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IRA Codes

Irregular Repeat-Accumulate were introduced by Hui Jin, Khandekar &
McEliece [JKM2000] in 2000, providing a set of codes that use linear-time
encoding and iterative decoding while communicating reliably at rates close to
channel capacity. The authors proved these codes can achieve channel capacity
for the binary erasure channel and show remarkably good performance for the
AWGN channel. TRA codes are a variation of the LDPC codes, as they work
by adding parity bits to very large blocks, and are based on the same concepts.

LDPC codes are usually characterized by their parity check matrices —
and their duals, the generator matrices — which can be described as regular
or irregular. A regular matrix has constant row and column weight, i.e. regular
matrices have an equal number of non-zero elements in every row and an equal
number of non-zero elements in every column.

The parity-check matrices can be seen as the representation of a bipartite
graph, which we call the Tanner graph (after R. Michael Tanner). A bipartite

graph is composed of

— two disjoint sets of nodes;

— edges that join only nodes in different sets.
The two disjoint sets are labeled

variable-nodes whose values are given by the symbols that compose a

codeword;

check-nodes whose values are given by the sum of the variable-nodes at the

other ends of its incident edges;

In a Tanner Graph the edges are undirected, hence the convenience of
describing it as a matrix. In a given code’s parity-check matrix H each column
identifies the edges leaving the column’s corresponding variable-node, and the

rows describe the connections from the perspective of their corresponding
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HIRA = O

Figure 2.1: An illustration of an IRA code’s parity-check matrix, with a random

region (Hnslx)k) and a staircase-shaped region vallx)m

check-nodes. Each edge in the graph is represented by making f7; ; = 1, where
i and j are the indices to the two nodes being joined.'

The codes are said to be low-density because each check-node is joined
with relatively few variable-nodes and vice-versa. Therefore, the code’s descrip-
tion is a matrix containing relatively few non-zero elements. Such a matrix is
termed a sparse matrix and can be represented in a very simple manner by
keeping track only of the positions (and values, which are not implicit in the
non-binary case) of the few non null elements. While classic LDPC parity-
check matrices don’t necessarily follow any visible pattern, the non-systematic
part of IRA matrices (i.e. the columns that multiply the non-systematic, or
parity, bits when obtaining a block’s syndrome) is composed of ones in the
main diagonal and the subdiagonal, with zero entries elsewhere, as illustrated
by Figure 2.1. Due to this characteristic format, TRA codes are also called
Staircase Codes.

In spite of the mathematical convenience of using matrices to represent
sparse graphs, the concepts presented in this work require a graph oriented
language. Therefore, instead of column and row weights we define a node’s

degree.

Definition 2 (node degree) The degree of an information-node is this
node’s number of outgoing edges, i.e. the number of check-nodes joined with

it. The reciprocal defines the degree of a check-node. o

Although check-nodes are joined with information and parity nodes (see
Figure 2.2), in IRA codes its degree refers only to the number of neighboring
information-nodes (see more details in A).

IThroughout this document, we will say the variable-node and the check-node in opposite

ends of an edge are joined, rather than connected. This distinction will become relevant when
discussing graph construction.
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Figure 2.2: An example of a tanner graph where Az, Ay = 0. Circles (Q)
represent variable-nodes, squares ([J) are check-nodes and parity variable-
nodes are to the left of the check-nodes.

IRA codes are best visually represented by a slightly modified bipartite
Tanner Graph, as displayed in Figure 2.2. The information variable-nodes
(representing vector u with systematic bits) are represented by the circles to
the left, the check-nodes (z) are displayed as squares and the parity variable-
nodes (the vector of non-systematic bits w) are represented by the circles to
the right. The degree distribution A describes the fraction of information-
nodes of degree i € {1,2..., N}, while all check-nodes have the same degree
a. There is an equal number of parity variable-nodes and check-nodes. Each
check-node z;, j = {1,...,m} is joined with parity-nodes w;_; and w; and
the parity-nodes are set to values such that that all variable-nodes joined with
each check-node sum to 0 (mod 2), see (2-1) and (2-2).

2.1
Encoding

The constraint on the parity-nodes can be stated as

Zj = Wj + Wj—1 + Z’LL[, (2—1)
lEUj

z; = 0Vj, where j € Nand 1 <j <m. (2-2)
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[*" information-node

The “+” sign denotes mod 2 sum, wu; is the value of the
and U; denotes all information-nodes joined with z;.
For convenience we set wy = 0, and equation (2-1) with constraint (2-2)

can be rewritten as

wy = E up,

et

’IUQ:U)1+ g ug,

leUs

wj; = Wj—1 + Z u. (2—3)

lEUj

The name Irregular Repeat-Accumulate comes from the encoding process
using an irregular repetition of the information-nodes’ values, which are
accumulated in the order defined by the edges arriving at the check-nodes
to obtain each value in w.

The advantages of this recursive method over the typical encoding of
LDPC codes are not obvious at this point. A brief discussion on the systematic
encoding of classic LDPC codes will help to explain this advantage.

et H,.o = HY  HE

mxk ! mxm]v (2'4)
be the parity-check matrix of a classic LDPC code. Classic LDPC parity-
check matrices are randomly generated sparse matrices with no remarkable
distinction to be made between its systematic and non-systematic sub-matrices
H® and H®?). Let the matrix A be a linear transformation of H that contains

an identity matrix in its non-systematic part as in (2-5).

-1
Apsn = <H1(rr21)><m) H

=AY Tl

mxk

(2-5)

From the matrix A it becomes easy to find the generator matrix G, as shown
in (2-6).
Ik><k
GT=| —— (2-6)
1
Al

The encoding is then obtained by linear transformation of the message

u through the generator matrix.

Cixn = U1xkGixn

(2-7)

= [ulxk I Wlxm]
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Since A is obtained from a linear transformation of the matrix H, both
matrices define the same subspace of GF{2}". It can also be verified from
(2-5) and (2-6) that AGT = A® + A = 0, which means that A and G
define orthogonal subspaces. In other words, G is the algebraic dual space of
A |SBW2003, Ch. 2|.

Since A and H define the same subspace, H also defines a dual space to
G and is a valid parity-check matrix for the same code. While the matrix A
defines the same code as H, it does not describe a good graph for decoding
under the message passing algorithm, which will be explained in section 2.2.3
and is needed only to obtain a generator matrix for systematic encoding.

The problem with using the generator matrix G for encoding, as in (2-7),
is that the inverse of a sparse matrix — such as H — is often not sparse, i.e.
the number of non-null elements in A grows more than linearly with the
code’s block-length, which increases the number of operations per parity bit.
IRA encoding, in contrast, has a fixed number of a + 1 operations per parity

bit (where @ is the check-nodes’ degree), as seen in equation (2-3).

2.2
Decoding

The decoding of a received vector r is a conceptually simple task, which
consists of finding the most likely codeword (¢) based on the Euclidean distance
between the hypothetical transmitted vector and the received vector. In other

words, that would be
¢=argmaxP(c|y), VceC, (2-8)

which is the definition of a maximum a posteriori (MAP) decoding.

True MAP decoding could be achieved by comparing the received vector
(or block) r with all possible codewords, a computationally burdensome task,
whose complexity grows exponentially with the block-length n. It would be
more time efficient to make use of the code’s tree-like structure and solve this
problem using marginalization and factor graphs.

The function to be marginalized in this case would be the conditional

probability
P(C=cP|{cVec}y), V= (cgﬂ, o c;ﬂ) . (2-9)

It should be noted that the domain of the received vector y depends on
the channel under consideration (BEC, BSC, AWGN), and |C| = 2F.


DBD
PUC-Rio - Certificação Digital Nº 0711238/CB


PUC-RIo - Certificacéo Digital N° 0711238/CB

IRA Codes: Design and Evaluation 25

To express the marginalized function, let us introduce the notation

g(x;) = Z g(x)éZ---ZZ---Zg(ml,xQ,...,:L‘n).

~{x;} Ti—1 Tit1 Tn

We call g(x;) the summary of g(x) with respect to z;. Using this notation,
a clean expression for the marginal probabilities of the received bits can be

written as

P(Ci=xz|{CeC},y)= > P(C=x|{CeC},y). (2-10)
~{wi}
These function marginalization procedures involve a number of opera-

tions that may grow exponentially with the number of variables.

Definition 3 (O(-) notation) An algorithm has complexity O(n) when its

number of operations is upper bounded by k - n, where K is a constant. o

Thus, the brute force computation of the expression in (2-10) requires 2%
operations per bit, because there are 2* valid codewords in C. More generally,
we can state O (]X|¥), where X is the set in which the variable x is defined
and |X| is the cardinality of this set.

We next present the theory behind Gallager’s iterative decoding algo-

rithm and the algorithm per se.

2.2.1
Factor Graphs

The practical impossibility of MAP decoding suggests the use of the
code’s structure to approximate a MAP estimate for the marginal probabili-
ties of each bit in the codeword. This is called the “MPF” (Marginalize Product
of Functions) problem. In the context of decoding LDPC codes, the solution
to this problem is usually termed Belief Propagation, Message Passing Al-
gorithm or Sum-Product Algorithm. The three names are often treated as
synonyms, although we can observe they stress different properties. The Sum-
Product Algorithm is the theoretical base for decoding using Bayes’ rule and
marginalization (in contrast with the Min-Sum algorithm), the Message Pass-
ing Algorithm is what is used in practice for iterative decoding; finally, Belief
Propagation is used to evoke the use of soft decision, where the degree of cer-
tainty (a-posteriori probabilities) on a variable-node’s value is more important

than the presumed value per se.

Definition 4 (Factor Graph) The factor graph is a bipartite graph express-

ing the structure of a function’s factorization. There is one set of factor nodes
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and one set of variable-nodes. Fach factor node represents one of the factor

functions and is joined with one or more of its parameter variable. o

The Tanner Graph is therefore a factor graph where the factor nodes
are the check-nodes. When we expand a graph from one variable in a tree-like
manner we gain valuable insight on the expression to compute its marginals,

as can be seen in Example 1 next.

Example 1 — Simple function factorization

» Given a simple function f(x) = f (1, x2, x3, x4, 25) that can be factored as

f(x) = fil@r, 22) folws, wa) f3 (w1, 24, 5) fa(204) f5(5),

we can draw its factor graph and develop its expression tree to observe how the
expression for the marginals can be factored. The connections are unchanged
in both structures (see Figure 2.3), what differs is the hierarchical evidence of

the variable chosen as the root and the logical division of tiers.

2.3(a): A factor graph in its usual bipartite form 2.3(b): The same graph’s expression
tree

Figure 2.3: bipartite factor graph and expression tree

Marginalizing f(z;) from a brute force approach would demand O(]X'|*)
operations. Luckily the expression tree suggests that we factor the expression

splitting it into two sub-trees.

flan) = (Z f1(9017332)> > falws,wa) fs(wr, a, ws) falwa) folws) | (2-11)

~{z1,w2}

This reduces the the computational effort to O(|X|) + O(|X]?) =~ O(|X]?), a
very modest gain. We can further improve our performance if we factor the

expression in (2-11) once more, now choosing as root of the new sub-tree the
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variable-node with the highest degree, that is, x4. This recursive procedure

gives us the best possible factorization.

flan) = (Z f1($1a952)> X
x (Z fulad) (3 folwsw)) (32 fs(m,m,xs)fs(xs))) ,

which demands O(]X|) + O(|X?) + O(|X]?) = O(]X|?) operations. These

approximations neglect the differences in the costs of the operations involved,

(2-12)

but those costs are not expected to exceed the advantages of factorization.
<
It should be noted that, theoretically, such factorization can only be
accomplished if the factor graph is a bipartite tree or a set of trees. A factor
graph is tree-like when there is only one path connecting two nodes, i.e. there
are no cycles, which implies in many of the variable-nodes (the leafs) having
degree one. This tree-like structure is not found in most known codes and,
more surprisingly, actual tree-like codes are not desirable either. It can be
proven (lemma 2.24 in [MCT2006]) that tree-like graphs have at least 2-tn

weight-two codewords, leading to bad distance properties.

2.2.2
The Sum-Product Algorithm (SPA)

In the case of the message passing algorithm, we want to factor the
marginal probabilities of each received bit, respecting the constraints on the
codeword. The constraints, represented in the graph by the check-nodes, apply
to small groups of variable-nodes instead of the block as a whole. Therefore

the check-nodes are factors of the membership function 1 (-) defined next.

Definition 5 (Membership Function)

1, if expression is true,

1 (expression) = (2-13)

0, otherwise

Since the membership function 1 (x € C) is true only when the codeword
x has an all-zero syndrome, we can see it as a product of membership functions
for each check-node. We denote C as the set of blocks that satisfy the
constraints imposed by check-node z;, such that C = -, C% and
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m
lixel)=]]1(xec?). (2-14)
i=1
The factorization of the graph requires a notation for the subsets of nodes

specified by the neighborhoods of the nodes in the graph as explained below.
Definition 6 (Node Neighborhood) The notation N,, is used to denote

the set of variable-nodes in the neighborhood of z,,, i.e. the set of all variable-

nodes joined to the check-node z,,. The neighborhood of a vartable-node ¢, is
denoted by M,,. Also,

Mn,m - Mn \ Zm
Nm,n - Nm \ Cn

<

Bayes’ theorem allows us to write an expression for the a posteriori
probability of a codeword,
P({CeC}|C=x,y)x P(C=x]y)
P(CeCly)
_1(xeC)P(C=x]y)
P(CeCly) '

P(C=x|{Celly) =

(2-15)

where P(C€C|y) = Y canl(xX €C)P(C=x'|r) is a function of r
whose value does not depend on x. If we focus on a single variable-node, the

expression becomes

P (cj _ {c € Mient, cm} 7y)
P({C e, €} G =2y) x P(C; =2 y) (2-16)
: P (C € MNiem, c | Y)

where P <{C € Niem, C(i)} | O =z, y) can  be  factored, and

P (C €N M, CW | y) is a normalization constant. The complexity involved
in computing (2-16) can be reduced if we define a vector x(y; ;) containing
only the elements {z; | Vi € N;;}, and E{xw@j)}[' ..] a summation over all
instances of such vector.

For simplicity, we introduce the intermediate variable ~; j(x), the proba-

bility of check z; being satisfied when ¢; = x, its value is given by
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vij(x) =P ({CecCW}|C;=uy)
B Z L (Zj'e/\fi,j Ty = l’) H P(Cy = |yy), (2-17)

vt J'ENi;

where the summation takes place over all possible combinations of bits in the
positions of ¢ defined by the check z;. We reduced the number of operations
in (2-17) by only including those variable-nodes in the neighborhood of the
check-nodes that are adjacent to c;.

The computation of 7; ; () is usually referred as the horizontal step. And,
assuming independence of the parity-checks, we replace the first conditional
probability in the numerator of (2-16) by HieMj 7i.;(z). To compute equation

(2-16), we now use the expression

P(Cj=21{Ce M, CV} y) =P (C=2y) ig%j(x), (2-18)

where
-1
aj = [P(C=0]y) [] %0 +P(C=11y) [] ws(1) (2-19)
ieM, ieM,
replaces the denominator in (2-16). This part of the algorithm is called the
vertical step.
The process described above applies to all the variable-nodes in the graph.
This gives not the MAP estimation for the transmitted codeword, but the
MAP estimation of the probability of each bit given the channel a posteriori
probabilities of each bit in the received vector and the graph properties. The
output probabilities can be used as the input for another computation until a

hard decision on the estimated probability vector gives a valid codeword.

2.2.3
Message-Passing

The Sum-Product Algorithm, as detailed in Section 2.2.2, works by
using the whole received vector for the estimation of the emitted codeword.
Still, computing (2-17) and (2-18) respectively, for every variable-node is
unpractical. The Message-Passing Algorithm allows a faster computation of
the SPA by creating intermediate variables that act as the messages. At each
iteration while doing the computations described in the horizontal step, all
messages flow only once from the variable-nodes to the check-nodes, and then
back to the variable-nodes at the vertical step.

Let pj(z) = P(C; = x| y) be the a posteriori bit probability of variable-
node ¢;. We define the messages in terms of the log-likelihood ratios ¢(C;) of
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the two possible outcomes of each bit from the received vectors as given by
(2-20). This practice takes advantage of the use of a binary alphabet to reduce

the number of computations per iteration of the algorithm.

#3(0)
UC;) =In 02 (2-20)
! (1)
From (2-20), we have
et(C5)
115(0) = o1 (2-21)
1

pj(1) = AT 1 (2-22)

Using the values obtained from (2-20) as messages we can find an
expression for the log-likelihood ratio of a check-node as a function of the

log-likelihood ratios of its adjacent variable-nodes. In other words,

FAUG) GeNy =L Y G (2-23)

JEN

We start with the simpler case of finding

() + i (0)(0) _
“aec) =1 <m<o>u2<1>+m<1>uz<o>)' (2-24)

Taking (2-21) and (2-22) into (2-24) yields

1 4 UC)+UC)
_1 (1+ ef(cl))(l + ef(cz)) + (1 — ef(cl))(l — 64(02)) (2.26)
(1 + 65(01))(1 + ef(cz)) _ (1 _ 64(01))(1 — 64(02))
Then, considering the hyperbolic tangent function,
tanh(z) = % (2-27)
and replacing the following patterns found in (2-26)
1 r—1
ln<1i—z> —2tanh 'z tanhg: Zx+1 , (2-28)
we arrive at the fundamental equation of log-likelihood algebra
i e
U(Cy & Cy) = 2tanh ™ <tanh (21) tanh (22>> : (2-29)

which can be used recursively to address the log-likelihood ratio involving a

mod 2 sum of multiple variables in (2-23), that is
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14 Z C; | =2tanh™! H tanh <£(§]>> (2-30)

jeM,vt’ je‘/\/:é,n/

2
so we will conveniently denote this value ;. At each decoder iteration, the

From (2-20) and (2-28), we can verify that tanh (@> = 1;(0) — p;(1),
messages are sent from the variable-nodes (¢;, j € {1,...,n}) to their adjacent
check-nodes (z;, i € {1,...,m}), making

07 = %‘(0) - %‘(1)

(1) - T (42

JEN;

) (2-31)

This is equivalent to executing the horizontal step in equation (2-17)
for all variable-nodes at once, since 07;; = 07;/0u;. The new messages are
than obtained as in (2-17), and the process repeats itself with each variable-
node sending messages with its extrinsic information along the graph for new
computations. A compact description of the message passing algorithm can be

found in Appendix B.
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