Análise de Estruturas de Medição de Velocidade de Fluidos pelo Tempo de Trânsito

5.1 Introdução

Instrumentos de medição geralmente apresentam especificações de operação que são utilizadas para determinar as funções e os limites de variação dos parâmetros que envolvem o processo de medição. Deste modo, visando determinar especificações e procedimentos para projeto de um instrumento de medição de velocidade de vento, são estudadas neste capítulo duas estruturas de medição utilizando transdutores ultra-sônicos, determinando-se as potencialidades e limitações de cada uma com respeito à qualidade de medição e suas incertezas associadas. Para este propósito, realiza-se uma análise de incertezas das técnicas de Detecção de Limiar (TH) e Diferença de Fase (PD), considerando-se um sinal ultra-sônico influenciado pela atenuação do meio e por incertezas aditivas e multiplicativas. A partir desta análise é possível definir a melhor técnica de medição no que diz respeito à qualidade de medição do Tempo de Trânsito (ToF), assim como as especificações do instrumento de medição. Finalmente, a partir desses estudos, é desenvolvida a modelagem e são realizadas as simulações de um sistema de medição de velocidade de vento utilizando transdutores ultra-sônicos, a fim de validar os resultados obtidos através da simulação da análise de incertezas.

5.2

Estruturas para Medição de Velocidade de Fluidos

Para o propósito de medição de velocidade de vento, consideram-se duas estruturas que dependem do sentido de transmissão e recepção da onda ultra-sônica utilizados para a medição do ToF, sendo definidos como: (a) SU – sentido único, que utiliza apenas um sentido de transmissão e (b) SD – sentido duplo, que faz a transmissão nos dois sentidos [VILLANUEVA, 2007c].

5.2.1 Estrutura Sentido Único (SU)

A primeira estrutura de medição utiliza apenas um sentido de transmissão (SU) das ondas ultra-sônicas, que é o sentido positivo do fluxo do vento, como ilustrado na Figura 5.1. Nessa estrutura, o transdutor T_A emite um trem de pulsos no sentido positivo do fluxo do vento que é captado pelo transdutor T_B ; a velocidade de propagação da onda sonora através de um fluido é a soma vetorial das velocidades de propagação natural (velocidade do som, *C*) e do fluido a ser medido (velocidade do vento, 9). Para a medição de velocidade de vento por meio desta estrutura, necessita-se também realizar a medição da temperatura para compensar a influência da velocidade do som *C*.

Figura 5.1. Estruturas para medição de velocidade de vento em sentido único.

Como estudado no Capítulo IV, a medição da velocidade do vento em (m/s) pela técnica de Detecção de Limiar (TH) é dada por:

$$\vartheta = \frac{1}{\cos\theta} \left(\frac{L}{t_{ToF}} - 20,074\sqrt{T_K} \right)$$
(5.1)

em que ϑ é a velocidade do vento, *L* é a distância entre os transdutores, θ é o ângulo entre a propagação do vento e a direção da linha dos transdutores, T_K é a temperatura (em Kelvin).

A velocidade do vento em (m/s) utilizando a técnica de Diferença de Fase (PD) é dada por:

$$\vartheta = \frac{1}{\cos\theta} \left(\frac{2\pi fL}{\phi_{AB}} - 20,074\sqrt{T_K} \right)$$
(5.2)

em que a fase instantânea no transmissor e receptor é dada por $\phi_{AB} = 2\pi f_{AB}$, onde *f* é a freqüência de operação dos transdutores ultra-sônicos.

5.2.2 Estrutura Sentido Duplo (SD)

A segunda estrutura faz a transmissão nos dois sentidos (SD – sentido duplo), levando em consideração os sentidos positivo e negativo do fluxo do vento, como ilustrado na Figura 5.2.

Figura 5.2. Estruturas para medição da velocidade do vento em sentido duplo.

Considerando-se que os transdutores T_A e T_B podem transmitir e receber alternadamente, os tempos de trânsito (ToF) no caminho direto e inverso são determinados por:

$$t_{AB} = \frac{L}{\left(C + \Im\cos\theta\right)} \tag{5.3}$$

$$t_{BA} = \frac{L}{\left(C - 9\cos\theta\right)} \tag{5.4}$$

em que t_{AB} e t_{BA} são os tempos de transmissão nos sentidos positivo e negativo do fluxo do vento. A partir disto, a velocidade do vento utilizando a técnica de TH é dada por:

$$\vartheta = \frac{L}{2\cos\theta} \left(\frac{1}{t_{AB}} - \frac{1}{t_{BA}} \right)$$
(5.5)

Na técnica da PD, para uma freqüência de operação dos transdutores *f*, a fase instantânea no transmissor e receptor pode ser obtida por $\phi_{AB} = 2\pi f t_{AB}$ e $\phi_{BA} = 2\pi f t_{BA}$; a estimação da velocidade do vento é dada por:

$$\vartheta = \frac{L}{2\cos\theta} \left(\frac{1}{\phi_{AB}} - \frac{1}{\phi_{BA}} \right) = \frac{\pi f L}{\cos\theta} \left(\frac{\Delta\phi}{\phi_{AB}\phi_{BA}} \right)$$
(5.6)

em que $\Delta \phi = \phi_{BA} - \phi_{AB}$ é a diferença de fase das ondas ultra-sônicas nas direções opostas, que aparece como consequência do acréscimo ou atraso da propagação do sinal ultra-sônico causado pelo movimento do vento.

5.3

Análise de Propagação das Incertezas

Nesta seção é realizada a análise de propagação de incertezas para as técnicas de TH e PD. Estuda-se a sensibilidade destas técnicas ao ruído aditivo e a uma incerteza multiplicativa devida à atenuação do meio. Em seguida, são avaliadas e comparadas as propagações de incertezas na determinação da velocidade do vento para as estruturas SU e SD. Finalmente, determinam-se as faixas de medição da velocidade do vento para cada estrutura de medição.

5.3.1 Sensibilidade Devida ao Ruído e à Atenuação do Meio

Dando início à análise de propagação de incertezas no processo de medição da velocidade do vento, realiza-se uma análise das incertezas associadas às técnicas de Detecção de Limiar (TH) e de Diferença de Fase (PD). Para verificar as incertezas relativas a cada técnica, define-se o fator de redução de incertezas como:

$$\rho = \sqrt{\frac{u_{\phi_{TH}}^{2}}{u_{\phi_{PD}}^{2}}}$$
(5.7)

em que ϕ_{PD} e ϕ_{TH} são os valores medidos das fase instantâneas para as técnicas da PD e TH, respectivamente, com $\phi_{TH} = 2\pi f t_{AB}$.

Para realizar a análise da sensibilidade das técnicas de TH e PD, considera-se, neste trabalho, que o sinal ultra-sônico recebido é afetado por uma incerteza aditiva (ruído), u_A , e por uma incerteza multiplicativa, devida à atenuação do meio, u_M , de acordo com a seguinte equação [VILLANUEVA, 2007c]:

$$v = (v_m \pm u_M)\sin(wt + \phi) \pm u_A \tag{5.8}$$

em que v é o valor da tensão instantânea, v_m é o valor da tensão máxima esperada, w e ϕ são as freqüências e fase instantâneas (para as técnicas de TH e PD).

Definindo-se v_d como a tensão de detecção, para a técnica PD a detecção de cruzamento por zero pode ser considerada como $v_d = 0$; para a técnica TH, a tensão de detecção por limiar é definida como $v_d = v_{TH}$. Considerando t = 0, sem perda de generalidade e para ambas as técnicas, a detecção de fase pode ser descrita como:

$$\phi = \arcsin\left(\frac{v_d}{v_m}\right) \tag{5.9}$$

Pela análise de propagação de incertezas, utilizando-se o procedimento dado em (2.6), e definindo-se a tensão de detecção normalizada como $v_p = v_d/v_m$, a incerteza da fase para a técnica de Detecção de Limiar (TH) é dada por:

$$u_{\phi_{TH}}^{2} = \left(\frac{v_{p}}{\sqrt{1 - v_{p}^{2}}} \frac{u_{M}}{v_{m}}\right)^{2} + \left(\frac{1}{\sqrt{1 - v_{p}^{2}}} \frac{u_{A}}{v_{m}}\right)^{2}$$
(5.10)

A incerteza da fase para a técnica da Diferença de Fase (PD) é dada por:

$$u_{\phi_{PD}} = \frac{u_A}{v_m} \tag{5.11}$$

que depende somente do ruído aditivo.

A partir das equações (5.10) e (5.11), o fator de redução de incerteza (ρ) é:

$$\rho = \sqrt{\frac{u_{\phi_{TH}}^{2}}{u_{\phi_{PD}}^{2}}} = \sqrt{\left(\frac{v_{p}}{\sqrt{1 - v_{p}^{2}}}\frac{u_{M}}{u_{A}}\right)^{2} + \left(\frac{1}{\sqrt{1 - v_{p}^{2}}}\right)^{2}}$$
(5.12)

Ilustram-se, na Figura 5.3, as curvas de ρ para $u_M = u_A$, $u_M = 5u_A$ e $u_A = 5u_M$, com v_p variando de 0,7 a 0,95 (valores típicos de detecção). Pode-se observar que, para as diferentes variações da incerteza aditiva (u_A) e multiplicativa (u_M), o fator de redução de incerteza (ρ) tem um comportamento crescente, indicando que a incerteza da fase para a técnica de TH ($u_{\phi_{TH}}$) é maior do que a incerteza da fase para a técnica de PD ($u_{\phi_{PD}}$). Consequentemente, a técnica de TH é mais sensível ao ruído e atenuação do meio do que a técnica de PD.

Pode-se observar também que, para valores altos de v_p (nível de detecção normalizada), é maior a influência das incertezas aditivas e multiplicativas na sensibilidade de ambas as técnicas.

Como resultado desta análise pode-se concluir que:

• A técnica de PD é menos sensível do que a técnica de TH às incertezas devidas ao ruído e à atenuação do sinal pelo meio de transmissão.

 A influência da incerteza para a técnica de TH é muito maior para valores altos de detecção da tensão normalizada, v_p, e a influência da incerteza para a técnica de PD é menor para valores grandes da tensão máxima, v_m, que está relacionada à relação sinal ruído (SNR).

Figura 5.3. Curvas de ρ para $u_M = u_A$, $u_M = 5u_A$ e $u_A = 5u_M$ ($v_p = v_d / v_m$).

5.3.2

Análise da Variação da Diferença de Fase

A partir do estudo realizado na secção anterior, observou-se que a técnica da Diferença de Fase (PD) é menos sensível que a de Detecção de Limiar (TH) às incertezas devidas ao ruído e à atenuação do meio. Deste modo, com a finalidade de estudar o comportamento da fase, realiza-se nesta seção um estudo mais detalhado sobre o quanto a Diferença de Fase depende da variação da velocidade do vento e da distância de separação entre os transdutores.

Para a estrutura de medição SU (Figura 5.1), a partir da equação (5.2) pode-se ter uma representação da variação da fase instantânea em função da distância L entre os transdutores e da velocidade do vento 9:

$$\phi(L, \vartheta) = \frac{2\pi f L}{C + \vartheta \cos \theta}$$
(5.13)

A defasagem instantânea $\Delta \phi$ entre dois sinais (transmissor e receptor) é definida como a diferença entre a fase instantânea ϕ e a fase instantânea no ar parado ϕ_0 : $\Delta \phi = \phi_0 - \phi$. A partir disto, tem-se:

$$\Delta\phi(L,\vartheta) = \frac{2\pi L f}{C} - \frac{2\pi L f}{C + \vartheta\cos\theta}$$
(5.14)

$$\Delta\phi(L,\vartheta) = 2\pi L f\left(\frac{\vartheta\cos\theta}{C(C+\vartheta\cos\theta)}\right)$$
(5.15)

A equação (5.15) expressa a defasagem ou diferença de fase em função da distância *L* e da velocidade do vento 9. A partir desta última equação, apresenta-se na Figura 5.4 o comportamento da diferença de fase para uma variação da velocidade de 0 a 20 m/s, e uma variação da distância $L = n\lambda$ (n = 1, 2, 3, 4, 5), considerando-se que o ângulo entre os transdutores e a direção do vento é de $\theta = \pi/3$ e uma temperatura $T_K = 293.15$ K (20 °C). Observa-se um comportamento contínuo e linear para toda a fase, mas há um limite físico a ser considerado, já que a diferença de fase é finita com um intervalo de variação de $0 \le \Delta \phi \le 2\pi$. Deste modo, a partir da equação (5.15), pode-se determinar a velocidade máxima considerando-se uma diferença de fase máxima de 2π :

$$\vartheta_{\max} = \frac{C^2}{(fL - C)\cos\theta}$$
(5.16)

Para as especificações dadas, a velocidade máxima calculada é de $\vartheta_{max} = 36,17$ m/s. Para velocidades de vento além da velocidade máxima ϑ_{max} , o resultado obtido será a repetição do mesmo intervalo de defasagem, defasado com relação à velocidade. Este comportamento se repete a cada ciclo de defasagem, caracterizando-se, assim, um comportamento periódico de período igual à velocidade máxima medida, como apresentado na Figura 5.5.

$$\Delta\phi(L,\vartheta) = 2\pi L f\left(\frac{1}{C} - \frac{1}{C + \operatorname{rem}(\vartheta,\vartheta_{\max})\cos\theta}\right)$$
(5.17)

em que a função rem(a, b) é definida como o valor do resto da divisão de a por b.

Figura 5.4. Variação da Diferença de Fase medida em função da distância entre os transdutores $L = n\lambda$ (n = 5, 10, 25) e da velocidade do vento.

Figura 5.5. Diferença de fase medida em função da velocidade do vento, para $L = 10\lambda$.

A partir desta análise pode-se concluir que:

- A diferença de fase, como função da velocidade do vento 9, aumenta com a distância de separação entre os transdutores *L*.
- Uma vez alcançada a velocidade do vento máxima, um novo ciclo se repete. Desta maneira, pode-se dizer que o comportamento da diferença de fase é do tipo dente de

5.4

Faixa de Medição da Velocidade de Fluido para as Estruturas SU e SD

De acordo com as seções anteriores, a técnica de PD apresenta menor sensibilidade às incertezas que a técnica de TH. Entretanto, a técnica de PD apresenta uma faixa de medição limitada, portanto, escolhe-se a técnica PD para determinar a máxima faixa de medição da velocidade do vento para as estruturas de medição SU e SD.

Como estudado na seção anterior, a diferença de fase entre as ondas ultra-sônicas transmitidas e recebidas, como função da velocidade do vento, aumenta com a distância da separação entre os transdutores. Assim, a variação da temperatura, que causa uma diminuição da faixa de medição de fase, deve ser considerada no projeto.

Para as estruturas de medição no sentido único e duplo, considerando-se que a medição máxima da fase é limitada a 2π , o valor máximo de medição da velocidade do vento também é limitado [VILLANUEVA, 2007c]. Assim, define-se a máxima diferença de fase como:

$$\phi_{\max} - \phi_0 = 2\pi \tag{5.18}$$

sendo:

$$\phi_{\max} = \frac{2\pi fL}{\vartheta_{PD\max}\cos\theta + C} e \phi_0 = \frac{2\pi fL}{C}$$
(5.19)

em que: ϑ_{PDmax} é a máxima velocidade do vento para a técnica de PD e ϕ_{max} é a máxima diferença de fase.

A partir de (5.18) e (5.19), a máxima velocidade do vento para a técnica de PD é dada por:

$$\vartheta_{PD\max} = \frac{C^2}{\cos\theta(fL - C)}.$$
(5.20)

Como a velocidade do vento aumenta com a temperatura, a faixa mínima de medição da velocidade do vento é definida pela mínima temperatura do ambiente. Considerando-se T_{min} como a mínima temperatura de operação, a qual determina $C_{min} = 20,074\sqrt{T_{min}}$, e para uma faixa máxima de medição ϑ_{PDmax} , a distância entre os transdutores pode ser encontrada através de (5.20):

$$L \le \frac{C_{\min}^{2}}{f \vartheta_{PD\max} \cos \theta} + \frac{C_{\min}}{f}$$
(5.21)

Na Figura 5.6, ilustra-se a faixa de medição da velocidade do vento como função da distância de separação entre os transdutores, considerando-se a faixa da temperatura do ar entre 0 °C e 40 °C, com $\theta = \pi/3$ e f = 40 kHz. Nesta figura, pode-se observar que a faixa de medição diminui com o aumento de *L* e com o aumento da temperatura do ar [VILLANUEVA, 2007c].

A partir desta análise pode-se concluir que:

Para a técnica de PD (que apresenta menor sensibilidade ao ruído do que a técnica de TH), a faixa de medição da velocidade do vento diminui com o aumento da distância de separação entre os transdutores *L* e com o aumento da temperatura do ar *T_K*.

Figura 5.6. Faixa de medição da velocidade do vento como função da distância e temperatura, para as estruturas de medição SU e SD.

5.5

Comparação das Incertezas da Velocidade para as Estruturas SU e SD

Nesta seção, realiza-se uma comparação das incertezas da velocidade do vento para as duas estruturas de medição SU (Figura 5.1) e SD (Figura 5.2). Para isto, a partir das equações (5.1) e (5.5), as velocidades do vento para as estruturas SU e SD são dadas por:

$$\vartheta_{SU} = \frac{1}{\cos\theta} \cdot \left(\frac{L}{t_{AB}} - 20,074\sqrt{T_K}\right)$$
(5.22)

$$\Theta_{SD} = \frac{L}{2\cos\theta} \cdot \left(\frac{1}{t_{AB}} - \frac{1}{t_{BA}}\right)$$
(5.23)

Para a estrutura de medição SU, a incerteza na velocidade do vento $u_{9_{SU}}$ pode ser encontrada aplicando-se a análise de propagação de incertezas a partir de (5.22):

$$u_{\theta_{SU}}^{2} = \frac{1}{\cos^{2}\theta} \left(\frac{L}{t_{AB}^{2}}\right)^{2} u_{ToF_{AB}}^{2} + \frac{100,74}{T_{K}\cos^{2}\theta} u_{T_{K}}^{2}$$
(5.24)

em que u_{ToF} é a incerteza na medição do ToF e u_{T_K} é a incerteza na medição da temperatura T_K .

Similarmente, para a estrutura de medição SD, a incerteza na velocidade do vento $u_{9_{SD}}$ é encontrada através da propagação de incertezas a partir de (5.23):

$$u_{\theta_{SD}}^{2} = \frac{1}{4\cos^{2}\theta} \left(\frac{L}{t_{AB}^{2}}\right)^{2} u_{ToF_{AB}}^{2} + \frac{1}{4\cos^{2}\theta} \left(\frac{L}{t_{BA}^{2}}\right)^{2} u_{ToF_{BA}}^{2}$$
(5.25)

Para realizar a análise das incertezas para as estruturas de medição SU e SD, e considerando-se o caso de medição de velocidades baixas do vento, tem-se que $t_{AB} \cong t_{BA}$ e $u_{ToF_{AB}} \cong u_{ToF_{BA}}$. Substituindo-se em (5.25), obtém-se a seguinte aproximação:

$$u_{\vartheta_{SD}}^2 \cong \frac{1}{2\cos^2\theta} \left(\frac{L}{t_{AB}^2}\right)^2 u_{ToF_{AB}}^2$$
(5.26)

Substituindo (5.26) em (5.24):

$$u_{\theta_{SU}}^{2} \cong 2u_{\theta_{SD}}^{2} + \frac{100,74}{T_{K}\cos^{2}\theta}u_{T_{K}}^{2}$$
(5.27)

A partir de (5.27), pode-se concluir que, para velocidades baixas do vento, a incerteza na medição da velocidade do vento para a estrutura SD é menor do que a incerteza na medição da velocidade do vento para a estrutura SU $(u_{\vartheta_{SU}} > u_{\vartheta_{SD}})$. Caso a relação $u_{\vartheta_{SU}} > u_{\vartheta_{SD}}$ não seja satisfeita, deseja-se verificar para quais velocidades do vento a incerteza de medição da estrutura SU pode ser menor do que a da SD. Para tal, tem-se $u_{\vartheta_{SU}} \le u_{\vartheta_{SD}}$, e a partir de (5.24) e (5.25) podem ser estabelecidas as seguintes relações:

$$u_{\mathfrak{H}_{SU}} \le u_{\mathfrak{H}_{SD}} \tag{5.28}$$

$$\left(\frac{L}{t_{AB}^2}\right)^2 u_{ToF_{AB}}^2 + \frac{100,74}{T_K} u_{T_K}^2 \le \frac{1}{4} \left(\frac{L}{t_{AB}^2}\right)^2 u_{ToF_{AB}}^2 + \frac{1}{4} \left(\frac{L}{t_{BA}^2}\right)^2 u_{ToF_{BA}}^2$$
(5.29)

$$u_{T_{K}} \leq \sqrt{\frac{T_{K}}{402,96} \left(\frac{L}{t_{BA}^{2}}\right)^{2} u_{T_{O}F_{BA}}^{2} - \frac{3T_{K}}{402,96} \left(\frac{L}{t_{AB}^{2}}\right)^{2} u_{T_{O}F_{AB}}^{2}}$$
(5.30)

Para se obter uma solução real em (5.30), o radicando deve ser maior do que zero; considerando-se $u_{ToF_{AB}} \cong u_{ToF_{BA}}$, tem-se:

$$t_{AB} > \sqrt[4]{3} t_{BA} \tag{5.31}$$

A fim de satisfazer a condição (5.28), em que $u_{\vartheta_{SU}} \le u_{\vartheta_{SD}}$, conclui-se que t_{AB} deve ser o ToF medido contra o sentido do fluxo (maior tempo), e t_{BA} deve ser o ToF medido a favor do sentido do fluxo (menor tempo), cujas equações são dados por:

$$t_{AB} = \frac{L}{C - 9\cos\theta} e t_{BA} = \frac{L}{C + 9\cos\theta}$$
(5.32)

Substituindo (5.32) em (5.31), tem-se:

$$\vartheta > \frac{0,1366C}{\cos\theta} \tag{5.33}$$

Para verificação das afirmações acima, considera-se uma temperatura T_K de 298,15 K (25 °C) e $\theta = \pi/3$. Pode-se determinar, a partir de (5.33), o limite mínimo da velocidade do vento: $\vartheta_{\min} = 94,6$ m/s. Este valor atende às restrições impostas em (5.30). Portanto, levando em consideração estas restrições, pode-se concluir que existe uma velocidade do vento mínima ϑ_{\min} dada por (5.33), tal que a incerteza na medição da velocidade do vento para a estrutura SU é menor ou igual à incerteza na medição da velocidade do vento para a estrutura SD $(u_{\vartheta_{NL}} \le u_{\vartheta_{NL}})$.

Como ilustração das incertezas de medição da velocidade do vento usando as estruturas SU e SD, considera-se o caso em que $T_K = 298,15$ K, $L = 10\lambda$, f = 40 kHz, $u_{TK} = 0,5$ K e $u_{ToF_{AB}} \cong u_{ToF_{BA}}$ iguais a 1 µs e 0,5 µs. Na Figura 5.7 são apresentados os gráficos de $u_{9_{SU}}$ e $u_{9_{SD}}$ em função da velocidade do vento. Nesta figura, consideram-se velocidades com valores negativos, a fim de visualizar o comportamento das incertezas usando as estruturas SU e SD. Verifica-se que não há cruzamento numa direção.

Figura 5.7. Variação das incertezas da medição da velocidade do vento para as estruturas SU e SD em função de 9.

A partir desta análise pode-se concluir que [VILLANUEVA 2007c]:

- Para baixas velocidades do vento, a incerteza na medição da velocidade do vento para a estrutura SD é menor do que para a estrutura SU;
- Para velocidades de vento 9≥9_{min} (Eq. 5.33), a incerteza na medição da velocidade do vento para a estrutura SU é menor ou igual à incerteza na medição da velocidade do vento para a estrutura SD (u_{9_{xy}} ≤ u_{9_{xp}}); caso contrário u_{9_{xy}} > u_{9_{xp}};
- Para velocidades 9 ≤ 9_{min}, em que u_{9_{SU}} ≥ u_{9_{SD}} e t_{AB} ≤ t_{BA}, t_{AB} deve ser medido no sentido do fluxo do vento e t_{BA} deve ser medido em sentido contrário ao fluxo do vento, cujas equações são dadas por:

$$t_{AB} = \frac{L}{C + 9\cos\theta} e t_{BA} = \frac{L}{C - 9\cos\theta}$$
(5.34)

Para velocidades 9 ≥ 9_{min}, em que u_{9_{SU}} ≤ u_{9_{SD}} e t_{AB} ≥ t_{BA}, t_{AB} deve ser medido em sentido contrário ao do fluxo do vento e t_{BA} deve ser medido no sentido do fluxo do vento, cujas equações são dadas por:

$$t_{AB} = \frac{L}{C - 9\cos\theta} e t_{BA} = \frac{L}{C + 9\cos\theta}$$
(5.35)

Modelagem do Sistema de Medição de Velocidade de Fluidos utilizando Transdutores Ultra-sônicos

Como apresentado na seção anterior, na estrutura SU mede-se o tempo de trânsito de modo unidirecional e também a temperatura, de forma a compensar o efeito da velocidade do som. Na estrutura SD, por sua vez, mede-se o tempo de trânsito de modo bidirecional, compensando-se assim a influência da velocidade de som.

Apesar da vantagem de se utilizar a estrutura SD, a implementação física desta requer uma maior complexidade da instrumentação empregada. Caso a implementação seja realizada de modo contínuo, requer-se o uso de quatro transdutores, dois como transmissores e outros dois como receptores. Caso a implementação seja realizada no modo pulsado (intermitente), existe a necessidade de um sincronismo prévio entre os transdutores, para que um deles opere ora como transmissor, ora como receptor.

Considerando-se esses critérios de implementação, e para efeitos de modelagem e simulação, a configuração eleita neste trabalho para a estimação da velocidade do vento foi a estrutura SU, cuja implementação utiliza um par de sensores e a estimação da temperatura. Para este propósito, a medição do Tempo de Trânsito é realizada por meio das técnicas de Detecção de Limiar (TH) e de Diferença de Fase (PD). O modelo do sistema de medição foi simulado no *Simulink (Matlab[®]*), para verificação da consistência das análises realizadas neste capítulo.

O modelo é composto principalmente pelos seguintes blocos: transdutor transmissor/receptor, meio de transmissão e atraso. Adicionalmente, para a medição do ToF, dois blocos são desenvolvidos, os quais implementam as técnicas de Detecção de Limiar (TH) e da Diferença de Fase (PD). Finalmente, um bloco de reconstrução é utilizado para a determinação da velocidade do vento pelas técnicas de TH e PD [MORAWSKI, 1994] e [MORAWSKI, 2004], como ilustrado na Figura 5.8.

Figura 5.8. Modelagem do sistema de medição de velocidade de vento utilizando transdutores ultrasônicos.

5.6.1 Transdutores Ultra-sônicos

A modelagem dos transdutores transmissor/receptor é baseada na característica do transdutor ultra-sônico, que se comporta como um filtro passa-faixa. Portanto, modelam-se os transdutores transmissor/receptor projetando um filtro passa-faixa de segunda ordem do tipo *Butterworth*, com freqüência central de f = 40 kHz e largura de banda de 6 kHz. Este tipo de filtro é escolhido devido a suas características de resposta em freqüência plana (não possui *ripple*, ou ondulações) na banda passante e por apresentar uma resposta em fase linear na banda passante.

5.6.2 Meio de Transmissão

O meio de transmissão é modelado considerando-se um atraso de tempo devido à interação da onda ultra-sônica com o meio de transmissão, que teoricamente é equivalente ao ToF calculado a partir das especificações da configuração dos transdutores, dado por:

$$\tau = \frac{L}{\left(C + \vartheta \cos \theta\right)} \tag{5.36}$$

Considerando-se este atraso de tempo e que o sinal ultra-sônico no transdutor receptor é afetado por uma incerteza aditiva (ruído) u_A , e por uma incerteza multiplicativa devida à atenuação do meio, u_M , o sinal ultra-sônico no receptor é dado por:

$$v = (v_m \pm u_M)\sin(wt + \phi) \pm u_A \tag{5.37}$$

em que v é o valor da tensão instantânea, v_m é o valor da tensão máxima esperada, w e ϕ são as freqüências e fase instantâneas (para as técnicas de TH e PD).

5.6.3

Técnicas de Medição de Detecção de Limiar e Diferença de Fase

O bloco de Detecção de Limiar implementa esta técnica comparando o valor do sinal recebido com um valor pré-definido de limiar (TH - *Threshold*). Quando esta comparação for verdadeira, é finalizada a contagem de tempo do sinal desde a saída no transdutor transmissor até sua chegada no transdutor receptor. Este tempo medido é subtraído do atraso eletrônico (que depende da dinâmica dos transdutores), dando como resultado o valor final que é o Tempo de Trânsito.

O bloco de Diferença de Fase opera com a contagem de pulsos da defasagem entre as ondas transmitida e recebida. Para isto, realiza-se a detecção do cruzamento por zero destas ondas, gerando-se pulsos quadrados. A partir destes sinais, é realizada a operação XOR (OU exclusivo), detectando-se a diferença de fase. Neste caso de medição, dependendo da distância entre os transdutores, podem ocorrer vários ciclos do sinal transmitido até a sua detecção. Dessa forma, além da medição da diferença de fase, faz-se necessário conhecer o número de períodos de oscilação ocorridos antes. Este número de ciclos pode ser determinado pela configuração do sistema de medição, considerando a velocidade dentro da faixa de medição esperada, ou pode ser calculado pela contagem de tempo obtida por meio da técnica de Detecção de Limiar (TH).

5.6.4

Reconstrução da Velocidade do Vento

O bloco de reconstrução é uma função definida como R(.), que determina a estimação da velocidade do vento 9 a partir de medições indiretas de duas grandezas: o tempo de trânsito (ToF) e a temperatura do meio T_K . A temperatura do meio T_K é utilizada para compensar a influência da velocidade do som C na medição do ToF, que, neste modelo, pode ser medida por meio das técnicas de Detecção de Limiar (TH) e da Diferença de Fase (PD). Assim, a velocidade do vento é dada por:

$$\vartheta = R\left(t_{T_{oF}}, T_{K}\right) = \frac{1}{\cos\theta} \left(\frac{L}{t_{T_{oF}}} - 20,074\sqrt{T_{K}}\right)$$
(5.38)

5.6.5 Incertezas Associadas ao Processo de Medição

Na Figura 5.9 ilustra-se o sinal ultra-sônico no transdutor receptor, em que, para um nível de limiar pré-definido, v_{TH} , o nível de tensão instantâneo no receptor é expresso por:

$$v_{TH} = \left(v_m \pm u_M\right) \sin\left(w t_{AB}^M + \phi\right) \pm u_A \tag{5.39}$$

em que t_{AB}^{M} é o tempo medido, v_{TH} é o valor da tensão do limiar, v_{m} é o valor da tensão máxima esperada, $w \in \phi$ são as freqüências e fase instantâneas (para as técnicas de TH e PD).

Figura 5.9. Sinal ultra-sônico no transdutor receptor.

A detecção do sinal no transdutor receptor a partir de (5.39) define o tempo medido t_{AB}^{M} ; entretanto, a determinação deste tempo depende do nível de ruídos aditivo e multiplicativo presentes no meio de medição. A quantificação destas incertezas é expressa pela relação sinal-ruído, dada por:

$$SNR_A = 20 \log\left(\frac{v_m}{u_A}\right) dB$$
 (5.40)

$$SNR_{M} = 20 \log\left(\frac{v_{m}}{u_{M}}\right) dB$$
 (5.41)

em que SNR_A é a relação sinal-ruído entre o nível máximo do sinal e o ruído aditivo, e SNR_M é a relação sinal-ruído entre o nível máximo do sinal e o ruído multiplicativo.

Valores típicos da relação sinal-ruído são de $SNR_A = 40 \text{ dB}$, e $SNR_M = 60 \text{ dB}$. Considerando uma tensão máxima de $v_m = 1$ volt, tem-se: $u_A = 0,01$ volt e $u_M = 0,001$.

5.7 Estudos de Caso

Para analisar o modelo de medição de velocidade de vento, dois grupos de simulações foram realizados para: (a) determinar o tempo de atraso eletrônico devido às características dos transdutores ultra-sônicos e (b) verificação do modelo considerando as incertezas aditivas e multiplicativas. Para este propósito, o modelo foi implementado com as seguintes especificações:

- Freqüência de operação dos transdutores: f = 40 kHZ;
- Relógio da simulação: 0,02 μs (*clock*: 50 MHz)
- Faixa de temperatura do meio: $T_K \subset [0; 40] \circ C$;
- Faixa de medição de velocidade de vento: $\vartheta \subset [5; 30]$ m/s;
- Ângulo entre transdutores e a direção do vento: $\theta = \pi/3$.

5.7.1 Determinação do Tempo Eletrônico (*t^E*)

O tempo de atraso eletrônico (t^{E}) surge devido ao retardo imposto pela dinâmica dos transdutores e deve ser determinado por meio de um processo de aferição para compensar seu efeito nos cálculos do tempo de trânsito pelas técnicas de TH e PD. De modo a exemplificar o cálculo do tempo de atraso, considera-se um caso de aferição com os seguintes parâmetros: nível de detecção de limiar $v_{TH} = 0,75,$ distância entre os transdutores $L = \{6\lambda, 8\lambda, 10\lambda, 12\lambda, 14\lambda\},$ e velocidade do vento $\vartheta = \{5, 10, 15, 20, 25, 30\}$ m/s. Para o propósito de aferição, neste caso, considera-se que as incertezas multiplicativa e aditiva são zero. Para estas especificações, apresentam-se na Tabela 5.1 os valores teóricos do Tempo de Trânsito t_{TH} para os diferentes valores da distância entre os transdutores (L) e velocidade do vento (9), calculados segundo (5.36).

t_{TH} (µs)	$\vartheta = 5 \text{ m/s}$	$\vartheta = 10 \text{ m/s}$	$\vartheta = 15 \text{ m/s}$	$\vartheta = 20 \text{ m/s}$	$\vartheta = 25 \text{ m/s}$	$\vartheta = 30 \text{ m/s}$
$L = 6\lambda$	139,11	138,15	137,2	136,26	135,33	134,42
$L = 8\lambda$	185,48	184,2	182,93	181,68	180,44	179,22
$L = 10\lambda$	231,86	230,25	228,66	227,1	225,55	224,03
$L = 12\lambda$	278,23	276,3	274,39	272,51	270,66	268,83
$L = 14\lambda$	324,6	322,35	320,12	317,93	315,77	313,64

Tabela 5.1. Tempo de Trânsito teórico t_{TH} .

Em seguida, utilizando-se a técnica de Detecção de Limar (TH), realiza-se a determinação do Tempo de Trânsito t_{TH}^{M} através de simulação do modelo desenvolvido para Matlab, desconsiderando a presença de ruídos. Os valores são apresentados na Tabela 5.2.

t_{TH}^{M} (µs)	$\vartheta = 5 \text{ m/s}$	θ = 10 m/s	$\vartheta = 15 \text{ m/s}$	$\vartheta = 20 \text{ m/s}$	$\vartheta = 25 \text{ m/s}$	$\vartheta = 30 \text{ m/s}$
$L = 6\lambda$	294,32	293,36	292,42	291,48	290,54	289,64
$L = 8\lambda$	340,7	339,42	338,14	336,9	335,66	334,44
$L = 10\lambda$	387,08	385,46	383,88	382,32	380,76	379,24
$L = 12\lambda$	433,44	431,52	429,6	427,74	425,88	424,04
$L = 14\lambda$	479,82	477,56	475,34	473,14	470,98	468,86

Tabela 5.2. Tempo de Trânsito simulado t_{TH}^{M} .

A partir dos valores do Tempo de Trânsito teórico t_{TH} (Tabela 5.1) e medido t_{TH}^{M} (Tabela 5.2), é realizado o cálculo do tempo de atraso eletrônico por $t^{E} = t_{TH}^{M} - t_{TH}$, cujos valores são apresentados na Tabela 5.3, para cada valor de *L* e 9, respectivamente.

$t^{E}(\mu s)$	$\vartheta = 5 \text{ m/s}$	$\vartheta = 10 \text{ m/s}$	$\vartheta = 15 \text{ m/s}$	$\vartheta = 20 \text{ m/s}$	$\vartheta = 25 \text{ m/s}$	$\vartheta = 30 \text{ m/s}$
$L = 6\lambda$	155,21	155,21	155,22	155,22	155,21	155,22
$L = 8\lambda$	155,22	155,22	155,21	155,22	155,22	155,22
$L = 10\lambda$	155,22	155,21	155,22	155,22	155,21	155,21
$L = 12\lambda$	155,21	155,22	155,21	155,23	155,22	155,21
$L = 14\lambda$	155,22	155,21	155,22	155,21	155,21	155,22

Tabela 5.3. Tempo de atraso eletrônico t^E .

Pode-se observar, na Tabela 5.3, que o tempo de atraso eletrônico é uma propriedade intrínseca dos transdutores ultra-sônicos e que é aproximadamente constante. Portanto, a partir

deste resultado, pode-se determinar um valor médio do tempo de atraso eletrônico de $t^E = 155,2 \ \mu s$, que deve ser considerado para o cálculo do ToF para toda a faixa de variação de velocidades, temperatura e distâncias entre os transdutores.

5.7.2

Verificação do Modelo

A segunda parte dos experimentos consiste na verificação da sensibilidade do modelo aos ruídos aditivo e multiplicativo. Para este propósito, são realizadas simulações considerando as seguintes especificações:

- Amplitude máxima do sinal ultra-sônico transmitido: $v_{max} = 1$ volt;
- Atenuação do meio 10% da amplitude máxima da onda transmitida: Att = 0,1;
- Incerteza multiplicativa devido à atenuação do meio: $u_M = 0,001$ volt ($SNR_M = 60$ dB);
- Incerteza aditiva (ruído): $u_A = 0,01$ volt (*SNR*_A = 40 dB);
- Distância entre os transdutores: $L = \{6\lambda, 8\lambda, 10\lambda, 12\lambda\};$
- Variação da velocidade do vento: 9 ⊂ [5; 30] m/s;
- Freqüência de operação dos transdutores: f = 40 kHZ;
- Faixa de temperatura do meio: $T_K \subset [0; 40] \circ C$;
- Ângulo entre os transdutores e a direção do vento: $\theta = \pi/3$;
- Tempo de atraso eletrônico: $t^E = 155,2 \ \mu s.$

Na Figura 5.10, ilustra-se o procedimento de transmissão e recepção de pacotes de ondas, considerando-se uma freqüência de operação dos transdutores f = 40 kHz (período da onda de 25 µs), e a emissão de um pacote de 40 ondas no transdutor transmissor (*TX*). Portanto, tem-se um tempo de transmissão de 40/f = 1 ms. Em seguida, considera-se mais 1 ms de espera para a detecção do sinal no transdutor receptor (*RX*), consequentemente, tem-se um período de repetição das ondas *TX* e *RX* de 2 ms.

Figura 5.10. Procedimento de propagação das ondas ultra-sônicas no tempo.

Nas Figuras 5.11 e 5.12 são apresentadas as medições do ToF utilizando as técnicas de TH e PD. Deve-se observar que, para a medição do Tempo de Trânsito (ToF) utilizando a técnica de TH, o ToF medido t_{TH}^{M} deve ser compensado subtraindo-se o tempo de atraso eletrônico t^{E} . Para a medição do ToF pela técnica de PD, deve realizar-se a contagem do número de ciclos de ondas do sinal transmitido, desde a saída do transdutor transmissor até sua chegada no transdutor receptor. Assim também, para a técnica de PD, podem ser realizadas várias medições do ToF, para várias medições da diferença de fase.

Considerando-se a estrutura em sentido único SU, apresenta-se na Tabela 5.4 o procedimento para medição do Tempo de Trânsito pela técnica de TH e "*m*" medições do Tempo de Trânsito para a técnica de PD. A partir destas medições realiza-se a medição indireta da velocidade do vento para cada técnica, respectivamente.

Figura 5.11. ToF pela técnica de TH (t_{TH}).

Figura 5.12. ToF pela técnica de PD (t_{PDi}).

Tabela 5.4. Procedimento para medição do ToF pela técnica de TH e PD para a estrutura SU.

AL	goritmo:
1.	ToF medido pela técnica de TH: t_{TH}^M
2.	Compensação do tempo eletrônico de TH: $t_{TH} = t_{TH}^M - t^E$
3.	Velocidade do vento por TH: $\vartheta_{TH} = \frac{1}{\cos\theta} \left(\frac{L}{t_{TH}} - C \right)$
4.	Número de ciclos: $n = ceil(t_{TH} \times f)$
5.	ToF pela técnica de PD: $t_{PD_i} = n/f - t_{\phi_i}$; t_{ϕ_i} diferença de fase em seg.
6.	Velocidade do vento por PD: $\vartheta_{PD_i} = \frac{1}{\cos\theta} \left(\frac{L}{t_{PD_i}} - C \right)$, $i = 1, \ldots, m$

Na Tabela 5.5 apresentam-se os resultados de simulação dos valores do valor médio e desvio padrão (incerteza) da medição do tempo de trânsito (ToF) obtida por meio das técnicas de TH e PD. Observa-se que a medição do ToF é sensível para pequenos valores da incerteza aditiva ($u_A = 0,01$ volt) e da incerteza multiplicativa ($u_M = 0,001$ volt), com respeito ao valor teórico do ToF. De forma a obter uma maior exatidão, podem-se combinar as informações independentes do ToF obtidas pelas técnicas de TH e PD, resultando em um único valor com a menor incerteza possível. Deste modo, no capítulo seguinte efetuam-se simulações utilizando as principais técnicas de fusão e agregação de dados aplicados a instrumentação e medições como visto no Capítulo III.

θ (m/s)	$ToF_{teórico}\left(\mu s\right)$	ToF_{TH} (µs)	$u_{\mathrm{ToF}_{\mathrm{TH}}}(\mu \mathrm{s})$	$ToF_{PD}(\mu s)$	$u_{\mathrm{ToF}_\mathrm{PD}}\left(\mu\mathrm{s}\right)$
5	298,82	298,84	0,36	298,81	0,081
10	295,70	295,70	0,38	295,69	0,080
15	292,64	292,66	0,34	292,63	0,080
20	289,64	289,65	0,37	289,64	0,083
25	286,70	286,67	0,38	286,70	0,082
30	283,83	283,82	0,40	283,82	0,079

Tabela 5.5. Medição do ToF e suas incertezas para as técnicas de TH e PD para L = 10 cm $\vartheta \subset [5; 30]$ m/s, $SNR_A = 40$ dB e $SNR_M = 60$ dB.

5.8

Conclusão

Com o objetivo de consolidar os resultados da análise proposta, apresentam-se resumidamente na Tabela 5.6 as conclusões referentes à análise de incertezas e estruturas de medição.

Análise		Conclusões
Sensibilidade das	•	A técnica PD é menos sensível do que a técnica de TH às
técnicas de TH e		incertezas devidas ao ruído e à atenuação do sinal pelo meio de
de PD ao ruído		transmissão.
aditivo e à	•	A influência da incerteza para a técnica de TH é muito maior para
atenuação do		valores altos de detecção da tensão normalizada, v_p , e a influência
meio.		da incerteza para a técnica de PD é menor para valores grandes da
		tensão máxima, v_m , que está relacionada à relação sinal ruído
		(SNR).
Variação da	•	A diferença de fase, como função da velocidade do vento 9,
diferença de fase		aumenta com a distância de separação entre os transdutores L.
	•	Uma vez alcançada a velocidade do vento máxima, um novo
		ciclo se repete. Desta maneira, pode-se dizer que o
		comportamento da diferença de fase é do tipo dente de serra, com
		período igual à velocidade de vento máxima $\vartheta_{\text{max}},$ para valores
		determinados da distância L e da temperatura T_K .
Faixa de medição	•	Para a técnica de PD (que apresenta menor sensibilidade ao ruído
da velocidade		que a técnica de TH), a faixa de medição da velocidade do vento
		diminui com o aumento da distância de separação entre os
		transdutores L e com o aumento da temperatura do ar T_K .
Comparação das	•	Para baixas velocidades do vento a incerteza na medição da
incertezas, nas		velocidade do vento para a estrutura SD é menor do que para a
estruturas SU e		estrutura SU.
SD	•	Para velocidades de vento $\vartheta \ge \vartheta_{\min}$, a incerteza na medição da
		velocidade do vento para a estrutura SU é menor ou igual à
		incerteza na medição da velocidade do vento para a estrutura SD
		$(u_{\vartheta_{SU}} \leq u_{\vartheta_{SD}})$; caso contrário $u_{\vartheta_{SU}} > u_{\vartheta_{SD}}$.

Tabela 5.6. Resumo de conclusões da análise de incertezas e estruturas.