
 113

7
Design Issues and Implementation

This chapter presents a detailed discussion about the design and

implementation of a real exploration environment based on the formalization of

the functional layer presented in chapter 4 and the separation of concerns

approach presented in chapter 3. Here we present a novel approach to characterize

the design space of exploration tools with special emphasis in the

Interaction/Interface layer.

To illustrate the discussions of the design issues and possible solution

alternatives, we use the case of the design and implementation of the XPlain

environment, which provides higher expressivity when compared to state-of-the-

art tools. Moreover, we also present comparisons between state-of-the-art tools in

order to demonstrate the generality of the issues discussed. This chapter can be

used as a guideline for designing new expressive exploration environments over

semi-structured data.

7.1.Functional Layer

The functional layer contains the exploration operations of the proposed

framework accessible through a specific DSL (Domain Specific Language) in

Ruby language. As an application example of the DSL consider the case study

“Evaluating a scientific paper”, described in chapter 5, section 2. Subtasks 1, 2,

and 3 are as follows: 1) Analyze the age of the citations by extracting the set of

years of the citations and calculating the mean year; 2) Check potential relevant

publications that are missing from the citations list; 3) find how many citations are

publications from the same authors of the reviewing paper. These subtasks are

represented as the following sequence of steps in our DSL. Let d be a variable

containing a reference to the dataset and p be another variable referencing a

unitary set containing the reviewing paper:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 114

Figure 32 - DSL representation of the solution strategy for the paper review case study

presented in chapter 5, section 2

Each exploration set is referenced by a Ruby variable (s1…s12), where the

user can apply an operation using the following rule:

<setVar>.<operation>{<ParamsSpec>}

The parameters of all but set operations are defined within ruby blocks,

which can be delimited either by brackets or by the keywords “do end”. For

example, the pivoting and grouping relation parameters are defined as “{relation

:cite}”, where “relation” is the name of the parameter and :cite is the value for the

parameter. The “relation” parameter also allows inversion of relations and relation

paths, such as the execution presented in the line 15, where the user pivots

backwards from authors to publications through the relation path

:isDocumentContextFor:isHeldBy. Auxiliary functions are specified in a similar

way. For example, the mean function for the Map operation is also specified in a

block. Refer to Attachment A for a formal description of the DSL in the EBNF13

metalanguage.

The result sets achieved by the script of Figure 32 are stored in an

exploration session and each exploration set keeps a reference to input sets they

depend on. Therefore, there is a dependency graph that can be shown in the

interface as an exploration trail and further manipulated for reuse purposes.

In XPlain, a Web interface was developed on top of the DSL. The client

sends DSL expressions to the server, which executes them, and returns the

13 https://www.iso.org/standard/26153.html

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 115

resulting exploration sets. The next session presents a discussion of the design

issues concerning exclusively visual and interaction aspects of the interface.

7.2.Interaction/Interface Design

Once the designer has a thorough view of the operators and their possible

combinations for exploration tasks, she/he must focus exclusively on deciding

which interaction paradigms and visual representations are more adequate. This

section presents a discussion of interaction/interface issues separating its concerns

from the exploration actions and compositions defined by the functional layer.

Based on the concepts of the functional layer, the main goals of the interface are:

(1) to present one or many exploration sets, where the items of each set may be

hierarchically organized (nested); (2) Allow the user to select an

operator/composition and specify its parameters; (3) Allow the user to visualize,

manage, and browse the exploration trail. In order to leverage the discussion, we

used the case study in the scientific publications field described in chapter 5,

section 2. Figure 33 shows a screenshot of the main screen of the XPlain

environment.

Figure 33 - The interface of the XPlain environment. (A) keyword search controls; (B)

Exploration operations toolbar; (C) Exploration sets area; (D) Exploration trail view.

7.2.1.Requirement 1: Manipulation of Exploration Sets and Items

The first challenge for the design of exploration environment interfaces is

how to present the data being manipulated and its relationships. The biggest issue

to be dealt with is handling the potential excess of information to be presented, as

the number of items can be very large. Here, Shneiderman’s visual information

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 116

seeking mantra “Overview first, zoom and filter, then details-on-demand”

(SHNEIDERMAN, 1996) should be considered as a guideline.

Considering the conceptualization of the exploration process as a functional

composition that results in multiple exploration sets, the design alternatives for

presenting those sets are: show one exploration set at a time (unifocal) or show

many sets at a time (multifocal). Unifocal interfaces have the advantage of

reducing the amount of information shown at a given time and requiring less

focus management interactions. However, they do not properly support operations

that take more than one set as input, such as comparisons of alternatives

(BUSCHBECK et al., 2013). For example, imagine a user interested in comparing

the publication profiles (e.g., venues in common) of two researchers in a certain

period of time. S/he filters the publications of each researcher by the desired

period, pivots by venue, and computes the intersection (or difference) of the two

sets. In a unifocal interface s/he must apply this sequence of operations to each

researcher one at a time, and somehow apply the intersection operation (if

available in the functionality layer) on the results, which won’t be both available

in the same interface. Note that if the functionality layer does not provide a set

operation, s/he must annotate the results and then make the comparisons offline.

For web browsers, a common strategy is to open two or more windows and

organize the windows to support the comparisons, but this is limited by available

screen real estate.

In a multifocal view s/he is able to visualize the two sets of venues

simultaneously and compute the intersection straightforwardly. The drawback of

multifocal interfaces is the need to design focus management controls, such as,

maximization, minimization, restoration, and layout organization controls to avoid

information overload. If comparisons between alternatives are not the case or the

device is very restricted in screen size, unifocal interfaces may be more

appropriate.

An additional design issue is the layout and presentation of the relationships

between the sets on the screen. To illustrate one possible set of options, in XPlain

we opted for a multifocal interface to better support operations over multiple sets,

where each set presentation has minimization/maximization controls. Figure 33C

shows two exploration sets in the workspace. The last generated set is always

placed on top of the screen and the exploration trail presents the relationships

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 117

between the sets and also allows the user to navigate to intermediary sets by

clicking on the corresponding node in the graph. After deciding between unifocal

and multifocal presentations, it is necessary to define the organization and

interactions for the exploration items and the relations they participate in, within

the exploration sets.

According to our functional model, there are two types of item relations that

must be considered: schema relations and computed relations. Computed relations

are relations created along the exploration process, such as grouping relations or

mappings, which not necessarily have an identifier, such as predicate URIs in

RDF or column names. There are three common representations of schema

relations in the literature: the tabular view, where each relation becomes a column

and the related items are presented in rows; the graph view, where the relations

are the edges between nodes; the list view, where the relations are presented in a

list, which usually has multiple levels.

Tools presenting tabular views model the exploration process as a sequence

of manipulations of rows and columns, where the interactions are very similar to

those offered by electronic spreadsheets. However, depending on the amount of

columns and rows required for the task, which is proportional to the range of

concepts and dimensions under exploration, presenting all data in a single table

may be unfeasible. Moreover, it neither leverages the visualization of the schema

structure nor the join items, i.e., items related to two or more items. A tabular

view may be easier for spreadsheet users while graph views favors the

visualization of the schema structure and the joins between the items. Visor

reconciles both graph and tabular views, where the graph view presents an

overview of the RDF classes and their relationships, as Figure 34 shows. The

tabular view in Visor presents detailed information of the items of the selected

classes. Figure 34 shows the graph view of the schema implemented in Visor and

Figure 35 shows the tabular view implemented in Liquid Query tool and in its

follow up Search Computing.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 118

Figure 34 - Visor screenshot (POPOV et al., 2011)

Figure 35 - Tabular view of Liquid Query (BOZZON, ALESSANDRO et al., 2010)

Alternatively to graph and tabular view, the list view usually shows items

and relations in separate lists, where the relations list presents items’ relations and

their respective related values. This presentation is commonly found in unifocal

faceted search systems, where the relations and their values are presented as

filtering facets. The ordering of the related values in the list is often given by the

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 119

amount of items that participates in the relation. Figure 36 presents the

implementation of a list view for items and facets in Rhizomer.

Figure 36 - Rhizomer list view

A variation of the list view presentation is usually found in tools that

support facets that are hierarchically organized. Some examples of hierarchical

facets are locations, organized in cities, states, and countries; Temporal facets,

organized in days, months, and years; Classification facets with sub-class

relationships, such as the International Patent Classification taxonomy. In order to

cover this type of relation, the related items can be presented in a multi-level list,

as implemented in Flamenco and /facet. Figure 37 shows the multilevel list for the

Style/Period facet of artistic works in /facet.

Figure 37 - /facet multilevel list view

In XPlain we took a different approach as we adopted the metaphor of a

directory system, where items are mapped to directories and both schema and

computed relations are nested directories, as shown in Figure 38. This choice

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 120

allows a natural representation of groups, where each group is represented as a

separate directory. The drawback is the visualization of items that participate in

more than one relation. If an item is related to two different nested items, it will

appear in two “directories”.

Even in a unifocal interface, the amount of items within a single exploration

set can be considerable. Therefore, the designer should weight choices about

presenting the set using scroll and/or pagination controls.

It is also typically desirable to apply some natural ordering on the items.

Although our model describes ranking as an independent exploration operator, it

can also be used in conjunction with other operators. Thus, even when operators

different than ranking are selected, such as keyword refine or grouping, the

interface can also make the composition with a ranking function and send to the

server in order to enforce a natural ranking for the result set. In XPlain we opted

for pagination controls with a limit of twenty items per page and an alphabetical

or numerical ordering of results.

Figure 38 - Visual representation of an exploration set as a nesting of items and relations.

In summary, the interface design issues for the manipulation of exploration

sets and items are:

1. Choosing between unifocal and multifocal view

a. If multifocal: design appropriate focus management controls

for the sets, such as maximization, minimization, restore, and

layout organization controls.

2. Deciding where and how to show relationships between exploration

sets;

3. Designing focus management controls for the items within the set e.g.

pagination, scroll, or a combination of both.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 121

4. Determining the best visualization for items and relations (schema and

computed): graphs, trees, tables, lists, multi-level lists, etc.

5. Establishing a natural order for presenting exploration items and

relations, possibly, adding sorting controls.

We can draw comparisons between state-of-the-art systems addressing

interface and interaction features concerning the manipulation of exploration sets

and items. Table 2 presents a summarized list of design issues and their

implementations among exploration tools. Notice that some tools present more

than one alternative for the same issue. For example, Visor allows the user to shift

between tabular, graph, and list views of the exploration items.

Table 2 - comparison of design choices among exploration tools

Tool/Issue	 Focus	 Items	

View	

Relations	

View	

Sorting	

Controls	

Natural	

Sort	

Focus	

Management	

/facet	 Unifocal List Multi-

level list

No Yes No

gfacet	 Multifocal List List No Yes Pagination

Parallel	

Faceted	

Browser	

Multifocal List List No No No

Rhizomer	 Unifocal List List Yes Yes Pagination

Relation	

Browser	

Unifocal Tabular List No No No

BrowseRDF	 Unifocal List List No Yes No

Sewellis	 Unifocal List Multi-

level list

No Yes Pagination

Visor	 Multifocal Graph,

Tabular,

List

Graph,

Tabular,

List

No Yes Pagination

Liquid	

Query	

Partially

multifocal

Tabular Tabular,

List

Yes Yes Pagination

SeCo	 Partially

multifocal

Tabular,

List

Tabular,

List

Yes Yes Pagination

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 122

7.2.2.Requirement 2: Applying Exploration Operations

The application of exploration operations presents another class of

interface/interaction design issues, which concern both the selection and

activation of an operator, and the definition of its parameters. The functional layer

defines four types of arguments: exploration items, auxiliary functions, relations,

and relation paths. Next, we argue that each argument type may require distinct

interaction models.

To invoke an exploration action the user must assign the values to each

input parameter of the invoked operation. Each assignment is a binding, i.e., a pair

<Parameter, Value> that will be evaluated when an operation is executed. For

example, pivoting requires two bindings: the definition of the input set and the

pivoting relations. For binding definitions, the interaction issues are: defining the

assignment order for parameters and defining the interaction that will support the

binding definition. The latter issue depends on both the argument type and the

operation.

With regards to the order of the assignments, consider the pivoting action as

an example. Some design alternatives are: the user selects the input set, activates

the pivoting operator, and the system shows the relations for selection (e.g.,

interaction in SeCo (BOZZON, A et al., 2013)); Alternatively, when the user

selects the set, the interface could show all relations as selectable elements whose

activation causes a pivoting over the selected relation. For tabular presentations,

the first alternative may be better due to layout organization issues, however, for

graph and list presentations the second option is closer to hypertext browsing,

which may favor Web users. The second option is the solution adopted by the

majority of faceted search tools with pivoting functionality.

Another example is the definition of bindings for the Refine operation,

where the user should select the filtering relation, the comparison operator, and a

value. One option is to simply allow the selection of values, where the relation is

inferred and the comparison operator is always an equality test. Another option is

to allow the selection of the relation, the value, and the filtering predicate, which

may be different than equality comparison e.g., greater than or less than operators.

Therefore, there can be many distinct interaction sequences for the definition of

the bindings for each operation.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 123

The next issue concerns specific interactions for different types of

parameters. Considering the case of the Refine operation where the user must

define bindings for the relation or the relation path, the comparison operator (e.g.

=, <, >), and the restriction value for the relation, which is an exploration item.

With regards to the relation, the interface has to reconcile the selection of relations

and relation paths.

For example, in Open Citations, if we want to refine papers by venue

names, we must bind the relation path :isDocumentContextFor:isHeldBy:name to

the relation parameter, as shown in Figure 39B. One design option is to allow the

user to pivot relation by relation in this path until reaching the next to last relation,

which is the :isHeldBy relation. At this point, the interface can show the possible

relations and values for the holders, which includes the :name relation and the

actual venue names for selection. The computation is, therefore, carried out

relation by relation until the desired path is achieved. Next, a selection of a venue

name will cause the refinement over the path

:isDocumentContextFor:isHeldBy:name. This is the most common interaction for

path refinements found in faceted search interfaces, but considering the size of

paths, the possibility of mistakes, and the amount of refinements required for the

task, this design option can be cumbersome. Another option is to allow the

visualization of relation chains on demand, where the user can explore and select

relation paths without causing a context change (pivoting). XPlain implements

this design option with relation nestings built in runtime, where when a relation :x

is nested with a relation :y then there is relation path :x:y in the dataset. This

design allows the user to browse the nestings in order to find the desired path,

with reasonable performance. Figure 39B shows the nesting of

:isDocumentContextFor, :isHeldBy, and :name relations.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 124

Figure 39 – Xplain’s view for the Refine operation. The user selects relations (A) or relation

paths (B) and restriction values for each filter. Filters can be disjunctive or conjunctive according

to the selected logical operator.

Auxiliary functions, such as the comparison operators, the scoring function,

and the mapping functions can be picked out in the interface from a pre-defined

set. For example, the Refine modal dialogue presents a selection box with all

comparison operators available, as Figure 39A shows. However, since it is very

difficult to define a complete range of functions that covers all problem domains,

the interface can also allow the user to describe the function in some computable

language. Consider a user wishing to convert a set of measures to a different scale.

The functional layer provides the Map function for such tasks, but, the desired

scale converter is not among the available mapping functions. The user could

simply type the formula and the interface creates the binding. Therefore, the

interaction design should not only consider interface selection, but also textual

inputs, with some validation in the case of function definitions, and filterable

selection lists. The same issue also occurs for bindings of exploration items.

XPlain’s interface allows the definition of new auxiliary functions using a

Domain Specific Language (DSL) implemented by the functional layer. We also

choose filterable selection lists for the definition of the filtering values, as shown

in Figure 39B.

Up to now we posed the interaction/interface design issues and possible

solution ideas for the execution of single operations. However, for some recurring

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 125

functional compositions, there can be alternative interaction styles to the

operation-at-a-time approach. An example of such compositions can be found in

the expansion of an exploration item, shown in Figure 38. When a user double

clicks an item in the exploration set, XPlain executes a composition of Refine and

Pivot to respectively select the clicked item and pivot to its set of relations. The

relations are shown as nested items that can also be expanded. This interaction

allows the user to browse the graph of relations of an item in a follow-your-nose

style without causing a context change or the addition of a new exploration set for

each Refine and Pivot executed. Therefore, the designer can explore alternative

interaction and interface designs for combinations of operators that are more

appropriate for a given task context.

Capturing common combinations that would require more appropriate

interaction designs is likely difficult, since the combinations may not be obvious

for some domains and contexts. However, we expect that these combination

patterns should emerge with the continued use of the environment. Since the

patterns are formally described and recorded, they can be mined from the

environment log and analyzed from the perspective of differentiated interface and

interaction models.

Another class of interaction issues concerns the possible sequence of actions

the user can take. In order to discuss this aspect, we can approach the exploration

process as a conversation between the user and the system using the interface

language. A designer can use episodic models to structure the user-system

dialogue independently of the interface controls, such as the Modeling Language

for Interaction as Conversation (MoLIC) model (BARBOSA; GRECO, 2003) or

the “Conversational Roles Model” (COR) used in (STEIN; MAIER, 2008). Here

we select MoLIC to exemplify how this can be accomplished. MoLIC models the

user-system interaction as a dialogue between the user and the system, considered

as the designer’s deputy. The interaction dialogue is organized in Dialogue

Scenes, which represents a conversation about a certain topic. There are also

Transition Utterances, which represent the turn taking between the interlocutors

in the conversation. Figure 40 shows a MoLIC diagram for buying tickets for a

theater, where the tag “d:” identifies a designer utterance, the tag “u:” identifies a

user utterance, and the tag “d+u” identifies a conversation between designer’s

deputy and users about some topic.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 126

Figure 40 - Example of MoLIC diagram for the task of buying a ticket

In the scenario of Figure 40, there are three interaction scenes, represented

as white boxes. The black boxes stand for system processing. Each scene is

described both by a title and by the information required for the dialogue. For

example, in the “Choose Seat” scene, the designer’s deputy presents a set of

available seats, identified by their respective positions, to the user (set

Seat{position}). The user selects the seats, which causes a transition to the “By

Tickets” scene. In this scene the designer’s deputy and the user dialogue in order

to define the payment option and the user also informs the credit card information.

Next, the user asks the designer’s deputy to confirm the payment. In case of

problems with the credit card, the designer’s deputy emits an error handling

utterance and the dialogue returns to the “By Tickets” scene. If the credit card

information is valid, the designer’s deputy and the user go to the confirmation

scene.

The diagram of Figure 40 describes the relationships between interaction

scenes along with the information required for the conversation, but the details of

the conversation within the scenes are abstracted. Each scene can be further

detailed in a sequence of utterances when necessary. For a detailed discussion of

the MoLIC language, refer to (BARBOSA; GRECO, 2003).

In the context of exploration environments, the interactions required for the

defining bindings and executing operations/compositions can be modeled in one

or many interaction scenes. Consider again the case of combinations of Refine and

Pivot, which describes the majority of faceted search tools. There are two

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 127

dialogue structures that are most commonly found. Figure 41 A and B present

these structures.

Figure 41 - (A) Pivot and Refine operations in a single scene; (B) Pivot operation defined in

a different interaction scene.

Figure 41 A and B present two alternative dialogue structures for

combinations of Pivot and Refine operations in faceted search tools. The boxes

with gray backgrounds represent ubiquitous access, which are always available to

the user. In Figure 41 A, the user starts the exploration using the ubiquitous access

and the dialogue goes to the Refine scene, from which the user can either apply a

restriction or pivot to a related set. The conversation in this scene involves a set of

relations and their respective values, where the tag “d+u” informs that both

interlocutors interact with the tagged information. When the user asks the

designer’s deputy to refine the set she/he informs the relation and the desired

value for the relation – “…Value X for Relation Y”. The pivoting is executed in

similar way but the user only has to inform the relation. Either pivoting or

refinement utterances lead to the Refine scene for next actions. Alternatively, the

user can define the binding for the pivoting relation in a scene apart, as Figure

41B shows.

In the design option of Figure 41B, in order to pivot, the user asks the

designer’s deputy to present the possible pivoting relations, which causes a

transition to the “Pivot” scene. Within this scene, the user dialogues with the

designer’s deputy about the relations until she/he finds the desired one. Finally,

she/he asks to pivot through the selected relation, which causes a transition back

to the “Refine” scene. Such design option may favor schema learning since

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 128

presenting relations in a separate scene can leverage the presentation of additional

information, such as descriptions and information about their ranges and domains,

avoiding information overload. The design option of Figure 41A can be found in

Parallax, Rhizomer, /facet, Sewelis, and others. The design option of Figure 41B

can be found in Liquid Query, SeCo, and gfacet.

In XPlain, the dialogue structure was modeled with the goal of being a full

expressive environment, according to our framework of operations, which led to a

richer dialogue structure. Figure 42 presents XPlain dialogue structure for Refine

and Pivot.

Figure 42 - XPlain interaction dialogue for combinations of Pivot and Refine

In the “Refine” scene, the user can, not only define values for relations, but

also logical connectors and comparison operators. In order to define a restriction,

the user asks the designer’s deputy to present the relations that apply to the items

of the set under refinement, which causes a transition to the “Relation Path” scene.

Within this scene, the user can both ask for nested relations (relations of the

related items) and get a preview of the related items. When the desired relation

and the filtering value have been found, the user asks for the designer’s deputy to

add the restriction to the set of restrictions. When the user feels satisfied with the

restrictions, she/he asks the designer’s deputy to execute the refinement, which

leads the dialogue to the “Result Set Analysis” scene. The Pivot definition

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 129

depends only on the selection of a relation path, which is defined likewise the

Refine operation.

The main goal of the presented conversational models is to describe the

relationships between the operations from the interaction aspect. Although the

models abstract previously described concerns, such as the order for binding

definitions and specific dialogues for different types of arguments, they can be

accurately described in the MoLIC scene-detailing phase, where the conversations

within each scene are presented in detail.

The interaction/interface design issues presented for the specification of

exploration operations are:

1. The ordering for the specification of bindings for each operation.

2. The interaction required for specifying bindings for each parameter,

depending on the parameter type and the operation. Some possibilities

discussed were: interface selection, textual inputs, filterable selects,

computable specification for auxiliary functions, and navigation

through relation paths for relation parameters.

3. The possibility of modeling differentiated interactions for specific

combinations of operators, such as for combinations of Refine and

Pivot, and for compositions of Refine, Intersect, and Unite that can be

modeled as a faceted search interaction.

We emphasize that the goal here is not to determine which design option is

better. There are many variables involved and proper user studies should be

carried out for a final answer. We demonstrate, though, how the proposed

separation of concerns approach, based on a formal functional layer, can leverage

the definition of the scope of the interaction design space, and also leverage

comparisons independently of the functional aspects.

7.2.3.Requirement 3: Exploration trail management and browsing

It has been recognized that exploration tools should allow the user to

visualize the history of the exploration actions (WHITE; ROTH, 2009). The

functional layer defines relationships between result sets, where the result set of a

previous action can serve as the input for the next. Hence, the design issues at this

point are how to present the exploration trail and how to allow its manipulation.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 130

Some interface options for visualizing the exploration trail are lines, trees or

graphs. For example, Figure 43 presents line and tree options.

Figure 43 - Linear implementations of Parallax (A) (HUYNH; KARGER, 2009) and /facet (B)

(HILDEBRAND; OSSENBRUGGEN; HARDMAN, 2006), and tree view of Sewelis (C)

(FERRÉ; HERMANN, 2012)

Figure 43A presents a linear trail for pivoting actions in Parallax, Figure

43B presents a linear trail of refinement constraints in /facet, and Figure 43C

presents a trail as a tree view implemented in Sewelis, which shows both pivoting

actions and refinement constraints in the same view.

Linear representations, although simple, lack semantics for the visualization

of branching actions, such as the parallel constraints in Parallel Faceted Browser.

For these cases, tree and graph representations are more appropriate, since the

exploration trail can become very complex. Tree representations also have the

advantage of allowing the user to collapse or expand the branches, which may be

a good option considering the “details-on-demand” rule of the information

seeking mantra (SHNEIDERMAN, 1996). However, since the functional layer

presents operations that receive two sets as input (e.g., unite, intersect, and diff),

tree representations present a drawback because the result set of these operations

must be repeated in two branches. In the tree representation is not easy to perceive

these join nodes, i.e., sets resulting from combinations of two input sets. For

example, the variable “?X” in Figure 43C is a way to refer to a specific result set

in different points of the task and allow such operations in Sewelis. The “not ?X”

restriction in Figure 43C is a join node between the branches.

In XPlain we choose a graph representations in order to enhance the

perception of join nodes. For the following examples, consider the case of a user

reviewing a paper. One revision strategy is to find relevant papers of the same

area of the reviewing paper that were not referenced. Figure 44 shows an

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 131

exploration trail example for the case study of “finding relevant and not cited

papers”. The join node is the set difference operation.

Figure 44 - Graph representation of the functional composition for the task “finding

relevant and not cited papers”.

The graph in Figure 44 is a visual representation of the sequence of

operations applied along the exploration process, where, each node is a result set

and the arrows represent the operations applied. The “START” node represents

the whole dataset and the highlighted node “Relevant and not Cited Papers” is the

result of the difference between the citations of the paper being reviewed and the

top 20 most relevant papers of the Semantic Web area, according to the number of

incoming citations.

The graph in Figure 44 is more than just a visual representation of the

exploration trail - it can also be used as a first-class object, where the user can

parameterize the operations and reevaluate dependent branches. For example, the

user could replace the set “Semantic Web Papers” in the exploration trail in Figure

44 by a set of papers in another research field and reevaluate the entire branch,

thus reusing an exploration trail for different papers of distinct research fields. In

other words, it is possible to reapply strategy used to solve a task as represented

by the exploration trail.

Once we recognize that an exploration is, in the end, also a function, the

interaction issues for allowing the reevaluation of a functional composition

become quite similar to the issues concerning the definition of bindings for the

operations presented in the previous section. The additional step is to consider the

union of bindings from all operations in the composition as bindings of the

exploration. Therefore, the reevaluation of the functional composition requires the

redefinition of one or many bindings of some operations. The interface could

show the bindings and ask which ones must be replaced for the reevaluation. The

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 132

same design decisions adopted for the definition of bindings for each argument

type also apply for the redefinition of bindings of functional compositions14.

The interaction/interface design issues for exploration trail management and

browsing are:

1. The visual encoding for the exploration trail, which includes both

exploration sets and their dependencies;

2. Allow the user to browse the exploration sets from the nodes of the

exploration trail;

3. Allow the user to access the bindings for specific operations/functional

compositions;

4. Define the interaction for binding redefinitions and reevaluations from

the exploration trail.

In summary, we have shown how separating the concerns of

interaction/interface design from the operations of the functional layer, together

with use of the functional layer as a guide for what the interface should provide

for specific task contexts guides the discussions of interaction possibilities. Since

the main concern of this chapter is to discuss the design space of exploration

environments, in the light of the separation of concerns approach, the XPlain

interface is one possible interface and interaction model for the functional layer

that, even though it presents full expressivity, it may not be efficient for all

exploration contexts and users.

14 This feature is currently under development

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

