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Introduction

The field of stochastic programming is mainly concerned with the deve-

lopment of models and algorithms for optimization problems with uncertainty.

More often than not the constants of an optimization problem are only ap-

proximations of measured quantities that could hardly be known to high ac-

curacy. For instance in [BN], the authors analyze the set of problems of the

well-known NETLIB library and perform their sensitivity analysis. Using robust

optimization techniques, they show that feasibility of the usual optimal solu-

tion of linear programs can indeed be heavily affected by small perturbations

in problem data.

The first publications in the field of stochastic programming appeared

in the 1950’s [BEA], [DAN], [CCS]. The subject received moderate attention

until the early nineties, when an explosion in the number of publications took

place. Stochastic programming is a powerful tool to deal with uncertainty and,

unlike other approaches such as robust optimization, models the coefficients

as random variables with known joint distribution. From the point of view

of applications, such assumption may be quite demanding, specially if there

is not enough data to correctly approximate the distribution of parameters.

However, in some cases one does not need to have a complete knowledge

of the distribution of the parameters. It is enough, instead, to have an

algorithm which generates samples from the random variables in the problem.

Furthermore, we believe that in most situations even a subjective choice of the

joint distribution serves the decision maker well.

There are two main approaches to stochastic programming: two-stage

problems with recourse and chance constrained programming. In two-stage

models, the decision maker chooses an action in the present without knowing

the outcome of future events. After the uncertainty is revealed, he then

takes the best possible recourse action to (possibly) correct the unwanted

consequences of his first decision. Deviations from the goals are penalized

by the objective function. Such framework has applications in several fields

such as finance [AHM], electricity generation [LS],[PP], hospital budgeting

[KQ], production planning [PBK], etc. We refer the reader to [SR] for a
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detailed discussion of the theoretical properties and more examples of two-

stage problems. Among the efficient algorithms which deal with two-stage

problems, one of the most popular is the L-shaped method, which is essentially

Benders decompositions applied to the so-called extensive form of a two-stage

problem (see [HV], [BP]). Other important methods based on sampling are

the Stochastic Decomposition ([HS]) and the sample average approximation

for two-stage problems ([LSW]).

The second approach, which is the focus of this thesis, is chance cons-

trained programming, sometimes referred to as probabilistic programming. The

subject was introduced by Charnes, Cooper and Symmonds [CCS] and have

been extensively studied since. For a theoretical background we may refer to

Prékopa [PREb] where an extensive list of references can be found. Applica-

tions include, e.g., water management [DGKS], soil management [ZTSK] and

optimization of chemical processes [HLMS],[HM].

In chance constrained programming, the decision maker is interested in

satisfying his goal “most of the time”, that is, he admits constraint violation

for some realizations of the random events. While two-stage problems penalize

deviations from goals, chance constrained programming considers only the

possibility of infeasibility, regardless of the amount by which the constraints

are violated. In other words, the former approach measures risk quantitatively

while the latter does it qualitatively. We consider problems of the form

Min
x∈X

f(x)

s.t. Prob
{

G(x, ξ) ≤ 0
}

≥ 1 − ε,
(1-1)

where X ⊂ R
n, ξ is a random vector1 with probability distribution P supported

on a set Ξ ⊂ R
d, constraints are expressed through G : R

n × Ξ → R
m,

f : R
n → R is the objective function and ε ∈ (0, 1) is the reliability level.

Although chance constraints were introduced almost 50 years ago, little

progress was made until recently. Even for simple functions G(·, ξ), e.g., linear,

problem (1-1) may be extremely difficult to solve numerically. One of the

reasons is that for a given x ∈ X the quantity Prob {G(x, ξ) ≤ 0} requires

a multi-dimensional integration. Thus, it may happen that the only way to

check feasibility of a point x ∈ X is by Monte-Carlo simulation. Moreover,

convexity of X and of G(·, ξ) does not imply the convexity of the feasible set

of problem (1-1).

That led to two somewhat different directions of research. One consists of

discretizing the probability distribution P and solving the related combinato-

1We use the same notation ξ to denote a random vector and its particular realization.

Which of these two meanings will be used will be clear from the context.
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rial problem (see, e.g., [DPR], [LAN]). Another approach is to employ convex

approximations of chance constraints ([NS]). As active members in this lines

of research, A. Shapiro and S. Ahmed have been working recently in the the-

ory of sampling and simulation applied to chance constrained programming.

The sample average approximation (SAA) studied in this thesis is a sampling

method for joint chance constrained problems or problems with a single chance

constraint. The approach is natural, and, as will be seen, it is a flexible tool

which can alleviate several difficulties such as non-convexity and the intracta-

bility of the probabilistic constraint.

In the third year of my doctorate in Atlanta, Ahmed and Shapiro

introduced me to some theoretical aspects of SAA, and we proceeded to clarify

foundations in order to advance to interesting applications. Ahmed’s previous

supervision of J. Luedtke [LA] gave rise to convergence results of SAA on

specific scenarios, which were then used on probabilistic versions of the set

covering and transportation problems. In this text we continue this path with

the following contributions: first, the theoretical results vindicate the numerical

approximations; then we provide further empirical evidence on how to choose

the parameters involved in SAA and how to use it to solve chance constrained

problems. Part of this material may be found in [PAS].

Chapter 2 contains some basic results about chance constrained pro-

blems, with emphasis on hypotheses leading to the convexity of the feasible

set. In Chapter 3 we provide theoretical background and present the main re-

sults about sample approximations of (1-1). We state and prove convergence

results and describe how to construct bounds for the optimal value of chance

constrained programs.

In Chapter 4, we apply SAA to two rather simple problems, which

allow for verification of our methods. The first is a linear portfolio selection

problem with 10 assets, in the spirit of Markowitz ([MAR]). We consider two

very distinct situations: the distribution of the returns of the assets is either

multivariate normal or lognormal. In the first case, the explicit solution is well

known: we use it as a benchmark to our numerics. The second problem is a

simple blending problem modeled as a joint chance constrained problem, for

which, again, the explicit solution is known.

In Chapter 5 we turn our attention to a more realistic problem arising

from actuarial sciences, the hurdle-race problem, proposed in [VDGK]. It

consists of a decision maker who needs to determine the current capital

(provision) required to meet future obligations. Furthermore, for each period

separately he needs to keep his capital above given thresholds, the hurdles,

with high probability. In [VDGK], the authors make use of comonotonicity
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([DDGa], [DDGb]) to obtain candidate solutions to the problem.

I contacted S. Vanduffel, the corresponding author of [VDGK], and

proposed a variant of the hurdle-race problem, the joint hurdle-race problem.

Instead of separate hurdles, the decision maker has to pass the whole collection

of hurdles with high probability. This phrasing is clearly more adequate from

an actuarial point of view. Comonotonicity cannot be easily applied to the joint

version, but SAA yields good candidate solutions to the problem. Both models

are compared in the original hurdle-race format, and numerical evidence of the

robustness of the joint formulation is provided in Section 5.2.1.

In addition, we extend the formulation to include stochastic hurdles, so

that the hurdles itself are not known at (known) future times and depend on

discounted values of futures obligations at the risk free rate. Although the

model becomes more involved, SAA handles the extension by essentially the

same computational cost.

Chapter 6 concludes the thesis with a summary of the results and future

directions of research.

We use the following notation throughout the text. The integer part of

number a ∈ R is denoted by ⌊a⌋. By Φ(z) we denote the cumulative distribution

function (cdf) of standard normal random variable and by zε the corresponding

ε−quantile, i.e., Φ(zε) = 1−ε, for ε ∈ (0, 1). The cdf B(k; p, N) of the binomial

distribution is

B(k; p, N) :=
∑

k

i=0

(

N

i

)

pi(1 − p)N−i, k = 0, ..., N. (1-2)

For sets A, B ⊂ R
n we denote by

D(A, B) := supx∈A dist(x, B) (1-3)

the deviation of set A from set B.
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