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Abstract

Leite, Ricardo Teixeira; de Souza Mendes, Paulo Roberto (Advi-
sor). A novel and straightforward methodology to analyze
materials under constant-structure oscillatory motion
(SAOS and QL-LAOS). Rio de Janeiro, 2017. 84p. Dissertação
de Mestrado – Departamento de Engenharia Mecânica, Pontifícia
Universidade Católica do Rio de Janeiro.

In this research, we developed a novel methodology to analyze ma-
terials in the linear and quasilinear oscillatory regimes (constant structure
motions). It was shown that very few rheometric experiments are neces-
sary. Furthermore, data analysis presented on this thesis is straightforward
as raw data obtained from the rheometer requires simple data processing
before being input into the equations that evaluate the material functions.
This fact is in contrast with most large amplitude oscillatory shear analy-
sis methods since they aim to analyze structure-changing motions and this
requires complex mathematical manipulation of data. At last, both experi-
mental methodology and data analysis presented in this research are much
simpler than the previous methodologies used to analyze materials in the
QL-LAOS regime.

Keywords
Rheology; Oscillatory flow; LAOS; QL-LAOS; Viscoelasticity;

Microscopic structure.
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Resumo

Leite, Ricardo Teixeira; de Souza Mendes, Paulo Roberto.
Metodologia simples e objetiva para análise de materi-
ais nos regimes oscilatórios linear (SAOS) e quasilinear
(QL-LAOS). Rio de Janeiro, 2017. 84p. Dissertação de Mestrado
– Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

Nessa pesquisa, desenvolvemos uma nova metodologia para analizar
materiais nos regimes oscilatórios linear e quasilinear. Foi mostrado que
poucos experimentos reológicos são necessários. Além disso, a análise de da-
dos apresentada é objetiva já apenas processamentos simples são necessários
para avaliar as funções materiais. Esse fato contrasta com grande parte das
análises de escoamento oscilatório de alta amplitude, tendo em vista que es-
sas metodologias requerem manipulação matemática complexa dos dados.
Por fim, a metodologia desenvolvida também apresenta grande evolução com
relação às metodologias utilizadas anteriormente para analisar materiais no
regime QL-LAOS.

Palavras-chave
Reologia; Escoamento oscilatório; LAOS; QL-LAOS; Viscoelas-

ticidade; Estrutura microscópica.
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1
Introduction

1.1
Motivation

The macroscopic mechanical behavior of structured fluids, which is
assessed by the measurement of rheological properties, is strongly related to
their microscopic state. Macroscopic properties are related to the balance
between externally imposed stresses tearing the microstructure apart and
short-range attractive and Brownian forces building it up (41, 2, 50, 31,
46). This balance defines a microscopic state, commonly represented in the
literature of structured fluids by a scalar parameter (frequently called structure
parameter, denoted by λ) (10, 32, 8).

Depending on the nature of the material, “microscopic state” may refer
to fiber alignment, branching and stretching in polymers, emulsion droplet
distribution, colloidal microstructure or gel network (41).

Rheometrical experiments usually produce macroscopic data, such as
torque, displacement and normal force. However, a few macroscopic mate-
rial properties that may be obtained through rheological experiments provide
indirect and qualitative information about microscopic structural state (33).
Other techniques such as light scattering (SANS, SALS and SAXS) and mi-
croscopy are necessary in order to obtain direct information about microscopic
properties (22).

In shear rheology, two possible paths are usually followed. One possibility
is to impose the shear stress to the sample, and then measure the kinematic
response (shear and shear rate). The other type of experiment is the opposite,
namely to control the shear (or shear rate) and then measure the dynamic
response (shear stress). It is interesting to discuss about which approach
is more consistent with the primary goal of rheology, namely to study the
relationship between the applied load and the resulting deformation and flow
of matter. Since changes in the shear stress are responsible for changes in the
microscopic state, which in turn is directly related to the rheological properties,
it is strategic in most applications to control the stress imposed to the material.

When the externally applied load is small in comparison with the
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Chapter 1. Introduction 14

Brownian forces, then the microscopic state remains the same as observed
when the sample is in a quiescent condition (for a long time). In colloidal
science, the usual parameter that compares the externally applied stress σ
with the Brownian stress kBT/a3 is the Péclet number (22):

Pe ≡ σa3

kBT

where kB is the Boltzmann constant, T is the temperature, and a is the parti-
cle radius. Therefore, the rheological properties measured under the condition
of small Péclet number (Pe << 1, often referred to as the linear viscoelastic
regime) are independent of the applied stress. Examples of rheological measure-
ments within the linear regime include (i) steady-state measurements at very
small shear rates (and hence at very small stresses), which give the so-called
zero-shear rate viscosity plateau; and (ii) small amplitude oscillatory shear
(SAOS) measurements, which are obtained by applying a sinusoidal stress
wave of small enough amplitude to ensure an undisturbed microscopic state
during the oscillation cycles (7). The material functions obtained in SAOS
measurements are the storage and loss moduli G′, G′′ and compliances J ′, J ′′,
which do not depend on the stress amplitude.

However, in most industrial processes materials undergo high enough
stresses to cause changes in the microscopic state. Examples of such processes
include coating, spraying and injection molding (58). As a consequence,
rheological properties measured in the linear regime are not sufficient to fully
describe the material behavior, so that data pertaining to the nonlinear regime
are necessary.

The steady-state flow experiment is a rheological experiment in the non-
linear regime that provides useful information (the flow curve and normal
stresses) for industrial processes occurring at large timescales. The large am-
plitude oscillatory shear (LAOS) experiment is another rheological experiment
in the nonlinear regime that aims at analyzing the transient response of ma-
terials, which is important in industrial processes involving high stresses and
rapid changes.

Information about elasticity and characteristic times can only be ob-
tained with transient flow experiments, and oscillatory experiments are recom-
mended to obtain indirect information about the material microscopic state
(33). Oscillatory experiments at large stress amplitudes are important to assess
the macroscopic effects of changes in the microscopic state. This information
is of course inaccessible via small amplitude oscillatory experiments, because
in these experiments the microscopic state remains unchanged.
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Furthermore, when stresses are beyond the linear viscoelastic region,
breakdown rate is a function of the stress level. At higher stresses, breakdown
occurs at higher rates, while build up rates remain almost invariable. This leads
to a shift in the equilibrium structural level, which also becomes a function of
the stress [λ(σ)]. The rate of variation of the breakdown rate is also associated
with the material’s microscopic structure. Thus, complex materials with similar
structures in the linear viscoelastic regime may present distinct structures and
properties in the nonlinear regime (22).

The importance of nonlinear viscoelastic properties may be perceived
in daily situations. Many studies attempt to correlate these properties to
food characteristics such as composition and sensory attributes (52, 29, 30).
Moreover, cosmetic industry has found that there is a good correlation between
nonlinear rheological properties and sensory properties such as spreadability,
slipperiness and tackiness (37). At last, researches in the bioengineering field
have investigated injuries on biological tissues, such as human skin, under
LAOS regime (49, 11).

However, difficulties arise when analyzing LAOS data. Since in this
oscillatory flow the stress changes continuously along the cycle, then the
microscopic state may also change continuously along the cycle. For example,
a (non-thixotropic) soft solid under a LAOS test will present along the cycle
a solid-like behavior at low stresses and a liquid-like behavior at high stresses.
Consequently, when a large-amplitude sinusoidal stress wave is imposed, the
strain or strain rate wave obtained is usually not sinusoidal. Conversely, when
a large-amplitude sinusoidal strain wave is imposed, the stress wave obtained
is usually not sinusoidal.

Complex strategies are needed in order to analyze this nonlinear response.
The use of infinite Fourier series (FT-Rheology) to perform signal decomposi-
tion has been widely used (25, 16, 55, 24, 17, 18, 23, 57, 58, 60, 21), following
a common practice in many other fields of science to describe non-sinusoidal
signals. On the other hand, the stress decomposition (SD) analysis (4) uses
symmetry arguments and different basis functions to decompose the nonlinear
stress response wave into elastic σ′ and viscous σ′′ components. This decom-
position is elementary in the linear regime but non-unique in the nonlinear
regime. Chebyshev polynomials of first kind (12, 13) were also chosen as the
set of basis functions, since they generate an orthogonal space and thus isolate
the elastic and viscous effects. These analyses are essentially mathematical
descriptions of the nonlinear response waves, and have been criticized due
to the complexity of the formulation and the lack of physical interpretation
(4, 45, 42, 47, 19, 26, 4, 44, 43).
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There are approaches in the LAOS literature to analyze non-sinusoidal
response waves that attempt to incorporate the flow mechanics in a more
sensitive way. Among them, the sequence of physical processes (SPP) (45)
should be emphasized. This analysis describes the nonlinear response by
considering two material functions that may be interpreted as generalized
dynamic moduli, since they reduce to the classical storage and loss moduli
in the linear viscoelastic limit.

The deviation from sinusoidal of the output wave stems from the con-
tinuous change in microscopic state that occurs as a consequence of the con-
tinuous stress change along the cycle. At small amplitudes, these changes in
the microscopic state are negligible. On the other hand, at large amplitudes,
microscopic configuration is substantially changing during the cycle. A soft
solid under LAOS regime, for instance, presents a solid-like behavior at low
stresses and a liquid-like behavior at high stresses.

Since macroscopic and microscopic properties are intimately related to
the microscopic structure, they are also being instantaneously modified; and so
is kinematic response, which is the key information to evaluate the previously
mentioned properties. Since many variables are being simultaneously varied
during the experiment, data becomes difficult to analyze. Hence, the main
weakness of the LAOS test precedes the analysis chosen to analyze the data.

Recently, the existence of a quasilinear LAOS regime at higher frequen-
cies was indicated by predictions of a constitutive model for thixotropic elasto-
viscoplastic materials (5). In this sub-class of the LAOS regime, the output
wave is sinusoidal—just like in the SAOS regime—because at high enough
frequencies the cycle period is much shorter than the characteristic time for
changes in microscopic state, which therefore remains constant along the cycle.
The existence of the quasilinear LAOS regime was later confirmed by experi-
mental observations with a commercial hair gel (6).

Therefore we can say that SAOS and QL-LAOS compose a class of
constant-structure motions, while LAOS (at lower frequencies) is a class of
structure-changing motions (6). However, it is important to emphasize that
in the QL-LAOS regime, in contrast to what occurs in SAOS experiments
(linear regime), the microscopic state is not the one found in the quiescent
condition. Each imposed stress amplitude defines a specific microscopic state.
Even though the SAOS and QL-LAOS analyses are exactly the same (because
in both cases the microscopic state is constant and hence the output wave is
sinusoidal), the QL-LAOS material properties depend both on the frequency
ω and on the stress amplitude σa (J ′(ω, σa), J ′′(ω, σa) or G′(ω, σa), G′′(ω, σa)),
while the SAOS material properties depend on the frequency only (J ′(ω), J ′′(ω)
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or G′(ω), G′′(ω)). Therefore, the QL-LAOS experiments allow the study of
the material’s viscoelastic properties as a function of its microscopic state,
while SAOS experiments allow the same study, but for the microscopic state
corresponding to the quiescent condition (Pe << 1) only.

A methodology to analyze data under constant-structure motion has
been previously presented by de Souza Mendes et al. (6). The analysis of
intra-cycle transient data and waveshapes was vital in order to prove the
existence of the quasilinear regime and to expose the physical phenomena that
leads materials to this behavior. However, the exposed methodology involves
a complex analysis that requires a large amount of data and a high number of
rheometric experiments.

Ultimately, as will be shown in chapter 2, the most valuable information
obtained from this analysis is the model based material functions, which do not
require intra-cycle transient data and waveshape analysis (51). Therefore, it is
interesting to pursue a more efficient methodology in order to turn constant-
structure motion analysis into a more feasible rheological analysis.

1.2
Research objectives

The main objective of this research is to develop a new experimental
methodology to characterize materials in constant-structure motions. The
main goals are to lower the number of rheometric experiments and simplify
data analysis.

1.3
Outline

This thesis is divided into four more chapters besides this first one.
In Chapter 2, the concept of viscoelasticity is elucidated and constitutive
equations for different classes of materials are presented. It is shown that there
is a constitutive model behind every framework, even though they are usually
implicit. The constitutive models are revealed while we explain the oscillatory
and transient (in Appendix A) rheological experiments. Still in Chapter 2,
the detection of the QL-LAOS region is documented and LAOS experiments
are criticized. At last, an analysis framework based the conversion of model
parameters into material functions is presented.

Following, Chapter 3 outlines the methodology developed during the
research. A description of the experimental set-up and list of the materials
used in the experiments is presented, as well as the description of the necessary
data processing.
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Chapter 4 presents the results of the rheological experiments. The previ-
ously mentioned data processing operations are performed and experimental
data is used in the evaluation of the model-based material functions for a range
of stress amplitudes and frequencies.

Finally, Chapter 5 brings the main conclusions of the present research.

DBD
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2
Background and literature

2.1
Mechanical description of material behavior

Rheology is the study of flow and deformation of matter under applied
forces. It comprises every class of mechanical behaviors, ranging from Hookean
solids to Newtonian fluids.

Hooke’s law for shear stresses is given as

τ = Gγ (2-1)
From the analysis of equation 2-1, it may be observed that the stress

applied to the material causes immediate deformation. This deformation is
related to the applied stress by a proportionality constant G, called shear
elastic modulus. Furthermore, when the stress is removed, the material in-
stantaneously returns to its initial undeformed state. Materials that behave
according to the Hooke’s law are called elastic solids.

On the other hand, Newton’s law of viscosity is a constitutive equation
that obey the following equation

τ = µγ̇ (2-2)
Therefore, the applied stress causes the material to deform at a constant

rate, which is proportional to the stress magnitude and to the Newtonian
viscosity µ, which is a constant value for a given temperature. Materials that
behave according to the Newton’s law of viscosity are called viscous fluids.

It is vital to state that these are constitutive equations, not fundamental
laws of nature. Therefore, they are approximations that hold in some materials
and fail in others. Due to this constraint, these proportionality constants are
called material functions.

Mechanical analogs are used to aid the understanding of the behavior of
these materials. Hookean solids may be modeled as springs, since both comply
to the same qualitative behavior. An external force imposed to a spring causes
an immediate deformation x, proportional to the spring constant K, as shown
in equation 2-3.
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Chapter 2. Background and literature 20

F = Kx (2-3)
Meanwhile, Newtonian fluids may be modeled as dashpots. An external

force applied to a dashpot causes a deformation at constant rate ẋ, proportional
to the dashpot constant c, as shown in equation 2-4.

F = cẋ (2-4)
However, lots of materials have complex microscopic structure and

presents mechanical behaviors that are qualitatively distinct from the ones
presented above. As an example, some materials may present time dependent
properties, while others may present shear dependent properties. In a sim-
plistic point of view, this means that the material functions deviate from the
constant behavior previously mentioned (i.e. G = G(γ, t) and µ = η(γ̇, t)).

A wide class of complex materials is called viscoelastic, since they may be
approximated by a combination of elastic and viscous effects. The mechanical
behavior of these materials may also be represented by mechanical analogs
that combine elastic (spring) and viscous (dashpot) effects. The most famous
frameworks are the Kelvin-Voigt and Maxwell models, presented on figures
2.1(a) and 2.1(b) respectively.
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Figure 2.1: Mechanical analogs for the Kelvin-Voigt (a) and Maxwell (b)
mechanical models

The Kelvin-Voigt model constitutive equation is given by

σ = GKV γ + ηKV γ̇ (2-5)
Meanwhile, the Maxwell model constitutive equation is given by

σ + ηMW

GMW

σ̇ = ηMW γ̇ (2-6)
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It is vital to state that the mechanical model employed in analysis
frameworks is usually not explicit, nor are the consequences of its usage
discussed. Thompson et al. (51) brought that discussion into light, proving that
the Maxwell and the Kelvin-Voigt models are behind most oscillatory analysis
in the literature. This discussion will be reproduced in sections 2.2.1.1, 2.2.1.2,
2.3.1.1 and 2.3.1.2.

Furthermore, the authors showed that these two models are not fit to
describe some classes of mechanical behavior. Another mechanical model was
proposed, along with a different analysis. These concepts will be addressed in
section 2.4.

2.2
Viscoelasticity

Viscoelastic materials are a class that comprises many materials, such as
disks on human spine, biological tissues (i.e. skin), wood, concrete, polymers,
among others. Their complex behavior usually comes from the fact that they
possess complex microscopic structure and present a combination of elastic
and viscous effects. Due to this combination, it is very interesting to study
viscoelastic materials out of the steady-state regime, where this clash between
elastic and viscous effects may be observed and indirect information about the
material’s microscopic structure may be obtained. There are two major classes
of rheometric experiments usually performed on viscoelastic materials in order
to analyze this combination of effects: dynamic and transient.

Dynamic experiments are performed either by imposing a sinusoidal
deformation wave and measuring the corresponding mechanical behavior or
by imposing a sinusoidal stress wave and measuring the material kinematic
response. Even though it has already been addressed that imposing stress to
the material is a more meaningful analysis from the physical phenomenon point
of view, both approaches will be detailed. The former will be referred to as
SAOStrain at small amplitudes and LAOStrain at large amplitudes, while the
latter will be referred to as SAOStress at small amplitudes and LAOStress
at large amplitudes. The definition of small and large amplitudes was already
mentioned in section 1.1 but will be further described in future sections.

On the other hand, transient experiments involve applying a constant
stress or deformation to the material and following its response before reaching
the steady-state. Transient experiments may be branched into two types: creep
and stress-relaxation. The former consists in applying a constant load to the
material and noting the change of deformation with time. The latter measures
the force required to maintain the deformation at a constant value. This value
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tends to fade with time, due to microscopic and molecular rearrangement.
Rotation and relative flow between molecules, which governs macroscopic
deformation, is time dependent since the breakage of the interparticle links
is not instantaneous.

As it will be further addressed in sections A.1 and A.2, the characteristic
times of these processes are called retardation and relaxation times, respec-
tively. These time constants are very useful in rheological analysis since they
are intimately linked to the microscopic structure of the material, thus provid-
ing valuable information about it.

2.2.1
Linear viscoelasticity

Currently, the most accepted definition of linear viscoelasticity is the
regime at small amplitudes in which stress varies linearly with strain and shear
rate. Also, material properties are independent of stress, strain and shear rate
amplitudes throughout the entire regime.

As it was previously mentioned in section 1.1, the balance between
stresses pulling structures apart and short-range attractive forces building
the structure up through particle collision defines the material structural
arrangement. Amplitudes in the linear viscoelastic regime are so small that
the structure does not suffer significant modifications.

Linear viscoelasticity has been extensively studied throughout many
decades and currently has a well-developed framework, which is relevant to
the development of the theories exposed in the subsequent sections.

2.2.1.1
SAOStrain

SAOStrain are strain-controlled experiments in the linear viscoelastic
region. As it was previously mentioned, the deformation input wave has the
following form

γ(t) = γa sin(ωt) (2-7)
where γa is the deformation amplitude and ω is the oscillation frequency.

This input wave may also be presented in terms of shear rate:

γ̇(t) = γaω cos(ωt)→ γ̇(t) = γ̇a cos(ωt) (2-8)
At small amplitudes, the corresponding stress wave will also be a sinu-

soidal signal, of the same frequency.

σ(t) = σa sin(ωt+ δ) (2-9)
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where δ represents the phase shift between the strain and the stress waves.
This phase shift accounts for the viscoelastic effects acting on the

material. The stress in a purely elastic (Hookean) solid is directly proportional
to the imposed strain, thus it should be in phase with the sinusoidal strain
wave described in equation 2-7. Meanwhile, the stress in a purely viscous fluid
(Newtonian) is directly proportional to the shear rate. Thus, it should be in
phase with the cosine wave described in equation 2-8.

Since δ is related to the sinusoidal signal, a purely elastic solid has a
phase shift δ = 0◦, a purely viscous fluid has a phase shift δ = 90◦ and any
other viscoelastic material has an intermediate phase shift. This behavior is
better depicted below, in figure 2.2.

t

.
(t

)

Input

t

<
(t

)

Hookean
Viscoelastic
Newtonian

(a) (b)

Figure 2.2: Possible output stress waves (b) for a sinusoidal strain wave input
(a)

The stress signal presented on equation 2-9 may be decomposed in two
waves of the same frequency: one in phase with the strain wave (sin(ωt)) and
the other in phase with the shear rate wave (cos(ωt)); thus, 90◦ out of phase
with the strain wave.

σ(t) = σacos(δ) sin(ωt) + σa sin(δ)cos(ωt) (2-10)
As well as G and µ were defined to form the constitutive equations 2-1

and 2-2, respectively; two material functions may be defined from equation
2-10 to form a constitutive equation for SAOStrain

G′(ω) = σa
γa
cos(δ), G′′(ω) = σa

γa
sin(δ) (2-11)

where G′ is the elastic or storage modulus and G′′ is the viscous or loss
modulus. Thus, equation 2-10 may be rewritten as
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σ(t) = G′(ω)γa sin(ωt) +G′′(ω)γacos(ωt) (2-12)
Applying equations 2-7 and 2-8 in equation 2-12, we obtain

σ(t) = G′(ω)γ(t) + G′′(ω)
ω

γ̇(t) (2-13)
It is evident that the elastic modulus is in phase with the strain wave

component and the storage modulus is in phase with the shear rate wave
component; which are ruled by elastic and viscous effects, respectively.

The comparison between equations 2-5 and 2-13 shows that the frame-
work behind the SAOStrain analysis is the Kelvin-Voigt model. This is intu-
itive, since the Kelvin-Voigt model is composed by an elastic branch, subjected
to an elastic stress σe and a viscous branch, subjected to a viscous stress σv.
The total stress applied to the material is the sum of these two components,
so that σ = σe + σv.

The elastic stress is related to the Kelvin-Voigt shear modulus GKV as
follows

σe = GKV γ (2-14)
Meanwhile, the viscous stress is related to the Kelvin-Voigt viscosity ηKV

as follows

σv = ηKV γ̇ (2-15)
Hence, the Kelvin-Voigt model parameters may be related to the classic

moduli

GKV = G′(ω) ηKV = G′′(ω)
ω

≡ η′(ω) (2-16)
And material functions may be created using the Kelvin-Voigt model

parameters as basis

GMF
KV = GKV = G′(ω) ηMF

KV = ηKV = G′′(ω)
ω

≡ η′(ω) (2-17)

being GMF
KV the shear modulus material function, GKV the shear modulus

of the Kelvin-Voigt model, ηMF
KV the viscosity material function and ηKV the

Kelvin-Voigt model viscosity.
For a perfect Kelvin-Voigt solid, SAOStrain experiments will yield con-

stant values for G′ and η′, thus GMF
KV and ηMF

KV will be constant and equal to
GKV and ηKV .

When SAOStrain experiments yield frequency dependent GMF
KV (ω) and

ηMF
KV (ω), the mechanical behavior gets farther from the one predicted by the
Kelvin-Voigt model. Hence, it may be stated that the frequency dependence
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of these material functions is a measure of deviation from the employed
framework.

Small deviations are expected for some solids. However, liquids under
SAOStrain behave in a qualitatively different manner, thus using this frame-
work to analyze data of liquids under SAOStrain produces huge inconsisten-
cies. A perfect Maxwell liquid, for example, will yield the following material
functions when analyzed with the Kelvin-Voigt framework

GMF
KV = G′ = η2

MWω
2

G2
MW + η2

MWω
2 ·GMW

ηMF
KV = η′ = G2

MW

G2
MW + η2

MWω
2 · ηMW (2-18)

The Kelvin-Voigt material functions become a more complex function
of ω. Furthermore, both Maxwell model parameters GMW and ηMW appear
in both expressions. The appearance of ηMW in the expression for G′ derives
from the fact that G′ is defined in terms of γ, which is an irrelevant quantity
for liquids. Thus, it functions as a compensation to correct this qualitative
difference of behaviors.

Again, it is vital to state that every framework is a representation of
an ideal mechanical behavior and real materials are usually not perfectly
represented by them. When the real material deviates qualitatively from the
model framework, the material functions lose their physical meanings and
the analysis becomes meaningless. However, small deviations from the ideal
behavior are acceptable.

In this section, it was shown that the definition of the dynamic moduli
G′ and G′′ is based on the assumption that the output wave is also sinusoidal,
since they derive from the linear superposition of the in-phase and out-
of-phase components of the stress response wave. Moreover, it was proven
that the Kelvin-Voigt framework is behind the SAOStrain experiments and,
consequently, the dynamic moduli.

2.2.1.2
SAOStress

SAOStress are stress-controlled experiments in the linear viscoelastic
region. The stress input wave is analogous to the deformation wave shown
in equation 2-7, thus it is given as follows

σ(t) = σa sin(ωt) (2-19)
hence
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σ̇(t) = σaω cos(ωt) (2-20)
and the deformation response wave is described as

γ(t) = γa sin(ωt+ δ) (2-21)
thus

γ̇(t) = γ̇aω cos(ωt+ δ) (2-22)
The deformation wave may be decomposed in an in-phase and an out-

of-phase component, analogously to the stress wave decomposition employed
in the previous section.

γ(t) = γa sin(ωt) cos(δ) + γa cos(ωt) sin(δ) (2-23)
Again, two material functions may be defined from equation 2-23.

J ′(ω) = γa
σa

cos(δ), J ′′(ω) = γa
σa

sin(δ) (2-24)

hence

γ(t) = J ′(ω)σa sin(ωt) + J ′′(ω)σa cos(ωt) (2-25)
Applying equations 2-19 and 2-20 to equation 2-25, the following consti-

tutive equation may be obtained

γ(t) = J ′(ω)σ + J ′′(ω)
ω

σ̇ (2-26)
Likewise, equation 2-22 may also be decomposed in an in-phase and an

out-of-phase component.

γ̇(t) = γ̇a sin(ωt) cos(δ) + γ̇a cos(ωt) sin(δ) (2-27)
Likewise, two material functions may be defined to transform equation

2-27 into a constitutive equation.

φ′(ω) = γ̇a
σa

cos(δ), φ′′(ω) = γ̇a
σa

sin(δ) (2-28)

hence

γ̇(t) = φ′(ω)σa sin(ωt) + φ′′(ω)σa cos(ωt) (2-29)
Applying equations 2-19 and 2-20 to equation 2-29 we obtain

γ̇(t) = φ′(ω)σ + φ′′(ω)
ω

σ̇ (2-30)
Rearranging equation 2-30, we obtain

γ̇(t)
φ′(ω) = σ + φ′′(ω)

φ′(ω)ω σ̇ (2-31)

The comparison between equations 2-6 and 2-31 shows that the frame-
work behind the SAOStress analysis is the Maxwell model. This is intuitive,

DBD
PUC-Rio - Certificação Digital Nº 1521990/CA



Chapter 2. Background and literature 27

since the Maxwell model is composed by a single branch, exposed to the same
stress σ. The spring element is in series with the dashpot element. While the
former is subjected to an elastic deformation γe and responds immediately; the
latter is subjected to a viscous deformation γv and responds to its derivative
γ̇v, which is out of phase with the stress signal.

The framework parameters GMW and ηMW may be transformed in ma-
terial functions that are related to the SAOStress material functions through

GMF
MW = ω

φ′′(ω) ≡
1

J ′(ω) ηMF
MW = 1

φ′(ω) (2-32)

For a perfect Maxwell liquid, SAOStress experiments will yield constant
values for 1/J ′ and 1/φ′. Thus, the material functions GMF

MW and ηMF
MW will be

constant and equal to the equation’s 2-6 proportionality constants GMW and
ηMW , respectively.

When SAOStress experiments yield frequency dependent GMF
MW (ω) and

ηMF
MW (ω), the mechanical behavior gets farther from the one predicted by the
Maxwell model. Hence, it may be stated that the frequency dependence of these
material functions is a measure of deviation from the employed framework.

Analogously to our discussion for SAOStrain experiments, we may exam-
ine a perfect Kelvin-Voigt solid under a SAOStress experiment. The following
material functions will be yielded

GMF
MW = 1

J ′
= η2

KV ω
2

G2
KV + η2

KV ω
2 ·GKV (2-33)

ηMF
MW = 1

φ′
= G2

KV

G2
KV + η2

KV ω
2 · ηKV (2-34)

Once more, it is not straightforward to interpret GMF
MW and ηMF

MW as ω,
ηKV and GKV appear in both terms.

In this section, it was shown that the definition of the compliances J ′

and J ′′ as well as the definition of the fluidities φ′ and φ′′ are based on the
assumption that the output wave is also sinusoidal, since they derive from the
linear superposition of the in-phase and out-of-phase components of the defor-
mation response wave. Moreover, it was proven that the Maxwell framework
is behind the SAOStress experiments and, consequently, the aforementioned
material functions.

2.3
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Nonlinear viscoelasticity

Unlike the linear viscoelastic regime, nonlinear viscoelasticity implies
that amplitudes are high enough to cause changes in the material microscopic
structure. At higher stresses, breakdown occurs at higher rates, while build
up rates remain almost invariable. This leads to a shift in the equilibrium
structural level, which also becomes a function of the stress [λ(σ)].

Analogously to the linear viscoelastic regime, dynamic experiments in
nonlinear viscoelastic regime are performed either by imposing a sinusoidal
deformation wave and measuring the corresponding dynamic response or
by imposing a sinusoidal stress wave and measuring the material kinematic
response. However, the analysis frameworks for dynamic experiments at large
amplitude oscillatory shear (LAOS) are not as well-established as the ones used
in SAOS. Complications arise from the fact that, during an oscillation cycle, the
instantaneous stress σ(t) varies from small values, inside the linear viscoelastic
region, to large values. Notice that σ(t) sweeps an infinity of different stress
values outside the linear viscoelastic region. Hence, it sweeps an infinity of
microscopic structural states. As it was previously stated on chapter 1, each
microscopic structure results in a different kinematic response for the input.
Therefore, the output wave is not a sinusoidal wave in this regime.

The fact that the output wave is not sinusoidal implies that the linear
signal decomposition used in sections 2.2.1.1 and 2.2.1.2 may not be employed
in order to analyze the material. Hence, many frameworks have been presented
as attempts to describe the nonlinear response waves. Section 2.3.1 will
present some of the most used frameworks, as well as the critics on each
of them. Meanwhile, sections 2.3.1.1 and 2.3.1.2 will show which frameworks
describe LAOStrain experiments and which frameworks describe LAOStress
experiments. At last, the mechanical models behind each approach will also
be exposed.

2.3.1
Most used frameworks to analyze materials under LAOS

The first studies on LAOS started on the 50’s (15), but hardware
and software limitations, especially low torque transducer resolution and low
computational power, severely hindered further progress at that time. More
than half a century later, there is still a lot of room for discussion on the matter.
Many methodologies to analyze materials under LAOS have been developed
during this time and the most relevant ones are further discussed below.

The Fourier transform rheology was the first well established method
for analyzing nonlinear viscoelastic oscillatory motions. FT-Rheology uses
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Fourier series to describe the nonlinear signal. The Fourier series consists in a
sum of sinusoidal waves at harmonic frequencies, each one possessing distinct
coefficients and phase angles. Equation 2-35 shows the Fourier series for a
nonlinear stress response, while equation 2-36 shows the Fourier series for a
nonlinear strain response.

σ(t) =
∑

n=1,odd
σn sin(nωt+ δn) (2-35)

γ(t) =
∑

n=1,odd
γn sin(nωt+ δn) (2-36)

In equation 2-35 the stress amplitude σn(ω, γa) and the phase angle
δn(ω, σa) of the harmonics depend on both frequency ω and strain amplitude
γa. Meanwhile, in equation 2-36, the strain amplitude γn(ω, σa) and the phase
angle δn(ω, σa) depend on both frequency ω and stress amplitude σa. Notice
that each wave has a frequency nω, meaning that it is the n harmonic of the
natural frequency ω. Equations 2-35 and 2-36 may also be written as in-phase
and out-of-phase terms, analogously to the forms presented for SAOStrain and
SAOStress.

σ(t) = γa
∑

n=1,odd
[J ′n(ω, σa) sin(nωt) + J ′′n(ω, σa) cos(nωt)] (2-37)

γ(t) = σa
∑

n=1,odd
[G′n(ω, σa) sin(nωt) +G′′n(ω, σa) cos(nωt)] (2-38)

where G′n and G′′n or J ′n and J ′′n are the Fourier coefficients. Since the
wave is sinusoidal on the linear viscoelastic regime, the higher harmonics are
negligible. Notice that all coefficients except G′1 and G′′1 or J ′1 and J ′′1 vanish
in this case and the equation’s coefficients reduce to the storage and loss
compliances.

The ratios between the intensity of the higher-order harmonics and
the intensity of the first-order harmonic are usually used as a measure of
nonlinearity, especially the ratio between the third and the first harmonics
(I3/I1).

Wilhelm et al. (57, 58, 59, 55) developed the methodology for high
sensitivity Fourier transform (FT) rheology by transferring techniques from
NMR spectroscopy to oscillatory rheometery on commercial rheometers. Their
work is distinguished by the development and use of extremely sensitive
detection methods, obtaining high resolution torque signals from commercial
rheometers (53). Experimentally, the measured information such as torque
and displacement are Fourier transformed and further evaluated with a self-
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developed software, as illustrated in figure 2.3. The simple experimental setup
was clearly beneficial for a broader adoption of the technique.

Figure 2.3: Experimental Set-up and data analysis for the FT-Rheology
analysis, extracted from (56)

FT-Rheology was used for various complex fluids, such as polymer melts
(35, 20, 54), polymer solutions (36, 34), polymer blends (3), dispersed systems
(55) and industrial elastomers (28, 27).

However, difficulties arise from the fact that experimental data set
obtained in the time-domain s(t) generates complex data in the frequency
domain s(ω), with real and imaginary parts which are difficult to analyze
and attribute physical meaning. Furthermore, it is also difficult to attribute
physical meaning to the large number of coefficients (G′n and G′′n or J ′n and
J ′′n).

In order to overcome these flaws in LAOS analysis, alternative techniques
to quantify nonlinear behavior were developed. The decomposition of the
nonlinear stress response wave into elastic σ′ and viscous σ′′ components
was attempted. This decomposition is elementary in the linear regime, as it
was shown in previous sections, however, unambiguously decompose the stress
response wave in the nonlinear regime is a difficult task. According to Hyun
(22), for this reason, "FT-Rheology does not decompose the nonlinear shear
stress in terms of the deformation inputs themselves, but rather operates on
the time-domain representation of the stress waveform, σ(t), and quantifies
nonlinear viscoelastic responses through intensity and phase angle of higher
harmonics"

Using symmetry arguments, Cho et al. (4) managed to decompose the
total stress into a superposition of elastic stress σ′(γ) and viscous stress σ′′(γ̇),
defining stress as a function of independent inputs of strain and shear-rate
[σ = σ(γ, γ̇)] instead of a function represented in the time domain (σ(t)). The
stress decomposition is given as follows
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σ′ = Γ′(x, γa)x, σ′′ = Γ(y, γa)y (2-39)
where Γ and Γ are the generalized dynamic moduli, x = γ and y = γ̇.

Cho et. al (4) suggested a polynomial regression of the form

σ′(x, γa) = G′1(ω)x+G′3(ω, γa)x3 +G′5(ω, γa)x5 + ...+G′n(ω, γa)xn

σ′′(x, γa) = G′′1(ω)x+G′′3(ω, γa)x3 +G′′5(ω, γa)x5 + ...+G′′n(ω, γa)xn (2-40)

However, the material properties obtained from this regression depend
on the polynomial order, which is undesirable. Furthermore, G′1 and G′′1 do
not correspond exactly to the classic linear viscoelastic moduli because the
decomposition above suffer from non-orthogonality. Thus, Ewoldt (13, 12)
proposed the use of Chebyshev Polynomials of the first kind to decompose
the nonlinear stress wave. They represent a set of basis functions capable of
describing the stress wave in the orthogonal space formed from the oscillation
strain and the shear-rate. The use of an orthogonal basis simplifies the
nonlinear response description as it no longer requires the consideration of the
explicit temporal dependence, focusing, instead, on how the response varies
with magnitude and rate of deformation. Using Chebyshev Polynomials, stress
response is decomposed as

σ′(x) = γa
∑
n:odd

en(ω, γa)Tn(x)

σ′′(x) = γ̇a
∑
n:odd

vn(ω, γa)Tn(y) (2-41)

where Tn(x) is the n-th order Chebyshev polynomial of the first kind,
x = γ/γa, y = γ̇/γ̇a, en(ω, γa) the elastic Chebyshev coefficients, and vn(ω, γa)
the viscous Chebyshev coefficients. Ewoldt et al (12) also suggested viscoelastic
moduli for the nonlinear regime: minimum-strain and large-strain elastic
moduli; and minimum-rate and large-rate dynamic viscosities. These moduli
are identified in the Lissajous plots presented in figure 2.4.

Lissajous curves are plots of parametric equations of sinusoidal form:

x(t) = a sin(ωt+ δ) (2-42)

y(t) = b sin(t) (2-43)
In rheological oscillatory experiments, Lissajous curves may be used to

describe σ(t)× γ(t) or σ(t)× γ̇(t) plots.
The minimum-strain modulus (G′M) is the tangent modulus at zero

instantaneous strain (γ(t) = 0), hence, at maximum γ̇
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Figure 2.4: The visual definition of the viscoelastic moduli in Lissajous plots,
extracted from (12)

G′M ≡
dσ

dγ

∣∣∣∣∣
γ=0

=
∑
n:odd

nG′n (2-44)

and the large-strain modulus (G′L) is the secant at maximum strain,
hence, at zero shear-rate (γ̇(t) = 0)

G′L ≡
σ

γ

∣∣∣∣∣
γ=γa

=
∑
n:odd

nG′n(−1)n−1
2 (2-45)

Meanwhile, the minimum-rate dynamic viscosity (η′M) is the instanta-
neous viscosity at zero shear-rate

η′M ≡
dσ

dγ̇

∣∣∣∣∣
γ̇=0

= 1
ω

∑
n:odd

nG′′n(−1)n−1
2 (2-46)

and the large-rate dynamic viscosity is the instantaneous viscosity at the
largest γ̇

η′L ≡
σ

γ̇

∣∣∣∣∣
γ̇=γ̇a

= 1
ω

∑
n:odd

nG′′n (2-47)

From the definitions above, a parameter called Stiffening ratio (S) may
also be defined

S = GL −GM

GL

(2-48)

The stiffening ratio indicates the behavior of the material: (i) S = 0
indicates a linear elastic response; (ii) S > 0 indicates intra-cycle strain
stiffening, and (iii) S < 0 indicates intra-cycle strain softening. Likewise, the
shear tickening ratio (T ) may be defined as
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T = η′L − η′M
η′L

(2-49)

The shear thickening ratio indicates the behavior of the material: (i)
T = 0 indicates a linear viscous response; (ii) S > 0 indicates intra-cycle shear
thickening, and (iii) S < 0 indicates intra-cycle shear thinning.

The behavior of pseudoplastic and elasto-viscoplastic materials, among
others, was studied using the Chebyshev polynomials framework (14).

Dimitriou et al. (9) proposed a strain decomposition analysis, analogous
to the stress decomposition analysis. It consists of splitting the strain output γ
into two additive parts, γ = γe +γv. From this analysis, the material functions
J ′M , J ′L, R, φ′M ,φ′L and F arise and are analogous to G′M , G′L, S, η′M ,η′L and T ,
respectively. For the sake of simplicity, the definition these properties will not
be formally demonstrated in this document.

The previously mentioned approaches were reviewed and discussed by
Rogers and Lettinga (45). The use of complex linear algebra to analyze LAOS
responses was criticized. Based on the assumption that a more physically
meaningful approach should be followed, Rogers et al. described the nonlinear
oscillatory responses as a result of periodic sequences of physical processes
(SPP) (44) and proposed the observation of the response wave in a 3D space
formed by stress, strain and shear rate (42). The author claims that the
distinction between elastic and viscous processes should not be based on the
whole-waveform approach. Moreover, it may be seen as a more straightforward
method since it does not rely on infinite series, opposed to the FT-Rheology
and Stress Decomposition analysis techniques.

The SPP analysis relies on the definition of three vectors in the 3D space
determined by stress, strain and shear rate: two reference vectors s1 and s2

and a vector B normal to the curve. They are represented in figure 2.5 and
mathematically given as follows

s1 = [−1, 0, 0]

s2 = [0, 0, 1]

Bmod = [Bγ, ωBγ̇, Bσ] (2-50)

Dynamic moduli R′ and R′′ are defined as the projections of the binomial
vector B into the strain and shear rate directions, respectively.
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R′(γa, ω, t) = |G∗(γa, ω, t)| cos(δ(t))

R′′(γa, ω, t) = |G∗(γa, ω, t)| sin(δ(t)) (2-51)

where G∗ is the complex modulus, δ is the phase angle and both may
be obtained from the vectors described in equation 2-50. Notice that on the
viscoelastic regime, the dynamic moduli R′ and R′′ reduce to G′ and G′′,
respectively.

The SPP methodology succeeds to reduce the analysis of the nonlinear
wave into two material functions without the need of a infinite number of
coefficients that are difficult to attribute physical meaning. However, the
coefficients R′ and R′′ are functions of the frequency, amplitude and time,
while the previous methodologies were based in coefficients decoupled from
time dependency.

Figure 2.5: The visual representation of the SPP analysis, extracted from (42)

Each methodology has its perks and flaws. However, every LAOS analy-
sis has a common problem which is the fact that the microscopic structure is
constantly changing throughout the cycle. As it was previously stated, macro-
scopic and microscopic properties are intimately related to the microscopic
structure. Therefore, they are also being instantaneously modified; and so is
kinematic response, which is the key information to evaluate the previously
mentioned properties (51). Since many variables are being simultaneously var-
ied during the experiment, data becomes difficult to analyze. This problem
comes from the fact that LAOS regime is a structure-changing motion, as it
was previously mentioned in section 1.1; hence, this issue is unrelated to the
approach used in the analysis.
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2.3.1.1
LAOStrain

LAOStrain are strain-controlled experiments out of the linear viscoelastic
region. The deformation input wave has the following form

γ(t) = γa sin(ωt) (2-52)
where γa is a deformation amplitude large enough so that the stress

response is no longer a linear function of the strain and shear rate at an
oscillatory frequency ω.

The main assumption of the SD decomposition proposed by Cho et al.
(4) is that the total stress may be split into two additive components: σ′,
which is the elastic component, and σ′′, which is the viscous component. These
components were defined in equation 2-39. Comparing these terms to the
definition of the Kelvin-Voigt parameters given by equations 2-14 and 2-15,
it may be seen that

GKV = σ′

γ
= Γ′ and ηKV = σ′′

γ̇
= Γ′′ (2-53)

Thus, the SD-generalized dynamic moduli are the Kelvin-Voigt elastic
modulus and the Kelvin-Voigt viscosity. Another interesting result may be
obtained from the viscoelastic moduli proposed by Ewoldt et al. (12) for the
nonlinear regime, presented in equations 2-44, 2-45, 2-46 and 2-47.

Note that the author used Chebyshev polynomials as basis functions to
create an orthogonal space, hence

G′M ≡
dσ

dγ

∣∣∣∣∣
γ=0

= dσ′

dγ

∣∣∣∣∣
γ=0

(2-54)

thus

G′M = GKV |γ=0 +
[
dGKV

dγ
γ

]
γ=0

(2-55)

at last, since γ = 0, we have

G′M = GKV (0) (2-56)
Analogously,

G′L ≡
σ

γ

∣∣∣∣∣
γ=γa

= σ′

γ

∣∣∣∣∣
γ=γa

+ σ′′

γ

∣∣∣∣∣
γ=γa

(2-57)

hence,

G′L = GKV |γ=γa + ηKV
γ̇

γ

∣∣∣∣∣
γ=γa

(2-58)

since γ̇ = 0
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G′L = GKV (γa) (2-59)
And the Kelvin-Voigt shear modulus evaluated at γ = 0 and γ = γa are,

respectively, G′M and G′L. Therefore, the quantity S may be written as

S ≡ G′L −G′M
G′L

= GKV (γa)−GKV (0)
GKV (γa)

(2-60)

As it was previously stated, S = 0 indicates a linear elastic response. This
behavior may be clearly observed in equation 2-60 since GKV (0) = GKV (γa)
on the linear viscoelastic regime and this condition results in S = 0.

Likewise, the same reasoning may be applied to η′M and η′L

η′M ≡
dσ

dγ̇

∣∣∣∣∣
γ̇=0

= dσ′′

dγ̇

∣∣∣∣∣
γ̇=0

(2-61)

hence

η′M = ηKV |γ̇=0 + dηKV
dγ̇

γ̇

∣∣∣∣∣
γ̇=0

(2-62)

thus, since γ̇ = 0

η′M = ηKV (0) (2-63)
and

η′L ≡
σ

γ̇

∣∣∣∣∣
γ̇=γ̇a

= σ′

γ̇

∣∣∣∣∣
γ̇=γ̇a

+ σ′′

γ̇

∣∣∣∣∣
γ̇=γ̇a

(2-64)

thus

η′L = GKV
γ

γ̇

∣∣∣∣∣
γ̇=γ̇a

+ ηKV

∣∣∣∣∣
γ̇=γ̇a

(2-65)

since γ = 0

η′L = ηKV (γ̇a) (2-66)
At last, the quatitiy T may be written as

T ≡ η′L = η′M
η′L

= ηKV (γ̇a)− ηKV (0)
ηKV (γ̇a)

(2-67)

Again, T = 0 indicates a linear elastic response. This behavior may
be clearly observed in equation 2-67 since ηKV (0) = ηKV (γa) on the linear
viscoelastic regime and this condition results in T = 0.

As expected, it may be seen that the Kelvin-Voigt mechanical model is
behind the analysis based on LAOStrain experiments.

2.3.1.2
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LAOStress

LAOStress are stress-controlled experiments out of the linear viscoelastic
region. The stress input wave has the following form

σ(t) = σa sin(ωt) (2-68)
where σa is a stress amplitude large enough so that the strain response

is no longer a linear function of the stress at an oscillatory frequency ω.
The strain decomposition method proposed by Dimitriou (9) is com-

pletely analogous to the SD decomposition method but decomposing the strain
signal. Hence, we may state that the Maxwell mechanical model is behind the
analysis based on LAOStress experiments.

J ′M = JMW (0) (2-69)

J ′L = JMW (σa) (2-70)

R ≡ J ′L = J ′M
J ′L

= JMW (σa)− JMW (0)
JMW (σa)

(2-71)

φ′M = φMW (0) (2-72)

φ′L = φMW (σa) (2-73)

F ≡ φ′L = φ′M
φ′L

= φMW (σa)− φMW (0)
φMW (σa)

(2-74)

These relations will not be formally demonstrated in this document since
they are completely analogous to the ones demonstrated above.

2.3.2
Quasilinear viscoelasticity

More recently, de Souza Mendes and Thompson (5) predicted the ex-
istence of a quasilinear LAOS regime, which was thereafter experimentally
confirmed by Alicke (1) and de Souza Mendes et al. (6) for a commercial hair
gel. The QL-LAOS regime occurs at high frequencies, namely when the cycle
period is much shorter than the characteristic time of the material breakdown
and buildup mechanisms. Under these conditions, there is no time for the ma-
terial to rearrange its microscopic structure within a cycle. Thus, its structural
level remains constant throughout the entire cycle. As it was previously stated
in section 1.1, constant-structure motions, which are characterized by a sinu-
soidal response, occur either when the stress amplitude is not large enough
to cause structural changes or the stress amplitude is large enough to cause
structural changes but cycle period is shorter than the time scale of structural
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changes. While SAOS represents the former, QL-LAOS represents the latter. It
is vital to understand that, unlike in SAOS linear regime, the material micro-
scopic structure is not in its quiescent condition. Furthermore, each stress level
results in a specific structural configuration. Therefore, even though SAOS and
QL-LAOS analysis are intrinsically equivalent, material properties become a
function of the stress level under QL-LAOS regime.

In section 2.2, it was stated that linear viscoelasticity is defined as "the
regime in small amplitudes in which the stress varies linearly with strain and
shear rate. Also, material properties are independent of stress, strain and shear
rate amplitudes throughout the entire regime." Neither of those conditions hold
for the nonlinear viscoelastic region. However, the first condition is true here,
while the second is not. Thus, this is called quasilinear region.

The analysis made in sections 2.2.1.1 for SAOStrain and 2.2.1.2 for
SAOStress can be reproduced to QL-LAOStrain and QL-LAOStress, but the
SAOS material functions G′(ω), G′′(ω), J ′(ω), J ′′(ω), φ′(ω) and φ′′(ω) would be
replaced by G′(ω, γa), G′′(ω, γa), J ′(ω, σa), J ′′(ω, σa), φ′(ω, σa) and φ′′(ω, σa).

2.3.2.1
Framework used to analyse materials under QL-LAOS

The core of the experimental methodology of these previous works
(6, 51, 1) consists in obtaining material functions for a range of stress
amplitudes σa and frequencies ω through oscillatory tests, which may be time
sweeps, stress sweeps, strain sweeps or frequency sweeps.

The time sweep is the most basic oscillatory experiment, since both σa
and ω are fixed. In this experiment, the material is subjected to a number of
oscillation cycles and transient data is obtained. Hence, stress, strain and shear
rate may be obtained as a function of time and the input and output waves
may be reconstructed, as well as Lissajous plots. Meanwhile, stress sweeps are a
sequence of time sweeps at different stress amplitudes, but at a fixed frequency.
Even though transient data may also be obtained in stress sweeps, usually
amplitude data is analyzed in this class of experiments. Strain sweeps are very
similar to stress sweeps, but are performed in strain-controlled rheometers and
strain amplitude is imposed to the material, instead of a stress amplitude. At
last, frequency sweeps are analogous to the previous experiments, but consist
of a sequence of time sweeps at different frequencies and at a fixed amplitude
of stress or strain.

A strain-controlled rheometer was employed on these works, namely, the
ARES-G2, manufactured by TA Instruments. According to the author, this
choice stems from the fact that transducers are decoupled from the moving
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parts on this rheometer.
As frequency increases, the torque required to accelerate the geometry

also increases, since the cycle period shortens. At high enough frequencies,
the parcel responsible for the geometry’s acceleration becomes relevant. On
stress-controlled rheometers transducers are coupled with the moving parts
and the stress value given by the rheometer, which is calculated based on the
total torque, diverges from the real stress perceived by the sample. On strain-
controlled rheometers, the inertial torque is not perceived by the transducers
since they are decoupled from the moving parts.

A wide range of frequencies was investigated for the stress amplitudes of
σa = 10, 125 and 312Pa. However, at each frequency, the strain amplitude that
yields the aforementioned stress amplitudes is distinct. Therefore, strain sweeps
were performed in order to obtain the relationship between stress and strain
amplitudes for each frequency. Linear interpolation was employed to obtain
the exact strain amplitude necessary to reach the required stress amplitude.
Notice that, since a parallel plates geometry was employed, stress correction
for inhomogeneous flow was necessary (38).

Thereafter, this strain amplitude value was input into a time sweep
experiment at the corresponding frequency. Transient data obtained from
these experiments yield information about the wave shapes, which was vital
in order to prove the existence of the QL-LAOS regime. Lissajous plots were
also created from this data and confirmed the results. The ratio between the
third and first harmonics intensity (I3/I1) was also used in order to prove
the existence of the quasilinear regime as it complied to the linearity criteria
(I3/I1 < 3%) at high enough frequencies.

The use of transient time sweep experiments was necessary in these works
due to the use of the waveshapes to prove the existence of the QL-LAOS
regime. However, transient experiments requires a large amount of data and
and requires a more complex and careful analysis. Furthermore, the use of time
sweep experiments instead of stress, strain or frequency sweeps results in a huge
number of rheometric experiments. Hence, a large volume of material is needed,
as well as a lot of labour hours in the laboratory performing experiments and
analyzing data.

2.4
Beyond the classical approaches

Classic material functions, as the ones described in sections 2.2.1.1 and
2.2.1.2, are usually perceived as entities unrelated to a particular class of
mechanical behavior. However, we showed that every material function has
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constraints. Some of these properties originate from constitutive equations,
thus are restricted to a class of materials that obey these equations (51).

It is clear that the viscosity η, which is defined as a ratio of the shear stress
σ to the shear rate γ̇ in a pure shear flow, is based on the Newtonian model.
The representation of the viscosity η of a generic material as η(γ̇, t) highlights
the deviation of the material behavior from the Newtonian behavior, where η
is represented by the constant value of µ. Likewise, the shear modulus G of a
generic material is defined as the ratio of the shear stress σ to the strain γ,
which is inspired in the Hookean model and its representation as G(γ, t) shows
the deviation from the Hookean behavior, in which G is also a constant value.
Also, as it was demonstrated in sections 2.2.1.1 and 2.2.1.2, the oscillatory
flow material functions arise from the Kelvin-Voigt model for storage and loss
moduli (G′ and G′′) and from the Maxwell model for compliances (J ′ and J ′′)
and fluidities (φ′ and φ′′).

It is vital to expose the mechanical model employed in the definition
of a material function since the constitutive model may be inadequate to
describe the mechanical behavior of a certain class of materials. Since the
model framework is usually implicit, many authors describe the mechanical
behavior of a material employing material functions that are not suitable for
that specific situation (51).

Thompson et al. (51) proposed a novel approach of rheological data
analysis: the model based framework (MBFR). In the MBFR, the parameters
of any given model become the material functions describing the desired
mechanical behavior. Thus, the model employed in the definition of the
material functions is always explicit and the constraints are more easily
perceived.

The methodology consists on the determination of a constitutive model
that qualitatively encompasses all possibilities of mechanical behavior for the
material to be tested, followed by a conversion of model parameters into
material functions. This conversion carries the test information in order to
quantify the mechanical behavior.

As it was previously stated in section 2.1, the fundamentals of this
methodology have already been used on this document when we exposed that
the Maxwell liquid model was behind SAOStrain and LAOStrain analysis
framework and the Kelvin-Voigt solid model was behind SAOStress and
LAOStress analysis framework.

It is important to draw attention to the fact that neither the Maxwell
nor the Kelvin–Voigt model are capable of qualitatively predicting the entire
spectrum of mechanical behavior. An analysis whose framework is the Maxwell
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model is more suitable for fluids, while an analysis whose framework is the
Kelvin–Voigt model is more suitable for solids.

The urge for a mechanical model that qualitatively encompasses the
entire spectrum of mechanical behaviors is due to the fact that the mechanical
behavior of a material to be tested is not known prior to its rheological
characterization. If an unsuitable analysis framework is used to characterize the
material, data that would reveal the mechanical behavior will be contaminated.
Hence, the need to ensure that any given material will be qualitatively
described by the mechanical model. Moreover, many materials of interest are
soft solids, meaning that they behave as elastic or viscoelastic solids at low
stresses and as viscoelastic or viscous fluids at higher stresses. A model that is
able to describe both behaviors is vital in order to characterize these materials.

The simplest constitutive model that encompasses the entire spectrum of
possible mechanical behaviors for a viscoelastic material is the Jeffreys model
(51), whose analog is shown in figure 2.6.

�e �v

� = �e + �v

GJ
⌘J1

⌘J2

� = �e + �v2

�e = �v1

�v2

Figure 2.6: The Jeffreys mechanical analog.

Mathematically, it may be writen as

σ + η1

GJ

σ̇ = (ηJ1 + ηJ2)γ̇ + ηJ1
ηJ2

GJ

γ̈ (2-75)

By analyzing either equation 2-75 or figure 2.6, it can be seen that all
previously cited models are particular cases of the Jeffreys model as it reduces
to

– the Kelvin-Voigt model with GKV = GJ and ηKV = ηJ2, when ηJ1 →∞;

– the Maxwell model with GMW = GJ and ηMW = ηJ1, when ηJ2 = 0;

– the Newtonian model with ηNW = ηJ1 + ηJ2, when GJ →∞;

– the Hookean model with GHK = GJ , when ηJ1 →∞ and ηJ2 = 0.

Hence, this is a versatile model that may be used to describe all classes
of materials embraced by other models presented on the previous sections.
Another amazing feature that stems from this approach is that both stress-
controlled and strain-controlled experiments may be described by the same
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framework, since the Jeffreys mechanical analog encompasses both stress and
strain wave decomposition.

The authors, however, restrict the use of this methodology to constant-
structure motions. This restriction comes from the fact that, according to the
authors, in structure-changing motions "stress varies periodically from zero to
large values, and the microscopic state responds to this variation acoording
to unknown properties and characteristics of the material. The desired infor-
mation is the mechanical behavior, which varies with the configuration of the
molecules or with the microstructural state, and thus varies periodically along
the experiment in an unknown manner".

In order to obtain our model-based material functions, equation 2-75 may
be rewritten as follows

σ + θ1σ̇ = η(γ̇ + θ2γ̈) (2-76)
being θ1 the relaxation time, θ2 the retardation time and η the steady-

state shear viscosity. As it was stated on section 2.2, relaxation and retardation
times derive from transient experiments. Further details on these properties
are given on appendix A.

These material functions are related to the model parameters (ηJ1, ηJ2

and GJ) as follows

η = ηJ1 + ηJ2; θ1 =
(

1− ηJ2

η

)
η

G
; θ2 =

(
1− ηJ2

η

)
ηJ2

G
(2-77)

It is shown in appendix B that θ1, θ2, ηJ1, ηJ2 and GJ may be written as
a function of J’, J” and η, which are properties directly given by commercial
rheometers:

θ1 = (J ′ + J ′′)
J ′

η − J ′′

J ′ω
(2-78)

θ2 = ηωJ ′′ − 1
ηJ ′ω2 (2-79)

ηJ1 = η2ω2J ′2 + (ηωJ ′′ − 1)2

ηω2(J ′2 + J ′′2)− ωJ ′′ (2-80)

ηJ2 = ηωJ ′′ − 1
ηω2(J ′2 + J ′′2)− ωJ ′′ (2-81)

GJ =
J ′
(
η2ω2J ′2 + (ηωJ ′′ − 1)2

)
(
ηω(J ′2 + J ′′2)− J ′′

)2 (2-82)

Analogously, they may be written as a function of G’, G” and η:

θ1 = η

G′
− G′′

G′ω
(2-83)

θ2 = G′′

G′ω
− G′2 +G′′2

ηG′ω2 (2-84)
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ηJ1 = η − G′′

ω
+ G′2

ηω2 −G′′ω
(2-85)

ηJ2 = G′′

ω
− G′2

ηω2 −G′′ω
(2-86)

GJ = G′

1 + G′2(
ηω −G′′

)2

 (2-87)

Notice that the material functions that arise from the model based
framework are just the model parameters. In our case, the Jeffreys mechanical
model parameters, which are allowed to vary with frequency and stress
amplitude. The physical meaning of these material functions is the same of the
parameters from which they originate, which are well known and qualitatively
valid for the entire spectrum of possible mechanical behaviors for a viscoelastic
material.
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3
Experimental Set-Up and Methodology

Two distinct fluids were used in this research: an elasto-viscoplastic
commercial hair gel and a polymer dispersion. The former behaves as a linear
viscoelastic solid at stresses below the yield stress σy, but irreversibly deforms
and flows as a fluid for stresses above σy. Meanwhile, the latter is a 0.5%
polyacrylamide dispersion in a 60% glycerin and 40% water base solution. At
low stresses, the material is fully structured and viscosity tends to a constant
value η0. As polymer chains start to deform, break and move relative to one
another, viscosity decreases until it reaches a constant value η∞, when the
material is fully unstructured.

Since the microscopic structural state is determined by the stress per-
ceived by the material, a stress-controlled rheometer was employed in this
research. Namely, the AR-G2 rheometer, manufactured by TA Instruments
was used. The AR-G2 motor and transducers are coupled in the upper fixture.
Stress is calculated using the torque transmitted by the motor to the shaft,
which is connected to the rotating geometry. Meanwhile, strain and shear rate
are evaluated through the angular displacement, which is measured by the
displacement transducer.

Figure 3.1: The stress-controlled AR-G2 rheometer, manufactured by TA
Instruments.
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As it was previously mentioned in section 2.3.2.1, the torque is not
entirely transmitted to the sample, since a parcel is consumed to overcome the
instrument’s inertia. This parcel becomes significant in oscillatory motion at
high frequencies, since cycle periods are small and the instrument undergo huge
accelerations. Hence, an inertial correction must be employed in this situation
so that the stress applied to the sample is known and used to calculate the
material functions (38).

For the gel, a 60mm cross hatched parallel-plate geometry was employed
since this material presents apparent wall-slip. As for the polyacrylamide
dispersion, a 60mm aluminum smooth parallel-plate geometry was employed.
The aluminum plate is well suited to balance two difficulties about QL-LAOS
experiments with this dispersion: low-torque values caused by low viscosity
and high geometry-inertia at high frequencies.

Figure 3.2: Details of the cross-hatched plate (a) and the aluminum plate (b).

Data obtained from experiments performed using parallel plate geome-
tries should always be corrected due to inhomogeneous flow, as it will be
further addressed in section 3.2. For steady-state experiments, Weissenberg-
Rabinowicz correction (40) should be employed. Meanwhile, for oscillatory flow
experiments, analogous correction developed by de Souza Mendes et al. (38)
should be employed.

The model based framework described in section 2.4 will guide our
analysis. From the equations presented on that section, it may be observed
that very few experiments are necessary in order to obtain the base parameters
to our material functions. Namely, a flow curve and a number of oscillatory
experiments must be performed. While the first one provides the steady-state
viscosity for different stress levels, the last provides the compliances, moduli
and frequencies. Since the main goal of the experimental methodology is to
reduce the number of rheometric experiments and the amount of data to be
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analyzed, a few stress sweeps will be performed instead of a huge number of
time sweeps. Furthermore, no transient information will be analyzed.

3.1
Rheometric experiments

Sample placement is a vital step in every rheometric experiment, even
though it is usually undervalued. If the sample placement is not carefully
performed, data may not be representative of the material.

Figure 3.3: Details of the sample placement method for the gel ((a),(b),(c),(g))
and polyacrylamide solution ((d),(e),(f),(g)).

For the commercial hair gel, the sample placement method was identical
to the one performed by Alicke (1) in her work on QL-LAOS. As the author
describes, “For every run, a new gel sample is used. The gel is loaded on
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the center of the lower plate with a glass syringe. Air bubbles need to be
eliminated from the sample so as not to violate the continuum hypothesis,
which states that the gap needs to be at least ten times bigger than the
particle/droplet/bubble size. With the aid of an empty syringe, the bubbles are
“sucked” from the sample, one bubble at a time. Once all bubbles are removed,
the upper fixture is slowly lowered to avoid air entrapment and the gel spreads
across the gap. When a 1.05mm gap is reached, the sample is carefully trimmed
with a cotton swab. Finally, the gap is set to 1.00mm. Then, a solvent trap
cover is placed to minimize evaporation of the sample. Before testing, the
sample is kept at rest for 10 minutes so that stabilization of the temperature
and relaxation of the material.” This method carefully avoids the most common
problems caused by sample issues.

Similar sample placement method was employed in the polyacrylamide
experiments. However, since there is no yield stress in this material, there are
no bubbles to be “sucked” from the sample. Moreover, the absence of yield
stress causes the material to flow when placed on the lower plate. Therefore,
instead of placing the sample and lowering the upper fixture afterwards, the
sample is directly placed between the plates at the trimming gap.

As it was previously stated, in order to obtain the necessary parameters
for our analysis, only a flow curve and a number of stress sweeps at a range
of frequencies are necessary. The flow curve consists on measuring the steady-
state response of the material under a number of flow conditions, namely, a
range of shear rates.

In order to ensure that the material reaches the steady-state before data
is recorded, a peak hold experiment is previously performed: a constant shear
rate is applied to the material and its response is measured as a function of
time. The equilibration time required for the material to reach the steady-state
is used as the input time to record data in the flow curve. The equilibration
time is a function of the shear rate: as the shear rate decreases, the equilibration
time increases. Hence, a peak hold experiment at the lowest shear rate to be
tested in the flow curve is necessary to guarantee that every data point will be
at the steady-state.

On the other hand, stress sweep experiments are not performed at steady-
state since a sinusoidal oscillatory stress wave is imposed to the material. This
test may be performed in “transient” or “correlation” modes. In the former,
the response wave is measured with respect to time and non-linearities may
be easily perceived by analyzing wave shapes. Meanwhile, the latter bear no
information about the wave shapes. However, information about the phase
angle and the input and output amplitudes are given in this mode. While
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transient data carry a lot of information about how the material behaves
along the cycles, our goal is to determine the previously mentioned material
functions. Transient data is not required in this case, thus our stress sweep
experiments were performed in the correlation mode.

3.2
Data processing

Raw data must be processed before being input into the framework’s
equations. Data obtained from experiments performed using parallel plate ge-
ometries should always be corrected due to inhomogeneous flow. In contrast
to the cone-and-plate or the narrow-gap concentric cylinder geometries, for
which the deformation and shear-rate are uniform or nearly uniform through-
out the sample, both these kinematic quantities vary linearly with the radial
coordinate for the parallel-plate geometry.

γ = θr

h
and γ̇ = θ̇r

h
(3-1)

where h is the gap between the plates, θ is the angular displacement and
θ̇ is the angular velocity.

When stress linearly varies with the radius, flow inhomogeneity is incon-
sequential. This is the case for Newtonian fluids, where σ = µγ̇ and Hookean
solids, where σ = Gγ. Notice that stress in both cases may be written as
σ = Cr, where C is a constant value.

The shear stress at the rim (r = R) for these materials may be obtained
as follows

M =
∫ R

0
rCr2πrdr = 2πC

∫ R

0
r3dr = πR4C

2 (3-2)
since σR = CR we obtain

M = πR3

2 σR (3-3)
putting in terms of stress

σR = 2M
πR3 (3-4)

Material properties may be evaluated at the rim conditions since strain
and shear rate are also known at the rim.

For classes of materials in which stress does not vary linearly with the
radius, flow analysis and rheometric theory are much more complex since flow
inhomogeneity affects the material properties.

Flow inhomogeneity of the parallel-plate geometry may be accounted
for by correcting the shear stress at the rim as given by the well-known
Weissenberg-Rabinowitsch equation
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σ = M

2πR3

[
3 + ∂ lnM

∂ ln γ̇R

]
(3-5)

For Newtonian fluids, d lnM/d ln γ̇R = 1, and thus equation 3-5 reduces
to equation 3-4. For non-Newtonian materials, the derivative needs to be evalu-
ated through differentiation of experimental data. Notice that the Weissenberg-
Rabinowitsch equation is only valid for steady-state flow.

Meanwhile, many stress correction equations were proposed for oscilla-
tory flow. Most of them are dependent on the assumed mechanical model
behind the framework (48, 39). However, an analogous correction to the one
presented above was developed by de Souza Mendes et al. (38) and it is given
as follows

σa = Ma

2πR3

[
3 + ∂ ln(Ma/2πR3)

∂ ln γ̇a,R

]
(3-6)

Therefore, equation 3-5 will be employed to correct steady-state flow data
while equation 3-6 will be employed to correct oscillatory flow data.

Furthermore, oscillatory data needs to be revised at high frequencies
and amplitudes due to high instrument inertia. For input stress waves at these
conditions, the kinematic response will also be a high frequency and amplitude
wave. In order to oscillate from zero to high strains in such a short timescale,
the instrument undergo huge accelerations. Hence, the torque consumed to
overcome the instrument’s inertia becomes significant.

Raw data presented by the software includes a commanded stress value
(σcmd) estimated using the total torque as input; and another stress value (σa)
determined using the torque transmitted to the sample as input. In order to
obtain the sample torque, the instrument deducts the inertial torque from the
total torque, taking the phase shifts between the waves into consideration. The
algebra behind the inertia correction is shown in appendix C. We corrected σcmd
values using the equations presented in the appendix and compared to the σa
values presented by the software in order to validate the software corrected
data. The agreement between them was notable, as presented in figure 3.4.

As it was previously shown, the model based material functions are a
function of both stress amplitude σa and frequency ω. Therefore, our data
points must be presented as iso-stress curves at a range of frequencies or iso-
frequency curves at a range of stresses so that the effect of each parameter
is isolated and analyzed. When setting-up the experiment, we guarantee this
by inputing the same conditions for each experiment. For example, a sweep
from 10Pa to 100Pa with 3 points per decade using logarithmic distribution
guarantees that data is recorded for stresses of 10.0Pa, 21.5Pa, 46.4Pa, 100Pa
for every frequency. Therefore, data will be presented at the same stress levels
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for every frequency.
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Figure 3.4: Comparison between the analytical and experimental corrected
stress.

However, the stress corrections are amplitude and frequency dependent,
generating distinct corrected stress values for each frequency. Hence, iso-stress
curves may not be constructed from this data. In order to obtain an iso-stress
curve for a range of frequencies, the desired stress amplitude need to be defined
and, for each frequency, the properties at this amplitude will be calculated
through linear interpolation between the two nearest data points. In order to
guarantee that no significant error is introduced in this process, a large number
of data points is required so that the distance between them is small enough
for the linear approximation to be accurate.

At last, we need to verify if the flow conditions generate a constant-
structure (SAOS/QL-LAOS) or structure-changing motion(LAOS). As it was
previously stated, our analysis framework only comprises constant-structure
motions, which are outlined by a linear or quasilinear response. Meanwhile,
structure-changing motions are characterized by a nonsinusoidal response,
which implies a nonlinear behavior. Since the stress is being imposed to the
material and the kinematic response is being measured, nonlinearities may be
quantified by measuring how nonlinear the kinematic response is. It is known
that, besides the analysis of the wave shape, the magnitude of the higher odd
harmonics of the output wave is a reliable measure of nonlinearity in oscillatory
experiments (22, 18, 23, 57, 58, 60, 4).

When setting-up stress sweep experiments in the “correlation mode” us-
ing the TRIOS software with the FT-Rheology package, it is possible to acquire
harmonic intensities up to the 9th order harmonic. When harmonic order in-
creases, its contribution to the signal decreases. Thus, motion classification
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may be employed by comparing the first (I1) and third (I3) harmonic intensi-
ties. We’ve established the nonlinearity criteria as the threshold of I3/I1 > 3%.
Hence, when this condition is attained for a pair of stress amplitude and fre-
quency, this data point is at LAOS regime. Otherwise, it may be in SAOS or
QL-LAOS regime.

The distinction between the two constant-structure motion regimes is
made by checking if the data point is inside the linear viscoelastic region or
not. The storage modulus G′ is used to analyze if the material is in the linear
viscoelastic region: an average of G′ values for the three smaller amplitudes is
compared to the value of G′ for each data point. Since material properties in
the linear viscoelastic region are not amplitude dependent, this averaged value
may be considered as the linear viscoelastic value of the storage modulus.
Notice that these three data points are necessarily in the linear viscoelastic
region so that this method is valid. If the divergence between the averaged
value and the storage modulus of a data point is more than 10% , this data
point is considered to be outside of the linear viscoelastic region.

After these data treatment processes, data may be applied to the equa-
tions for η1(σa, ω), η2(σa, ω), G(σa, ω), θ1(σa, ω) and θ2(σa, ω) so that these
material functions are obtained for each pair of stress amplitude and frequency.
Thereafter, the iso-stress curves for each material function may be plotted.
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4
Results and discussion

In this section, the presented methodology will be applied in the char-
acterization of the previously described materials. Through flow curves and
stress sweep experiments, the Jeffreys-based QL-LAOS material functions will
be obtained as a function of the frequency. Each curve will be obtained for a
fixed stress amplitude.

4.1
Flow Curve

Flow curves are steady-state flow experiments in which the viscosity of
the material is measured as a function of the shear rate. The stress applied
to cause this shear rate to the material is also measured. For our analysis,
the flow curve will provide a curve of the steady-state viscosity in relation to
a stress level. All the results plotted below have already been corrected for
inhomogeneous flow using the Weissenberg-Rabinowicz correction.

4.1.1
Gel

The steady-state shear flow results for the commercial hair gel are plotted
in figure 4.1.
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Figure 4.1: Flow curve obtained with a cross hatched parallel-plates geometry,
for the commercial hair gel.
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In figure 4.1(a) the flow curve is presented in the most usual form, with
stress and viscosity in the y-axes and shear rate in the x-axis. Meanwhile, the
result is presented in a more convenient manner in figure 4.1(b) : the steady-
state shear viscosity is given as a function of the shear stress. The Jeffreys-based
material functions are determined for fixed shear stress levels and one of the
parameters is the steady-state viscosity. Hence, it is advantageous to obtain
the direct relation between these variables.

Both figures clearly exhibit the viscoplastic behavior of the gel, showing
that there is a yield stress. Figure 4.1(a) shows that the Herschel-Bulkey
equation (σ = σy + kγ̇n) is a good fit for the hair gel. The parameters
- namely, the yield stress σy, the consistency index k and the power-law
exponent n - are indicated in this figure. Figure 4.1(b) clearly shows that
the viscosity dramatically increases as the shear stress approaches the yield
stress (σy = 77.63Pa), indicating a solid-like behavior below this stress value.

4.1.2
Polyacrylamide solution

The steady-state shear flow results for the polyacrylamide dispersion are
plotted in figure 4.2.
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Figure 4.2: Flow curve obtained with a smooth parallel-plates geometry, for
the polyacrylamide dispersion.

Again, the results are shown in two different manners. Figure 4.2(a)
presents the classical approach, while figure 4.2(b) shows how the steady-
state shear viscosity relates to the shear stress. Both plots show that Carreau-
Yasuda is a good fit to represent the mechanical behavior of the polyacrylamide
solution, presenting a tendency of reaching Newtonian plateaus at low shear
stresses and shear rates (η0) and at high shear stresses and shear rates (η∞).
The former could not be attained since torque levels dropped below the

DBD
PUC-Rio - Certificação Digital Nº 1521990/CA



Chapter 4. Results and discussion 54

rheometer’s torque resolution before the plateau was reached, while the latter
could not be reached due to sample spilling at high shear stresses.

The Carreau-Yasuda equation is given as follows:

η = η∞ + (η0 − η∞)
(
1 + (λγ̇)a

)n−1
a (4-1)

where η0 is viscosity at zero shear rate, η∞ is the viscosity at infinite shear
rate, λ is the relaxation time, n is the power index and a is a fit parameter.

4.2
Stress Sweep

For both materials, stress sweep experiments were conducted for a range
of frequencies. It is worth noting that both inhomogeneous flow and inertia
corrections were made in order to obtain results that correctly describe the
material behavior under these conditions.

Data points may be mapped through a stress amplitude x frequency plot
(σa x ω). Each data point may be classified in SAOS/QL-LAOS or LAOS
through it’s I3/I1 ratio and in SAOS or LAOS/QL-LAOS verifying if the data
point is within the linear viscoelastic region.

4.2.1
Gel

Stress sweeps were run for the following frequencies: 0.1, 0.215, 0.464,
1.0, 2.15, 4.64 and 10Hz. Larger frequencies could not be reached due to
inertia-dominated flow. When the raw phase angle is larger than 175◦ the
inertial effects are much higher than viscous and elastic effects. Therefore,
small fluctuations in the instrument’s inertia calibration may be as significant
to the experiment results as the material’s response. Hence, results are not
reliable even after correction.

For each experiment, the commanded stress amplitude (σcmd) ranged
from 100Pa to 1000Pa, with 12 points per decade. Higher stresses could not
be reached due to sample spilling.

Figure 4.3 shows all the processing steps from raw data (figure 4.3(a))
to the fully processed data (figure 4.3(d)), presenting the distinction between
the regimes (linear, nonlinear and quasilinear). As it was previously stated
in section 3.2, data must be processed to account for inertial torque (figure
4.3(b)) and inhomogeneous flow between parallel plates (figure 4.3(c)).

Iso-stress curves could not be made from corrected data. Hence, linear
interporlation was employed in order to obtain the material properties at 100,
120, 140, 160, 180 and 200Pa, which are the data points showed in figure 4.3(d).
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Figure 4.3: Linearity map for a) the raw data, b) data after inertia correction,
c) data after inhomogeneous flow correction and d) fully processed data

The Jeffreys-based material functions were plotted for the data points
showed in figure 4.3(d).

It may be seen from figure 4.4(a) that η1 is highly dependent of the stress
amplitude, increasing as σa decreases. This trend is expected since η →∞ as
σ → σy. Meanwhile, small fluctuations of η1 may be observed in the frequency
spectrum for a fixed stress amplitude.

For a perfect Jeffrey material, η2 represents the viscosity of the completely
unstructured material (i.e. η∞). However, figure 4.4(b) depicts a distinct
behavior since η2 is dependent of the stress amplitude and frequency. This trend
clearly shows that the hair gel behavior diverge from the model framework.
Since the sum of the viscosities (η1 and η2) is always equal to the steady-state
shear viscosity η, which is a constant value, the fluctuations observed for η1

are a compensation for the variations of η2 in the frequency spectrum.
The comparison between the viscosity values gives a clear notion that η1

is always much larger than η2. This is expected since η2 tends to represent η∞,
which is the lowest viscosity value for shear-thinning materials. This huge gap
between the viscosity values also clarifies the fact that the η1 fluctuations in
the frequency spectrum are almost negligible.
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The shear modulus is also shown to increase as frequency increases. This
trend shows that the stiffness is much higher when the material is subjected to
stimuli whose characteristic times are shorter. On the other hand, the material
respond more rigidly to smaller stress amplitudes, meaning that the material
is stiffer closer to the yield stress.
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Figure 4.4: Jeffrey-based material functions for the commercial hair gel

The characteristic times θ1 and θ2 are represented in figures 4.5(a) and
4.5(b), respectively. Both properties decay as the stress amplitude increases,
which shows that the elasticity decreases as the material becomes less struc-
tured. Furthermore, the relaxation time should tend to infinite below the yield
stress, which is a trend shown by the results as θ1 exponentially increases as
σa → σy.

The presentation of these results is the highlight of this novel method-
ology since it clearly shows information about the material’s elasticity and
structural state at large amplitudes without the need of a complex mathemat-
ical analysis that overlook the physical phenomena that govern the flow.

As frequency is increased, both θ1 and θ2 decreases. It is worth noting that
θ2 reaches negligible values. From the analog point of view, this is supported
by the fact that at high enough frequencies, the analog branch that contains
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η2 doesn’t respond rapidly enough to the oscillations and the material behaves
closer to a Maxwell fluid.

For a Maxwell fluid, there is only one time constant, which is described
as follows:

θ1 = η1

G
(4-2)

Since η1 is almost invariable in the frequency spectrum and G increases
as ω does the same, it is expected that θ1 decreases in this situation. As the
Maxwell framework exhibits only one time constant, it is also consistent that
θ2 is negligible.
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Figure 4.5: Time constants for the commercial hair gel

At smaller frequencies and larger stress amplitudes, the equations for η2

and θ2 become very sensible to minor fluctuations on the values of η, ω, G′ and
G′′. Hence, this region presents some scattered data points on the retardation
viscosity and retardation time plots.

4.2.2
Polyacrylamide solution

For the Polyacrylamide solution, stress sweeps were run for commanded
stress amplitudes (σcmd) ranging from 0.1 to 100Pa. Smaller stress values fall
below the instrument’s torque resolution, while higher stresses could not be
reached due to sample spilling.

The following frequencies were input: 0.1, 0.215, 0.464, 1.0, 2.15 and
4.64Hz. Again, larger frequencies evoke inertia-dominated flow and cannot be
taken into account.

As it may be perceived from figure 4.6, the transition between small
amplitude and large amplitude regimes is frequency dependent. This is due to
the fact that in an oscillatory motion, the stress never persists at its maximum
value σa. Thus, there is never enough time of continuous exposure to σa that
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would be needed for the breakup process to be fully completed. As frequency
increases, the continuous exposure time to higher stresses decreases. Hence,
the breakup process becomes farther from completion. This fact, previously
predicted by de Souza Mendes and Thompson (5), is usually ignored as
researchers tend to designate a frequency-independent amplitude value for the
transition between these regions.
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Figure 4.6: Linearity map for a) the raw data, b) data after inertia correction,
c) data after inhomogeneous flow correction and d) fully processed data

Figure 4.7 demonstrates this frequency dependency in a different manner.
Figure 4.7(a) shows that the storage modulus has distinct values at low
frequencies for different stress amplitudes. As frequency increases, dispersion of
the storage modulus values diminishes until they converge at large frequencies.
As dispersion decreases, more stress amplitudes fall into SAOS regime. This
behavior is present until every stress amplitude falls into the SAOS regime, as
shown in figure 4.7(b).
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Figure 4.7: Dispersion of the storage modulus for distinct a) stress amplitudes
and b) oscillatory regimes

The Jeffreys-based material functions were plotted for the following stress
amplitudes: 1, 1.5, 2, 2.5, 3 and 3.5Pa.
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Figure 4.8: Jeffrey-based material functions for the polyacrylamide solution

Once more, η1 rapidly decreases as the stress amplitude increases. This
confirms the tendency of structure deconstruction shown in figure 4.2 as stress
levels are raised. It is clear that η1 is orders of magnitude higher than η2,
which tends to the η∞ value given by the Carreau-Yasuda fit when stresses
and frequencies are high. Again, G increases as frequency increases. Thus, the
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polyacrylamide solution responds more rigidly to stimuli whose characteristic
times are shorter.
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Figure 4.9: Time constants for the polyacrylamide solution

The same trends observed for the commercial hair gel time constants
are presented on figure 4.9 for the polyacrylamide solution’s θ1 and θ2. Both
time constants decay with the increase of σa and ω, showing a decrease in
elasticity when the material is less structured. Once more, the decrease of
the time constants in the frequency spectrum allied with the fact that θ2

reaches negligible values suggests that the material verge upon a Maxwell fluid
behavior at high frequencies.

Again, the sensibility of equations 2-84 and 2-86 for smaller frequencies
and larger stress amplitudes causes scattered data points on the retardation
viscosity and retardation time plots.
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5
Final remarks

In this work, we have developed a new methodology to analyze materials
in constant-structure motion. Firstly, the selection of an appropriate framework
is vital. Every framework has its model parameters and time constants. For the
Jeffreys framework, there is a relaxation viscosity η1, a retardation viscosity
η2, a shear modulus G, a relaxation time constant θ1 and a retardation time
constant θ2. These parameters may be converted into material properties
that are functions of the measurable quantities η, G′, G′′, J ′ and J ′′. It was
shown that in order to obtain these quantities for a spectrum of various stress
amplitudes and frequencies, only a steady-state flow sweep and a number of
oscillatory stress sweeps at different fixed frequencies are necessary.

It is clear that the actual retardation and relaxation mechanisms within
the microscopic structure of the tested materials differ from the ones predicted
by the Jeffreys model. This is expected since any given framework is a simplistic
modeling of a series of complex microscopic interactions. Nevertheless, the
Jeffreys model is a much more suitable framework than the Maxwell or Kelvin-
Voigt; which are usually implicit in most analysis since it encompasses the
entire spectrum of mechanical behavior and represents the qualitative behavior
of any given material.

The analysis of the Jeffreys-based material functions and time constants
provides a reasonable perception of how the material behaves in the linear
and quasilinear oscillatory flow regimes since qualitative information about the
material microscopic structure may be obtained. It is also remarkable that both
SAOS and QL-LAOS data may be analyzed and visualized without distinction.

Furthermore, data analysis presented on this work is straightforward as
raw data obtained from the rheometer requires simple data processing steps
before being input into the equations that evaluate the material functions. This
fact contrasts with most large amplitude oscillatory shear analysis methods
since they aim to analyze structure-changing motions and this requires complex
mathematical manipulation of data.

At last, both experimental methodology and data analysis presented in
this research are much simpler than the previous methodologies used to analyze
materials in the quasilinear large amplitude oscillatory shear regime.
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5.1
Future works

The rheometric experiments have been reduced down to the simplest
possible set of experiments. However, data processing is still necessary in order
to obtain data for the same stress amplitudes at different frequencies. It is
evident that, in overall, the methodology would become much simpler if no
stress corrections were necessary.

This could be achieved if the rheometer’s software employed the inertia
and inhomogeneous flow corrections prior to data acquisition. However, this is
not a simple task, since inertia correction uses the material phase angle, which
is acquired during the experiment, and inhomogeneous flow correction uses the
derivative of both torque and shear rate.

Inhomogeneous flow correction may be avoided if cone-plate or
concentric-cylinder geometries are used. Even tough the latter is not rec-
ommended in oscillatory experiments due to a high inertia, the former may
be suited for materials that present no apparent wall-slip. This possibility
could be tested in future works, in order to render a simpler experimental
methodology.

The analysis of constant-structure motion data may be further explored.
The comparison between the Jeffrey’s analysis and the Maxwell/Kelvin-Voigt
analysis will be addressed in future works.

At last, it might also be interesting to employ mechanical models other
than the Jeffreys. This would render different analysis that may be more
suitable to some specific classes of materials. The suitability of the models
could be evaluated through a parameter that captures the deviation of the
real material in relation to the model’s prediction.
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A
Transient experiments

A.1
Creep

To perform a creep experiment, a constant stress σ must be applied to
the material at the time t = 0. For every material, the total deformation of
the material will be a function of the time (γ(t)) as molecular and microscopic
bonds are broken and relative movement between molecules and particles is
initiated. After a long period of time, total deformation will reach a plateau
if the material possesses a solid-like behavior. On the other hand, deformation
will continuously increase at a constant rate if the material possesses a fluid-like
behavior, as shown in figure A.1.

time (t)

st
ra

in
(.

)

Fluid-like Material
Solid-like Material

.0

6

Figure A.1: Behavior of solid-like and fluid-like materials under a creep
experiment

The initial deformation γ0 accounts for an elastic deformation γe caused
by elastic effects on this fluid-like material. Meanwhile, the time constant λ
accounts for viscous effects on the solid-like material.

Creep experiments will be simulated in this section for both a perfect
Kelvin-Voigt solid and a Maxwell liquid.
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A.1.1
Kelvin-Voigt solid

The stress imposed to the Kelvin-Voigt solid is the sum of the elastic
stress σe = GKV γ and the viscous stress σv = ηKV γ̇ so that

σ = GKV γ + ηKV γ̇ with γ = 0 at t = 0 (A-1)
hence

σ = GKV γ + ηKV γ̇ → σ = GKV γ + ηKV
dγ

dt
(A-2)

thus, rearranging the equation above

GKV

ηKV
dt = dγ

(σ/GKV − γ) (A-3)

integrating this equation with respect to time, we obtain

GKV

ηKV
t = − ln[(σ/GKV )− γ] + C (A-4)

Applying the boundary condition results in C = ln(σ/GKV ). Hence,
rearranging equation A-4 in relation to γ we obtain

γ(t) = (σ/GKV )[1− exp
[
(−GKV )t/(ηKV )

]
(A-5)

The retardation time λ represents the time needed for the strain to reach
(1− 1/e) of its equilibrium value and is given by

λ ≡ ηKV
GKV

(A-6)

Analyzing equation A-5, a plateau is expected for γ(∞), which clearly
indicates a solid-like behavior on a large timescale as a constant stress will
provoke a constant strain.

A.1.1.1
Maxwell liquid

The constitutive equation for a constant stress applied to a perfect
Maxwell fluid is given by

σ = GMWγe = ηMW γ̇v (A-7)
Hence

γe = σ

GMW

,
dγv
dt

= σ

ηMW

(A-8)

using the boundary condition γv = 0 at t = 0 and integrating the
equation, we obtain

γv = σ

ηMW

t (A-9)
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Accounting for the fact that γ = γe + γv, the strain evolution equation is
given by

γ(t) = σ

GMW

+ σ

ηMW

t→ γ(t) = σ

GMW

1 + GMW

ηMW

t

 (A-10)

It is known that the instantaneous strain in the spring is γ0 ≡ σ/(GMW ).
Hence,

γ(t) = γ0

1 + GMW

ηMW

t

 (A-11)

and the strain evolution with time indicates a fluid-like behavior since
strain increases with time for a constant stress. A limitation of the Maxwell
model comes from the fact that ηMW andGMW are constant. Hence, Newtonian
flow is expected during the creep experiment, which is usually not true for
generic materials.

A.2
Stress relaxation

To perform a stress relaxation experiment, a constant deformation γ must
be applied to the material at the time t = 0. For every material, the total
stress under a constant deformation will be a function of the time (σ(t)) as
molecules tend to rearrange and stress is relieved. Stress will reach a plateau if
the material possesses a solid-like behavior. Meanwhile, stress will continuously
decrease until it reaches a neutral value of zero stress, if the material possesses
a fluid-like behavior, as shown in figure A.2.

time (t)

st
re

ss
(<

)

Solid-like Material
Fluid-like Material

6

Figure A.2: Behavior of solid-like and fluid-like materials under a stress
relaxation experiment
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The time constant λ accounts for elastic effects on the fluid-like material.
Stress relaxation experiments will be simulated in this section for both a

perfect Kelvin-Voigt solid and a Maxwell liquid.

A.2.1
Kelvin-Voigt solid

The Kelvin-Voigt model is not able to predict stress relaxation. Again,
the mechanical analog consists of an elastic branch and a viscous branch. The
elastic branch will be subjected to an elastic deformation γe equal to the viscous
deformation γv. The stress equation for the Kelvin-Voigt model is given by

σ(t) = σe + σv → σ(t) = GKV γ + ηKV γ̇ (A-12)
The stress relaxation experiment imposes a constant deformation γ to the

material, but the dashpot cannot relax on this condition, since γ̇ = 0 causing

σ = GKV γ (A-13)
which is a constant value.

A.2.2
Maxwell fluid

Once more, the constitutive equation for a constant deformation γ

applied to a Maxwell fluid is given by

σ(t) = GKV γe = ηKV γ̇v (A-14)
where γe + γv = γ.
Thus

GKV (γ − γv) = ηKV γ̇v with γv = 0 at t = 0 (A-15)

hence

GKV

ηKV
dt = dγv

γ − γv
(A-16)

integrating equation A-16 we obtain

GKV

ηKV
t = − ln(γ − γv) + C (A-17)

Applying the boundary condition, we obtain that C = ln γ. Thus

−GKV

ηKV
t = ln[(γ − γv)/γ] (A-18)

taking to the exponential form

DBD
PUC-Rio - Certificação Digital Nº 1521990/CA



Appendix A. Transient experiments 73

exp
− GKV

ηKV
t

 = (γ − γv)/γ (A-19)

at last

σ(t) = GKV γ exp
− GKV

ηKV
t

 (A-20)

The stress from the constant deformation experiment decays exponen-
tially with time in the Maxwell model. The relaxation time is given by

λ ≡ ηKV
GKV

(A-21)

meaning that the stress drops to 1/e of its initial value at t = λ. Initially,
the stress is σ(0) = GKV γ, which is the stress on the spring element. However,
it decays until eventually σ(∞) = 0.

Notice that this perspective clearly shows a fluid point of view of this
phenomenon at large timescales, since it is expected that no stress is needed
to sustain a constant deformation in a fluid.
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B
The Jeffreys Mechanical Model

The Jeffreys mechanical model is depicted below, in figure B.1.

�e �v

� = �e + �v

� = �e + �v2

�e = �v1

�v2

⌘1

⌘2

G

Figure B.1: The Jeffreys mechanical analog.

From figure B.1, it may be stated that this model comprises to the
following equations:

σ = σe + σv2 = σv1 + σv2 (B-1)

σ̇ = σ̇e + σ̇v2 = σ̇v1 + σ̇v2 (B-2)

γ = γe + γv (B-3)

γ̇ = γ̇e + γ̇v (B-4)

And the constitutive equations for the mechanical elements are:

σe = Gγe (B-5)

σv1 = η1γ̇v (B-6)

σv2 = η2γ̇ (B-7)

It is important to state that

η = η1 + η2 (B-8)
If we multiply equation B-4 by η1

η1γ̇ = η1γ̇e + η1γ̇v (B-9)
hence
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η1γ̇ = η1γ̇e + σv1 (B-10)
Taking the derivative of equation B-5

σ̇e = σ̇v1 = Gγ̇e → γ̇e = σ̇v1

G
(B-11)

thus

η1γ̇ = σ̇v1
η1

G
+ σv1 (B-12)

rearranging for σv1

σv1 = η1γ̇ − σ̇v1
η1

G
(B-13)

Applying equation B-13 in equation B-1

σ = η1γ̇ − σ̇v1
η1

G
+ σv2 (B-14)

Using equation B-7

σ = η1γ̇ − σ̇v1
η1

G
+ η2γ̇ (B-15)

hence

σ = (η1 + η2)γ̇ − σ̇v1
η1

G
(B-16)

In order to obtain σ̇v1, we may apply equation B-7 in equation B-2

σ̇ = σ̇v1 + η2γ̈ → σ̇v1 = σ̇ − η2γ̈ (B-17)
hence

σ = (η1 + η2)γ̇ −
(
σ̇ − η1γ̈

)η2

G
(B-18)

rearranging

σ + η1

G
σ̇ = (η1 + η2)γ̇ + η2

η1

G
γ̈ (B-19)

which is equation 2-75.
We may adjust equation B-19 so that η appears in all strain-related terms

σ + η1

G
σ̇ = ηγ̇ + η2

η

η

η1

G
γ̈ (B-20)

applying equation B-8

σ + η1

G
σ̇ = ηγ̇ + η

η1η2

G(η1 + η2) γ̈ (B-21)

defining the relaxation time as

θ1 = η1

G
(B-22)

and the retardation time as

θ2 = η1η2

G(η1 + η2) (B-23)
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we obtain

σ + θ1σ̇ = η(γ̇ + θ2γ̈) (B-24)
which is equation 2-76.
Equations B-22 and B-23 may be demonstrated through creep and stress

relaxation experiments.
A creep experiment is performed by inputing a constant stress to the

material. Therefore, equation B-21 reduces to

σ = η

γ̇ + η1η2

G(η1 + η2) γ̈
 (B-25)

since σ = cte→ σ̇ = 0.
hence

σ

η
=
γ̇ + η1η2

G(η1 + η2) γ̈
 (B-26)

We may state that γ̈ = dγ̇/dt. In this case

σ

η
=
γ̇ + η1η2

G(η1 + η2)
dγ̇

dt

 (B-27)

rearranging this equation, we obtain
σ
η
− γ̇
η1η2

G(η1+η2)
= dγ̇

dt
(B-28)

Separating the differential equation

dt =
η1η2

G(η1+η2)
σ
η
− γ̇

dγ̇ (B-29)

Integrating both sides∫ t

0
dt′ =

∫ γ̇

γ̇0

η1η2
G(η1+η2)
σ
η
− γ̇′

dγ̇′ (B-30)

or ∫ t

0
dt′ = η1η2

G(η1 + η2)

∫ γ̇

γ̇0

1
σ
η
− γ̇′

dγ̇′ (B-31)

hence

η1η2

G(η1 + η2)

(
ln
(
σ

η
− γ̇

)
− ln

(
σ

η
− γ̇0

))
= t (B-32)

rearraging, we obtain

ln
(
σ

η
− γ̇

)
− ln

(
σ

η
− γ̇0

)
= t

η1η2
G(η1+η2)

(B-33)

multiplying by −1
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− ln
(
σ

η
− γ̇

)
+ ln

(
σ

η
− γ̇0

)
= − t

η1η2
G(η1+η2)

(B-34)

taking the equation above to the exponential form

−eln
(
σ
η
−γ̇
)

+ e
ln
(
σ
η
−γ̇0

)
= e

− t
η1η2

G(η1+η2) (B-35)
thus

−σ
η

+ γ̇ + σ

η
− γ̇0 = e

− t
η1η2

G(η1+η2) (B-36)

hence

γ̇ − γ̇0 = e
− t

η1η2
G(η1+η2) (B-37)

Finally,

γ̇ = γ̇0 + e
− t

η1η2
G(η1+η2) (B-38)

where η1η2/G(η1 + η2) is the creep experiment time constant. Hence

θ2 = η1η2

G(η1 + η2) (B-39)

which is the retardation time, previously defined in equation B-23.
Analogously, a stress relaxation experiment is performed by inputting a

constant deformation to the material. Therefore, equation B-21 reduces to

σ + η1

G
σ̇ = 0 (B-40)

hence

σ = −η1

G
σ̇ (B-41)

We may state that σ̇ = dσ/dt. In this case

σ = −η1

G

dσ

dt
(B-42)

Rearranging

dt = −η1

G

dσ

σ
(B-43)

Integrating both sides ∫ t

0
dt′ = −η1

G

∫ σ

σ0

dσ′

σ′
(B-44)

hence

− t
η1
G

= ln
(
σ

σ0

)
(B-45)

taking the equation above to the exponential form

e
− t
η1
G = e

ln
(
σ
σ0

)
(B-46)
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thus

e
− t
η1
G = σ

σ0
(B-47)

Finally, we obtain

σ = σ0e
− t
η1
G (B-48)

where η1/G is the stress relaxation experiment time constant. Hence

θ1 = η1

G
(B-49)

which is the relaxation time, previously defined in equation B-22.
The model parameters η1, η2 and G and the time constants θ1 and θ2

may be described as functions of measurable quantities.
If a strain-controlled oscillatory experiment is performed, the input strain

wave will have the following form

γ = γa sin(ωt) (B-50)
and the shear rate will have the following form

γ̇ = γ̇a cos(ωt) (B-51)
taking the derivative again

γ̈ = −γ̈a sin(ωt) (B-52)
the output stress response wave in a constant-structure motion will be a

sinusoidal wave with a phase angle

σ = σa sin(ωt+ δ) = σa sin(ωt) cos(δ) + σa cos(ωt) sin(δ) (B-53)

taking the derivative

σ̇ = σaω cos(ωt+ δ) = σaω cos(ωt) cos(δ)− σaω sin(ωt) sin(δ) (B-54)

Applying the wave equations above to B-24, we obtain

σa sin(ωt) cos(δ) + σa cos(ωt) sin(δ) + σaωθ1 cos(ωt) cos(δ)

− σaωθ1 sin(ωt) sin(δ) = η
(
γaω cos(ωt)− θ2γaω

2 sin(ωt)
)

(B-55)

Defining the dynamic moduli as

G′(ω) = σa
γa

cos(δ), G′′(ω) = σa
γa

sin(δ) (B-56)
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G′γa sin(ωt) +G′′γa cos(ωt) +G′γaωθ1 cos(ωt)

−G′′γaωθ1 sin(ωt) = η
(
γaω cos(ωt)− θ2γaω

2 sin(ωt)
)

(B-57)

We may group the sine and cosine terms

sin(ωt)
(
G′γa −G′′γaωθ1 + θ2γaω

2
)

+ cos(ωt)
(
G′′γa +G′γaωθ1 − ηγaω

)
= 0

(B-58)
Notice that both sine and cosine coefficients must be equal to zero.
Hence

G′′γa +G′γaωθ1 − ηγaω = 0 (B-59)
thus

θ1 = ηω −G′′

G′ω
= η

G′
− G′′

G′ω
(B-60)

and

G′γa −G′′γaωθ1 + θ2γaω
2 = 0 (B-61)

thus

θ2 = G′′

G′ω
− G′2 +G′′2

G′ω2η
(B-62)

which are equal to equations 2-83 and 2-84. At last, the combination
between equations B-8, B-22, B-23, B-60 and B-62 generate equations 2-85,
2-86 and 2-87.

Likewise, if a stress-controlled oscillatory experiment is performed, the
input stress wave will have the following form

σ = σa sin(ωt) (B-63)
and the stress derivative will have the following form

σ̇ = σaω cos(ωt) (B-64)
the output strain response wave in a constant-structure motion will be a

sinusoidal wave with a phase angle φ = −δ, being δ the phase angle between
the stress and strain waves using the strain wave as the referential, as it was
done for the strain-controlled experiment.

Thus

γ = γa sin(ωt− δ) = γa sin(ωt) cos(δ)− γa cos(ωt) sin(δ) (B-65)

taking the derivative
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γ̇ = γaω cos(ωt− δ) = γaω cos(ωt) cos(δ) + γaω sin(ωt) sin(δ) (B-66)

taking the derivative again

γ̈ = γaω
2 cos(ωt− δ) = −γaω2 cos(ωt) cos(δ) + γaω sin(ωt) sin(δ) (B-67)

Applying the wave equations above to B-24, we obtain

σa sin(ωt) + σaωθ1 cos(ωt) = η
(
γaω cos(ωt) cos(δ) + γaω sin(ωt) sin(δ)

− θ2γaω
2 sin(ωt) cos(δ) + θ2γaω

2 cos(ωt) sin(δ)
)

(B-68)

We may group the sine and cosine terms

sin(ωt)
(
σa − ηγaω sin(δ) + θ2ηγaω

2 cos(δ)
)

+ cos(ωt)
(
σaωθ1 − ηγaω cos(δ)− θ2ηγaω

2 sin(δ)
)

= 0 (B-69)

Defining the dynamic moduli as

J ′(ω) = γa
σa

cos(δ), J ′′(ω) = γa
σa

sin(δ) (B-70)

we obtain

sin(ωt)
(
σa − ηJ ′′ω + θ2ηJ

′ω2
)

+ cos(ωt)
(
σaωθ1 − ηJ ′ω − θ2ηJ

′′ω2
)

= 0
(B-71)

Notice that both sine and cosine coefficients must be equal to zero.
Hence

1− ηωJ ′′ + θ2ηω
2J ′ = 0 (B-72)

thus

θ2 = ηωJ ′′ − 1
ηJ ′ω2 (B-73)

and

ωθ1 − ηωJ ′ − θ2ηω
2J ′′ = 0 (B-74)

thus
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θ1 = (J ′2 + J ′′2)
J ′

η − J ′′

J ′ω
(B-75)

which are equal to equations 2-78 and 2-79. At last, the combination
between equations B-8, B-22, B-23, B-75 and B-73 generate equations 2-80,
2-81 and 2-82.
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C
Inertia Correction

The torque needed to accelerate or decelerate the motor and geometry is
given by

MI = IΩ̇ = Iθ̈ (C-1)
where I is the moment of inertia, θ is de angular displacement and Ω is

the angular velocity.
The strain γ is related to the angular displacement by

γ = θ

kγ
(C-2)

where kγ is a constant factor that depends on the geometry

kγ =


β for cone-plate
h
R

for plate-plate
Ro−Ri
Ri

for Couette

(C-3)

where β is the cone angle, h is the gap between plates, R is the plate
radius, and Ro and Ri are the outer and inner radii of the Couette geometry.

Let us analyze the case where we impose a sinusoidal strain wave

γ = γa sin(ωt) (C-4)
where γa is the strain amplitude, ω is the oscillation frequency, and t is

the time. In this case,

θ = θa sin(ωt) = kγγa sin(ωt) (C-5)

θ̇ = kγωγa cos(ωt) (C-6)

θ̈ = −kγω2γa sin(ωt) (C-7)

Thus, the inertia torque becomes

MI = −Iω2kγγa sin(ωt) (C-8)
Meanwhile, the sample torque Ms is given by
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Ms = Msa sin(ωt+ δ) (C-9)
where δ is the phase shift due to sample elasticity.
We can write Ms in terms of the shear stress σ

Ms = σ

kσ
(C-10)

where kσ is a constant factor that depends on the geometry

kσ =


3

2πR3 for cone-plate
2

πR3 for plate-plate
1

2πR2
iL

for Couette

(C-11)

where L is the height of the Couette geometry. Note that, due to flow
inhomogeneity, for the plate-plate geometry σ stands for the apparent shear
stress, i.e. the stress at the rim of an equivalent Newtonian fluid. Thus σ needs
further correction to account for flow inhomogeneity, as it was discussed in
section 3.2.

Thus,

Msa = σa
kσ

(C-12)

and

Ms = σa
kσ

sin(ωt+ δ) (C-13)

or finally

Ms = σa
kσ

cos(δ) sin(ωt) + σa
kσ

sin(δ) cos(ωt) (C-14)

And the total torque M is just

M = Ms +MI (C-15)
It is also equal to

M = Ma sin(ωt+ δraw) (C-16)
or

M = Ma cos(δraw) sin(ωt) +Ma sin(δraw) cos(ωt) (C-17)
Therefore,
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Ma cos(δraw) sin(ωt) +Ma sin(δraw) cos(ωt) =
σa
kσ

cos(δ) sin(ωt) + σa
kσ

sin(δ) cos(ωt)− Iω2kγγa sin(ωt) (C-18)

We now rearrange equation C-18 as follows

sinωt
[
Ma cos(δraw)−σa

kσ
cos(δ)+Iω2kγγa

]
+cos(ωt)

[
Ma sin(δraw)−σa

kσ
sin(δ)

]
= 0

(C-19)
The coefficients of the above equation must be null, leading to

Ma cos(δraw) = σa
kσ

cos(δ)− Iω2kγγa (C-20)

Ma sin(δraw) = σa
kσ

sin(δ) (C-21)
or

σa cos(δ) = Makσ cos(δraw) + Iω2kγkσγa (C-22)

σa sin(δ) = Makσ sin(δraw) (C-23)
Thus,

σa =
[
(Makσ cos(δraw) + Iω2kγkσγa)2 + (Makσ sin(δraw))2

]1/2
(C-24)

and

sin(δ) = Makσ sin(δraw)
σa

(C-25)

cos(δ) = Makσ cos(δraw) + Iω2kγkσγa
σa

(C-26)

Once we have σa and δ we can calculate the storage and loss moduli G′

and G′′

G′ = σa
γa

cos(δ) (C-27)

G′′ = σa
γa

sin(δ) (C-28)
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