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Two applications of SAA

In this Chapter we apply SAA to a portfolio problem and to a blending

problem. In the first the decision maker must choose the composition of a

portfolio of assets such that the expected return is maximized. Due to the

chance constraint, the total gain has to be greater than a pre-specified return

level v with high probability. When returns follow a multivariate normal

distribution, we compute the solution explicitly and compare it with the

results of SAA. When returns are lognormally distributed, we have to rely

on approximations.

The second problem is a joint version of a two dimensional blending

problem. We show that SAA can be readily applied to this situation at no

extra cost. Due to the independence assumption, we compute explicit answers

for this problem and use them as benchmarks to tune the parameters of SAA.

4.1

Portfolio problem

Consider the following maximization problem subject to a single chance

constraint:
Max
x∈X

E
[

rT x
]

s.t. Prob
{

rT x ≥ v
}

≥ 1 − ε.
(4-1)

Here x ∈ R
n is vector of decision variables, r ∈ R

n is a random vector

with known probability distribution, v ∈ R, ε ∈ (0, 1), e is a vector whose

components are all equal to 1 and

X := {x ∈ R
n : eT x = 1, x ≥ 0}.

Note that, of course, E
[

rT x
]

= µT x, where µ := E[r] is the corresponding

mean vector. That is, the objective function of problem (4-1) is linear and

deterministic.

The motivation to study (4-1) is the portfolio selection problem going

back to Markowitz [MAR]. The vector x represents the percentage of a total

wealth of one dollar invested in each of n available assets, r is the vector of

random returns of these assets and the decision agent wants to maximize the
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mean return subject to having a return greater or equal to a desired level v,

with probability at least 1 − ε. In terms of risk measures, this requirement is

equivalent to a Value-at-Risk constraint. We note that problem (4-1) is not

realistic because it does not incorporate crucial features of real markets such

as cost of transactions, short sales, lower and upper bounds on the holdings,

etc. However, it will serve to our purposes as an example of an application

of the SAA method. For a more realistic model we can refer the reader, e.g.,

to [WCZ], where the authors include market frictions and discuss the best

distribution function for asset returns.

A very similar version of problem (4-1) was analyzed in [ZTSK], where the

authors obtained important information about the different policies available

in soil management as well as the trade off between net returns and soil loss.

We consider two different situations, namely when the vector of random

returns r follows multivariate normal and multivariate lognormal distributions.

The two cases are very distinct; on the former one can solve explicitly the

chance constraint, while in the latter no explicit formula is known. Under

normality, we can compare the quality of the approximations with the true

optimal value, while in the lognormal case we have to rely on approximations.

4.1.1

SAA of the portfolio problem

First assume that r follows a multivariate normal distribution with

mean vector µ and covariance matrix Σ, written r ∼ N (µ, Σ). In that case

rTx ∼ N
(

µT x, xT Σ x
)

, and hence (as it is well known) the chance constraint

in (4-1) can be written as a convex second order conic constraint (SOCC) as

follows.

Prob
{

rTx ≥ v
}

≥ 1 − ε ⇔

Prob

{

rT x − µT x√
xT Σx

≥ v − µTx√
xT Σx

}

≥ 1 − ε ⇔

1 − Prob

{

rT x − µT x√
xT Σx

≤ v − µTx√
xT Σx

}

≥ 1 − ε ⇔

1 − Φ

(

v − µT x√
xT Σx

)

≥ 1 − ε ⇔

v − µT x√
xT Σx

≤ z1−ε ⇔

v − µTx + z1−ε

√
xT Σx ≤ 0. (4-2)

Using the explicit form (4-2) of the chance constraint, one can efficiently solve

the convex problem (4-1) for different values of ε. An efficient frontier of
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portfolios can be constructed in an objective function value versus confidence

level plot, that is, for every confidence level ε we associate the optimal value

of problem (4-1). The efficient frontier dates back to Markowitz [MAR]. A

discussion of the subject can be found, e.g., in [CM].

If r follows a multivariate lognormal distribution, then no closed form

solution for the chance constrained problem (4-1) is available. The related

SAA problem (4-1) can be written as

Max
x∈X

µT x

s.t. p̂N(x) ≤ γ,
(4-3)

where p̂N(x) := N−1
∑N

i=1 1l(0,∞)(v − rT
i x) and γ ∈ [0, 1). The reason we use γ

instead of ε is to suggest that for a fixed ε, a different choice of the parameter

γ in (4-3) might be suitable. For instance, if γ = 0, then the SAA problem

(4-3) becomes the linear program

Max
x∈X

µT x

s.t. rT
i x ≥ v, i = 1, . . . , N .

(4-4)

A recent paper by Campi and Garatti [CG], building on the work of Calafiore

and Campi [CC], provides an expression for the probability of an optimal

solution x̂N of the SAA problem (3-3), with γ = 0, to be infeasible for the true

problem (3-2). That is, under the assumptions that the set X and functions

f(·) and G(·, ξ), ξ ∈ Ξ, are convex and that w.p.1 the SAA problem attains

unique optimal solution, we have that for N ≥ n,

Prob {p(x̂N) > ε} ≤ B(n − 1; ε, N), (4-5)

and the above bound is tight. We apply this bound to the considered portfolio

selection problem to conclude that for a confidence parameter β ∈ (0, 1) and

a sample size N∗ such that

B(n − 1; ε, N∗) ≤ β, (4-6)

the optimal solution of problem (4-4) is feasible for the corresponding true

problem (4-1) with probability at least 1 − β.

For γ > 0, problem (4-3) can be written as the mixed-integer linear

program
Max

x,z
µTx

s.t. rT
i x + vzi ≥ v,

∑N

i=1 zi ≤ Nγ,

x ∈ X, z ∈ {0, 1}N ,

(4-7)

The equivalence of problems (4-3) and (4-7) was already proved when we
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showed the equivalence of problems (2-8) and (2-9) in Chapter 2, Section 2.3.

Given a fixed ε in (4-1), it is not clear what are the best choices of γ and

N for approximation (4-7). We believe it is problem dependent and numerical

investigations will be performed with different values for both parameters. We

know from Proposition 6 that, for γ = ε the larger the N the closer we are to

the original problem (4-1). However, the number of samples N must be chosen

carefully because problem (4-7) is a binary problem. Even moderate values of

N can generate instances that are very hard to solve.

4.1.2

Obtaining candidate solutions

First we perform numerical experiments applying SAA to the portfolio

problem (4-1) assuming that r ∼ N (µ, Σ). We considered 10 assets (n = 10)

and the data for the estimation of the parameters was taken from historical

monthly returns adjusted for dividends from 1997 to 2007 of 10 US major

companies1. The sample was generated by the Triangular Factorization Method

[BS]. We wrote the codes in GAMS and solved the linear and binary problems

using CPLEX 9.0. The computer was a PC with an Intel Core 2 processor and

2GB of RAM.

Let us fix ε = 0.10 and β = 0.01. For these values, the sample size

suggested by (4-6) is N∗ = 183. We ran 10 independent replications of (4-4)

for each of the sample sizes N = 30, 40, . . . , 200 and for N∗ = 183. We also

build an efficient frontier plot of optimal portfolios with an objective value

versus Prob{rT xε ≥ v} axes, where xε is the optimal solution of problem (4-

1) for a given ε. We show in the same plot (Figure 4.1) the corresponding

objective function values and Prob{rT x̂N ≥ v} for each optimal solution x̂N

found for the problem (4-4). To identify each point with a sample size, we

used a gray scale that attributes light tones of gray to smaller sample sizes

and darker ones to larger samples. The efficient frontier curve is calculated for

ε = 0.8, 0.81, . . . , 0.99 and then connected by lines. The vertical and horizontal

lines are for reference only: they represent the optimal value for problem (4-1)

with ε = 0.10 and the 90% reliability level, respectively.

Figure 4.1 shows interesting features of the SAA problem (4-4). Although

larger sample sizes always generate feasible points, the value of the objective

function, in general, is quite small if compared with the optimal value 1.004311

of problem (4-1) with ε = 0.10. We also observe the absence of a convergence

property: if we increase the sample size, the feasible region of problem (4-4)

1JP Morgan, Oracle, Intel, Exxon, Wal-Mart, Apple, Sun Microsystems, Microsoft, Yahoo
and Procter & Gamble
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Figure 4.1: Normal returns for γ = 0.

gets smaller and the approximation becomes more and more conservative and

therefore suboptimal. The reason is that for increasingly large samples the

condition rT
i x ≥ v for all i approaches the condition Prob{rT x ≥ v} = 1.

In order to find better candidate solutions for problem (4-1), we need to

solve the SAA problem with γ > 0, (problem (4-7)), which is a combinatorial

problem. Since our portfolio problem is a linear one, we can solve problem

(4-3) efficiently for a moderate number (e.g., 200 constraints) of instances. We

performed tests for problem (4-3) fixing γ = 0.05 and 0.10 and changing N as

in the sample approximation case. The results are in Figures 4.2 and 4.3.

The best candidate solutions to problem (4-1) were obtained by choosing

γ = 0.05. We considered different sample sizes from 30 to 200. Although several

points are infeasible to the original problem (4-1), we observe in Figure 4.2 that

whenever a point is feasible it is close to the upper bound. For γ = 0.10, Figure

4.3 shows us that almost every generated point is infeasible. To further justify

this claim, note that among the feasible points in Figure 4.2, more than 70%

of them are within 0.2% of the true optimal value 1.004311 of problem (4-1)

with ε = 0.10. If we relax the tolerance to 0.3%, then more than 93% of the

points are no more than 0.3% away from the optimal value.
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Figure 4.2: Normal with γ = 0.05.
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Figure 4.3: Normal with γ = 0.10.

To investigate the possible choices of γ and N in problem (4-7), we

created a three dimensional representation which we call γN -plot. The domain

is a discretization of values of γ and N , forming a grid with pairs (γ, N). For

each pair we solve an instance of problem (4-7) with these parameters and

stored the optimal value and the approximate probability of being feasible to

the original problem (4-1). The z-axis represents the optimal value associated

to each point in the domain in the grid. Finally, we created a surface of triangles

based on this grid as follows. Let i be the index for the values of γ and j for the

values of N . If candidate points associated with grid members (i, j), (i + 1, j)

and (i, j + 1) or (i + 1, j + 1), (i + 1, j) and (i, j + 1) are feasible to problem

(4-1) (with probability greater than or equal to (1− ε)), then we draw a dark

gray triangle connecting the three points in the space. Otherwise, we draw a

light gray triangle.

We created a γN -plot for problem (4-1) with normal returns. The result

can be seen in Figure 4.4, where we also included the plane corresponding

to the optimal solution with ε = 0.10. The values for parameter γ were

0, 0.01, . . . , 0.10 and for N = 30, 40, . . . , 200. From Figure 4.4 we see that

for any fixed γ small sample sizes tend to generate infeasible solutions and

large samples feasible ones. As predicted by the results of Campi and Garatti,

when γ = 0, large sample sizes generate feasible solutions, although they can

be seen to be of poor quality judging by the low peaks observed in this region.

The concentration of high peaks corresponds to γ values around ε/2 = 0.05 for

almost all sample sizes, including small ones (varying from 50 until 120). We

generated different instances of Figure 4.4 and the output followed the pattern

described here.
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Figure 4.4: γN -plot for the portfolio problem with normal returns.

Even though there are peaks in other regions, Figure 4.4 suggests a

strategy to obtain good candidates for chance constrained problems: choose

γ close to ε/2, solve instances of SAA problems with small sizes of N (e.g. one

third of the Campi-Garatti estimate (4-6)) and keep the best solution. This

is fortunate because SAA problems with γ > 0 are binary problems that can

be hard to solve. Our experience with the portfolio problem and with others

suggest this strategy works better than trying to solve SAA problems with

large sample sizes. The choice γ = ε/2 came from our empirical experience.

We believe in general the choice of γ is problem dependent.

4.1.3

Upper bounds

A method to compute lower bounds of chance constrained problems of

the form (3-1) was suggested in [NS]. We summarized their procedure at the

end of Section 3.1, leaving the question of how to choose the constants L, M

and N . Given β, M and N , it is straightforward to specify L: it is the largest

integer that satisfies (3-12). For a given N , the larger M the better because we

are approximating the L-th order statistic of the random variable ϑ̂N . However,

note that M represents the number of problems to be solved and this value is

often constrained by computational limitations.

In [NS] an indication of how N should be chosen is not given. It is possible

to gain some insight on the magnitude of N by doing some algebra in inequality

(3-12). With γ = 0, the first term (i = 0) of the sum (3-12) is

[

1 − (1 − ε)N
]M ≈

[

1 − e−Nε
]M

. (4-8)
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Approximation (4-8) suggests that for small values of ε we should take N of

order O(ε−1). If N is much bigger than 1/ε then we would have to choose a very

large M in order to honor inequality (3-12). For instance if ε = 0.10, β = 0.01

and N = 100 instead of N = 1/ε = 10 or N = 2/ε = 20, we need M to be

greater than 100 000 in order to satisfy (3-12), which can be computationally

intractable for some problems. If N = 200 then M has to be grater then 109,

which is impractical for most applications.

In [LA], the authors applied the same technique to generate bounds on

probabilistic versions of the set cover problem and the transportation problem.

To construct the bounds they varied N and used M = 10 and L = 1. For many

instances they obtained lower bounds slightly smaller (less than 2%) or even

equal to the best optimal values generated by SAA. In the portfolio problem,

the choice L = 1 generated poor bounds as we will see.

We performed experiments for the portfolio problem with returns now

following a lognormal distribution. Figure 4.5 shows the sample points obtained

by SAA with γ = 0 and with the corresponding probability estimated by

Monte-Carlo. The reader is referred to [LK] for detailed instructions of how

to generate samples from a multivariate lognormal distribution. Since in the

lognormal case one cannot compute the efficient frontier, we also included in

Figure 4.5 upper bounds2 for ε = 0.02, . . . , 0.20, calculated according to (3-

12). We fixed β = 0.01 for all cases and chose three different values for the

constants L, M and N .

First we fixed L = 1 and N = ⌈1/ε⌉ (solid line in Figure 4.5, upper bound

A). The constant M was chosen to satisfy the inequality (3-12). The results

were not satisfactory, mainly because M ended up being too small. Since the

constant M defines the number of samples from v̂N and since our problem is

a linear one, we decided to fix M = 1 000. Then we chose N = ⌈1/ε⌉ (dashed

line in Figure 4.5, upper bound B) and defined L to be the largest integer such

that (3-12) is satisfied. Finally, we generated an upper bound with M = 1 000

and N = ⌈2/ε⌉ (dotted line in Figure 4.5, upper bound C).

It is harder to construct upper bounds with γ > 0. The difficulty lies

in solving integer problems and it is hard to find an appropriate choice of

the parameters M or N in order to keep the problem size manageable. Based

on experiments, a good choice for this problem is M = 500, N = 50 and

γ = ε/2 = 0.05, which originated the dotted upper bound in Figure 4.5.

Although it is slightly better than the bounds obtained with γ = 0, in many

situations one often wants an upper bound without much computational effort.

If that is the case, it might be appropriate to use equation (3-12) for γ = 0

2The portfolio problem (4-1) is a maximization problem.
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Figure 4.5: Lognormal with γ = 0.

since the corresponding problems are easier to solve.
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Figure 4.6: Lognormal with γ =

0.05.
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Figure 4.7: Lognormal with γ =

0.10.

Following the normal case, we performed similar experiments with γ =

ε/2 and γ = ε. The results are in Figures 4.6 and 4.7 respectively, where we

only included the dashed upper bound. The experiments for the lognormal

case confirmed the tendency observed in the normal case: γ = ε generated

infeasible points, γ = 0 generated feasible points of poor quality if measured

by the distance to the upper bound curves and γ = ε/2 yielded the best

candidate solutions.

4.2

A blending problem

Let us consider a second example of a chance constrained problem.

Suppose a farmer has some crop and wants to use fertilizers to increase the

DBD
PUC-Rio - Certificação Digital Nº 0510535/CA



production. He hires an agronomy engineer who recommends 7 g of nutrient

A and 4 g of nutrient B. He has two kinds of fertilizers available: the first has

ω1 g of nutrient A and ω2 g of nutrient B per kilogram. The second has 1 g of

each nutrient per kilogram. The quantities ω1 and ω2 are uncertain: we assume

they are (independent) continuous uniform random variables with support in

the intervals [1, 4] and [1/3, 1] respectively. Furthermore, each fertilizer has a

unitary cost per kilogram.

There are several ways to model this blending problem. A detailed

discussion can be found in [HV], where the authors use this problem to motivate

the field of stochastic programming. We consider a joint chance constrained

formulation as follows:

Min
x1,x2

x1 + x2

s.t. Prob{ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4} ≥ 1 − ε,

x1, x2 ≥ 0,

(4-9)

where xi represents the quantity of fertilizer i purchased, i = 1, 2, and ε ∈ [0, 1]

is the reliability level. The independence assumption allows us to convert the

joint probability in (4-9) into a product of probabilities. After some tedious

calculations, one can explicitly solve (4-9) for all values of ε. For ε ∈ [1/2, 1]

the solution (x∗

1, x
∗

2) and the optimal value v∗ = x∗

1 + x∗

2 are

x∗

1 =
18

9 + 8(1 − ε)
, x∗

2 =
2(9 + 28(1 − ε))

9 + 8(1 − ε)
, v∗ =

4(9 + 14(1 − ε))

9 + 8(1 − ε)
.

For ε ∈ [0, 1/2], v∗ is

v∗ =
2(25 − 18(1 − ε))

11 − 9(1 − ε)
. (4-10)

Our goal is to exemplify the use of SAA to joint chance constrained

problems. In addition, we use problem (4-9) as a benchmark to gain more

understanding of tuning of the underlying parameters of the SAA approach

since an explicit solution is available in this case. As mentioned in Section

2.3 of Chapter 2, we can convert a joint chance constrained problem into a

problem of the form (3-1) using the min (or max) operators. Problem (4-9)

becomes

Min
x1,x2

x1 + x2

s.t. Prob {min{ω1x1 + x2 − 7, ω2x1 + x2 − 4} ≥ 0} ≥ 1 − ε,

x1, x2 ≥ 0.

(4-11)

Introducing one auxiliary variable zi per scenario, it is possible to formulate the

SAA method to problem (4-11) as a mixed integer linear program as follows.
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Figure 4.8: SAA for the blending problem with γ = 0.025.

Min
x1,x2

x1 + x2

s.t. ωi
1x1 + x2 − 7 + Kzi ≥ 0, i = 1, . . . , N,

ωi
2x1 + x2 − 4 + Kzi ≥ 0, i = 1, . . . , N,

∑N

i=1 zi ≤ Nγ,

z ∈ {0, 1}N ,

x1, x2 ≥ 0,

(4-12)

where N is the number of samples, ωi
1 and ωi

2 are samples from the random

variables ω1 and ω2, γ ∈ (0, 1) and K is a positive constant greater or equal

than 7.

4.2.1

Numerical experiments

We performed experiments similar to the ones for the portfolio problem

so we present the results without details. In Figure 4.8 we generated appro-

ximations for problem (4-9) with ε = 0.05 using SAA. The sample points

were obtained by solving a SAA problem with γ = 0.025 and sample sizes

N = 60, 70, . . . , 150. The Campi-Garatti inequality (4-6) suggested value is

N∗ = 130. In addition, we included the efficient frontier for problem (4-9). We

will not show the corresponding Figures for other values of γ, but the pattern

observed in the portfolio problem repeated: with γ = 0 almost every point

was feasible but far from the optimal, with γ = ε = 0.05 almost every point

was infeasible. Again, the parameter choice that generated the best candidate

solutions was γ = ε/2 = 0.025.

We also show the γN -plot for SAA applied to problem (4-9). We tested γ

values in the range 0, 0.005, 0.01, . . . , 0.05 and N = 60, 70, . . . , 150. We included
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Figure 4.9: γN -plot for the blending problem.

a plane representing the optimal value of problem (4-9) for ε = 0.05, which is

readily obtained by applying formula (4-10).

In accordance with Figure 4.4, we note that in Figure 4.9 the best

candidate solutions are the ones with γ around 0.025. Even for very small

sample sizes we have feasible solutions (dark gray triangles) relatively close to

the optimal plane. On the other hand, this experiment gives more evidence that

SAA with γ = 0 is excellent to generate feasible solutions (dark gray triangles)

but the quality of the solutions is poor. As shown in Figure 4.9, the high peaks

associated with γ = 0 persist for any sample size, generating points far form

the optimal plane. In agreement with Figure 4.4, the candidates obtained for

γ close to ε were mostly infeasible.
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