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4 
Functional Layer of Exploration Framework 

The goal of this chapter is to formally describe exploration processes in 

terms of an expressive set of operations. The formalization is, therefore, the basis 

for further discussions on exploration strategies, expressivity evaluations, and 

interface/interaction issues, as established in the framework of reference presented 

in chapter 3.  First, we present our generic data model, which we use for defining 

the operations. Next, we describe the subjects involved in the exploration process. 

Finally, we describe each exploration action as an operation applied to the items 

of the data model and the exploration process as a composition of these 

operations. 

4.1.Preliminary notations 

This section describes some basic notation that we use extensively along the 

chapter. 

Sets can be denoted by both the enumeration of its elements, e.g. S = {e1, e2, 

…, en}, and by specifying a property P of its members: 

S={e|P(e)} 

The properties are described in terms of a set of logical operators: 

→ stands for “implies”  

↔ stands for “if and only if” 

∧ stands for “and” 

∨ stands for “or” 

¬ stands for “not” 

∃ stands for “there exists” 

∀ stands for “for all” 

≡ stands for “equivalent of” 

• Empty Set: we use the symbol ∅ for denoting empty sets. 

• Ordered Pairs: we delimit ordered pairs using “<” “>”, e.g. <a1,a2>, <i1,i2>. 
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• Cartesian Products: in order to specify graphs, i.e., sets of ordered pairs, we 

use the Cartesian product symbol “×” between the sets. As an example: let A= 

{i1, i2} and B={a1, a2}. The Cartesian product !×! is: 

!×! = < !1,!1 >,< !1,!2 >,< !2,!1 >,< !2,!2 >  

• Multiple Cartesian Products: In order to represent n Cartesian products of a 

set we use exponents: 

!×!×! = !! 

• Binary Relations: let A and B be any two sets, we define a binary relation 

Φ ⊆ A×B as a subset of their Cartesian product. We also denote an element 

< !, ! >∈ Φ as !Φ!. 
• Cardinality: we denote |S| as the number of members of a set S: 

o |{i1, i2}| = 2 

o |{i1, i2, i3}| = 3 

• Indexing sets: sometimes it is necessary to refer to specific items in a 

partially ordered set. We use the following notation in these cases. Let S = {i1, 

i2, i3} be a partially ordered set: 

o S[1] = i1 

o S[2] = i2 

o S[3] = i3 

• Set operations:  let A and B be any two sets, we establish the following 

operations over sets: 

o Union: 

! ∪ ! = {!|! ∈ ! ∨ ! ∈ !} 
o Intersection: 

! ∩ ! = {!|! ∈ ! ∧ ! ∈ !} 
o Difference:  

! − ! = {!|! ∈ ! ∧¬! ∈ !} 
 

4.2.The Exploration Process 

The exploration process is normally approached as a set of interdependent 

states (FERRÉ; HERMANN, 2012; TZITZIKAS; MANOLIS, 2016), where each 

state consists of two components: Intention and Extension. The Intention is a 

description in some language of the desired set of items in the state. The 

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA



 46 

Extension is the actual set of items corresponding to the intention. As an example, 

consider a keyword search for items matching the keywords “Semantic Web”. 

The intention is the keyword expression and the extension is the set of matched 

items. In this work, we define an exploration process Po = <St, Dep> as a set of 

exploration states St and a state dependency relation !"#: !"×!", such that, each 

pair of states < !1, !2 >∈ !"# represents a relation between a state and its 

subsequent state. The application of an operation to s1 leads the explorer to the 

state s2. Each state !" ∈ !" is an invocation of an exploration operator, which is 

defined as the set of parameter attributions for the execution of the operator. A 

formal description of the operation invocations can be found in Definition 15. 

Since each state is generated by the use of an exploration operation, we can 

also describe the exploration process as a functional composition of the 

operations. Let Opr = {op1, op2, …, opn} be a set of exploration operations. The 

exploration process Po is described by: 

Po = opn(opn-1(…(op1(args1), args2), argsn-1), argsn), where args is a list of 

arguments specific for each operation 

4.3.Data Model 

There are many data models described in the literature, such as the relational 

model, RDF, and a variety of NoSQL models. Although the validity of these 

models has been extensively proven for their respective domains of problems, we 

see the exploration process as not attached to the specificities of a single model; it 

can be described in terms of a generic data model that can be further mapped to 

each one of these. Therefore, we devised a simplified version of the Entity-

Relationship model (CHEN, 1976), which suffices for our purposes. 

Independently of how the data is represented, the user always manipulates 

items and relationships among them. Items can be organized in groups, such as 

papers by author or papers by venue. Groups can also be formed along more than 

one dimension, such as papers by author by publication year. Therefore, the 

design solution adopted was to model items and relations as nested relations. As 

an example, “papers by author by publication year” is a three-level nesting, 

having the papers grouped by year inside a group for each author. Nesting 

relations can be represented as trees, as Figure 10 shows. We call “exploration 

set” any nested relation generated by the execution of an exploration action. 
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Figure 10 - Nesting of papers by author by publication year. 

This data model is very similar to the one used in NoSQL document-

oriented databases (CATTELL, 2011), where the nestings of an exploration set 

can be mapped to collections and nested arrays. 

4.3.1.Dataset, Items, and Relations 

Definition 1: Dataset 

A dataset D = <I, R> is described in terms of a set of exploration items I 

and a set of trees R, where each tree t ∈ ! represents a set of relationships between 

exploration items. A tree is defined as an ordered pair T= < !,≼!>, where ! ⊆ ! 
is a set of exploration items and ≼!  ⊆ !×! is a partial-order relation that is 

reflexive, transitive, and antisymetric. 

The binary relation ≼! defines the child-parent relationships of the tree and 

is also well founded, i.e., there is a least item ! ∈ ! that has no parent, which is the 

root of the tree. More formally, the properties of the relation trees are the 

following: 

• Reflexive: ∀! ∈ ! ! ≼! ! 
• Antisymetric: ∀!, ! ∈ ! (! ≼!  ! ∧  ! ≼! !) → ! = ! 
• Transitive: ∀!, !, ! ∈ ! (! ≼!  ! ∧  ! ≼! !) →  ! ≼! ! 

• Well-founded: ∃! ∈ ! ∀! ∈ ! < !, ! >∉≼! 

Since trees are binary relations, we denote trees as a set of relationships in 

the form T={<item1, item2>, …, <itemn-1, itemn>}, e.g., T={<root, p2>, <p2, a1>, 

<p2, a2>, <root, p3>, <p3, a2>,<p3, a3>}. We can also shorten this notation by 

representing pairs having the first element in common in the following way: 

T={<root,{<p2, {a1, a2}>, <p3, {a2, a3}>}>} 

 

Definition 2: Parent and Children of items 

Let ! =< !,≼!> be a tree. Let <itemi, itemj> be an edge in ≼!, the parent 

of the itemj is denoted as p(itemj) = itemi. 
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The children of an item c(itemi) is the set items having itemi as parent: 

! !"#$! = {!"#$!| < !"#$! , !"#$! >∈≼!} 
 Let S={<ids, <a1, {<p1, {f1, f2}>}>>}. Consider the following examples: 

p(f1) = p1 

p(p1) = a1 

p(a1) = root(s) = ids 

p(ids)= null  

c(f1) = ∅ 

c(p1) = {f1, f2} 

c(a1) = {p1} 

Definition 3: Levels of a tree 

Let ! =< !,≼!> be a relation tree and ! ∈ ! be an exploration item. The 

predecessors of i is defined as: 

!"#$ ! = {!|! ≼! !} 
We define the height of i as the cardinality of the set of its predecessors: 

ℎ ! = |!"#$(!)| 
The nth level of a tree is defined by the set of items having the height n: 

!! ! = {! ∈ !|ℎ ! = !} 

The set of leaves of T is defined as the set of all elements ! ∈ ! that has no 

child items: 

!" ! = {!|! ! = ∅} 
Definition 4: Relations 

Each relation ! ∈ !, in the dataset <I, R>, is represented as a tree having the 

relation identifier as its root. We refer to relation sets by specifying their ID 

preceded by “:”. As an example, Figure 11 shows the relation between 

publications and their respective authors. 

 

Figure 11 - Relation tree representing publication-author relationships 

Using the tree notation, the author relation can also be denoted as follows: 
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Author ={<:Author, {<p2, {a1, a2}>, <p3, {a2, a3}>}>} 

For conciseness purposes, we sometimes omit the root and denote relations 

in the following way:  

:Author = {<p2, {a1, a2}>, <p3, {a2, a3}>} 

Definition 5: Domain and Image of Relations 

Each relation !" ∈ ! has two properties: domain(Rt) and image(Rt). 

domain(Rt) is the set of members of the domain of Rt, i.e., the set of all items that 

are children of the root item:  

!"#$%& !" = ! ! ∈ !(!""#(!"))} 
The image(Rt) property is the set of all second items of the relationships 

having the domain items in the first position: 

!"#$% !" = ! ! ∈ !"#!"# !" ∧< !, ! >∈≼!"} 

As an example, let :Author = {<p1, {a1, a2}>, <p2, {a2, a3}>} be a 

relation between publications and authors. The domain and image sets of :Author 

are: 

domain(:Author) = {p1, p2} 

image(:Author) = {a1, a2, a3} 

 

The restricted image of a relation Rt on a domain item domItem is composed 

of all items of the image of Rt that has domItem as its domain: 

!"#$% !",!"#$%&# = ! < !"#$%&#, ! >∈≼!"} 

Consider the following restricted image example over the :Author relation:  

image(:Author, p1) = {a1, a2} 

Similarly, the restricted domain of a relation is defined as the set of all items 

related to a specific image item in Rt: 

!"#$%& !", !"#$%&" = ! < !, !"#$%&" >∈≼!"} 

Consider the following restricted domain example: 

domain(:Author, a2) = {p1, p2} 
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In order to keep the notation concise, we denote restricted images and 

domains using “[]” as follows: 

image(:Author, p1) ≡ :Author[p1]; 

domain(:Author, a2) ≡ :Author-1[a2]  

 

Definition 6: Join 

Two relations can be joined in the following way: 

!"#$% !1,!2 = < !, ! > < !, ! >∈≼!!∧ ∃! < !, ! >∈≼!!  

As an example, let R1 = {<p1, a1>, <p2, a2>} and R2 = {<a1, f1>, <a2, 

f2>}, the join between these two relations is defined by: 

!"#$% !1,!2 = {< !1, !1 >,< !2, !2 >} 

In order to join more than two relations, we make join compositions. 

Suppose a third relation R3 = {<f1, i1>, <f2, i2>}. The join between R1, R2, and 

R3 is: 

!"#$%(!"#$% !1,!2 ,!3) = {< !1, !1 >,< !2, !2 >} 

Definition 7: Relation Path 

A relation path R1,…, Rn is an ordered set of relations with non-empty join: 

!"#$%(… (!"#$% !!,!! … ),!!) ≠ ∅ 

We denote relation paths by concatenating their identifiers. For example, 

suppose a relation :Author = {<p1, a1>, <p2, a2>} and a relation :Affiliation = 

{<a1, f1>, <a2, f2>}. We denote the path formed by these two relations as: 

:Author:Affiliation 

The same functions domain and image (Definition 5) can also be applied to 

relation paths: 

:Author:Affiliation-1[f1] ≡ domain(:Author:Affiliation, f1) = {p1} 

:Author:Affiliation[p1] ≡ image(:Author:Affiliation, p1) = {f1} 

4.3.2.Exploration Sets and Exploration Items 

Definition 8: Exploration Set 
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An exploration set is a tree ! =< !,≼!> generated by the application of an 

exploration operation to a previous tree, where the starting point is always the 

dataset. Since exploration sets are relation trees, the domain, image, restricted 

domain, and restricted image functions (Definition 5) also applies to them. 

As an example of an exploration set, consider the result set of a grouping 

operation carried out over the following sets and relations. 

• A set of publications T = {<Pub, p1>, <Pub, p2>, <Pub, p3>, 

<Pub, p4>}, identified as “Pub”; 

• A set of authors A = {<ath, a1>, <ath, a2>}, idenfied as “ath”.  

• A schema relation between publications and authors:  

:Author = {<p1, a1>, <p2, {a1, a2}>,  <p3, {a2, a3}>,<p4, a3>}  

The application of a grouping function to the set T will result in the 

following exploration set: 

{<rsid, {<a1, {p1, p2}>, <a2, {p2, p3, p4}>}>} ← Group(T,:Author) 

In the example above, “rsid” stands for the exploration set identifier. 

 

Definition 9: Path Sets 

A path set of an exploration set ! = < !,≼!> is the set of predecessor sets 

of the leaves of S:  

!"#ℎ! ! = {!!"# ! ∪ {!}}
!∈!"(!)

 

As an example, consider the set S = {<ids, <a1, {<p1, {f1, f2}>}>>}, the 

paths of S are: 

paths(S) = {{ids, a1, p1, f1}, {ids, a1, p1, f2}} 

Each path in paths(S) is a sequence in the form {!!}!!!! !  ordered by the 

relation ≼!, where, h(l) is the height of the leaf item l, which is the greatest 

element of the path. 

 

Definition 10: heads and tails of branches 

Let p = {idp, a1, p1, f1} be a path of a set S, we define the head of p as the 

item directly connected to the root of the tree: head(p) = a1. The tail of p is the 

item that has no child: tail(p) = f1. 
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Definition 11: Root Replacement 

Let !ℎ be a path set (Definition 9). The root replacement function 

r(Ph,nroot) = Ph’ maps a path set Ph onto another path set Ph’ having the root 

element (least element) replaced by nroot. This function is used for copying a path 

set from one set to another. Consider the following definition: 

! !ℎ,!"##$ = < !"#$! , !"#$! > ∈ !ℎ ∀< !! , !"#$! >∈ !ℎ (!! = !""# !ℎ
→ !"#$! = !"##$) ∧ (!! ≠ !""# !  → !"#$! = !!) 

As an example, let Ph ={ids, f1, f2} be a path set. The copy of the path Ph to 

the root rt is defined as: 

r(Ph, rt) = {rt, f1, f2}, where all relations with ids were replaced by rt 

preserving the ordering of the path set. 

4.4.A Model of Exploration Operations 

Here we describe the set of operations comprehensive enough to at least 

describe the state-of-the-art exploration tools currently proposed in the literature, 

with regards to data manipulation. First, we present the notation used for functions 

in our framework. Next, we describe each operation in terms of a general 

description, a signature, a formal description of their results, and usage examples. 

4.4.1.Notational Convention for Functions 

Although the framework is concerned with exploration functions, i.e. 

functions that cause state transitions in the exploration process, some auxiliary 

and domain specific functions can be used as arguments of exploration functions. 

We denote auxiliary functions using the following rule:  

functionName(arg1, arg2, …, argn) 

Exploration functions are distinguished from auxiliary functions by having 

the first character of the name capitalized and having the input state identifier 

specified before the function name as follows:  

StateId.ExplorationFunctionName(arg1, arg2, …, argn) 
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Consider the following examples. Let Pb = {<pb, {p1, p2, p3}>} be an 

exploration set of publications and :Author = {<p1, a1>, <p2, a1>, <p3, a2>} be 

the relation between the publications and their authors. The refinement operation 

of publications having a1 as author is as follows: 

Rs ← Pb.Refine(equals(:Author[%item], a1)) 

In this notation, Refine is the exploration function applied to the set Pb. 

Refine receives the auxiliary predicate function equals as argument that will be 

evaluated for all publications in Pb. The predicate equals receives the restricted 

image of :Author on each publication of Pb, represented as the parameter %item. 

The application of the operation is preceded by the attribution symbol “←” and 

the identifier of the result set “Rs”. For conciseness purposes we omit the %item 

parameter in some cases: 

equals(:Author[%item], a1) ≡ equals(:Author, a1) 

4.4.2.Extension-Oriented Operations 

Extension-oriented operations are mappings between exploration sets. The 

operations are defined as follows: 

 

Unite 

Description: the union operation receives two exploration sets and unites 

their path sets. 

Signature: Unite(A, B): R × R → R 

Formal definition: let rs be the root item of the result set. The union 

operation is defined as: 

!"#$% !,! = !(!"#ℎ! ! , !") ∪ !(!"#ℎ! ! , !") 

The union operation is defined as the union between the paths of A and B, 

mapped to a common root item rs. Consider the following examples of the Unite 

operation: 

Example 1: let A = {<sa, {p1, p2, p3}>} and B = {<sb, {p3, p4, p5}>} be 

two exploration sets containing hypothetical publications. The union 

between A and B is: 
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{<rs,{ p1, p2, p3, p4, p5}>}  ← Unite(A, B) 

Example 2: let A = {<sa, {<a1, {p1, p2, p3}>, <a2, {p3, p4}>}>} and B 

= {<sb, {<a2, {p5, p6}>, <a3, {p8, p9}>}>} be two sets of publications 

grouped by author. The union between A and B is: 

{<rs, {<a1, {p1, p2, p3}>, <a2, {p3, p4, p5, p6 }>, <a3, {p8, p9}>}>}      

←Unite(A,B) 

Intersect  

Description: the intersect operation computes the intersection between the 

paths of the input sets. 

Signature: Intersect(A, B): R × R → R 

Formal Definition: let A and B be two input sets. Let rs be the root of the 

result set. The intersection between A and B is defined as: 

!"#$%&$'# !,! = !(!"#ℎ! ! , !") ∩ !(paths(B),rs) 

The set of paths of the result set is the intersection between the paths of A 

and B with the root replaced by the rs item. Consider the following examples: 

Example 1: let A = {<sa, {p1, p2, p3}>} and B ={<sb, {p2, p3, p5}>} 

be two sets of hypothetical publications. The intersection between A 

and B is: 

{<rs, {p2, p3}>} ← Intersect (A, B) 

Example 2: Intersecting two sets of publications grouped by author: 

let A = {<sa, {<a1, {p1, p2, p3}>, <a2, {p3, p4}>}>} and B = {<sb, 

{<a1, {p2, p3, p5}>, <a2, {p3, p5, p6}>,<a3, p8>}>} be two grouped 

sets: 

{<rs, {<a1, {p2, p3}>, <a2, p3>}>} ← Intersect (A, B) 

Diff  

Description: the difference function computes the difference between 

the path sets of the input sets. 

Signature: Diff(A, B): R × R → R 

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA



 55 

Formal Description: let rs be the root item of the result set. The 

difference between A and B is defined as follows:   

!"## !,! = ! !"#ℎ! ! , !" − !(!"#ℎ! ! , !") 

The paths in the result set are all paths in A that do not appear in B under the 

same root rs. Consider the following examples: 

Example 1: let A = {<sa, {p1, p2, p3}>} and B = {<sb, {p2, p3, p5}>} 

be two publication sets. The difference between A and B is: 

{<rs, p1>} ← Diff(A, B) 

Example2: let A = {<sa,{<a1, {p1, p2, p3}>, <a2, {p3, p4}>}>} and 

B = {<sb, {<a1, {p2, p3, p5}>, <a2, {p3, p5, p6}>, <a3, p8>}>} be 

two sets of publications grouped by author. The difference between A 

and B is: 

{<rs,{<a1, p1>,<a2, p4>}>} ← Diff(A, B) 

Pivot 

Description: maps the leaf items of the input exploration set onto 

another set of related items.  

Signature: Pivot(A, Relations): R × Rn → R, where Rn is the set of all 

relation paths of size n.  

Formal Description: let rs be the root item of the result set of a pivot 

operation. We define Pivot as follows: 

!"#$%(!,!"#$%&'()) = < !", !"#$%&" >
!"#$%&" ∈ !"#$%&'(![!"(!)]

 

The result set is, therefore, the set of all relation images rooted by rs. Let T 

= {<st, {p1, p2, p3}>} be a set of scientific publications, A = {<sa, {a1, a2, a3}>} 

be a set of authors, and F = {<sf, {f1, f2, f3}>} be a set of authors’ affiliations. Let 

:Author = {<p1, a1>, <p2, {a1, a2}>, <p3, a3>} be a relation between 

publications and authors. Let :Affiliation = {<a1, f1>, <a2, f2>, <a3, f3>} be a 

relation between authors and affiliations. Consider the following examples: 

Example 1: pivoting from publications to authors: 

{<rs, {a1, a2, a3}>}  ← T.Pivot(:Author) 
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Example 2: pivoting from publications to authors’ affiliations through 

a property path: 

{<rs, {f1, f2, f3}>}  ← T.Pivot(:Author:Affiliation) 

Refine 

Description: filters an exploration set using filtering functions (Definition 

12) and path patterns (Definition 13) defined by the user. 

 

Definition 12: Filtering Function 

A filter F: I→ {true, false} is a predicate that maps an exploration item onto 

a Boolean value that indicates whether the item must be filtered or not. For the 

following definitions, let C = {filter1, filter2,…, filtern} be the set of filtering 

functions available for explorations. 

 

Definition 13: Path Pattern 

Let ! =< !,≼!> be an exploration set. A path pattern T  = <F, E> is a set 

of filters ! ⊆ ! and a set of edges between filters, such that, for each < !, ! >∈ ! 

there is a mapping < ! ! ,! ! >∈≼!. Figure 12 shows an exploration set and 

an example of a path pattern of filters. The mapping ! !"#$%& :! → ! matches the 

nodes in the path having the same height of the nodes in E: 

! = < !, ! > ! ∈ ! ∧ ! ∈ ! ∧  ℎ ! = ℎ(!)} 

Let True be a special filter that always evaluates to true. The root of the path 

pattern is always True, therefore, for every pattern, <True, v> is an edge in E and 

there is a mapping <True, root(S)> ∈ !. 

 

Figure 12 - An exploration set and a path pattern containing the filters for each level. 
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The path pattern of Figure 12 matches each level of the set, where authors 

are filtered by the :Affiliation relation, the years are filtered by the predicate 

greaterThan(%item, 2015), and the papers are filtered by venue. This definition is 

an adaptation of the graph patterns presented in (AGGARWAL; WANG, 2010, 

ch. 3 ). Having defined the structure of the path patterns, we can now define the 

Refine operation: 

Signature: Refine(A, PathPattern): R×(C×C) → R, where (C×C) 

defines a binary relation of filters, which represents a path pattern. 

Formal Definition: the refine operation is defined as follows: 

!"#$%"(!,!"#ℎ!"##$%&) = !"#ℎ ∈ !"#ℎ!(!)  ∀< !1, !2 >∈ !"#ℎ!"##$%&  
∃< ! !1 ,! !2 >∈ !"#ℎ ∧ !1 ! !1 ∧ !2 ! !2 } 

The definition above filters every path in which, for all pairs of filters 

<f1,f2> in the PathPattern, there is a matching edge in the path and the filters f1 

and f2 hold for the matched nodes. 

The expressivity of the refine operation is strongly related to the filtering 

functions and compositions allowed by the tool. The following functions are 

usually found in exploration tools: 

• equals(item, value2): I×I→{true,false}: tests the equality of an 

exploration item with a specific value; 

• equals(item, Relation, value): I×R×I→{true,false}: tests if a related 

value of an exploration item, defined by relation, is equal to value; 

• matchAll(item, keywordPattern): I×Ln→{true,false}: tests if an 

exploration item matches all keywords in a keyword pattern. Keyword 

patterns can be represented as a n-tuple of literals in a set L; 

• matchOne(item, keywordPattern): I×Ln→{true,false} tests if an 

exploration item matches at least one of the keywords in a keyword 

pattern; 

• not(f): {true,false} →{true,false} negates another filtering function. 

Examples: 

Let T = {<st, {p1, p2, p3}>} be set of scientific publications, A = {<sa, {a1, 

a2, a3}>}, and F = {<sf, {f1, f2, f3}>} be a set of authors’ affiliations. Let :Author 

= {<p1, a1>, <p2, a1>, <p2, a2>, <p3, a3>} be a relation between publications 
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and authors. Let :Affiliation = {<a1, f1>, <a2, f2>, <a3, f3>} be a relation 

between authors and affiliations. Consider the following examples for Refine: 

Example 1: find papers whose author is a1 

{<rs, {p1, p2}>} ← T.Refine(<True, equals(:Author, a1 )>) 

Example 2: find papers whose authors are a1 and a2: 

{<rs, p1>} ← Intersect( 
T.Refine(<True, equals(:Author, a1 )>),  
T.Refine(<True, equals(:Author, a2)>) 

) 

Example 3: find papers whose authors are a1 or a3: 

{<rs, {p1 , p3}>} ← Unite( 
T.Refine(<True, equals(:Author, a1 )>),  
T.Refine(<True, equals(:Author, a3)>) 

) 

Example 4: find papers whose authors’ affiliations are equals to f2 or 

f3: 

{<rs, {p2 , p3}>} ← Unite( 

T.Refine(<True, equals(:Author:Affiliation, f2)>), 

T.Refine(<True, equals(:Author:Affiliation, f3)>) 

) 

Example 5: refining sets with more than two levels: let S = {<ss, 

{<p1, a1>, <p2, {a1, a2}>, <p3, a3>}>} be a relation between papers 

and authors. The refinement is expressed as follows: 

{<rs, {<p1, a1>,<p2, a1>}>}  ← S.Refine(<True,True,equals(a1)>) 

Example 6: refining by parent: it is possible to filter items by the 

parent items using the p(item) function (Definition 17): 

{<rs,{<p1, a1>,<p2, {a1, a2}>}>}  ← Unite( 

S.Refine(<True, True, equals(p(%item), p1)>),  

S.Refine(<True, True, equals(p(%item), p2)>) 
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) 

In order to simplify the notation of path patterns, for the remainder of the 

chapter we define the patterns as pairs specifying the position and the filter to be 

applied at this position. We assume that the remaining positions contain the True 

filter. Therefore, the filter of the Example 6 can be summarized as 

<3,equals(p(%item), p2)>. In case of filters applied only to the last level, we omit 

the position. Therefore, for Example 6 the following equivalence holds: 

<True, True, equals(p(%item), p1)> ≡ <3,equals(p(%item), p2) ≡ 

equals(p(%item), p2) 

Group 

Description: groups an exploration set based on a grouping function, 

which defines the group of each item. The Group operation creates 

nestings in the result set. 

 

Definition 14: grouping function 

The grouping relation gR: I × I is a relation between an item of the dataset 

and its grouping item. The rationale in formalizing gR as a relation, and not a 

function, is to allow items to be mapped to more than one group when necessary.  

Next, we define the grouping operation: 

Signature: Group(A, gR): R × Gf → R, where Gf is the set of all 

grouping relations available in the exploration environment. 

Formal Definition: let rs be the root item of the result set. The Group 

operation is defined as follows: 

!"#$%(!,!") = !(!"#ℎ ∪
!∈!" !"#$ !"#ℎ!"#!∈!"#!! !

 

                                        < ! !"#$ !"#ℎ , ! >,< !, !"#$ !"#ℎ >  

  −< ! !"#$ !"#ℎ , !"#$ !"#ℎ >, !") 

In the formal definition, the grouping item ! ∈ !"[!"#$(!"#ℎ)] adds another 

level to the input set tree, where the parent of the tail is related to the item i and i 

is related to the tail item of the path. However, the tail item will have two parents 
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after this operation, this breaks the condition of a tree. For this reason, we remove 

the relation between the tail and its previous parent in the last part of equation. 

Examples: 

Let T={<st, {p1, p2, p3, p4}>} be set of scientific publications, 

A={<sa,{a1,a2}>}, and F={<sf, {f1,f2,f3}>} be a set of authors’ affiliations. Let 

:Author={<p1,a1>,<p2,a1>,<p3,a2>,<p2,a2>,<p3,a3>,<p4,a3>} be a relation 

between publications and authors. Let :Affiliation={<a1,f1>,<a2,f1> <a3,f2>} 

be a relation between authors and affiliations.  

Example 1: grouping T by author: 

{<rs,{<a1,{p1,p2}>,<a2,{p2,p3}>,<a3,{p3,p4}>}>}← 

T.Group(:Author) 

Example 2: grouping T by property path :Author:Affiliation: 

{<rs,{<f1,{p1,p2 p3}>,<f2,{p3,p4}>}>} 

←T.GroupBy(:Author:Affiliation) 

Example 3: Grouping a grouped set: 

{<rs,{<f1,{<a1,{p1,p2}>,<a2,p3>}>,<f2,<a3,{p3,p4}>>}>} 

←T.GroupBy(:Author).GroupBy(:Affiliation) 
Example 4: grouping by a computed relation: let 

:Title={<p1,t1>,<p2,t2>,<p3,t3>,<p4,t4>,<p5,t5>} be a relation 

between publications and their respective titles. Let glv(p):T→T be a 

function that maps publications to the publications that has the most 

similar title using the Levenschtein string similarity method. Grouping 

publications by title similarity is represented as: 

{<rs,{<p2, {p1, p2, p4}>,<p3, {p3, p5}>}>}← T.GroupBy{|p| glv(%item)}, 

where the grouping element (domain) is the publication whose title distance 

is closest among all grouped publications (centroid).  

Rank 

Description: the Rank operation ranks the paths of the input set given 

a score function applied to the paths’ items. 
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Signature: Rank(A, level, scoreFunction): R×N×Sf→R×R, where 

level is an integer indicating the level containing the items to be 

scored, and Sf is the set of score functions available. 

Formal description: the result set has the same items and structure of 

the input set, respecting the ordering relation chosen for ranking. Let rs 

be the root item of the result set, and scr(item): I→N be a score 

function available in the environment. Let lv be the level of the tree 

containing the items to be scored. The ranking is given by:  

!"#$ !, !", !"# = {< !(!"#ℎ! , !"), !(!"#ℎ! , !") > | 
 ∀!"#ℎ! ,!"#ℎ! ∈ !"#ℎ! !  

< !"#ℎ! ,!"#ℎ! > ↔ !"# !"#ℎ! !" ≥ !"#(!"#ℎ![!"])} 
The Rank operation establishes an ordering relation over the set of paths of 

the input set based on the score of the ranking items, given by !"# !"#ℎ! !" . 

Examples: 

Let T={<st, {p1, p2, p3, p4}>} be set of scientific publications and 

:Year={<p2,2001>,<p1,2002>,<p3,2003>,<p4,2004>} be a set of publication 

years. 

Example 1: rank by relation image in descending order: 

{<rs, {p4, p3, p1, p2}>}  ← T.Rank(1, :Year[%item]) 

Example 2: rank by relation image in ascending order: 

{<rs, {p2, p1, p3, p4}>} ← T.Rank(1, :Year[%item] * -1) 

Example 3: ranking sets with height = 2. Let G = {<sg,{<a1,{p2, 

p1}>,<a2, {p3, p4}>}>} be a group of publications by author. 

Ranking the last level by publication year: 

{<rs,{<a1, {p1, p2}>,<a2, {p4, p3}>}>} ← G.Rank(2, :Year[%item]) 

Example 4: ranking groups of items. Let J= 

{<sj,{<j1,{p5,p6}>,<j2,{p7,p8}>}>} be a group of publications by 

journal release, and :Release = {<j1, 2002>, <j2, 2004>} be the 

relation between a journal and its release year. Ranking the groups by 

journals’ release years is expressed as: 
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{<rs,{<j2, {p7, p8 }>, <j1, {p5, p6}>}>} ← J.Rank(1, :Release[%journal]), 

where 1 denotes the level contains the ranking subjects. 

Map  

Description: the Map operation applies a function to each item of a 

given input set level or to each relationship of the input set paths. Map 

can be used to aggregated values, such as counts and sums, generate 

transformation sets, and combinations of items/relations. 

Signature: Map(A, lv, f): R×N×Mr → R, where Mr is the set of all 

mapping functions available. The mapping function f can be classified 

as a Transformation, Aggregation, and Combination function. The 

structure of the result set depends on the class of the mapping function. 

 

The Map operator can be horizontal or vertical. The horizontal mapping 

applies the mapping function to the children set of each item in the level specified 

by the lv parameter, denoted as Llv(A) as Figure 13 shows. 

 

Figure 13 - Representation of a horizontal mapping in the third level 

In the horizontal mapping of Figure 13 the mapping level is the next to last  

and the mapping function f is applied to the items of the children sets c(2015) and 

c(2016). The applications of f are isolated from each children set. Next, we define 

the classes of mapping functions that are commonly found in tabular exploration 

tools as horizontal maps. 

 

Transformation Map 

Transformation functions are instances of the original higher-order map 

function usually found in functional programming languages (BIRD; WADLER, 
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1988 ch. 3), such as Ruby and Python, where the function f is applied to each item 

of the children set. The transformation Map is defined as: 

!"# !, !", ! = < !"#$, ! !"#$ > !"#$ ∈ !!" ! ⟶ ! !"#$ = 

{!(! !"#$ ! ), !( ! !"#$ [!),… , ! ! !"#$ ! }}  
The definition above applies f to each children set of each item in the level 

lv of the input set, represented as !!"(!). The structure of the input set is 

preserved, except for the mapping level, which is replaced by the results of f. 

Consider the following example: 

Example 1: let M = {<sm, {150.00, 160.50, 135.73}>} be a set of book 

prices in US$. The user can apply a transformation mapping to get the 

values in R$. Suppose the conversion function rs(value) = value * 3,50. 

{<rs, {525.00, 561.75, 475.05}>} ← M.Map(1, rs(%item)) 

Aggregation Map 

The aggregation function reduces the set of children of each item in the 

level lv to a single value, as defined by the following equation: 

!"# !, !", ! = < !"#$, ! !"#$ > !"#$ ∈ !!" ! ⟶ ! !"#$
= {!(! !"#$ ! , !(!(!"#$) ! , ! … ! ! !"#$ ! ,!"## … }} 

In the definition above, the function f is applied to each child item where the 

next application is the input of the previous application. As an example, for an 

item having two children, the application of f is !(!ℎ!"#1, !(!ℎ!"#2,!"##)). The 

null value is an initial value that will be combined with the next applications. This 

structure allows, for example, the computation of counts where each application 

adds one unit to the results of the previous applications, having the null value as 0 

(zero). The following examples illustrates aggregation maps: 

Example 2: counting elements: let P = {<sp, {p1, p2, p3}>} be a set 

of publications. count: I → N be an aggregator function that maps a set 

of items onto their number of elements. The expression bellow counts 

the number of items in P: 

{<rs, 3>} ← P.Map(1, count(%item)) 

Example 3: mapping sets with multiple levels: let Y = 

{<sy,{<2005,{p1, p2 ,p3 ,p4}>,<2006,{p5, p6, p7}>}>} be the set of 
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publications grouped by publication year. In order to map this group 

onto counts by year, we do: 

{<rs,{<2005, 4>,<2006, 3>}>} ← Y.Map(2, count(%item)) 

The structure of the aggregation maps is an adaptation of the higher-order 

function fold in functional programming (BIRD; WADLER, 1988 ch. 3) 

 

Combination Map 

The combination map applies a n-ary function f(item1,…,itemn) to 

combinations of size n of the children set of an item. Let f be a combination 

function and lv be the level to map. Let n be both the arity of f and the size of the 

combination, and c(item)n be n Cartesian products of the children set. The 

combinational map is defined as:  

!"# !, !", ! = < !"#$, ! !"#$ > !"#$ ∈ !!" ! ⟶ ! !"#$

= !(!!,… !!)
!!!,…!!!∈!(!"#$)!

>} 

 

Although the definition above comprises n Cartesian products of the 

children set c(item)n, this function is usually applied to a subset of c(item)n. For 

example, Tableau and SeCo tools allow the user to map items to values that are 

combinations of two or more attributes. In these tools, for example, the user can 

map a set of Orders having the columns {productId, clientId, amount, 

individualPrice} to a column Total = amount*individualPrice. Considering the 

children set of each order as the total set of values for all columns, the application 

of the map function is restricted to a subset !" ⊂ ! !"#$" ! where the children 

are values for the attributes amount and individualPrice. 

A variation of the Map operation is the Vertical Map, where the mapping 

function is applied to each edge of each path from the root to the leaves. 

 

Vertical Map 

 The VerticalMap applies the mapping function f to each edge of each path 

of the input set, where, the applications are independent among the paths. 

Therefore, for any input set ! =< !,≼!>, the aggregation, transformation, and 

combination mapping functions are defined as follows:  
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• Transformation:  

!"#$%&'()'* !, ! = 

{ < !! ,!! > < !! ,!! > = ! < !"#$! , !"#$! > ∧
!"#!∈!"#!!(!)

< !"#$! , !"#$! >∈ !"#ℎ}} 
 

• Aggregation:   

!"#$%&'()!" !, ! = 

{ < !! ,!! > < !! ,!! > 
!"#!∈!"#!!(!)

= ! < !"!, !"! >, !(… (!(< !"!!!, !"! >) ∧ < !"! , !"! >
∈ !"#ℎ ∧ 1 ≤ ! ≤ !"#ℎ ∧  1 ≤ ! ≤ |!"#ℎ|}} 

 

• Combination:  

!"#$%&'()'* !, ! = 

{ < !! ,!! > < !! ,!! > = ! < !"!, !"! >,… ,< !"!!!, !"! >
!"#!∈!"#!!(!)

 

∧ < !"! , !"! >∈ !"#ℎ ∧ 1 ≤ ! ≤ !"#ℎ ∧  1 ≤ ! ≤ |!"#ℎ|}} 

To the best of our knowledge, the usage of the VerticalMap function is often 

associated with the Correlate function. Therefore, we exemplify the application of 

this operation along with the correlation examples. 

 

Correlate  

Description: finds all intermediary pairs of items connecting all 

source items to all target items, i.e., the Cartesian product of the leaves 

of the source and the target sets. Each path from each source to each 

target item (many-to-many) is a different path in the result set tree. 

Signature: Correlate(A, B): R × R →R 

Formal Description: let A and B be two exploration sets, rs be the 

root item of the result set, and n stands for an arbitrary path length. Let 

Prd=lf(A)×lf(B) be the Cartesian product of the leaf items of A and B. 
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The set of paths connecting each pair < !"#$1, !"#$2 >∈ !"# is 

defined by: 

 

!"##$%&'$ !,! = {< !", < !!, !! >,… ,< !!!!, !! > > | 
∀!! , !!!! < !! , !!!! >∈ ! ∧ < !!, !! >∈ !"# ∧ 1 ≤ ! ≤ ! − 1} 

 

The result set of the Correlate operation is a set of paths from each origin to 

each target item where origins are the children set of the root and the targets are 

the leaves. 

Examples:  

Let T = {<st,{p1, p2, p3, p4}>} be set of scientific publications, A = 

{<sa,{a1, a2}>}, and F = {<sf, {f1, f2, f3}>} be a set of authors’ affiliations. Let 

:Author={<p1,a1>,<p2,a1>,<p3,a2>,<p2,a2>,<p3,a3>,<p4,a3>} be a relation 

between publications and authors. Let :Affiliation={<a1,f1>,<a2,f1>,<a3,f2>} 

be a relation between authors and affiliations. 

Example 1: find connections between the publication p1 and the 

affiliation f1: 

{<rs,<p1, <a1, f1>>>} ← Correlate({p1}, {f1}), where d1 stands for 

the path domain and {p1, a1, f1} is the path connecting the two items. 

Example 2: find connections between the publication p2 and 

affiliation f1: 

{<rs, <p2, {<a1, f1>, <a2, f1>}>>} ← Correlate({p2}, {f1}), where d1 

and d2 are the domains for the two paths connecting p2 and f1. 

We can notice that there are two paths from p2 to f1, one that passes through 

a1 (p2→ a1→ f1) and another that passes through a2 (p2→ a2→  f1).  

Example 3: find many-to-many connections between the sets {p2, p3} 

and {f1, f2}: 

{<rs, {<p2, {<a1, f1>,<a2, f1>}>, <p3, {<a2, f1>, <a3, f2>}>}>}← 

Correlate({p2, p3}, {f1, f2}), where the correlation is carried out for {p2, p3} 

×{f1, f2}. 

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA



 67 

Here we simplify the definition of the correlation operation in order to avoid 

excessive details on the operations model and keep it abstract. However, the 

correlation operation can be specialized with at least two additional patterns. The 

first parameter is the maximum distance between the origin and the target 

(ARAUJO et al., 2010) (HEIM; LOHMANN; STEGEMANN, 2010). The second 

parameter is a path pattern, which is matched with each path. The operation 

returns only the paths that match the pattern. A language for pattern definition can 

be found in (PRZYJACIEL-ZABLOCKI et al., 2011). A specialized signature for 

the Correlate operation is as follows: 

Correlate(A, B, Pattern, maxLengh) 

This chapter describes each exploration action as an atomic operator. 

However, we observed that some compositions of operators are very common 

among tools. For example, compositions of Pivot and Refine are implemented in 

the majority of faceted search tools. This composition is used to integrate 

navigation and filtering actions. Another example is Pivot and Rank, where, when 

the user navigates to a set of items, they are usually presented as an ordered set. 

Interesting combinations also occur with the Correlate operation, since the 

discovered paths can be refined, ranked, and transformed. When combined with 

the Refine operation, the user can apply filters that leverage the analysis of 

connection patterns between the exploration items. For example, suppose a set of 

pairs that connects two hypothetical politicians pol1 and pol2. The user could 

apply a filtering pattern to keep only paths that contain at least one intermediary 

node of type “Company”. Let a(%item) be the set of all ancestors. This task can 

be expressed as the following composition: 

 

Refine( 

Correlate({pol1}, {pol2}),  

contains(:Type[a(%item)], :Company) 

) 
The composition above filters all paths having at least one ancestor of the 

tail items typed as :Company. It is also possible to filter the paths using more 

complex path patterns. For example, filtering paths that comprise donations of 

Companies can be expressed by the following path pattern in the Refine operation: 
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Refine( 

Correlate({pol1}, {pol2}),  

<equals(pol1), equals(:Type, :Person), equals(:Type, :Company) 

,equals(:Type, :Donation), equals(pol2)> 

) 
The composition above filters paths where the politician pol1 is eventually 

associated to a person who owns a company that makes donations to the politician 

pol2.  

Another possibility for Correlate compositions is to apply Maps to its 

results. For example, the user may want to map each path to a higher level of 

abstraction, where the relations <itemi, itemj> of each path from the origins to the 

targets is mapped to a relation between their types. Let :Type be a hypothetical 

relation between items and their types. The following composition expresses this 

task:  

VerticalMap( 
Correlate({pol1},{pol2}), 
f(%<item1,item2>)=<:Type[item1],:Type[item2]> 

) 

If we consider the specialized case of correlation that accepts a path pattern 

– Correlate(A, B, Pattern, maxLenght) – The composition of VerticalMap with 

Correlate can be used to generate the abstract path patterns that can be the input 

of another correlation operation or a query over the dataset. In fact, this 

composition describes the Fusion tool (ARAUJO et al., 2010), where paths, such 

as the one presented in Figure 14, can be transformed into the abstract pattern of 

Figure 15 for future correlations. 

 
Figure 14 - Path example that correlates the Senator Christopher Bond with the state of 

Missouri in Gov.Track.Us8 dataset (ARAUJO et al., 2010) 

 
Figure 15 - Abstract path pattern that can be generated by a VerticalMap (ARAUJO et al., 

2010) 
                                                
8 https://www.govtrack.us/ 
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Moreover, other Correlate compositions can be considered to improve the 

expressivity of Fusion, such as the application of refinements over a set of 

abstract paths or intersections and differences to compare the similarities and 

differences between paths. One of the key contributions of the framework is to 

leverage such discussions under a common understanding of the operators. 

 

4.5.Reusing Explorations 

The reuse of explorations is achieved by reevaluating functional 

compositions against a different set of arguments for the operations’ parameters. 

Since the functional compositions are intentional descriptions of the exploration, 

the reevaluation of a functional composition is an intention-oriented operation.  

The exploration process is represented as a graph, where nodes are 

exploration states and edges are state transitions caused by the execution of an 

exploration operation. In order to reuse a composition, the user can select the 

whole graph or a sub-graph, define new values for some operation parameters and 

generate a new set of states by reevaluating the operations against the new 

arguments. Henceforth, we define the intentional description of exploration states, 

exploration graphs, and the Eval function for reuse operations. 

 

Definition 15: Intentional Description 

The evaluation of each exploration operation generates a new exploration 

state, which is defined by the operation name and the parameter attributions. The 

invocation of an exploration operation is a n-tuple of arguments for its evaluation 

in the form: 

<OperationId, Arg1,…, Argn> 

 The first element is the operation identifier, and the remaining arguments 

are values for the parameters in the same order of their definitions. Therefore, 

Arg1 is the value for the first parameter, which is always the input set, and Argn is 

the value for the nth parameter. This is equivalent to a set of ordered pairs of 

parameters and arguments:  

{<Operation, OperationId>, <Param1, Arg1>, …<Paramn, Argn>}. 

As an example, consider a initial state S0 whose evaluation generates an 

exploration set of publications P = {<sp, {p1, p2, p3}>} and the relations :Author 
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and :Affiliation that respectively relates publications with authors and authors with 

their affiliations. The state generated when the user pivots from S0 to the set of 

authors’ affiliations is expressed as follows: 

<Pivot, S0, :Author:Affiliation> ≡ S0.Pivot(:Author:Affiliation) 

In the pivot invocation above, we define the input exploration set by the id 

of the state whose evaluation generates it. Therefore, instead of using P, we use 

S0, which evaluates to the set P. The intentional description of the state is the tuple 

<:Pivot, S0, :Author:Affiliation>, where :Pivot is the identifier of the operation, S0 

is the value for the input state parameter, and :Author:Affiliation is the argument 

for the Relation parameter of the Pivot operation. The remainder of this section 

analyzes the operations exclusively from the point of view of the intentional 

descriptions. Therefore, we abstract the exploration trees generated by the 

execution of the operations and focus on their intentions and state dependency 

relations. We call these intentional descriptions Bindings. For the next definitions, 

let B be the set of all possible bindings for exploration. 

 

 Definition 16: Exploration Graph 

An exploration graph ! ⊆ !"# is any sub-graph of the state dependency 

relation Dep that composes an exploration process (Section 1.2). Consider the 

following script: 

1. S1← S0.Pivot(:Author) //pivot from publications to the set of authors 

2. S2← S1.Refine(equals(:Affiliation, “PUC-Rio”)) //filter authors affiliated 

to PUC-Rio 

3. S3← S2.Group(:ResearchArea) // Group PUC-Rio authors by research 

area 

In the exploration above, S1, S2, and S3 stand for exploration states in the 

form <OperationId, Arg1,…, Argn>. The exploration process E=<St, Dep> is 

represented as follows: 

E=<{S0, S1, S2, S3}, {<S0, S1>, <S1, S2>, <S2, S3>}> 

The compositions of the exploration process E are {<S0, S2>}, {<S1, S2>} 

and {<S2, S3>}. Next we define the Eval operation for reevaluating exploration 

graphs. 
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Eval  

Description: the Eval operation receives a composition ! ⊆ !"# and 

a set of bindings for the states and generates a new set of exploration 

states that are reevaluations of the operations against the set of 

bindings. 

Signature: Eval(G, SB): Depn
 × (St×B)n → Stn, such that, G is an 

exploration sub-graph and SB is a set of pairs in the form 

<State,Bindings> that represents states in the first position and the 

new bindings for their reevaluations in the second position. 

Formal Description: we define this operation as the following 

algorithm.  Let heads(C) be the starting states of the sub-graph, i.e., the 

states whose input state is outside the sub-graph being reevaluated. Let 

tails(C) be the ending states of the sub-graph, i.e., states that are not 

input of any other state of the composition. Let EvalState be the 

function that receives a state, traverses the composition, starting from 

the state, and reevaluates each operation against the new bindings if 

they are defined. The Eval and the EvalState functions are defined as 

follows: 

 
FUNCTION Eval(C, SB) 

resultStates ← empty array 
FOR ALL state in tails(C) 

resultStates.push(call EvalState(state, SB)) 
END FOR 
RETURN resultStates 

END FUNCTION 
 

FUNCTION EvalState(state, SB) 
Inputs ← empty array 
IF state in heads(C) THEN 

Inputs ← state.inputs 
ELSE 

FOR all input in state.inputs 
Inputs.push(call EvalState(input, SB)) 

END FOR 
END 
IF there is a binding b in SB for state 

Operation ← b.operation 
RETURN call Operation(Inputs, b) 

ELSE 
RETURN call Operation(Inputs, state.bindings) 
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END IF 
END FUNCTION 

 

In the algorithm above, state.inputs refer to the input states of a state, 

state.bindings denotes the bindings of the state, and b.operation is a reference to 

the exploration operation described in the state bindings b. The tail states are the 

starting points of the reevaluation. Each tail state is passed to the EvalState 

function, which recursively traverses the graph and executes the operations. Each 

execution returns a new state that is used as input for the next state. The process 

stops when all states in the sub-graph are reevaluated. Moreover, before 

reevaluating a state, the algorithm verifies if there are new binding definitions for 

this state. If so, the operation is executed for the new bindings b – call 

Operation(Inputs, b). Otherwise, the operation is execute with the same bindings 

but, having the new states as inputs – call Operation(Inputs, state.bindings). 

As an example, consider the following composition that compares the 

research areas in common between researchers affiliated to PUC-Rio and UFRJ. 

Let the state S1 = <Refine, equals, :Type, “Author”> be a initial state, which 

generates a set of authors {a1, …, an} by the evaluation of a Refine operation. The 

steps are as follows: 

1. S2 ← S1.Refine(equal(:Affiliation, “PUC-Rio”)) 

2. S3 ← S1.Refine(equal(:Affiliation, “UFRJ”)) 

3. S4 ← S2.Pivot(:ResearchArea) 

4. S5 ← S3.Pivot(:ResearchArea) 

5. S6 ← S4.Intersect(S5) 

In order to reuse the composition to obtain a comparison of research areas 

for researches from PUC-RS and UFMG, the reevaluation function is as follows: 

NewStates ← Eval({<S2, S3>, <S2, S4>, <S3, S5>, <S5, S6>}, {<S2, Refine, equals, 

:Affiliation, “PUC-RS”>, <S3, Refine, equals, :Affiliation, “UFMG”>} ) 

In order to simplify the representation of the Eval operation, we use a 

simplified notation expressing only the argument replacements defined by the 

user, represented by the replacement operator “$”. The reevaluation above is also 

represented as: 

NewStates ← {S2..6}.Eval(S2.”PUC-Rio”$”PUC-RS”, 

S3.”UFRJ”$”UFMG”) 
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Figure 16 shows a visual representation of the states and dependencies and 

the order of state reevaluations. 

 

Figure 16 - Exploration graph for finding research areas in common between researchers 

affiliated to PUC-Rio and UFRJ with reevaluation ordering. 

The highlighted nodes form the sub-graph that will be reevaluated. The head 

states of the sub-graph are the states S2 and S3 since their inputs are outside the 

reevaluation scope: heads(C) = {S2, S3}. The tail state is the state S6 since it is not 

the input of any state in the sub-graph being reevaluated: tails(C)={S6}. 

Therefore, the Eval operation traverses the sub-graph starting from S6. When a 

head node is reached, it is reevaluated for the new bindings (if defined) and the 

result state will be the input for the next reevaluation recursively. The intersection 

executed in S6 is the last state to be reevaluated, since it depends of the 

reevaluation of all the other nodes in the sub-graph. 
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