5 Apresentação e Análise dos Resultados

5.1. Introdução

Neste capítulo são apresentados e analisados os resultados obtidos nos ensaios dos seis consoles, comparando-os com os valores teóricos dos modelos apresentados na revisão bibliográfica do capítulo 3. Os valores efetivos das resistências do concreto, aço e CFC são analisados de acordo com os ensaios realizados nestes materiais, cujos resultados são mostrados no item 4.2 do Capítulo 4.

5.2. Rupturas dos Consoles

5.2.1. Modo de Ruptura

Em todos os consoles ensaiados as fissuras das duas faces desenvolveram-se com a mesma configuração. A primeira fissura de flexão que se localizou na junção do pilar com o console. Após o desenvolvimento desta fissura e com o aumento da força aplicada, surgiu uma fissura por fendilhamento da biela. Esta começou no bordo da placa de apoio e terminou no canto inferior do console, ocorrendo o esmagamento do concreto na parte inferior da biela, na linha de interseção com o pilar (Figura 5.1).

A Tabela 5.1 apresenta as forças para as quais surgiram as três primeiras fissuras de flexão e da biela; a Figura 5.2 um gráfico de barras comparando a força para as quais surgiram a primeira fissura de flexão; a Figura 5.3a apresenta a ruptura por arrancamento do CFC; a Figura 5.3b mostra a ruptura por fendilhamento da biela.

Nota-se que os consoles da série horizontal apresentaram resultados superiores de força para a abertura da primeira fissura de flexão; o console RUH1 apresentou um aumento de 31%, RUH2 de 37% e RUH3 de 38%. Já a série diagonal o console RUD1 apresentou um aumento de 15% e RUD2 de 23%.

Figura 5.1 – Tipos de fissuras.

Tabela 5.1 – Força (kN) das primeiras fissuras dos consoles.

Console		Fissu	Fissuras de Flexão			Fissuras que formam a Biela		
		1 ^a	2 ^a	3 ^a	1 ^a	2 ^a	3 ^a	
Cons. Ref.		130	150	180	205	226	323	
011	RUH1	170	240	370	250	287	325	
Serie	RUH2	178	340	-	234	254	268	
	RUH3	180	250	_	235	340	380	
Série	RUD1	150	180	340	240	248	_	
D	RUD2	160	218	223	238	268	338	

Figura 5.2 – Comparação entre as forças de fissuração.

(a)

(b)

Figura 5.3 – (a) ruptura por destacamento da fibra; (b) ruptura por fendilhamento da biela.

No console de referência as fissuras se desenvolveram e tiveram sua abertura aumentada de modo significativo com o incremento da força. Durante o ensaio houve uma inclinação da aplicação da força resultando numa componente da força menor do que a lida. A ruptura ocorreu por escoamento da armadura. Ressalta-se que o console de referência apresentou a primeira fissura com carregamento inferior aos consoles reforçados com CFC.

Nos consoles da série horizontal e diagonal ocorreram a ruptura por escoamento da armadura do tirante. Observou-se também que o CFC enrijece a peça, evitando a abertura excessiva das fissuras, porém, quando essa descola o aumento da abertura das fissuras é imediato.

No console RUH1 não houve arrancamento do CFC, já no console RUH2 ocorreu o escoamento da armadura do tirante juntamente com o arrancamento do CFC em uma das faces. Por sua vez no console RUH3 o CFC não descolou.

Na série diagonal o console RUD1 apresentou o escoamento da armadura do tirante juntamente com o arrancamento do CFC, e no console RUD2 ocorreu o escoamento da armadura do tirante e o CFC decolou nas duas faces simultaneamente.

5.2.2. Força de Ruptura

A Tabela 5.2 apresenta os valores da força máxima observada nos seis consoles ensaiados.

Os consoles RUH1 e RUH2 foram em média 13% mais resistentes do que o console de referência. O valor médio de resistência foi de 408,38 kN, com o desvio padrão de 50,30 kN e coeficiente de variação de 12,32%. Os dois consoles da série diagonal foram em média 13% mais resistentes do que o console de referencia. O valor médio de resistência foi de 409,03 kN, com o desvio padrão de 6,87 kN e o coeficiente de variação de 1,68%.

As duas séries apresentaram resultados bem próximos.

O aumento da resistência máxima para série horizontal foi de 22% e para série diagonal foi de 14%.

Consoles		V _u (kN)	$\frac{V_u}{V_{u, ref}}$	Tipos de Ruptura
C	ons. Ref.	362,49	_	escoamento da armadura de aço
	RUH1	372,81	1,03	escoamento da armadura de aço
Série H	RUH2	443,94	1,22	escoamento da armadura de aço
	RUH3	393,48	1,09	escoamento da armadura de aço
Sária D	RUD1	413,89	1,14	escoamento da armadura de aço
Serie D	RUD2	404,17	1,11	escoamento da armadura de aço
RUH1	Média	408,38	1,13	
е	Desv. Pad.	50,30	0,14	
RUH2	Coef. Var. (%)	12,3	32	
	Média	409,03	1,13	
Série D	Desv. Pad.	6,87	0,02	
	Coef. Var. (%)	1,6	8	

Tabela 5.2 – Valores da força última.

A Figura 5.4 apresenta um gráfico de barras comparando-se as forças últimas de ruptura.

Figura 5.4 – Comparação entre as forças últimas de ruptura.

5.3. Deformações Específicas nas Armaduras de Aço e CFC

5.3.1. Aço

As Figuras 5.5 a 5.10 mostram os diagramas força *vs.* deformação específica das armaduras de aço internas de todos os consoles. Os ERR E3 e E6 estavam localizados nos estribos e os ERR E1, E2, E4 e E5 estavam colados nas armaduras do tirante.

Os ERRs E3 e E6 que estavam posicionados na armadura transversal dos consoles apresentaram pequena deformações específicas. Essa armadura é necessária apenas para auxiliar a construção das armaduras principais e no confinamento do concreto da biela.

Após a fissuração da biela nos consoles as deformações específicas foram excessivas, mas ainda apresentando um comportamento linear.

A partir dos ensaios de resistência à tração da barra de aço $\phi = 10 \text{ mm}$ apresentado no capítulo 4, foi determinado o valor médio da deformação específica de escoamento de 2,92‰. Este valor é adotado nas Figuras 5.5 a 5.10 como a deformação de escoamento média da armadura do tirante. Quando as deformações específicas medidas pelos EERs E1, E2, E4 e E5 atingem 2,92‰ ocorre o escoamento teórico da armadura do tirante.

Figura 5.5 – Força x deformação específica das armaduras internas do console de referência.

Figura 5.6 – Força x deformação específica das armaduras internas do console RUH1.

Figura 5.7 – Força x deformação específica das armaduras internas do console RUH2.

Figura 5.8 – Força x deformação específica das armaduras internas do console RUH3.

Figura 5.9 – Força x deformação específica das armaduras internas do console RUD1.

Figura 5.10 – Força x deformação específica das armaduras internas do console RUD2.

A Tabela 5.3 apresenta os valores das forças aplicadas nos consoles quando a deformação específica de escoamento média, igual a 2,92‰, é alcançada nos extensômetros E1, E2, E4, E5.

		V.			
	E1	E2	E4	E6	(kN)
Cons. Ref.	311,42	331,44	293,34	302,69	362,49
RUH1	329,25	*	282,87	282,64	372,81
RUH2	340,70	403,09	367,25	334,15	443,94
RUH3	383,10	385,60	317,67	**	393,48
RUD1	360,58	372,65	324,28	289,65	413,89
RUD2	342,46	374,56	309,38	323,34	404,17

Tabela 5.3 – Deformações específicas efetivas nas armaduras de aço.

* extensômetro perdido;

** extensômetro não alcançou a deformação específica de escoamento média.

As Figuras 5.11 a 5.15 mostram os diagramas força *vs.* deformação específica das armaduras de CFC de todos os consoles.

Figura 5.11 – Força x deformação específica do CFC do console RUH1.

Figura 5.12 – Força x deformação específica do CFC do console RUH2.

Figura 5.13 – Força x deformação específica do CFC do console RUH3.

Figura 5.14 – Força x deformação específica do CFC do console RUD1.

Figura 5.15 – Força x deformação específica do CFC do console RUD2.

Para determinar os valores das deformações específicas efetivas dos reforços de CFC, foi utilizado o critério de maior força obtida nos ensaios dos consoles. A Tabela 5.4 apresenta esses valores e a localização dos EER.

Consoles		V _u (kN)	<i>Е</i> _{f,ef.} (‰)	Localização
	RUH1	372,81	0,647	F4
Série H	RUH2	443,94	2,256	F2
	RUH3	393,48	2,677	F2
Série D	RUD1	413,89	5,673	F5
	RUD2	404,17	1,903	F4

Tabela 5.4 – Deformações específicas efetivas nos reforços do CFC.

De acordo com os resultados dos ensaios de resistência à tração do compósito de fibras de carbono apresentados no capítulo 3, o valor médio do módulo de elasticidade encontrado foi de 255,17 GPa e a deformação específica foi de 11,636‰. Com esses valores foram calculados a tensão nas armaduras de reforço em CFC e o fator de efetividade do CFC, conforme as fórmulas apresentadas no capítulo 3. O fator de efetividade v_f é a razão entre a deformação específica efetiva no reforço $\varepsilon_{f,ef}$ e a deformação específica obtida

nos ensaios de tração axial $\varepsilon_{f,u}$; a tensão nas armaduras é obtida por meio da multiplicação da deformação específica efetiva no reforço $\varepsilon_{f,ef}$ pelo módulo de elasticidade obtido nos ensaios de tração axial $E_{f,exp}$.

A Tabela 5.5 apresenta os valores correspondentes às tensões nas armaduras do CFC em cada console e os valores do fator de efetividade.

	Consoles	f _f (MPa)	V_{f}
	RUH1	165,09	0,06
Série H	RUH2	575,66	0,19
	RUH3	683,09	0,23
Série D	RUD1	1447,58	0,49
	RUD2	485,59	0,16

Tabela 5.5 – Tensão na armadura nos reforços de CFC e fator de efetividade.

O fator de efetividade do reforço para o console RUH1 apresentou resultado inconsistente em relação aos demais consoles, devido à localização do extensômetro numa área onde a resina polimérica não obteve a cura necessária.

O valor médio do fator de efetividade v_f do CFC, sem considerar os valores dos consoles RUH1 e o RUD1, é igual a 0,20. Esse valor foi usado nos cálculos da força teórica última. SILVA FILHO (2007) e SPAGNOLO JUNIOR (2008) chegaram a resultados superiores a este valor, mas para vigas reforçadas à torção e à força cortante, respectivamente.

5.4. Deformações Específicas na Biela

As deformações específicas principais na biela foram calculadas pela expressão:

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \frac{1}{2} \sqrt{(\varepsilon_x - \varepsilon_y)^2 + (2\varepsilon_{45^\circ} - \varepsilon_x - \varepsilon_y)^2}$$
(5.1)

onde

$$\mathcal{E}_{1,2}$$
 – deformações específicas principais;

 ε_x – deformação específica na direção x, $\alpha = 0^{\circ}$;

$$\varepsilon_y$$
 – deformação específica na direção y, $\alpha = 90^{\circ}$;

 $\mathcal{E}_{45^{\circ}}$ – deformação específica α =45°.

No capítulo 4 foi mostrada a localização dos extensômetros em cada face do console. A Tabela 5.6 mostra os resultados das deformações específicas principais da biela.

Tabela 5.6 – Deformações específicas lidas na superfície do concreto dos consoles para força de ruptura.

	Console	\mathcal{E}_{x} (‰)	E _y (‰)	€ _{45°} (‰)	<i>E</i> ₁ (‰)	<i>E</i> ₂ (‰)
	Ref.	0,025	-0,268	-0,304	0,113	-0,356
sa	RUD1	-0,496	-0,028	-0,43	0,026	-0,550
oɓn	RUD2	-0,350	0,0070	-0,3500	0,081	-0,424
e R	RUH1	0,124	-0,189	-0,529	0,488	-0,553
Fac	RUH2	_	0,345	-0,490	_	_
	RUH3	-0,138	-0,226	-0,420	0,060	-0,42
	Ref.	-0,303	-0,066	-0,34	0,011	-0,380
_	RUD1	_	-0,069	0,754	_	_
lisa	RUD2	2,970	-0,1160	-0,4920	3,889	-1,035
ace	RUH1	_	-0,195	-0,813	_	_
LL.	RUH2	-0,329	-0,007	-0,357	0,080	-0,416
	RUH3	-	-0,653	-0,270	-	_

5.5. Análise do ângulo de Inclinação da Biela

Para o estudo da biela comprimida foram obtidos em cada console dois diferentes ângulos de inclinação para a mesma: o ângulo das fissuras θ_{CR} e o ângulo da deformação específica principal θ_{ε} . Estes ângulos foram analisados para as duas faces do console.

O ângulo θ_{CR} foi obtido através da utilização de um programa de computador para determinação gráfica (Figura 5.16). A partir de cada foto digital dos consoles foram realizadas medições dos ângulos, sendo que o ângulo θ_{CR} foi obtido usando-se a média dos valores lidos. Os valores obtidos são apresentados na Tabela 5.7.

Figura 5.16 – Ângulo θ_{CR} medido por meio digital.

O ângulo θ_{ε} para cada lado do console foi determinado em função das deformações específicas lidas pelos EER (roseta tripla), e foi calculado por meio das expressões da Resistência dos Materiais. A Figura 5.17 ilustra a representação destes ângulos.

$$tg 2\alpha_{I,II} = \frac{2\varepsilon_{45^{\circ}} - \varepsilon_{0^{\circ}} - \varepsilon_{90^{\circ}}}{\varepsilon_{0^{\circ}} - \varepsilon_{90^{\circ}}}$$
(5.2)

$$\alpha_{I,II} = \frac{1}{2} \operatorname{arctg} \left(\frac{2\varepsilon_{45^{\circ}} - \varepsilon_{0^{\circ}} - \varepsilon_{90^{\circ}}}{\varepsilon_{0^{\circ}} - \varepsilon_{90^{\circ}}} \right)$$
(5.3)

Figura 5.17 – Ilustração do ângulo da biela.

A Figura 5.18 apresenta os gráficos dos ângulos da biela θ_{ε} vs. força aplicada no console. Para a execução dos gráficos foi utilizada a força inicial de 100 kN até a força de ruptura de cada console. Todos os consoles sem exceção apresentaram fissuras na face lisa que cortaram os extensômetros, prejudicando a leitura do ângulo θ_{ε} . Já na face rugosa dos consoles RUH1 e RUH2 os extensômetros foram perdidos.

Figura 5.18 – Ângulo da biela *vs* força: (a) console de referência; (b) console RUD1; (c) console RUD2; (d) console RUH1; (e) console RUH2; (f) console RUH3.

A Tabela 5.7 apresenta os resultados dos ângulos θ_{ε} e θ_{CR} variando em torno de 60° nas duas faces do console.

Tabela 5.7 – Ângulos θ_{cr} e θ_{ε} .

Conso	les	θ_{cr}	θ_{e}
	Ref.	63,43°	64,04°
	RUD1	62,18°	_
Face lisa	RUD2	66,29°	-
i dee iisd	RUH1	56,66°	_
	RUH2	62,48°	63,39°
	RUH3	53,97°	55,21°
	Ref.	55,71°	64,36°
	RUD1	60,64°	64,63°
Eaco rugosa	RUD2	67,17°	66,72°
i ace i ugosa	RUH1	58,57°	_
	RUH2	52,70°	-
	RUH3	52,43°	41,52°

5.6. Deslocamentos

Para análise do deslocamento real do console foi estudada a relação entre o deslocamento do pilar e do console, como mostra a Figura 5.19. A expressão para se obter o valor do deslocamento no console é:

$$\frac{\delta'}{h} = \frac{\delta''}{l}$$

$$\delta'' = \delta' \times \frac{l}{h}$$
(5.4)
(5.5)

As Figuras 5.20 a 5.25 mostram os diagramas força *vs.* deslocamentos de todos os consoles. O TD1 localiza–se na parte superior a 5 cm do topo do pilar; o TD2 localiza–se na parte inferior a 5 cm da base do pilar e o TD3 localiza–se no console a 2 cm da face lateral.

Analisando-se os três deslocamentos dos consoles nota-se que o TD2 em todos os gráficos não se deslocou com o aumento da força vertical. O TD1 e o TD3 se deslocaram no sentido negativo quando a força foi aplicada no pilar e no sentido positivo quando a força foi aplicada no console, indicando uma rotação na parte superior do console durante o ensaio.

Figura 5.19 – Esquema dos deslocamentos dos consoles.

Figura 5.20 – Força x deslocamentos do console de referência.

Figura 5.21 – Força x deslocamentos do console RUH1.

Figura 5.22 – Força x deslocamentos do console RUH2.

Figura 5.23 – Força x deslocamentos do console RUH3.

Figura 5.24 – Força x deslocamento do console RUD1.

Figura 5.25 – Força x deslocamento do console RUD2.

5.7. Análise dos Modelos Teóricos

5.7.1. Modelo de Bielas e Tirantes

Neste item são apresentados os resultados da aplicação do modelo de Bielas e Tirantes proposto no capítulo 3 para calcular a força vertical última aplicada ao console. Para a análise de todas as peças foram adotados os mesmos valores para os seguintes parâmetros:

- distância da face do pilar até a aplicação da força, a = 0,24 m;
- largura, b = 0,25 m;
- altura h correspondente para a armadura de φ=10mm, h=0,43 m, para a primeira camada de φ = 6,3mm, h = 0,2215 m e para a segunda camada de φ = 6,3mm, h = 0,1065 m;
- tensão de escoamento das amaduras de $\phi = 6,3$ mm, $f_y = 526,41$ MPa, $\phi = 10$ mm, $f_y = 633,12$ MPa;
- área de aço das armaduras de ϕ =10mm; A_s=3,14cm², ϕ =6,3mm, A_s =1,24cm²;
- módulo de elasticidade do CFC, E_f = 255,17 GPa.

Adotando-se a expressão 3.9 tem-se o valor da tração *T* para as armaduras principais e secundárias, 198,90 kN e 32,92 kN, respectivamente (Figura 5.26).

Figura 5.26 – Representação das armaduras analisadas por meio do modelo de Bielas e Tirantes.

Substituindo-se o valor de T na expressão 3.8 tem-se o valor da força vertical última V= 329,94 kN, correspondente às armaduras internas de todos os consoles.

A parcela do CFC é analisada de acordo com a Figura 3.9, adotando-se as expressões 3.11 e 3.12. Para o valor da força vertical última adotou-se a expressão 3.10, onde são somadas as parcelas das contribuições do aço e do CFC; esses valores são apresentados na Tabela 5.8.

Cons	soles	A _f (cm²)	$\mathcal{E}_{f,ef.}$	V _{exp er.} (kN)	V _{teorica} (kN)	V _{exp er.} V _{teórica}
R	ef.	_	_	362,49	329,94	1,10
	RUH1	0,366	0,647	372,81	338,88	1,10
Série H	RUH2	0,366	2,256	443,94	364,40	1,22
	RUH3	0,549	2,677	393,48	391,27	1,01
Série D	RUD1	0,366	5,673	413,89	352,20	1,18
Serie D	RUD2	0,366	1,903	404,17	340,66	1,19

Tabela 5.8 – Resultados das forças últimas do modelo de Bielas e Tirantes.

No console de referência a razão entre a força experimental e a teórica é igual a 1,10. Isto significa que o valor experimental apresenta um resultado 10% superior ao valor estimado pelo modelo teórico. Este valor pode variar devido a armadura secundária não estar instrumentada.

Como o console RUH1 tem apenas uma camada de CFC, o acréscimo da força de ruptura é pequeno e o valor da razão $V_{exper.}/V_{teórica}$ é igual ao do console de referência. O console RUH2 tem a mesma taxa geométrica do console RUH1, porém, a sua configuração permite um aumento da força de ruptura devido a um maior braço de alavanca. Nesse caso a força de ruptura experimental foi 22% maior do que a teórica.

Comparando-se o console RUH3 com o console RUH2 tem-se pelo modelo teórico que a força de ruptura do console RUH3 é maior, porém, experimentalmente isso não ocorreu devido às duas camadas de CFC apresentarem eficiência superior a estimada pelo método de cálculo. A razão $V_{exper.}/V_{teórica}$ do console RUH3 foi igual a 1,01, demonstrando boa concordância entre os resultados teóricos e experimentais.

Os consoles RUD1 e RUD2 apresentaram resultados da razão $V_{exper.}/V_{teórica}$ próximos. Isto indica que o modelo teórico representa adequadamente as diferentes configurações dessa série. Esses valores são iguais a 1,18% e 1,19% para os consoles RUD1 e RUD2, respectivamente.

5.7.2. Modelo Cinemático

Neste item é apresentado o modelo cinemático proposto no capítulo 3 para calcular a força vertical última aplicada ao console. Para a análise de todas as peças foram adotados os mesmos valores para os seguintes parâmetros:

- distância da face do pilar até a aplicação da força, a = 0,24 m;
- largura, b=0,25 m;
- altura total, h=0,43 m;
- tensão de escoamento das armaduras de ϕ =6,3mm, f_y =526,41 MPa, ϕ =10mm, f_y =633,12MPa;
- tensão de tração do concreto, f_{t.exp}=3,52MPa;
- tensão de tração do CFC, $f_f = 2969,16$ MPa;
- área de aço total, soma das áreas das barras da amadura do tirante (4\u00f610mm) e da armadura de costura (4\u00f663mm), A_s=4,4cm²;
- taxa geométrica das armaduras, referente a área de aço total, $\rho = 0.41$ %.

Adotou-se o fator de efetividade do concreto à tração v_t =0,50, visto não existir uma expressão para esse parâmetro, sendo este valor recomendado por

NIELSEN (1999). O valor médio do fator de efetividade do CFC v_f , com exceção do console RUH1 e RUD1, foi igual a 0,20. A resistência a compressão do concreto foi obtida de acordo com o prescrito capítulo 4, e o fator de efetividade do concreto de acordo com o prescrito no capítulo 3.

O fator de efetividade do CFC varia de acordo com a área de contato na lateral do console reforçado. Caso o console esteja com toda a sua lateral reforçada com CFC, a força de ruptura aumenta até um nível em que o CFC seja mais solicitado, aumentando o fator de efetividade v_f .

Os ensaios dos consoles foram realizados após 138 dias da concretagem, em um período de duas semanas. Desta forma o valor médio dos ensaios à compressão dos corpos-de-prova acima dos 100 dias foi de 32,07 MPa. Este valor foi adotado em todas os espécimes.

A Tabela 5.9 apresenta os parâmetros utilizados nos cálculos.

Consoles		^f _c (MPa)	A _r (cm²)	d_{f}	V _c
Re	ef.	32,07	—	—	0,3367
	RUH1	32,07	0,366	0,355	0,3367
Série H	RUH2	32,07	0,366	0,3925	0,3367
	RUH3	32,07	0,549	0,3925	0,3367
Série D	RUD1 RUD2	32,07 32,07	0,366 0,366	0,23 0,33	0,3367 0,3367

Tabela 5.9 – Variáveis do modelo cinemático.

Os valores das dimensões x e y são apresentados na Tabela 5.10; para se obter esses parâmetros foram utilizadas as expressões 3.16 e 3.17.

Tabela 5.10 – Valores das dimensões x e y.

Cons	oles	x (m)	у (m)
Re	ef.	0,110	0,145
	RUH1	0,114	0,152
Série H	RUH2	0,114	0,152
	RUH3	0,117	0,152
Sária D	RUD1	0,112	0,152
Serie D	RUD2	0,113	0,152

A Tabela 5.11 apresenta os valores da força vertical última experimental, teórica e a razão entre essas forças. Foi utilizada a expressão 3.22 para o cálculo da força vertical teórica.

Tabela 5.11 - Força vertical última.

Consoles		V _{exper.} (kN)	V _{teorica} (kN)	V _{exper.} V _{teórica}
Ref.		362,49	344,26	1,05
	RUH1	372,81	357,04	1,04
Série H	RUH2	443,94	359,34	1,24
	RUH3	393,48	366,65	1,07
Série D	RUD1	413,89	349,33	1,18
	RUD2	404,17	355,50	1,14

Os resultados obtidos pelo modelo cinemático foram inferiores aos valores obtidos experimentalmente. Comparando-se o console RUH1 com o console RUH2 verifica-se que ambos tem a mesma área de reforço, porém, o RUH2 apresenta uma altura efetiva maior devido à concentração de área reforçada na parte superior, o que conduz a uma maior força de ruptura teórica. Contudo, o valor deste aumento, comparando-se os valores experimentais foi muito maior.

Comparando-se o console RUH2 com o console RUH3 verifica-se que há um pequeno aumento na força teórica, visto que o RUH3 tem uma maior área reforçada e ambos apresentam a mesma altura efetiva. Com base nos valores experimentais observa-se que há uma redução na força de ruptura do RUH3, devido a não aderência do CFC com o concreto em algumas regiões.

Comparando-se o console RUD1 com o console RUD2 verifica-se que há um pequeno aumento na força teórica, visto que o RUD2 tem a mesma área de reforço, porém, com uma altura efetiva maior. Experimentalmente ocorreu o inverso, porém como os resultados são muito próximos, é possível ter ocorrido alguma imperfeição durante um dos ensaios que gerou essa diferença.

Analisando-se os dados da Tabela 5.11 observam-se dois grupos de valores da razão entre a força vertical última experimental e a teórica. No primeiro estão contidos os valores 1,05, 1,04 e 1,07 dos consoles de referência, RUH1 e RUH3, respectivamente. Nos dois últimos ocorreram problemas com aderência do CFC, pois a resina polimérica não curou completamente em algumas regiões.

O segundo grupo são representados pelos consoles RUH2, RUD1 e RUD2. Estes consoles apresentam um valor médio de 1,19 para a razão entre a força vertical última experimental e a teórica. Portanto, os resultados experimentais são 19% superiores ao estimado pelo modelo cinemático, admite-se que neste caso ocorre a perfeita aderência entre o CFC e o concreto.

5.8. Comparação entre os Valores Experimentais e os Valores Teóricos Obtidos pelo Modelo Cinemático e Modelo de Bielas e Tirantes

A Figura 5.27 apresenta a comparação entre os resultados dos modelos teóricos estudados. Em todos os casos os dois modelos teóricos tiveram a razão entre a força experimental e teórica superior ou igual a 1,00.

No modelo cinemático os consoles de referência, RUH1 e RUD2 apresentaram valores da razão $V_{exper.}/V_{teórica}$ iguais a 1,05, 1,04 e 1,14, respectivamente. Estes valores são mais próximos de 1,00 do que os valores estimados pelo método de Bielas e Tirantes. O console RUD1 é o único que apresenta o mesmo valor da razão $V_{exper.}/V_{teórica}$ no dois modelos teóricos.

O consoles RUH2 e RUH3 apresentaram valores da razão $V_{exper.}/V_{teórica}$ iguais a 1,22 e 1,01, respectivamente. Sendo o modelo de Bielas e Tirantes o que apresenta resultados mais próximos de 1,00.

Os valores médios da razão $V_{exper.}/V_{teórica}$ dos métodos de cálculo estudados são muito próximos, a constar 1,13 e 1,12 para o modelo de Bielas e Tirantes e o modelo cinemático, respectivamente. Sendo assim ambos os modelos estão aptos a estimar a força de ruptura dos console de concreto armado reforçados com compósitos de fibras de carbono.

Figura 5.27 – Comparação das razões entre a força última experimental e as forças últimas teóricas obtidas nos dois modelos teóricos.