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From separated to joint variables: the hurdle-race problem

We consider a general provisioning problem, where an economic agent

aims to determine an initial amount that would be needed in order to meet

a series of future payment obligations with a sufficiently large probability. We

assume a “hold-to-maturity” (actuarial) approach: the initial provision is such

that upon investing it in a portfolio one is always able in the future to pay-

off the cash flows. In contrast, the “available-for-sales” (financial) framework

admits the possible fall in the arbitrage-free price of the series of cash flows

over a given time period and use it as means of assessing risk and establishing

buffers. Although the latter approach is at the core of the latest regulatory

documents such as Basel II and Solvency II, it can induce crashes when they

would not otherwise occur. Furthermore, we believe better risk measures are

available, such as the so-called coherent risk measures [ADEH]. This does not

mean that the financial approach is wrong but the actuarial framework is at

least a complementing alternative. For a detailed criticism of those regulatory

documents we refer the reader to [DEGK].

In [VDGK], the authors study the provisioning problem and impose

minimum requirements of available capital at each period, called hurdles. In

their framework, hurdles are modeled as separated chance constraints with

given reliability levels, one for each period of time. They coined the term hurdle-

race problem to describe the provisioning problem with hurdles. We start by

summarizing the approach proposed in [VDGK] and stating their main result.

Then we propose an alternative chance constrained model which requires that

all the obligations should be met jointly with a given reliability level. To this

end we make use of a joint chance constraint and refer to the problem as

the joint hurdle-race problem. We propose to solve the corresponding problem

using SAA and to compare the results with [VDGK]. In addition, we consider

another generalization in which the hurdles are not determined by the model

builder but are defined as discounted values of future obligations by stochastic

risk-free rates.

DBD
PUC-Rio - Certificação Digital Nº 0510535/CA



5.1

The hurdle-race problem and comonotonicity

An insurer wants to determine the initial provision R0 required to meet

n future obligations, of costs α1, . . . , αn at fixed, prescribed times t1, . . . , tn, for

t ∈ [0, tn]. Among obligations, the insurer may invest his capital, with random

returns. More precisely, the stochastic return process (Y1, . . . , Yn) such that 1

unit at time 0 grows to exp(Y1 + · · ·+ Yj) at time tj determines the evolution

of capital Rj in time,

Rj = Rj−1 exp(Yj) − αj , j = 1, . . . , n. (5-1)

In [VDGK], the authors impose probabilistic constraints (the hurdles) that

have to be met every time tj, that is, provision Rj has to be larger than a

deterministic value Vj with high probability 1−εj. They formulate the hurdle-

race problem as follows:

R0 = Min
R0≥V0

R0 (5-2)

Prob{Rj ≥ Vj |R0} ≥ 1 − εj , j = 1, . . . , n

for given hurdles V0, V1, . . . , Vn and given tolerances ε1, ε2, . . . , εn ∈ [0, 1].

To determine the optimal provision R0 in (5-2) set

S[0,j] =

j−1
∑

i=1

αi exp(−Y1 − · · · − Yi) + (Vj + αj) exp(−Y1 − · · · − Yj), (5-3)

the stochastically discounted value of the future obligations in the restricted

time period [0, j]. Theorem 1 in [VDGK], below, gives the optimal solution of

problem (5-2) in terms of the quantiles of the distributions of S[0,j].

Theorem 7 The optimal initial provision R0 defined in (5-2) is given by

R0 = Max{V0, F
−1
S[0,1]

(1 − ε1), F
−1
S[0,2]

(1 − ε2), . . . , F
−1
S[0,n]

(1 − εn)},

where FS[0,j]
is the cumulative distribution function of S[0,j], j = 1, . . . , n.

A basic ingredient in the proof is the simple fact that

Prob {Rj ≥ Vj | R0} = Prob
{

S[0,j] ≤ R0

}

, j = 1, . . . , n.

Thus, in order to determine the optimal R0 we are led to compute the quan-

tiles of the random variables S[0,j], which is very hard in most relevant cases.

For instance, if the random return process (Y1, . . . , Yn) follows a multivariate

normal distribution, we have that S[0,j] is a sum of lognormal distributions, a
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random variable with no known distribution. The approach in [VDGK] repla-

ces the random variables S[0,j] by simpler random variables using comonotonic

approximations, whose quantiles can be calculated explicitly. Such approxima-

tions assume the random vector is strongly correlated, with all the components

depending on the same univariate random variable. A detailed description of

the theory of comonotonicity can be found in [DDGa]. For examples and ap-

plications we refer the reader to [DDGb].

In [VDGK], numerical experiments are performed for the case in which

the random variables (5-3) are sums of lognormals, and hence the return

process (Y1, . . . , Yn) follows a multivariate normal distribution. They compare

their results with the values obtained from the empirical distribution of S[0,j].

In the next section, in the more general joint hurdle-race problem, we apply

SAA to obtain good candidate solutions. We compare the results for the joint

hurdle-race to the ones obtained in [VDGK]. From now on we refer to this

model (5-2) as the separated hurdle-race problem.

5.2

The joint hurdle-race problem

The definition of R0 in (5-2) does not reflect the proper safety requi-

rements: for each fixed time tj the probability of not satisfying a hurdle is

small, but the probability of having missed one of the hurdles may remain

high. Indeed, there is no guarantee that the optimal provision keeps the joint

probability of missing at least one hurdle low. In [HEN], the author exempli-

fies the contrast between both models in a cash matching problem somewhat

similar to the separated hurdle race problem (5-2).

We then consider the joint hurdle-race problem,

R0 = Min
R0≥V0

R0 (5-4)

Prob{Rj ≥ Vj, j = 1, . . . , n |R0} ≥ 1 − ε (5-5)

for ε ∈ [0, 1]. As opposed to problem (5-2), the optimal provision R0 in problem

(5-4) is the smallest value such that with high probability no hurdle is violated.

Although we have a single constraint in (5-4) opposed to n constraints

in (5-2), problem (5-4) is harder to solve: the joint probability calculation in

(5-4) involves the computation of a quantile of the cumulative distribution

of the random vector (S[0,1], S[0,2], . . . , S[0,n]), an extremely difficult task. Even

checking feasibility for a given candidate R0 is usually hard.

We use SAA to obtain good candidate solutions of (5-4) and lower bounds

for the optimal value. Indeed, (5-4) is a joint chance constrained problem so
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the techniques of the previous Chapters apply.

The joint hurdle-race problem is not explicitly written in format (1-1),

but it can be easily converted by employing the max-function

Prob {R1 ≥ V1, . . . , Rn ≥ Vn|R0} = Prob
{

S[0,1] ≤ R0, . . . , S[0,n] ≤ R0

}

= Prob

{

max
j=1,...,n

{S[0,j]} ≤ R0

}

= Prob

{

max
j=1,...,n

{S[0,j]} − R0 ≤ 0

}

. (5-6)

Using (5-6) we have that problem (5-4) is a particular case of (1-1):

Min
R0≥V0

R0

s.t. Prob

{

max
j=1,...,n

{S[0,j]} − R0 ≤ 0

}

≥ 1 − ε.
(5-7)

But how do we solve (5-7) with SAA? Given a sample size N and a reliability

level γ, the SAA formulation becomes a MILP as follows.

Min
R0≥V0

R0

s.t. (V1 + α1) exp(−Y s
1 ) − R0 − Kzs ≤ 0, s = 1, . . . , N,

...
∑j

i=1 αi(j) exp(−Y s
1 − · · · − Y s

i ) − R0 − Kzs ≤ 0, s = 1, . . . , N,
...

∑n

i=1 αi(n) exp(−Y s
1 − · · · − Y s

n ) − R0 − Kzs ≤ 0, s = 1, . . . , N,
∑N

s=1 zs ≤ Nγ,

zs ∈ {0, 1}N ,

(5-8)
where K is a sufficiently large positive constant, Y s

i are samples from the return

process (Y1, . . . , Yn) and

αi(j) =

{

αi, i 6= j,

Vj + αj , i = j.

The feasibility check cannot be performed exactly and uses Monte-Carlo

methods.

5.2.1

Numerical experiments

We compare separated and the joint hurdle-race problems. Following

[VDGK], we performed experiments with n = 40 periods of investment and

with normal iid returns Yi with mean µ = log 1.10 and standard deviation

σ = 0.10. The hurdles and the liabilities are equal to 10 and 0.8 respectively for

all time periods. For the separated hurdles we choose εj = 0.05 for all periods
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and for the joint case we take ε = 0.05. Our numerical experiments showed that

the stochastic lower bound approximation in [VDGK] is extremely accurate

for the separated hurdle-race problem, and we obtained R0 = 13.56411337.

An (stochastic) upper bound, obtained by the comonotonic approximation, is

14.48125099.

For the joint hurdle-race problem, we first choose values of γ and N .

Following the empirical findings for the portfolio problem and the blending

problem of the previous Chapter, we set γ = ε/2 = 0.025. We then compute

the value of N for which the optimal solution of the SAA problem is feasible

for the original problem with probability greater than 99% (see [CG]), which

in this case is N = 90. This estimate is usually too conservative and should

be regarded as an upper bound for the actual value of N to be used in the

experiments. The best result was obtained for N = 50 and the smallest initial

provision was R0 = 15.81238194. A Monte-Carlo experiment with 100 000

samples estimated the true probability of this candidate as 0.9527 and it is

thus feasible for the original problem.

We compute statistical lower bounds for the optimal value of the joint

hurdle-race problem following section 4.1.3. Fixing M = 1 000 and L according

to (3-12), the 99%-confidence lower bound for the optimal value is 15.302594.

Obviously, the candidate solution obtained by SAA can be regarded as an

upper bound for the true optimal value (if feasible).

Similar experiments were performed with εj = 0.01. The techniques in

[VDGK] give 16.34858684 for the solution of the separated problem, with

comonotonic upper bound1 equal to 18.37208466. It is not clear how these

methods should be extended to the joint hurdle problem. In this case, applying

SAA with N = 150 and γ = ε/2 = 0.005, the new method obtained

18.21640345. The true probability was estimated by Monte-Carlo and was

equal to exactly 1, with 100 000 samples. The 99%-confident lower bound

obtained was 17.515987.

It is interesting to compare the solution for the joint case (5-4) with the

one for the separate case (5-2). The best provisions obtained for the latter were

less than those for the former in both experiments. One might be tempted to

adopt the separated version as the best model since smaller provisions are

usually preferred. However, the solution of the joint problem is obviously more

robust. We proceed to substantiate this claim with some simulations.

The separated case was treated as in [VDGK], whereas we used SAA

for the joint problem. For illustration, we first present small size simulation

1The comonotonic upper bound is constructed using conditional expectations of como-

notonic random variables.
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experiments that show the differences between the two approaches. Figures

5.1 and 5.2 show the estimated probability of violating each hurdle for the

separated problem. The values in the y-axis are close to 0.05 and 0.01

respectively, in accordance with the chosen reliability levels. Figures 5.3 and

5.4 show 100 sample paths for each choice of ε in the separated case. In Figure

5.3, 12 paths violated one of the hurdles at least once, giving a violation

probability of 0.12, significantly higher than the original 0.05 confidence level.

In Figure 5.4, the probability of violation was 0.06, also higher than the original

significance level 0.01. In the joint case, Figures 5.5 and 5.6 indicate that at

least one constraint was violated only 3% and 1% of the time, in accordance

with the joint reliability levels ε = 0.05 and ε = 0.01, a much more robust

situation.

In order improve numerical accuracy, we ran the same experiments for

10 000 paths. For εj = ε = 0.05, the estimated probability of violation of

at least one hurdle for the separated hurdle-race problem was 0.1173, much

higher than the corresponding value 0.0328 for the joint version with the same

reliability level. For εj = ε = 0.01, the estimated values were 0.0247 for the

separated formulation and 0.0094 for the joint counterpart. In both cases the

separated hurdle-race problem misses the joint reliability level by roughly twice

the pre-determined reliability level, substantially underestimating the more

robust provision given by SAA for the joint case.
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Figure 5.1: ε = 0.05.
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Figure 5.2: ε = 0.01.

5.3

Stochastic hurdles

We now consider a joint hurdle-race model with the possibility of mo-

deling stochastic hurdles. Now we define the hurdles as the market consistent

value of future liabilities when evaluating the portfolio at period j, i.e., the
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Figure 5.3: Sample paths for ε =
0.05, SHR.
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Figure 5.4: Sample paths for ε =
0.01, SHR.
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Figure 5.5: Sample paths for ε =
0.05, JHR.

0 5 10 15 20 25 30 35 40 45

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 5.6: Sample paths for ε =
0.01, JHR.

hurdles will be the discounted cash flows at the stochastic risk-free rate. In

particular, the hurdles Vj are not known at period j.

In addition to the stochastic return process (Y1, . . . , Yn), the model will

have a risk-free rate process (r1, . . . , rn) that will determine the (stochastic)

hurdles as follows.

V0 = α1 exp(−r1) + α2 exp(−r1 − r2) + · · ·+ αn exp(−r1 − · · · − rn),

V1 = α1 + α2 exp(−r2) + · · ·+ αn exp(−r2 − · · · − rn),

... (5-9)

Vn = αn.

SAA obtains candidate solutions with no additional computational effort.

In the numerics, the risk-free rate process was composed of iid normal random

variables with mean µr = 0.04 and standard deviation σr = 0.05. The

stochastic return process is the same as described in section (5.2.1). For
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ε = 0.05, the best solution was 21.68791898, with N = 60 and γ = ε/2 = 0.025.

The estimated probability was 0.95275, using 20 000 samples. For ε = 0.01,

the best solution was 25.17916015, with N = 120 and γ = ε/2 = 0.005. The

estimated probability was exactly 1, with 20 000 samples.
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