
a calibração do ponto 100% Q _{max} .	104
Figura 48 - SNR, por canal, do medidor 08-060434 durante	
sua operação.	105
Figura 49 - Perfomance do medidor 08-060434 durante a	
calibração do ponto 100% de Q_{max}	106
Figura 50 - <i>Perfomance</i> do medidor 08-060434 durante sua operação.	106
Figura 51 – Exemplo de tela do programa de computador dos	
medidores utilizados.	107
Figura 52 - Exemplo de tela do programa de computador dos	
medidores utilizados.	108

Lista de tabelas

Tabela 1 – Resumo dos requisitos iniciais de calibração dos	
sistemas de medição fiscal de gás natural [2].	20
Tabela 2 – Comparativo entre sistemas de medição por placa	
de orifício x medidores ultrassônicos .	22
Tabela 3 – Dados dos medidores utilizados nesta dissertação.	48
Tabela 4 - Requisitos de desempenho para medidores com	
diâmetro menor do que 12".	67
Tabela 5 - Requisitos de desempenho para medidores com	
diâmetro maior ou igual a 12".	68
Tabela 6 – Tempos de trânsito, por transdutor, sem escoamento	
para o medidor 08-060435.	88
Tabela 7 - <i>Turbulência</i> , por corda, do medidor 08-060434	
durante a calibração (100% de Q _{max}) e durante sua operação.	89
Tabela 8 - Valores médios, em μs, do desvio padrão dos	
grupos de tempos de trânsitos cronometrados por transdutor,	
para o medidor 08-060434.	92
Tabela 9 - Desvio de SOS para o medidor 08-060434 durante	
a calibração em escoamento.	92
Tabela 10 - Desvio de SOS para o medidor 08-060435 durante	
a calibração em escoamento.	93
Tabela 11 - Desvio de SOS para o medidor 08-060436 durante	
a calibração em escoamento.	93
Tabela 12 - Velocidades do som em cada corda e diferenças	
entre os valores medidos (em m/s), para o medidor 08-060434.	95
Tabela 13 - Valores de Eta para o medidor 08-060434 durante	
sua calibração.	96
Tabela 14 - Valores de Eta para o medidor 08-060434 em operação.	97
Tabela 15 - Valores médios, mínimos e máximos para o	
Fator de Perfil, assimetria e <i>crossflow</i> e ângulo do <i>swirl</i>	
do medidor 08-060434, durante sua calibração e operação.	98
Tabela 16 - Especificações do fabricante e do cliente.	100
Tabela 17 - Composição do gás especificada pelo cliente.	100
Tabela 18 – Limites para gás natural de acordo com a AGA 8. [12]	100

Tabela 19 - Repetitividade do medidor 08-060434 durante a calibração.	109
Tabela 20 - Dados do medidor 08-060435 coletados durante	
sua operação.	110
Tabela 21 - Valores máximos e mínimos de SOS para o medidor	
08-060434 durante a calibração com escoamento.	111
Tabela 22 - Erros do medidor 08-060434 durante a calibração.	112
Tabela 23 - Requisitos das normas AGA 9 [7] e ISO 17089 [23],	
e valores para o medidor de número de série 08-060434	112
Tabela 24 –Incerteza de medição de vazão do medidor 08-060434.	114
Tabela 25 - Incerteza do MF para o medidor 08-060434.	114
Tabela 26 - Valores de MF encontrados na calibração e valores	
calculados conforme a Eq. (38).	115
Tabela 27 - Resultados da calibração do medidor 08-050434.	115
Tabela 28 – Valores limites da composição do gás natural medido.	116
Tabela 29 – Valores limites de Z e Z _r .	116
Tabela 30 – Resultado da estimativa da incerteza da medição	
de vazão nas condições de referência para o medidor 08-060434	117