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Abstract

Oliveira, Roberto Felício; Lucena, Carlos José Pereira (Advisor); Gar-
cia, Alessandro Fabricio (Co-Advisor). To collaborate or not to
collaborate? Improving the identification of code smells. Rio
de Janeiro, 2017. 143p. Tese de doutorado – Departamento de Infor-
mática, Pontifícia Universidade Católica do Rio de Janeiro.

Code smells are anomalous code structures which often indicate mainte-
nance problems in software systems. The identification of code smells is
required to reveal code elements, such as classes and methods, that are
poorly structured. Some examples of code smell types perceived as critical
by developers include God Classes and Feature Envy. However, the indi-
vidual smell identification, which is performed by a single developer, may
be ine�ective. Several studies have reported limitations of individual smell
identification. For instance, the smell identification usually requires an in-
depth understanding of multiple elements scattered in a program, and each
of these elements is better understood by a di�erent developer. As a conse-
quence, a single developer often struggles and to find to confirm or refute
a code smell suspect. Collaborative smell identification, which is performed
together by two or more collaborators, has the potential to address this
problem. However, there is little empirical evidence on the e�ectiveness of
collaborative smell identification. In this thesis, we addressed the aforemen-
tioned limitations as follows. First, we conducted empirical studies aimed at
understanding the e�ectiveness of both collaborative and individual smell
identification. We computed and compared the e�ectiveness of collabora-
tors and single developers based on the number of correctly identified code
smells. We conducted these studies in both industry’s companies and re-
search laboratories with 67 developers, including novice and professional
developers. Second, we defined some influential factors on the e�ectiveness
of collaborative smell identification, such as the smell granularity. Third, we
revealed and characterized some collaborative activities which improve the
developers’ e�ectiveness for identifying code smells. Fourth, we also cha-
racterized opportunities for further improving the e�ectiveness of certain
collaborative activities. Our results suggest that collaborators are more ef-
fective than single developers in: (i) both professional and academic settings,
and (ii) identifying a wide range of code smell types.
Keywords

Code Smell; Identification of Code Smell; Collaborative Smell
Identification; Individual Smell Identification; Experimental Software
Engineering;
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Resumo

Oliveira, Roberto Felício; Lucena, Carlos José Pereira; Garcia, Ales-
sandro Fabricio. Colaborar ou não Colaborar? Melhorando a
Identificação de Anomalias de Código. Rio de Janeiro, 2017.
143p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Anomalias de código são estruturas anômalas de código que podem indicar
problemas de manutenção. A identificação de anomalias é necessária para
revelar elementos de código mal estruturados, tais como classes e métodos.
Porém, a identificação individual de anomalias, realizada por um único de-
senvolvedor, pode ser ineficaz. Estudos reportam limitações da identificação
individual de anomalias. Por exemplo, a identificação de anomalias requer
uma compreensão profunda de múltiplos elementos de um programa, e
cada elemento é melhor entendido por um desenvolvedor diferente. Logo,
um desenvolvedor isolado frequentemente tem dificuldades para encontrar,
confirmar e refutar uma suspeita de anomalia. Identificação colaborativa
de anomalias, que é realizada em conjunto por dois ou mais colaboradores,
tem o potencial para resolver esse problema. Porém, há pouca evidência
empírica sobre a eficácia da identificação colaborativa de anomalias. Nesta
tese, nós conduzimos estudos empíricos para entender a eficácia da identifi-
cação individual e colaborativa de anomalias. Computamos e comparamos
a eficácia de colaboradores e desenvolvedores isolados com base no número
de anomalias identificadas corretamente. Conduzimos tais estudos em em-
presas e laboratórios de pesquisa, totalizando 67 desenvolvedores, incluindo
desenvolvedores novatos e experientes. Também definimos alguns fatores de
influência sobre a eficácia da identificação colaborativa de anomalias, tais
como a granularidade da anomalia. Revelamos e caracterizamos algumas
atividades colaborativas que melhoram a eficácia dos desenvolvedores na
identificação de anomalias. Finalmente, identificamos oportunidades para
melhorar certas atividades colaborativas. Nossos resultados sugerem que
colaboradores são significativamente mais eficazes que desenvolvedores
isolados, tanto desevolvedores novatos quanto experientes. Concluímos que
colaborar é vantajoso para melhorar a identificação de uma vasta gama de
tipos de anomalia.

Palavras-chave
Anomalia de Código; Identificação de Anomalia de Código; Iden-

tificação Colaborativa de Anomalia; Identificação Individual de Anomalia;
Engenharia de Software Experimental;
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“No set of metrics rivals informed human in-
tuition.”
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1
Introduction

Software systems evolve over time and, as a consequence, the source code
is frequently changed (12). However, successive changes in the source code may
lead to maintenance problems (68), such as the decay of the code structural
quality (39). Developers may reveal several maintenance problems through
anomalous code structures called code smells (29, 91). Examples of smell types
are God Class and Dispersed Coupling (29). A single software system is likely
to be a�ected by several code smells in di�erent source code elements, such as
classes and methods (33, 43). Certain code smells eventually make di�cult to
understand and change the a�ected code elements, which suggest the need to
identify and eliminate these code smells whenever possible (1, 57, 58).

The identification of code smells consists of searching for anomalous
code structures that potentially indicate maintenance problems in a software
system (45). Code elements represent basic units of the software system
decomposition, such as classes or methods (30, 37). Regardless of the code
element a�ected by a code smell, its identification is more di�cult than it is
usually assumed or advertised (27, 63). In fact, the identification of code smells
in practice consists of three basic steps, as follows (63, 65). First, developers
identify potential code smell suspects in the source code. Second, developers
inspect each code smell suspect. Third, developers either confirm or refute the
code smell suspect as a true occurrence of a code smell in the software system.

Several industrial and academic tools aim at supporting the identification
of code smell suspects (50, 53, 84). However, the inspection of a code smell
suspect, as its confirmation or refutation, are naturally subjective, which
requires the engagement of a developer. Despite the variety of available tools,
previous work observe relevant shortcomings of using these tools, such as their
usual low precision (11, 24). A low precision induces the misidentification of
code smells and hinders the confirmation of code smell suspects by developers.
In summary, even with tool support for its first step, smell identification
remains challenging for developers.

Previous studies observe that developers usually identify code smells
individually, which we refer as single developers, in an ad-hoc manner (66, 69).
In addition, other studies observe that the identification of code smells may
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Chapter 1. Introduction 15

become di�cult or error-prone when performed by single developers (17, 63).
Overall, there is empirical evidence that the identification of code smells by
single developers has shortcomings that should be addressed. Thus, due to
the subjectiveness of the identification of code smells and low precision of
detection tools, developers face several di�culties that could be reduced or
mitigated through the collaboration among developers (60).

1.1
Collaborative Smell Identification: A Motivating Example

The inspection of each code smell suspect often requires an in-depth
understanding of several code elements of the software system. For instance,
to confirm or refute the occurrence of a God Class smell type (29), the developer
has to understand whether the code smell suspect actually concentrates several
responsibilities which should be implemented in multiple classes instead of a
single class. The notion of centralizing multiple non-cohesive responsibilities is
what characterizes a God Class. Thus, the developer requires knowledge about
various responsibilities of the software system and what responsibilities are
implemented in each class, including the God Class. However, this knowledge
is sometimes di�cult to obtain as the developers may not have implemented all
involved classes. This lack of knowledge may suggest the need for exchanging
knowledge among developers of the software system.

Figure 1.1 illustrates how developers working collaboratively, whom we
refer to as collaborators, may benefit from the exchange of knowledge on the
identification of code smells. The figure provides an example of knowledge
exchange extracted from a real development scenario reported in our recent
study (63). In the context of this thesis, the developer’s knowledge may include
information about the purpose of the software system, details on the code
structure, or definitions of code smell types. In turn, knowledge exchange means
sharing knowledge among developers, specially when identifying code smells
together. We simplified the discussion among collaborators and changed the
names of the developers due to privacy reasons.

Figure 1.1 represents two developers, namely Bill and Suzi, who have
conducted a collaborative smell identification. The figure presents a part of the
discussion among Bill and Suzi. We enumerate each statement of the discussion
with a increasing number from 1 to 14, except for the numbers 6 and 13 that
provide notes of the researchers. The increasing numeric order comprises the
order of the statements. Along the discussion, we highlight key statements. A
key statement, such as 1 and 3, means a statement that actually contributes to
the identification of the code smell. We indicate the key statements to illustrate

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



Chapter 1. Introduction 16

when developers actually exchange useful knowledge for the identification of
code smells. We provide an overview of the discussion as follows.

Figure 1.1: Exchange of knowledge between collaborators

Figure 1.1 suggests that Bill and Suzi work together to identify code
smells in a system which they both know. In the beginning, Bill and Suzi had
conflicting opinions about the occurrence of a code smell in Class A, which
Bill assumes to have a God Class instance. First, Bill reflected upon the name
of the class (key statement 1 ) to recall at least some of the responsibilities
implemented by the class. Suzi then notices that Bill has tried to draw
conclusions on the class responsibilities and asks Bill what he thinks about
the class. Bill mentions the poor structural quality of Class A due to the class
size (key statement 2 ), which implies the occurrence of a God Class code smell.
However, Suzi does not feel confident to agree, since she assumes that Bill is
taking into account only the size of the class (key statement 3 ). In fact, she
does not believe that the class is a�ected by God Class.

After the aforementioned initial discussion between developers, Bill re-
alizes that Suzi is right about considering only the class size to confirm the
occurrence of a code smell. However, Bill is still convinced that the class con-
tains a code smell with unknown smell type. Therefore, he tries to identify
other indicators of the occurrence of a code smell in Class A. Consequently,
Bill observes a method of Class A which has several dependencies with other
classes of the software system (key statement 4 ). In order to avoid the misiden-
tification of a code smell, Bill asks Suzi to help him with the inspection of the
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Chapter 1. Introduction 17

other classes with which the suspicious one has any dependencies. He asks for
Suzi’s help because she has implemented the other classes and, therefore, her
knowledge may be useful to confirm the occurrence of the code smell.

As Bill inspect the other classes, he realizes that Class A has other
methods which depend on other classes (key statement 5 ). Based on Suzi’s
knowledge of these classes (key statement 6 ), Bill becomes confident that Class
A is coupled to other classes because it depends on these classes to generate
di�erent data reports in the software system. Bill complements the discussion
by counting how many methods Class A calls (key statement 7 ). At the end of
the identification of code smells, the knowledge exchange leads both Bill and
Suzi to confirm the occurrence of a Dispersed Coupling smell type in Class A.
Dispersed Coupling occurs when a class depends just a little on several other
classes of the software system (37).

In summary, the example illustrated in Figure 1.1 suggests that the
knowledge exchange can be essential to avoid recurring omissions or mistakes
on the identification of code smells performed by single developers. In fact,
collaborators were able to minimize the misidentification of code smells via
discussion, which would not be possible if the developers had worked in isola-
tion. In addition, collaborators have improved their confidence when confirm-
ing or refuting the code smell suspect. Thus, collaborators are potentially more
e�ective than single developers on the identification of code smells. However,
there is no empirical knowledge if this superiority applies only to specific sce-
narios or to the confirmation or refutation of code smells in general. It might
be that case that collaborative smell identification makes di�cult confirming
or refuting smells in certain circumstances.

1.2
Problem Statement

Section 1.1 presented a motivating example of the collaborative smell
identification. This example showed the knowledge exchange may be essential
to the e�ectiveness of smell identification. In fact, the aforementioned example
suggests that the collaborators actually benefit of discussions when identifying
a code smell. Thus, the collaborative smell identification emerges as a possible
way to improve the e�ectiveness of developers otherwise working in isolation,
which has been shown to be limited for several reasons, such as the inherent
di�culty to confirm of refute a code smell suspect (27, 44, 55, 63).

Although the collaborative smell identification potentially improves the
developers’ e�ectiveness, it is rarely applied by organizations due to the
following reasons (43, 60, 63). First, there is limited knowledge of how to
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Chapter 1. Introduction 18

conduct collaborative smell identification (63). Second, due to the limited
knowledge, organizations assume that collaborative smell identification does
not worth when compare to individual smell identification (43). Third, it
remains unclear to what extent the collaborative smell identification improves
the e�ectiveness of code smell identification performed by developers (60).

Chapter 2 details the aforementioned limitations. In summary, the lit-
erature suggests that the organizations need a complete body of knowledge
regarding collaborative smell identification, in order to decide to what extent
they may benefit from collaborative smell identification (43, 60, 63). Thus,
all aforementioned problems are relevant, which leads us to the conduction of
empirical studies focused on each problem. The problems presented above can
be captured by the following general problem.

General Problem. To what extent collaborative smell identification is
worthwhile remains unknown.

From our general problem, we have derived three specific problems which
are addressed in this thesis. Each specific problem investigates the e�ectiveness
of collaborative smell identification under a di�erent viewpoint. We introduce
each specific problem of the thesis as follows.

E�ectiveness of collaborative smell identification. Section 1.1 raises the
hypothesis that collaborators may be more e�ective than single developers on
the identification of code smells. However, as aforementioned, one reason for
organizations not adopting collaborative smell identification is that there is
limited empirical knowledge of to what extent collaborators are actually more
e�ective than single developers. In order to address this limitation, this thesis
presents a series of empirical studies conducted in di�erent settings, including
real software development organizations. We aim at understanding the di�er-
ences governing the e�ectiveness of collaborators and single developers.

Problem 1. The e�ectiveness of collaborative smell identification is un-
known.

Influential factors on the e�ectiveness of collaborative smell identification.
By assessing the e�ectiveness of collaborators and single developers on the
identification of code smells, we provide the first insights on the benefits of the
collaborative smell identification. However, it may not su�ce for convincing
organizations to adopt collaborative smell identification. Thus, similarly to
previous work (2), we define factors such as the characteristics of software
systems, development teams, or organizations that somehow influence the
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Chapter 1. Introduction 19

collaborative smell identification. For instance, does the smell granularity
influence the e�ectiveness of smell identification? Or, as suggested in the
example of Section 1.1, does the knowledge of developers on the system under
inspection influence the smell identification? In summary, we aim at answering
these and other questions related to influential factors on the e�ectiveness of
collaborative smell identification.

Problem 2. The influential factors on the e�ectiveness of collaborative
smell identification are unknown.

Activities of collaborative smell identification. Some organizations report-
edly do not adopt the collaborative smell identification as they know little
about how to conduct it (63). Thus, after identifying the influential factors on
the e�ectiveness of collaborative smell identification, we aim at understanding
what collaborative activities are influenced by these factors. We refer as activ-
ity an action of developers with a specific goal during the identification of code
smells. An example of activity is the set of actions for confirming or refuting a
code smell suspect. In this thesis, we aim at identifying the activities that are
mostly collaborative. We refer as collaborative activity an activity that should
be performed by collaborators to improve the e�ectiveness of smell identifica-
tion. In addition, we aim at identifying the collaborative activities that could
be further improved with the aim at further increasing e�ectiveness.

Problem 3. The collaborative activities which compose the identification
of code smells are unknown.

.

1.3
Goals and Research Questions

After observing there is limited empirical knowledge of collaborative
smell identification (Section 1.2), we designed the study goal (89) of this thesis
as follows: analyze the collaborative smell identification; for the purpose of
comparing it with individual smell identification; with respect to the developers’
e�ectiveness; from the point of view of developers with di�erent backgrounds
and levels of working experience; in the context of Brazilian project settings.
In summary, we address a general research question described as follows.

General Research Question: To what extent the collaborative smell
identification improves the developers’ e�ectiveness?
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Chapter 1. Introduction 20

In the context this thesis, we consider the developer’s e�ectiveness as
the capability of a developers to correctly confirm or refute the existence of a
code smell, based on a code smell suspect obtained through an automated or
a manual inspection. To deeply investigate our general research question, we
split it into four specific research questions (SRQs) presented in Table 1.1.

Table 1.1: List of specific research questions
SRQs Description
SRQ1 Does the collaborative smell identification improve the developers’ e�ectiveness

when compared to the individual smell identification?
SRQ2 What influential factors contribute to the developers’ e�ectiveness on collabo-

rative smell identification?
SRQ3 What collaborative activities contribute to the developers’ e�ectiveness on

smell identification?
SRQ4 Are there opportunities for improving collaborative activities of smell identifi-

cation?

With SRQ1 we assess whether collaborators are more e�ective than sin-
gle developers on the identification of code smells. We conducted a controlled
experiment with 26 novice and professional developers unfamiliar with the
analyzed software systems. With SRQ2 we investigate the influential factors
on the e�ectiveness of collaborative smell identification. We conducted a con-
trolled experiment with 28 novice developers also unfamiliar with the analyzed
systems. With SRQ3 we reveal the collaborative activities typically involved
in the identification of code smells. We conducted a qualitative analysis on
how developers identify code smells, based on the data of SRQ2. Finally, with
SRQ4 we reveal opportunities for improving collaborative activities of smell
identification. We conducted an industrial case study with 13 professional de-
velopers familiar with the inspected systems.

Table 1.2 lists the publications that contributed to this thesis. The first
and second columns reference and relate each publication with our SRQs.
In addition, Table 1.3 lists the publications generated during this doctoral
research and which have an indirect relationship with this thesis.

1.4
Research Methodology

Empirical studies have been increasingly conducted by researchers aimed
at assessing the e�ectiveness of techniques and methodologies in software
engineering (49, 89). There are di�erent empirical studies with varied purposes,
such as evaluating a novel technique or understand the state of the art in a
given research topic. This thesis combines di�erent empirical studies to address
our specific research questions (Table 1.1): literature review (Chapter 2),
controlled experiment (60, 61, 62, 64), and case study (63).
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Chapter 1. Introduction 21

Table 1.2: Publications that contributed to this thesis
Publication SRQs

Oliveira, R.; Sousa, L.; Mello, R.; Valentim, N.; Lopes, A.; Conte, T., Garcia, A.;
Oliveira, E. and Lucena, C. Collaborative Identification of Code Smells: A Multi-case
Study. In: 39th ACM/IEEE International Conference on Software Engineering (ICSE),
Software Engineering in Practice (SEIP) Track. p. 33–42, Buenos Aires, 2017.

SRQ1,3,4

Oliveira, R.; Mello, R.; Garcia, A. and Lucena C. Evaluating the e�ectiveness of pair
programming on the identification of code smells: An empirical study. In: Journal of
Systems and Software (JSS), under minor review, 2017.

SRQ1

Oliveira, R. When more heads are better than one? Understanding and improving
collaborative identification of code smells. In: 38th ACM/IEEE International Confer-
ence on Software Engineering (ICSE), Doctoral Symposium, p. 879–882, Austin, 2016.

ALL

Oliveira, R.; Estacio, B.; Garcia, A.; Marczak, S.; Prikladnicki, R.; Kalinowski,
M. and Lucena, C. Identifying code smells with collaborative practices: A controlled
experiment. In: 10th Brazilian Symposium on Components, Architectures, and Reuse
(SBCARS), p. 61–70, Maringá, Brazil, 2016.

SRQ1,2,3

Oliveira, R.; Garcia, A.; Lucena, C. and Albuquerque, D. A Eficácia de pares na
identificação de anomalias de código: Um experimento controlado. In: 11th Workshop
on Software Modularity (WMod), p. 53—66, Maceió, Brazil, 2014.

SRQ1

Table 1.3: Indirect publications
Publication
Mello, R.; Oliveira, R. and Garcia, A. Investigating the influence of human factors on the identification
of code smells. In: 11st ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), p. 1–10, Toronto, Canada, 2017.
Estácio, B.; Oliveira, R.; Marczak, S.;,Kalinowski, M.; Garcia, A.; Prikladnicki, R. and Lucena, C.
Evaluating collaborative practices in acquiring programming skills: Findings of a controlled experiment.
In: 29th Brazilian Symposium on Software Engineering (SBES), p. 150–159, Belo Horizonte, Brazil, 2015.
Mello, R.; Oliveira, R.; Sousa, L. and Garcia, A. Towards e�ective teams for the identification of code
smells. In: 10th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), co-located with 39th ICSE, p. 62–65, Buenos Aires, Argentina, 2017.

A literature review aims at collecting scientific evidence on a specific re-
search topic, such as the collaborative smell identification. In turn, a controlled
experiment focuses on understanding cause-e�ect relationships with randomly
selected subjects (78). Controlled experiments usually involve novices and pro-
fessional developers, which conduct the experimental tasks in a short time (78).
A case study aims at investigating a phenomenon in real settings, even when
the phenomenon is unclear (75). Both controlled experiments and case studies
are known in the literature as primary studies.

Figure 1.2 illustrates the four phases of our research methodology. We
discuss each phase in detail as follows.

Phase 1 consisted of a literature review aimed at understanding the
identification of code smells and collaboration practices in software engineering.
As a result, we collected empirical evidence on both topics. Based on the
results of this phase, we elaborated the terminology presented in Section 2.1.
Phase 2 consisted of conducting controlled experiments aimed at assessing the
developers’ e�ectiveness on collaborative smell identification (60, 61, 62, 64).
For this purpose, we compare the e�ectiveness of both collaborators and single
developers that are unfamiliar with the inspected systems, which represents a
common software development scenario. We then answer three specific research
questions of this thesis: SRQ1, SRQ2, and SRQ3.
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Chapter 1. Introduction 22

Figure 1.2: Phases of the research methodology

Phase 3 consisted of a case study aimed at reinforcing the findings of
Phases 1 and 2 with respect to collaborative smell identification. Di�erently
of the previous phases, we focus on industrial settings and developers which
are familiar with the software systems under analysis (63). We then answer
the two last specific research questions: SRQ3 and SRQ4. Finally, Phase 4
consists of summarizing the study findings on collaborative smell identification.
For this purpose, we revisit our empirical studies aimed at gathering the most
relevant findings with the respective implications. Our goal was to provide a
thesis overview, which concludes that collaborators are more e�ective than
single developers on the identification of code smells.

1.5
Contributions

This thesis presents empirical studies aimed at assessing the e�ectiveness
of collaborative smell identification. Based on the results obtained for each
specific research questions, we draw some interesting conclusions as follows.

– The investigation of SRQ1 reveals that collaborators are usually more
e�ective than single developers when identifying code smells. In fact,
collaborators more easily identify certain smell types, such as God Class
and Dispersed Coupling, when compared to single developers. Thus,
organizations should consider adopting collaborative smell identification
to improve their e�ectiveness.

– By investigating SRQ2, we observed certain influential factors on col-
laborative smell identification. One influential factor that we have found
is the smell type. In fact, our data suggest that the identification of
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Chapter 1. Introduction 23

inter-class smell types, which require knowledge about multiple classes,
may benefit from collaborative smell identification. Overall, the influen-
tial factors observed in our study may help organizations in carefully
applying collaborative smell identification.

– By assessing SRQ3, we characterized activities which compose the identi-
fication of code smells, performed by collaborators and single developers.
There are many di�erent actions, from deciding about the smell types
which mostly concern the developers, to confirming or refuting a code
smell suspect as an actual code smell. We also characterized the activi-
ties that improve the developers’ e�ectiveness at most. By characterizing
these activities, we provide preliminary insights on how organizations
should implement collaborative smell identification.

– Finally, by investigating SRQ4, we identified opportunities for improving
collaborative activities. These opportunities aim at improving the devel-
opers’ e�ectiveness on collaborative smell identification. For instance,
developers often need to exchange knowledge to confirm or refute a code
smell suspect in collaboration. However, we observed that developers re-
quire additional information during the collaborative smell identification,
such as the evolution of the code elements towards the occurrence of code
smell suspects, which is often not provided by existing tool support.

1.6
Outline

The remainder of this thesis is organized as follows. Chapter 2 provides
background information to help understand the thesis. Chapter 3 presents an
empirical study aimed at assessing the e�ectiveness of collaborative smell iden-
tification. Chapter 4 discusses an empirical study with the two focuses. First,
we investigate the influential factors on collaborative smell identification. Sec-
ond, we investigate collaborative activities which improve the developers’ ef-
fectiveness on collaborative smell identification. Chapter 5 reinforces the study
findings of Chapters 3 and 4 in industry settings. In addition, we investigate
opportunities for improving the collaborative activities and, consequently, im-
prove the collaborators’ e�ectiveness. Finally, Chapter 6 concludes the thesis
with a summary of our contributions and suggestions for future research.
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2
Background and Related Work

Literature reports that maintenance problems often a�ect software
systems (43, 79). Code smells provide hints of certain maintenance prob-
lems (29, 91) that actually increase the e�ort to read, change, and fix the
source code (84, 92). Aimed at supporting the identification of code smells, pre-
vious work assessed the e�ectiveness of individual smell identification, which is
performed by single developers (17, 55). They usually observed limitations of
individual smell identification (27, 55), which could be addressed through de-
velopers’ collaboration. Thus, collaborative smell identification emerges as an
opportunity to improve the identification of code smells (63). However, there
is limited empirical evidence on the circumstances that collaborative smell
identification is indeed e�ective.

To address the aforementioned limitation, this thesis presents empirical
studies aimed at understanding the e�ectiveness of collaborative smell identi-
fication. This chapter provides background information aimed at supporting
the comprehension of this thesis. We present the basic concepts which under-
lies all next chapters of this thesis. We also discuss related work in four parts,
aimed at contextualizing our studies from di�erent perspectives in the litera-
ture. First, we present studies that aimed at understanding the identification
of code smells in general. Second, we present studies that aimed at assessing
the e�ectiveness of individual smell identification. Third, we discuss previous
work organized on collaboration practices of developers along di�erent soft-
ware engineering activities. Fourth, we discuss the lack of empirical evidence
on collaborative smell identification.

The remainder of this chapter is organized as follows. Section 2.1 presents
the basic concepts of the thesis. The other sections discuss related work
as follows. Section 2.2 discusses identification of code smells in general.
Section 2.3 overviews developers’ collaboration along software engineering
activities. Section 2.4 discusses the limited knowledge about the e�ectiveness
of collaborative smell identification. Finally, Section 2.5 concludes this chapter
and introduces the next chapter.
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Chapter 2. Background and Related Work 25

2.1
Basic Concepts

This section presents the basic concepts which guide the understanding
of the thesis. We introduce these concepts in two parts. First, we present
the code smells identification, such as code smells, smell types, and both
individual and collaborative smell identification. Second, we present concepts
associated with the empirical studies of this thesis, such as e�ectiveness of
smell identification, and influential factors and collaborative activities on smell
identification. We introduce these concepts as follows.

Code Smells Identification Concepts. The code smell identification con-
cepts include from the definition of code smells to the elementary terms regard-
ing the code smell identification, which are fundamental for the understanding
of this thesis. These concepts are reported in the Figure 2.1. The figure mod-
els the relationships among di�erent concepts using on the Unified Modeling
Language (UML) notation (14). Each rectangle represents a basic concept. In
addition, each continuous line represents a hierarchical relationship between
two concepts. This relationship means that the concept represented at the most
above level is decomposed into the concepts at the level below. Finally, the dot-
ted lines represent the relationships of dependency among multiple concepts.
We discuss the figure in detail as follows.

A core basic concept presented in Figure 2.1 is code element. A code
element consists of the basic decomposition unit of a software system (30).
This decomposition unit is either a class, which is composed by methods and
attributes, or a method, which is composed by statements (37). Certain code
elements are also code smell suspects. A code smell suspect consists of a code
element which is possibly a�ected by a code smell, but still not confirmed
or refuted by developers as actually a�ected by the code smell. In turn, a
code smell is an anomalous code structure which often indicates one or more
maintenance problems in a software system (29, 91).

Regarding code smells, each instance of code smell has a smell type.
Examples of smell types are Dispersed Coupling, which means a class with
several dependencies with other classes of the system (29), and Long Method,
which means a method with excessive length and complexity (29). In addition,
each smell type has a di�erent smell granularity classified as intra-class smell
or inter-class smell (29, 46). Intra-class smells are anomalous code structures
which a�ect a particular class of the system, such as Long Method and Long
Parameter List. Inter-class smells are those which a�ect multiple classes
together, such as Feature Envy and Message Chain.
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Chapter 2. Background and Related Work 26

Figure 2.1: Code smells identification

Table 2.1 presents the smell types inspected in this thesis. The first
column lists the smell types. The second column defines each smell type. The
third column indicates which specific research question(s) (SRQs) considered
the respective smell type, presented in each row. We do not consider all the
smell types in all empirical studies (SRQs) of this thesis because a particular
smell type may be not relevant to a software project. For instance, certain
smell types rarely occur in certain projects. All smell types of Table 2.1 are
defined in the literature (16, 29), are commonly investigated (24, 56, 92), may
cause the decay of code structural quality (43). Finally, certain smell types
may co-occur (67). For instance, a class a�ected by God Class may also be
a�ected by Long Method and Feature Envy.

Another basic concept is identification of code smells, which has three
steps: to identify code smell suspects in the source code; to inspect each code
smell suspect; to confirm or refute each code smell suspect as a true occurrence
of code smell (65). Developers usually perform the identification of code smells
alone. The individual smell identification occurs whenever a single developer
identifies code smells alone (55). The collaborative smell identification occurs
whenever two or more developers identify code smells together. In this case,
each developer is called collaborator. Collaborators may be allocated in pairs
or groups with more than two developers.
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Chapter 2. Background and Related Work 27

Table 2.1: Smell types considered in this thesis
Intra-class smells

Smell Type Description SRQs

Complex class Class whose methods have a high cyclomatic complexity SRQ3
Large class Class that is excessively long SRQ2

Long method Method with long length and complexity ALL
Long parameter list Method with several parameters, some of which unnecessary SRQ3

Spaghetti code Class with long methods that are excessively inter-dependent SRQ3
Speculative generality Abstract class with a few concrete classes using its methods SRQ3

Inter-class smell
Smell Type Description SRQs

Data class Class with fields, getter and setter methods only SRQ2
Data clumps Data often found together in classes or method calls SRQ1

Duplicated code Similar parts of code elements that occur in di�erent classes SRQ2,3
Feature envy Method mostly concerned with another class than the one it

belongs
SRQ2,3

God class Class with long length and several implemented responsibilities SRQ2,3
Lazy class Small class with only a few methods and low complexity SRQ2,3

Message chain Several method calls to realize a single responsibility SRQ1,3
Refused bequest Child class that does not use the functionalities of its parent SRQ3
Shotgun surgery Changes in a class require changing several others SRQ3

Empirical Study Concepts. The empirical study concepts consist of elemen-
tary terms which are fundamental for the understanding of our quantitative
and qualitative studies. In summary, they regard concepts which we assess
by conducting empirical studies. Figure 2.2 presents another part of the basic
concepts which regards the empirical study concepts. Similarly to Figure 2.1,
we represent these concepts with a notation inspired by UML (14). We discuss
in detail each empirical study concept as follows.

A concern concept in our empirical studies is the e�ectiveness of smell
identification. In short terms, e�ectiveness means to correctly identify code
smells and avoid misidentified code smells. This thesis assesses the e�ective-
ness of smell identification in two ways, i.e. we investigate such an e�ectiveness
based on both quantitative and qualitative analyses. Both analyses are com-
plementary, because each of them provides di�erent viewpoints and findings
about the developers’ e�ectiveness on the identification of code smells. We
discuss both analyses as follows.

In our quantitative analysis, we compute e�ectiveness through the aver-
age number of identified code smells and two largely used measures (6, 11, 24),
namely precision, and recall. The average number of identified code smells is
the total number of identified code smells divided by the total number of sub-
jects involved in the identification of code smells. In turn, precision measures
the correctness of the identified code smells. Finally, recall measures the com-
pleteness of the identified code smells with respect to all code smells which
occur in a system (23). All these measures depend on code smell reference
lists, which are built based on the report of one or more smell detection tools
or a manual smell identification. A code smell reference list itemizes the code
smells identified in the source code of a software system (25).
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Chapter 2. Background and Related Work 28

Figure 2.2: Empirical study concepts of the thesis

Regarding the qualitative analysis, we focus on the factors and collabo-
rative activities which contribute to improve the developers’ e�ectiveness on
collaborative smell identification. Factors are characteristics related to software
systems, development teams, or organizations which contribute to the e�ec-
tiveness of the smell identification. In turn, activities are actions with specific
goals and performed by developers during the identification of code smells,
such as the ones performed to confirm or refute a code smell suspect.

Finally, regarding factors, our studies focus on three factors. First, the
smell granularity, since di�erent granularities are inherently di�cult to inspect
by single developers. Based on a previous work (80), we consider granularity as
the code abstraction level a�ected by a code smell suspect: at class (general)
or method (specific) level. Thus, collaboration may make such an inspection
easier. Second, the size of the developers team which identify code smells, since
the number of developers involved in the identification of code smells may
positively or negatively a�ect the team’s e�ectiveness. Third, the familiarity
with the software system, which means that developers have some or knowledge
of the analyzed systems. Because some developers know little about the system,
collaboration could be helpful to improve the developers’ e�ectiveness.

2.2
Studies on Code Smells

Code smells are anomalous code structures that suggest maintenance
problems (29), which may increase the maintenance e�ort (19, 58) and decrease
the code comprehensibility (1). Studies assessed the side e�ects of code smells
on structural quality (59, 34). Others show that code smells co-occur, which de-
cay even more the code structural quality (90, 57). Finally, studies investigate
the task of identifying code smells (54, 65). We discuss these studies as follows.
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Chapter 2. Background and Related Work 29

Side E�ects of Code Smells on Software Systems. In order to assess
to what extent code smells actually lead to maintenance problems, Olbrich,
Cruzes and Sjoberg (2010) analyzed development historical data of open source
software systems. Their results suggest that certain smell types, such as God
Class and Brain Class, cause the decay of the code structural quality, which
consequently makes di�cult to maintain the source code. In turn, D’Ambros
et al. (2010) assessed how code smells increase the e�ort spent by developers
to fix problems in the source code of open source systems. As a result, the
authors observe that, the higher the number of code smells, the higher is the
developers’ e�ort to fix problems in the source code. Thus, developers should
identify and eliminate code smells whenever possible.

Regarding the changeability of the source code, previous studies inves-
tigated whether code smells lead to a high number of changes in the code
elements a�ected by code smells (34, 42, 59). By assessing the historical data
of open source software systems, they conclude that code smells actually lead
to several changes in the a�ected code elements. As aforementioned, devel-
opers should identify and eliminate the code smells which a�ect the software
systems. Consequently, developers could improve the code structural quality
and increase the longevity of their systems (51, 77).

Abbes et al. (2011) assesses the e�ects of code smells on code compre-
hensibility, which means how easily developers could read and understand the
source code (26). Their results suggest that, for open source systems, certain
smell types such as Blob and Spaghetti Code (16) actually cause the decay
of the code comprehensibility. That is, the anomalous code structures are of-
ten di�cult to read and understand. Regarding code comprehensibility, our
thesis aimed at making it easier for developers to characterize and identify
smelly structures through developer collaboration. We hypothesize that such
collaboration is likely to improve their e�ectiveness on smell identification.

Finally, recent studies provide empirical evidence that certain smell
types often co-occur in the software system. Consequently, the co-occurrence
of di�erent code smells may increase the negative e�ects on each code smell
the code structural quality (57, 86, 90). For instance, Oizumi et al. (2016)
observe that the co-occurrence of code smells manifest in di�erent ways,
such as the so-called code smell agglomerations, and may involve multiple
code elements together, from di�erent parts of the source code. Consequently,
the co-occurrence of code smells makes it di�cult to identify and eliminate
code smells, aimed at improving the code structural quality. In this context,
this thesis aims at understanding how collaborative smell identification could
ease the identification of code smells, which may a�ect multiple code elements.
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Chapter 2. Background and Related Work 30

Studies of Code Smell Identification. Section 2.1 discusses the three steps
of the identification of code smells (65): to identify the code smell suspects;
to inspect each suspect; and to either confirm or refute each suspect. Previous
studies assess means to support each step (18, 72). For instance, Pietrzak and
Walter (2006) suggests combining multiple characteristics of the source code
to improve the e�ectiveness of the identification of code smells. Other studies
propose minimizing the e�ort of developers when conducting each step (50, 53).
However, there is still limited empirical knowledge about how these steps
could be improved, which we address in this thesis by understanding how
collaborative smell identification could benefit each step.

We also discuss two ways to identify code smells: the manual smell iden-
tification (54), which naturally requires the engagement of developers; and the
use of smell detection tools (50), which partially automates the identification of
code smells, but also requires developer’s engagement. Previous studies inves-
tigate whether the smell detection tools actually support the identification of
code smells (11, 24, 28). For instance, Fernandes et al. (2016) observe that the
detection results provided by tools vary significantly due to the diverse strate-
gies adopted to identify code smells is still unclear. Thus, developers should
not totally rely on the report of these tools, which requires the developers’
engagement to confirm or refute the existence of a code smell suspect.

2.3
Studies on Developers’ Collaboration

As discussed in Section 2.2, literature has reported several shortcomings
of smell identification, mostly when such an identification is performed by a
single developer. In fact, there is empirical evidence that even highly skilled
developers have limitations (88). Thus, the collaboration of developers emerges
as a possibility to improve the developers’ e�ectiveness on the identification
of code smells. In fact, previous work suggests that the collaboration of
developers is essential for improving their e�ectiveness on the development
and maintenance of software systems (31). We call collaboration when two or
more developers work together and exchange knowledge with a specific goal
during the development or maintenance of a system (87).

Previous studies have investigated the collaboration of developers in
software engineering (5, 8, 74, 83). They suggest that the collaboration in
software engineering is e�ective to address the limitations of single developers.
In fact, developers working as collaborators benefit in two ways. First, collab-
orators could avoid mistakes otherwise made by each single developer. Second,
collaborators could improve their e�ectiveness in the system development
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Chapter 2. Background and Related Work 31

and the identification of code smells, for instance. However, by no means we
should expect that it is obvious that collaboration (always) improves smell
identification. Each smell has a simple structural pattern, which is likely to
be easily identified by a single developer, in particular an experienced one.
Unfortunately, there is limited knowledge of either adopting or assessing
collaboration along the identification of code smells. Nevertheless, previous
work investigates other applications, as discussed next.

Collaboration in Code Review. Code review means inspecting the software
system to identify a wide range of problems which developers should address
(74). Code review consists of allocating developers to inspect code elements
aimed at identifying violations of organization recommendations, development
standards, and general problems (5, 13). Organizations such as Google and
Microsoft (7, 73) have adopted collaboration in their code review practices
to improve the developers’ e�ectiveness. Particularly, Sutherland and Veno-
lia (2009) observe a major benefit of collaboration in code review. That is,
the knowledge exchanged among developers actually improves the developers’
e�ectiveness in code review, by supporting the understanding and the reason-
ing about the software system. However, they explored the use of developers’
collaboration to identify widely-scoped structural problems (e.g. major archi-
tectural problems). They did not assess the role of collaboration in improving
the identification of apparently simpler structure of code smells.

Organizations di�erently apply code review (5, 10, 73) regarding how
developers collaborate during the inspection of code elements (47). One de-
veloper is usually responsible for implementing certain code elements, and
others assess the quality of those code elements, aimed at verifying possible
inconsistencies and problems, such as bugs (47, 48). Bugs are any mistakes
made by developers during the software development and maintenance, which
change the expected behavior of a software system (36). However, there is no
understanding of whether these organizations can actually benefit of existing
developers’ collaboration to improve smell identification.

Collaboration in Pair Programming. Pair Programming (PP) consists of
two developers working together on the same development task, such as adding
code elements to the system or inspecting existing code elements (4). Usually,
one developer called driver implements the code, and another developer called
observer assists the driver by reviewing the code, for instance. Developers can
switch roles (driver and observer). Whenever developers only inspect the code
elements, both developers analyze the code as observers (22).
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Previous work discuss the advantages of applying pair programming to
improve the code structural quality (8, 82). For instance, they show that pair
programming makes developers e�ective in identifying defects in code elements
(70, 82). Previous work also observe that the knowledge exchange is essential
for the developers’ e�ectiveness in pair programming (32, 85). They show
that pair programming requires continuous discussion between developers (85),
aimed at supporting the identification of defects in the software system and
the review of complex code elements (32). This thesis innovates by assessing
the role of collaboration in pairs to either reduce smells prevailing in the code
along programming sessions or improve smell identification in existing code.

2.4
Limited Empirical Knowledge of Collaborative Smell Identification

As discussed in Section 2.3, the collaboration of developers has been
applied and assessed in software engineering tasks. For instance, previous
studies show that the code review may benefit from collaboration, since
developers working together are able to reveal more precisely defects and
maintenance problems in software systems (5, 13). In addition, we discuss
in Section 2.2 the drawbacks of individual smell identification, which could
benefit from developers’ collaboration. However, there is limited evidence as
to what extent the developer collaboration indeed improves their e�ectiveness.

Previous work shows that collaboration reduces the di�culty faced by
developers to identify defects in software systems, which manifest in the
source code (47, 48). Consequently, one could expect that the collaboration
has potential to improve developers’ e�ectiveness in identifying code smells,
which also manifest in the source code of a system. However, we did not
find studies aimed at investigating such potential. Moreover, studies show
that the knowledge exchange supports developers in understanding the source
code (83). Therefore, it would be interesting to explore whether collaborative
smell identification helps developers in reasoning about code smells. Again,
there is limited empirical knowledge about this issue.

In summary, although collaboration potentially improves the developers’
e�ectiveness in identifying code smells, little is known about such improve-
ment from the literature. Due the lack of knowledge, several organization do
not consider applying collaboration in their development contexts. Thus, or-
ganizations need a complete body of knowledge regarding collaborative smell
identification, in order to decide to what extent they may benefit from collab-
orative smell identification (43, 60, 63). Due to the aforementioned limitations,
we conducted various empirical studies aimed at addressing this issue.
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2.5
Summary

This chapter provided the required background to support the under-
standing of this thesis. We presented our basic concepts, which defines the main
terms used throughout the next thesis chapters. Besides the basic concepts, we
discussed related work as follows. First, we presented empirical studies on the
occurrence and side e�ects of code smells. Second, we discussed studies on the
collaboration of developers in software engineering. Third, we discussed the
limited empirical knowledge of collaborative smell identification. We discussed
how this thesis assesses the e�ectiveness of collaborative smell identification.

Based on the discussion presented in this chapter, we claim that it is not
clear whether developers’ collaboration can indeed improve their e�ectiveness
on smell identification. Thus, the next chapter provides the first insights on
the e�ectiveness of collaborative smell identification. For this purpose, we
conducted an empirical study aimed at understanding whether collaborators
are more e�ective than single developers when identifying code smells.
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3
Individual vs Collaborative Smell Identification: A Compara-
tive Evaluation

According to the literature, developers usually identify code smells in-
dividually (27, 44, 57). By assuming that, studies assess the e�ectiveness of
individual smell identification and report drawbacks of this identification, such
as the di�culty of developers to confirm or refute a code smell suspect (65).
Since the identification of code smells is subjective and widely depends on
the developer expertise, one should expect that developers identifying code
smells collaboratively, the so-called collaborators (Section 2.1) are more e�ec-
tive than the ones identifying code smells individually, called single developers.
Developers’ collaboration may improve their e�ectiveness by improving smell
identification correctness, i.e. without misidentifying smells.

Despite the potential of collaborative smell identification, there is limited
empirical knowledge of its actual impact on developers’ e�ectiveness. Moreover,
most industrial and academic parties simply assume a single skilled developer
is e�ective enough to identify the apparently simple structure of each smell.
To address this lack of empirical knowledge, this chapter presents an empirical
study aims at comparing the e�ectiveness of both collaborators and single
developers. The study design is grounded in the terminology presented in
Section 2.1. Additionally in this section, we discuss precision and recall, which
we used to compute e�ectiveness. In summary, we address the first specific
research question of this thesis (SRQ1 of Section 1.3), which states: Does
the collaborative smell identification improve the developers’ e�ectiveness when
compared to the individual smell identification?

To answer SRQ1, we conducted a controlled experiment with 26 devel-
opers as subjects. We classify the subjects by level of working experience,
namely novice developers and professional developers (Section 3.1.2). We split
the experiment into two sessions: one session with novice developers, and the
other with professional developers. During each session, the subjects first per-
form the individual smell identification and, in the sequence, they perform the
collaborative smell identification. This experiment aims at providing the first
insights for organizations on to what extent the collaborative smell identifica-
tion is worthwhile. Consequently, organizations could save maintenance e�ort
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by identifying code smells which are actual problems in software systems.
As a result of this empirical study, we observe that collaborators are

actually more e�ective than single developers in identifying code smells. This
observation relies on the following study findings.

– Collaborators are more e�ective than single developers on the identifica-
tion of code smells, regardless of their working experience. In fact, both
precision and recall have improved with collaborative smell identification.

– Collaborators benefit from information exchange during the identifica-
tion of code smells. Consequently, they are able to correctly identify sev-
eral code smells and minimize the number of misidentified code smells.

The empirical study reported in this chapter was submitted for review to
the Journal of Systems and Software (64)1. The remainder of this chapter
is organized as follows. Section 3.1 describes the study settings, including
the study goal and research questions. Section 3.2 presents the results of our
empirical study regarding the e�ectiveness of collaborative smell identification.
Section 3.3 discusses threats to the study validity. Section 3.4 summarizes this
chapter and introduces the following chapter.

3.1
Study Settings

This section describes the settings of our empirical study aimed at
understanding whether collaborators are more e�ective than single developers
when identifying code smells. The remainder of this section is organized as
follows. Section 3.1.1 presents the study goal, the research question, and
associated hypotheses. Section 3.1.2 discusses the characterization of subjects
regarding topics which are relevant to our controlled experiment. Section 3.1.3
describes the target software systems and data sources used in the experiment.
Section 3.1.4 presents the data analysis procedure. Finally, Section 3.1.5
describes the experiment procedure steps.

3.1.1
Research Goal

The empirical study presented in this chapter aims at comparing both
collaborative and individual smell identification. In summary, our goal was
to understand whether collaborators are more e�ective than single developers
when identifying code smells. By relying on the guidelines provided by Wohlin
et al. (2012), we refined and structured the study goal as follows:

1The paper is conditioned to minor changes for publication.
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– Analyze the collaborative smell identification when compared to indi-
vidual smell identification,

– For the purpose of assessing the developers’ e�ectiveness,
– With respect to precision and recall of the identification of code smells,
– From the viewpoint of novice developers and professional developers,
– In the context of Java software systems that novice and professional

developers are unfamiliar with, i.e., systems about which developers have
no previous knowledge.

From our study goal, we designed the following research question (RQ).
RQ. Is collaborative smell identification more e�ective than individual
smell identification?

Our empirical study addresses the RQ as follows. First, we assess the col-
laborative smell identification from the viewpoint of developers who are unfa-
miliar with the software systems under analysis. In other words, the developers
have no previous knowledge about the software system in which they identify
code smells. Second, we compute two metrics to compare developers e�ective-
ness in code smell identification: precision and recall (23). Basically, precision
measures the correctness of the identified code smells, and recall measures the
completeness of the code smell identification with respect to all existing code
smells based on the identification performed by an specialist in the software
development or code smells. To compute these metrics, we built a reference list
of code smells, i.e., an itemization of code smells thoughtfully identified in the
software systems (25). Details on how we build the reference list can be found
in Section 3.1.4. Third, we derived our null (H0) and alternative hypotheses
(HA) from RQ as presented in Table 3.1.

Table 3.1: Study hypotheses derived from RQ
Hypothesis Description

H0
There is no di�erence in the e�ectiveness of collaborators
or single developers in smell identification.

HA1
There is a di�erence in the precision between collaborators
and single developers in smell identification.

HA2
There is a di�erence in the recall between collaborators
and single developers in smell identification.

We discuss each hypothesis as follows. With the null hypothesis (H0),
we assume that the number of developers working on the identification of
code smells does not make it more or less e�ective. On the other hand,
the alternative hypotheses indicate that there is a di�erence between the
e�ectiveness of code smell identification by collaborators and single developers,
with respect to precision (HA1) or recall (HA2).
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3.1.2
Characterization of the Subjects

As aforementioned, this empirical study involved 26 developers as sub-
jects. We classified the subjects according to two levels of working experience,
namely novice developers and professional developers. This classification aimed
at helping to understand whether each level can benefit di�erently (or not)
from collaborative smell identification. It also aimed at supporting the gen-
eralization of our results, since we consider developers with di�erent working
experiences, i.e., novices to professionals. We introduce each level as follows.

– Novice developers are subjects with little or no experience in industrial
software development. We selected these subjects from a software engi-
neering course of a Brazilian undergraduate course in Computer Science.

– Professional developers are subjects currently acting in the industrial
software development and that hold at least one year of experience –
mostly due to the high developer turnover in the selected organization
that made unfeasible selecting developers with a much more years
of experience. We selected these subjects from a Brazilian software
development organization with more than 10 years of activity, focused
on maintaining data management systems, and with a development team
that is truly concerned with identifying and eliminating code smells.

Our experiment consists of two sessions: one with novice developers in an
academic laboratory, and another with professional developers in their working
environment. For each session, subjects first performed smell identification
in isolation and, after that, they performed the same task in collaboration.
To participate in the study, all subjects signed an informal consent form
(Appendix A). The subjects also filled out a characterization questionnaire
with closed questions about their expertise in four topics related to the study:
programming, Java, Pair Programming (PP), and code smells (Appendix B).
We chose PP to introduce a concept of collaborative work, which is well known
in both the literature and the industry (8, 15, 85).

Table 3.2 presents the data collected from the subject characterization
questionnaire with respect to all subjects. The first column lists the two
levels of working experience, i.e., novice developers (16 subjects in total) and
professional developers (10 subjects in total). The second column provides
a label for each subject, aimed at keeping anonymous their identity. The
remaining columns present the experience reported by each subject regarding
each aforementioned topic related to our study.
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Table 3.2: Characterization of subjects
TopicsWorking

experience Subjects Programming Java Pair
Programming

Code
Smells

s1 Medium Medium Medium Low
s2 Medium Medium Medium Medium
s3 Low Low Medium Low
s4 Low Low Medium Low
s5 Low Low Medium Low
s6 Low Low Medium Low
s7 Low Low Medium Low
s8 Medium Medium Medium Medium
s9 Medium Medium Medium Medium
s10 Low Low Medium Low
s11 Medium Medium Medium Medium
s12 Medium Medium Medium Low
s13 Medium Medium Medium Medium
s14 Medium Medium Medium Medium
s15 Medium Medium Medium Low

Novice
developers

s16 Medium Medium Medium Medium
s17 High High Medium High
s18 High High Low Medium
s19 High High Low Medium
s20 High High Low High
s21 High High Medium High
s22 High High Low High
s23 High High Medium Medium
s24 High High High High
s25 High High High High

Professional
developers

s26 High High Medium High

We ranked the knowledge of subjects per topic (Table 3.2) in four
categories, namely: none, low, medium, and high. Table 3.3 describes the
categories, which we illustrate as follows. In the case of Java, the knowledge
of the subject is: none when the subject never had contact with the Java
programming language; low when the subject had contact with Java only
through classes or by reading instructional material; medium when the subject
had contact with Java only in the context of academic systems developed in
academic courses and laboratories; and high when the subject had contact with
Java for at least one year in industrial software systems. Note that professionals
might not be experienced with Java in the industry but with another language.
Similar reasoning applies to the other topics, such as code smells.

Table 3.3: Knowledge categorization about topics
Category Description

None I never had contact with it
Low I had contact with it in classes or instructional material

Medium I had contact with it in the context of academic system
High I had contact with it for at least one year in industrial systems
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We analyze Table 3.2 to identify subjects with high degree of knowledge
about our topics of interest, collected via characterization questionnaire, when
compared to other subjects. The table highlights these subjects in boldface. We
say that a subject has a su�cient knowledge about the topics for study when
the subject has a medium knowledge (Table 3.3) in at least two topics, since it
represents at least a half of knowledge on the related topics. We observe that: 20
out of 26 subjects have medium to high knowledge in programming and Java;
22 out of 26 subjects have medium to high knowledge in Pair Programming;
16 out of 26 subjects have medium to high knowledge in code smells; and no
subject has no knowledge in any of four topics. We then conclude that our
subjects met the minimum requirements to take part in our experiment.

3.1.3
Target Software Systems and Data Sources

To allow us to investigate the collaborative smell identification, we have
selected a set of target software systems and data sources for analysis. We
present both the target software systems and data sources as follows.

Target software system. This study focuses on the identification of code
smells by the subjects. Thus, we selected a set of target systems for usage
by the subjects during such identification. For this purpose, we selected two
industry systems, namely Java IO and Java Print, which belong to the Java
Core project2. This selection relies on the following criteria. First, each system
has to be open source, which allows the study replication. Second, each software
system has to enable the identification of code smells using the Stench Blossom
tool in its default settings (52), which relies the well-known detection strategies
for code smells (37) and provides a visualization of the code smell suspects.
Third, each software system has to be a�ected by multiple code smells.

To support the generality of our study findings, we selected software
systems in which we identified di�erent smell types, with varying granular-
ity. We focus on the following smell types (29): Data Clumps, Large Class,
Long Method, and Message Chain. Both Large Class and Long Method are
intra-class smells, which locally a�ect a single class of the software system.
In turn, Data Clumps and Message Chain are inter-class smells, which a�ect
multiple classes. The selected smell types a�ect di�erent code structures in a
software system, such as methods and classes (29). All selected smell types
are reportedly very frequent in software systems (91).

2In: http://openjdk.java.net/groups/core-libs
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Data Sources. To conduct our data analysis, we collect experimental data of
the subjects from di�erent data sources, namely: the subject characterization
questionnaire, the code smells report questionnaire, and the follow-up question-
naire. We combined the data obtained via these data sources to compensate
their strengths and limitations. We describe each data source as follows.

– Subject characterization questionnaire: it is composed of questions
aimed at characterizing each subject, in terms of their their knowledge
on topics of interesting, such as programming, Java, code smells, and
Pair Programming (Appendix B).

– Code smell report questionnaire: it is a questionnaire aimed at
collecting the list the code smells identified by the subjects during the
code smell identification (Appendix E).

– Follow-up questionnaire:, it is composed of questions aimed at col-
lecting the perception of subjects regarding the code smell identification
conducted in the experiment (Appendix F).

3.1.4
Data Analysis Procedures

As aforementioned, we conducted an empirical study which uses multiple
data sources for data analysis. Thus, we carefully designed our data analysis
procedures. We present each procedure as follows.

Creation of a code smell reference list. We built a code smell reference list
to support the data analysis. For this propose, we recruited two researchers,
which are PhD students with knowledge in software development and the
identification of code smells. The researchers identified code smells in the
selected projects in a complementary way. That is, one researcher conducted
the manual smell identification, without tool support, and the other used
the Stench Blossom tool (52). As a result, each researcher obtained a list of
possible code smell suspects, which were not exactly the same due to the
subjectiveness of the identification of code smells. To reach a consensus, we
computed the agreement between the lists of code smell suspects reported
by both researchers. For each smell suspect, we have an agreement whenever
the developers have confirmed or refuted the suspect together. Conversely,
we have a disagreement whenever the developers diverged in opinion without
a consensus. After, the researchers conducted an open discussion to reach a
consensus. Finally, we built the final code smell reference list.
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Quantitative Data Analysis. Our study assesses the e�ectiveness of both
collaborators and single developers on the identification of code smells. For this
purpose, we compute the developers’ e�ectiveness in terms of two well-known
metrics, namely precision and recall (23). Precision measures the correctness
of the identified code smells. Recall measures the completeness of the identified
code smells with respect to all code smells which occur in a system (23). To
compute these metrics, we used the aforementioned code smell reference list,
which is an itemization of code smells identified in a systems (25).

Precision and recall were calculated based on the number of code smells
marked as true positive (TP), false positive (FP) and false negative (FN).
An TP occurs when the developer identifies a code smell that appears in
the code smell reference list. An FP occurs when the developer identifies
a code smell that does not appear in the code smell reference list. An FN
occurs when a code smell appears in the code smell reference list but the
developer was unable to identify. Both precision and recall are normalized in a
range from 0 to 1. High precision values (close to 1) mean that the developer
had reported, proportionally, only a few occurrences of FP in the software
system. High recall values (close to 1) mean that the developer was able to
identify a representative number of occurrences of TP in the software system.
Equations 5-1 and 5-2 present the formula for precision and recall, respectively.

Precision = TP

TP + FP
(3-1)

Recall = TP

TP + FN
(3-2)

We applied the two-tailed Mann-Whitney test, which is a non-parametric
statistical test, aimed at rejecting our null hypotheses (HA0) presented in
Table 3.1. The reason for selected a non-parametric test is discussed as follows.
Based on the normality test, we observed that both distributions of precision
and recall are normal. We consider an alpha coe�cient equal to 95%, which
gives us a confidence interval of 5% (p-value < 0.05) to compare the data
distributions. However, after applying the Levene’s test (40), we observed that
the distribution of recall is not homoscedastic, which requires the application of
a non-parametric test. To avoid applying di�erent statistical tests for precision
and recall, and due to the limited sample of our study, we decided to apply the
non-parametric test. We used the Minitab tool (38) to apply the statistical test.
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Complementary Data Analysis. As aforementioned, we conducted a quan-
titative analysis on the e�ectiveness of both collaborative and the individual
smell identification. In addition, we conducted a complementary analysis based
on the follow-up questionnaire, which was applied after the experiment execu-
tion with the developers. This complementary analysis aimed at understanding
the feedback of subjects regarding the experiment, mainly focused on the dif-
ficulties faced by the subjects to identify code smells. The analysis aimed at
understanding the subject viewpoint on the identification of code smells, spe-
cially collaborative smell identification.

3.1.5
Experiment Steps

Figure 3.1 presents the four steps designed to guide our controlled
experiment. As earlier discussed in this chapter, we conducted two sessions of
the experiment, each with a group of participants classified according to their
level of working experience (see Section 3.1.2 for details). The first session was
conducted with the novice developers, while the second session was conducted
with the professional developers. We asked all subjects to first fill out and sign
a consent questionnaire. After that, the subjects engaged in the experiment.
We describe in details each experimental step as follows.

Figure 3.1: The experimental design
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Step 1. Apply the Subject Characterization Questionnaire. The
subject characterization questionnaire aims at characterizing each subject
who participated in the experiment. The questionnaire includes questions
regarding the background of the subject on programming, the Java program-
ming language, pair programming, and code smells. The responses obtained
through this questionnaire allowed us to identify some key characteristics of
each subject, as presented in Section 3.1.2.

Step 2. Training of Subjects. After characterizing the subjects, we pro-
vided a training session to the subjects. This training aimed at supporting
subjects to proper understand and execute the experiment. The training was
organized in two parts. First, during 25 minutes, we explained the technical
concepts and terminologies related to this study. Second, we took 10 minutes
to conduct a discussion about the concepts. Overall, the training covered two
topics, namely pair programming and code smells. Regarding code smells,
we provided explicit definitions and practical examples (Appendix J). This
training was provided to both novice and professional developers.

Step 3. Smell identification task. Per session of the experiment, we asked
the subjects to engage in two experiment rounds of code smell identification.
In the first round, all subjects individually inspected the Java IO project. In
the second round, the same subjects collaboratively inspected the Java Print
project. In each round, the subjects were asked to annotate the identified code
smells in the code smell report questionnaire. This procedure allowed us to
compute the number of true positives and false positives. We disposed the col-
laborators in the experiment similarly to a previous work (15), which pair the
most experienced subjects with a less experienced one. All subjects performed
the experiment simultaneously under the supervision of the researchers. Each
round lasted 60 minutes only for the identification of code smell.

Step 4. Answer the follow-up questionnaire. After participating in the
two rounds of the experiment, the participants received a follow-up question-
naire to filling. This questionnaire at collecting the perception of each subject
regarding the experiment. We aimed at understanding their opinion about the
identification of code smells and the experience of working collaboratively to
identify code smell. More details about this step are provided in (Appendix F).
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3.2
E�ectiveness of Collaborative Smell Identification

This section presents the study results that answer RQ, which states: Is
the collaborative smell identification more e�ective than the individual smell
identification? Section 3.2.1 analyzes the distribution of precision and recall
to confirm or refute the hypotheses of Table 3.1. Section 3.2.2 complements
the findings based on the analysis per subject.

3.2.1
Analysis of Distribution for Precision and Recall

At first, we analyzed the distribution of precision for collaborators and
single developers. We aimed at understanding whether the collaborators tend
to obtain a higher precision in the code smell identification when compared
to single developers. We also computed the average precision for collaborators
and single developers, by summing their precision regardless of their work-
ing experience and dividing this value by the total number of participants.
Finally, we obtained the average precision for collaborators and single devel-
opers. Thus, we investigate the alternative hypothesis HA1 as follows.

HA1. There is a di�erence in the precision between collaborators
and single developers on the identification of code smells.

Figure 3.2 presents the distribution of precision for collaborators and
single developers, respectively. The figure also indicates the average precision
for both collaborators and single developers. Overall, we observe an average
precision equals 0.78 (78%) for collaborators against 0.59 (59%) for single
developers. Our results suggest that collaborators had a 19.42% higher average
precision than single developers. By applying the Mann-Whitney test, we
observed a significant di�erence between precision values (p-value = 0.004).
In summary, our results lead us to reject the null hypothesis H01 and accept
the alternative hypothesis HA1.

We analyze the distribution of recall for collaborators and single devel-
opers. Similarly to precision, we compute the average recall as follows. First,
we sum the recall of developers regardless the working experience. Second,
we divided this value by the total number of developers, which resulted in
the average recall for both collaborators and single developers. Thus, we
investigate the alternative hypothesis HA2 as follows.
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Figure 3.2: Distribution of precision for developers

HA2. There is a di�erence in the recall between collaborators and
single developers on the identification of code smells.

Figure 3.3 presents the distribution of the average of recall. We observed
an average recall equals 0.75 (75%) for collaborators against 0.27 (27%) for
single developers. Our results suggest that collaborators had a 48.04% higher
average recall than single developers. By applying the Mann-Whitney test,
we observed significant di�erence between recall values (p-value = 0.001).
Consequently, our results led us to reject the null hypothesis H0 and accept
the alternative hypothesis HA2.

In summary, our results for precision and recall suggest that developers
tend to identify more smells when working collaboratively. Particularly, we
observed that collaborators obtained higher precision and recall than single
developers. These results have two main implications discussed as follows.
First, collaborators tend to make less mistakes when identifying code smells,
i.e., they obtain higher precision. Second, collaborators are able to identify a
more representative number of code smells in the software systems than single
developers. In summary, our results lead us to Finding 1.

Finding 1. Collaborators tend to be more e�ective than single developers
when identifying code smells in software systems.

Table 3.4 presents a complementary analysis per working experience
(novice and professional developers), aimed at assessing any biases on the re-
sults of precision and recall caused by the working experience of the developers.
The first column lists the working experience. The second column lists the ex-
periment groups (individual and collaborators). The third and fourth columns
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Figure 3.3: Distribution of recall for developers

present precision with respect to average and median precision. The fifth and
sixth columns present recall with respect to average and median recall. We
discuss our results as follows.

Working
Experience Group Precision Recall

Average Median Average Median

Novice Individual 0.61 0.50 0.23 0.27
Collaborators 0.74 0.76 0.72 0.76

Professional Individual 0.54 0.50 0.30 0.27
Collaborators 0.85 0.83 0.80 0.90

Table 3.4: Comparison of precision and recall per working experience

In general, we observe that the results of the complementary analysis for
both working experiences confirm Finding 1, i.e., they show that collaborators
tend to have higher precision and recall than single developers. However, by
comparing both working experiences, we observed a non-ignorable di�erence.
In the case of single developers, there is di�erence in the results obtained with
respect to the average precision and median recall that is equal to 7% in both
cases. In the case of collaborators, there is di�erence in the results obtained
with respect to both average and median precision (11% and 7%, respectively)
and both average and median recall (14% and 8%). Thus, although working
experience somehow a�ects Finding 1, it remains valid that collaboration
improves precision and recall regardless the working experience.
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3.2.2
Comparing Precision and Recall of Collaborators and Single Developers

After analyzing the distribution of precision and recall presented in
Section 3.2.1, we conducted a more detailed analysis. We aimed at deeply
understanding the e�ectiveness of the collaborative smell identification per
developer, who may have performed the identification of code smells as
collaborator and single developer. First, we analyze precision as follows.

Figure 3.4 presents the precision of collaborators and single developers
per subject. For each set of three consecutive bars (two black and one gray
bar), we compare the precision of two developers as single developers with
the precision of both developers as collaborators. Overall, 8 of the 13 sets
(61.53%) obtained higher precision as collaborators. In addition, for 4 of the 5
remaining sets (38.47% of the total), at least one developer as single developer
have improved its precision when worked as a collaborator (by comparing
the gray bar of the single developers with the black bar of the corresponding
collaboration). It implies that collaboration improves the e�ectiveness of at
least one developer involved in the collaboration (as observed for 4 out of the
5 cases), by reducing the number of incorrectly identified code smells.

Figure 3.4: Precision of collaborators and single developers per subject

By analyzing the follow-up questionnaire, we may draw additional con-
clusion on the benefits of the collaborative smell identification. All subjects
stated that the collaboration minimized their frustrations and improved their
confidence during the identification of code smells. For example, subject s16
said: Pair programming has strengthened the communication between members
and the possibility of a more precise analysis because four eyes see more than
two... consequently we were more confident in our work. In turn, subject s20
said: The discussions with my partner were essential for understanding the
long chaining of methods and for confirming the existence of Message Chain.

Next, we analyzed recall as follows. Figure 3.5 presents the recall values
obtained by collaborators and single developers. Each set of three consecutive
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bars (two gray and one black bar) compares the recall of two subjects
working as single developers with the recall of both together working as
collaborators. Overall, 100% of the sets obtained higher recall for collaborators
than single developers. It reinforces our findings of Figure 3.3 and suggests that
collaborators tend to identify a more representative number of code smells in
the software systems, when compared with single developers.

Figure 3.5: Recall of collaborators and single developers per subject

By analyzing the follow-up questionnaire, we draw the following obser-
vations. We found that, during the collaborative smell identification, one col-
laborator was usually responsible for selecting a code smell suspect and, after,
both collaborators started arguing about the code smell suspect. We have also
found that collaborators have more confidence to confirm a code smell suspect
when compared with single developers. Consequently, collaborators are able
to identify a larger number of code smells in software systems. This obser-
vation is reinforced by the opinion of the subjects, such as s7 that said: The
greatest potential of working collaboratively was the possibility of adding di�er-
ent strategies to determine a code smell. This fact was only possible thanks to
di�erent experiences that each one of us has.

Finally, the follow-up form revealed the certainties and uncertainties of
the subjects about each code smell suspect. For instance, when the collabo-
rators were uncertain on confirming a code smell suspect, both ended up not
confirming a particular code smell suspect as an actual code smell. Thus, by
relying on the comments of subjects like s7 and s20, we conclude that collabo-
rators may exchange information and, consequently, improve their e�ectiveness
when compared with single developers, which leads us to Finding 2.

Finding 2. The exchange of information among collaborators has a
potential to improve the e�ectiveness of the code smell identification.
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3.3
Threats to Validity

Even with a careful planning, any empirical study is a�ected by threats
which may invalidate the study findings. We discuss threats to the validity of
our study and the respective minimizations as follows (89).

Construct Validity. We have restricted our study to the analysis of a limited
limited set of code smell types, which may have a�ected our findings. However,
we minimize this threat by selecting four well-known and varied code smell
types, such as Large Class and Message Chain. These types occur in di�erent
code elements and are reportedly common in software systems (Section 3.1.3).
Regarding the creation of the code smell reference list, we recruited two PhD
students with knowledge in software development and the identification of
code smells. Thus, we mitigate possible threats by engaging researchers that
are su�ciently qualified for such creation (Section 3.1.4). Finally, with respect
to the di�erent background of the subjects, we mitigate this threat by selecting
subjects with at least a minimum knowledge on topics of interest, such as
Java and code smells (Section 3.1.2). In addition, all subjects underwent the
training sessions to normalize their background.

Internal Validity. Regarding the communication among subjects during the
experiment execution, we mitigate threats by limiting such communication
with little interference on their answers. We also explained the experimental
tasks for all subjects, aimed at avoiding misunderstandings, and reduced the
communication among subjects. With respect to the experiment execution,
we designed experimental tasks that fit our time constraints of one hour, by
relying on experiment simulations performed with volunteers. Through these
simulations, we also identified opportunities for improving the experiment
with our final subjects. Finally, regarding the developer arrangement, we
did not apply a cross-over design (93) in our study. However, to minimize
learning biases of developers identifying code smells individually and in pairs,
we selected di�erent systems for analysis.

Conclusion Validity. To conduct the data analysis, we carefully selected
the most appropriate statistical tests. We also paid special attention to avoid
violating assumptions of the selected statistical tests. To answer our research
question, we applied the Mann-Whitney test (76) as discussed in Section 3.1.4.
Furthermore, we believe that our questionnaires fit our expectations with the
empirical study and support answering our research question. For instance,
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they allowed us to characterize the experienced and inexperienced developers.
Thus, we mitigate possible threats related to the data analysis through the
exclusive analysis of data collected from the questionnaires.

External Validity. With respect to the generalization of our study findings,
the empirical study has some threats, as follows. First, we applied the study
only in the context of Brazilian developers, which may not represent any
development scenarios around the world due to cultural variations. In addition,
although we have spent a period of one month to engage novice developers
and professional developers in our study, the set of subjects is limited to 16
novice developers and 10 professional developers. We minimize possible threats
regarding the set of subjects by involving developers with varied background
and level of working experience. We also focused on developers with minimum
experience with topics of interest, such as code smells and pair programming.

3.4
Summary

This chapter investigated whether collaborators are more e�ective than
single developers on the identification of code smells. For this purpose, we
present a controlled experiment conducted with 26 developers, which are
categorized as novice and professional and developers, aimed at understanding
to what extent the collaboration improves the developers’ e�ectiveness when
identifying code smells in software systems they are unfamiliar with. We
compared the e�ectiveness of collaborators and single developers to answer
the first research question of this thesis, namely: Does collaborative smell
identification improve developers’ e�ectiveness when compared to individual
smell identification? We compute e�ectiveness in terms of precision and recall.

Our results suggest that collaborators tend to be more e�ective than
single developers on the identification of code smells. In fact, we observed
that collaborators may correctly identify more code smells, with a lower
number of misidentified code smells, when compared with single developers.
We summarize our study findings as follows.

– The average precision of collaborators was 19.42% higher than the
average of single developers on the identification of code smells. This
result has statistical significance, when considering a 95% confidence
interval, i.e., p-value < 0.05. In other words, collaborators tend to identify
more actual code smells than single developers.

– The average recall of collaborators was 48.04% higher than the average
of single developers on the identification of code smells. This result has
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statistical significance (p-value < 0.05 for a 95% confidence interval).
That is, the identification of code smells performed by collaborators has
a higher coverage than by single developers.

– The exchange of information allowed by collaboration is essential to im-
prove the e�ectiveness of the code smell identification. We observed that
collaborators share knowledge and complement each other. Consequently,
it improves their confidence on confirming a code smell suspect.

All aforementioned study findings raise relevant questions. For instance,
what factors help to improve the e�ectiveness of collaborative smell identifica-
tion? These factors might be the granularity of code smells, the developers team
size, or the familiarity of developers with the software systems under analysis.
Since collaborators are more e�ective than single developers on the identifica-
tion of code smells, there is a need for understanding what circumstances lead
to the improvement of e�ectiveness when developers work collaboratively. We
address this need in the next chapter.
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4
Understanding the E�ectiveness of Collaborative Smell Iden-
tification

Software systems might become di�cult to maintain due to the occur-
rence of code smells (44), which should be identified and eliminated whenever
possible (29). However, identifying code smells is often di�cult for a single de-
veloper (17, 63), since it requires analyzing several code elements developed by
di�erent developers. Thus, the e�ectiveness of the identification of code smells
could benefit from the knowledge exchange among collaborators (Section 1.1).
In Chapter 3, we provided empirical evidence on the e�ectiveness of collabora-
tive smell identification. In fact, we observed that collaborators tend to obtain
higher precision and recall than single developers on the identification of code
smells, regardless of their working experience.

After identifying evidence mostly in a quantitative way, we adapted the
design of our previous study (presented in Chapter 3) to enable us to better
understand the e�ectiveness of collaborative smell identification in a quantita-
tive and qualitatively way. Indeed, we investigated the developers’ e�ectiveness
with the aim of revealing some influential factors and collaborative activities
(Section 2.1) performed by developers when identifying smells together.

As a first step in this chapter, we answer the second specific research
question, which states: SRQ2: What influential factors contribute to the
developers’ e�ectiveness in the collaborative smell identification? For
this purpose, we conduct an empirical study with novice developers, who had
to identify code smells in software systems they are unfamiliar with. With
respect to the influential factors, we are concerned with three factors which
capture di�erent characteristics of software developers and identification of
code smells: (i) the characteristics of the software systems, (ii) the developers
team size, and (iii) the smell granularity. We will investigate whether these
factors may cause any e�ect on collaborative smell identification. Our goal
is to be able to identify and summarize these influential factors, which may
contribute even more to the e�ectiveness of collaborative smell identification.

After identifying the influential factors which contribute to the collab-
orative smell identification, we answer the third specific research question of
this thesis, which states: SRQ3: What collaborative activities contribute
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to the developers’ e�ectiveness on smell identification? By answering
this question, we will be able to characterize the smell identification activities
recurrently performed by either single developers or collaborators. In fact, one
of our goals is to identify collaborative activities related with those influential
factors, which may improve the e�ectiveness of smell identification. Moreover,
we aimed at understanding to what extent the activities currently performed
by developers in isolation could benefit from their collaboration.

This chapter reports our second controlled experiment designed to help
us understand the benefits and drawbacks of collaborative smell identification
in more depth. The findings of this study can be summarized as follows.

– Collaborators achieved more e�ectiveness on the identification of inter-
class smells (Section 2.1). Indeed, collaborators identify a higher average
number of code smells because they almost always had to consider both
of each developer’s knowledge on revealing scattered, complementary
symptoms associated with a single smell type.

– We also derive empirical evidence that adding more than two developers
on the task of collaborative smell identification does not necessarily
improve their identification e�ectiveness.

– Developers perform several collaborative activities during the identifica-
tion of code smells. However, for some activities, developers have limited
support to conduct the collaborative smell identification.

The empirical study reported in this chapter was published in the 10th
edition of the Brazilian Brazilian Symposium on Components, Architectures,
and Reuse (SBCARS) (62). The remainder of this section is organized as
follows. Section 4.1 describes the study settings, including the study goal,
research questions, and study steps. Section 4.2 presents the results of our
empirical study with respect to the e�ectiveness of the collaborative smell
identification. Section 4.3 discusses threats to the study validity. Finally,
Section 4.4 summarizes this chapter and introduces the following chapter.

4.1
Study Settings

This section describes the settings of our empirical study aimed at char-
acterizing the influential factors and the collaborative activities, which improve
the e�ectiveness on the identification of code smells. Section 4.1.1 presents the
study goal, research questions, and associated hypotheses. Section 4.1.2 dis-
cusses the characterization of subjects regarding topics which are relevant to
our controlled experiment. Section 4.1.3 describes the target software systems
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and data sources used in this experiment. Section 4.1.4 presents the procedures
of data analysis. Finally, Section 4.1.5 describes the experiment steps.

4.1.1
Research Goals

This chapter presents an empirical study aimed at characterizing the
developers’ e�ectiveness, focuse on the influential factors and collaborative
activities of the identification of code smells. Based on the guidelines provided
by Wohlin et al. (2012), we designed the following study goal:

– Analyze collaborative smell identification when compared to individual,

– For the purpose of characterizing the influential factors on the e�ec-
tiveness of the identification of code smells and the collaborative activi-
ties that contribute to such identification,

– With respect to the average number of identified code smells,

– From the viewpoint of novice developers,

– In the context of Java systems that novice developers are unfamiliar
with, i.e., those systems which developers lack previous knowledge about.

From our study goal, we designed the following research questions (RQ1).

RQ1. Do collaborators identify more code smells than single developers?

We answer RQ1 by comparing the results of single developers and col-
laborators based on the influential factors presented in the introduction of this
chapter. This first question is somewhat similar to the research question ad-
dressed in Chapter 3, which enables us to understand whether the results in
both experiments were similar or not. We assess collaborative smell identifi-
cation focused on developers that are unfamiliar with the analyzed systems.
After, we computed the average number of identified code smells to compare
the e�ectiveness of collaborators and single developers. We compute the aver-
age number of identified code smells by building a reference list of code smells
(Section 2.1). Section 4.1.4 details how we build the reference list in this partic-
ular experiment. Finally, we derived our null (H0) and alternative hypotheses
(HA) from RQ1 as presented in Table 4.1.

In a way, the previous research question is similar to the one addressed
in Chapter 3. However, we need to get in-depth knowledge about phenomena
associated with collaborative smell identification. Previous work discussed in
Chapter 2.1 characterizes the identification of code smells into three steps (65).
However, there is little empirical evidence on how developers actually perform
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Table 4.1: Hypotheses of RQ1
Hypothesis Description

H0
There is no di�erence in the average number of code smells identified
by single developers and collaborators.

HA1
There is a di�erence in the average number of code smell identified
by single developers and collaborators.

the identification of a code smell. More importantly, researchers and practi-
tioners do not have systematic knowledge about the main activities performed
by both collaborators and single developers. Thus, with RQ2, we aimed at
revealing the collaborative activities typically involved in the identification of
code smells. Our goal is to provide organizations with a deeper understanding
about how to conduct collaborative smell identification in an e�ective way.
This empirical study addresses the specific question SRQ3 of this thesis.

RQ2. How do single developers and collaborators perform the identifica-
tion of code smells?

4.1.2
Characterization of the Subjects

Our empirical study involved 28 novice developers as subjects. We se-
lected novice developers due to the following reasons. First, software developers
begin a transition from novice to professional at least twice in their careers:
in their first year in the university, and when they are about to start their
first industrial system (9). Thus, experienced developers are never available in
the former, and they might not be available in training courses in the second
transition. An example of this second transition are software projects run by
companies like ThoughtWorks/Kaizen (21), which provided the context of our
present experiment. Second, in our previous study reported in Chapter 3, we
have found that collaboration improves the developer e�ectiveness on the iden-
tification of code smells regardless the working experience. Thus, we decided
to conduct this study with novice developers only categorized as follows.

– Novice developers with some experience in the development of industrial
software systems. We selected these subjects from a software development
course of a Brazilian university (21). This course provides undergraduate
students in Computer Science (CS) an immersion that lasts four months
in the development of industrial software systems in the context of
ThoughtWorks/Kaizen software projects.

– Novice developers without experience in the development of industrial
software systems. We selected these subjects from a software engineering
course of a Brazilian undergraduate course in CS.
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Our experiment consisted of two sessions, each with a di�erent set of
subjects. The first session was conducted with novice developers with expe-
rience in the development of industrial software systems. The second session
was conducted with novice developers without experience in the development
of industrial software systems in an academic laboratory. To participate in the
study, all subjects signed a consent questionnaire (Appendix A).The subjects
also filled out a characterization questionnaire with closed questions about
their experience in three topics related to the study: programming, Java, and
Pair Programming (PP) (Appendix C).

Table 4.2 presents the data collected from the subject characterization
questionnaire, with respect to all subjects. The first column lists the two
levels of working experience. The second column provides a label for each
subjects, aimed at keeping anonymous the identify of subjects. The remaining
columns presents the experience reported by each subjects regarding each
aforementioned topic related to our study. We ranked the knowledge of subjects
per topic of Table 4.2 in four categories: none, low, medium, and high. We
explain in detail each category as follows.

Table 4.3 describes the categories, which we illustrate as follows. For
instance, in the case of programming, the knowledge of the subject is: none
when the subject never had contact with programming; low when the subject
had contact with programming only through classes or by reading instructional
material; medium when the subject had contact with programming only in the
context of academic systems developed in academic courses and laboratories;
and high when the subject had contact with programming in the context of
of industrial software systems. Similar reasoning applies to the other topics
related with this study, such as Java. Additionally to Table 4.3, we observed
that all subjects already have a minimum knowledge on code smells from
classes. Thus, we do not show this data in the table.

Back to Table 4.2, we identify the subjects with high knowledge about our
topics of interest, collected via characterization questionnaire, when compared
to other subjects. The table highlights these subjects in boldface font. We say
that a subject has the highest knowledge of the topics when the subject has a
medium knowledge (Table 4.3) in at least two of the three topics. This analysis
lead us to the following observations. First, 22 out of 28 subjects have medium
to high knowledge in programming and Java. Second, 23 out of 28 subjects
have medium to high knowledge in Pair Programming. Third, no subject has
no knowledge in any of three topics. We conclude that our subjects met the
minimum requirements to participate in the experiment.
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Table 4.2: Characterization of subjects
Working

Experience Subjects Topics

Programming Java Pair
programming

Novice
developers

with
experience

in industrial
software

s1 High High Medium
s2 High High Medium
s3 High High Medium
s4 High High Low
s5 High High Low
s6 High High Medium
s7 High High Low
s8 High High Medium
s9 High High Low

s10 High High Medium
s11 High High Medium
s12 High High Low
s13 High High Low
s14 High High Medium

Novice
developers

without
experience

in industrial
software

s15 Low Low Medium
s16 Medium Medium Low
s17 Medium Medium Medium
s18 Low Low Medium
s19 Medium Low Low
s20 Low Low Medium
s21 Medium Medium Low
s22 Low Low Low
s23 Medium Medium Low
s24 Medium Medium Low
s25 Medium Medium Low
s26 Low Low Medium
s27 Medium Medium Low
s28 Medium Medium Low

4.1.3
Target Software Systems and Data Sources

In order to allow us to investigate collaborative smell identification, we
defined the target software systems and data sources as follows.

Target Software Systems. For study purposes, we developed three software
systems to be used by the subjects during the identification of code smells.
The systems are named A, B, and C. Table 4.4 provides general data about
each software system. The first column lists the software systems. The second
column describes their purpose. The third and forth columns represent the
number of methods and classes per system. For instance, system C aims
at managing bookstore stocks, and contains 8 classes and 60 methods. It is
important to highlight that we could not choose more complex systems give
the typical time constraints of a controlled experiment.

These systems are inspired in requirements provided by the literature
(20), address di�erent domains and were implemented using the Model-View-
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Table 4.3: Knowledge categorization about Topics
Category Description

None I never had contact with it
Low I had contact with it in classes or instructional material

Medium I had contact with it in the context of academic system
High I had contact with it in the context of industrial software systems

Table 4.4: General data about each software system
System Purpose Methods Classes

A Educational guessing game 38 7
B Bank automatic teller machine simulator 32 6
C Stock management system of a bookstore 60 8

Controller architectural pattern (35). These systems were developed based
on the following criteria. First, the software systems were developed in the
Java programming language. Second, each software system has to enable the
identification of code smells using the Stench Blossom tool in its default
settings (52), which reports and provides a visualization of the code smell
suspects. Third, each software system has to be a�ected by multiple code
smells. Fourth, the systems should have a su�cient size to support subjects
in understanding the behavior of the system and conduct the empirical study
within time constraints. Previous work states that even small-sized systems
may have multiple code smells, and their occurrence patterns do not di�er
from what is observed in large-sized systems (44).

To support the generality of our study findings, we developed systems
a�ected by di�erent smell types, with varying granularity. We focused on smell
types defined by Fowler (29). Long Method and Duplicated Code, which are
intra-class smells, which locally a�ect a single class of the system. Depending
on the context, Duplicated Code can be classified as intra-class or inter-class
(29). We have considered it as inter-class cases did not naturally occur in the
analyzed projects in this experiment. That is, we did not take into account
code duplication that occurs between two di�erent classes. In turn, Data Class,
Feature Envy, Lazy Class, and Intensive Coupling are inter-class smells, which
a�ect multiple classes. The selected smell types a�ect di�erent code structures
in a system, such as methods and classes (29). In addition, all selected smell
types are reportedly very frequent in software systems (91).

Data Sources. In order to conduct our data analysis, we collected experimen-
tal data from di�erent data sources, namely: the subject characterization ques-
tionnaire, the code smells report questionnaire, the follow-up questionnaire,
and multimedia data such as audio and videos of the experiment sessions.
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We combined the data obtained via these data sources to compensate their
strengths and limitations. For instance, a questionnaire mostly provides quan-
titative data, but a video can add qualitative data about the identification of
code smells. We describe each data source as follows:

– Subject characterization questionnaire: it aimed at characterizing
each subject, in terms of their knowledge on topics of interest, such as
programming and Java (Appendix C).

– Code smell report questionnaire: it is a questionnaire aimed at
collecting the list of code smells identified by the subjects during the
experimental tasks (Appendix E).

– Follow-up questionnaire:, it is composed of questions aimed at col-
lecting the impression of subjects regarding the code smell identification
conducted in the experiment (Appendix G).

– Audio and Video: it includes screenshots provided by Camtasia3 and
audio and video records regarding the actions of each subject.

4.1.4
Data Analysis Procedures

In order to compute the quantitative data of our study, we designed the
data analysis procedures presented as follows.

Creation of a code smell reference list. We created a code smell reference
list per system. We recruited two researchers with experience in the identifi-
cation of code smells to run the three following steps. First, the researchers
used a smell detection tool (52) to identify code smell suspects. Second, they
confirmed or refuted, in isolation, each code smell suspect. Each researcher
then obtained a list of code smell suspects, which could di�er since the
identification of code smells is subjective. Third, we computed the agreement
between the lists obtained by the researchers. Both researchers discussed how
to solve any conflicts and to reach a consensus. There was no case where
consensus was not achieved. Finally, we created the code smell reference list.

Quantitative Data Analysis. To identify the influential factors on the
collaborative smell identification and the collaborative activities, we assessed
the average number of identified code smells per smell type. We computed the
average total number of identified code smells divided by the total number

3In. https://www.techsmith.com/camtasia.html
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of subjects involved in the identification of code smells. Di�erently from our
previous study reported in Chapter 3, which concerns the identification of code
smells per subject, we conduct an overall analysis of the average number of
identified code smells to investigate the hypotheses of Section 4.1.1.

To test our hypotheses, we conducted the statistical analysis with the
support of Minitab (38). We decided to apply non-parametric statistical tests
once all data follow a normal distribution, but were not homoscedastic. Thus,
we applied the two-tailed Mann-Whitney (alpha = 95%) to compare the
data distributions. We also applied the Kruskal Wallis (K-W) statistic test
specifically for HA1, aimed at assessing the number of code smells identified in
multiple software systems (Systems A, B, and C) and considering three subject
arrangements, which are single developers, pairs, and groups (Section 4.1.5).

Qualitative Data Analysis. Our qualitative data analysis relies on the fol-
lowing artifacts. First, the characterization questionnaire, aimed at collecting
the participant background. Second, the follow-up questionnaire, aimed at col-
lecting the perception of developers regarding the identification of code smells
and the collaborative smell identification. Third, screen shots, and multimedia
data such as audio and video records, which were collected during the identi-
fication of code smells for both single developers and collaborators. These last
data sources were used to support understanding how developers conduct the
identification of code smells and help comprehend the quantitative data.

All data were transcribed and validated by researchers to eliminate
problems in the data transcription. After that, we apply a technique for
categorizing the transcribed data (71). This technique is called by the authors
as a rule guided qualitative text analysis, which consists of, from a research
question (RQ), determining what data categories are relevant for answering
the RQ. In the context of our study, the categories could be the collaborative
activities, for instance. After, analyzing the data collected from di�erent data
sources to categorize all data based and interpret the study results, which
includes understanding how developers identify code smells and what activities
they perform as single developers or collaborators. Finally, we obtained the set
of collaborative activities of smell identification.

4.1.5
Experiment Steps

We conducted two sessions of the experiment with di�erent subjects. The
first one involved novice developers without experience in the development of
industrial software systems, whereas the second one involved novice developers
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who worked in the development of at least one industrial software system. As
discussed in Section 2.1, we characterized the collaborative smell identification
in two ways: pairs, which consists of exactly two developers together, and
groups, which comprise more than two developers working together to identify
code smells. We aim to understand whether adding more than two developers
improves the e�ectiveness of code smell identification.

Before participating in our study, the subjects were asked to fill out and
sign a consent questionnaire (Appendix A). After, the subjects engaged in the
experiment. Figure 4.1 presents the four steps designed to guide our controlled
experiment. We describe in detail each experimental step as follows:

Figure 4.1: Study steps

– Step 1 consists of applying the characterization questionnaire, which
contains questions regarding the subject background on programming,
the Java language, and pair programming.

– Step 2 consists of training the subjects to participate in the experiment.
This step aimed at equalizing the background of all subjects with respect
to topics of interest of our empirical study.

– Step 3 consists of identifying code smells performed by collaborators
and single developers. All subjects identified code smells in three rounds,
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which vary according to the three subject arrangements: single developer,
pair, and group. Figure 4.1 highlights in a dotted box the two subject
arrangements for collaborators: pairs and groups.

– Step 4 consists of applying the follow-up questionnaire, which enables us
to understand the subjects’ viewpoints about the identification of code
smells. Appendix G provides additional detail on the questionnaire.

With respect to Step 2, all subjects received training about the basic and
empirical study concepts which are relevant in the context of this thesis. The
subject training was organized in two parts. In the first part, we introduced
relevant concepts, with focusing on pair programming and code smells (see
Appendix J). With respect to pair programming, we discussed how developers
have worked together to develop and review the same code element. In the case
of code smells, we introduced the definitions extracted from the literature and
presented practical examples. The first part lasted 25 minutes. In the second
part, we promoted the discussion among all subjects about the introduced
concepts. The second part of the training lasted 10 minutes.

Regarding Step 3, Table 4.5 presents the subject arrangement applied
to our study subjects. This table is split into two parts: session 1, which was
performed by novice developers with experience in industrial software systems;
and session 2, which was performed by novice developers without experience
in industrial software systems. Both parts of the table share the same columns,
described as follows. The first column di�erentiates single developers and
collaborators. The second, third, and fourth columns present the subjects
arrangements for rounds 1, round 2, and round 3, respectively. We discuss
how the subjects were arranged in each round as follows.

About the subject arrangement, each subject had to work in all three
aforementioned rounds on the identification of code smells. This procedure
aimed at minimizing threats to validity concerning the distribution of subjects
among rounds and arrangements, in addition to the limited number of available
subjects. Per round, the subjects were asked to annotate the identified code
smells in the code smell report questionnaire. Our study was conducted on-
line, i.e. simultaneously, and was completely supervised by the researchers. At
the end of the experiment, the code smell report questionnaire was delivered
to the researchers. In total, the identification of code smells lasted 60 minutes.

Back to Table 4.5, we illustrate how the subjects were arranged with
an example as follows. Let us consider session 1, which was performed by
novice developers with experience in industrial software systems. In round
1, the subjects s1 to s6 inspected system A as single developers. Later, in
round 1, the same subjects inspected system B as collaborators, specifically
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Table 4.5: Subject arrangement
Session 1. Novice developers with

experience in industrial software systems
Subject

arrangement
System A

- round 1 -
System B

- round 2 -
System C

- round 3 -

Single
developers

Subjects
s1, s2, s3,
s4, s5, s6

Subjects
s7, s8, s9, s10

Subjects
s11, s12, s13, s14

s11 and s12
s13 and s14

s1 and s2
s3 and s4
s5 and s6

s7 and s8
s9 and s10

Collaborators s7, s8, s9 and s10 s11, s12, s13 and s14 s1, s2, s3,
s4, s5 and s6

Session 2. Novice developers without
experience in industrial software systems

Subject
arrangement

System A
- round 1 -

System B
- round 2 -

System C
- round 3 -

Single
developers

Subjects
s15, s16, s17,
s18, s19, s20

Subjects
s21, s22, s23, s24

Subjects
s25, s26, s27, s28

s25 and s26
s27 and s28

s15 and s16
s17 and s18
s19 and s19

s21 and s22
s23 and s24

Collaborators s21, s22, s23 and s24 s25, s26, s27 and s28 s15, s16, s17,
s18, s19 and 20

allocated in pairs. Finally, in round 3, the same subjects inspected system
C as collaborators, but now structured as a group. The other subjects were
similarly arranged among rounds of the study.

4.2
Influential Factors and Collaborative Activities

This chapter complements the study findings of Chapter 3 by summariz-
ing the empirical evidence collected about the influential factors and collabora-
tive activities. Section 4.2.1 presents the influential factors on the collaborative
smell identification. Section 4.2.2 presents the collaborative activities that seem
to improve the e�ectiveness of collaborative smell identification.

4.2.1
Influential Factors on the Identification of Code Smells

This section presents and discusses the main results of our empirical
study aimed at identifying the influential factors in the identification of code
smells. Consequently, we address RQ1 as follows.

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



Chapter 4. Understanding the E�ectiveness of Collaborative Smell

Identification 64

RQ1. Do collaborators identify more code smells than single developers?

Average Number of Identified Code Smells as Indicators of Influen-
tial Factors. Table 4.6 presents the average number of code smells identified
by the subjects. The first column lists the three subject arrangements, namely
individual, pairs, and groups. The other columns present the average number
of code smells identified in each software system, namely systems A, B, and
C. Regarding the overall number of code smells identified per arrangement,
we have an interesting observation. The Kruskal-Wallis statistical test (see
Section 4.1.4 for details) suggests di�erences in the number of identified code
smells among di�erent arrangements, which applies to all systems. In fact, we
obtained p-values equals to 0.0006, 0.0064, and 0.0009 for systems A, B and
C, respectively. This observation leads us to conduct additional tests aimed at
understanding whether such di�erences address our alternative hypothesis.

Table 4.6: Average number of identified code smells
Subject Arrangement System A System B System C

Single developers 3.33 1.28 6.88
Collaborators in pairs 7.25 5.00 14.00

Collaborators in groups 6.00 3.00 5.00

Influential Factor 1. Similarly to our previous findings, we observe that
collaborators are more e�ective than single developers in identifying code
smells.

Data presented in Table 4.6 suggest that collaborators identified a
higher average number of code smells than single developers. By comparing
single developers with collaborators in pairs, we observe that collaborators
identified more than twice as many code smells than single developers. In
fact, collaborators identified up to four times more code smells than single
developers in the case of system B. In addition, by comparing single developers
with collaborators in groups, we observe that collaborators had an average
number of identified code smells at least twice as large than the average number
for single developers, in the case of systems A and B.

Overall, we observe that the average number of code smells identified by
collaborators was higher when compared to single developers, except for system
C, which coincidentally had more collaborators than systems A and B. Hence,
our data suggest the adding more than two developers to the collaborative
smells identification does not necessarily improve the e�ectiveness of such
identification. In fact, our qualitative analysis indicated that the convergence
among collaborators is often time consuming and the discussions often become
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unproductive. It seems that there is often a pair of developers who are the
most appropriate peers to perform the smell identification tasks. However,
particularities of system C may have a�ected the results, which reinforce the
value of our subject arrangement with di�erent rounds. In summary, our data
lead us to reject H0 and accept the alternative hypothesis HA1.

Influential Factor 2. Adding more than two developers to a team do not
necessarily improve the e�ectiveness of smell identification.

With respect to collaborators working in pairs, we have found a sig-
nificantly higher average number of smells identified for all systems, with
p-values equal to 0.0001, 0.0015, and 0.0059, respectively. Consequently, we
confirm our hypothesis with a confidence level of 95% for all systems. In turn,
regarding the collaborators working in groups, we have found a significantly
higher average number of code smells for two out of the three systems, with
p-values equal 0.0004, 0.0029, and 0.8520, respectively. Again, we confirm our
hypothesis with a confidence level of 95%, but only for systems A and B.

Additional Influential Factors. As aforementioned, we identified two in-
fluential factors by analyzing the average number of identified code smells,
regardless of the smell type. Complementary, we investigate additional influ-
ential factors by analyzing the average number of identified code smells per
smell type. Figure 4.2 presents the average number of identified code smells
for all systems, within the time constraints of the experiment. The blue bars
represent the results for single developers. The orange bars represent the re-
sults for collaborators working in pairs. The gray bars represent the results for
collaborators working in groups. This figure represents only the results when
the average number of identified code smells was equal or higher than 1.0 for
at least one subject arrangement. We discuss our main findings as follows.

Figure 4.2: Average number of identified code smells per smell type

Data of Figure 4.2 suggest that collaborators achieved a higher average
of identified code smells than single developers for nearly all types. In fact, we
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observed that collaborators working both in pairs and groups are more e�ective
than single developers when identifying inter-class smells, such as Feature Envy,
and Lazy Class, which a�ect multiple classes together. In addition, for several
inter-class smells, we observed that the average number of code smells identified
by pairs or groups was over 40% higher than the average number of identified
code smells obtained by single developers.

Through our qualitative analysis, we confirm that the e�ectiveness of
collaborators is a consequence of the inherent complexity of inter-smell types,
which require more e�ort and knowledge of developers to be properly identified.
In fact, we observed that the opinion of a single subject was often insu�cient to
identify inter-class smells precisely. However, collaborators were more precise
in such identification because of the knowledge exchange. This observation
is reinforced by the opinion of the subjects: 89.28% of all subjects reported
that they were more confident on the identification of inter-class smells when
working as collaborators. However, some subjects disagree, such as s, who said:
“When we had many contradicting views regarding a code smell, the work in
group may lead to considerable di�culties in the decision-making process”.

Influential Factor 3. Collaborators achieved more e�ectiveness in the iden-
tification of code smells, and they achieve a even higher e�ectiveness in the
case of code smells that a�ect multiple classes.

Finally, we observed that collaborators produced fewer false positives
than single developers. In fact, collaborators obtained an average number
of false positives equals to 3.0 for pairs and 4.0 for groups, against 4.14 for
single developers. Although the di�erence between the average number of false
positives is small between groups and single developers, we observe that pairs
are actually more e�ective and identify almost 25% fewer false positives than
single developers. These data reinforce our findings with respect to the average
number of code smells. In addition, collaborators showed less optimism when
confirming a code smell suspect, because they usually reason more and try
more insistently to understand the actual occurrence of a code smell.

Collaborators also showed complementary knowledge when identifying
code smells, which led to the lower number of false positives. For instance,
subject s1 found a code smell suspect a�ected by Feature Envy, but s2 disagreed
by saying that “...that part of the source code does not have a Feature Envy
because the suspect method (marked as containing the code smell) is not calling
other methods several times”. Thus, s2 attempted to prove his opinion by asking
s1 to inspect the classes potentially a�ected by the code smell. Finally, both
s1 and s2 refuted the code smell suspect and avoided a false positive.
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Influential Factor 4. Collaborators very often exchange knowledge, which
reduces the number of false positives on the identification of code smells.

4.2.2
Collaborative Activities for Identifying Code Smells

Aimed at addressing SRQ3 of this thesis (Section 1.3), this section
discusses the main results of our empirical study aimed at identifying the
collaborative activities which most likely contribute to the identification of
code smells. Consequently, we address RQ2 of this chapter as follows.

RQ2. How do single developers and collaborators perform the identification of
code smells?

To answer RQ2, we qualitatively analyzed how collaborators and single
developers identify code smells. Based on this analysis, we aimed at charac-
terizing the main collaborative activities which most likely contribute to the
identification of code smells. Our goal is to understand the benefits and draw-
backs of each collaborative activity.

After transcribing the collected multimedia data (such as video and audio
records), we characterized the main activities which compose the identification
of code smells. Figure 4.3 summarizes these activities, which are performed by
collaborators or single developers, in a notation based on feature modeling (3).
Each rectangle represents an activity (feature), which is hierarchically labeled
with a number. The type of rectangle border indicates whether the activity
was performed by collaborators or single developers, as indicated in the legend.
Rectangles with thick borders are activities consistently performed by all the
subjects regardless of the session, i.e., whether they were working as single
developers, pairs or groups. The figure focuses on presenting the recurring
activities performed by at least two third of the subjects. In addition, we mark
with (*) the activities which often contributed to improving the e�ectiveness
of smell identification.

Data of Figure 4.3 suggest that both single developers and collaborators
performed six activities, which are usually performed sequentially. These
activities, called phases, are represented as mandatory features at the top of
the model. In feature modeling, mandatory features are those features which
always appear in each instance (product) of the model. The six phases are: (1)
Smell type selection, (2) Metrics selection, (3) Navigation through the program
classes, (4) Identification of smell suspect, (5) Smell suspect validation, and (6)
Decision making. Each phase has sub-activities, which are represented by either
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Figure 4.3: Activities on the identification of code smells

the OR (alternative inclusive) or XOR (alternative exclusive) relationships.
For instance, the subjects perform the smell type selection (1) either randomly
(1.1) or knowledge-based (1.2). Two or more alternative sub-activities may be
used together to realize a phase. For instance, pairs or groups in phase 5 may
conduct two or three sub-activities (5.1, 5.2, or 5.3) in order to realize the
validation of a code smell suspect.

Phase 1 corresponds to the selection of smell types for identification
by developers. We observed that the subjects performed the selection of code
smells using random selection (1.1) or a knowledge-based (1.2) approach. In
the random selection, subjects selected the smell types by simply following
the smell type list presented in the training (Section 4.1.5). In the knowledge-
based selection, subjects carefully selected and prioritized the smell types, in
accordance with their previous knowledge on certain smell types. For instance,
let us consider the following discussion between subjects s8 and s7.

s8 starts the discussion – “What do we have to look for?”
s7 replied – “Let us start with Data Class.”
s8 finally stated – “Right! [Data Class is] a class which stores data only.”

Also regarding Step 1, 71.4% of the single developers conducted the
random smell type selection, which suggests that these developers rarely
prioritize smell types for identification. We observed that the random selection
is less e�ective than the knowledge-based selection, based on the questionnaire
answers and video records. Three key reasons could explain such observation as
follows. First, the subjects spent too much time searching for smell types about
they know little. Second, as a consequence, they felt discouraged to conduct
the identification of code smells. Third, they took too long to start identifying
relevant code smells. Finally, we observed that 78.5% of the pairs and 66.67% of
the groups conducted the knowledge-based selection, which suggests that pairs
are more prone to conducting the knowledge-based selection than groups.
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Phase 2 consists of selecting the software metrics which could support
the identification of code smell suspects. These metrics vary according to the
smell type. In fact, we observed that the subjects usually used the Number of
Lines of Code (LOC) (41) as means to identify occurrences of certain smell
types, such as Long Method and Lazy Class. For instance, let us consider the
following discussion between subjects s1 and s2.

s1 starts the discussion – “What is the next code smell [to identify]?”
s2 replies – “Let us look for Long Method.”
s2 states – “Okay! We then could first reason about lines [of code].”
s1 concludes – “Right! We could start by computing an average number.”

We also observed that collaborators often exchange knowledge to select
the most appropriate software metrics per smell type. Pairs and groups also
systematically defined how to understand the results of each metric when
identifying a particular smell type. They also identified and discussed potential
false positives generated by the use of particular metrics. Finally, collaborators
covered a higher number of metrics than single developers.

Phase 3 consists of developers navigating through the code elements
(such as classes and methods) in a software system, aimed at identifying the
code smell suspects. We observed that most subjects, regardless of collabo-
rators and single developers, inspect di�erent code elements sequentially in a
one-by-one way. On the other hand, we observed that either collaborators or
single developers failed to prioritize the code elements for inspection. In the
feedback form, the subjects mentioned that this phase could be more e�ective
if all collaborators could navigate through the code elements independently.
To illustrate the navigation through the code elements, let us consider the
following discussion between subjects s15 and s16.

s15 starts the discussion – “First, let us navigate through all classes to
identify code smell suspects. Maybe we would be more productive this
way.”
(Both subjects debate on the list of smell types)
s15 states – “Feature Envy is a smell type which uses another class too
much. It occurs when the method of a class uses too many attributes of
another class”
s16 completes – “Let us look at the whole source code and confirm the
code smell suspects as we identify them.”

Phase 4 consists of identifying code smell suspects. We observe that
collaborators usually rely on the driver argumentation (4.1). They elect a
collaborator as the driver, which leads the discussion among collaborators.
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Once all collaborators identify a suspect, the driver argues about it and
opens the discussion to the other collaborators. In the case of uncertainty, the
collaborators usually end up refuting the suspect. Single developers usually rely
on a checklist of examples (4.2). These developers identify a code smell suspect
based on a predefined list of smell types, called checklist of examples, similarly
to the smell type list provided during the experiment. The examples of smell
types are randomly selected by the single developers based on subjectivity and
knowledge of the developers, which may lead to several false positives.

Phase 5 consists of validating the code smell suspects, which means
confirming or refuting each suspect. We observed that collaborators usually
debate on the code smell suspect (5.1). They perform the following alternative
activities: the driver navigates through the code (5.1.1.1) to understand the
context of a code smell suspect; the collaborators use the functionalities pro-
vided by the IDE to navigate through the code elements; or the collaborators
discuss about the suspect based on their knowledge (5.1.1.3) acquired by previ-
ously inspecting other software systems. We observed that only the use of the
IDE functionalities did not contribute to improve the subjects’ e�ectiveness,
because IDEs usually lack support to identify code smells.

Also regarding Phase 5, collaborators eventually disagree when confirm-
ing a code smell suspect, which requires the intervention of the driver to pro-
mote discussion and agreement (5.2). Alternatively, developers may take ad-
vantage of examples in their systems or the Web to confirm a suspect (5.3),
which is mostly conducted by single developers. We found that single develop-
ers usually consult Web search engines, such as Google or Bing (5.3.1). On the
other hand, collaborators often consult the system under analysis (5.3.2). Most
single developers who adopted the random selection of examples did not prop-
erly identify code smells, possibly due to the di�erence between the inspected
code and the code available in other sources. We confirm this observation via
screenshots and the list of identified code smells. To illustrate how collabora-
tors exchange knowledge to validate code smell suspects, let us consider the
following discussion between subjects s1 to s5.

s2 states – “This code smell suspect has an Intensive Coupling.”
s1 disagrees – “I do not think so.”
s4 replies – “Why not? It has several mandatory parameters, which
implies several calls to methods that depend on these parameters.”
s3 reinforces – “And it [the code smell suspect] could call these methods
right here (points out a specific line of code).”
s4 complements – “Note that, by changing it [the code smell suspect], you
could break the class behavior.”
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s1 states – “Well, I think that it has a Feature Envy. Note that it
concentrates several calls, all in a single class. It should be in another
class.”
s2 answers – “You are right!”
s5 finalizes – “So, let us confirm the occurrence of a Feature Envy.”

Finally, Phase 6 consists of making decisions towards the verdict about
each code smell. We observed that collaborators usually make decisions based
on the driver decision (6.1), which means that the driver leads to the verdict. It
makes ine�ective the activity whenever collaborators take the driver decision
as a sign of authoritarianism. However, the opposite situation occurs whenever
the majority opinion of collaborators (6.2) and the agreement of collaborators
(6.3) leads to the verdict. The aforementioned discussion between subjects s1
to s5 also illustrates the decision making of Phase 6. The discussion provided
in this section leads us to the following finding.

Finding 1. Developers perform six activity mandatory during on the iden-
tification of code smells: (1) Smell type selection, (2) Metrics selection,
(3) Navigation through the program classes, (4) Identification of smell
suspect, (5) Smell suspect validation, and (6) Decision making.

We also observed that certain collaborative activities lack tool support
aimed at helping developers when identifying code smells; For instance, (5)
Smell suspect validation consists of validating a code smell suspect. In this
case, we observed that developers often need examples of code smell suspects
which were validated by developers in their project preferably, in order to
support their decision making. However, we did not find a tool that automates
this process. In fact, developers that participated in our study often recurred
to the Internet to search for examples or randomly into their projects. This
result lead us to Finding 2 presented as follows.

Finding 2. Some activities, developers have limited support to conduct
the collaborative smell identification.

In summary, our results have implications both for organizations and
researchers. For instance, organizations could now have empirical knowledge
about how to apply the collaborative activities to the identification of code
smells, which improves the developers’ e�ectiveness. Moreover, researchers
could propose ways to improve these activities, aimed at improving even more
the developers’ e�ectiveness on the identification of code smells.
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4.3
Threats to validity

The empirical study presented in this chapter shares similar threats to
validity of the study presented in Chapter 3, such as the limited inspected
smell types and human factors on the creation of the code smell reference
list. However, there are additional threats that require discussion. We discuss
these threats to validity and minimizations as follows (89).

Construct Validity. Our study has a constraint regarding the limited set
of inspected smell types, which may have a�ected our findings. We minimize
this possible threat by selecting five well-known and varied smell types. These
smell types may a�ect multiple code elements and are reportedly common
in software systems (Section 4.1.3). Another threat regards the elaboration
of the code smell reference list, which was performed by two researchers in
a manual way with the support of a smell detection tool (52). We mitigate
possible threats by engaging researchers that are su�ciently qualified for
such elaboration (Section 4.1.4). Regarding varying background of subjects,
we mitigate this threat by selecting subjects with minimum knowledge on
our topics of interest, such as Java and code smells (Section 4.1.2). We also
trained all subjects together to equalize their background. Finally, we adopted
a cross-over design (93) in order to reduce biases introduced by the learning
of subjects about the study procedures and activities, as well as reduce the
problem of our small sample. In fact, we divided the subjects into three groups
as discussed in Section 4.1.5.

Internal Validity. With respect to the experiment execution, we designed
experimental tasks that fit our time constraints of one hour, by relying on
experiment simulations performed by volunteers. Through these simulations,
we also identified opportunities for encouraging the subjects to participate in
the whole experiment. Finally, regarding the fact that subjects did not use
a smell detection tool, we highlight that we were not concerned about the
e�ectiveness of the identification of code smells with support of smell detection
tools. Instead, we were concerned about how the collaborators identify code
smells. Nevertheless, if we had used a tool during the experiment, the results
could completely depend on the particularities of a particular tool. Thus, by
using a tool, we could have introduced bias to our study data.

Conclusion Validity. To conduct the data analysis, we carefully selected
the most appropriate statistical tests. We also paid special attention to avoid

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



Chapter 4. Understanding the E�ectiveness of Collaborative Smell

Identification 73

violating assumptions of the selected statistical tests. To answer our research
question, we applied the Mann-Whitney and Kruskal-Wallis test as discussed
in Section 4.1.4. Furthermore, we believe that our questionnaires fit our expec-
tations with the empirical study and support answering our research question.
For instance, they allow us to characterize the experienced and inexperienced
developers. Thus, we mitigate possibles threats related to the analysis of
the questionnaires by limiting our analysis to the data gathered through the
questionnaires only. Another threat is related to the qualitative data analysis,
which may contain biases caused by the viewpoint of the researchers. To
mitigate this threat, the qualitative data analysis was performed by multiple
researchers together, which validated each others analysis.

External Validity. With respect to the generalization of our study findings,
our empirical study has some threats, as follows. First, we applied the study
only in the context of Brazilian developers, which may not represent any
development scenarios around the world due to cultural variations. In addition,
even though someone could consider our 28 subjects as a limited set, we did
our best to involve the novice developers on the identification of code smells.
We minimized possible threats regarding the subjects set by involving the
developers with varied background and levels of working experience. We also
focused on developers with minimum experience on our topics of interest, such
as code smells and pair programming.

4.4
Summary

This chapter aimed at characterizing the influential factors and collabora-
tive activities on the identification of code smells. We conducted a controlled
experiment with 28 developers, which have some or none knowledge on the
inspected software systems. This chapter compares collaborators and single
developers to understand the developers’ e�ectiveness on the identification of
code smells. Our results confirm the findings of Chapter 3 and reveal additional
details on the collaborative smell identification, which are the influential fac-
tors and the collaborative activities. We discuss each finding as follows.

– We have observed that collaborators are more e�ective than single
developers on the identification of code smells, which confirms our
previous findings (Chapter 3).

– Collaborators achieved a higher average number of identified code smells
than single developers, regardless the smell type. In addition, they are
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40% more e�ective than single developers on the identification of smell
types which a�ect multiple classes (inter-class smells).

– Adding more than two developers to the collaborative smell identifica-
tion does not necessarily improve the developers’ e�ectiveness of such
identification.

– Developers perform several collaborative activities during on the identi-
fication of code smells. However, for some activities, developers are not
yet properly equipped to conduct the collaborative smell identification.

All the aforementioned findings raise questions about how collaborative
activities on the identification of code smells can be improved, particularly the
activities for validating code smell suspects. Thus, there is a need to identify
what information could support the developers on the identification of code
smells. The next chapter addresses this need.
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5
An Industrial Multi-Case Study on Collaborative Smell
Identification

Our previous studies (Chapters 3 and 4) assessed the e�ectiveness
of collaborative smell identification. They resulted in several findings as
follows. First, collaborative smell identification is more e�ective than individual
smell identification. That is, for both novice and professional developers,
collaborators identify more code smells than single developers. Second, certain
influential factors may improve the e�ectiveness of smell identification, such
as team size and smell granularity. Collaborators are specially more e�ective
than single developers when identifying inter-class smells, which collaborators
are often more confident in identifying. Third, certain activities performed by
collaborators actually improve the e�ectiveness of smell identification, mostly
due to the exchange of complementary knowledge between the developers.
These activities follow a common sequence, from the selection of smell types
being considered to the validation of smell suspects.

Although our previous studies led to a number of findings, they mostly
focused on developers who have no previous knowledge about the inspected
software systems. In addition, the inspected systems were mostly small-sized
or legacy systems. As these systems lack real clients and high maintenance
demands, they possibly do not have much critical maintenance problems, which
may limit the generalization of our observations. Moreover, developers who
are familiar with the inspected systems, may help us in revealing even more
interesting findings about e�ective smell identification. In fact, these developers
could have a di�erent viewpoint on the negative e�ects caused by code smells
in the maintenance of their systems, which may a�ect the way developers
identify, confirm, or refute the code smell suspects.

Our previous studies suggest the need for improving certain collaborative
activities that govern the identification of code smells. However, we have to
assess these collaborative activities in real software development contexts. In
this case, no developers would be better to engage an empirical study than
developers who currently work on their own software systems, in organizations
which actually need to save developer e�orts due to high software maintenance
demands. In fact, an empirical study with these developers could reveal
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interesting findings on the collaborative smell identification, which would be
hard or impossible to reveal with less experienced developers without previous
knowledge about the inspected software systems.

Aimed at addressing the aforementioned limitations, this chapter
presents an empirical study which answers the fourth specific research question
of this thesis, which states: SRQ4: Are there opportunities for improving
some collaborative activities associated with smell identification? For
this purpose, we conduct two sessions of an exploratory case study aimed at
understanding the e�ectiveness of collaborative smell identification in industry.
Given the intrinsic nature of the case study method, we are mainly concerned
here with observing to what extent our previous findings hold in real devel-
opment settings. We are mostly concerned with the generality of our findings,
but without the computation of statistical tests. We discuss our main findings
of our industrial multi-case study as follows.

– In industrial settings, we observed that collaborators are also more
e�ective than single developers in the identification of code smells. This
observation confirms our previous findings in controlled settings.

– Also in industrial settings, we observed that collaborators often benefited
from knowledge exchange to identify certain smell types. Such types
are those that require the understanding of multiple code elements (i.e.,
inter-class smells). This observation also confirms our previous findings.

– In addition to what we found in our previous studies, we observed
that developers require several types of information about the local and
historical context of a code smell suspect in order to confirm or refute
the suspect. To the best of our knowledge, these types of information are
often rarely available in existing tool support.

The content of this chapter is an extended version of our work published
in the 39th International Conference on Software Engineering (ICSE), Soft-
ware Engineering in Practice Track (SEIP) (63). The remainder of this section
is organized as follows. Section 5.1 describes the study settings. Section 5.2
discusses the e�ectiveness of collaborative smell identification in industrial set-
tings. Section 5.3 discusses the possible improvements for supporting collab-
orative smell identification. Section 5.4 discusses threats to validity. Finally,
Section 5.5 summarizes this chapter and introduces the next chapter.

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



Chapter 5. An Industrial Multi-Case Study on Collaborative Smell

Identification 77

5.1
Study Settings

We carefully designed our study to investigate the e�ectiveness of col-
laborative smell identification in industrial settings. This section presents the
study settings, which include the study goal and research questions, the orga-
nizations that engaged in the study, and our data sources.

5.1.1
Goal and Research Questions

The multi-case study presented in this chapter aimed at understanding
the e�ectiveness of collaborative smell identification. For this purpose, we
compare the e�ectiveness of both collaborators and single developers on the
identification of code smells. Di�erently from our previous studies presented
in Chapters 3 and 4, which consist of controlled experiments with small-sized
or legacy systems, our case studies focus on both professional developers and
software systems from the industry. By relying on the guidelines provided by
Wohlin et al. (2012), we proposed the following study goal.

– Analyze the collaborative smell identification when compared to the
individual smell identification,

– For the purpose of characterizing the developers’ e�ectiveness,

– With respect to precision and recall of identified code smells,

– From the viewpoint of professional developers,

– In the context of real Java software systems maintained by their own
professional developers who participated in the case studies.

The study goal led us to design our first research question as follows.

RQ1. Are collaborators more e�ective than single developers in identify-
ing smells in their own industry projects?

With RQ1, we aimed at understanding the e�ectiveness of smell identi-
fication from the viewpoint of professional developers who are familiar with
the inspected software systems. In order to address RQ1, we computed e�ec-
tiveness similarly to previous chapters: we have considered precision, which
measures the correctness of the identified code smells, and recall, which mea-
sures the completeness of the identified code smells with respect to all existing
code smells in a software system (23) (Chapter 2). Similarly to our previous
study, we created a code smell reference list to analyze both precision and
recall, which we explain in Section 5.1.4.
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In order to better understand how developers identify smells in their own
projects, we have created a second research question as follows.

RQ2. How do professional developers identify code smells in the industry?

With RQ2, we aimed to deeply understand how professional developers
actually identify code smells in certain industry projects. Complementary to
RQ1, this research question targets the di�erent ways in which professional
developers conduct the identification of code smells in real development
settings, in which developers are mostly concerned about the maintenance
of their software systems. We expect that, by addressing RQ2, we are able
to characterize the main benefits and drawbacks of the identification of code
smells performed by both collaborators and single developers in the industry.

5.1.2
Target Software Development Organizations

We selected two Brazilian software development organizations for our
case studies. The selection relied on several organization characteristics, such
as the experience level of developers with code reviews, the developer team size,
and the system domains. Table 5.1 presents these characteristics per organiza-
tion. The first column lists each characteristic. The second and third column
present the data of the two organizations, Org. 1 and Org. 2, respectively.
We conducted one case study session with each organization. We observed
that both organizations are concerned about identifying poor code structures
which decay the maintainability of their systems. Moreover, our first meeting
with these organizations showed their excitement to reflect upon the current
practices of their developer teams regarding preventive maintenance. In fact,
we noticed that one of the two organizations often promotes team training in
order to further improve their software maintenance practices. (Appendix I).

Table 5.1: Characteristics per target organization
Characteristic Organization 1 (Org. 1) Organization 2 (Org. 2)
Organization type Public Private
Number of employees 80 150
Team size per system 3–4 3–7
System type Information system Information system
System domain Government administration Industrial automation
Programming language Java Android/iOS/Java
Platform for inspecting code - SonarQube
Code review Yes Yes

Together with the organizations, we searched for software systems which
are developed in Java, with di�erent sizes, and from di�erent domains. Based
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on this search, we selected five software systems for inspection: two systems
from Org. 1; and three systems from Org. 2. The selected systems vary
from three to seven with respect to the number of developers responsible
for maintaining the systems. We asked each system manager to indicate the
developers who could participate in our case studies as subjects, from the
developers responsible for maintaining the systems. For confidentiality reasons,
we are unable to make available the source code of the selected systems.

Table 5.2 summarizes the characterization of subjects who engaged in
the two case study sessions, which we refer as CS1 (Org. 1) and CS2 (Org. 2).
The first column di�erentiates the case studies. The second column identified
each subject. The third column presents the system inspected by each subject.
The fourth column presents the highest education level per subject. Finally,
the fifth, sixth, and seventh columns encompass the subject experience with
software development, Java, and code review in pairs.

Table 5.2: Subject characterization of CS1 and CS2
Case
Study Subject System Education

Software
Development

(Years)

Java
(Years)

Review
in pairs

(Projects)
s1 S1 BSc. 7 4 -
s2 S1 BSc. 7 7 -
s3 S1 BSc. 9 8 -
s4 S2 BSc. 9 8 -
s5 S2 BSc. 12 10 -
s6 S2 MSc. 5 4 -

CS1 s7 S2 BSc. 10 8 2
s8 S3 BSc. 12 12 8
s9 S3 BSc. 13 11 2
s10 S4 BSc. 4 4 2
s11 S4 BSc. 8 6 -
s12 S5 MSc. 4 4 2

CS2 s13 S5 BSc. 5 3 -

CS1 with a government organization. Our first case study session was
performed with Org. 1, a Brazilian government organization which develops
systems for managing budget. Org. 1 recently started to apply code review.
We selected two critical software systems (S1 and S2) developed and main-
tained by the organization for more than seven years. S1 aims at controlling
entrances and processing tax revenues of products in the Brazilian state of
Amazonas. S2 aims at standardizing budget reports. Any problems in the
source code could negatively a�ect the government accountability and budget.
Table 5.2 characterizes the seven subjects (s1 to s7) of CS1 distributed by the
software system they maintained at that time. Most subjects are bachelors in
Computer Science, having at least four years of professional experience in Java
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programming. Only one participant of the case study reported some previous
experience in performing peer code review.

CS2 with a private organization. Our second case study session was
performed with Org. 2, a private non-profit foundation with international
customers. The developer teams freely manage the system quality as they wish,
but some teams apply code review. We selected three systems (S3, S4, and S5)
developed and maintained by Org. 2. S3 supports the management of registry
o�ces of the Amazonas’ Court of Justice. S4 manages historical information of
patients in a hospital. It uses electronic medical records to integrate patients’
clinical and administrative information. S5 traces products in a production line,
from their origin to retail locations. Table 5.2 characterizes the six subjects
(s8 to s13) of CS2 distributed by the system they maintained at that time.
Similarly to CS1, most subjects are bachelors in Computer Science, with three
or more years of professional experience in Java programming. However, most
subjects had some previous experience with code review in pairs.

5.1.3
Data Sources

We carefully selected the following data sources to support our study.

Data Sources. To conduct our data analysis, we collected experimental data
of the subjects from di�erent data sources, namely: the subject characterization
questionnaire, the code smells report questionnaire, and the follow-up question-
naire. We combined the data obtained via these data sources to compensate
their strengths and limitations. We describe each data source as follows.

– Subject characterization questionnaire: it is composed of questions
aimed at characterizing each subject, in terms of their their knowledge
on topics of interesting, such as programming, Java, code smells, and
Pair Programming. This material is available at (Appendix D).

– Code smell report questionnaire: it is a questionnaire aimed at
collecting the list of code smells identified by the subjects during the
experimental tasks (available at Appendix E).

– Follow-up questionnaire: this questionnaire aimed at collecting the
opinion of subjects regarding the identification of code smells conducted
in the case studies. This material is available at (Appendix H).
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5.1.4
Data Analysis Procedures

We defined the following procedures for data analysis.

Creation of a Code Smell Reference List. We created a code smell
reference list per system. The project manager of each system plus two re-
searchers with experience in identifying smells performed the three following
steps. First, the researchers used a smell detection tool to identify code smell
suspects. The tool relies on well-known and reportedly e�ective identification
strategies (6, 37). Second, they validated each suspect in isolation. Each
involved person then obtained a list of suspects, which could vary since the
identification of code smells is subjective. Third, we computed the agreement
among the lists obtained by the researchers and system project manager. Both
researchers discussed how to solve any conflicts towards a consensus. We also
added suspects to the code smell reference list, we discussed their issues, and
decided whether it should be added to the reference list, but we confirmed
after discussing them with the project manager and other developers.

Smell Types Inspected in the Case Studies. to support the generality
of our findings, we selected software systems a�ected by 15 smell types with
varying granularity, such as Long Method, God Class, and Feature Envy (29).
These smell types a�ect di�erent code elements, such as methods and classes
(29, 37). They are also reportedly very frequent in software systems (91).

Quantitative Data Analysis. As aforementioned, to assess the e�ectiveness
of collaborators and single developers, we computed precision and recall. Both
measures are calculated based on the number of code smells marked as true
positive (TP), false positive (FP) and false negative (FN). Precision and recall
are normalized in a range from 0 to 1. High precision values (close to 1) mean
that the developer had reported, proportionally, only a few occurrences of FP
in the software system. High recall values (close to 1) mean that the devel-
oper was able to identify a representative TP number in the software system.
Equations 5-1 and 5-2 present the formula for precision and recall, respectively.

Precision = TP

TP + FP
(5-1)
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Recall = TP

TP + FN
(5-2)

Qualitative Data Analysis. Our qualitative analysis used the following ar-
tifacts: the characterization questionnaire, the follow-up questionnaire, screen-
shots, and multimedia data such as audio and video records. We relied on the
procedures of Grounded Theory (GT) (81) to analyze the data, specifically
the first and second phases (open coding and axial coding, respectively). Open
coding involves the breakdown, analysis, comparison, conceptualization, and
the categorization of the data. Axial coding examines the relations between the
identified categories. When analyzing the qualitative data, we created codes for
the developers’ statements (1st phase). Then, these codes were related to each
other - through axial coding (2nd phase). Finally, selective coding performs all
the process refinements by identifying the core category to which all others are
related. We decided not to select a core category herein because a Grounded
Theory rule is the circularity between the collection and analysis stages until
theoretical saturation is reached (81). Therefore, we decided to postpone the
selective coding phase. For this reason, we do not claim that we applied the
GT method, only some specific procedures.

We have conducted the open coding on the transcribed data, associating
codes with quotations of transcripts, and axial coding, merging and grouping
into more abstract categories. For each transcript, the codes and identified
networks (memos showing the relationships between the categories) were
reviewed, analyzed and changed upon agreement with the other researchers.
The phases of the open and axial coding were su�cient to reveal the strategies
that developers use to identify code smells as well as the opportunities to
improve this task. These procedures allowed us to uncover di�erent strategies
followed by developers to identify code smells. We also performed free content
analysis over the answers given by the subjects to the follow-up questionnaire.

5.1.5
Steps of the Study Execution

Figure 5.1 presents the four steps of our case study. As discussed earlier
in this chapter, we conducted a specific study case session per organization:
CS1, performed in Org. 1 and CS2, performed in Org. 2. (Section 5.1.2). To
conduct the case study, we asked all subjects to first fill out and sign a consent
questionnaire. The subjects then started to participate in the actual smell
identification tasks of the study. We describe each experimental step as follows.
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Figure 5.1: The experimental design

Step 1. Apply the Subject Characterization Questionnaire. The sub-
ject characterization questionnaire aims at characterizing each subject who
participated in the experiment. The questionnaire includes questions regard-
ing the background of the subject in formal education, software development,
the Java programming language, and peer review. The responses obtained
through this questionnaire allowed us to identify some key characteristics of
each subject, as presented in Section 5.1.2.

Step 2. Training of Subjects. After characterizing the subjects, we provided
them with a training session. This training aimed at supporting subjects to
proper understand and execute the experiment (Appendix J). The training was
organized in two parts. First, during 25 minutes, we explained the technical
concepts and terminologies related to this study. Second, we took 10 minutes
to conduct a discussion about the technical concepts and terminologies.

Step 3. Smell Identification Task. Per experiment session, we asked the
subjects to engage in two rounds of code smell identification in a cross-over
design fashion. They worked on the same system in both rounds, but in disjoint
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sets of modules in each round. Figure 5.1 presents the identification task. In
the first round, the developers performed individual smell identification in a
set of modules (e.g., S1 in the Figure 5.1). In the second round, they performed
collaborative smell identification, but in other set of modules. (e.g., S1’ in the
Figure 5.1). In addition, in each round, the subjects were asked to annotate
the identified smells in the code smell report questionnaire. Table 5.3 presents
the arrangements of subjects according to their systems. The subjects received
a list of code smells from 15 di�erent types detected by an automated tool to
be used as a baseline (Section 5.1.4). In this sense, subjects were instructed
to feel free to follow or not the given list. Subjects also received a guide that
characterizes each type of code smell used in this study. Each round lasted
45 minutes. At the end of the experiment, each subject answered a follow-up
questionnaire and provided a list of identified smells.

Table 5.3: Subject arrangement
CS1

Systems Single developers Collaborators
S1 s1, s2, s3 s1, s2 and s3

S2 s4, s5, s6 and s7 s4 and s5
s6 and s7

CS2
Systems Collaborators Single developers

S3 s8 and s9 s8, s9
S4 s10 and s11 s10, s11
S5 s12 and s13 s12, s13

Step 4. Answer the follow-up questionnaire. After participating in the
two sessions of the experiment, the participants filled a follow-up questionnaire.
This questionnaire aimed at collecting the impressions of subjects regarding the
experiment. We aimed at understanding their opinion about the identification
of code smells and the experience of working collaboratively to identify code
smells. More details about this step are provided in (Appendix H).

5.2
E�ectiveness of Collaborative Smell Identification in Industry

This section presents the results of the quantitative data for both col-
laborations and single developers, per case study session, as follows.

Results for CS1. Table 5.4 shows the results of the first round in CS1.
The table shows the TP, FP, and FN measures associated with each single
developer. Each developer, represented by his ID (2nd column), worked on a
specific system (1st column). The last columns present the precision and recall
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results. Table 5.5 follows a similar structure. However, it presents the results
of the second round in the same organization. Thus, the 2nd column shows the
collaborators. The four collaborators, who worked on the S2 system in round 1,
were divided in two pairs in round 2. The three collaborators of the S1 system
worked together as a group in round 2.

Table 5.4: Precision and recall of single developers in CS1
System Subject TP FP FN Precision Recall

s1 3 3 52 0.50 0.05
s2 7 3 48 0.70 0.13

S1 s3 9 6 46 0.60 0.16
s4 8 5 50 0.62 0.14
s5 5 2 53 0.71 0.09
s6 5 3 53 0.63 0.09

S2 s7 2 1 56 0.67 0.03

Table 5.5: Precision and recall for collaborators in CS1
System Subject TP FP FN Precision Recall

S1 s1, s2 and s3 15 8 40 0.65 0.27
s4 and s5 9 3 49 0.75 0.16

S2 s6 and s7 7 0 51 1.00 0.12

Comparing precision and recall of Tables 5.4 and 5.5, we observe the
following trend: precision was consistently improved (except for s2) in round
2, while recall was slightly improved. We did not expect any improvement
on recall given the time constraints. The three collaborators, who worked
as a group, did not achieve clearly better results than when conducted the
identification of code smells as single developers, except for recall.

Results for CS2. Di�erently from the case of CS1, developers from CS2
worked as collaborators in round 1 and as single developers in round 2.
Table 5.6 and 5.7 present the results achieved by each group and each single
developer, respectively. According to these results, precision and recall were
consistently better (except for s12) for collaborators than for single developers.
s12 achieved similar results in both rounds.

Table 5.6: Precision and recall for collaborators in CS2
System Subject TP FP FN Precision Recall

S3 s8 and s9 6 0 29 1.00 0.17
S4 s10 and s11 18 2 3 0.90 0.86
S5 s12 and s13 3 3 27 0.50 0.10

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



Chapter 5. An Industrial Multi-Case Study on Collaborative Smell

Identification 86

Table 5.7: Precision and recall for single developers in CS2
System Subject TP FP FN Precision Recall

s8 5 11 30 0.31 0.14
S3 s9 5 14 30 0.26 0.14

s10 13 5 8 0.72 0.62
S4 s11 5 8 16 0.38 0.24

s12 3 8 27 0.50 0.10
S5 s13 2 7 28 0.22 0.07

E�ects of Collaboration on the Identification of Code Smells. We
compare the results for single developers and collaborators in order to answer
RQ1: Are collaborators more e�ective than single developers in identifying
smells in their own industry projects? As explained in 5.1.4, we used precision
and recall to compare the developers’ e�ectiveness in both situations. After
analyzing the results of the two organizations (Tables 5.4, 5.5, 5.6, and 5.7),
we noticed some similar trends in both case study sessions.

First, almost all developers of both organizations reached better precision
and recall for collaborators and single developers. Only one developer (s2) from
the Org. 1 achieved better precision as single developer. We did not observe any
e�ect of swapping the order of single developers and collaborators along the
two case study sessions. In other words, the collaborative smell identification
outperformed the individual smell identification in both sessions.

Second, we observed that the Org. 2 developers reached better precision
and recall results as collaborators than the Org. 1 developers. By analyzing
the characterization form (Section 5.1.2), we noticed that Org. 2 developers
had previous experience with code review in pairs, while Org. 1 developers
had none. This experience likely helped them to better explore the benefits of
collaborative smell identification. These results lead us to our first finding:

Finally, as far as recall is concerned, we noticed that the results were
far from 1.0 (100%) in general. This behavior was somehow expected given
usual time constraints of the case study sessions. In fact, we have noticed
that developers clearly tended to focus only on smell types that they consider
as priority for identifying and eliminating. However, we observed that single
developers produced fewer FNs only because they tended to identify much
simpler smell types (Section 5.3) when working in isolation. In contrast,
collaborators were able to identify more complex smell types (Section 5.3),
which remained unnoticed by single developers. Moreover, developers avoided
making mistakes (FP) when working with somebody else. This was confirmed
by the analysis of the qualitative data.
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Finding 1. Collaborators tend to be more e�ective than single developers
on the identification of code smells.

5.3
Improving Collaborative Smell Identification

Analyzing all discussions among participants and based on the quantita-
tive analysis, besides the answers obtained from the follow-up questionnaire,
we could answer our second research question: How do professional developers
identify code smells? We performed a qualitative analysis to identify the
developers’ actions performed by developers in both rounds. Moreover, we
checked whether those developers’ actions contributed to the e�ectiveness of
the identification of code smells (TP) or otherwise (FP and FN).

Code Smells and Comfort Zone. As presented in Section 5.2, when we
analyzed the code smells identified by the developers, no one found the same
code smell in the same class. There was no intersection of code smells reported
by two or more developers. It can be explained by the observed trend of
developers focusing their analysis on the code which they had worked in the
past. In fact, we noticed that single developers tend to stay in their comfort
zone concerning the analyzed classes. In most of the cases, they analyzed only
the classes that they knew. As a result, they often identified simpler smell
types internal to the class under their ownership, such as Long Method.

Leveraging Complementary Knowledge. On the other hand, when devel-
opers worked as collaborators, they were keen to analyze other classes indicate
by each other. As soon as they shared their knowledge about di�erent classes,
they started to reveal more complex smell types a�ecting multiple classes.
For example, s1, s2 and s3 were analyzing ClassA during the search of a Long
Parameter List in CS1. When they were analyzing ClassA, s1 reported that
a part of the code in that class was duplicated from ClassB. As s1 noticed
the duplication, they confirmed these classes were embodying Duplicated
Code. Therefore, s1 shared his knowledge about ClassB with the other two
developers. This situation is reported below:

s1 – “Guys, let us go first to ClassB. Methods in the ClassB are dupli-
cated”
s3 – “No, man.”
s1 – “They are the same”
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s3 – “Hold on... which methods?”
s1 – “The ClassA.setY and ClassB.setZ”
Developer s3 opens the ClassB.
s3 – “Which method?”
s1 – “It’ s the second one”
s3 – “is this the method?”
Developer s1 points to the ClassB.setZ method
s1 – ”Now, go to the ClassB.setZ method... its core is duplicated. This
piece of code is the same from ClassA.setY.”
s3 – “Jeez. it’s the same. I had no idea about it.”

This example illustrates a scenario in which collaboration helped the
developers to identify a code smell suspect in code elements that they did
not knowledge. A developer may not know about the entire system, but when
he teams up with another developer, they can benefit from the individual
knowledge of each other. Thus, they can identify code smells that require
understanding multiple code elements of the system like exemplified. During
the analysis, we found more cases of code smells that were identified only when
the developers teamed up. Most cases are related to Duplicated Code, God
Class, Shotgun Surgery, Refused Bequest, and Speculative Generality. These
smell types often require a non-local knowledge of the system. We also observed
that collaborators could also eliminate false positives (related to these smells)
yielded by the smell detection tool. As single developers, developers did not
have su�cient knowledge to refute the tool outcomes and sometimes accepted
them. This result leads us to our second finding:

Finding 2. Collaborators benefited from knowledge exchange to identify
code smells that require a broad understanding of the system.

The identification of the God Class smell type required developers to
inspect if each code smell suspect fulfills more than one responsibility. For
example, developers s1, s2, and s3 were investigating the InvoiceInput class.
They were discussing whether the class was a God Class or not. They
mentioned that in their systems, the report generation is related to several
classes – no class is responsible for generating all reports. Otherwise, such class
would be a God Class. Then, they realized that the ReportGenerationAction
class was generating di�erent types of reports. Thus, the developers indicated
that the ReportGenerationAction class was a God Class.

s2 – “But if we select this (InputInvoice) class, you have to start with God
Class since this class has all the types of reports. Those total (attributes)
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are all from here.”
s3 – “Yeah, God Class and Feature Envy smells.”
s1 – “Yeah, but I wonder if this class is a God Class, what if the report
(generation) is related to the InvoiceInput class?”
s2 – “Yeah, the issue we have here is that we won’t have a report
(generation) that is related to only one class. It (the report generation)
always includes much others (classes). For example, the tax, the invoice,
the item, What should we do?”
s1 – “Do we need to create a separate class for that?”
s2 – “If we create a class for report (generation)... but I’m not sure.”
s3 – “By the way, there is a class in charge of generating reports.”
Developers open the ReportGenerationAction class
s1 – “ReportGenerationAction.”
s2 – “No, but it (the class) is a action, it is not a DAO.”
s1 – “And it is not being considered as a class.”
s3 - -“Yeah, but look, this class is a God Class. Besides God Class and
Feature Envy, what else do we have?”

God Class and Duplicated Code seem to be smell types which require
a broader knowledge of the software system. Sometimes, developers need to
reason about multiple code elements before confirming whether the element
has a code smell or not. Thus, given the need for global reasoning, knowledge
exchange among two or more developers may help them to better identify
particular smell types. Therefore, the number of developers involved in iden-
tifying of code smells may a�ect the developers’ e�ectiveness.

Contextual Information. Finally, we noticed that collaborators needed
contextual information to make well-informed decisions about each code smell
suspect. The God Class case shows that the identification of code smells is not
limited to analyzing a set of metrics and thresholds related to the code smell
suspect. Developers had to verify whether the class fulfilled more than one
responsibility. The understanding of each responsibility may require the anal-
ysis of various classes realizing that responsibility. In other words, developers
needed to analyze a wide range of contextual information to properly identify
code smells, leading to our third finding:

Finding 3. Developers needed various types of contextual information before
making a decision about the code smell.
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After, we classified the contextual information frequently mentioned by
developers in four categories, which are presented below.

Surrounding Information. In the case of intra-class smells, developers
need to analyze the code elements that surround the class that contains a
code smell. For example, to confirm a Feature Envy, it is also necessary to
inform which methods and attributes the envy method accesses in another
class. Also, developers needed to check whether the class in which the method
seems to be interested should receive the envious method or not. Moving the
method would also have other implications for the clients of the target class.
By analyzing the video records of the identification performed by developers,
we observed that the developers often had to simulate the refactoring in order
to reflect upon advantages and disadvantages before making a decision.

Historical Information. The developers used the historical information of
a code element to understand its evolution. They often tried to understand
what happened with the code element across di�erent versions of the system
since its creation. For example, they were trying to figure out what happened
with a class that used to be a�ected by a method-level code smell but which
now is a�ected by a class-level smell. The through understanding of the code
smell history could help indicate whether the suspect was indeed a code smell or
not. For instance, developers tried to reveal through the history when the class
became a God Class, i.e., when it started to implement other functionalities:

s8 – “It became a complex class over the time since it was used for several
other things, including various other types for verification. Formerly, it
was only a class used to verification, but then it became integrated into
many other classes as quota request and debt recognition. Today, it is
also used to load a part of the pledge. Thus, it began to serve various
system clients, starting to be very complex (...)”

Developer Knowledge. Developers may use the information provided by
other developers who contributed to the implementation of each class. Thus,
they can exchange knowledge about the classes in order to confirm or refute
the existence of a code smell. In the following, we present a situation in which
the developer’s knowledge about the class was essential to avoid a false positive
involving a Duplicated Code. In this case, developers s2 and s3 did not know
much about the inspected class. However, s1 helped to implement the class.
Thus, he used his knowledge of the method to explain why it should not be
considered as a Duplicated Code.
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s2 – “This method is so long. I can’t understand what it is doing.”
s1 – “Here’s the thing... this method has two implementations. The first
one uses a rule, but the rule changed after a certain data. So, all the
entities created before the data use the first implementation of the method,
and all the entities created after the data use the new implementation of
the method. We have this problem; the code has a temporal rule. This is
crazy.”
s3 – “So it’s not considered a Duplicated Code”
s1 – “No. It’s not a Duplicated Code”

Framework Information. Developers also need information about the frame-
works used in the system. This information may help the developers to under-
stand why the code element (associated with the use of a framework or a
library) has a smell or not. If the developer knows about the used framework
(or library), he can configure the smell detection tool. Thus, he can avoid false
positives generated because the developer used a framework. For example, dur-
ing the identification of code smells, s8 and s9 noticed the importance of being
aware of the framework. In this case, s8 mentioned that identifying code smells
with support of a smell detection tool is not an easy task because there are
some code smells that require understanding the context of the code element.
He mentioned that the code element should not be considered as having a
smell because the framework forced the developer to implement in that way.

s8 – “It (the class) is doing what it supposed to do. It is sending what it
supposed to send.”
s9 – “But the reason (of the code smell) here is the framework (...)”
s8 – “This element is hard to detect correctly because of the framework.
We have to understand the context here. The reviewer needs to under-
stand the context.”

5.4
Threats to Validity

Construct validity. We highlight the following threats to construct validity
concerning the case study plan: (i) the distribution of smells per project,
(ii) the composition of the smell reference list, and (iii) the small subject
sample. We mitigate (i) by selecting classes of each project composed by
similar smell distributions. We mitigate (ii) by composing the reference list
with the support of two researchers and software managers per project. The
set of 15 code smells used in the study covered smells at di�erent levels of
granularity. Moreover, there is empirical evidence that such code smells are
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associated with varying degrees of maintenance e�ort (Section 5.1.4). Finally,
we mitigate the biases caused by (iii) by adopting a cross-over design (93).

Internal Validity. The time restriction to conduct the identification of code
smells can be considered a threat. We estimated that the developers would
have a chance to finish the identification task. This estimation was the result
of a pilot phase that we a before the study. Based on the experience of the
pilot phase and on the time constraints of the organizations, we calculated
that the time limit of 45 minutes would be su�cient to participants identify
a considerable list of code smells. It is noteworthy that the pilot also allowed
us to identify opportunities for improving the study design.

External Validity. Although it is expected from case studies to observe
“in the small,” the execution of di�erent instances of the same case studies
can be useful to strengthen the findings. The limited diversity of contexts
involved in the case studies can be considered a threat to validity. However, we
argue that the selected organizations represent typical software development
organizations in Brazil and elsewhere. We described their profile in detail,
thus others can understand the contexts related to both studies: CS1 and CS2.

Conclusion Validity. In order to mitigate threats regarding the conclusion
validity, we planned di�erent methods and instruments for collecting both
quantitative and qualitative data. Consequently, it was possible to triangu-
late evidence that emerged from the practice, researchers’ observations, and
participants’ opinion, strengthening the study findings.

5.5
Summary

In this chapter, we investigated the impact of collaboration on the
e�ectiveness of the identification of code smells. Di�erently from the previous
chapters, we ran a multi-case study involving five software projects and 13
professional developers from two software development organizations. These
developers were asked to identify code smells in their own software projects. In
order to answers our two complementary research questions, we performed
quantitative and qualitative analyses. The results suggest that developers
working collaboratively on the identification of code smells tend to be more
e�ective than developers working individually. In fact, when developers worked
collaboratively, they benefited from the shared knowledge to identify code
smells that require a broad understanding of the system.
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In addition, our results suggest that organizations should encourage col-
laboration between developers to increase the rate of success on the identifica-
tion of code smells. Moreover, the results also indicate that the collaboration
helped developers to reduce the number of mistakenly identified code smells
during the identification task. This finding indicates that collaboration can
be used to save e�ort on considering opportunities of refactoring that are not
cost-e�ective to the project. Finally, analyzing the qualitative data, we also
noticed some contextual information that the developers need before making
a decision about the code smell. Examples of contextual information include
the surrounding context of the a�ected element, the historical information of
a element, and the developer information.
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6
Final Considerations

Collaboration has been shown useful to improve the developers’ e�ective-
ness in di�erent software engineering activities, such as code review (7, 48).
However, none of these previous studies applies and investigates the use of
collaboration in the context of the identification of code smells. As discussed
in this thesis, several smell types are perceived as critical for identification and
elimination by professional developers. By discussing previous work, we spec-
ulate that collaboration has a potential to improve the identification of code
smells, due to the subjective nature and the inherent di�culties of this task.

However, as previously discussed, there is limited empirical knowledge
about the e�ectiveness of collaborative smell identification. In fact, although
collaboration may improve the developers’ e�ectiveness in identifying code
smells, we lack studies that compare the e�ectiveness of collaborators and sin-
gle developers (63). Overall, organizations have little knowledge on how to
adopt collaboration to improve the developers’ e�ectiveness in the identifica-
tion of code smells (43). Moreover, organizations know little about how to
properly conduct the identification of code smells, as well as what influen-
tial factors could increase the number of identified code smells and decrease
the number of misidentified code smells. Thus, without empirically-grounded
guidance, they are likely to not adopt collaborative smell identification.

To address the aforementioned limitations, this thesis presents several
complementary studies to understand the influence of developer’s collaboration
on smell identification e�ectiveness. At first, we conducted controlled experi-
ments to assess whether collaborators are more e�ective than single developers.
Our data analysis relies on the analysis of small-sized or legacy software sys-
tems for inspection and identification of code smells, in addition to novice and
professional developers without previous knowledge about the inspected sys-
tems. Next, we conducted two sessions of a case study aimed at reinforcing
our previous findings in real development settings. We rely on the analysis
of systems with real clients and high maintenance demands, in addition to
professional developers who have maintained the inspected systems.
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6.1
Main Findings

Table 6.1 summarizes the main findings obtained through this thesis.
The first column presents the purpose of each finding, which corresponds to
the issue which the finding addresses. The second column presents the findings
as they are described in their respective chapter of the thesis. In summary, our
results have implications both for practitioners and researchers. For instance,
organizations can now explore empirical knowledge about collaborative smell
identification in order to revisit their code review practices. In turn, researchers
could use these findings to support future research on the collaborative smell
identification, which we suggest in Section 6.3.

Table 6.1: Summary of study findings of this thesis
Purpose Study Finding

E�ectiveness

Collaborators tend to be more e�ective than single developers in the
identification of code smells, regardless of their working experience. In
fact, both average precision and recall have improved with collaborative
smell identification.
In industrial settings, we observed that collaborators are more e�ective
than single developers in the identification of code smells. This observa-
tion confirms our previous findings in controlled settings.
Collaborators achieved higher e�ectiveness in the identification of inter-
class smells, i.e., those smells that a�ect multiple classes. Indeed, collab-
orators identified a higher average number of code smells because they
almost always had to consider both developers’ knowledge on revealing
scattered, complementary symptoms associated with a single smell type.

Influential
Factors

Collaborators benefit from information exchange during smell identifica-
tion. Consequently, they are able to correctly identify several code smells
and significantly reduce the number of misidentified code smells.
We also derive empirical evidence that bringing together more than
two developers to the task of collaborative smell identification does not
necessarily improve their e�ectiveness.
Collaborators benefit from information exchange during the identifica-
tion of code smells. Consequently, they are able to correctly identify
several code smells and reduce the number of misidentified code smells
Also in industrial settings, we observed that collaborators often benefited
from knowledge exchange to identify certain smell types, which require
the understanding of multiple code elements (inter-class smells). This
observation also confirms our previous findings.

Activities

Developers perform several collaborative activities during the identifica-
tion of code smells.
However, for some activities, developers have limited support to conduct
collaborative smell identification.

Improvements
Additionally to our previous studies, we observed that developers require
several types of contextual information about a code smell suspect in
order to confirm or refute the suspect (Chapter 5.5). For instance, these
contextual information include surrounding elements and history of the
smelly structure and framework-induced smells.
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6.2
Recommendations

By relying on the findings obtained through this thesis, which we sum-
marized in Table 6.1, we conclude that collaborators are more e�ective than
single developers on the identification of code smells. Overall, we observed that
collaborators achieve higher precision than single developers, which implies a
lower number of false positives. Consequently, collaborative smell identifica-
tion may reduce the maintenance e�ort, including the number of unnecessary
changes performed by developers towards the elimination of false positives.
This observation leads us to our first recommendation.

Recommendation 1. Organizations should encourage collaborative smell
identification in their teams to better reveal critical refactoring opportu-
nities and ignore unnecessary ones.

In addition, we observe that developers usually need to reason about
multiple code elements of the software system before confirming or refuting
a code smell suspect. Thus, the knowledge exchange among collaborators is
essential to help developers in identifying particular smell types in a more
e�ective way. This observation leads us to our second recommendation.

Recommendation 2. Organizations should promote developer collaboration
for improving the identification of code smells, mostly when it requires
reasoning about multiple code elements (inter-class smells).

Finally, we noticed that developer teams often need contextual informa-
tion to confirm or refute each code smell suspect. In fact, for certain smell
types, the developers analyzed various characteristics of the code elements of
the software system. In other words, developers needed to analyze a wide range
of contextual information to properly identify code smells. However, existing
tool support for smell detection neglects these types of contextual information.
This observation leads us to our third recommendation.

Recommendation 3. Researchers could propose means to support collab-
orative smell identification by providing useful contextual information to
developers, which potentially helps confirm or refute code smell suspects.
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6.3
Future Work

This thesis resulted in multiple findings on the e�ectiveness of collab-
orative smell identification. Our study addresses limitations of the literature
about the role of collaboration specifically in the context of the identification
of code smells. Based on a combination of controlled experiments and case
studies, we were able to understand to what extent collaborators are more
e�ective than single developers. We also identified influential factors which
potentially improve the developers’ e�ectiveness on smell identification. In ad-
dition, we characterized the main collaborative activities performed alongside
smell identification. Finally, we revealed some opportunities for improving
these activities which improves the e�ectiveness of collaborative smell identi-
fication. However, this thesis does not provide a definitive body of knowledge
about collaborative smell identification. There are several extensions to our
research, which leads us to the following suggestions for future work.

Additional empirical studies in industrial settings. In fact, we conducted
two sessions of a case study with two Brazilian development organizations,
which are mostly focused on building data management software systems.
Thus, future work could explore other system domains as well as other or-
ganizations with di�erent settings and from di�erent countries. Due to the
subjective nature of code smell identification, both domain, organizational
and cultural factors could a�ect the developers’ e�ectiveness. Consequently,
there are many possibilities to replicate our case studies in the industry.

Systematic conduction of collaborative activities. We have revealed
that smell identification is usually much more complex than it is usually
assumed or advertised. Our studies, both controlled experiments and case
studies, revealed several activities that are typically performed alongside smell
identification. Specifically in the case studies with professional developers, we
identified additional collaborative activities performed by these developers but
not identified in our controlled studies with novice and professional developers.
Thus, there is a need for thoroughly evaluating the impact of each activity
in order to understand its e�ects on the developers’ e�ectiveness and other
important aspects, such as e�ciency, motivation and productivity.

Adoption of collaborative smell identification from the start. This
thesis provides some recommendations for organizations to adopt collabora-
tive smell identification in their settings, thereby aiming at improving the
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e�ectiveness of smell identification in practice. However, although we have
conducted case studies with organizations and professional developers, we did
not evaluate to what extent our recommendations actually improve the de-
velopers’ e�ectiveness in organizations which are adopting collaborative smell
identification from the start. Consequently, an evaluation of the adoption of
collaborative smell identification from the start is valuable.

Leveraging contextual information. In our studies, we have observed that
developers often need to understand the surrounding context of a code smell
suspect, in order to confirm of refute the actual occurrence of a code smell.
However, we were not concerned with algorithms and strategies to extract
and represent this information, making it explicitly available to developers.
In addition, we did not conduct empirical studies aimed at systematically
evaluating how each type of contextual information could improve developers’
e�ectiveness on smell identification. In this context, several empirical studies
could be conducted with both novice and professional developers, aimed at
verifying to what extent each type of context information actually improves
the developers’ e�ectiveness in di�erent organizations.

Tooling support for collaborative smell identification. In this thesis,
we present several findings that can base the proposal of novel tooling support
for collaborative smell identification. In particular, we concluded that there is
a need for tool features for explicitly supporting developers through the con-
firmation or refutation of code smell suspects. For instance, one could propose
a tool that visually represents contextual information to help developers in
confirming or refuting a code smell suspect. We did not find tools with such
features either in the literature or in industry.PU
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Appendix A - Consent Form

This appendix presents the informed consent form used in the studies
reported in Chapters 3, 4, and 5.
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Consent Term 

PUC-RJ, through the OPUS Software Engineering research group, thanks you for your invaluable 

contribution to the advancement of the research in Software Engineering. 

The goal of this research is to investigate the adoption of collaboration on the identification of 

code smells. For this purpose, participants are invited to perform a case study regarding the identification 

of code smells and to answer two questionnaires (before and after the activities). Two or more researchers 

will guide the participants during the task of identifying code smells. 

We highlight that the goal of this study is not to evaluate the participants; instead, we evaluate the 

adoption of the collaboration on the identification of code smell. The records made during the study is 

strictly limited to research, ensuring that: 

1. The participant's anonymity shall be preserved in all documents published in scientific forums 

(such as conferences, periodicals, journals and the like) or pedagogical (such as course 

presentation slides, and the like); 

2. The participant may have access to copies of these documents after their publication. 

3. The participant who feels constricted or uncomfortable during the completion of the experimental 

tasks may discontinue his participation. If so, researchers will discard the participant's data, in 

which will not be used for any purpose on the evaluation. 

4. The participant has the right to express, on the date of the experiment, any additional restriction 

or condition that seems to apply to the items listed above (1, 2 and 3).  

5. Researchers are allowed to use the collected data for any purpose, for instance academic or 

pedagogical purposes, as long as the usage of the data is in accordance with the conditions 

mentioned above. 

 

 
I declare that I agree with the above terms. 
 
 
 
Subject name: _________________________________    Date:___/____/_____ 
 
 
 
 
Researcher name: _________________________________ 
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B
Appendix B - Characterization Questionnaire of Chapter 3

This appendix presents the subject characterization questionnaire used
in the study reported in Chapter 3
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APPENDIX B 

Subject characterization questionnaire 

 
Subject name: ___________________________________________ 
 
Dear subject, 
 
The overall goal this questionnaire is characterized your background. The 

answers that will be obtained through this questionnaire will allow us to identify 

some key characteristics about four knowledge areas: Programming language, 

Java language, Pair Programming, and Code Smells. Moreover, we also will 

determine your working experience. All information collected in this 

questionnaire will be treated confidentially.   

 
 
General information  
 

1. Programming language  

Regarding your experience with programming language, check the item that 

most apply to your degree of experience: 

 
 I never had any contact with a programming language 

 I had contact with one or more programming language in classes or instructional 
material 

 I had contact with programming language in the context of academic system 
 I had contact with programming language for at least one year in industrial systems 

 
2. Java Programming  

Regarding your experience with Java programming, check the item that 

most apply to your degree of experience: 

 I never had contact with Java  
 I had contact with Java in classes or instructional material 
 I had contact with Java in the context of academic system 
 I had contact with Java for at least one year in industrial systems 
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3. Pair Programming 

Pair Programming (PP) consists of two developers working together on the 

same programming activity - such as writing or editing the source code. 

Regarding your experience with pair programming, check the item that most 

apply to your degree of experience: 

 
 I never had contact with pair programming 
 I had contact with pair programming in classes or instructional material 
 I had contact with pair programming in the context of academic system 
 I had contact with pair programming for at least one year in industrial systems 

 
4. Code Smells 

Code smells are program structures that often indicate software 

maintainability problems. Regarding your experience with code smells, check the 

item that most apply to your degree of experience: 

 I never had contact with code smells 
 I had contact with code smells in classes or instructional material 
 I had contact with code smells in the context of academic system 
 I had contact with code smells for at least one year in industrial systems 

 
 

   Date: ___/____/_____ 

 

 

 

 

Researcher name: _________________________________ 
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C
Appendix C - Characterization Questionnaire of Chapter 4

This appendix presents the subject characterization questionnaire used
in the study reported in Chapter 4
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APPENDIX C 

Subject characterization questionnaire 

 
Subject name: ___________________________________________ 
 
Dear subject (a), 
 
The overall goal of this questionnaire is to characterize your background. 

The answers that will be obtained through this questionnaire will allow us to 

identify some key characteristics about four knowledge areas: Programing 

language, Code Smells, Java language, and Pair Programming. Moreover, we 

also will determine your working experience. All information collected in this 

questionnaire will be treated confidentially.   

 

 

General information  

 

1. Programming language  

Regarding your experience with programming language, check the items 

that most apply to your degree of experience: 

 

 I never had any contact with a programming language 

 I had contact with one or more programming languages in classes or instructional 
material 

 I had contact with programming language in the context of academic system 

 I had contact with programming language in the context of industrial software 
systems 
 

2. Java Programming  

Regarding your experience with Java programming, check the item that 

most apply to your degree of experience: 
 I never had contact with Java  
 I had contact with Java in classes or instructional material 

 I had contact with Java in the context of academic system 
 I had contact with Java in the context of industrial software systems 
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3. Pair Programming 

Pair Programming (PP) consists of two developers working together on the 

same programming activity - such as writing or editing the source code. 

Regarding your experience with pair programming, check the items that most 

apply to your degree of experience: 

 
 I never had contact with pair programming 
 I had contact with pair programming in classes or instructional material 
 I had contact with pair programming in the context of academic system 
 I had contact with pair programming in the context of industrial software systems 

 
4. Code Smells 

Code smells are program structures that often indicate software 

maintainability problems. Regarding your experience with code smells, check the 

item that most apply to your degree of experience: 

 I never had contact with code smells 
 I had contact with code smells in classes or structional material 
 I had contact with code smells in the context of academic system 
 I had contact with code smells in the context of industrial software systems 

 
 

   Date: ___/____/_____ 

 

 

 

 

Researcher name: _________________________________ 
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Appendix D - Characterization Questionnaire of Chapter 5

This appendix presents the subject characterization questionnaire used
in the study reported in Chapter 5
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APPENDIX D 

Subject characterization questionnaire 

 

Subject name: ___________________________________________ 

 

Dear subject (a), 

 

The overall goal of this questionnaire is to characterize your working 

experience. The answers that will be obtained through this questionnaire will 

allow us to identify some key characteristics about three knowledge areas: Java 

language, Software development, and Code review. All information collected 
in this questionnaire will be treated confidentially.   

 
 
General information  
 

1. Select your current degree:  

 
 I don’t have a formal education in computer science 

 Technologist 

 BSc 

 Master 

 PhD 

 
2. Experience with software development (in years):  

________________________________________________________ 

 
3. Experience with the Java programming language (in years): 

________________________________________________________ 

 

4. How many Java softwares have you worked with peer review? 

________________________________________________________ 
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5. Which are the names of Java systems that you are or were involved 
in the current organization? 

________________________________________________________ 
 

6. Which are your current positions in the organization?  

 
 software developer 

 Project manager 

 Technical leader 

 Consultant 

 Other:  

   
 
 
 
 
 Date: ___/____/_____ 
 
 
 
 
Researcher name: _________________________________ 

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



E
Appendix E - Code Smell Report Questionnaire

This appendix presents the Code smell report questionnaire used in the
studies reported in Chapters 3, 4, and 5.
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APPENDIX E 

Code smell report questionnaire 

 
Subject name: ___________________________________________ 
 
System name: ______________________________________________ 
 
Dear subject (a), 
 
The overall goal of this questionnaire is to collect the smell types which 
you identified in the system. All information collected in this questionnaire 
will be treated confidentially.   
 
Sample answer:  
 
 

1 – Code element X has smell type Y. Because … 

2 - … 

3 - … 

… 
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Appendix F - Follow-Up Questionnaire of Chapter 3

This appendix presents the follow-up questionnaire used in the study
reported in Chapter 3
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APPENDIX F 

Follow-up questionnaire 
 

Subject name: ___________________________________________ 
 
 
 
Dear subject (a), 
 
 
 
The overall goal of this questionnaire is to acquire information about on the 

identification task of code smells. All information collected in this 

questionnaire will be treated confidentially.   

 
 
General information  
 
 

1. In your opinion, which code smell types were more difficult to 
identify? Why?  

________________________________________________________ 

 
2. Regarding the previous question, which steps you followed to 

identify it? 

________________________________________________________ 

 
3. In your opinion, which code smell types were easier to identify? 

Why? 

________________________________________________________ 
 
 

4. In your opinion, which code smell types did the collaboration help 
you to identify? 

________________________________________________________ 
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5. In your opinion, what were the benefits of working collaboratively 
(Pair programming) in the identification task of code smells? 

________________________________________________________ 

6. In your opinion, what were the disadvantages of working 
collaboratively (Pair programming) in the identification of code 
smells? 

 

 

 Date: ___/____/_____ 
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Appendix G - Follow-Up Questionnaire of Chapter 4

This appendix presents the follow-up questionnaire used in the study
reported in Chapter 4
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APPENDIX G 

Follow-up questionnaire 
 

Subject name: ___________________________________________ 
 
 
 
Dear subject (a), 
 
 
The overall goal of this questionnaire is to acquire information about on the 

identification task of code smells. All information collected in this 

questionnaire will be treated confidentially.   

 

 

General information  

 

 

1. In your opinion, which code smell types were more difficult to 

identify? Why?  

________________________________________________________ 

 

2. Regarding the previous question, which steps you followed to 

identify it? 

________________________________________________________ 

 
3. In your opinion, which code smell types were easier to identify? 

Why? 

________________________________________________________ 
 
 

4. In your opinion, which code smell types did the collaboration help 

you to identify? 

________________________________________________________ 
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5. In your opinion, what were the benefits of working collaboratively 

(in pairs and in groups) in the identification of code smells? 

________________________________________________________ 

6. In your opinion, what were the disadvantages of working 

collaboratively (in pairs and in groups) in the identification task of 

code smells? 

 

 

 

 Date: ___/____/_____ 
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Appendix H - Follow-Up Questionnaire of Chapter 5

This appendix presents the follow-up questionnaire used in the study
reported in Chapter 5
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APPENDIX H 

Follow-up questionnaire 
 

Subject name: ___________________________________________ 
 
Dear subject (a), 
 
The overall goal of this questionnaire is to acquire information about on the 

identification task of code smells. All information collected in this 

questionnaire will be treated confidentially.   

 
 
General information  
 
 

1. In your opinion, which code smell types were more difficult to 
identify? Why?  

________________________________________________________ 

 
2. Regarding the previous question, which steps you followed to 

identify it? 

________________________________________________________ 

 
3. In your opinion, which code smell types were easier to identify? 

Why? 

________________________________________________________ 
 

4. Regarding the previous question, which steps you followed to 
identify it? 

________________________________________________________ 
 

5. Which information do you believe that would help you to identify 
code smells but it was not provided? 

________________________________________________________ 
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6. In your opinion, which code smell types did the collaboration help 

you to identify? 

________________________________________________________ 
 

7. In your opinion, what were the benefits of working collaboratively 
in the identification of code smells? 

________________________________________________________ 

8. In your opinion, what were the disadvantages of working 
collaboratively in the identification task of code smells? 

________________________________________________________ 

 

 

 

 Date: ___/____/_____ 
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Appendix I - Organization Characterization

This appendix presents the organization characterization questionnaire
used in the study reported in Chapter 5
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APPENDIX I 

Organization characterization questionnaire 

 

Employee’s name: ___________________________________________ 

 

Dear (a), 

 

The overall goal of this form is to characterize the company mentioned 

below. The answers that will be obtained through this form will allow us to identify 

some key characteristics about the organization. All information collected in 

this questionnaire will be treated confidentially.   

 
 
General information  

 
1. Organization’s name:  

________________________________________________________ 

 
2. Organization’s type: 

 Private 

 Governmental 

 Other: 

 

3. How many developers work on the organization in the software 
development area? 

________________________________________________________ 

 

4. How many developers does your software team have? 

________________________________________________________ 

Developed Products and Services 
 

5. Does the organization operate in foreign markets? 

________________________________________________________ 
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6. Which are the main categories of products developed by the 

organization? (Choose one or more) 

 
 Software to support the organization 

 Off-the-shelf-software 

 Custom service 

 Other(s): 

   

7. Which are the domains of software systems developed by the 
organization (Choose one or more) 

 
 Human resources management 

 Data services 

 Banking system software 

 Commercial automation systems 

 E-business software 

 IDE 

 Database management 

 Game 

 Web pages 

 Security systems 

 Other:  

   

Methodologies and process applied in the organization 

 

8. What are the development processes adopted by organization? 

________________________________________________________ 

 

9. What are the programming languages adopted by the organization? 

________________________________________________________ 

 

10. What are the agile development methodologies adopted by the 
organization? 

________________________________________________________ 

 

11. Does the organization perform code review? 

________________________________________________________ 

 Date: ___/____/_____ 
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Appendix J - Support Material for Training

This appendix presents the support material for training used in the
studies reported in Chapters 3, 4, and 5.
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1

OPUS	GroupLES	|	DI	|PUC-Rio - Brazil

IDENTIFYING	CODE	SMELLS

Development	Process

2

Warming-up

Code	Smells

u Code	smell	is	an	implementation	structure	that	
indicates	a	deeper	problem	in	the	system

u They	have	been	used	as	indicators	of	design	
problems	in	the	system

u They	are	symptoms	of	bad	design	or	bad	
implementation	choices

31Fowler, M. et al. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, 1999

Challenges	of	the	Code	Smell	Identification

u There	are	more	than	20	catalogued	code	smells1

u Smell	identification	often	requires	subjective	
analysis	made	by	software	developers2

u Developers	might	miss	some	code	smells

4

1Fowler, M. et al. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, 1999
2Bernhart, M. and Grechening, T. On the Understanding of Programs with Continuous Code Reviews. In. Program Comprehension, 2013.

PU
C

-R
io

 - 
C

er
tif

ic
aç

ão
 D

ig
ita

l N
º 1

32
20

91
/C

A



10/17/17

2

Examples	of	Code	Smells

5

God Class

6

God	Class

u A	class	that	centralizes	the	intelligence	of	the	
system

7

God	Class	– Symptoms

u Class	is	complex	for	reuse	and	test
u It	is	hard	for	understanding
u It	is	hard	for	testing
u It	is	inefficient	for	reuse

8
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3

Message Chains

9

u Long	sequence	of	method	calls	to	get	a	data

Message	Chains

10

A.b().c() .d() .e()

u It	increases	the	dependency	between	classes	of	
a	chain

Message	Chains	– Consequences

11

A.b() .c()

Feature Envy

12
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4

Feature Envy

u A	method	accesses	the	data	of	another	object	
more	than	its	own	data

13

Feature	Envy	- Symptoms

u Method	needs	data	from	one	or	more	classes	to	
perform	an	action

u Method	almost	never	accesses	the	attributes	
and	methods	from	its	own	class

14

Feature Envy - Example

15

More	Examples

16
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5

Long Method

u Method	that	contains	too	many	lines	of	code	
and	is	overload	of	functionalities

17

Definition	and	Example

void megazord (double quantia){
//	procedure1
....
//	procedure30

}

Lazy Class

u Class that does	too	little

18

public	class	Letter	{
private	final	String	content;

public	Letter(String	content)	{
this.content =	content;

}

public	String	getContent()	{
return	content;
}

}

Definition	and	Example

u Class	that	is	commonly	changed	in	different	
ways	for	different	reasons

Divergent Change

19

Definition	and	Example

u Class	that	triggers	many	small	changes	to	many	
different	classes	when	it	is	modified

Shotgun Surgery

20

Definition	and	Example
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6

Refused Bequest

u Subclass	that	rejects	or	invalidates	the	methods	
supported	from	its	superclass

21

public	abstract	class	AbstractCollection{
public	abstract	void	add(Object	element);

}

public	class	Map entends AbstractCollection{
public	void	add(Object	element){

//
}

}

Definition	and	Example

Other	Code	Smells

u Data	Class
u Classes	that	have	only	fields	as	well	as	getting	and	setting	methods,	and	

nothing	else

u Data	Clumps
u Clusters	of	data	that	are	often	seen	together	as	class	members	or	in	method	

signatures	but	are	not	grouped	in	a	class

u Spaghetti	Code
u A	class	without	structure	that	declares	long	methods	without	parameters

u Duplicated	Code
u The	same	code	structure	appears	in	more	than	one	place	

22

OPUS	GroupLES	|	DI	|PUC-Rio - Brazil

PAIR	PROGRAMMING

What	is	Pair	Programing?

u Two	developers	working	on	the	same	task	(as	a	team)
u Both	have	the	same	target
u Both	have	different	expertise
u One	executes	the	task
u The	other	looks	for	errors,	reviews	the	implementation,	and	

proposes	error	fixes	

24
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7

Pairing	Settings

25

Driver
Navigator

Is	it	worthwhile?

u Two	developers	will	do	the	work	of	one
u Less	work	will	get	done
u Why	would	I	put	two	people	on	a	job	that	just	one	can	do?	

26

How	does	it	Help?

u Continuous	review
u Less	defects
u Defects	caught	early
u Improvement	in	the	quality	of	the	design
u Better	problem	solving
u Pair-pressure	ensure	timely	delivery
u Better	induction	of	new	team	members
u Saved	effort	on	intra-team	documentation
u Improved	satisfaction
u Better	team	building	and	communication

27

Practical	Activity

28
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8

Experiment	Activity

u General	Goal
u Identify	code	smells	in	a	system

u Procedure:

29

Practical Activity

Code	Smell
List

Identified	Code	Smells
Questions

30
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