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A
Degree Distribution and Design Rates

This appendix addresses some elements of graph theory that are used
elsewhere in this dissertation. Many previously cited references use differing
notations, the following sections specify and explain the notation that is used
along the text, derive some important equations and highlight one distinction
that should be made when considering IRA codes as opposed to classic LDPC

codes.

Al
Some Definitions

In order to avoid ambiguities we will start with some definitions on Graph
Theory from [SBW2003].

Definition 11 (Graph) A Graph is an ordered pair G = (V,€) of a set of

vertices (or nodes) V and a set of edges E. o

Definition 12 (Edge) An edge is defined by a pair of distinct vertices from
V. An edge is said to be incident on its end vertices, and the two vertices at
opposite ends of an edge are said to be adjacent or neighbors (additionally, we
will refer to two neighbor vertices as being joined by the common edge). Two

or more edges containing one vertexr in common are also adjacent. o

Definition 13 (Path) A path is a sequence of distinct adjacent edges. Any
two vertices that belong to the same path are said to be connected. Additionally,

a path that starts and ends in the same vertex is a cycle. o

We next define a Bipartite Graph.

Definition 14 (Bipartite Graph) A bipartite graph G = (V1 UV, E) is a
graph whose vertices can be divided in two disjoint sets such that no two vertices

from the same set are adjacent. o

Richard Michael Tanner proposed using bipartite graphs to combine
simple parity checks into more complex codes [Tan1981], and for this reason

these graphs are today called Tanner graphs. In these graphs, largely used
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to represent LDPC codes, the vertices are termed nodes. A Tanner graph
is therefore a graph H = (V, U V., &) having two disjoint sets of nodes
denominated Variable-Nodes and Check-Nodes respectively. Tanner graphs are
often portrayed as two vertical columns of nodes, with the variable-nodes (to
the left) represented by circles and the check-nodes (to the right) as the squares.

To illustrate these facts, we will consider a Tanner graph with n variable-
nodes (circles) and m check-nodes (squares) such as the graph illustrated in
Figure A.1.

Definition 15 (Node Degree) The number of the edges joining a variable-

node to its adjacent check-nodes is the variable-node degree. o

In a Tanner graph, the degree of a node is the number of edges that are
incident on this node. The graph in Figure A.1 has nodes with varying degrees
on the left, while all nodes to the right are degree-4 nodes. Such graphs, with
variable degree nodes are referred to as an irreqular graph. Specifically, the
graph on Figure A.1 is a left-irregular and right-regular graph. Regular graphs,

on the other hand, are graphs that are regular on both sides.

Figure A.1: A small (rate $) Tanner graph with A = {A; = 0,Ay = 0.5, A5 =
1/3,As = 1/6} and R = {0,0,0,1}

Modern codes are randomly generated codes that can be associated
to a graph selected from an ensemble of codes with specified statistics. In
the characterization of a graph, a parameter that plays an important role
is the degree vector: a vector with integer components no greater than /.,
(belonging to the set of integers Zy,,,., = {1,...,lmna}), represented by
Diete = { Dttty - - - Dieten } Where Diegii, @ € Zy, is the degree of the i-th left-node
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(equivalently, Dyignte and Diigny; for the right-nodes). Observing the statistical
distribution of the values in D we establish the graph’s degree distribution.
The graph’s degree distribution is the statistical property that provides
the upper bounds for the error correcting capability of codes under the message
passing algorithm in a given ensemble. The degree distribution can be defined
either from the perspective of the nodes or from the perspective of the edges.
First we define it from the perspective of nodes: The degree distribution vectors
A={A, Ay, ..., Apymas} and R = {Ry, Ry, ..., Ri masz}, where A; or R; are,
respectively, the fractions of variable and check nodes with degree . Therefore,

A and R are the discrete probability masses.

Ry = Pldyy — i (A-2)

Despite the simplicity of the definition above, the studies of Density
Evolution and Belief Propagation require an observation from the perspective
of the graph’s edges instead of the nodes. Therefore, we introduce the notation
of edge-degree distributions. Every edge has a left-degree and a right-degree:
The left-degree is the degree of the variable-node in one end of the edge (the
left-end), and the right-degree is the degree of the check-node at the opposite
end. Analogously to the degree vector D described above, we can define an
edge-degree vector diey = {diefi1, - - -, diesje| } With the left-degrees of every edge
in the graph. So we define the degree distribution from the perspective of edges

i = Pldiestz = 1, (A-3)
which is the fraction of edges in € with left degree i. Alternatively, for the right
degree of an edge

pi = Pldrightz = 1]. (A-4)

Knowing the degree distribution of a graph from the perspective of the
nodes, it becomes easy to obtain the degree distribution from the perspective
of edges simply by verifying that the number of edges with left-degree i is given
by nilA;. Hence,

i\
i = = (A-5)
Zj JA;
1R;
Pi= =5 (A-6)
Z]‘ ]Rj

meaning the fraction of edges connected to a degree-i variable-node (A-5) or
check-node (A-6).
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Using the notions that A\; o iA; and that degree distributions are
probability densities (therefore, should sum to 1) we can alternatively define

A; in terms of \;.

SR v 0
Ro— P (A-8)

Zj pilJ

Substituting the expression in (A-5) for \; in (A-7), it becomes clear that
-1
>N = (Z] )\j/j) , which is, by definition, the average value of the

variable node degree q;.

ap é Z]A] (A-9)
J

Qy = Z]RJ (A—lO)
J

We now define the degree polynomials, often used to express extrinsic

information functions:

Ax) = Z Nzt
plx) = ZPz’fEi*l,

whose integral in the interval [0, 1] can replace the denominator in (A-7) and
(A-8). This provides us with a more elegant expression for the average node
degrees a; — for variable nodes — and a, —parity check nodes — taken from

the values of the edge degree distributions.

1 A(t)dt) 7 (A-11)

/(; 1
0 — ( /0 1 p(t)dt> (A-12)

A2
Design Rates — IRA and LDPC

One subtle difference between IRA and LDPC codes should be noted
when studying those codes. While LDPC codes are based on bipartite graphs
that oppose variable nodes to check nodes (see figure A.1), the graphs that
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represent IRA codes, although still bipartite, demand that a clear distinction
is made between parity nodes — i.e. the variable nodes that contain the
redundant information in a systematic code — and the information-nodes that
carry the original message. For this reason, IRA codes are graphically depicted
as three columns of nodes (see figure A.2), with the parity nodes (circles) to
the right of the check nodes.

In a classic LDPC graph, the nodes depicted at the left-hand column
comprise the totality of variable nodes, while in an IRA code we define the left-
hand column as the information nodes only. All parity nodes excepted the last
one have degree two, and in this work — following the convention in [JKM2000|
— they are not considered in the degree distributions, since their edges are
traced following a specific pattern while all others are randomly permuted. In
other words, a degree distribution where Ay = 0 has no information nodes with
degree two, but it does have m—1 parity nodes with degree two representing the
redundant bits. Other works, such as [SJR2005] do not follow this convention.

This can be easily observed when comparing the graphs in figures A.1 and
A.2. Their degree distributions are in fact different and so are the block-lengths
and code-rates, but the degree-distribution vector A is the same because A.2

is an IRA code and follows a different notation.

Figure A.2: A small (rate 2) graph of an IRA code with A = {0,0.5,1/3,1/6}
and R = {0,0,0,1}
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A.2.1
LDPC

We define the total number of edges in the graph and the design rate of

a code "
n—m
|E| = ma, =na;, r=—= .

n n

Now we can express the rate as a function of the graph’s degree distri-

butions, independent of the chosen block-length.

m
r=1——
n

E/a,

Ela (A-13)
o Jo p()dt

[YA(t)dt

A2.2
IRA

If we consider only the edges that join check-nodes to information-nodes,

we have

k
k4+m

and a different expression for the design rate as a function of the graph’s degree

E=ma, = ka;, r

distributions:

(43"

E/a, -t
= (1 + m) (A-14)
= (1 + Lp(t)dt)

[ A(t)dt

There is no theoretical reason, however, for the distinction between parity
nodes and check-nodes. In [SJR2005|, TRA codes are just defined as a special

case of LDPC codes where kAy; > m to ensure there will be at least m parity

~

nodes with degree two.
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Message Passing Algorithm

Algorithm 6 is a concise description of the message passing algorithm

using the notation defined in chapter 3.
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Algorithm 6 Message Passing Algorithm
Inputs : p®(0) and p°(1) such that pf(z) = P(C; = |y;),Vj € [1,n] L is
the upper limit on the number of iterations

(1) = (14 e/ ) 71 u0(0) = (1 + /") !

Ensure: H-x" =0
[=0;
V{Z € [Lm]a JE [1,71]}, :u?,j = M?;
repeat
l=1+1;
Horizontal Step:
for i =1tomdo
0y = HjeM 5#2;/1
{Check-nodes receive messages from the variable-nodes}
for every j € N; do
0vig = (67:)/ (0pi;H);
%7]( ) (671,]' + 1)/2§
7i(1) = (1= 07i5)/2;
{The check-nodes compute the messages and send them back to the
variable-nodes }
end for
end for
Vertical Step:
for j =1tondo
a;(0) = 17(0) - TTyenm, 70,5(0);
a;j(1) = p3(1) - TLrea, 15(1);
{ Variable-nodes receive messages from the check-nodes}
for every i € M; do
a;5(0) = (0 )/%g( );
ai5(1) = a;(1)/725(1);
Mﬁ,j(o) = ,i(0)/[aviz(
,Uli,j(l) = 0‘@]( )/ levis(
5“%,] luz,] (0) Mz,](
{ The variable-nodes compute the messages and send them back to
the check-nodes}
end for
{Compute pseudo-posterior probabilities}
4(0) = 5(0)/[5(0) + (1)
p5(1) = a;(1)/]5(0) + o5(1)];
{These wvalues will be used for hard decision and are not used for
computing messages}
% = [u!(1)];
end for
until H-x" =0or [/ > L

6) + aij(1)];
?) + aii(1)];
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C
Channel Capacity

The aim of channel coding is to provide reliable communication at rates
close to the channel capacity, as established by Shannon in 1948. In this
work, we focus on binary codes applied to Binary Phase-Shift Keying (BPSK)
modulation, therefore we want to achieve the capacity of a binary constrained
channel. In the following sections we will expose some of the theory behind the

channel capacity for the binary constrained and the unconstrained channel.

C.1
The Shannon Limit

We define the channel capacity as the maximum of the information rates
that can be transmitted through a channel.
C=maxI(X;Y)=maxH(Y)—- H(Y | X), (C-1)
p(@) p(z)
given a discrete memoryless channel, i.e. a system whose output Y is related
to the input X by a known conditional probability density p(Y | X).
In a Binary Symmetric Channel with error probability p., the channel
capacity can easily be computed by applying (C-1) directly, giving
C=max H(Y) = H(pe) = 1 — H(pe). (C-2)
p(x
Although IRA codes operate on the AWGN channel with soft-decision
decoding, this result helps us establish the error floors for transmission at rates

below channel capacity.

C.2
The Gaussian Channel

The discrete time AWGN channel, as mentioned in chapter 1, has a real
valued input X and a real valued output Y = X + 7, where Z ~ N(0, %) and
% (the bilateral noise spectral density) is a known variance. It is also implied
that the input has a power constraint which limits the communication rates.

Using equation (C-1) in this context we can see that H(Y | X) = H(Z),

since the noise is independent from the source. Also, since it operates on
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real valued variables, the capacity of the AWGN channel is a function of the
differential entropy of the input and output variables, represented by h(-). So

we write instead

h(Y) = h(Y | X) (C-3)

max

p(x):E[X?|<P
= h(Y) ~ h(2), (1)

where h(Z) =1 log(QWe%), the differential entropy of the normal distribution.
It can be proven (|[COV1991|, chapter 9) that the normal distribution is

the one that maximizes the entropy for a given variance, and the sum of two
gaussian random variables is a gaussian random variable. Thus, we maximize
the mutual information of the AWGN channel by making Y ~ N (0, % + P).

This gives us the capacity of the unconstrained AWGN channel.

C = Llog (2me(22 + P)) — Llog (2met)

(C-5)
= Llog(1 4 SNR) bits per channel use,

where SNR = ZRf—}; and R stands for the total transmitted bit rate.

The simulations presented in this work, on the other hand, use a
BPSK modulation scheme which is sure to never achieve this capacity. This
is due to the fact that the probability distribution of the detected value
p(Y)=1(p(Y | X =1)4p(Y | X = —1)) will not assume the shape of a nor-
mal distribution. The capacity of the binary constrained channel is computed
numerically using the Blahut-Arimoto algorithm [COV1991| with a discretized
approximation of the channel posteriori probabilities p(Y | X = 1) and
p(Y | X = —1) as inputs.

C21
The Channel Coding Theorem

The knowledge of the channel capacity allows us to set lower bounds
on the bit-error probabilities of communication systems using channel coding.
Using Fano’s Inequality or Rate-Distortion Theory, ([BEB1998|, chapter 3,
section 3.3; [MKY1997|, chapter 10, section 10.5) we can establish the code

rate necessary to communicate at a given bit-error rate above channel capacity

C
Rate = ———, C-6
1 — Hy(pee) (C-6)

where pye is the minimum bit-error rate after decoding.
Considering a fixed rate, (C-6) combined with (C-5) gives us Figure C.1.
Nevertheless, the simulations performed for this work did not use the uncon-

strained AWGN channel. As explained in Chapter 1, all simulations were mod-
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eled on the binary channel, so the bounds used in the individual performance
curves (as in Appendix D) were obtained from the Blahut-Arimoto algorithm
[COV1991], as seen in Figure C.2.

Lower error thresholds for transmission below Channel Capacity

10 T T T T T T T T
£,
Pley] > Hy ' <1 Lo [Leome ) >; & > 22Relt- Hylepidl g,

2R,

No = 2R, »

z 1
0, 0.570.8611.16
05 1
Ey/No [dB]

1.5 2 25 3

Figure C.1: Lower bit-error rate bounds for the unconstrained AWGN channel
channel

Lower error thresholds for transmission below Channel Capacity: BPSK modulation
1 O T T T T T T T T T

0.5 . . 3
Ey/No [dB]

Figure C.2: Lower bit-error rate bounds for the binary constrained AWGN
channel channel
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D
Complete Plots

Here we present a wider selection of performance plots from our simu-
lations. The legend in each plot identifies the various curves that aid us in

understanding the code’s performance:

Bit errs: The thick solid blue lines with star-shaped marks show the total

bit-error probabilities that were estimated from simulation.

Undet. (bit): The red dotted lines with triangular marks pointing down-
wards represent the estimated undetected bit-error probabilities. These
lines may be absent in plots showing the performance of codes where no
undetected errors occurred. More on undetected errors is explained in
Chapter 4.

Det. (bit) The purple dotted lines with triangular marks pointing upwards
discriminate the estimated detected bit-error probabilities. In most
cases (when most errors are detected by a decoder failure declaration)
this line will be superposed to the blue line, unless a high rate of

undetected errors occur.

Sh. Lim. The solid thin black line shows the Shannon limit, i.e. the theoretical
lower bound for bit-errors for the given code rate in a binary constrained

channel (see Figure C.2 in Appendix C).

Raw BPSK The red dash-dotted line shows the performance of an uncoded
transmission on the same channel. Since the x-axis give the channel
conditions in terms of f\%’), a bad code can be outperformed by uncoded

transmission, where no energy is wasted on redundant bits.

max Pbe (0.05) The cross-marks were to show the reader how reliable
are the points in the total bit-error performance curves. There is a
probability of 0.05 that the actual bit error probability is above that
mark. Those marks are more distanced from the blue solid line at points
where less than ten error events could be obtained from our simulations.
Our simulations were timed out after more than twelve hours with an

insufficient number of error-events.
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max

The value of the confidence interval o, such that PR*™ = P, + 0, is

obtained as following

§ = Q7(0.05) x \/Pbe }(fbi;_ D) (D-1)

where Q7!(+) is the inverse function to Q(z) = [ exp(”;), the complement
to the cumulative distribution function of the zero-centered unitary variance
Normal distribution. The expression under /- is the estimate to the variance
of the samples (the error events) considering N x k trials: N transmitted blocks

containing k-bits each.
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D.1
Standard PEG

Distribution 1, k = 500, n = 1500, a = 2, PEG-ST

10 T T T T T T T T T
—3— Bit errs
e —————— g+ Undet. (bit)
NG — — — —uld . Det. (bit)
> Sh. Lim. — —-
10 " == 'Raw BPSK "
+ max Pbe (0.05)
S0k -
m
107} -
-0.47—
10_8 1 1 1 1 1 1 1 1 1
-2  -15 -1 -0.5 0 0.5 1 15 2 25 3

Ey/No [dB]

Figure D.1: Code performance using degree distribution #1 with the standard
PEG algorithm

Distribution 2, k = 500, n = 1501, a = 3, PEG-ST

10 T T T T T T T T T
—3— Bit errs
_____ e ————— o Undet. (bit)
————— — — —.idh: o Det. (bit)
- Sh. Lim.
10 ° = —="Raw BPSK 7
+ max Pbe (0.05)
Z 10} .
m
107°+ \ i
v
-0.47—
10_8 Il Il I Il Il Il Il Il Il
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Ey/No [dB]

Figure D.2: Code performance using degree distribution #2 with the standard
PEG algorithm
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Distribution 3, k = 500, n = 1505, a = 4, PEG-ST

10 T T T T T T T T T
—3— Bit errs
- T g+ Undet. (bit)

CTo——— . LA Det. (bit)
- Sh. Lim. - —
10 | == 'Raw BPSK "

+ max Pbe (0.05)
& 107 -
)
107° -
-0.48—

10_8 I Il I I I I I I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Ey /Ny [dB]

Figure D.3: Code performance using degree distribution #3 with the standard
PEG algorithm

Distribution 4, k = 500, n = 997, a = 8, PEG-ST

-4

ﬁ 10 '
m —3=— Bit errs
o Undet. (bit)
AL Det. (bit)
6 Sh. Lim.
10 "
— = Raw BPSK
+ - max Pbe (0.05)
0.2—
10_8 I I I Il I I I I I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Ey/No [dB]

Figure D.4: Code performance using degree distribution #4 with the standard
PEG algorithm
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Distribution 5, k = 500, n = 1004, a = 8, PEG-ST

1072
(==
E 10 —a=— Bit errs
g7t Undet. (bit)
A Det. (bit)
i Sh. Lim.
10 '
— -+ RawBPSK
+:  max Pbe (0.05)
0.18—
10_8 1 1 1 ! 1 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
Ey/No [dB]

Figure D.5: Code performance using degree distribution #5 with the standard
PEG algorithm

Distribution 1, k = 2000, n = 6000, a = 2, PEG-ST

10 T T T T T T T T T
—3p— Bit errs
e Co g+ Undet. (bit)

..... —— . —uiA L Det, (bit).
o Sh. Lim. -~ —~
10 " == 'RawBPSK 7

+ max Pbe (0.05)
=RT 1
m
10°F .
-0.47—

10_8 I Il i I I I I I I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Ey/No [dB]

Figure D.6: Code performance using degree distribution #1 with the standard
PEG algorithm
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Distribution 2, k = 2000, n = 6003, a = 3, PEG-ST

10 T T T T T T T T T
—3— Bit errs
— e —— g+ Undet. (bit)

_____ —— . o Det, (bit).
- Sh. Lim. -~~~
10 | == 'Raw BPSK "

+ max Pbe (0.05)
& 107 -
)
107° -
-0.47—

10_8 I Il i I I I I } I I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Ey /Ny [dB]

Figure D.7: Code performance using degree distribution #2 with the standard
PEG algorithm

Distribution 3, k = 2000, n = 6001, a = 4, PEG-ST
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Figure D.8: Code performance using degree distribution #3 with the standard
PEG algorithm


DBD
PUC-Rio - Certificação Digital Nº 0711238/CB


PUC-RIo - Certificacéo Digital N° 0711238/CB

IRA Codes: Design and Evaluation 78

Distribution 4, k = 2000, n = 3984, a = 8, PEG-ST
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Figure D.9: Code performance using degree distribution #4 with the standard
PEG algorithm

Distribution 5, k = 2000, n = 4017, a = 8, PEG-ST
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Figure D.10: Code performance using degree distribution #5 with the standard
PEG algorithm
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D.2
Look-Ahead Enhanced PEG

Distribution 3, k = 500, n = 1505, a = 4, PEG-LA
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Figure D.11: Code performance using degree distribution #3 with the PEG-LA

algorithm

Distribution 4, k = 500, n = 997, a = 8, PEG-LA
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Figure D.12: Code performance using degree distribution #4 with the PEG-LA
algorithm


DBD
PUC-Rio - Certificação Digital Nº 0711238/CB


PUC-RIo - Certificacéo Digital N° 0711238/CB

IRA Codes: Design and Evaluation 80

Distribution 5, k = 500, n = 1004, a = 8, PEG-LA
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Figure D.13: Code performance using degree distribution #5 with the PEG-LA
algorithm

Distribution 3, k = 2000, n = 6001, a = 4, PEG-LA
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Figure D.14: Code performance using degree distribution #3 with the PEG-LA
algorithm
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Distribution 4, k = 2000, n = 3984, a = 8, PEG-LA
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Figure D.15: Code performance using degree distribution #4 with the PEG-LA
algorithm

Distribution 5, k = 2000, n = 4017, a = 8, PEG-LA
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Figure D.16: Code performance using degree distribution #5 with the PEG-LA
algorithm
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D.3
Reverse Look-Ahead PEG

Distribution 3, k = 500, n = 1505, a = 4, PEG-LAR
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Figure D.17: Code performance using degree distribution #3 with the PEG-
LAR algorithm

Distribution 4, k = 500, n = 997, a = 8, PEG-LAR
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Figure D.18: Code performance using degree distribution #4 with the PEG-
LAR algorithm
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Distribution 5, k = 500, n = 1004, a = 8, PEG-LAR
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Figure D.19: Code performance using degree distribution #5 with the PEG-
LAR algorithm

Distribution 3, k = 2000, n = 6001, a = 4, PEG-LAR
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Figure D.20: Code performance using degree distribution #3 with the PEG-
LAR algorithm
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Distribution 4, k = 2000, n = 3984, a = 8, PEG-LAR
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Figure D.21: Code performance using degree distribution #4 with the PEG-
LAR algorithm

Distribution 5, k = 2000, n = 4017, a = 8, PEG-LAR
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Figure D.22: Code performance using degree distribution #5 with the PEG-
LAR algorithm
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