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Chance constrained programming

In this Chapter we give a brief introduction to chance constrained

programming. The goals are to motivate the subject and to give the reader an

idea of the related difficulties. All proofs are omitted: we indicate references

where rigorous deductions can be found.

2.1

An example

At the risk of being repetitive, we start giving an example from [HV] of a

simple chance constraint that illustrates one of the difficulties associated with

this formulation. The simplicity of the example makes it essentially unique.

For x1, x2 ∈ R, ε ∈ [0, 1], let

p(x) = Prob{ξx1 + x2 ≥ 7} ≥ 1 − ε

be a chance constraint, where ξ is uniformly distributed in [0, 1], with cumu-

lative distribution

F (t) =











0, if t ∈ (−∞, 0),

t, if t ∈ [0, 1],

1 otherwise.

In the general framework defined in (1-1), we have

G(x, ξ) = −ξx1 − x2 + 7. (2-1)

We are interested in an explicit representation of the set

C(ε) = {(x1, x2) ∈ R
2 : p(x) ≥ 1 − ε}. (2-2)

If x1 = 0, we clearly need to have x2 ≥ 7. If x1 > 0,

p(x) = P (ωx1 + x2 ≥ 7) = P

(

ω ≥
7 − x2

x1

)

= 1 − F

(

7 − x2

x1

)

. (2-3)

Thus,

p(x) ≥ 1 − ε ⇔ F−1(ε)x1 + x2 ≥ 7.
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Figure 2.1: The set C(0.3).
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Figure 2.2: The set C(0.7).

Proceeding in an analogous way for the case x1 < 0, we end up with

C(ε) = C+(ε)
⋃

C0(ε)
⋃

C−(ε), where

C+(ε) =
{

x ∈ R
2 | x1 > 0, F−1(ε)x1 + x2 ≥ 7

}

,

C0(ε) =
{

(0, x2) ∈ R
2 | x2 ≥ 7

}

,

C−(ε) =
{

x ∈ R
2 | x1 < 0, x1F

−1(1 − ε) + x2 ≥ 7
}

.

Figures 2.1 and 2.2 show the sets C(0.3) and C(0.7).

Clearly, from Figure 2.2, one cannot expect to have convex feasible sets

for chance constrained programs even for linear functions G. Convexity is

restored by requiring additional hypothesis, as shown below.

2.2

Single and joint constraints

There are essentially two ways of writing a chance constrained model. We

can have several separated constraints, each one representing one goal. Formu-

lation (1-1) represent the situation of a single separated chance constraint,

which is amenable to the SAA approach we discuss later. A general separated

chance constrained problem can be written as follows.

min
x∈X

f(x)

s.t. pi(x) := Prob
{

Gi(x, ξ) ≤ 0
}

≥ 1 − εi, i = 1, . . . , m,
(2-4)

where εi ∈ [0, 1]. A point x is feasible to problem (2-4) if it belongs to the set

C(ε1, ε2, . . . , εm) =

m
⋂

i=1

Ci(εi),

where

Ci(εi) =
{

x ∈ R
n | pi(x) ≥ 1 − εi

}

.

DBD
PUC-Rio - Certificação Digital Nº 0510535/CA



Another possibility is having a number of constraints modeled as a single

one as follows.

Min
x∈X

f(x)

s.t. p(x) := Prob
{

G1(x, ξ) ≤ 0, G2(x, ξ) ≤ 0, . . . , Gm(x, ξ) ≤ 0
}

≥ 1 − ε,

(2-5)
with ε ∈ [0, 1]. Formulation (2-5) is refereed to as a joint chance constrained

problem since all the constraints Gi(x, ξ) ≤ 0 are taken jointly. A point x is

feasible to problem (2-5) if it belongs to the set

C(ε) =
{

x ∈ R
n | p(x) ≥ 1 − ε

}

.

From a modeling point of view, sometimes it makes sense to model all the

constraints jointly if they together describe one goal. In [HEN], the author

presents a cash matching problem using both separated and joint chance

constraints. He compares the robustness of both formulations in the financial

context and performs experiments showing the difference between the two

approaches. We will have the opportunity to compare both formulations when

we discuss the joint hurdle-race problem in Chapter 5.

Joint chance constrained problems are usually hard to solve because

the joint expression in (2-5) requires a multidimensional integration to be

computed. Even checking feasibility for a given candidate solution cannot be

done easily and Monte-Carlo is required. There are some algorithms available

for those problems such as Szántai’s method ([HV]) or the solvers PCSPIOR,

PROCON and PROBALL [KM], but they are restricted to multivariate normal

distributions. Furthermore, they only deal with linear chance constraints with

constant technology matrix [HV]. Other examples of algorithms are the SUMT

and the supporting hyperplane method, described in detail in Chapter 5 of

[PREa].

There is an interesting result linking the two formulations.

Theorem 1 Let (2-5) be a joint chance constrained problem with reliability

level ε. If we choose reliability levels εi = 1 − (1 − ε)/m, i = 1, . . . , m for the

separated problem (2-4), then

m
⋂

i=1

Ci

(

1 −
1 − ε

m

)

⊂ C(ε),

that is, any feasible solution to the separated problem is feasible for the joint

problem for a suitable choice of reliability levels εi.

Proof. The result follows directly from Bonferroni inequality [HV].
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We can convert any joint chance constrained problem such as (2-5) into

the form (1-1) by using the max-function as follows.

Min
x∈X

f(x)

s.t. Prob
{

maxi=1...,n

{

Gi(x, ξ)
}

≤ 0
}

≥ 1 − ε.
(2-6)

It is straightforward to check that problems (2-6) and (2-5) are equivalent.

Of course in some cases desired properties of the considered functions may be

destroyed, but convexity is preserved and if the functions Gi(·, ξ) are linear we

still can write (2-6) as a linear program. We will see an explicit example of

such operation when we discuss the blending problem.

2.3

Some properties and special cases

The following result gives basic properties of feasible sets of chance

constrained problems.

Theorem 2 a) Let p(x) be defined as in (2-5). We have that p(x) is upper

semicontinuous, that is

p(x) ≥ lim sup
y→x

p(y), x ∈ R
n,

and thus the set C(ε) is a closed set for all ε ∈ [0, 1].

b) The set C(ε) is nondecreasing: if 0 ≤ ε1 < ε2 ≤ 1, then C(ε1) ⊂ C(ε2).

In addition, C(1) = R
n and C(ε) 6= ∅ for all ε ∈ [0, 1] if and only if the

set C(0) is non empty.

Part b) is trivial. A proof of part a) can be found in [HV].

As shown in Section 2.1, the feasible set of a chance constrained problem

in general is not convex. However, there are results establishing convexity under

certain hypothesis on the function G and on the density function of the random

vector ξ. The most important is due to Prékopa and Borell ([PREa]) and is

stated without proof.

Theorem 3 Assume the random vector ξ has a continuous probability distri-

bution with density function f . The following statements hold:

a) If log f is concave (with log 0 = −∞), or

b) If f−1/m is convex (with 0−1/m = ∞),

then the cumulative distribution function F is quasi-concave and hence C(ε)

is a convex set for all ε ∈ [0, 1].
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Fortunately, there are several important distributions that satisfy the hypothe-

sis of Theorem 3. We give two examples:

– Uniform distribution. Let D be a convex subset of R
n with finite measure

|D|. The probability density function is given by

f(x) =

{

1
|D|

if x ∈ D,

0 if x /∈ D.

– Normal distribution. The probability density function is defined by

f(x) =
1

√

|Σ|(2π)
n

2

exp− 1

2
(x−µ)T Σ−1(x−µ), x ∈ R

n,

where µ is the expectation vector, Σ the covariance matrix of the

distribution and |Σ| is the determinant of Σ.

Other examples are the (multivariate) Beta and Gamma distributions. More

examples can be found in [PREa].

In the case the random variable ξ is discretely distributed, we can

formulate problem (1-1) as a mixed-integer linear program. Let us assume

Prob{ξ = ξk} = pk, k = 1, . . . , K. Problem (1-1) becomes

Min
x∈X

f(x)

s.t.
∑K

k=1 pk1l(−∞,0)(G(x, ξk)) ≥ 1 − ε,
(2-7)

or, equivalently,

Min
x∈X

f(x)

s.t.
∑K

k=1 pk1l(0,∞)(G(x, ξk)) ≤ ε,
(2-8)

Consider the following mixed-integer program.

Min
x∈X

f(x)

s.t. G(x, ξk) − Mzk ≤ 0, k = 1, . . . , K,
∑K

k=1 pkzk ≤ ε,

z ∈ {0, 1}K,

(2-9)

where M is a sufficiently large constant. We claim that (2-8) and (2-9) are

equivalent. Indeed, let (x, z1, . . . , zk) be a solution of problem (2-9). The

first constraint of (2-9) tells us that zk ≥ 1l(0,∞)(G(x, ξk)). From the second

constraint of (2-9) we have

ε ≥
K

∑

k=1

pkzk ≥
K

∑

k=1

pk1l(0,∞)(G(x, ξk)),
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which implies that x is feasible for (2-8), with same objective value. Conversely,

let x be feasible for problem (2-8) and define zk := 1l(0,∞)(G(x, ξk)). We have

that (x, z1, . . . , zk) is feasible for (2-9) with same objective value, and thus both

problems are equivalent.

We conclude with a convexity result for discrete distributions. A proof

can be found in [KW].

Proposition 4 Consider problem (2-5) with discrete distribution, that is, let

pk = Prob{ξ = ξk}, k = 1, . . . , K. Then for

ε < min
k=1...,K

{pk}

the feasible set C(ε) is convex.
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