
 44

4
Functional Layer of Exploration Framework

The goal of this chapter is to formally describe exploration processes in

terms of an expressive set of operations. The formalization is, therefore, the basis

for further discussions on exploration strategies, expressivity evaluations, and

interface/interaction issues, as established in the framework of reference presented

in chapter 3. First, we present our generic data model, which we use for defining

the operations. Next, we describe the subjects involved in the exploration process.

Finally, we describe each exploration action as an operation applied to the items

of the data model and the exploration process as a composition of these

operations.

4.1.Preliminary notations

This section describes some basic notation that we use extensively along the

chapter.

Sets can be denoted by both the enumeration of its elements, e.g. S = {e1, e2,

…, en}, and by specifying a property P of its members:

S={e|P(e)}

The properties are described in terms of a set of logical operators:

→ stands for “implies”

↔ stands for “if and only if”

∧ stands for “and”

∨ stands for “or”

¬ stands for “not”

∃ stands for “there exists”

∀ stands for “for all”

≡ stands for “equivalent of”

• Empty Set: we use the symbol ∅ for denoting empty sets.

• Ordered Pairs: we delimit ordered pairs using “<” “>”, e.g. <a1,a2>, <i1,i2>.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 45

• Cartesian Products: in order to specify graphs, i.e., sets of ordered pairs, we

use the Cartesian product symbol “×” between the sets. As an example: let A=

{i1, i2} and B={a1, a2}. The Cartesian product !×! is:

!×! = < !1,!1 >,< !1,!2 >,< !2,!1 >,< !2,!2 >

• Multiple Cartesian Products: In order to represent n Cartesian products of a

set we use exponents:

!×!×! = !!

• Binary Relations: let A and B be any two sets, we define a binary relation

Φ ⊆ A×B as a subset of their Cartesian product. We also denote an element

< !, ! >∈ Φ as !Φ!.
• Cardinality: we denote |S| as the number of members of a set S:

o |{i1, i2}| = 2

o |{i1, i2, i3}| = 3

• Indexing sets: sometimes it is necessary to refer to specific items in a

partially ordered set. We use the following notation in these cases. Let S = {i1,

i2, i3} be a partially ordered set:

o S[1] = i1

o S[2] = i2

o S[3] = i3

• Set operations: let A and B be any two sets, we establish the following

operations over sets:

o Union:

! ∪ ! = {!|! ∈ ! ∨ ! ∈ !}
o Intersection:

! ∩ ! = {!|! ∈ ! ∧ ! ∈ !}
o Difference:

! − ! = {!|! ∈ ! ∧¬! ∈ !}

4.2.The Exploration Process

The exploration process is normally approached as a set of interdependent

states (FERRÉ; HERMANN, 2012; TZITZIKAS; MANOLIS, 2016), where each

state consists of two components: Intention and Extension. The Intention is a

description in some language of the desired set of items in the state. The

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 46

Extension is the actual set of items corresponding to the intention. As an example,

consider a keyword search for items matching the keywords “Semantic Web”.

The intention is the keyword expression and the extension is the set of matched

items. In this work, we define an exploration process Po = <St, Dep> as a set of

exploration states St and a state dependency relation !"#: !"×!", such that, each

pair of states < !1, !2 >∈ !"# represents a relation between a state and its

subsequent state. The application of an operation to s1 leads the explorer to the

state s2. Each state !" ∈ !" is an invocation of an exploration operator, which is

defined as the set of parameter attributions for the execution of the operator. A

formal description of the operation invocations can be found in Definition 15.

Since each state is generated by the use of an exploration operation, we can

also describe the exploration process as a functional composition of the

operations. Let Opr = {op1, op2, …, opn} be a set of exploration operations. The

exploration process Po is described by:

Po = opn(opn-1(…(op1(args1), args2), argsn-1), argsn), where args is a list of

arguments specific for each operation

4.3.Data Model

There are many data models described in the literature, such as the relational

model, RDF, and a variety of NoSQL models. Although the validity of these

models has been extensively proven for their respective domains of problems, we

see the exploration process as not attached to the specificities of a single model; it

can be described in terms of a generic data model that can be further mapped to

each one of these. Therefore, we devised a simplified version of the Entity-

Relationship model (CHEN, 1976), which suffices for our purposes.

Independently of how the data is represented, the user always manipulates

items and relationships among them. Items can be organized in groups, such as

papers by author or papers by venue. Groups can also be formed along more than

one dimension, such as papers by author by publication year. Therefore, the

design solution adopted was to model items and relations as nested relations. As

an example, “papers by author by publication year” is a three-level nesting,

having the papers grouped by year inside a group for each author. Nesting

relations can be represented as trees, as Figure 10 shows. We call “exploration

set” any nested relation generated by the execution of an exploration action.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 47

Figure 10 - Nesting of papers by author by publication year.

This data model is very similar to the one used in NoSQL document-

oriented databases (CATTELL, 2011), where the nestings of an exploration set

can be mapped to collections and nested arrays.

4.3.1.Dataset, Items, and Relations

Definition 1: Dataset

A dataset D = <I, R> is described in terms of a set of exploration items I

and a set of trees R, where each tree t ∈ ! represents a set of relationships between

exploration items. A tree is defined as an ordered pair T= < !,≼!>, where ! ⊆ !
is a set of exploration items and ≼! ⊆ !×! is a partial-order relation that is

reflexive, transitive, and antisymetric.

The binary relation ≼! defines the child-parent relationships of the tree and

is also well founded, i.e., there is a least item ! ∈ ! that has no parent, which is the

root of the tree. More formally, the properties of the relation trees are the

following:

• Reflexive: ∀! ∈ ! ! ≼! !
• Antisymetric: ∀!, ! ∈ ! (! ≼! ! ∧ ! ≼! !) → ! = !
• Transitive: ∀!, !, ! ∈ ! (! ≼! ! ∧ ! ≼! !) → ! ≼! !

• Well-founded: ∃! ∈ ! ∀! ∈ ! < !, ! >∉≼!

Since trees are binary relations, we denote trees as a set of relationships in

the form T={<item1, item2>, …, <itemn-1, itemn>}, e.g., T={<root, p2>, <p2, a1>,

<p2, a2>, <root, p3>, <p3, a2>,<p3, a3>}. We can also shorten this notation by

representing pairs having the first element in common in the following way:

T={<root,{<p2, {a1, a2}>, <p3, {a2, a3}>}>}

Definition 2: Parent and Children of items

Let ! =< !,≼!> be a tree. Let <itemi, itemj> be an edge in ≼!, the parent

of the itemj is denoted as p(itemj) = itemi.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 48

The children of an item c(itemi) is the set items having itemi as parent:

! !"#$! = {!"#$!| < !"#$! , !"#$! >∈≼!}
 Let S={<ids, <a1, {<p1, {f1, f2}>}>>}. Consider the following examples:

p(f1) = p1

p(p1) = a1

p(a1) = root(s) = ids

p(ids)= null

c(f1) = ∅

c(p1) = {f1, f2}

c(a1) = {p1}

Definition 3: Levels of a tree

Let ! =< !,≼!> be a relation tree and ! ∈ ! be an exploration item. The

predecessors of i is defined as:

!"#$! = {!|! ≼! !}
We define the height of i as the cardinality of the set of its predecessors:

ℎ ! = |!"#$(!)|
The nth level of a tree is defined by the set of items having the height n:

!! ! = {! ∈ !|ℎ ! = !}

The set of leaves of T is defined as the set of all elements ! ∈ ! that has no

child items:

!" ! = {!|! ! = ∅}
Definition 4: Relations

Each relation ! ∈ !, in the dataset <I, R>, is represented as a tree having the

relation identifier as its root. We refer to relation sets by specifying their ID

preceded by “:”. As an example, Figure 11 shows the relation between

publications and their respective authors.

Figure 11 - Relation tree representing publication-author relationships

Using the tree notation, the author relation can also be denoted as follows:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 49

Author ={<:Author, {<p2, {a1, a2}>, <p3, {a2, a3}>}>}

For conciseness purposes, we sometimes omit the root and denote relations

in the following way:

:Author = {<p2, {a1, a2}>, <p3, {a2, a3}>}

Definition 5: Domain and Image of Relations

Each relation !" ∈ ! has two properties: domain(Rt) and image(Rt).

domain(Rt) is the set of members of the domain of Rt, i.e., the set of all items that

are children of the root item:

!"#$%& !" = ! ! ∈ !(!""#(!"))}
The image(Rt) property is the set of all second items of the relationships

having the domain items in the first position:

!"#$% !" = ! ! ∈ !"#!"# !" ∧< !, ! >∈≼!"}

As an example, let :Author = {<p1, {a1, a2}>, <p2, {a2, a3}>} be a

relation between publications and authors. The domain and image sets of :Author

are:

domain(:Author) = {p1, p2}

image(:Author) = {a1, a2, a3}

The restricted image of a relation Rt on a domain item domItem is composed

of all items of the image of Rt that has domItem as its domain:

!"#$% !",!"#$%&# = ! < !"#$%&#, ! >∈≼!"}

Consider the following restricted image example over the :Author relation:

image(:Author, p1) = {a1, a2}

Similarly, the restricted domain of a relation is defined as the set of all items

related to a specific image item in Rt:

!"#$%& !", !"#$%&" = ! < !, !"#$%&" >∈≼!"}

Consider the following restricted domain example:

domain(:Author, a2) = {p1, p2}

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 50

In order to keep the notation concise, we denote restricted images and

domains using “[]” as follows:

image(:Author, p1) ≡ :Author[p1];

domain(:Author, a2) ≡ :Author-1[a2]

Definition 6: Join

Two relations can be joined in the following way:

!"#$% !1,!2 = < !, ! > < !, ! >∈≼!!∧ ∃! < !, ! >∈≼!!

As an example, let R1 = {<p1, a1>, <p2, a2>} and R2 = {<a1, f1>, <a2,

f2>}, the join between these two relations is defined by:

!"#$% !1,!2 = {< !1, !1 >,< !2, !2 >}

In order to join more than two relations, we make join compositions.

Suppose a third relation R3 = {<f1, i1>, <f2, i2>}. The join between R1, R2, and

R3 is:

!"#$%(!"#$% !1,!2 ,!3) = {< !1, !1 >,< !2, !2 >}

Definition 7: Relation Path

A relation path R1,…, Rn is an ordered set of relations with non-empty join:

!"#$%(… (!"#$% !!,!! …),!!) ≠ ∅

We denote relation paths by concatenating their identifiers. For example,

suppose a relation :Author = {<p1, a1>, <p2, a2>} and a relation :Affiliation =

{<a1, f1>, <a2, f2>}. We denote the path formed by these two relations as:

:Author:Affiliation

The same functions domain and image (Definition 5) can also be applied to

relation paths:

:Author:Affiliation-1[f1] ≡ domain(:Author:Affiliation, f1) = {p1}

:Author:Affiliation[p1] ≡ image(:Author:Affiliation, p1) = {f1}

4.3.2.Exploration Sets and Exploration Items

Definition 8: Exploration Set

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 51

An exploration set is a tree ! =< !,≼!> generated by the application of an

exploration operation to a previous tree, where the starting point is always the

dataset. Since exploration sets are relation trees, the domain, image, restricted

domain, and restricted image functions (Definition 5) also applies to them.

As an example of an exploration set, consider the result set of a grouping

operation carried out over the following sets and relations.

• A set of publications T = {<Pub, p1>, <Pub, p2>, <Pub, p3>,

<Pub, p4>}, identified as “Pub”;

• A set of authors A = {<ath, a1>, <ath, a2>}, idenfied as “ath”.

• A schema relation between publications and authors:

:Author = {<p1, a1>, <p2, {a1, a2}>, <p3, {a2, a3}>,<p4, a3>}

The application of a grouping function to the set T will result in the

following exploration set:

{<rsid, {<a1, {p1, p2}>, <a2, {p2, p3, p4}>}>} ← Group(T,:Author)

In the example above, “rsid” stands for the exploration set identifier.

Definition 9: Path Sets

A path set of an exploration set ! = < !,≼!> is the set of predecessor sets

of the leaves of S:

!"#ℎ! ! = {!!"# ! ∪ {!}}
!∈!"(!)

As an example, consider the set S = {<ids, <a1, {<p1, {f1, f2}>}>>}, the

paths of S are:

paths(S) = {{ids, a1, p1, f1}, {ids, a1, p1, f2}}

Each path in paths(S) is a sequence in the form {!!}!!!! ! ordered by the

relation ≼!, where, h(l) is the height of the leaf item l, which is the greatest

element of the path.

Definition 10: heads and tails of branches

Let p = {idp, a1, p1, f1} be a path of a set S, we define the head of p as the

item directly connected to the root of the tree: head(p) = a1. The tail of p is the

item that has no child: tail(p) = f1.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 52

Definition 11: Root Replacement

Let !ℎ be a path set (Definition 9). The root replacement function

r(Ph,nroot) = Ph’ maps a path set Ph onto another path set Ph’ having the root

element (least element) replaced by nroot. This function is used for copying a path

set from one set to another. Consider the following definition:

! !ℎ,!"##$ = < !"#$! , !"#$! > ∈ !ℎ ∀< !! , !"#$! >∈ !ℎ (!! = !""# !ℎ
→ !"#$! = !"##$) ∧ (!! ≠ !""# ! → !"#$! = !!)

As an example, let Ph ={ids, f1, f2} be a path set. The copy of the path Ph to

the root rt is defined as:

r(Ph, rt) = {rt, f1, f2}, where all relations with ids were replaced by rt

preserving the ordering of the path set.

4.4.A Model of Exploration Operations

Here we describe the set of operations comprehensive enough to at least

describe the state-of-the-art exploration tools currently proposed in the literature,

with regards to data manipulation. First, we present the notation used for functions

in our framework. Next, we describe each operation in terms of a general

description, a signature, a formal description of their results, and usage examples.

4.4.1.Notational Convention for Functions

Although the framework is concerned with exploration functions, i.e.

functions that cause state transitions in the exploration process, some auxiliary

and domain specific functions can be used as arguments of exploration functions.

We denote auxiliary functions using the following rule:

functionName(arg1, arg2, …, argn)

Exploration functions are distinguished from auxiliary functions by having

the first character of the name capitalized and having the input state identifier

specified before the function name as follows:

StateId.ExplorationFunctionName(arg1, arg2, …, argn)

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 53

Consider the following examples. Let Pb = {<pb, {p1, p2, p3}>} be an

exploration set of publications and :Author = {<p1, a1>, <p2, a1>, <p3, a2>} be

the relation between the publications and their authors. The refinement operation

of publications having a1 as author is as follows:

Rs ← Pb.Refine(equals(:Author[%item], a1))

In this notation, Refine is the exploration function applied to the set Pb.

Refine receives the auxiliary predicate function equals as argument that will be

evaluated for all publications in Pb. The predicate equals receives the restricted

image of :Author on each publication of Pb, represented as the parameter %item.

The application of the operation is preceded by the attribution symbol “←” and

the identifier of the result set “Rs”. For conciseness purposes we omit the %item

parameter in some cases:

equals(:Author[%item], a1) ≡ equals(:Author, a1)

4.4.2.Extension-Oriented Operations

Extension-oriented operations are mappings between exploration sets. The

operations are defined as follows:

Unite

Description: the union operation receives two exploration sets and unites

their path sets.

Signature: Unite(A, B): R × R → R

Formal definition: let rs be the root item of the result set. The union

operation is defined as:

!"#$% !,! = !(!"#ℎ! ! , !") ∪ !(!"#ℎ! ! , !")

The union operation is defined as the union between the paths of A and B,

mapped to a common root item rs. Consider the following examples of the Unite

operation:

Example 1: let A = {<sa, {p1, p2, p3}>} and B = {<sb, {p3, p4, p5}>} be

two exploration sets containing hypothetical publications. The union

between A and B is:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 54

{<rs,{ p1, p2, p3, p4, p5}>} ← Unite(A, B)

Example 2: let A = {<sa, {<a1, {p1, p2, p3}>, <a2, {p3, p4}>}>} and B

= {<sb, {<a2, {p5, p6}>, <a3, {p8, p9}>}>} be two sets of publications

grouped by author. The union between A and B is:

{<rs, {<a1, {p1, p2, p3}>, <a2, {p3, p4, p5, p6 }>, <a3, {p8, p9}>}>}

←Unite(A,B)

Intersect

Description: the intersect operation computes the intersection between the

paths of the input sets.

Signature: Intersect(A, B): R × R → R

Formal Definition: let A and B be two input sets. Let rs be the root of the

result set. The intersection between A and B is defined as:

!"#$%&$'# !,! = !(!"#ℎ! ! , !") ∩ !(paths(B),rs)

The set of paths of the result set is the intersection between the paths of A

and B with the root replaced by the rs item. Consider the following examples:

Example 1: let A = {<sa, {p1, p2, p3}>} and B ={<sb, {p2, p3, p5}>}

be two sets of hypothetical publications. The intersection between A

and B is:

{<rs, {p2, p3}>} ← Intersect (A, B)

Example 2: Intersecting two sets of publications grouped by author:

let A = {<sa, {<a1, {p1, p2, p3}>, <a2, {p3, p4}>}>} and B = {<sb,

{<a1, {p2, p3, p5}>, <a2, {p3, p5, p6}>,<a3, p8>}>} be two grouped

sets:

{<rs, {<a1, {p2, p3}>, <a2, p3>}>} ← Intersect (A, B)

Diff

Description: the difference function computes the difference between

the path sets of the input sets.

Signature: Diff(A, B): R × R → R

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 55

Formal Description: let rs be the root item of the result set. The

difference between A and B is defined as follows:

!"## !,! = ! !"#ℎ! ! , !" − !(!"#ℎ! ! , !")

The paths in the result set are all paths in A that do not appear in B under the

same root rs. Consider the following examples:

Example 1: let A = {<sa, {p1, p2, p3}>} and B = {<sb, {p2, p3, p5}>}

be two publication sets. The difference between A and B is:

{<rs, p1>} ← Diff(A, B)

Example2: let A = {<sa,{<a1, {p1, p2, p3}>, <a2, {p3, p4}>}>} and

B = {<sb, {<a1, {p2, p3, p5}>, <a2, {p3, p5, p6}>, <a3, p8>}>} be

two sets of publications grouped by author. The difference between A

and B is:

{<rs,{<a1, p1>,<a2, p4>}>} ← Diff(A, B)

Pivot

Description: maps the leaf items of the input exploration set onto

another set of related items.

Signature: Pivot(A, Relations): R × Rn → R, where Rn is the set of all

relation paths of size n.

Formal Description: let rs be the root item of the result set of a pivot

operation. We define Pivot as follows:

!"#$%(!,!"#$%&'()) = < !", !"#$%&" >
!"#$%&" ∈ !"#$%&'(![!"(!)]

The result set is, therefore, the set of all relation images rooted by rs. Let T

= {<st, {p1, p2, p3}>} be a set of scientific publications, A = {<sa, {a1, a2, a3}>}

be a set of authors, and F = {<sf, {f1, f2, f3}>} be a set of authors’ affiliations. Let

:Author = {<p1, a1>, <p2, {a1, a2}>, <p3, a3>} be a relation between

publications and authors. Let :Affiliation = {<a1, f1>, <a2, f2>, <a3, f3>} be a

relation between authors and affiliations. Consider the following examples:

Example 1: pivoting from publications to authors:

{<rs, {a1, a2, a3}>} ← T.Pivot(:Author)

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 56

Example 2: pivoting from publications to authors’ affiliations through

a property path:

{<rs, {f1, f2, f3}>} ← T.Pivot(:Author:Affiliation)

Refine

Description: filters an exploration set using filtering functions (Definition

12) and path patterns (Definition 13) defined by the user.

Definition 12: Filtering Function

A filter F: I→ {true, false} is a predicate that maps an exploration item onto

a Boolean value that indicates whether the item must be filtered or not. For the

following definitions, let C = {filter1, filter2,…, filtern} be the set of filtering

functions available for explorations.

Definition 13: Path Pattern

Let ! =< !,≼!> be an exploration set. A path pattern T = <F, E> is a set

of filters ! ⊆ ! and a set of edges between filters, such that, for each < !, ! >∈ !

there is a mapping < ! ! ,! ! >∈≼!. Figure 12 shows an exploration set and

an example of a path pattern of filters. The mapping ! !"#$%& :! → ! matches the

nodes in the path having the same height of the nodes in E:

! = < !, ! > ! ∈ ! ∧ ! ∈ ! ∧ ℎ ! = ℎ(!)}

Let True be a special filter that always evaluates to true. The root of the path

pattern is always True, therefore, for every pattern, <True, v> is an edge in E and

there is a mapping <True, root(S)> ∈ !.

Figure 12 - An exploration set and a path pattern containing the filters for each level.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 57

The path pattern of Figure 12 matches each level of the set, where authors

are filtered by the :Affiliation relation, the years are filtered by the predicate

greaterThan(%item, 2015), and the papers are filtered by venue. This definition is

an adaptation of the graph patterns presented in (AGGARWAL; WANG, 2010,

ch. 3). Having defined the structure of the path patterns, we can now define the

Refine operation:

Signature: Refine(A, PathPattern): R×(C×C) → R, where (C×C)

defines a binary relation of filters, which represents a path pattern.

Formal Definition: the refine operation is defined as follows:

!"#$%"(!,!"#ℎ!"##$%&) = !"#ℎ ∈ !"#ℎ!(!) ∀< !1, !2 >∈ !"#ℎ!"##$%&
∃< ! !1 ,! !2 >∈ !"#ℎ ∧ !1 ! !1 ∧ !2 ! !2 }

The definition above filters every path in which, for all pairs of filters

<f1,f2> in the PathPattern, there is a matching edge in the path and the filters f1

and f2 hold for the matched nodes.

The expressivity of the refine operation is strongly related to the filtering

functions and compositions allowed by the tool. The following functions are

usually found in exploration tools:

• equals(item, value2): I×I→{true,false}: tests the equality of an

exploration item with a specific value;

• equals(item, Relation, value): I×R×I→{true,false}: tests if a related

value of an exploration item, defined by relation, is equal to value;

• matchAll(item, keywordPattern): I×Ln→{true,false}: tests if an

exploration item matches all keywords in a keyword pattern. Keyword

patterns can be represented as a n-tuple of literals in a set L;

• matchOne(item, keywordPattern): I×Ln→{true,false} tests if an

exploration item matches at least one of the keywords in a keyword

pattern;

• not(f): {true,false} →{true,false} negates another filtering function.

Examples:

Let T = {<st, {p1, p2, p3}>} be set of scientific publications, A = {<sa, {a1,

a2, a3}>}, and F = {<sf, {f1, f2, f3}>} be a set of authors’ affiliations. Let :Author

= {<p1, a1>, <p2, a1>, <p2, a2>, <p3, a3>} be a relation between publications

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 58

and authors. Let :Affiliation = {<a1, f1>, <a2, f2>, <a3, f3>} be a relation

between authors and affiliations. Consider the following examples for Refine:

Example 1: find papers whose author is a1

{<rs, {p1, p2}>} ← T.Refine(<True, equals(:Author, a1)>)

Example 2: find papers whose authors are a1 and a2:

{<rs, p1>} ← Intersect(
T.Refine(<True, equals(:Author, a1)>),
T.Refine(<True, equals(:Author, a2)>)

)

Example 3: find papers whose authors are a1 or a3:

{<rs, {p1 , p3}>} ← Unite(
T.Refine(<True, equals(:Author, a1)>),
T.Refine(<True, equals(:Author, a3)>)

)

Example 4: find papers whose authors’ affiliations are equals to f2 or

f3:

{<rs, {p2 , p3}>} ← Unite(

T.Refine(<True, equals(:Author:Affiliation, f2)>),

T.Refine(<True, equals(:Author:Affiliation, f3)>)

)

Example 5: refining sets with more than two levels: let S = {<ss,

{<p1, a1>, <p2, {a1, a2}>, <p3, a3>}>} be a relation between papers

and authors. The refinement is expressed as follows:

{<rs, {<p1, a1>,<p2, a1>}>} ← S.Refine(<True,True,equals(a1)>)

Example 6: refining by parent: it is possible to filter items by the

parent items using the p(item) function (Definition 17):

{<rs,{<p1, a1>,<p2, {a1, a2}>}>} ← Unite(

S.Refine(<True, True, equals(p(%item), p1)>),

S.Refine(<True, True, equals(p(%item), p2)>)

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 59

)

In order to simplify the notation of path patterns, for the remainder of the

chapter we define the patterns as pairs specifying the position and the filter to be

applied at this position. We assume that the remaining positions contain the True

filter. Therefore, the filter of the Example 6 can be summarized as

<3,equals(p(%item), p2)>. In case of filters applied only to the last level, we omit

the position. Therefore, for Example 6 the following equivalence holds:

<True, True, equals(p(%item), p1)> ≡ <3,equals(p(%item), p2) ≡

equals(p(%item), p2)

Group

Description: groups an exploration set based on a grouping function,

which defines the group of each item. The Group operation creates

nestings in the result set.

Definition 14: grouping function

The grouping relation gR: I × I is a relation between an item of the dataset

and its grouping item. The rationale in formalizing gR as a relation, and not a

function, is to allow items to be mapped to more than one group when necessary.

Next, we define the grouping operation:

Signature: Group(A, gR): R × Gf → R, where Gf is the set of all

grouping relations available in the exploration environment.

Formal Definition: let rs be the root item of the result set. The Group

operation is defined as follows:

!"#$%(!,!") = !(!"#ℎ ∪
!∈!" !"#$!"#ℎ!"#!∈!"#!! !

 < ! !"#$!"#ℎ , ! >,< !, !"#$!"#ℎ >

 −< ! !"#$!"#ℎ , !"#$!"#ℎ >, !")

In the formal definition, the grouping item ! ∈ !"[!"#$(!"#ℎ)] adds another

level to the input set tree, where the parent of the tail is related to the item i and i

is related to the tail item of the path. However, the tail item will have two parents

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 60

after this operation, this breaks the condition of a tree. For this reason, we remove

the relation between the tail and its previous parent in the last part of equation.

Examples:

Let T={<st, {p1, p2, p3, p4}>} be set of scientific publications,

A={<sa,{a1,a2}>}, and F={<sf, {f1,f2,f3}>} be a set of authors’ affiliations. Let

:Author={<p1,a1>,<p2,a1>,<p3,a2>,<p2,a2>,<p3,a3>,<p4,a3>} be a relation

between publications and authors. Let :Affiliation={<a1,f1>,<a2,f1> <a3,f2>}

be a relation between authors and affiliations.

Example 1: grouping T by author:

{<rs,{<a1,{p1,p2}>,<a2,{p2,p3}>,<a3,{p3,p4}>}>}←

T.Group(:Author)

Example 2: grouping T by property path :Author:Affiliation:

{<rs,{<f1,{p1,p2 p3}>,<f2,{p3,p4}>}>}

←T.GroupBy(:Author:Affiliation)

Example 3: Grouping a grouped set:

{<rs,{<f1,{<a1,{p1,p2}>,<a2,p3>}>,<f2,<a3,{p3,p4}>>}>}

←T.GroupBy(:Author).GroupBy(:Affiliation)
Example 4: grouping by a computed relation: let

:Title={<p1,t1>,<p2,t2>,<p3,t3>,<p4,t4>,<p5,t5>} be a relation

between publications and their respective titles. Let glv(p):T→T be a

function that maps publications to the publications that has the most

similar title using the Levenschtein string similarity method. Grouping

publications by title similarity is represented as:

{<rs,{<p2, {p1, p2, p4}>,<p3, {p3, p5}>}>}← T.GroupBy{|p| glv(%item)},

where the grouping element (domain) is the publication whose title distance

is closest among all grouped publications (centroid).

Rank

Description: the Rank operation ranks the paths of the input set given

a score function applied to the paths’ items.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 61

Signature: Rank(A, level, scoreFunction): R×N×Sf→R×R, where

level is an integer indicating the level containing the items to be

scored, and Sf is the set of score functions available.

Formal description: the result set has the same items and structure of

the input set, respecting the ordering relation chosen for ranking. Let rs

be the root item of the result set, and scr(item): I→N be a score

function available in the environment. Let lv be the level of the tree

containing the items to be scored. The ranking is given by:

!"#$!, !", !"# = {< !(!"#ℎ! , !"), !(!"#ℎ! , !") > |
 ∀!"#ℎ! ,!"#ℎ! ∈ !"#ℎ! !

< !"#ℎ! ,!"#ℎ! > ↔ !"# !"#ℎ! !" ≥ !"#(!"#ℎ![!"])}
The Rank operation establishes an ordering relation over the set of paths of

the input set based on the score of the ranking items, given by !"# !"#ℎ! !" .

Examples:

Let T={<st, {p1, p2, p3, p4}>} be set of scientific publications and

:Year={<p2,2001>,<p1,2002>,<p3,2003>,<p4,2004>} be a set of publication

years.

Example 1: rank by relation image in descending order:

{<rs, {p4, p3, p1, p2}>} ← T.Rank(1, :Year[%item])

Example 2: rank by relation image in ascending order:

{<rs, {p2, p1, p3, p4}>} ← T.Rank(1, :Year[%item] * -1)

Example 3: ranking sets with height = 2. Let G = {<sg,{<a1,{p2,

p1}>,<a2, {p3, p4}>}>} be a group of publications by author.

Ranking the last level by publication year:

{<rs,{<a1, {p1, p2}>,<a2, {p4, p3}>}>} ← G.Rank(2, :Year[%item])

Example 4: ranking groups of items. Let J=

{<sj,{<j1,{p5,p6}>,<j2,{p7,p8}>}>} be a group of publications by

journal release, and :Release = {<j1, 2002>, <j2, 2004>} be the

relation between a journal and its release year. Ranking the groups by

journals’ release years is expressed as:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 62

{<rs,{<j2, {p7, p8 }>, <j1, {p5, p6}>}>} ← J.Rank(1, :Release[%journal]),

where 1 denotes the level contains the ranking subjects.

Map

Description: the Map operation applies a function to each item of a

given input set level or to each relationship of the input set paths. Map

can be used to aggregated values, such as counts and sums, generate

transformation sets, and combinations of items/relations.

Signature: Map(A, lv, f): R×N×Mr → R, where Mr is the set of all

mapping functions available. The mapping function f can be classified

as a Transformation, Aggregation, and Combination function. The

structure of the result set depends on the class of the mapping function.

The Map operator can be horizontal or vertical. The horizontal mapping

applies the mapping function to the children set of each item in the level specified

by the lv parameter, denoted as Llv(A) as Figure 13 shows.

Figure 13 - Representation of a horizontal mapping in the third level

In the horizontal mapping of Figure 13 the mapping level is the next to last

and the mapping function f is applied to the items of the children sets c(2015) and

c(2016). The applications of f are isolated from each children set. Next, we define

the classes of mapping functions that are commonly found in tabular exploration

tools as horizontal maps.

Transformation Map

Transformation functions are instances of the original higher-order map

function usually found in functional programming languages (BIRD; WADLER,

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 63

1988 ch. 3), such as Ruby and Python, where the function f is applied to each item

of the children set. The transformation Map is defined as:

!"# !, !", ! = < !"#$, ! !"#$ > !"#$ ∈ !!" ! ⟶ ! !"#$ =

{!(! !"#$!), !(! !"#$ [!),… , ! ! !"#$! }}
The definition above applies f to each children set of each item in the level

lv of the input set, represented as !!"(!). The structure of the input set is

preserved, except for the mapping level, which is replaced by the results of f.

Consider the following example:

Example 1: let M = {<sm, {150.00, 160.50, 135.73}>} be a set of book

prices in US$. The user can apply a transformation mapping to get the

values in R$. Suppose the conversion function rs(value) = value * 3,50.

{<rs, {525.00, 561.75, 475.05}>} ← M.Map(1, rs(%item))

Aggregation Map

The aggregation function reduces the set of children of each item in the

level lv to a single value, as defined by the following equation:

!"# !, !", ! = < !"#$, ! !"#$ > !"#$ ∈ !!" ! ⟶ ! !"#$
= {!(! !"#$! , !(!(!"#$) ! , ! … ! ! !"#$! ,!"## … }}

In the definition above, the function f is applied to each child item where the

next application is the input of the previous application. As an example, for an

item having two children, the application of f is !(!ℎ!"#1, !(!ℎ!"#2,!"##)). The

null value is an initial value that will be combined with the next applications. This

structure allows, for example, the computation of counts where each application

adds one unit to the results of the previous applications, having the null value as 0

(zero). The following examples illustrates aggregation maps:

Example 2: counting elements: let P = {<sp, {p1, p2, p3}>} be a set

of publications. count: I → N be an aggregator function that maps a set

of items onto their number of elements. The expression bellow counts

the number of items in P:

{<rs, 3>} ← P.Map(1, count(%item))

Example 3: mapping sets with multiple levels: let Y =

{<sy,{<2005,{p1, p2 ,p3 ,p4}>,<2006,{p5, p6, p7}>}>} be the set of

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 64

publications grouped by publication year. In order to map this group

onto counts by year, we do:

{<rs,{<2005, 4>,<2006, 3>}>} ← Y.Map(2, count(%item))

The structure of the aggregation maps is an adaptation of the higher-order

function fold in functional programming (BIRD; WADLER, 1988 ch. 3)

Combination Map

The combination map applies a n-ary function f(item1,…,itemn) to

combinations of size n of the children set of an item. Let f be a combination

function and lv be the level to map. Let n be both the arity of f and the size of the

combination, and c(item)n be n Cartesian products of the children set. The

combinational map is defined as:

!"# !, !", ! = < !"#$, ! !"#$ > !"#$ ∈ !!" ! ⟶ ! !"#$

= !(!!,… !!)
!!!,…!!!∈!(!"#$)!

>}

Although the definition above comprises n Cartesian products of the

children set c(item)n, this function is usually applied to a subset of c(item)n. For

example, Tableau and SeCo tools allow the user to map items to values that are

combinations of two or more attributes. In these tools, for example, the user can

map a set of Orders having the columns {productId, clientId, amount,

individualPrice} to a column Total = amount*individualPrice. Considering the

children set of each order as the total set of values for all columns, the application

of the map function is restricted to a subset !" ⊂ ! !"#$" ! where the children

are values for the attributes amount and individualPrice.

A variation of the Map operation is the Vertical Map, where the mapping

function is applied to each edge of each path from the root to the leaves.

Vertical Map

 The VerticalMap applies the mapping function f to each edge of each path

of the input set, where, the applications are independent among the paths.

Therefore, for any input set ! =< !,≼!>, the aggregation, transformation, and

combination mapping functions are defined as follows:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 65

• Transformation:

!"#$%&'()'* !, ! =

{ < !! ,!! > < !! ,!! > = ! < !"#$! , !"#$! > ∧
!"#!∈!"#!!(!)

< !"#$! , !"#$! >∈ !"#ℎ}}

• Aggregation:

!"#$%&'()!" !, ! =

{ < !! ,!! > < !! ,!! >
!"#!∈!"#!!(!)

= ! < !"!, !"! >, !(… (!(< !"!!!, !"! >) ∧ < !"! , !"! >
∈ !"#ℎ ∧ 1 ≤ ! ≤ !"#ℎ ∧ 1 ≤ ! ≤ |!"#ℎ|}}

• Combination:

!"#$%&'()'* !, ! =

{ < !! ,!! > < !! ,!! > = ! < !"!, !"! >,… ,< !"!!!, !"! >
!"#!∈!"#!!(!)

∧ < !"! , !"! >∈ !"#ℎ ∧ 1 ≤ ! ≤ !"#ℎ ∧ 1 ≤ ! ≤ |!"#ℎ|}}

To the best of our knowledge, the usage of the VerticalMap function is often

associated with the Correlate function. Therefore, we exemplify the application of

this operation along with the correlation examples.

Correlate

Description: finds all intermediary pairs of items connecting all

source items to all target items, i.e., the Cartesian product of the leaves

of the source and the target sets. Each path from each source to each

target item (many-to-many) is a different path in the result set tree.

Signature: Correlate(A, B): R × R →R

Formal Description: let A and B be two exploration sets, rs be the

root item of the result set, and n stands for an arbitrary path length. Let

Prd=lf(A)×lf(B) be the Cartesian product of the leaf items of A and B.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 66

The set of paths connecting each pair < !"#$1, !"#$2 >∈ !"# is

defined by:

!"##$%&'$!,! = {< !", < !!, !! >,… ,< !!!!, !! > > |
∀!! , !!!! < !! , !!!! >∈ ! ∧ < !!, !! >∈ !"# ∧ 1 ≤ ! ≤ ! − 1}

The result set of the Correlate operation is a set of paths from each origin to

each target item where origins are the children set of the root and the targets are

the leaves.

Examples:

Let T = {<st,{p1, p2, p3, p4}>} be set of scientific publications, A =

{<sa,{a1, a2}>}, and F = {<sf, {f1, f2, f3}>} be a set of authors’ affiliations. Let

:Author={<p1,a1>,<p2,a1>,<p3,a2>,<p2,a2>,<p3,a3>,<p4,a3>} be a relation

between publications and authors. Let :Affiliation={<a1,f1>,<a2,f1>,<a3,f2>}

be a relation between authors and affiliations.

Example 1: find connections between the publication p1 and the

affiliation f1:

{<rs,<p1, <a1, f1>>>} ← Correlate({p1}, {f1}), where d1 stands for

the path domain and {p1, a1, f1} is the path connecting the two items.

Example 2: find connections between the publication p2 and

affiliation f1:

{<rs, <p2, {<a1, f1>, <a2, f1>}>>} ← Correlate({p2}, {f1}), where d1

and d2 are the domains for the two paths connecting p2 and f1.

We can notice that there are two paths from p2 to f1, one that passes through

a1 (p2→ a1→ f1) and another that passes through a2 (p2→ a2→ f1).

Example 3: find many-to-many connections between the sets {p2, p3}

and {f1, f2}:

{<rs, {<p2, {<a1, f1>,<a2, f1>}>, <p3, {<a2, f1>, <a3, f2>}>}>}←

Correlate({p2, p3}, {f1, f2}), where the correlation is carried out for {p2, p3}

×{f1, f2}.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 67

Here we simplify the definition of the correlation operation in order to avoid

excessive details on the operations model and keep it abstract. However, the

correlation operation can be specialized with at least two additional patterns. The

first parameter is the maximum distance between the origin and the target

(ARAUJO et al., 2010) (HEIM; LOHMANN; STEGEMANN, 2010). The second

parameter is a path pattern, which is matched with each path. The operation

returns only the paths that match the pattern. A language for pattern definition can

be found in (PRZYJACIEL-ZABLOCKI et al., 2011). A specialized signature for

the Correlate operation is as follows:

Correlate(A, B, Pattern, maxLengh)

This chapter describes each exploration action as an atomic operator.

However, we observed that some compositions of operators are very common

among tools. For example, compositions of Pivot and Refine are implemented in

the majority of faceted search tools. This composition is used to integrate

navigation and filtering actions. Another example is Pivot and Rank, where, when

the user navigates to a set of items, they are usually presented as an ordered set.

Interesting combinations also occur with the Correlate operation, since the

discovered paths can be refined, ranked, and transformed. When combined with

the Refine operation, the user can apply filters that leverage the analysis of

connection patterns between the exploration items. For example, suppose a set of

pairs that connects two hypothetical politicians pol1 and pol2. The user could

apply a filtering pattern to keep only paths that contain at least one intermediary

node of type “Company”. Let a(%item) be the set of all ancestors. This task can

be expressed as the following composition:

Refine(

Correlate({pol1}, {pol2}),

contains(:Type[a(%item)], :Company)

)
The composition above filters all paths having at least one ancestor of the

tail items typed as :Company. It is also possible to filter the paths using more

complex path patterns. For example, filtering paths that comprise donations of

Companies can be expressed by the following path pattern in the Refine operation:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 68

Refine(

Correlate({pol1}, {pol2}),

<equals(pol1), equals(:Type, :Person), equals(:Type, :Company)

,equals(:Type, :Donation), equals(pol2)>

)
The composition above filters paths where the politician pol1 is eventually

associated to a person who owns a company that makes donations to the politician

pol2.

Another possibility for Correlate compositions is to apply Maps to its

results. For example, the user may want to map each path to a higher level of

abstraction, where the relations <itemi, itemj> of each path from the origins to the

targets is mapped to a relation between their types. Let :Type be a hypothetical

relation between items and their types. The following composition expresses this

task:

VerticalMap(
Correlate({pol1},{pol2}),
f(%<item1,item2>)=<:Type[item1],:Type[item2]>

)

If we consider the specialized case of correlation that accepts a path pattern

– Correlate(A, B, Pattern, maxLenght) – The composition of VerticalMap with

Correlate can be used to generate the abstract path patterns that can be the input

of another correlation operation or a query over the dataset. In fact, this

composition describes the Fusion tool (ARAUJO et al., 2010), where paths, such

as the one presented in Figure 14, can be transformed into the abstract pattern of

Figure 15 for future correlations.

Figure 14 - Path example that correlates the Senator Christopher Bond with the state of

Missouri in Gov.Track.Us8 dataset (ARAUJO et al., 2010)

Figure 15 - Abstract path pattern that can be generated by a VerticalMap (ARAUJO et al.,

2010)

8 https://www.govtrack.us/

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 69

Moreover, other Correlate compositions can be considered to improve the

expressivity of Fusion, such as the application of refinements over a set of

abstract paths or intersections and differences to compare the similarities and

differences between paths. One of the key contributions of the framework is to

leverage such discussions under a common understanding of the operators.

4.5.Reusing Explorations

The reuse of explorations is achieved by reevaluating functional

compositions against a different set of arguments for the operations’ parameters.

Since the functional compositions are intentional descriptions of the exploration,

the reevaluation of a functional composition is an intention-oriented operation.

The exploration process is represented as a graph, where nodes are

exploration states and edges are state transitions caused by the execution of an

exploration operation. In order to reuse a composition, the user can select the

whole graph or a sub-graph, define new values for some operation parameters and

generate a new set of states by reevaluating the operations against the new

arguments. Henceforth, we define the intentional description of exploration states,

exploration graphs, and the Eval function for reuse operations.

Definition 15: Intentional Description

The evaluation of each exploration operation generates a new exploration

state, which is defined by the operation name and the parameter attributions. The

invocation of an exploration operation is a n-tuple of arguments for its evaluation

in the form:

<OperationId, Arg1,…, Argn>

 The first element is the operation identifier, and the remaining arguments

are values for the parameters in the same order of their definitions. Therefore,

Arg1 is the value for the first parameter, which is always the input set, and Argn is

the value for the nth parameter. This is equivalent to a set of ordered pairs of

parameters and arguments:

{<Operation, OperationId>, <Param1, Arg1>, …<Paramn, Argn>}.

As an example, consider a initial state S0 whose evaluation generates an

exploration set of publications P = {<sp, {p1, p2, p3}>} and the relations :Author

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 70

and :Affiliation that respectively relates publications with authors and authors with

their affiliations. The state generated when the user pivots from S0 to the set of

authors’ affiliations is expressed as follows:

<Pivot, S0, :Author:Affiliation> ≡ S0.Pivot(:Author:Affiliation)

In the pivot invocation above, we define the input exploration set by the id

of the state whose evaluation generates it. Therefore, instead of using P, we use

S0, which evaluates to the set P. The intentional description of the state is the tuple

<:Pivot, S0, :Author:Affiliation>, where :Pivot is the identifier of the operation, S0

is the value for the input state parameter, and :Author:Affiliation is the argument

for the Relation parameter of the Pivot operation. The remainder of this section

analyzes the operations exclusively from the point of view of the intentional

descriptions. Therefore, we abstract the exploration trees generated by the

execution of the operations and focus on their intentions and state dependency

relations. We call these intentional descriptions Bindings. For the next definitions,

let B be the set of all possible bindings for exploration.

 Definition 16: Exploration Graph

An exploration graph ! ⊆ !"# is any sub-graph of the state dependency

relation Dep that composes an exploration process (Section 1.2). Consider the

following script:

1. S1← S0.Pivot(:Author) //pivot from publications to the set of authors

2. S2← S1.Refine(equals(:Affiliation, “PUC-Rio”)) //filter authors affiliated

to PUC-Rio

3. S3← S2.Group(:ResearchArea) // Group PUC-Rio authors by research

area

In the exploration above, S1, S2, and S3 stand for exploration states in the

form <OperationId, Arg1,…, Argn>. The exploration process E=<St, Dep> is

represented as follows:

E=<{S0, S1, S2, S3}, {<S0, S1>, <S1, S2>, <S2, S3>}>

The compositions of the exploration process E are {<S0, S2>}, {<S1, S2>}

and {<S2, S3>}. Next we define the Eval operation for reevaluating exploration

graphs.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 71

Eval

Description: the Eval operation receives a composition ! ⊆ !"# and

a set of bindings for the states and generates a new set of exploration

states that are reevaluations of the operations against the set of

bindings.

Signature: Eval(G, SB): Depn
 × (St×B)n → Stn, such that, G is an

exploration sub-graph and SB is a set of pairs in the form

<State,Bindings> that represents states in the first position and the

new bindings for their reevaluations in the second position.

Formal Description: we define this operation as the following

algorithm. Let heads(C) be the starting states of the sub-graph, i.e., the

states whose input state is outside the sub-graph being reevaluated. Let

tails(C) be the ending states of the sub-graph, i.e., states that are not

input of any other state of the composition. Let EvalState be the

function that receives a state, traverses the composition, starting from

the state, and reevaluates each operation against the new bindings if

they are defined. The Eval and the EvalState functions are defined as

follows:

FUNCTION Eval(C, SB)

resultStates ← empty array
FOR ALL state in tails(C)

resultStates.push(call EvalState(state, SB))
END FOR
RETURN resultStates

END FUNCTION

FUNCTION EvalState(state, SB)
Inputs ← empty array
IF state in heads(C) THEN

Inputs ← state.inputs
ELSE

FOR all input in state.inputs
Inputs.push(call EvalState(input, SB))

END FOR
END
IF there is a binding b in SB for state

Operation ← b.operation
RETURN call Operation(Inputs, b)

ELSE
RETURN call Operation(Inputs, state.bindings)

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 72

END IF
END FUNCTION

In the algorithm above, state.inputs refer to the input states of a state,

state.bindings denotes the bindings of the state, and b.operation is a reference to

the exploration operation described in the state bindings b. The tail states are the

starting points of the reevaluation. Each tail state is passed to the EvalState

function, which recursively traverses the graph and executes the operations. Each

execution returns a new state that is used as input for the next state. The process

stops when all states in the sub-graph are reevaluated. Moreover, before

reevaluating a state, the algorithm verifies if there are new binding definitions for

this state. If so, the operation is executed for the new bindings b – call

Operation(Inputs, b). Otherwise, the operation is execute with the same bindings

but, having the new states as inputs – call Operation(Inputs, state.bindings).

As an example, consider the following composition that compares the

research areas in common between researchers affiliated to PUC-Rio and UFRJ.

Let the state S1 = <Refine, equals, :Type, “Author”> be a initial state, which

generates a set of authors {a1, …, an} by the evaluation of a Refine operation. The

steps are as follows:

1. S2 ← S1.Refine(equal(:Affiliation, “PUC-Rio”))

2. S3 ← S1.Refine(equal(:Affiliation, “UFRJ”))

3. S4 ← S2.Pivot(:ResearchArea)

4. S5 ← S3.Pivot(:ResearchArea)

5. S6 ← S4.Intersect(S5)

In order to reuse the composition to obtain a comparison of research areas

for researches from PUC-RS and UFMG, the reevaluation function is as follows:

NewStates ← Eval({<S2, S3>, <S2, S4>, <S3, S5>, <S5, S6>}, {<S2, Refine, equals,

:Affiliation, “PUC-RS”>, <S3, Refine, equals, :Affiliation, “UFMG”>})

In order to simplify the representation of the Eval operation, we use a

simplified notation expressing only the argument replacements defined by the

user, represented by the replacement operator “$”. The reevaluation above is also

represented as:

NewStates ← {S2..6}.Eval(S2.”PUC-Rio”$”PUC-RS”,

S3.”UFRJ”$”UFMG”)

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 73

Figure 16 shows a visual representation of the states and dependencies and

the order of state reevaluations.

Figure 16 - Exploration graph for finding research areas in common between researchers

affiliated to PUC-Rio and UFRJ with reevaluation ordering.

The highlighted nodes form the sub-graph that will be reevaluated. The head

states of the sub-graph are the states S2 and S3 since their inputs are outside the

reevaluation scope: heads(C) = {S2, S3}. The tail state is the state S6 since it is not

the input of any state in the sub-graph being reevaluated: tails(C)={S6}.

Therefore, the Eval operation traverses the sub-graph starting from S6. When a

head node is reached, it is reevaluated for the new bindings (if defined) and the

result state will be the input for the next reevaluation recursively. The intersection

executed in S6 is the last state to be reevaluated, since it depends of the

reevaluation of all the other nodes in the sub-graph.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

