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4
Experimental Results

In this chapter we present the motivation for our tests and comment on
the results obtained through simulation. We start by comparing the perfor-
mances of different degree distributions, based on the simulated transmission
using codes constructed through the standard PEG algorithm applied to degree
distributions obtained by [JKM2000]. Then we use the most suitable distribu-
tion to compare different construction methods. The reversed variation of the
Look-Ahead enhanced version of the PEG algorithm, presented in Chapter 3,

is compared to the other methods based on its simulated performance.

4.1
Motivation

The experimental work of this dissertation consists of testing the perfor-
mance of TRA codes constructed with different methods, all seeking to avoid
forming cycles in the graph. All codes are generated following the degree distri-
butions provided in the paper by Khandekar, Hui Jin and McEliece [JKM2000|
where IRA codes were first proposed.

We conjecture that the bit error performance of a code is related to the
number of length-four cycles in its Tanner graph and that the occurrence of
undetected errors is related to the code’s minimum distance. We first observe
some properties of different graphs by verifying through direct analysis the
number of length-4 cycles and estimating the minimum distance through
encoding of low-weight messages.

We compare five different methods that stem from the PEG algorithm
[HEA2005] in the sense that the edges are traced in order of growing left-degree,
with each variable node entering the graph only after the previous node has no
more empty sockets. Also, all methods attempt to prevent length-four cycles
by expanding trees with the current variable node as the root before placing
each edge, and then joining the root to one of the most distant ' check-nodes.

The five construction methods are:

Standard PEG (PEG-ST) is exactly what is described in algorithm 1.

Vdistant as in Definition 8
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PEG Level-one (PEG-L1) is the simplest method: the edges are traced with
the restriction of not creating length-four cycles and preventing neighbors

from being joined by more than one edge.

Non-Greedy PEG (PEG-NG) differs from Level-one by tracing edges only

to the check-nodes with the lowest degree in the current graph setting.

Look-Ahead PEG (PEG-LA) is an enhanced version of the Standard PEG
that anticipates the effect that an additional edge can bring to the node’s
local girth before deciding which check-node should be joined to the

current variable node.

Look-Ahead Reverse PEG (PEG-LAR) is proposed in this work as an
alternative to the Look-Ahead enhanced PEG. It is very similar to the
PEG-LA algorithm as can be seen in 5.

Among the methods described above, the Look-Ahead PEG method is
the most costly. In fact it creates many hypothetical graphs before adding
each additional edge, as detailed in Chapter 3. Having this added complexity
in mind, only one graph was generated with the PEG-LA and PEG-LAR
algorithms for each degree distribution and blocklength, while faster methods
made it possible to choose the best graph (the one with fewer length-four
cycles) out of five independent attempts.

One of the reasons for testing the Look-Ahead Reverse variation is the
possibility that the criterion for local girth maximization may not be the best
one, since it does not necessarily maximize the graph’s girth. The Look-Ahead
variation maximizes the largest cycle length involving each new variable node,
but not the shortest.

When expanding a tree from an unfinished graph, an edge that completes
a cycle will bring no new elements (leafs) to the tree. It can be easily verified
that a tree with shorter cycles will therefore grow more slowly than a tree with
long cycles. Since the number of nodes is finite and a tree is finished when all
the nodes in the graph are reached from the root, the tree with a large girth
shall be finished in fewer steps.

We build IRA codes using the five distributions provided by [JKM2000]
with block-length k£ = {500, 1000,2000} and test them on the Additive White
Gaussian Noise (AWGN) channel for performance evaluation. With the goal
of identifying the possible causes for our results, we also count the number
of length-four cycles in each graph, and generate codewords from low weight
input messages to have a sample of low weight codewords. The low weight

codewords give an insight into the code’s distance properties.
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We evaluate the performance of these codes through computer simula-
tion. The virtual communication system consists of an encoder, a BPSK mod-
ulator, the AWGN channel and a soft-decision decoder that implements the
message passing algorithm to obtain a valid codeword from the received block.
Block-error probabilities were estimated by repeatedly transmitting encoded
blocks of random data until ten error events occurred. An error event is de-
clared when the decoder does not deliver a codeword that is identical to the
transmitted block, and it may consist of detected or undetected block-errors.

The decoder declares a decoder failure when even after a maximum
allowed number of iterations it cannot confirm a codeword through all parity
checks. When the decoder decides towards a codeword that does not match
the transmitted block an undetected block-error is declared. Undetected errors
are more dangerous than detected errors, thus a code is considered ineffective
when undetected errors account for a large proportion of a noticeable count of
error events.

Using ten block-error events for each SNR value in the simulation
allows for very narrow confidence intervals in the approximated bit-error
probabilities. However, at very low bit-error probabilities approaching 1077,
accurate estimations become more time-consuming and fewer samples are
collected, when the simulation is timed-out, resulting in more significant
error-margins. When ten block-errors are discriminated among detected and
undetected block-errors, the individual probability estimation for each category
of block-errors become less reliable, so code design is only invalidated on the
basis of low minimum distance when undetected errors dominate the error

events.

4.2
Degree Distributions

Before comparing the graph construction methods we compare the per-
formances of IRA codes with different degree distributions, constructed with
the standard PEG algorithm.

4.2.1
Rate 1/3

We compare the three distributions from [JKM2000| for codes with
k = 1000 and rate approximately 1/3 designed under the standard PEG
algorithm (PEG-ST). Table 4.2.1 gives the regular check-node degree, the mode
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in the edge degree distribution,? the lower threshold on Fj,/N, for successful
decoding under belief propagation, and in the bottom rows are the number of

length-four cycles and minimum distance of our graphs.

Table 4.1: PEG-ST: rate ~ %

\ Distr. | #1 ] #2 \ #3 \
a 2 3 4
mode ()\z) )\6 ~ 0.64 )\13 ~ 0.49 )\27 ~ 0.45
max. degree || A\g = 0.64 | A3 ~ 0.49 | Az =~ 0.02

Rate 0.333364 | 0.333223 | 0.333218
By
(m)m [dB] || 0.190 10.25 0.371
k = 2000
# 4-cycles 0 0 2
pmin 32 34 33
k = 1000
# 4-cycles 0 1 7
i 29 31 31
k = 500
# 4-cycles 0 0 17
min 25 29 30

In repeated experiments for block length 1500 (k = 500), distributions #2
and #3 show consistently tied performance, ranking better than distribution
#1 as predicted by density evolution in [JKM2000].

These curves are displayed individually in the Appendix D with the
upper error margins. In Figure 4.1, the BER vs. f—[’(’) curves for TRA codes
with n = 1500 are shown for the three distributions listed in Table 4.2.1.

As shown in Table 4.2.1, the codes built from distributions #2 and #3
were found to have the same minimum distances, but distribution #3 is more
prone to forming cycles, due to higher node-degrees. We would assume that
distribution #3 would fare better then the others when encoding longer blocks,
but for block-lengths n ~ 1500 distributions #3 and #2 show similar results.

These results motivated the simulated transmissions using codes built
from these same distributions with n &~ 6000, which showed distribution #2
outperforming distribution #3 as seen in Figure 4.2. All distributions show
non-zero bit error probabilities at channel conditions above the threshold ob-
tained from density evolution. Despite the fact that the performance thresholds

assume infinite block-length and, consequently, the expectation that codes for

2This is not the same as the node degree distribution, refer to equations A-5 and A-7 in
Appendix A for the unique relation between the two.
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PEG-ST, multiple distributions
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Figure 4.1: Code performance using degree distributions #1, #2 and #3 with
n ~ 1500

larger blocks using these same distributions would bring better results, the un-
expected better performance of distribution #2 when compared to #3 suggests
that the PEG-ST algorithm does not fully exploit the potentials of each degree
distribution. The results suggest that these codes did not exploit the full po-
tential of these distributions, and motivate the search for better construction
methods than the standard PEG algorithm.

PEG-ST, multiple distributions
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Figure 4.2: Code performance using degree distributions #1, #2 and #3 with
n ~ 6000

Under the PEG algorithm, length-four cycles tend to involve only the
variable nodes of higher degrees, which rely on messages from many additional
nodes for decoding. Two such cycles were found in the graph built with
underlying distribution #3 and block length n ~ 6000, but their influence
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on the performance cannot be asserted from these results.

It is possible to explore the distance properties of a code by encoding low-
weight messages and plotting the Hamming weight of the resulting codewords.
Figure 77 shows one of such plots, where we can observe the minimum weight
of the code (in logarithmic scale, polar plot) and the lowest weight of the
densest 99% and 95% of these codewords, i.e. the sets containing 95% and
99% of the codewords with highest Hamming weight among those that were
generated in this test. The codewords used for this comparison were generated

from input messages of Hamming weight 1 and 2.

low-weight input codewords: k& =500, n = 1500, method PEG ST

dpin < 25

dogy, <57
dosy, < 115.05

dmaz > 976

Degree distribution §1

------ 100% = = 99% ' = = 95%

Figure 4.3: Low weight codewords, distribution #1, n = 1500

The space between the two innermost dashed circles shows the range of
the weights of the 1% least dense codewords (i.e. the ones with lowest Hamming
weights). Those are error patterns that may lead to undetected decoding errors
at high % resulting in higher error floors. LDPC codes are not as dependent on
good distance properties as older algebraic codes, successfully correcting many
error patterns containing a larger number of flipped bits than its minimum
distance, but a very low minimum distance would bring high error floors to a
code’s performance.

The graphic in Figure 4.3 does not show all the information on the
distance properties of the graph. An exact notion of the graph’s distance
properties would require knowledge of all valid codewords, and prohibitive
computation time. We can, however, use a histogram of a large random

sample of codewords to observe how their Hamming weights are distributed.
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Figures 4.4 to 4.6 show that the shape of these histograms resemble a
Normal probability density. A large number of low-weight codewords will
cause undetected errors at high f—[g, therefore it is desirable that the weight
histograms (bell-shaped) have large average (1) and low variance (o).

The histograms obtained for codes with message blocklength £ = 500
show a clear advantage of distribution #3 over the other two distributions with
rate 1/3, since it has the lowest variance and all three have very close Hamming
weight average. Distributions #4 and #5 (see histograms in Figures 4.9
and 4.10), on the other hand, require a closer look.

An examination of the interdependence of cycles and the distance prop-

erties of a graph through stopping sets can be found in [TJV2003].

a5 x 10~ PEG—-ST hamming weight histogram: k=500, distribution #1
. T T T T

T
I normalized weight histogram
3+ = = =1 =481.4599, o2 = 20764.2534 |

count
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Figure 4.4: histogram of low-weight codewords for distribution #1, £ = 1000

4 x 10~ PEG-ST hamming weight histogram: k=500, distribution #2

I normalized weight histogram
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count
N

o W — _
(o] 200 400 600 800 1000 1200 1400 1600
weight

Figure 4.5: histogram of low-weight codewords for distribution #2, £ = 1000
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x 1072 PEG—-ST hamming weight histogram: k=500, distribution #3
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= = =, =490.1675, o2 = 14087.8981 ]

count

(o] 200 400 600 800 1000 1200 1400 1600
weight

Figure 4.6: histogram of low-weight codewords for distribution #3, £ = 1000

4.2.2
Rate 1/2

The degree distributions provided for codes with rate approximately %
are briefly described in table 4.2. The two distributions include higher degrees
than the previous three, although the highest degrees are not the mode. For this
reason, length-4 cycles become inevitable for these block lengths and may cause
greater harm to the performance when using these distributions. Distributions
#4 and #5 have the same regular right-degree (a=8), the sole difference being

that distribution #4 does not have nodes with degree two.

Table 4.2: PEG-ST k—1000,rate ~ %

‘ Distr. H #4 ‘ #5 ‘
a 8 8
mode ()\1) )\12 ~ 0.33 )\7 ~ 0.22
max. degree || A\gs = 0.15 | As5 = 0.20

Rate 0.50227 0.497946
(f_fi?)mr [dB] | 0.344 0.266
k = 2000
# 4-cycles 995 2250
pmin 19 22
k = 1000
# 4-cycles 2895 3969
pin 12 18
k = 500
# 4-cycles 4203 5208
pmin 11 16

Although the decoding thresholds obtained through density evolution
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favor distribution #5 by 0.078dB, the absence of degree-two variable-nodes in
distribution #4 make the graph less likely to produce weight-two codewords
[JKM2000]. The better distance properties of distribution #4 should keep the
decoder from deciding towards neighboring codewords, thus achieving better
performance. A random search could not detect these codewords, as table 4.2
accuses a greater minimum distance in distribution #5 for all tested block

lengths.

PEG-ST, multiple distributions

-8 1 1 1 1 1 1 1 1 1 1
-2 -15 -1 -0.5 o] 0.5 1 1.5 2 2.5 3
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10

Figure 4.7: Code performance using degree distributions #4, and #5 with
n ~ 1000

Figure 4.7 shows no advantage for distribution #4 for n = 1000 when
considering bit errors alone. We can notice, however, that distribution #4 is
more protected from undetectable bit-errors comparing Figures D.1 and D.1
(see Appendix D). The block-error probability for distribution #4 (P, =
4-107%) is also lower than that of distribution #5 (P, = 9 -107°), another
consequence of undetected errors that confirms the superiority of distribution
#4 in cases where undetected errors are unacceptable.

Figures 4.9 and 4.10 show the Hamming weight histograms of the rate
1/2 codes for n = 1000. If looked closely (as in Table 4.2.2), the histograms
will show an advantage for distribution #5, where the minimum distance is
16 (compared to 11 for distribution #4). However, the code following the
distribution #4 did not suffer from undetected errors as did the code built
from distribution #5. Therefore, encoding random low weight messages is not

an effective heuristic approach for exploring a code’s distance properties.
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Figure 4.8: Code performance using degree distributions #4, and #5 with

n ~ 4000
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Table 4.3: Count of codewords with the lowest weights on the histograms in
figures 4.9 and 4.10.

| Ham. weight | 11 [ 14 [16 [20 [ 21 [22[23 [24[25[26[27[28[29 30|

Distr. #4 1110211012022 3]|2]1

Distr. #5 ojo(1jo0|1}2|3 14|33 [22|3]3

4.3
Construction Methods

The large number of length-four cycles in the graphs generated from
distributions #4 and #5 motivate the use of the Look-Ahead enhanced
version of the PEG algorithm for better results. The complexity of the Look-
Ahead enhanced version increases quadratically with the block-length, since
the algorithm expands a new local graph for each check-node that is eligible
for receiving an edge. For practical codes, this imposes a very high cost in
computation time.

It is also important to show the cost that is paid in degraded perfor-
mance when using simpler construction methods. We start with the Level-One
variation, the Non-Greedy PEG, and proceed to the look-ahead and look-

ahead-reverse enhanced variations.

4.3.1
Level One

This is the most random and intuitive of the discussed methods, and
also the poorest as can be seen in 4.11. A coded transmission using an ill
connected graph may not even outperform an uncoded transmission, where
the power used to transmit the redundant bits is used instead to transmit the
raw message symbols through a stronger signal.

Figure 4.11 shows the performance of one code obtained from this
method, the graphic shows a random behavior where the bit-error rate does
not fall smoothly with growing signal to noise ratio. The rise in errors that
can be seen at f—[g = 2.5dB may be attributed to error patterns that cannot
be corrected by message passing in a poorly connected graph. These error
patterns will eventually happen until the SNR is sufficiently high to prevent
any errors in during transmission. Therefore, we can say this code is ineffective,
and that only avoiding length-four cycles is not enough for obtaining effective

error-correcting codes.


DBD
PUC-Rio - Certificação Digital Nº 0711238/CB


PUC-RIo - Certificacéo Digital N° 0711238/CB

IRA Codes: Design and Evaluation 52

Distribution 3, k = 2000, n = 6001, a = 4, PEG-L1
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Figure 4.11: Code performance using degree distribution #3 with the PEG
Level One algorithm

4.3.2
Non-Greedy PEG

A Non-greedy version of the PEG algorithm does not attempt to maxi-
mize the graph’s girth. It only prevents the length-four cycles and double edges
(identical edges that have no effect on encoding and degrades decoding) while
still populating the right-hand side of the graph in a regular manner.

It shows an improvement when compared to the level-one approach, but
still far from desirable performance. The performance gains obtained from the
additional tree expansion steps in the standard PEG algorithm will pay off in
the block lengths used for this work.

The non-greedy version would, however, be useful in a situation where
the block length makes the PEG-ST algorithm unpractical and the decoder
is required to decode the block in a limited number of iterations (defined by
the acceptable latency for the given application). In this case, the maximum
number of iterations in the decoder tells how many depth levels the tree should
be allowed to expand before allowing a new cycle to be closed. These cycles
would not affect the decoder’s performance.

The results in Figure 4.13 show one such case where the non-greedy
algorithm yields a good code. The low-weight codewords do, however, hamper

the performance of the code built from distribution #b5.
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0 Distribution 3, k = 2000, n = 6001, a = 4, PEG-NG
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Figure 4.12: Code performance using degree distribution #3
greedy PEG algorithm

Distribution 4, k = 2000, n = 3984, a = 8, PEG-NG
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Figure 4.13: Code performance using degree distribution #4
greedy PEG algorithm

with the non-
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Distribution 5, k = 2000, n = 4017, a = 8, PEG-NG
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Figure 4.14: Code performance using degree distribution #5 with the non-
greedy PEG algorithm
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4.3.3
Look-Ahead enhanced PEG

We test the Look-Ahead enhanced versions of the PEG algorithm in its
original form (PEG-LA) and with the reversed criterium (PEG-LAR). The
results are superposed with the standard PEG in Figures 4.15 and 4.16. The
block length £ = 500 was chosen to illustrate this comparison because it is the
one where the need for improved graph construction is more critical.

The criterium for deciding which check-node makes the best candidate
for receiving a new edge is also noteworthy. Choosing the hypothesis that leads
to the deepest tree may be a misleading strategy since a graph that expands as
a tree with many depth levels is a graph with a large maximum cycle-length,
but not necessarily a large girth. In fact, graphs with short girth will expand
slowly as fewer new check nodes are reached at each subsequent depth level.
Graphs with large girth will add more new check-nodes to the tree at each step
during the tree expansion, reaching all check-nodes in fewer steps.

As an alternative strategy, the reverse criterium was adopted for a new
version which we label PEG-LAR (PEG Look-Ahead reverse). The check node
that reaches all others in fewer expansion steps is joined with the current

variable node. The results of the simulations are in Figures 4.15 and 4.16.

Distribution #3, multiple methods
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Figure 4.15: Compared performance of methods PEG-ST, LA and LAR, at
k = 500, distribution #3

It becomes clear from these two plots that, in the specific case of IRA
codes, enhanced testing does not bring advantages to the graph construction
method. This may not be the case for other classes of LDPC codes. Other
distributions or block lengths show very tight advantages for one method or

the other without a clear tendency justifying the election of a winner. The
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most appropriate of the methods that were tested is, therefore, the standard
PEG algorithm.

Distribution #4, multiple methods
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Figure 4.16: Compared performance of methods PEG-ST, LA and LAR, at
k = 500, distribution #4


DBD
PUC-Rio - Certificação Digital Nº 0711238/CB




