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Abstract

Pasqualette, Marcelo de Alencastro; Nieckele, Angela Ourivio (Advisor);
Carneiro, Jodo Neuenschwander Escosteguy (Co-Advisor). Optimization of
the interfacial shear stress and assessment of closure relations for
horizontal viscous oil-gas flows in the stratified and slug regimes. Rio de
Janeiro, 2017. 199p. Dissertacdo de mestrado - Departamento de Engenharia
Mecénica, Pontificia Universidade Catdlica do Rio de Janeiro.

The current depletion of traditional oil fields is increasing the demand for the
production and transport of unconventional oils, which might possess a high
dynamic viscosity. In this context, the study of the simultaneous flow of gas and
viscous oils in pipelines is of paramount importance for the Oil & Gas industry.
One-dimensional numerical simulations play a key role in such studies, especially
the ones based on the 1D Two-Fluid Model, whose numerical solution in fine
meshes consists in the Regime Capturing Methodology. The purpose of this work
is to use this approach for reproducing the experimental data of isothermal slug and
stratified wavy viscous oil-gas flows in a horizontal laboratory-scale pipe. For
improving the results of the methodology, experimental data were used together
with an optimization procedure and a simplified version of the 1D Two-Fluid
Model for successfully creating two new expressions for the interfacial friction
factor, which showed better efficiency than standard literature correlations. The
effect of introducing a dynamic pressure, axial momentum diffusion and dynamic
interfacial shear in the 1D Two-Fluid Model was examined. Results of pressure
gradient and liquid holdup (histograms, mean values and transient profiles) were
compared against experimental data. It was seen, with the aid of well-posedness
analyses, that the dynamic pressure and the new expressions for the interfacial shear

stress provided satisfactory results.

Keywords
1D Two-Fluid Model; Viscous-Oil Gas Flow; Regime Capturing
Methodology; Interfacial Shear Stress; Closure Models.
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Resumo

Pasqualette, Marcelo de Alencastro; Nieckele, Angela Ourivio; Carneiro,
Jodo Neuenschwander Escosteguy. Otimizacdo da tensdo cisalhante
interfacial e avaliagcdo das relagcbes de fechamento para escoamentos
horizontais de 6leo viscoso-gas nos regimes estratificado e golfadas. Rio de
Janeiro, 2017. 199p. Dissertacdo de mestrado - Departamento de Engenharia
Mecanica, Pontificia Universidade Catolica do Rio de Janeiro.

O atual esgotamento de campos de petréleo tradicionais tem aumentado a
demanda pela producédo e transporte 6leos ndo convencionais, que podem possuir
uma alta viscosidade dindmica. Neste contexto, o estudo do escoamento simultaneo
de géas e dleos viscosos em tubulacdes é de grande importancia para a industria de
Oleo & Gas. Simulagbes numéricas uni-dimensionais desempenham um papel
essencial nestes estudos, especialmente aquelas baseadas no Modelos de Dois-
Fluidos 1D, cuja solugdo numérica em malhas refinadas consiste na Metodologia de
Captura de Regimes. O propdsito deste trabalho é utilizar esta abordagem para
reproduzir dados experimentais de escoamentos 06leo viscoso-gas em golfadas e
estratificado ondulado em um duto horizontal em escala laboratorial. Para aprimorar
os resultados desta metodologia, dados experimentais foram usados conjuntamente
com um procedimento de otimizacao e uma versao simplificada do Modelos de Dois-
Fluidos 1D para criar duas novas expressoes para o fator de atrito interfacial, as quais
mostraram maior eficiéncia que correlagbes padrdo da literatura. O efeito da
introducdo da pressao dinamica, difusdo axial de quantidade de movimento e tensdo
interfacial dindmica no Modelo de Dois-Fluidos 1D foi analisado. Resultados de
gradiente de pressdo e de fracdo volumétrica de liquido (histogramas, valores médios
e perfis transientes) foram comparados com dados experimentais. Observou-se, com
o0 auxilio de andlises de boa-colocagao, que a pressao dinamica e as novas expressoes

para o fator de atrito interfacial fornecem resultados satisfatorios.

Palavras-chave ,
Modelo 1D de Dois-Fluidos; Escoamento Oleo Viscoso - Gas; Metodologia
de Captura de Regime; Tensdo Cisalhante Interfacial; Modelos de Fechamento.
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“Two roads diverged in a wood, and I —
I took the one less traveled by,

And that has made all the difference.”
(Robert Frost)

“- Por que renuncias a luta?

- Perdi as esperancas.

- Pois luta sem esperancas!

- Mas, se perdi a fé?

- Luta sem fé!

- Mas se me abandonaram?

- Persiste sozinho. Faze de teu coracdo uma lanca, de teu peito um escudo, segue
o impulso do teu braco, e fere o Gltimo esforco do teu desespero. ”

(Mario Ferreira dos Santos)

“(...) mas dispusestes tudo com medida, quantidade e peso”

(Sb 11,20)
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1. INTRODUCTION

In the oil & gas industry, both acquired data and projections show that the rate
of increase of the conventional oil sources (crude oil and natural gas liquids)
production has being diminishing at least for a decade, due to the depletion of
traditional petroleum fields (I.A.E., 2015). This is the case, for example, of the
Norwegian conventional crude oil production, which fell from 1.80x108 Sm3, in
2001, to 0.94x108 Sm3 in 2016 (Norsk Petroleum, 2017), as it can be seen in Figure
1.1.
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Figure 1.1 — Norwegian annual crude oil, condensate, NGL (Natural Gas Liquid) and gas
production from 1971 to 2016. Data extracted from Norsk Petroleum (2017).

At the same time, there has been a significant increase in the demand for the
exploitation of unconventional oils, which tends to continue according to
projections made for several scenarios, as shown in Figure 1.2, according to the
World Energy Outlook 2014 (I.A.E., 2015).

The Schlumberger Oilfield Glossary (Schlumberger, 2017) defines an
unconventional oil as a umbrella term (also applied to gases) that covers oil

resources "whose porosity, permeability, fluid trapping mechanism, or other
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characteristics differ from conventional sandstone and carbonate reservoirs". That
is why Zee Ma & Holditch (2016) go further and define unconventional oils as
"subsurface hydrocarbon resources that are tight and must be developed using large
hydraulic fracture treatments or methods", i.e., non-standard techniques. Among
unconventional oils, besides tar sands and shale and tights oils, heavy oils (specific
gravity lower than 22.3°API) are a notable example of unconventional oils (Zee Ma
& Holditch, 2016; Schlumberger, 2017). Usually, such oils also have a dynamic
viscosity (henceforth referred to as just “viscosity”) much higher than the 1cp,
which is, the viscosity of water, and it has the same order of magnitude than the
viscosity of most conventional oils in standard conditions. For this reason, the study
of the thermo-hydrodynamic features of flows in production lines containing
viscous oils is a subject that has been attracting many researches and engineers in
the oil & gas industry. Improving the efficiency and costs of such enterprise is
always a desirable goal, even in periods of time in which the oil barrel price is low
(Figure 1.3).

New Policies Current Policies 450 Scenario
2020 2040 2020 2040 2020 2040
OPEC 239 36.8 37.3 49.5 37.8 54.8 36.4 331
Crude oil 19 30.0 291 36.4 295 40.8 286 239
Matural gas liquids 2.0 6.0 6.7 9.9 6.8 104 6.3 71
Unconventional 0.0 0.7 15 32 15 35 14 21
Non-OPEC 41.7 50.5 56.1 51.2 57.6 58.2 54.5 36.2
Crude oil 7.7 386 38.9 30.0 39.9 331 380 21.5
Matural gas liquids 36 6.4 7.9 23 8.0 9.1 7.6 6.2
Unconventional 0.4 5.4 8.3 13.0 8.7 16.0 9.0 8.6
World oil production B5.6 873 93.4 100.7 95.4 113.0 90.9 69.4
Crude il 59.6 68.6 68.0 66.4 69.3 738 B6.6 45.4
Matural gas liquids 5.6 125 14.6 18.2 14.9 19.5 13.8 13.3
Unconwentional 0.4 6.1 10.8 16.2 11.2 19.6 10.4 10.7
Processing gains | 1.3 : 22 [ 25 . 32 | 2.6 I 35 - 25 . 2.6 .
World oil supply® 66.9 £89.4 96.0 103.9 98.0 116.6 93.4 71.9
World biofuels supply** 01 1.3 22 4.6 18 3.6 21 8.7

World total liquids supply 67.0 90.8 98.1 1085 992 120.2 95.5 80.7

* Differences between historical supply and demand volumes shown earlier in the chapter are due to changes in stocks.
** Expressed in energy-equivalent volumes of gasoline and diesel. The average energy to volume conversion factor is
close to 7.8 barrels per tonne of oil equivalent throughout the projection period in the New Policies Scenario, reflecting
the projected share of biodiesal versus ethanal.

Note: More information on methodology and data isswes (incleding an explanation of differences with the IEA Medium-
Term Oif Morket Report) is on the WED website www.worldenergyoutiook.org/weomodel/.

Figure 1.2 — Projections for oil demands in three different scenarios. Extracted from the
World Energy Outlook 2014 (I.E.A., 2015).
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Figure 1.3 — Crude Oil Brent in a five years time period with the current price highlighted.
Adapted from NASDAQ (2017).

In flows of oils (not just the viscous ones) in petroleum production lines often
more than one phase is present due to the common co-existence, with the liquid oil,
of natural gas, water, sand, gravel and flow assurance solids (hydrates, scales,
waxes, asphaltenes, among others), which characterizes a multiphase flow.

The use of numerical tools for investigating, making predictions and assisting
in the design of pipelines in which such flows shall take place is of paramount
importance. The one-dimensional (1D) simulations play an important role in these
activities for the fact that the geometries involved in oil production are usually
pipelines that span kilometers, so that, two- (2D) or three-dimensional (3D) models
are excessively costly in a computational perspective. This is especially seen in the
vast use of the 1D commercial multiphase flow simulators such as Olga (Bendiksen
et al., 1991) and LedaFlow (Danielson et al., 2005) by the oil & gas industry.

The three most important 1D approaches for simulating gas-liquid flows are
the Unit-Cell Model (Dukler & Hubbard, 1975), the Slug Tracking Methodology
(Nydal & Banerjee, 1996) and the Regime Capturing Methodology (also known as
Slug Capturing Methodology) (Issa & Kempf, 2003; Nieckele & Carneiro, 2017).
The Unit-Cell Model is the most used from the three, for having a low
computational cost and a satisfactory robustness. Nevertheless, it is highly
dependent on empirical and semi-empirical correlations directly related to the flow
pattern, and their accuracy always decays for conditions outside the ones for which
they were created. Although it is also not computationally costly, the Slug Tracking
Methodology, likewise, suffers from excessive dependency on empirical

expressions for the slug features, especially from the one that defines their presence.
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Although demanding more CPU time than the other approaches and having to deal
with the stability-hyperbolicity problem (Prosperetti & Tryggvason, 2007), the
solution of the 1D Two-Fluid Model (Ishii, 1975) in fine meshes, that is, the Regime
Capturing Methodology, is much less dependent on empirical expressions than both
the Unit-Cell Model and the Slug Tracking Methodology. This is justified for the
interfacial dynamics (growth of instabilities, slugs appearance, among others) being
a natural product of the methodology as well as the flow pattern. With this
methodology, the same set of correlations can be used for all the flow patterns,
which is in great contrast with the other two approaches. Nevertheless, although
very promising and satisfactorily validated for air-water flows (Carneiro et al.,
2011; Nieckele et al.,, 2013; Han & Guo, 2015; Ferrari et al., 2017), this
methodology has, with few exceptions, not being much explored for performing 1D
simulations of different fluid combinations, especially for viscous oil-gas flows.
One of the greatest challenges in the use of 1D gas-liquid models is the
adequate modelling of the interfacial shear stress, for being a parameter in which
complex phenomena (interfacial waves, relation between them and the turbulence
of the phases, among others) are included (Hanratty, 2013; Ayati et al., 2016; André
& Bardet, 2017). For viscous oil-gas flows, an added difficulty is related to the high
oil viscosity, which induces several effects on the interfacial dynamics that directly
impacts the interfacial shear stress (Andritsos & Hanratty, 1987b; Newton et al.,
1999; Matsubara & Naito, 2011). Furthermore, most of the literature correlations
for such variable were empirically created based on air-water flows experimental
data. This automatically originates uncertainties on the effectiveness of these
correlations when applied to viscous oil-gas flows, which may be problematic due
to the great influence it has on the 1D simulation results (Ottens et al., 1999;
Pasqualette et al., 2015). Adequate expressions for the interfacial shear stress for
viscous oil-gas flows is still a gap in the literature and new correlations for it still

need to be built.

1.1. Objectives of the Dissertation

With all of this in mind, the main objective of this work is to extend and test
the Regime Capturing Methodology for viscous oil-gas flows by addressing the

stability-hyperbolicity problem and by the use of two newly proposed correlations
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for the interfacial shear stress. Simulations with this methodology are performed
with the purpose of reproducing the Eskerud Smith et al. (2011) experiments, in
which the liquid phase is a viscous (viscosity approximately one hundred times the
one of the water) mineral oil and the gas is sulfur hexafluoride (SFs). They flow
isothermally in a laboratory-scale horizontal pipe in the stratified wavy and slug
flow patterns. Well-posedness analyses are performed for assisting the management
of the stability-hyperbolicity problem. An optimization procedure is proposed and
used, together with a simplified, steady-state version of the 1D Two-Fluid Model,
for the development of the two aforementioned new expressions for the interfacial
shear stress. Then, the new correlations are tested in a transient Two-Fluid Model
for various mesh spacings, in a Regime Capturing Methodology fashion. Different
closure models related to the dynamic pressure, axial diffusion and dynamic
interfacial shear are tested along with the different interfacial friction expressions,
in order to investigate the stabilizing/destabilizing effects on the transient interfacial

dynamics.

1.2. Structure of the Dissertation

Primarily, a vast literature review and a theoretical background is provided to
the reader on key themes for illustrating much that was previously mentioned and
for more precisely defining the gaps in literature. Afterwards, the Regime Capturing
Methodology is fully presented in its modelling (the 1D Two-Fluid Model) and
numerical aspects (the numerical method), together with the formulation of the
well-posedness (characteristic) analysis for the model. Then, the optimization
procedure proposed for conceiving the two new expressions for the interfacial shear
stress is detailed. In the following chapter, the results of the well-posedness analyses
and of the Regime Capturing Methodology simulations for the selected Eskerud
Smith et al. (2011) database cases in the stratified wavy and slug flow patterns are
presented, compared to the measurements and discussed. Focus is dedicated to the
performance of the two new expressions for the interfacial shear stress in the
methodology and to the effect of different terms of the 1D Two-Fluid Model on the
interfacial dynamics. Finally, concluding remarks are presented, together with

suggestions for future works.
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2. LITERATURE REVIEW AND THEORETICAL
BACKGROUND

In this chapter of the work, the literature review considered important for this
work is presented together with some theoretical background. It is worth to
highlight that a basic knowledge of the reader on multiphase flow is assumed, in
which we include subjects often present in the initial pages of textbooks of the area
(Brennen, 2005; Hanratty, 2013). These are, mostly, the flow pattern classification
(annular, stratified smooth, stratified wavy, roll waves, slug, churn, among others)
and elementary terminology, that is, the labelling of key parameters in gas-liquid
flows. The topics covered in this literature review and theoretical background are
important for understanding the contribution of this work and how it is inserted in
the ongoing development of the technology chosen as theme of the former, reason
why several observations and statements made in this chapter are invoked in the
following ones.

The first theme discussed is the influence of the liquid viscosity on essential
features of gas-liquid horizontal flows, such as how the transitions between flow
patterns change, always considering air-water flow as reference. Afterwards, an
overview of the state-of-art 1D modelling of gas-liquid flows is given, in which it
is discussed the most used mathematical models and approaches. Special attention
is dedicated to vital literature works that used the Regime Capturing Methodology
to simulate gas-liquid flows, one of the 1D modelling strategies reviewed, which
are presented and discussed. The third theme chosen is the stability-hyperbolicity
problem of the 1D Two-Fluid Model of Ishii (1975), which is one of the most
important mathematical models in literature for performing 1D simulations of two-
phase flows and which often faces the issue of ill-posedness in the Hadamard (1902)
sense, described in Drew & Passman (1999) and in Prosperetti & Tryggvason
(2007). The fourth and last topic introduces the main strategies and expressions for
representing the interfacial shear stress in the 1D Two-Fluid Model as a closure

relation for gas-liquid horizontal stratified flows. It is highlighted how such
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parameter is affected by the presence of interfacial waves.

The first and third topics are presented primarily to provide the reader the
findings of key works in a chronological order and, then, a summary of what can
be concluded from them. In the other topics, however, important points are used as
guidelines for the presentation, rather than the key works found in literature and

referenced herein. A summary is also provided for these other topics, though.

2.1. Influence of the Liquid Viscosity on Gas-Liquid Horizontal Flows

Taitel & Dukler (1976) were the first authors to systematically address the
transitions from stratified flow to other flow patterns. In Figure 2.1 (Ug;, and Usg
are the superficial velocities of the liquid and gas, respectively), the flow pattern
map of Taitel & Dukler (1976) (extracted from the same work) is compared to the
one of Mandhane et al. (1974) for a horizontal air-water flow in a 2.5cm ID at 25°C
and latm. Although the semi-theoretical model of Taitel & Dukler (1976) does
account indirectly for the influence of fluid properties, important underlying

assumptions do not hold for stratified viscous-oil and gas flows.
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Figure 2.1 — Flow pattern map of Taitel & Dukler (1976) for a 25°C, 1 atm air-water

horizontal flow in a 2.5cm I.D. pipe compared against the map of Mandhane et al. (1974).
Figure adapted from Taitel & Dukler (1976).

The description of key works that concern the influence of the liquid viscosity

on gas-liquid horizontal flows begins with the paper of Weisman et al. (1979). They

were one of the first groups of researchers to address, in a systematic experimental

investigation, the impact of important flow parameters, such as the liquid viscosity,
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on the flow pattern maps. They performed experiments in a 2-inch internal diameter
6.1m long pipe with air and two different solutions of water and glycerol: one with
75cp and the other with 150cp of liquid viscosity. They constructed flow pattern
maps, using the mass flow rate as variable, for these two pairs of fluids and noticed
little change with the increase in the liquid viscosity regarding the major flow
patterns, i.e., separated, intermittent and dispersed. Among these little variations, it
can be highlighted that the transition to slug flow was shifted to lower liquid mass
flow rates (particularly at high gas mass flow rates) and that the transition to annular
flow was shifted to slightly higher gas mass flow rates. In addition, it can be
mentioned that much of the plug flow (similar to slug flow, but with no slug
aeration) region in the map became slug flow.

Almost a decade after the work of Weisman et al. (1979), Andritsos &
Hanratty (1987a) published a research paper in which they looked into the
interfacial waves characteristics in gas-liquid horizontal flows and the transition
from stratified smooth to stratified wavy flow. Their work was mainly
experimental, but they also used a linear stability analysis in which a perturbation
is added to the liquid phase height. With the latter, they discovered that the increase
in the liquid viscosity makes it more difficult to predict the transition from stratified
smooth to stratified wavy flow with two-dimensional (2D) waves. Besides, they
uncovered that the initiation of waves for high-viscosity liquids is governed by the
Kelvin-Helmholtz mechanism. Andritsos & Hanratty (1987a) performed
experiments with air and four solutions of water and glycerol in 2.52cm and 9.53cm
internal diameter pipes. The viscosity of the referred solutions are of 4.5cp, 12cp,
70cp and 80cp. They observed that the superficial velocities range in which 2D
waves in the stratified wavy flow exist is insignificant for the liquids with high
viscosities. Mostly, the waves are three-dimensional (3D) and irregular, which they
label as Kelvin-Helmholtz waves. However, Andritsos & Hanratty (1987a) also
verified that the interfaces appear to be less rough when waves are present for the
liquids with higher viscosities. Nevertheless, they state that the interfacial shear
stress should have a significant increase due to the presence of waves at the
interface.

The work of Andritsos et al. (1989) used the same experimental setup and
fluids of Andritsos & Hanratty (1987a) to analyze the transition between horizontal

stratified and slug flows, by revisiting the findings of Lin & Hanratty (1986). The
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latter observed that an increase in the liquid viscosity stabilizes the flow and
consequently diminishes the initiation of slugs. This was confirmed by the new
experiments of Andritsos et al. (1989). Lin & Hanratty (1986) also remarked that
the transition to slugs occur through the growth of long wavelength interfacial
instabilities with the increase of gas superficial velocities. However, Andritsos et
al. (1989) confirmed this phenomenon only for low-viscosity liquids, while, for the
high-viscosity liquids, small wavelength instabilities appear primarily. They might
grow and bridge the pipe section, forming slugs, or might coalesce and give birth
to long wavelength waves, which might develop into slugs. For this reason,
Andritsos et al. (1989) confirmed that the inviscid stability analysis of Lin &
Hanratty (1986) could only predict the transition from stratified to slug flow for air-
water experiments, and it did not manage to capture the same phenomenon for
liquids with higher viscosities.

Nadler & Mewes (1995) performed an experimental investigation on the
effect of liquid viscosity on the phase distribution in gas-liquid slug horizontal flow.
Air was used as the gas phase and, as the liquid phase, two oils (one with 14cp of
viscosity and other with 37cp) and water were used. The measurements were
conducted in a 59mm internal diameter pipe with a total length of 12m. The main
finding of Nadler & Mewes (1995) was that, by increasing the liquid viscosity, the
liquid holdup of the slugs barely changes. Besides, they verified that the mean liquid
holdup of the flow also increases with the liquid viscosity.

Newton et al. (1999) performed experiments in gas-liquid horizontal flows
for assessing the effectiveness of commonly used interfacial shear stress
correlations for liquids with higher viscosities. The necessity of such work
originated from the fact that most of such correlations were elaborated and validated
for air-water experimental databases. This creates uncertainty when they are used
for viscous liquids, especially when waves are present at the interface, which cause
effects on the flow whose understanding is far for being complete even for low-
viscosity liquids. Newton et al. (1999) used a 12m long 50mm internal diameter
pipe for performing their measurements, with air as the gas phase and they switched
between tap water (1cp of liquid viscosity), kerosene (2cp) and a light machine oil
(46cp) to serve as liquid phase. Their analysis showed that the commonly used
correlations for the interfacial shear stress are inadequate for liquids whose

viscosity is higher than its value for water. Newton et al. (1999) also proposed new
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correlations for the interfacial shear stress.

Aiming to identify effects of very high-viscosity oils on the flow, Gokcal
(2008) measured the slug characteristics (length, holdup, frequency, among others)
for horizontal and slightly inclined flows of air and an oil of that nature. The
viscosity of the chosen oil was approximately 650cp at 20°C and he used an
experimental setup composed by an 18.9m long 50.8mm internal diameter pipe.
Using the relation for the slug translational velocity U,, which can be calculated
through Eqg. (2.1) (C, is a coefficient, Uy, is the mixture velocity and Uy is the drift
velocity), Gokcal (2008) verified that increasing the liquid viscosity also increases
the values of the drift velocity, thus, classical correlations cease to be valid for such

conditions.
U = CoUy + Uq (2.1)

In addition, he confirmed the value of approximately 2.0 for C, in the case of
laminar flow within the slugs (Wallis, 1969), which is significantly different from
usual values found for turbulent flows, i.e., in the range of 1-1.2 (Hanratty, 2013).
Gokcal (2008), furthermore, assessed that the slug length and frequency decrease
and increase, respectively, as the liquid becomes more viscous.

Foletti et al. (2011) elaborated a flow pattern map for air and a highly viscous
oil (approximately 900cp of liquid viscosity) with a series of experiments
performed in a 9m long 22mm internal diameter pipe. They obtained a very poor
agreement between their experimental map and the ones obtained through classical
methodologies. In addition, they verified that, while in air-water flows the slug flow
can be described by the alternate passage of dispersed (liquid slug) and stratified
flow (liquid film region), for high-viscosity liquids it is better characterized as an
alternation between dispersed and an eccentric annular flow, due to the constant
presence of liquid in the pipe walls. It is important to remind that Eq. (2.1) is also
valid for the translational velocity U, of long bubbles in slug flow and that it is
approximately equal to the translational velocity of slugs for a fully-developed flow
in dynamic equilibrium. Foletti et al. (2011) found a value of 2.14 for C,.
Furthermore, the authors tested standard mechanistic models for evaluating the
pressure gradient and the long bubbles length for the slug flows and, they obtained

unsatisfactory agreement with the experimental data.
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Matsubara & Naito (2011) investigated the influence of the liquid viscosity
on flow pattern maps, in order to verify the findings of Weisman et al. (1979),
which, as previously mentioned, stated that such maps do not change much with the
increase in the referred property. They performed experiments ina 19m long 22mm
internal diameter pipe using air as the gas phase. For the liquid, they considered
water and some aqueous solution of polysaccharide thickener, whose viscosity had
values of 100cp, 250cp, 2500cp, 7500cp and 11000cp. Matsubara & Naito (2011)
found out that increasing the liquid viscosity makes the flow pattern maps differ
significantly from those produced through the Taitel & Dukler (1976) method.
Therefore, they verified that the liquid viscosity does play a significant role in the
flow pattern maps, which is the contrary of what was observed by Weisman et al.
(1979). This is seen mainly through the displacement in the maps, for increasing
liquid viscosities, of the stratified and roll wave regions for intermittent and annular
flows, respectively. In addition, Matsubara & Naito (2011) observed that the
predictions of the Taitel & Dukler (1976) flow map for high-viscosity oils improve
if one considers that the interfacial friction factor is various orders of magnitude
higher than the gas friction factor.

In the paper of Eskerud Smith et al. (2011), whose experimental database is
going to be used in this work and whose main features were already previously
described, the prediction of the point-model of the Olga flow simulator (Bendiksen
et al., 1991) were compared against the measurements of pressure drop and liquid
holdup and the observed flow patterns. For the low-viscosity oil data, the Olga
point-model predictions agreed well with the experimental data, which was not the
case for the measurements regarding the highly viscous oil. The use of the Slug
Tracking module of Olga for performing dynamic simulations managed to improve
the results for such oil, but not in a significant manner. Eskerud Smith et al. (2011)
also tested several literature correlations for the interfacial friction factor and
compared their evaluations with the values calculated from the experimental data,
but none of the expressions had a positive overall performance. This will be
explored later more thoroughly.

For investigating the effects of the high liquid viscosity on the characteristics
of gas-liquid horizontal flows, Zhao et al. (2013) conducted a series of experiments
in a 5.5m long 26mm internal diameter pipe. They used air as the gas phase and

several types of oils as the liquid phase, with viscosities ranging from 1000cp to
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7500cp. Regarding the flow patterns observed, Zhao et al. (2013) obtained in their
experiments slug, plug, annular and blow-through-slug (a transitional pattern
between slug and annular) flow. The most present flow pattern was slug flow,
followed by plug flow, which indicates that intermittent flow dominates the flow
pattern map for these fluids and setup. In the slug flow, a thin oil film was observed
above the long bubbles and stratified flow was not observed for any flow rates
covered in their measurements. Zhao et al. (2013) measured the liquid slug holdup
and found no significant impact of liquid viscosity on such parameter. They
observed that both the mean liquid holdup of the flow and its pressure gradient
increase with the liquid viscosity. In addition, they used mechanistic models for
predicting these parameters of the flows. Good agreement against the experiments
was obtained only for cases with smaller viscosity, as well as low liquid velocity.
Using air and a high-viscosity oil (900cp), Farsetti et al. (2014) performed
experimental tests of gas-liquid flow in a nearly horizontal 9m long 22.8mm
internal diameter pipe. They focused their work on the intermittent flow patterns
and assessed the pressure gradient, the bubble translational velocity, the slug
frequencies, the slug lengths, the bubble lengths and the mean slug liquid holdup.
The measured values are compared to predictions made by widely used simple
models and correlations that were validated mostly against low-viscosity liquid
experimental data. The poor agreement obtained led to the conclusion that the
models and correlations tested cannot be extrapolated to gas-liquid flows in which

the liquid is highly viscous.

2.1.1. Summary

In summary, one can list the following effects of the increase of liquid

viscosity in gas-liquid horizontal flows:

e The liquid phase tends to become laminar;

e Both the pressure gradient and the mean liquid holdup tend to increase;

e The predictability of mechanistic models, correlations and expressions
elaborated and validated against experimental data of low-viscosity
liquids usually become unsatisfactory;

e Increase of the intermittent (slug flow, plug flow, among others) and
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annular flow regions with simultaneous decrease of the stratified and roll
waves flow regions is observed in flow pattern maps;

e Regarding the stratified flow, the occurrence of smooth interfaces
becomes rare and, therefore, wavy interfaces appear more often,
especially with short wavelengths and are governed by the Kelvin-
Helmholtz mechanism;

e Slug flow is often better described as an alternation between dispersed
flow and an eccentric annular flow, due to the constant presence of a thin
liquid film which wets the pipe wall;

e When the flow pattern is slug (or plug) flow, the average slug length
diminishes, the slug frequency increases and the coefficient C, increases
from 1.2 to 2.0 as the liquid becomes laminar. The tendency of the slug
liquid holdup is to barely change;

e The interfacial friction factor tends to increase when compared to flows

with lower viscosity liquids at similar conditions

2.2. Overview of the 1D Modelling of Gas-Liquid Flows

In the first chapter of this work, the importance of 1D models of gas-liquid
flows for the industry in general and especially for the oil and gas industry was
explained. It is also important to highlight that the focus of this overview is in the
hydrodynamics of the flow, which is represented, primarily, by the mass and
momentum conservation equations.

The 1D models of gas-liquid flows can be divided according to the
mathematical formulation chosen for representing the flow, i.e., the set of
conservation equations (Nydal, 2012). While "Multi-Fluid" approaches deal with
sets of conservation equations for each phase, "One-Fluid" approaches treat all
phases as a single mixture (Prosperatti & Tryggvason, 2007). This is often directly
dependent on the degree of coupling between the phases, which varies, for example,
depending on the flow patterns (Ishii & Hibiki, 2011). If the gas and liquid phase
momenta are treated as two different fields, for which separate balance equations
are formulated, and similarly for mass and energy, the mathematical model for
representing the gas-liquid thermo-fluid-dynamics is known as the 1D Two-Fluid

Model (Ishii, 1975). Gas and liquid phase mass, momentum and energy equations
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are coupled through source terms representing interfacial interactions. Otherwise,
if a single field formulation is chosen, Mixture Models (Nydal, 2012) can be
formulated from the more general Multi-Fluid equations. In this approach, the bulk
velocities of each phase are calculated for example from the mixture velocity
through some drift relations (Zuber & Findley, 1965), reason why such approach is
often labeled as 1D Drift-Flux Model. The latter is widely used in the literature,
such as in the works of Malekzadeh et al. (2012) and Santim et al. (2017). In the
former, a drift-flux model was used for performing 1D simulations of severe
slugging in a pipeline-riser system. In Santim et al. (2017), the authors simulated
gas-liquid slug flow, analyzing pressure and void waves propagation with a 1D
drift-flux model and compared it with other methodologies. If no-slip is assumed
between phases, the so-called 1D Homogeneous Model (Coelho et al., 2016) is a
special case of the 1D Drift-Flux approach.

The 1D Two-Fluid Model is the main interest of this work and its
formulations, intrinsic hypotheses and more particular features are going to be
detailed later. This model has two main issues: one related to the stability-
hyperbolicity property, which may lead to an ill-posed problem; and the other
related to the selection of closure models. In fact, the choice of closure models also
affects the stability and hyperbolicity of the Two-Fluid Model. Both aspects will be
thoroughly explored in the present work.

The ill-posedness issue is widely known in the literature and usually
manifests in fine mesh resolutions. Nevertheless, the 1D Two-Fluid Model is
widely used and the most common strategy is the use of coarse spatial and temporal
meshes, for avoiding an excessively high computational cost. This is specially the
case of standard engineering simulations of long pipelines. One example may be
taken from Figueiredo et al. (2016), who analyzed horizontal gas-liquid stratified
flow in gas pipelines.

In order to capture "small-scale" instabilities at the gas-liquid interface, one
needs to employ very fine grid resolution, often of the order of the pipe diameter or
less (Nydal, 2012; Nieckele & Carneiro, 2017). The definition of "large-scale" and
"small-scale" is of course dependent on the problem requirements. Alves et al.
(2016), for example, numerically investigated annular and churn vertical gas-liquid
flows by solving a hyperbolic 1D two-fluid model. The grid sizes were sufficiently

fine to capture "large-scale” instabilities associated to the annular-churn transition,
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but local instabilities (such as large amplitude waves in annular flows, for example)
were not resolved.

When coarse meshes are employed to solve the 1D Two-Fluid Model one
must consider two important factors, which may affect the quality of predictions:
possibility of truncation errors due to the discretization process and the inadequate
representation of sub-mesh phenomena. This issue is particularly critical, because
some small-scale events are too complex to be correctly accounted for with simple
and standard closure relations. The different concepts that are commonly employed
for representing the small-scale effects in the 1D Two-Fluid Model are listed below
(Nydal, 2012):

e The transient Unit-Cell Model;
e The Regime-Capturing Methodology;
e The Hybrid Tracking-Capturing Methodology.

Originally, the Unit-Cell Model (Dukler & Hubbard, 1975) was first
developed for performing steady-state 1D gas-liquid flow simulations in which
simple mass, momentum and, when necessary, energy balance equations are written
for a unit-cell, which is the basic configuration of the model and consists in a liquid
slug body and a long bubble with a liquid film region. After forming a system of
algebraic equations, adopting the necessary closure relations, it is solved for
evaluating the global flow parameters. In spite of its strong dependence on
correlations, the Unit-Cell Model is interesting, because, besides its low
computational cost, it considers the slug flow as the standard flow pattern, which,
through the calculated values of slug body length and liquid film region, may also
implicitly incorporate dispersed or separated (annular or stratified) flow. If the slug
body length is null, the flow pattern is considered separated flow, while dispersed
bubbly flow occurs if the film region disappears. Orell (2005) used the Unit-Cell
Model by performing 1D simulations of several air-water and air-oil flows for
various pipe configurations and obtained good agreement against experimental
data. The Unit-Cell Model was then combined with the 1D Two-Fluid Model,
providing information for the closure relations (or sub-mesh model) for evaluating
the source terms of the momentum equation, in an approach often labeled as
“transient Unit-Cell Model”. This approach is formulated for example in Bendiksen

et al. (1996) and has been used by several investigators such as in Cazarez-Candia
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et al. (2011), in which the flow in an oil well was simulated. The transient Unit-
Cell Model is the basic framework of commercial multiphase flow 1D simulators
of the oil and gas industry, such as Olga and LedaFlow (Danielson et al., 2005), for
its versatility and the possibility of using coarse meshes.

A different approach with the 1D Two-Fluid Model is simply to use finer
meshes for numerically solving it, with different closure relations for representing
small-scale effects. Issa & Kempf (2003) proved that, for an isothermal gas-liquid
horizontal pipe flow initially with a stratified flow configuration, it is possible
through such procedure to capture the initiation and dynamics (growth, decay,
coalescence, among others) of interfacial instabilities and their development into
hydrodynamic slugs in a successful way. Consequently, this methodology was
originally labeled as “Slug Capturing Methodology”, although some authors simply
refer to it as “Capturing Methodology” (Nydal, 2012). In this work, this approach
is labeled as “Regime Capturing Methodology” (Nieckele & Carneiro, 2017),
because it will also be employed to capture interfacial waves in stratified flow. In
fact, Nieckele & Carneiro (2017) have demonstrated the possibility of capturing
several flow regimes as a natural outcome of the solution of the 1D Two-Fluid
Model in fine meshes.

The transient Unit-Cell Model provides good results for some integral
parameters of the flow (mean liquid holdup, pressure gradient, among others) and
it is computationally cheap, but the Regime Capturing Methodology depends less
on correlations and provides more detailed information. Nevertheless, it comes with
the cost of a substantially higher computational cost when compared to the one of
the transient Unit-Cell Model. These two methodologies may also be used in a
complementary way, with the transient Unit-Cell Model for analyzing the majority
of the flow domain and the Regime Capturing Methodology employed in certain
sections of interest of the pipeline geometry. The capability is available, for
example, in the commercial simulator LedaFlow (Danielson et al., 2005).

A third approach is the Hybrid Tracking-Capturing Methodology of Renault
(2007). It combines the best features of the Regime Capturing Methodology and of
the Slug Tracking Methodology, which is a 1D Lagrangian scheme that tracks the
advancement of the slug fronts and tails throughout the pipelines. In spite of being
originally elaborated for simulating hydrodynamic and terrain slugs by Nydal &

Banerjee (1996), it has been extended to track roll waves (De Leebeeck & Nydal,
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2010). The Slug Tracking Methodology, or just Tracking Methodology (Nydal,
2012) has the advantage of being computationally cheap when compared to the
Regime Capturing Methodology, also with less grid dependency. Eskerud Smith &
Nydal (2016), for example, successfully used this methodology for simulating
nitrogen-naphtha severe slugging cases in a 1km long pipeline pressurized at 25
bar. Nevertheless, the major drawback of this approach is being dependent on user
input for slug initiation and some empirical correlations imposing slug flow
parameters. With this in mind, Renault (2007) proposed a hybrid procedure in
which the simulations start as a Regime Capturing Methodology and, if it detects
that a slug was formed, it switches to the Slug Tracking Methodology, originating,

then, the Hybrid Tracking-Capturing Methodology.

2.2.1. The Regime Capturing Methodology for Gas-Liquid Flows

Before beginning to describe the features of key literature works that have
used the Regime Capturing Methodology, it is important to mention that it is not
the purpose of this review to reproduce neither the exact mathematical model nor
the numerical methodology used in each work. Solely their main aspects will be
characterized, since the complete formulation of the methodology will be detailed
later in this work.

Having said that, the work of Issa & Kempf (2003) was the first to show that,
under certain conditions, the solution in fine meshes of the 1D Two-Fluid Model
was capable to capture the appearance of slugs starting from a stratified flow
pattern. The used model consisted in two sets of mass and momentum equations,
for gas and liquid phases. They validated the methodology using experimental data
from an air-water slug flow in a 36m long pipe with a 78mm internal diameter for
two configurations: one horizontal and or downwardly inclined by 1.5°. Issa &
Kempf (2003) also used air-water experimental data for a V-section composed by
a downhill pipe of 14m and an uphill pipe of 23m, both with 78mm of internal
diameter and inclinations of 1.5°. Through a simplified analysis and mesh
convergence tests, Issa & Kempf (2003) found that the simulated cases were well-
posed.

Bonizzi & Issa (2003) expanded the work of Issa & Kempf (2003) by adding

the possibility of mechanical gas entrainment and disengagement into the liquid
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phase. The process of gas entrainment (or aeration phenomenon) in slug flow
mainly takes place at the slug front. The liquid slug usually moves faster than the
film ahead of it, creating a highly turbulent zone at the bubble rear. The gas
deposition (or disengagement, or reabsorption of the bubbles by the gas phase)
happens at the slug tail because of the slip between the bubbles, which move slower,
and the liquid slug body. Bonizzi & Issa (2003) rewrote the mass and momentum
equations for the liquid phase for representing the mixture of liquid and bubbles
and added to the system of governing equations a mass conservation equation of
the gas bubbles. Bonizzi & Issa (2003) observed an improvement on the predictions
of the Regime Capturing Methodology by considering the aeration of the slugs,
using the same experimental database employed by Issa & Kempf (2003).

The work of Bonizzi et al. (2009) expanded even more the concept adopted
by Bonizzi & Issa (2003) by accounting for the possibility of entrainment and
deposition of liquid droplets in the gas phase and their dynamics for isothermal
horizontal gas-liquid flows. The entrainment of droplets in the gas phase can be
caused by their impact on the liquid phase, wave undercut, rupture of bubbles
located near the interface and, the most important of them, the atomization of the
crest of large-amplitude interfacial waves (Ishii & Grolmes, 1975). The deposition
of droplets occurs due to the trajectory mechanism, but, mostly, due to the turbulent
fluctuations of the droplets in the gas phase and the gravitational effects (Mito &
Hanratty, 2007). This topic is out of the scope of this work. In their formulation,
Bonizzi et al. (2009) defined the “fields” as continuous liquid, continuous gas,
dispersed liquid (droplets) and dispersed gas (bubbles), the “layers” (or mixtures)
as the combinations of bubbles and continuous liquid and of droplets and
continuous gas. They used a mass conservation equation for each field and a
momentum equation for the two layers. Their model was validated against several
experimental data and they showed that it can satisfactory predict the transition of
an initially stratified air-water horizontal flow to slug, annular and bubbly flow. The
possibility of ill-posedness was discarded by Bonizzi et al. (2009) after performing
a few mesh convergence tests.

Carneiro et al. (2011) used a Regime Capturing Methodology similar to the
one of Issa & Kempf (2003) for simulating isothermal air-water slug flow cases in
a horizontal 10m long 24mm internal diameter pipeline. The obtained values of the

slug and long bubble statistics (slug frequency, long bubble length, slug length, long


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Literature Review and Theoretical Background 46

bubble translational velocity and slug translational velocity) were compared to
experimental data and a good agreement was obtained.

In their work, Nieckele et al. (2013) used the same model as Carneiro et al.
(2011) for performing a more detailed statistical analysis of the slug and bubble
lengths, obtaining excellent results and convergence with the experimental data.

Emamzadeh & Issa (2013a; 2013b) used a version of the Regime Capturing
Methodology that can be seen as an adaptation of the one developed in Bonizzi &
Issa (2003) or a simplification of the one registered in Bonizzi et al. (2009). In their
mathematical model, for considering the dynamics of droplets in the gas and the
mass transfer between the dispersed and continuous liquid fields (entrainment and
deposition), they used a mass conservation equation for the droplets along with sets
of mass and momentum equations for liquid and mixture of gas and dispersed drops.
Emamzadeh & lIssa (2013a) used this model for simulating isothermal air-water
annular flow in several vertical and horizontal pipes whose internal diameters
ranged between 1 and 10cm. By comparing the numerical results of droplet
concentration, droplet entrainment rate, liquid film height and pressure gradient, the
authors found a satisfactory agreement with measurements. Emamzadeh & Issa
(2013b) used the same version of the Regime Capturing Methodology, except for
some differences in the closure relations, for testing its ability to predict the
transition from an air-water horizontal stratified flow to annular flow. The model
was successfully validated against an experimental flow pattern map of literature.
In neither of their works, Emamzadeh & Issa (2013a; 2013b) addressed the
possibility of ill-posedness of the mathematical model.

Simdes et al. (2014) used a Regime Capturing Methodology for simulating a
non-boiling gas-liquid horizontal flow including heat transfer. Simdes et al. (2014)
considered two sets of mass, momentum and energy equations and neglected the
possibility of the presence of dispersed phases. They compared their most important
numerical results for a stratified flow in a 20m long 52mm internal diameter pipe
against values evaluated with well-established correlations, with good agreement.
Further, the model results were compared against an experimental database for slug
flow in a pipe with 52mm of internal diameter and 23.81m of total length, also
showing very good agreement. The well-posedness of the model was shown by a
mesh convergence test performed for the main parameters of the slug flows

simulated.
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For numerically investigating the severe slugging phenomenon, Han & Guo
(2015) used a Regime Capturing Methodology for simulating the isothermal air-
water severe slugging phenomenon in a pipeline-riser system. A 114m horizontal
pipe was considered, followed by a -2° downward inclined pipe, by a 15.3m vertical
riser and a 2m horizontal outlet. The internal diameter was considered constant and
equal to 50.8mm. In their model, two sets of mass and momentum equations were
used, disregarding any dispersed field, entrainment or deposition process. A
simplified hyperbolicity analysis revealed that the model would have issues of ill-
posedness in the vertical riser, which was dealt with by adding a dynamic (or
interfacial) pressure model to the Regime Capturing Methodology. After validating
it for a standard literature test case whose analytical solution is available, Han &
Guo (2015) obtained numerical results with excellent agreement with the
measurements.

With an almost equal formulation of the Regime Capturing Methodology of
Issa & Kempf (2003), Issa & Galleni (2015) performed simulations of vertical
isothermal slug flow of air and a liquid with a density of 913.39 kg/m3 and viscosity
of 5¢cp in a 6m long 67mm pipe. They obtained results with a good agreement
against experimental data and demonstrated, by mesh convergence tests, that their
model does not suffer from ill-posedness.

In their work, Pasqualette et al. (2015) used the same Regime Capturing
Methodology as Nieckele et al. (2013) for simulating isothermal horizontal viscous
oil-gas flows. The purpose was to correctly capture the flow pattern transition
caused by an increase in the superficial gas velocity for a constant liquid flow rate,
starting from a slug flow to stratified wavy flows with large and small interfacial
waves. Several literature correlations were tested for the interfacial shear stress, but
none managed to adequately capture the aforementioned transition. Pasqualette et
al. (2017) extended the work of Pasqualette et al. (2015), by testing newly made
interfacial shear stress correlations.

Fontalvo et al. (2016) used an isothermal 1D Two-Fluid Model in the Regime
Capturing Methodology framework for simulating interfacial waves in a vertical
gas-liquid annular flow. For guaranteeing the hyperbolicity of their model, Fontalvo
et al. (2016) used and compared three different formulations for a dynamic pressure
term added to the momentum balance equations. Their model was validated against

air-water flows in a 2m long 1.4-inch pipe using the spectral characteristics (e.g.
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dominant frequencies) of the liquid holdup numerical signals.

For simulating the hydrodynamics and heat transfer phenomenon of
horizontal annular gas-liquid flows, Silva & Nieckele (2016) employed the Regime
Capturing Methodology, using a non-adiabatic 1D Two-Fluid Model similar to the
one of Simbes et al. (2014). They validated their methodology using the
experimental data of an air-water flow, for which satisfactory results were obtained.
Investigative simulations were also performed for a gas condensate mixture flowing
in a 200m long 6-inch internal diameter submitted to a pressure of 350bar. The gas
properties were modelled with the ideal gas assumption and with the Peng &
Robinson (1976) equation of state, whose distinct results were compared and
discussed.

Ferrari et al. (2017) implemented a Regime Capturing Methodology for
simulating gas-liquid isothermal horizontal flows in which, besides the two sets of
mass and momentum equations for each phase (entrainment and deposition
phenomena were neglected), a fifth transport equation was used in the model with
a pressure relaxation term, in which its main function is to hyperbolize the
mathematical model. Primarily, standard literature tests of air-water flows were
used for validating the model and, then, Ferrari et al. (2017) simulated some
isothermal air-water horizontal slug flow cases from the same database used by Issa
& Kempf (2003). A satisfactory convergence against the experimental data and
well-established correlations was obtained and the hyperbolicity of the model was
demonstrated by a characteristic analysis and by mesh convergence tests. Ferrari et
al. (2016) also performed tests in a similar model concept for horizontal flows of
air and high-viscosity oils, but they were inconclusive due to the low number of

presented results.

2.2.2. Summary

From the literature works previously described, the following four remarks

regarding the employment of the Regime-Capturing Methodology can be made:

¢ |t has been used mostly so far for simulating isothermal flows;
e Most works only use two sets of mass and momentum equations;

¢ It has been mostly used for numerically investigating slug flows and, in a
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much lower degree, annular flows;

e With just a few exceptions, such as Ferrari et al. (2016), Silva & Nieckele
(2016) and (Pasqualette et al., 2015; Pasqualette et al., 2017), the
methodology has been almost exclusively used for simulating air-water
flows;

Especially from the two last remarks, one can see the clear gap in the Regime

Capturing Methodology literature in relation to its use for simulating isothermal
horizontal flows of gas and a high-viscosity liquid in the slug and stratified flow

patterns.

2.3. The Stability-Hyperbolicity Problem of the 1D Two-Fluid Model

It is well known that the numerical solution of a mathematical model must be
independent of the mesh, for sufficiently refined grid levels. This is in consonance
with the definition of Hadamard (1902) of well-posedness, which states that a well-
posed mathematical problem must fulfill the following conditions, otherwise it
would be ill-posed:

e The solution must exist;
e The solution must be unique;
e The solution must vary in a continuous and smooth manner with changes

in the initial conditions of the problem.

It has been mathematically proven in literature (Dinh et al., 2003) that the
above requirements for the problem to be considered well-posed in the sense of
Hadamard (1902) coincide with the features of an initial value problem with a
strong hyperbolicity. In time, the 1D Two-Fluid Model poses an initial value
problem, while, in space, it consists in a boundary value problem. In other words,
from an initial spatial state, the solution will advance in time with the recurrent
solution of a boundary value problem.

The degree of hyperbolicity of a system of partial differential equations is
given by the values of its characteristics, which are mathematical quantities
associated with the speed in which the information travels throughout the domain.
They are also associated with the number of boundary conditions required in each
of the boundaries of the domain (Figueiredo et al., 2016). According to Drew &
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Passman (1999) and Prosperetti & Tryggvason (2007), if all the characteristics of a
system of equations are real than it is hyperbolic and well-posed, and if one of them
is complex than the system is elliptic and ill-posed. In case that all the
characteristics are real and distinct, then the system is strongly hyperbolic and, if
they are not, than it is weakly hyperbolic (Dinh et al., 2003). Another way to obtain
the same rule of correspondence between the values of the characteristics and the
hyperbolicity of the quasi-linear system of conservation equations is through the
third requirement of Hadamard (1902) for well-posedness. Mathematically, it
means that the insertion of a small perturbation on a certain initial condition should
not lead to the inexistence of a result, but solely a continuously different one.

However, the relation between well-posedness, stability and hyperbolicity is
an overly complex matter and, for this reason, a more basic and practical discussion
is frequently adopted. In hyperbolic (real characteristics) mathematical models,
when small wavelength perturbations appear in the domain, either from a non-
standard initial condition or from some instability mechanism intrinsic to the
physical phenomenon represented, they can have their growth rate limited, i.e., they
become completely stable or decay. Such feature makes the model always tend to
the same unique solution. However, in elliptic (complex characteristics) systems,
small wavelength perturbations grow unphysically. This particularity of ill-posed
and non-hyperbolic systems makes their numerical solution strongly dependent on
the mesh size used. Very distinct results will be obtained, depending on the amount
of small instabilities that are captured by the mesh, since their growth is
uncontrolled. Furthermore, one of the consequences of the explosive instability of
the small wavelength perturbations is that instabilities of longer wavelengths will
also grow spuriously, as posed by the stability-hyperbolicity theorem (Prosperetti
& Tryggvason, 2007).

The stability-hyperbolicity problem of the 1D Two-Fluid Model has been
discussed in literature since it has been shown that it might possess complex
characteristics and, therefore, lose hyperbolicity (Lyczkowski et al., 1975). Not
every formulation of the 1D Two-Fluid Model is ill-posed and it also depends on
the conditions of the flow to be simulated. For testing the hyperbolicity of the 1D
Two-Fluid Model, the most basic test is to perform the analysis of its characteristics,
as performed by Issa & Kempf (2003). An alternative manner is through a linear

stability analysis, particularly by calculating the growth rate of small wavelength
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instabilities, as done by Fullmer et al. (2014). This option is especially
advantageous for analyzing the effects of higher-order terms, because reducing the
system of equations to first-order for performing its characteristics analysis might
lead to issues, as shown by Montini (2011). However, due to the importance and
influence of the mesh size and the discretization schemes for the numerical solution
of the 1D Two-Fluid Model, a more rigorous approach is to perform a linear
stability analysis in the discretized equations of the model. This methodology,
labeled von Neumann analysis, has been recently used in literature (Liao et al.,
2008; Issa & Galleni, 2015; Sanderse et al., 2017). Nevertheless, due to nonlinear
effects and to the intricacies of the numerical methodologies that are often used, the
ultimate test of hyperbolicity (and, of course, well-posedness) is to perform the
classical mesh convergence test for key parameters of the solution of the 1D Two-
Fluid Model.

There are several methods to regularize, that is, to recover hyperbolicity of
the 1D Two-Fluid Model, such as through a model for the dynamic pressure
(Bestion, 1990), by artificially increasing the numerical and/or physical momentum
diffusion of the model (Fullmer et al., 2014), or by adding the volume fraction
conservation equation and using two pressures as variables together with pressure
relaxation effects (Baer & Nunziato, 1986; Saurel & Abgrall, 1999; Flatten & Lund,
2011; Ferrari et al., 2017). Pasqualette et al. (2017) showed that increasing
interfacial shear stress is also capable of stabilizing (and regularize) the 1D Two-
Fluid Model in the Regime Capturing Methodology framework. Other traditional
regularization methods are: adding artificial axial diffusion to the mass
conservation equations (Fullmer et al., 2014) and correctly modelling the
momentum distribution parameters (Song, 2003). More details on the regularizing

methods just cited will be provided in a later chapter of this work.

2.3.1. Summary

The importance of always addressing the stability-hyperbolicity problem of
the isothermal 1D Two-Fluid Model was shown in this topic. If not adequately taken
care of, such issue might invalidate the results of the numerical simulations (e.g. of
the Regime Capturing Methodology), since they would not be well-posed in the

Hadamard (1902) sense and neither would their results converge with the spatial
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mesh used for the discretization of the governing equations.

2.4. Interfacial Shear Stress Modelling in the 1D Two-Fluid Model for
Gas-Liquid Horizontal Stratified Flows

The adequate modelling of the interfacial shear stress is one of the most
challenging tasks when developing and using the 1D Two-Fluid Model. That is due
to the lack of knowledge and still ongoing debate of which phenomena should be
accounted for in the evaluation of the interfacial shear stress. The mesh chosen for
the numerical solution of the 1D Two-Fluid Model can also be a source of problem
for the modelling of the interfacial shear stress. The reason behind it is that one
phenomena, which is sub-mesh for coarse grids might not be for finer ones, as it
was discussed by Pasqualette et al. (2017) and will be further detailed later in this
topic. The set of closures usually developed for coarse grid models (such as Unit
Cell or Point Models) might not be adequate for Regime Capturing Methodology
applications.

The main phenomenon that the interfacial shear stress must take into account
is the interfacial waves. Although, it is known (Andritsos & Hanratty, 1987a;
Andreussi & Persen, 1987) that the presence of interfacial waves should increase
the interfacial shear stress when compared to a smooth interface, the exact physical
mechanisms embedded in this relation are not yet fully understood. That is because
of the complex relation between the turbulent structures of the phases with the
interfacial dynamics (Ayati et al., 2016) and the way it affects the cross sectional
velocity profile in each phase (Belcher & Hunt, 1993). In addition, how the different
components (tangential and normal to the interface) of the interfacial shear stress
should be accounted for and the questions regarding the consideration of its viscous
and pressure contributions increase even more the challenge of modelling the
referred parameter (André & Bardet, 2017). As it was aforementioned, when coarse
meshes are used for the numerical solution of the 1D Two-Fluid Model, all the
effects of large and small-scale interfacial waves should be included in the
interfacial shear stress model. However, when finer meshes are used, as in the
Regime Capturing Methodology, it is mostly the effects of small-scale interfacial
instabilities that should be accounted for in the selected interfacial shear stress

model. Therefore, ideally, it is recommended either to use a very robust model that


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Literature Review and Theoretical Background 53

could include in it the correct physics for each mesh size or to use different
interfacial shear stress models depending on the spatial grid. The most common
approach is neither one of these, but it is to use the same simple interfacial shear
stress models for all the meshes, as it will be clearer later. As it has been shown in
a previous topic, this relation between the interfacial dynamics and the interfacial
shear stress also represents an intrinsic relation of the latter with the liquid viscosity,
because it affects deeply the characteristics of the interfacial waves (Andritsos &
Hanratty, 1987a).

The influence of the wall shear stress is another phenomenon that should be
taken into account by an ideal model for the interfacial shear stress. This is due to
the former affecting the cross sectional velocity profile, which changes the latter
(Naraigh et al., 2011). Once an expression representing the relation between the
shear stresses is used, the question of which shear stress should be modelled is
raised. In that case, it is of common practice to model the wall shear stress
(Andritsos & Hanratty, 1987b), although the other option has been used by some
works, like Biberg (1998).

The most common strategy in the interfacial shear stress modeling is, firstly,
to write the interfacial shear stress with the same Darcy or Fanning non-dimensional
expressions from single-phase flow theory (Hanratty, 2013). In Eq. (2.2), a Fanning
expression is written, in which t; is the interfacial shear stress, f; is the Fanning
interfacial friction factor (henceforth only referred to as “interfacial friction
factor”), p¢ is the density of the gas phase and U; is a reference velocity for the

interface.

1
T = EfipclUilUi (2.2)

With Eq. (2.2), therefore, the problem changes from modelling z; to finding an
expression for f;. The referred equation for t; is written in relation to the gas phase
(by using its density) for the possibility of interpreting t; with the same role as a wall
shear stress for such phase. This perfectly matches with widely adopted
understanding of the gas phase flowing as if it was a single-phase flow, in which the
liquid phase, i.e., the interface, is part of the pipe walls (Ng et al., 2004). The velocity
U; is usually defined as the relative bulk velocity between the phases, although it

might also be calculated as an average between them or as the difference between the
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gas phase bulk velocity and an interfacial wave velocity (Hanratty, 2013).

Often, to simplify the formulation, it is considered that the interfacial friction
factor is equal to the gas wall friction factor, when the pipe wall roughness is
neglected (Hanratty, 2013). This, however, is only a good approximation when the
interface is smooth, that is, when there are no waves (Andritsos & Hanratty, 1987b).
In literature, there are a number of expressions for f; that try to account for the
effects of interfacial waves, as reviewed by Ottens et al. (2001). One of the most
important expressions was elaborated by Andritsos & Hanratty (1987b) and has
been improved in several works (Newton et al., 1999; Calgaro, 2012; Tzotzi &
Andritsos, 2013; Zhao et al., 2015). The correlation of Andreussi & Persen (1987)
is widely used as well as several modifications, which have been proposed in
literature (Calgaro, 2012; Khaledi et al., 2014). The expression of Spedding & Hand
(1997), although not much used, also deserved to be highlighted.

These above mentioned three correlations and their modifications share a
framework that considers f; equal to a reference friction factor (when there are no
waves at the interface), which increases when waves appear. Andreussi & Persen
(1987) use a critical Froude number to monitor the surging of interfacial waves and
Andritsos & Hanratty (1987b) and Spedding & Hand (1997) use a transition gas
superficial velocity. More than one expression for f; might be used in the same
correlation, when different types of interfacial waves are separately addressed
(Tzotzi & Andritsos, 2013). The three correlations have also in common the fact
that the effects of the interfacial waves is compressed in the expression for the
interfacial friction factor

Nevertheless, there are other models for the interfacial shear stress that do not
use Eg. (2.2). Ullmann & Brauner (2006), for instance, modified the referred
equation by adding to it parameters originated from the analytical solution of a
laminar-laminar stratified flow. However, the most notorious example is the model
of Biberg (2007), which does not use the concept of interfacial friction factor. For
the special case of stratified flows in which both phases are turbulent, Biberg (2007)
formulated a complex implicit model, which evaluates not only the interfacial shear
stress but also the wall shear stresses. The model was obtained after a pre-
integration of the cross sectional velocity profile in each phase expressed through
an analytical model for the turbulent viscosity. In spite of being one of the most

precise and robust model for the shear stresses in stratified flow, being overly
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complex, implicit and depending on fully empirical correlations for the turbulent
intensity on each side of the interface makes the advantages limited.

By revisiting the derivation of the 1D Two-Fluid Model and considering that
the interface is wavy according to a known function, Liné & Lopez (1997) managed
to separate in two terms the interfacial shear stress for a smooth interface and the
one solely due to the presence of the interfacial waves. However, Liné & Lopez
(1997) did not manage to find an expression for the interfacial shear stress due to
the waves that depends only on local parameters of the flow, as it is the ideal for
the 1D Two-Fluid Model. A model for t; with this feature has been proposed by
Brauner & Maron (1993; 1994). They elaborated a dynamic interfacial shear stress
model in which the influence of the waves is separated from the smooth interface
contribution and an expression including the derivative of the liquid phase height
in relation to the axial coordinate. The advantage of using such variant is that, by
using local variables, the steepness of the interfacial wave is captured by the
solution of the 1D Two-Fluid Model. Hence, the wave shape evolution is directly
related to the interfacial shear stress (Maron & Brauner, 1987). A model
incorporating the liquid height derivative was also employed by Holmas (2010),
who modified the expressions for the turbulent intensity on each side of the
interface within the model of Biberg (2007). Nevertheless, a more detailed
description of the dynamic model of Brauner & Maron (1993; 1994) will be

provided later in this work.

2.4.1. Summary

In this topic, the importance of correctly modelling the interfacial shear stress
and its intrinsic difficulties were described. That is why one of the purpose of this
work is to create new expressions for the interfacial friction factor with the Eskerud

Smith et al. (2011) experimental database, as it will be detailed in another chapter.

2.5. Final Comments

In this presentation of the literature review and the theoretical background of
this work, several gaps in the literature regarding the themes discussed could be

identified. Among them, the lack of use of the Regime Capturing Methodology for
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viscous-oils gas flows, such as the Eskerud Smith et al. (2011) database, can be
highlighted. This is especially true for an adequate prediction of the complex
interfacial dynamics, resultant mainly from the high oil viscosity, in the isothermal
horizontal slug and stratified wavy viscous oil-gas flows. Besides, a systematic
treatment of the stability-hyperbolicity problem, reflected in the Regime Capturing
Methodology results convergence (or non-convergence) with the spatial mesh of
the numerical method, for such types of flows is also an analysis missing in
literature. Finding good models for the interfacial shear stress for viscous oil-gas
flows is challenge as well and which has not being accomplished, due to the
complex interfacial phenomena involved (e.g. relation between waves and
turbulence).

This work aims to advance the filling of the previous mentioned literature
gaps, although it is not its intention to exhaust the themes. As it will be seen, several
good and interesting analyzes, discussions and investigations are here performed

with the purpose of attacking such gaps.
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3. THE REGIME CAPTURING METHODOLOGY

In order to be able to determine the flow field of a stratified or slug flow, as
well as the transition from one flow pattern to another, the Regime Capturing
Methodology was selected. In this chapter, this methodology is properly described
and detailed. The presentation is divided in the two main aspects of the
methodology: the 1D Two-Fluid Model and its numerical solution. At the last part
of the chapter a discussion regarding the stability-hyperbolicity problem of the 1D
Two-Fluid Model is addressed.

3.1. The 1D Two-Fluid Model

The basic and general definition of the 1D Two-Fluid Model was already
provided in this work, but it is here repeated for its paramount importance.

The 1D Two-Fluid Model consists in two sets of mass, momentum and energy
conservation equations formulated separately for each phase and that contain
interfacial transfer source terms for representing the interaction between the phases.
Its rigorous mathematical derivation, originally performed by Ishii (1975), starts
from the local instantaneous balance equations of mass, momentum and energy for
two phases, together with interfacial jump conditions for the three conserved
quantities. For making such complex formulations more useful, two analogous
paths might be taken. In the first one, adopted by Drew & Passman (1999), averages
are performed in the equations after adding to them a phase indicator function, while
in the second one, followed by Ishii & Hibiki (2011), ensemble averages are applied
in the expressions. After using the definition of macroscopic variables in the
resulting set of equations for making its physical representativeness clearer, the
three-dimensional (3D) Two-Fluid Model, or just Two-Fluid Model, is obtained.
Finally, its one-dimensional version, the 1D Two-Fluid Model, is acquired by
performing a pipe cross section area average in the former, which guarantees that
the only spatial variable is the axial one.

Traditionally, simplified approximations are employed in the mathematical
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procedure just described, leading to a simplified version of the 1D Two-Fluid
Model, which may not be applicable to more complex situations. For example, as
mentioned by Liné & Lopez (1997), it is fundamental to consider effects of the
waviness of the interface in the formulation.

In the following pages, a version of the isothermal 1D Two-Fluid Model is
presented, which will be used in the Regime Capturing Methodology, with the
particular assumptions made in this work. As a starting point, the classical mass and
momentum conservation equations of the model for a phase K € {G,L} (G
represents the gas and L the liquid) are depicted in Egs. (3.1) and (3.2), respectively,
in @ manner similar to the formulation of Ishii & Hibiki (2011).

o(A'ox) o (A‘pRT")  _, (31)

& T 9% = Ik

0 (Ax"px"Tx") L0 |G A (U]

ot 0x
= A_Aa K Py — P (AK )
= T Ty [P P 2 — (32)
_ 4 A
Dpk

- (m ) + Ty UlKa

In the referred equations, A is the cross section area occupied by phase K €
{G,L} and A = A; + A, is the pipe total cross section area. The temporal variable
is represented by t and x symbolizes the pipe axial spatial component. Besides, px
is the phase K density; Ug the (bulk) phase velocity and Py the phase pressure.
Furthermore, I is the mass transfer rate to phase K from the other phase due to
phase change; C,,x is the momentum distribution parameter of phase K; 7y is the
axial momentum diffusion; a,,  is the phase K holdup next to the pipe wall; 7.,k is
the phase K shear stress at the wall; DFy is the drag force due to a dispersed phase;

*

t; 1s an effective interfacial shear stress; and U;x and Py, are, respectively, the
interfacial velocity and interface pressure in the side of phase K. The acceleration
of gravity is represented by g, and @ is the pipeline angle with the horizontal plane
(positive when the flow is upward and negative otherwise). Finally, Dyx = 4Ax/Sk

is the classical definition of hydraulic diameter for phase K € {G, L}, where Sy is
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the phase wetted perimeter. It is worth mentioning that only the vector component
in the x-direction is being considered in the seventh term of the Right-Hand-Side
(RHS) of Eq. (3.2).

The ratio of the phase K cross section area to the pipeline area is represented
by ax and given by Eq. (3.3). Note that for 1D situations it is equivalent to the
volumetric ratio, assuming the same infinitesimal axial length dx, thus, this variable
is frequently called as volume fraction, or holdup.

Ak

ax =% (3.3)

From the definition of holdup in Eq. (3.3), a relation between a and «; can

be easily obtained and it is shown in Eq. (3.4).

The operators 14 and ﬂa, for the general variable v, represent, respectively,
the area-average operation, Eg. (3.5), and the volumetric-fraction-weighted mean
for phase K, Eq. (3.6).

_ 1
P4 = | was (35)
A
P = (36)
K

Examining Egs. (3.1) and (3.2) of the 1D Two-Fluid Model, it is clear that
several parameters still need to be modelled and that further hypotheses still need
to be made. These equations can be further simplified by adding the following
assumptions (Issa & Kempf, 2003; Ishii & Hibiki, 2011):

e The pipe cross sectional area A is considered constant, i.e., it does not vary

in time nor in space;

e The presence of dispersed phases (bubbles and droplets) is neglected,

therefore: DF " = 0

e Phase change, such as boiling and condensation, due to pressure changes

is completely neglected: KA =0;

e The parameter a,,x is considered to be approximately equal to ay.
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The first two terms on the RHS of Egs. (3.2) can be rewritten in order to obtain
the bulk pressure ﬁa present in just one of the terms, as it can be seen in Eq. (3.7)
(Issa & Kempf, 2003; Carneiro et al., 2011), where the area-average and the

volumetric-fraction-weighted-mean operators were dropped.

oP oa
_aKa_;+(PiK_PK)6_xK

0Pk n a[aK(PiK - PK)]

= — 3.7
%k ox 0x (3.7)

Furthermore, the seventh term in the RHS of Eq. (3.2) might be reformulated
as done by Ishii & Hibiki (2011), i.e., through Eq. (3.8), where S; is the interfacial

perimeter.

(FaT) =t 9

By dropping the two operators defined in Egs. (3.5) and (3.6) and by applying
the aforementioned hypotheses in the mass conservation equations for the gas and
liquid phases, Egs. (3.1), they can be rewritten as formulated by Egs. (3.9) and
(3.10), respectively.

d(agpg) + 0(agpeUs) _

3.9

ot ox 0 (39)

d(aypL) n d(aypLUL) —0 (3.10)
ot ox

If once again the area-average and the volumetric-fraction-weighted-mean
operators are dropped and the same previous hypotheses are considered, the
momentum conservation equations for the gas and liquid are also reformulated as
indicated by, respectively, Egs. (3.11) and (3.12). In them, the definitions of Egs.
(3.7) and (3.8) were also employed.

d(agpeUs) 4 a(cmG“GPGUGZ)

ot Ox
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d(ayp Uy) N a(cmLaLpLULz)

ot ox
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By examining the momentum conservation equations, Egs. (3.11) and (3.12),
it is clear the necessity to develop a model and/or closure relations for several
parameters, such as:

e The gas density pg;

e The momentum distribution parameter C,,x;

e The relation between the pressures P;x at each side of the interface;

e The difference between the interfacial and bulk pressure (P;x — Px);

e The axial momentum diffusion Tx;

e Phase wall shear stress t,,x;

o The effective interfacial shear stress z;;

Two-phase flow in pipelines can be arranged in several patterns (Brennen,
2005; Hanratty, 2013). One key parameter for the 1D formulation is to define a
basic flow pattern configuration, which will affect not only the cross section
geometric parameters, like Sy and S;, but also which approximation is more
appropriated for the several parameters mentioned above. In the following topics,
the modelling of the listed parameters, and others, are performed.

3.1.1. Base Flow Pattern

The pipeline configuration of interest in the present work is a horizontal or
nearly horizontal pipeline, in the presence of both stratified and slug flows.
Therefore, a possible base flow configuration is to consider the flow to be stratified
(Issa & Kempf, 2003; Bonizzi et al., 2009; Carneiro et al., 2011; Nieckele et al.,
2013). Such configuration consists in a heavier phase, the liquid, in the cases of
interest here, located at the bottom of the pipe and a lighter phase, the gas, at its
upper part, as illustrated in Figure 3.1.

Besides illustrating the stratified flow configuration, Figure 3.1 also contains

some of its key geometrical and dynamic parameters. Among them, h; is the liquid
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phase height, § is half of the liquid wetted angle and D is the pipe internal diameter.

(a) (b)

Figure 3.1 — Stratified flow configuration with a cross sectional flat interface: (a) cross

sectional view; (b) lateral view.

The interface illustrated in Figure 3.1(a) is flat in the cross section. This may
not always be true, especially for liquid-liquid flows (Rodriguez & Baldani, 2012)
or for gas-liquid flows with a gas inertia much higher than the liquid inertia, such
as stratified wavy flows near the transition to the annular pattern (Ullmann &
Brauner, 2006; Zhang & Sarica, 2011). As in this work neither one of these
scenarios have to be dealt with, assuming the interfacial flat in the cross section is
a good approximation.

All key geometrical parameters (S;, S;, S; and h;) of the stratified

configuration of a can be obtained based on the angle &, as shown in Table 3.1.

Table 3.1 — Expressions for geometrical parameters as a function of 8.

Variable Expression

S./D )
SG/D T—20
S;/D sin &

h,/D 1/2 (1 —cosd)

The parameter & in the schematic drawing of Figure 3.1(a) can be easily
related to the liquid holdup «;, by using simple trigonometry, as shown in
Eqg. (3.13).

1 1
a, (6 -3 sin 26) (3.13)

T
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However, the previous equation is implicit with relation to §, which is an
undesired aspect since a root-finding algorithm would have to be used in order to
provide 6 for a given a;. With this in mind, Biberg (1999a) proposed an explicit
approximation for § in relation to «;, which was successfully tested by Pasqualette
et al. (2014) in the Regime Capturing Methodology. The referred expression, seen
in Eq. (3.14), will be used throughout the present work.

1/3

3
6 = Tap + (_T[> [1 - ZO(L + aL1/3 - (1 - aL)1/3]
2 (3.14)

——a;(1— a))(1 - 2a){1 + 4[a, > + (1 — a;)?]}

3.1.2. Equation of State for the Gas Phase

As performed in several works (Issa & Kempf, 2003; Bonizzi et al., 2009;
Carneiro et al., 2011; Han & Guo, 2015; Ferrari et al., 2017), compressibility is
only considered to the gas phase, i.e., the liquid is considered as incompressible.
Further, as already mentioned, the gas compressibility factors of SFs, the Eskerud
Smith et al. (2011) database gas phase, are close to the unity. Thus, the gas density
is calculated through the ideal gas law, shown in Eq. (3.15).

P P
 ReT ~ RT

Pq (3.15)

In the referred equation, R is the gas constant (approximately 55 J/kg.K for
the SFe) and T is the flow temperature, which is constant due to the isothermal
hypothesis of the present formulation. Finally, to determine the average density of
the gas phase, the gas bulk pressure is approximated to the interfacial pressure at

the side of the gas phase (P;;).

3.1.3. The Momentum Distribution Parameter

The definition of the momentum distribution parameter C,,x, K € {G, L}, of
phase K, present in the convective term of the momentum balance equations of the
1D Two-Fluid Model, Egs. (3.11) and (3.12), is provided by Eq. (3.16) (Ishii &
Hibiki, 2011).
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A
ag Uy

Ry — p—;
aKAUK Uk

Conk (3.16)

According to Eq. (3.16), the momentum distribution parameter represents the
ratio between the average of the products and the product of the averages. It is
evident that, for calculating such parameters, the velocity profiles in both gas and
liquid are necessary. If only one phase is present, the momentum distribution
parameter is well known for fully developed flow. For laminar flow, it is equal to
1.33 and for turbulent flow, it depends on empirical velocity profile, and it is near
unity (Ishii & Hibiki, 2011).

For two-phase laminar flow, analytical expressions for C,,x can also be
determined based on the solution of the axial steady-state fully developed
momentum equation for phase K, for particular flow patterns. For turbulent flow,
further approximations are needed, such as turbulence model, or empirical data. For
turbulent stratified flow, Biberg (2007) determined this parameter based on the wall
and interfacial shear stresses, which must be coupled through the velocity profile.
Unfortunately, empirical data on three-dimensional velocity fields in stratified-
wavy and slug flows is scarce. Hence, as the momentum distribution parameter is
not the priority of this work and its modelling might be a source of uncertainties for
the 1D Two-Fluid Model and the Regime Capturing Methodology, C,.x IS
considered to be unity, Eq. (3.17), as commonly found in several publications (Issa
& Kempf, 2003; Bonizzi et al., 2009; Carneiro et al., 2011; Han & Guo, 2015;
Ferrari et al., 2017).

cx=1 (3.17)

3.1.4. Interfacial Pressure Jump

The interfacial pressure jump can be determined by applying the Young-
Laplace formula, Eq. (3.18), where o is the interfacial (or surface) tension, which
is a properties of the phases in contact to each other, and « is the curvature of the

associated surface.
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PiG_PiL = OK (318)

Figure 3.2 illustrates the interface curvature x through the curvature radius 7,

together with the phasic interfacial pressures P;x, K € {G, L}.

T Pig

\7

L

INTERFACE

Figure 3.2 — Curvature radius for the interface and phasic interfacial pressures.

In the case of a single important curvature radius, the curvature k is expressed
as indicated by Eq. (3.19) (Carneiro, 2006).

K =— (3.19)

Through the infinitesimal geometric analysis of the curvature depicted in
Figure 3.2, Ramshaw & Trapp (1978) and Carneiro (2006) determined that the
curvature k might be expressed as a function of the axial derivative of the liquid
phase height dh; /dx, as shown in Eq. (3.20).

0%h,
Jx?

3/2

dh;\?

[1 +(5) l
By considering that the local variations of dh;/dx are not significant,
Ramshaw & Trapp (1978) and Carneiro (2006) simplified Eq. (3.20) to Eq. (3.21).

(3.20)

B 0%h,
" 0x?

K (3.21)

Then, by applying the definition of Eq. (3.21) into Eq. (3.18), the Young-

Laplace formula becomes Eq. (3.22).

d%h
Pig — Py, = ; (3.22)

=0
0x?2

With the Young-Laplace formula, Eg. (3.22), the interfacial pressure on the

liquid side, P;;, can be eliminated from the set of conservation equations.
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3.1.5. Interfacial-Bulk Pressure Difference

The difference between the interfacial and bulk pressure for a phase K,
(P;x — Py), is one of the most difficult terms to be modelled, because it is affected
by the pressure distribution around interfacial waves, which can result in very
complex terms (Stuhmiller, 1977; Galimov et al., 2005). However, such degree of
complexity was avoided here.

Frequently, the interfacial-bulk pressure difference is considered to be
originated from the cross sectional hydrostatic pressure distribution in each phase.
This assumption is followed by several Regime Capturing Methodology works in
literature, such as Issa & Kempf (2003), Carneiro et al. (2011), Han & Guo (2015)
and Ferrari et al. (2017). The "hydrostatic pressure" approach is satisfactory and
provides a valid physical interpretation to the pressure terms, when the vertical
velocity is very small. In this context, the "dynamic pressure™ seeks to take into
consideration the effect on the interfacial-bulk pressure difference to distortions
on the hydrostatic pressure distribution caused by the flow in the phases. This is
the contribution to (P;x — Py) that is influenced by the pressure distribution
around interfacial waves (Stuhmiller, 1977; Galimov et al., 2005) as well as by
the axial velocity profile and cross sectional dynamic effects excluded from the
1D Two-Fluid Model by the area-averaging procedure (Renault, 2007). The
dynamic pressure is often inappropriately, in the opinion of the author of this
work, referred to as "interfacial pressure” in literature (Stuhmiller, 1977; Fullmer
et al., 2014).

With all of this in mind, the interfacial-bulk pressure difference for phase K
can be written as a function of a hydrostatic pressure term, APy i, and a dynamic

pressure term, APy, i, as shown by Eq. (3.23).

Pig — Pg = APy + APp g (3.23)

By applying the definition of Eq. (3.23) to the second term on the RHS of Eq.
(3.7), the same can be written as formulated by Eq. (3.24).

dlag(Pix — Py)] _ d(axAPy k) 4 d(axAPpx)

(3.24)
0x 0x 0x

In the next topics, an expression for the hydrostatic pressure term is derived,
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according to literature procedures, followed by an equation for the dynamic

pressure term.
3.1.5.1. Hydrostatic Pressure

To derive an expression for the hydrostatic pressure, it is convenient to refer
to Figure 3.3, in which y is the cross sectional coordinate and pg(y) is the y-

dependent local pressure in phase K € {G, L}.

I

INTERFACE

P p(y) LIQUID

Figure 3.3 — Hydrostatic pressure distribution.

The relation between P;x and px can be straightforwardly obtained by the
hydrostatic relation: P;x — px(y) = —pg g cos 0 (h;, —y). Since the hydrostatic
term on the RHS of Eq. (3.24) is actually an area-average (the operator has been
dropped) and by applying the previous expression to it, it can be formulated as
shown in Eq. (3.25) (Tomasello, 2009). In such equation, there is an implicit extra
hypothesis that the inclination angle 8 does not vary with x; and yin x and Ymax x
are the y-axis integration limits related to each phase: 0 and h;, for the liquid, and

h; and D, for the gas, respectively.

Ymax,K
f px(h, —y)Dsind dy (3.25)

0x A YminK

a(aKAP}[,K) B <g cos 0) d
T O0x

After some algebraic development of the RHS of Eq. (3.25), Eq. (3.26) was
obtained, in which the parameters Wy, K € {G, L}, are expressed according to Egs.
(3.27) and (3.28) for the gas and the liquid, respectively (Tomasello, 2009).

d(axAPy k) oh, (g cos 9) w 0pk

= — 3.26
ox Praxg cosb ox A K 9x ( )
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D3(m—8&8 sin®8 sin28
D3 (8 sin®8 sin28
l'IJL = hLAL - T E - 3 - 4 (3.28)

While the first term on the RHS of Eqg. (3.26) is, according to the literature,
definitely important for the 1D Two-Fluid Model, the same statement cannot de
made in relation to the second term (Issa & Kempf, 2003; Bonizzi et al., 2009;
Carneiro et al., 2011; Han & Guo, 2015; Ferrari et al., 2017). This is justified by
the incompressibility assumption for the liquid, which makes the derivative dp; /0x
become null. Although the gas is a compressible phase, the fact that the pressure
variations along short laboratory-scale pipes, such as the one of the Eskerud Smith
et al. (2011) database, not being significant makes the values of dp;/dx very
modest. Nevertheless, the possibility that local pressure peaks (such as those found
in the boundaries of a slug body) lead to significant values of dp;/dx and,
consequently, make the two terms in the RHS of Eq. (3.26) become of the same
order of magnitude is valid. This is a subject that needs to be investigated in the
future, due to the uncertainties surrounding this term. However, this work follows
the current practice of, for simplification, neglecting the second term of the RHS of
Eq. (3.26), originating Eq. (3.29).

d(axAPy k) oh,

- _ _L 3.29
o PxAkg cos O o (3.29)

3.1.5.2. Dynamic Pressure

As previously said, there are several complex methods for determining an
expression for the dynamic pressure term APy, . These include those derived from
a given interfacial wave characteristics and form, such as sinusoidal, from which
the pressure distribution in the wave can be computed (Galimov et al., 2005), or
from the cross section momentum balance equation (Renault, 2007). Nevertheless,
the most used expression is the one made by Bestion (1990), which is the one that

guarantees that the standard 1D Two-Fluid Model is hyperbolic. The Regime
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Capturing Methodology works, such as in Han & Guo (2015) and in Fontalvo
(2017), successfully with the expression of Bestion (1990), providing satisfactory
results. Such expression, for APp i, K € {G, L}, is given by Eq. (3.30).

APp x = —nppp (U, — Ug)? (3.30)

In the referred equation, the constant n4, is defined as 1.2 (Bestion, 1990; Han
& Guo, 2015; Fontalvo, 2017), while the density p5 is formulated as shown in Eq.
(3.31).

AcALPGPL

" agpL + appe (3.31)

Pp

As it can be seen in the referred equation, pq is a weighted average between
the phasic densities p; and p;. The dynamic pressure contribution to the momentum

equations can, thus, be expressed by Eq. (3.32).

d(axAPpk) _ dlaknppp (UL — Ug)?] (3.32)
Ox 0x

3.1.6. Molecular and Turbulent Axial Momentum Diffusion

The axial momentum diffusion term for phase K, Tk, lumps up the two
physical effects that promotes diffusion: molecular and turbulent effects. They are
represented, as shown in Eqg. (3.33), by a single effective phasic dynamic viscosity
ul’, K € (G, L}, defined in Eq. (3.34) (Fullmer et al., 2011), as performed by
Fullmer et al. (2014).

U
Ty = usl’ a_xK (3.33)
wd” =n,(ug + pb) (3.34)

In Eq. (3.34), uy is the molecular dynamic viscosity and u¥% is the turbulent
dynamic viscosity for phase K € {G,L}. n, = 1 is a constant whose purpose is to

increase uff T in order to compensate for the cross sectional diffusion effects that

cannot be explicitly taken into account due to the area-averaging procedure
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performed for obtaining the 1D Two-Fluid Model (Fullmer et al., 2014).

For modelling the turbulent viscosities, there are a huge number of options in
literature, from enormously complex approaches to very simple ones (Pope, 2000).
The complexity of the model used should be compatible with the 1D Two-Fluid
Model, reason why a simple algebraic model is preferred here. The fact of the
conventional derivation of the Reynolds-Average-Navier-Stokes (RANS) is not
being followed, which is clear by the absence of the turbulent kinetic energy in Eq.
(3.33) (Pope, 2000) also points to the use of a simple algebraic expression for
computing uk. Based on the discussions and descriptions by Pope (2000) of this

type of equation, a formulation, shown in Eq. (3.35), is proposed.

Hi = NutPx D |Uk | (3.35)

In the proposed u% expression, Eq. (3.35), the characteristic velocity is the
phase velocity and the characteristic length is proportional to the phase hydraulic
diameter Dy, K € {G, L}. Such variable is not calculated by its classical definition,
previously introduced, but for expressions, Eqgs. (3.38) and (3.39), that contain
assumptions on the gas and liquid flow and that will be properly presented in a next
topic. In Eq. (3.35), the constant n,, is estimated as the ratio between the von
Karman constant 0.4 and an empirical Reynolds turbulent number approximately

equal to 13 (Pope, 2000). The resulting value for n,,. is, thus, 0.03
3.1.7. Phase Wall Shear Stress

The wall shear stresses for each phase K € {G, L}, 7,,k, are expressed using a
Fanning-like adimensionalization. This is depicted in Eq. (3.36), where fi is the
wall Fanning friction factor of phase K (henceforth referred to simply as “phase K

friction factor™).

1
Twk = EprKIUKIUK (3.36)

The friction factor for each phase depends on the flow regime (laminar or
turbulent) and it is defined based on the phase Reynolds number Reg, formulated

in Eq. (3.37), or the phase superficial Reynolds number Rey.
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_ Px|Uk|Dpk
Uk

Reg (3.37)

A key point in the calculation of Re is the manner with which the hydraulic
diameters Dy, of each phase are calculated. Primarily, it is important to remember
that the hydraulic diameter is four times the ratio between the cross sectional area
and the wetted perimeter, as previously shown. The basic assumption regarding the
flow of the gas phase in gas-liquid horizontal stratified flows is that the gas flows
as if the interface was considered a wall (Ng et al., 2004; Hanratty, 2013). This
corresponds to an analogy of single-phase gas flow, where the liquid was stationary,
which can be a good hypothesis in many scenarios due to the gas bulk velocity
being usually much higher than the liquid velocity. Following this reasoning, the
wetted perimeter of the gas, when calculating its hydraulic diameter, is considered
the sum of the actual gas wetted perimeter with the interfacial perimeter. The basic
assumption of the flow in the liquid phase, on the other hand, is that the liquid flows
as if the interface was a free surface, that is, as an open channel flow (Ng et al.,
2004; Hanratty, 2013). This way, the liquid wetted perimeter for the hydraulic
diameter is, without any complications, equal to the actual liquid wetted perimeter.
This entire discussion can be summarized in the two expressions, Egs. (3.38) and

(3.39), for the gas and liquid, respectively, with which D, can be calculated.

D, — g 3.38
44,

Dny =+ (3.39)
L

The superficial Reynolds number of phase K € {G, L}, Reg, defined in Eq.
(3.40), is based on the pipe diameter D and on the phasic superficial velocities U,
formulated in Eq. (3.41).

px|Usk |D (3.40)
Regy = —————
2526
Usk = axUg (3.41)

These two Reynolds numbers, Regx and Reg, can be related, for the stratified

flow configuration of Figure 3.1, through Eqgs. (3.42) and (3.43) for the gas and
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liquid, respectively.

ResG:1 § sind

- = 3.42
Reg /4 T ( )
Reg, 6
=— 4
Re, & (343)

As different wall friction factors expressions are used for when the flow in
the phase is laminar, (fx)iam, Or turbulent, (fx)turb, the scheme in Eq. (3.44) is

proposed for calculating fx.

(fK)lam ) ReK < Relam
fK = Wt(fK)turb + (1 - Wt)(fK)lam ) Relam < ReK < Returb (3-44)
(fK)turb ; Reg = Reyyrp
In the previous equation, w; is an interpolation function that is commonly
assumed linear in relation to the Reynolds number, as shown in Eq. (3.45) (Khaledi
et al., 2014). However, throughout this work a smoother form for the interpolation

function based on the hyperbolic tangent, Eq. (3.46), is proposed and used.

ReK - Relam
Wy = 3.45
‘ Returb - Relam ( )
1 1 3(2 Reg — Reyyrt, — 3 Rejam)
= —+4 —tanh 4
Ve 2 * 2 an Returb - Relam (3 6)

In Figure 3.4, the two previously mentioned forms for the interpolation
function are compared and it is possible to see the advantage of the form in Eg. in

terms of smoothness.

1

0.9 ]
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0.7 ]
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05 ]
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Figure 3.4 — Comparison of the forms for w,.
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There are several correlations to determine de phase friction factor as a
function of the Reynolds number. A few of them are analyzed in the next chapter
devoted to propose new correlations for the interfacial friction factor through an

optimization technique.
3.1.8. Effective Interfacial Shear Stress

As previously mentioned in the literature review on the interfacial shear stress
modelling, Brauner & Maron (1993; 1994) proposed an expression for the effective
interfacial shear stress (nomenclature used for the 1D Two-Fluid Model), in which
the effects of waves and of the smooth interface are separated. Their expression is
given by Eq. (3.37).

=1+ J; % (3.47)

The first term in the RHS of the previous equation is the usual interfacial
shear stress (“pseudo-smooth” interfacial shear stress), which aims to represent the
contribution of the smooth interface or of a wavy interface in which the instabilities
are not being captured by the model (Brauner & Maron, 1993; 1994). The second
term on the RHS of Eq. (3.47) is the explicit contribution of the interfacial waves
to the effective interfacial shear stress z;. Although obvious, it is important to state
that if such explicit contributions of the interface waviness are not taken into
account, than the effective interfacial shear stress is equal to the “pseudo-smooth”
one. According to Brauner & Maron (1993; 1994), due to the presence of the
derivative dh; /dx in in the expression for 7;, this model is labeled as “dynamic

interfacial shear stress”.
3.1.8.1. Interfacial Shear Stress

The most common strategy to determine the interfacial shear stress t; is
analogous to the phase wall shear stress, i.e., by relating the interfacial shear stress
7; to f;, which is the Fanning interfacial friction factor (henceforth only referred to
as “interfacial friction factor”). For reasons of convenience, the expression of Eq.
(2.2) is repeated in Eq. (3.48).
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1
T = EfipGlUilUi (3.48)

The common definition of the reference interfacial velocity U; as the
difference between the gas and liquid bulk velocities (Hanratty, 2013) is used in
this work, Eq. (3.49).

U, =U; - U, (3.49)

As it will be seen in a more detailed way in the next Chapter, the interfacial
friction factor f; depends on the interfacial flow regime (laminar or turbulent) and

also on the interfacial Reynolds number Re;, defined by Eg. (3.50).

_ pclUg — Up|Dpg

Rei
HUg

(3.50)

The definition of the interfacial friction factor is crucial for an accurate
prediction of the gas-liquid flow. This is specifically critical for when the presence
of waves is strong at the interface. With this in mind, the next chapter is devoted to
the definition of the interfacial friction factor, where two new correlations are being

proposed at the present work, based on an optimization procedure.
3.1.8.2. Dynamic Interfacial Shear Stress

The presence of the derivative dh;/dx in Eq. (3.47) is a sensible manner
found by Brauner & Maron (1993; 1994) to represent the behavior of the effective
interfacial shear stress around an interfacial wave. Using the gas phase as reference,
they state that in the windward side of an interfacial wave, where dh; /dx > 0, t;
should increase and that in the leeward side, where dh;/dx < 0, 7; should
decrease. The described behavior, for the gas phase, is summarized in Figure 3.5.
The fact that the opposite behavior is valid for the liquid phase is automatically
taken into account by the natural switch of the sign of z; in the gas and momentum
balance equations, Egs. (3.11) and (3.12).

The coefficient J; that multiplies dh; /dx in Eq. (3.47) is expressed by Eq.
(3.51) (Brauner & Maron, 1993; 1994).

Ji = Caps(Ug — UL)? (3.51)
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WINDWARD SIDE
dh,/dx >0

LEEWARD SIDE
dh,/0x < 0

INTERFACE

Figure 3.5 — Behavior if the effective interfacial shear around an interfacial wave,
according to Brauner & Maron (1993; 1994).

Brauner & Maron (1993; 1994) created an equation for the memory
coefficient C;, in Eq. (3.51). This equation was developed by assuming that the
transition between stratified smooth and stratified wavy flow obtained with a linear
stability analysis of the 1D Two-Fluid Model, including the dynamic term, should
match experimental observations for a wide variety of conditions. The parameter
Cp, is evaluated in the equilibrium condition (steady-state and fully-development)
and it is shown in Eq. (3.52), as a function of the Reynolds number Re, ,,, and the

liquid height Froude number Fry; ,,, , Which are calculated through Egs. (3.53) and
(3.54), respectively.

m
Re
C, = 2.45 x 1074 [%] (3.52)
Fth,pm)
UppmD
ReL,pm — PLYLpmPhLpm (353)
My
UL,pm

(3.54)

Fr =
AL.pm VIhLpm cos 6

The subscript "pm" present in so many terms in Egs. (3.52)-(3.54) stands for
"Point Model", which is the solution of an equilibrium version of the 1D Two-Fluid
Model, as it will be more thoroughly detailed in the next chapter. All the terms
containing such subscript were evaluated with the Point Model.

The exponent 7 in Eqg. (3.52) depends on the phasic flow regime (if it is
laminar, transitional or turbulent). Therefore, the same scheme of Eq. (3.44), used

for calculating the wall friction factors fx, K € {G, L}, is proposed for evaluating
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m, as it can be seen in Eq. (3.55). This is not what was originally proposed by
Brauner & Maron (1993; 1994), but it is what is adopted in this work for reasons of

consistency with the procedures employed for evaluating f.

(")1am ) ReL,pm < Rejam
m =W (m)turb +(1 - Wt)(m)lam ; Rejam < ReL,pm < Regurb (3.55)
(m)turb ) ReL,pm 2 Returb

The expressions for the laminar, (#71);,,, and turbulent, (#72) b, €XpPONents

m are written in Egs. (3.56) and (3.57), respectively.

(M)lam = 1 (3.56)

(") purp = 1.565 — 0.072InRe;, pr, (3.57)

3.1.9. Final 1D Two-Fluid Model

By applying the closure relations, Egs. (3.17), (3.22), (3.24), (3.29), (3.33)
and (3.47), presented in the previous sections into Egs. (3.9)-(3.12), the final form
of the 1D Two-Fluid Model employed in the present work for horizontal and nearly
horizontal pipelines can be shown. Those are: the gas mass conservation equation,
Eq. (3.58), the liquid mass conservation equation, Eq. (3.59), the gas momentum
conservation equation, Eq. (3.60), and the liquid momentum balance equation, Eq.
(3.61).

d(agps) 0(agpsUs)
= 3.58
o+ ax 0 (3.58)
d(aypL) n d(aypLUL) ~0 (3.59)
at ox

d(agpUs)  0(agpcUs?)
+
ot 0x

oP S\ 0h, 9(agAPng)
= —ag v (pGaGg cos6 + J; j) 6xL — 0% (3.60)

9 AU, _ Se S
+ I (“G#gff W) — AP Sinb — Ty, VL Zl
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d(aypLUL) N a(aLpLULZ)

ot Ox
0 err UL d3h,, .
+ a(“L.“L E) - aLJW —a;pLgsinf
Sy S
~Twy Ty

The single pressure chosen for the model, is the gas interfacial pressure Py,
whose subscripts are dropped in Egs. (3.60) and (3.61), becoming the variable P.
Therefore, the four unknown variables for the 1D Two-Fluid Model are one of the

holdups, the bulk velocities and the gas interfacial pressure P.

3.1.9.1. Boundary and Initial Conditions

The 1D Two-Fluid Model comprises a boundary value problem (in space x) and
an initial value problem (in time t). For the boundary value problem, as it has four basic
unknown variables (one of the holdups, the bulk velocities and the pressure), four
boundary conditions are needed. The ones used in the present work are:

e The inlet superficial gas velocity (Usg in);
e The inlet superficial liquid velocity (U in);
e The outlet pressure (Poyy);

e The gas holdup derivative at the outlet (dat; /9x|out)-

The first three boundary conditions are Dirichlet-type and the last one is of
the Neumann type. While the first three conditions are an input of the problem, that
is, it depends on the flow case simulated, the gas holdup flux at the outlet is always

considered null. Such boundary conditions are better displayed in Figure 3.6.

INLET SECTION OUTLET SECTION
1 1
1 1
Pout
UsG,in )
[ dag 0
Pagrr: B
UsLjin out
X

Figure 3.6 — Boundary conditions of the Regime Capturing Methodology.
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A constant pressure field was considered as the initial pressure distribution,
being equal to the outlet pressure P,,.. The initial gas holdup field was determined
assuming stratified flow in equilibrium, i.e., constant liquid level and velocities.
The initial bulk velocities were also constant and determined from the ratio
between the inlet phase superficial velocities and the equilibrium phase holdup,
Eq. (3.41).

3.2. Numerical Method

To solve the system of conservation equations of the 1D Two-Fluid Model,
the Finite Volumes Method (Patankar, 1980) is used. Here a brief presentation of
the numerical solution methodology is made. Detailed information can be found in
Carneiro (2006) and Fontalvo (2017).

The Finite Volume Method (Patankar, 1980) consists of dividing the domain
of interest in control volumes and integrating the conservation equations in time
and space in each control volume in order to guarantee global conservation of all
variables of interest. Therefore, to present the method, first, the spatial mesh defined
for the former are described, followed by the interpolation schemes used. Then, the
discretized conservation equations used for evaluating the variables of interest (one
of the holdups, the bulk phase velocities and the pressure) in the domain are
presented and, afterwards, the numerical approach for handling local occurrences
of single-phase flow is covered. At last, the numerical solution procedure as a whole

is outlined.

3.2.1. Spatial Mesh

The spatial mesh used in the Finite Volume Method was defined using the
Method A of Patankar (1980), in which first N; nodal points are uniformly
distributed throughout the spatial domain (coordinate x). Then, the faces of the
finite volume elements are positioned in the middle of each pair of nodal points,
equidistant to them. Besides, two additional faces are defined in the boundaries of
the domain, coincident with the starting and final nodal points, providing a total of
(N, + 1) faces. Figure 3.7 illustrates the resulting mesh and its key parameters. In

the present work, a uniform mesh was employed.
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u u u
Anp-1 X, Xy +1

8x Sx. 8x. Xy, Sxy _ Sy,
< 1 »le 2 ol 3 . N3 M2 e N1
r’- r’~ >t
'L e o
Xy Xz X3 Ay —2 X, -1 XNy
Axy Ax, Axy Axy, s Ay, Axy,

Figure 3.7 — Spatial mesh used in the Finite Volume Method.

In the referred figure, x;, j € {1, N, } is the j-th nodal point position; x}*, j €
{1, N, + 1}, is the j-th face position; §x;, j € {1, N, — 1}, is the distance between
the j-th and (j + 1)-th nodal points; and Ax;, j € {1,N,}, is the distance between
the j-th and (j + 1)-th face. As characteristic of the Method A for mesh
construction, the distance between the first two and last two faces is half of all the
other distances Ax; and §x; of the mesh. This can be seen in Egs. (3.62) and (3.63),
which express the former and latter distances, respectively. In them, Ax (without

the subscript j) is the most important distance of the mesh and it is defined by (3.64).

_(Mx/2; j=1,N,
Axj = {Ax Ci£1N, (3.62)
Sxj=Ax; je{l,..,N,—1} (3.63)
L
Ax = N, —1 (3.64)

In accordance with recommendations of Patankar (1980), in order to avoid
an oscillatory pressure field, a staggered mesh is used for the discretization of the
conservation equations, i.e., at the nodal points, scale variables (e.g. holdups and
pressure) are stored, while flow variables (e.g. bulk velocities) are stored at the
control volumes faces. Figures 3.8(a) and 3.8(b) illustrates the main scalar control
volume and the velocities (staggered) control volume, respectively, in which P, W,
WW, E and EE allude, also respectively, the reference nodal point, and its neighbors
from both sides, west and east. The faces w, ww, ee, e correspond to the face

location at west and east side of the main central point.
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(a) Control Volume
ww w P E EE
* L * L2 * x
ww w A e ee
Control
( b) Volume
ww w P E EE
* - - x
8%

ww w e ee

Figure 3.8 — Spatial meshes: (a) scalar variables; and (b) velocities.

3.2.2. Discretized Equations

To perform the time integration of the conservation equations, the fully
implicit 1% order Euler scheme was applied, since it is unconditionally stable. The
time steps are represented by the variable At and, during the procedure in time, the
superscript “0” is used to refer to the previous time instant value of a variable.

To discretize the spatial convective terms, the first-order upwind scheme was
employed. The operator 1, of a general variable 1, means that the upwind scheme
was used for evaluating it. Thus, the values of scalar quantities at the control volume
faces e and w were determined with Egs. (3.65) and (3.66), respectively, and at the

nodal points P and W with Eqs. and , respectively.

P = [sign(Ue), 013pp — [—sign(U,), 0Ty (3.65)
v = [sign(Uy), 01y — [—sign(U,,), 0lp (3.66)
Pp = [sign(Up), 0lpy, — [—sign(Up), 0D, (3.67)
Pw = [sign(Un), 0Ty — [—sign(Uw), 01hy, (3.68)

For computing the values of the general variable i in nodal points P and W
as a function of the face-stored variables, one might use simple arithmetic mean

operations, as shown in Egs. (3.69) and (3.70), respectively. Proceeding in an
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analogous way, an average of the scalar quantities at the faces e and w can be
determined as shown by Egs. (3.71) and (3.72), respectively. The operator 1, in the

general variable v, represents such arithmetic mean.

g = Lo T Ve (3.69)
Yy = lpww; L (3.70)
P = b er Ve (3.71)
By = w (3.72)

To facilitate the presentation of the discretized conservation equations, it is
convenient to define the pseudo-fluxes Fg, K € {G, L}, and the fluxes Fg, K €
{G, L} at the faces # € {ee, e,w, ww}. This is performed in Egs. (3.73) and (3.74),

respectively.

(Fg)g = (Pr)4(Uk)g A (3.73)

(FK)f = (ﬁl{)f (éK)#(UK)# A (3-74)

3.2.2.1. Gas Holdup

The holdup chosen as a basic variable of the 1D Two-Fluid Model was the
gas holdup. Therefore, the conservation equation for a; throughout the domain is
the gas mass conservation equation, Eqg. (3.58). The Finite Volume Method
discretization of such equation in the standard spatial mesh of Figure 3.8(a)
provides the discretized expression formulated in Eq. (3.75) for the nodal point P

as a function of its neighbors E and W.

(agc)p(ag)p = (gc)p(ag)E + (aee)w(ag)w + (bag)p (3.75)

The coefficients a, at the nodal points P, E and W and at P for the previous
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time step are defined by Egs. (3.76)-(3.79), respectively, and the discretized source
term b, at P is given by Eqg. (3.80).

A
(@a)r = (@a)s + (@acdw + (06)p AL+ [(F5)e = (F5Dy] (376)
(aa)e = [~(F§)e, 0] 377)
(@aeedw = [ (Fg)w, 0] (3.78)

Axp

— (3.79)

(aaG)g = (Pa)g A
(bac)p = (aqe)? (a6)? (3.80)

3.2.2.2. Liquid and Gas Bulk Velocities

For the evaluation of the bulk velocities of the gas and liquid phases, U; and
U,,, the momentum conservation equations of the 1D Two-Fluid Model, Egs. (3.60)
and (3.61), were discretized in the staggered mesh of Figure 3.8(b). After
performing the Finite Volume discretization of these equations and using a sub-
relaxation factor ¢, fixed as 0.7 for facilitating the convergence, Eq. (3.81) is
obtained. It expresses the bulk velocity Uy, K € {G, L}, value at face w as a function
of faces e and ww, of the pressure differences between the nodal points W and P
and its values for the previous iteration (different from the previous time instant),

represented by the superscript “pi”.

(avidwUdw = (ayk)e(Ux)e + (@yr) ww Uk ww + (byr)w

T (@) Ay — Pp) (3.8

The Eqg. (3.81) can be reformulated as indicated by Eq. (3.82), using the
variable dg, which is expressed by Eq. (3.83) at the face w, and the concept of

pseudo-velocity Uy, K € {G, L}, which is defined in Eq. (3.84) for the face w.

Uidw = (Tx),, + (didw (P — Pp) (3.82)
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1) wA
(didw = ((Zui) (3.83)
(00, = T3 @)oo + @iy Ui + B (3.84)

In Egs. (3.85)-(3.88), the coefficients ayg, K € {G, L}, for faces w, e and ww
and for w at the previous time step are respectively defined. The discretized source

term by at face w is formulated in Eq. (3.89).

1
(aydw = E[(aUK)e + (ay)ww + (ayr)w — (Sp,UK)W6xWA] (3.85)

(ax)p (#f{ff)P A

(agide = |~ (Fc),, 0] + i, (3.86)
eff A
(aydww = [[(FK)W’ O]] + (aK)WA(;l:VIE )W (3.87)
x,y
(ay)w = Prw (@) A At (3.88)

(budw = (@)% W% + (seux),, 0% A+ A — ) (apdw U (3.89)

The source terms of the momentum conservation equations of the 1D Two-
Fluid Model were approximated as linear functions of Uy. The linear and angular
coefficients of these functions, s, yx and s, yk, K € {G, L}, are calculated by the
expressions depicted for the face w in Egs. (3.90) and (3.96), respectively. The
hydrostatic pressure, dynamic pressure, surface tension, gravitational and
interfacial contributions (B yx, Bp,uk, Bsuk, Bgukx and B;yk, respectively) to
the linear coefficient s,y are calculated for face w through Egs. (3.91)-(3.95),
respectively. In Eq. (3.91), the upper sign of “+” refers to the gas phase and the
lower one to the liquid. The second order derivatives present in Egs. (3.93) must be

approximated by finite differences.
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(Sc,UK)W = (BJ{,UK)W + (BD,UK)W + (BG,UK)W + (Bg,UK)W

+ (Bi,UK)W (3.90)
Swlhy)p — (h

(Bron),, = = | GOw@dug coso F (30, 2| BT (g0
(BD’UK)W _ (CZKAP‘D,K)PS; (aKAPD,K)W (3.92)

0 ; K=G

— 0%h 0%h 1
(Bou)y =1 @), KWZL> _ < ax2L> L k-t (3.93)
P w w

(BQ,UK)W = — (dx)w(Px)wg sin 6 (3.94)
(B = 5w Bedul Wedy ~ Wl Wi (3.95)

1
(sp.06),,, = =5 (iwBrdwl Wi

(3.96)

1
— E (fl dwBewlUgw — (ULwl

3.2.2.3. Pressure

The evaluation of the pressure values in the domain is more complicated than
it was for the gas holdup and for the bulk velocities, because the pressure is not
present in the remaining conservation equation for the liquid mass. Indeed, the
conservation equation used is a global mass balance, obtained after combining the
phasic mass balance equations, Eqgs. (3.58) and (3.59), normalized with their
respective phasic densities (Issa & Kempf, 2003; Carneiro et al., 2011). The
normalization is performed since the order of magnitude of the liquid density is
much larger than the gas density. This way, both mass conservation equations have
similar order of magnitude, with the same weight to influence the determination of
the pressure (Issa & Kempf, 2003; Carneiro et al., 2011). Eq. (3.97) formulates such
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global mass balance equation, in which pg ¢ is a reference gas density evaluated

with the ideal gas law, Eq. (3.15), for a reference pressure P, (defined as equal to
Pout)-

da, 9d(a,Uy,) 1 [0(agps)  9(agpsUs)
+ + +
Jat 0x PG ref at 0x

=0 (3.97)

The discretization of the global mass conservation equation, Eq. (3.97), in the
scalar control volume of Figure 3.8(a) and its multiplication by A provides Eq.
(3.98).

[(ap)p — (aL)g]AAxP + [(a,Uy)e — (a,U)w]AAL

AAxp
+ [(agpe)p — (agpe)?
[(agpe)p 6Pc)p) Doret (3.98)
AAt
+ [(agpcUg)e — (agpeUg)w] —— =0
G,ref

By applying the definition of Eq. (3.82) for the discretized phasic bulk
velocities at faces e and w into Eq. (3.98) and by applying the ideal gas law of Eq.
(3.15), pg = P/(R;T), the discretized pressure equation, Eq. (3.99), is obtained.

(ap)pPp = (ap)gPg + (ap)wPy + (bp)p (3.99)

The coefficients ap of the discretized pressure equation at the nodal points P,
E and W and the discretized source term bp at the point P are given by Egs. (3.100)-
(3.103), respectively.

A /A
(ap)p = (ap)g + (ap)w + (azf)i (ﬁ) (3.100)
(ap)p = (dp)e(@1)e A+ (dg)e(dg) A (p;G)i (3.101)
~ ~ (ﬁG)w
(aP)W = (dL)w(aL)w A + (dG)w(aG)WA G ref (3102)
0
) = (@) - @p + @0 22| 2 4 @)t
—(@).(Ty), (3.103)
| @@, 22 - @, (0), 22|
G,ref pG,ref
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3.2.3. Treatment of the Local Occurrence of Single-Phase Flow

Due to both physical and numerical reasons, local occurrences of single-phase
might be a possibility, in spite of the flow being fundamentally two-phase. A liquid
slug body free of gas is an example of local liquid single-phase flow in a
macroscopic gas-liquid flow. When a phase vanishes, its corresponding discretized
momentum (bulk velocity) equation becomes singular. To deal with this issue, a
single-phase flow detector (flag), SF, is defined for the faces employing a harmonic
mean between the gas holdups of the neighbor nodal points, as shown by Eqg.
(3.104) for face w (Ortega, 2004; Carneiro, 2006).

2(ag)w(ag)p
(ag)w + (ag)p

(SFw = (3.104)

When SF is lower than a critical value SF,,, defined in this work as 0.02, the

sp
gas-liquid flow becomes liquid single-phase flow. On the other hand, when SF is
higher than (1 — SF,,), then the flow becomes gas single-phase flow. In terms of
the numerical solution, when the two-phase flow becomes single-phase for a certain
phase, the bulk velocities of the other phase is considered to be null. Besides, since
theoretically there is no interface for this situation, the term B; . in Eq. (3.90) is
neglected. For more information on the numerical consequences of this strategy for
handling the occurrence of single-phase flow, the reader should refer to Ortega

(2004), Carneiro (2006) and Fontalvo (2017).
3.2.4. Numerical Procedure

The numerical procedure to solve the set of discretized conservation
equations consists in two levels: the transient one and the spatial one. The former
is related to the initial value problem and the latter with the boundary value
problem. Thus, for a given initial condition, a boundary value problem is solved
and then the solution advances to the next time step with a time interval of At,
calculated by Eq. (3.105). In it, CFL is the Courant-Friedrichs-Levy number, used
for guaranteeing a proper distribution between the spatial and temporal meshes, in
order to capture correctly the simulated phenomena in both space and time. The

value chosen for CFL is of 0.05. Besides, Atyi, and At,.x are, respectively the
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input minimum and maximum values of the At, and U,,.x IS the maximum bulk

velocity of the phases in the entire domain.

CFL
At = — |[— ﬂm, Atmin]‘ ) _Atmaxﬂ (3.105)
max

The solution of the boundary value problem is iterative and the convergence
is obtained after the maximum residue, res,.x, in the domain for the four unknown
variables (a¢, Ug, U, and P) is lower than a tolerance tol of 10%. A maximum
number it,,. Of iterations, it, was fixed as 20. The residue, res, for a variable a €
{ag, P} at a nodal point P and the residue of a variable # € {U;, U, } at a face w are
computed by, respectively, Egs. (3.106) and (3.107), in which 3 is a general

variable and a and b are a coefficient and a discretized source term, respectively.

(resy)p = (a)p¥p — [(a)eYe + (a)wpw + (by)p] (3.106)

(resy),, = (a5), ¥ — [(a5) Ve + (a5),, Yuw + (b5), ] (3.107)

Each linear system of equations composed by the discretization equation for
all the domain composes a tridiagonal matrix, solved by the Thomas Algorithm
(Patankar, 1980). The systems are solved sequentially in each iteration in which
pressure-velocity coupling is handled with the Pressure Implicit Momentum
Explicit (PRIME) algorithm (Maliska & Raithby, 1984) modified by Ortega &
Nieckele (2005).

Assuming that the input parameters are already defined, the main algorithm
can be outlined, excluding minor procedures and routines, as following:

e Step 1: Initialization of the unknown variables (initial conditions) and of the
time: t = 0;
e Step 2: Solving the boundary-value problem for the time t: it = 0;
o Step 2.1: Evaluation of the geometrical parameters and fluid
properties for the entire domain;
o Step 2.2: Evaluation of the Ug, K € {G, L}, fields through the
solution of the linear systems of equations originated from Eq. (3.81)
for the entire domain;

o Step 2.3: Evaluation of the P field through the solution of the linear
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system of equations originated from Eq. (3.99) for the entire domain;
o Step 2.4: Correction of the Uy, K € {G, L}, fields for the entire
domain through Eqg. (3.82);
o Step 2.5: Evaluation of the a,; field through the solution of the linear
system of equations originated from Eq. (3.75) for the entire domain;
o Step 2.6: Evaluation of the residues field for each variable and for
the entire domain through Egs. (3.106) and (3.107);
o Step 2.7: Check if resy,x < tol or if it = ity
= Step 2.7.1: If yes, then go to Step 3;
= Step 2.7.2: If no, then it = it + 1 and return to Step 2.1,
e Step 3: Check if t = tgina1 (trinar 1S the total simulation time):
o If yes, then terminate the numerical procedure;
o If not, then calculate At through Eqg. (3.105), update t = t + At and
return to Step 2.

3.3. The Stability-Hyperbolicity Problem of the 1D Two-Fluid Model

The stability-hyperbolicity of the 1D Two-Fluid Model can be analyzed in
terms of the so called "characteristics” of the equation system, which will be defined
below. In order to determine how the characteristics dictate the hyperbolicity of the
mathematical problem, an explanation based in Drew & Passman (1999) is
presented. Initially, a generalized first-order quasi-linear system of partial

differential equations is considered in Eq. (3.108).

A(D) aaif + B(d) 2—?: = c(d) (3.108)

In Eq. (3.108), ®(x,t) = [P1(x, 1) Pa(x,0) -+ Py, (x,0)]" is a vector
that contains Ny, variables @;(x,t), j € {1,2,..., N}, dependent on time (t) and
space (x). A = A(®) and B = B(®) are two coefficient matrices, ¢ = c(®) is a
source vector and the three of them depend on ®.

Then, it is assumed that information regarding & is available at all points
(x, t) specified along a curve G, defined as x = x(t) and illustrated in Figure 3.9.
Provided that the derivatives of & can be calculated, Taylor series expansions might

be used for obtaining the solution for @ in the neighborhood of C;. For facilitating
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the explanation, the variables n = n(x,t) and s = s(x,t), which represent the
normal and tangential directions of C,, are defined as it can be observed in Figure
3.9.

\J
=

Figure 3.9 — The curve €, and its associated variables n and s.

By rewriting the quasi-linear system of Eq. (3.108) with the newly defined
variables n and s, Eq. (3.109) is obtained.
0P

9 9 9
A(d))a—:: + B(®) £ = (@) - [A(cp) a_i + B(®)

Z—i aa—(f (3.109)

As @ is given for all ¢, curve, which is equivalent to the statement that & is
known for all s values, the RHS of Eq. (3.109) is entirely known. Therefore, the
analysis ends up in verifying if the coefficient matrix of d®/dn is singular or not,
which can be summarized as shown by Eg. (3.110). The parameter A =

— (dn/at)/(0n/0x) is the characteristic of the system of Eq. (3.108).

det[B(d) — 1 A(d)] = 0 (3.110)

If the coefficient matrix of d®/dn is singular, then the system of Eqg. (3.108)
is hyperbolic, otherwise it is elliptic (Drew & Passman, 1999). The system is
hyperbolic and well-posed when all the characteristics A’s of the system of
equations are real, and it is elliptic and ill-posed if one of them is complex. If all the
characteristics are real and distinct, then the system is strongly hyperbolic and, if
they are not, than it is weakly hyperbolic (Dinh et al., 2003).

To determine the correspondence between the values of the characteristics
and the hyperbolicity of the quasi-linear system, Prosperetti & Tryggvason (2007)

presented a procedure based on introducing a perturbed solution ® = &, + ¢ (P,
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is a base state temporally and spatially steady and ¢ is a small perturbation) is
inserted in the system of conservation equations. Considering that products between
¢ and its derivatives might be neglected, as well as that derivatives of @, are null,
and using linear Taylor expansions, in a procedure detailed by Prosperetti &
Tryggvason (2007), one obtains Eq. (3.111). In the referred equation, D, = D.(®,)
IS a matrix that contains the derivatives of each element of the vector c in relation
to each variable @;,j € {1, ..., No}.
P ¢

0
A(®y) 5+ B(®) === Do(®0) - ¢ (3.111)

The small perturbation is then classically defined as shown in Eq. (3.112),
with the form of a travelling wave. There, i = v—1 is the imaginary unit, k is the

wave number, w is its angular frequency and ¢ 4 is the vector of amplitudes of the

perturbations.

¢ = el (3.112)

After applying the linear definition of ¢ from Eqg. (3.112) into Eqg. (3.111)
and performing some algebraic manipulations, one obtains a homogeneous linear
system of equations in relation to ¢_4, which, for possessing a nontrivial solution
should fulfill the condition present in Eq. (3.113).

det |B(®,) — 1A(D,) + %DC(%) =0 (3.113)

In the dispersion relation formulated in Eq. (3.113), it is seen that the
characteristic 1 = w/k appears in the expression. By maintaining the value A
constant and considering the limit of instabilities and perturbations with negligible
wavelengths, k — oo, from Eq. (3.113) one obtains Eq. (3.110) (Ramshaw & Trapp,
1978). Thus, it has been shown that, through a linear stability analysis, which is
required according to the third well-posedness condition of Hadamard, one can
obtain the same rule of correspondence deduced in Drew & Passman (1999)
between the characteristics and the hyperbolicity of the Eq. (3.108) system.

As previously stated, the 1D Two-Fluid Model, represented by Eqgs. (3.58)-
(3.61), often faces the problem of the ill-posedness (complex characteristics A),

which is overcome by the use of regularization methods. Since, at this point of the


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

The Regime Capturing Methodology 91

work, the 1D Two-Fluid Model has been thoroughly presented, it is possible to
discuss such methods in an improved and more ad hoc manner and with the help of
Egs. (3.58)-(3.61).

Correctly modelling the interfacial-bulk pressure difference (P;; — Py) for
phase K € {G, L} is considered a regularizing method due to the known stabilizing
features of both the hydrostatic (Chung & Song, 1996) and dynamic (Bestion, 1990;
Han & Guo, 2015) pressure terms: the first term in the parentheses that multiplies
the derivative dh;/dx, in the RHS of the momentum balance equations, Egs.
(3.60)-(3.61), and the third term of the RHS of these equations, respectively. That
is the reason why vertical flows (cos 8 = 0°) suffer from serious hyperbolicity
issues, being in some cases even unconditionally ill-posed (Han & Guo, 2015). The
dynamic pressure term is capable of completely hyperbolize the 1D Two-Fluid
Model (Bestion, 1990; Han & Guo 2015), because linear stability analyses have
shown that it limits the interfacial instabilities growth rate for all the wavelengths
(Fullmer et al., 2014). The second-order diffusion, induced by the axial momentum
diffusion term of Egs. (3.60)-(3.61) (fourth term on the RHS), also helps to
regularize the model by controlling the growth rate of small wavelength interfacial
instabilities (Fullmer et al., 2014). The same is true for the third-order term due to
the surface tension effect in Eq. (3.61) (fifth term on the RHS), although it acts
mostly in very small wavelength interfacial instabilities (Fullmer et al., 2014).

The methods and the effects of their associated terms and parameters in the
1D Two-Fluid Model previously mentioned are well known in literature. The same
is not truth for the dynamic interfacial shear stress term, that is, the second term in
the parentheses that multiplies the derivative dh; /dx in the RHS of the momentum
balance equations, Egs. (3.60)-(3.61). It was found by the author of this work solely
one work (De Bertodano et al., 2013) that addresses the effect of such term on the
stability-hyperbolicity of the 1D Two-Fluid Model. With a simple Kelvin-
Helmholtz stability analysis, De Bertodano et al. (2013) showed that the interfacial
shear stress term destabilizes the model.

For checking the conclusion of the work of De Bertodano et al. (2013),
simplified well-posedness (characteristics) analyses of the 1D Two-Fluid Model
were performed through the solution of Eq. (3.110). For such investigation, not only
the liquid phase, but also the gas was considered incompressible. Furthermore, the

vector of unknown variables & can be specified according to Eq. (3.114).
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q) = [O(G UG UL P]T (3114)

The 1D Two-Fluid Model, Egs. (3.58)-(3.61), should be rewritten as a quasi-
linear system, as in Eq. (3.108). First, the terms of second and third-order of the
momentum balance equations were neglected (Montini, 2011). Then, the derivative
dh;/0a; is formulated in Eqg. (3.115) with the assistance of the geometrical
definitions of Table 3.1 and Eq. (3.13).

oh, D( sin§ ) 3.115
da, " \2—cosé (3.115)

It is important as well to define the derivative of the dynamic pressure term
APy, K € {G, L}, by taking into account the employment of the Bestion (1990)
correlation, Egs. (3.30) and (3.31). This is done in Eq. (3.116) and (3.117), where

the auxiliary variable Hy, is expressed.

a(APp ) au, au, dag

_\ DK _ it St R _G 3.116

0x 21ppp (U UG)( 0x ox ) D ox ( )
NpPcPL (U, — Ug)?

Hp = lay, —ag — aga,(p, — pe)] Drert L d (3.117)

(agpL + appg)?

Afterwards, the gas and liquid mass conservation equations of the 1D Two-
Fluid Model, Egs. (3.58) and (3.59), are reformulated in Egs. (3.118) and (3.119),
respectively, in the same non-conservative form of the quasi-linear system of Eqg.
(3.108), using the unknown variables vector ®, Eq. (3.114).

dag dag aU;
—_ — —_— = 3.118
P65 + pcUs I + agpg ox 0 ( )
00(6 aaG aUL
_p 4 _ -t = 3.119
PL5; pLUL ax +aLpy ox 0 ( )

A similar procedure is adopted for rewriting the momentum conservation
equations, Eqgs. (3.60) and (3.61), by additionally using the definitions of Egs.
(3.115)-(3.117). Such reshaped conservations equations are shown in Egs. (3.120)
and (3.121) for the gas and liquid, respectively.
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dat, o, , dag g oUu, 9P

aaG au, aaG aUG aUL P
T — 3.121
pLUL T +a.p; T + by ) + by Tx + by, 9% O(Lax 4, ( )

The coefficients &;, j€{l,1I,111,1V,V,VI}, present in the previous
expressions are defined in Egs. (3.122)-(3.127), respectively.

oh
by = pUg? + APpc —agHp — (aGpGg cos 0+ J; A) 92 L (3.122)
ar
b1 = 2a5(pgUg +nppp (U, — Ug)] (3.123)
by = —2agnppp (U, — Ug) (3.124)
) dh,
’6le = _PLUL - AP‘D,L — aL:]'[D <0{LpLg cos 0 — (71 )a a (3125)
by = 2amppp (UL — Ug) (3.126)
by = 2a,[pLU;, — nppp (U, — Ug)] (3.127)

The source term Ak, K € {G, L}, in Egs. (3.120) and (3.121) contemplate the
gravitational and shear forces, as shown in Eq. (3.128), where the upper sign in “+”
refer to the gas phase and the lower sign to the liquid.

51<_ Si

Ag = agpgg sinb — Tyx— A +Ti— ) (3.128)

After rewriting the 1D Two-Fluid Model, one can determine the coefficient
matrices A(®) and B(®) of the system, Eq. (3.108), as depicted in Egs. (3.129)
and (3.130), respectively.

Pc 0 0

—PL 0 0
pPcUsc  agpg 0
—pLUL 0 aLpL

A(®) = (3.129)

o O O O
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pPcUs  acpg 0 0
—pLUL 0 ap, O
b b b ag
by by by ap

B(®) = (3.130)

With the already defined matrices A(®) and B(®), it is possible to solve Eq.
(3.110) for finding the characteristics A's. Such equation might be developed into a
easily solved quadratic polynomial, shown in Eq. (3.131). The variables {;, j €

{0,1,2} are expressed in Egs. (3.132)-(3.134), respectively.

_ 2 2 2
(o = aga,“ by —ay*Ugy + aga Uy by — aga by

3.132

+ aga Ugby — ag?U by, ( )

{1 = ap by — agay (b + by) + ag?by; (3.133)
{; = —aga,(agp, + appg) (3.134)

Assuming that the holdups are equal to steady-state fully-developed
equilibrium values for a given pair of superficial velocities, Eq. (3.131) is
straightforwardly employed for evaluating the characteristics of the 1D Two-Fluid
Model, subjected to the other previously mentioned hypotheses. In a following
chapter, the results from this analysis, for the Eskerud Smith et al. (2011) database
and for checking the findings of De Bertodano et al. (2013), are presented and

discussed.
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4. OPTIMIZATION OF THE INTERFACIAL SHEAR STRESS

In this chapter of the work, two new correlations for the interfacial friction
factor are proposed to improve the predictions of stratified and slug flows. These
correlations were developed based on the experimental database of Eskerud Smith
et al. (2011), also used in Johansen et al. (2014) and in Khaledi et al. (2014), of
viscous oil and gas flow in several regimes.

As clearly mentioned in the previous chapter, the accuracy of the numerical
prediction depends strongly on the interfacial friction factor. However, it should be
made clear that an appropriate interfacial friction factor is necessary not only for
the Regime Capturing Methodology, described in the previous chapter, but also for
so called “Point Models”. Point Models are based on simplified (steady-state and
fully-developed) version of the 1D Two-Fluid Model for holdup and pressure
gradient (henceforth labelled as “integral parameters™).

In the literature review regarding the modelling of the interfacial shear stress
in horizontal stratified gas-liquid flows, a vast number of options was illustrated.
However, most of the literature correlations for such parameter were made with
experiments with low viscosity (i.e., close to the water viscosity at standard
consitions, 1cp), while the Eskerud Smith et al. (2011) database is for a mineral,
one hundred times more viscous than water. In fact, Pasqualette et al. (2015) have
shown that correlations such as the ones found in the works of Andritsos & Hanratty
(1987) and Andreussi & Persen (1987) may generate significantly disparate results,
when employed in the Regime Capturing Methodology for simulating cases from
the Eskerud Smith et al. (2011) database. It was shown how inefficient interfacial
friction factor correlations commonly used in the literature are for simulating the
Eskerud Smith et al. (2011) database within the referred framework. Therefore, at
the presented work, needed new correlations based on such experimental data were
developed.

This chapter begins by a thorough presentation of the viscous oil-gas

horizontal flow cases of the Eskerud Smith et al. (2011) database, aiming to select
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the experimental cases from the database most appropriate to elaborate the new
correlations. Afterwards, the Point model (steady-state fully-developed version of
the 1D Two-Fluid Model) used for elaborating the correlations is explained. As the
solution of this simplified 1D Two-Fluid Model might lead to multiple solutions
(Ouyang & Aziz, 2002), an investigation was made in order to answer the question
whether this is an issue (or not) for the cases selected from the database.

Before determining any interface friction factor expression, an optimization
method implemented in the present work is described. This method was applied to
determine an optimized interface friction factor, as well coefficients for new
correlations for the interface friction factor.

Then, it is discussed which are the most often used methods for elaborating
correlations for the interfacial friction factor and why they can be unsatisfactory. In
the following topic, the wall shear stress correlations that were used in the
simplified version of the 1D Two-Fluid Model and in the optimization framework
are presented.

In the final topic, the elaborated correlations are introduced and the predictions
for the integral parameters (pressure drop and holdup) obtained by the solution of the
simplified 1D Two-Fluid Model are presented. Results obtained with other literature

expressions for the interfacial friction factor are also compared and discussed.

4.1. The Eskerud Smith et al. (2011) Experimental Database and the
Selected Cases

The Eskerud Smith et al. (2011) experimental database comprises of
isothermal horizontal viscous oil-gas flows in a laboratory-scale pipe. Experimental
measurements have been performed at the Tiller Laboratory of SINTEF in Norway
(Eskerud Smith et al., 2011). For each individual case, the complete description of
flow and experimental conditions cannot be fully disclosed due to confidentiality
reasons. For this reason, rather than using the superficial velocities for describing
the flow conditions, the superficial Reynolds number is used. The superficial
Reynolds number of phase K, Regg, is defined by Eq. (4.1)., where D is the pipe
internal diameter, and pg, Uk and ug are, respectively, the density, superficial

velocity and viscosity of phase K € {G, L} (G represents the gas and L the liquid).
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Re., = PclUskD 4.1)
125

Furthermore, the description done in this work is limited to the cases
described by Eskerud Smith et al. (2011), Johansen et al. (2014) and Khaledi et al.
(2014), who also used the same database.

The Eskerud Smith et al. (2011) database consists in two sets of experiments,
both employing SFs as gas phase. The liquid phase of the first set is Exxsol, which
is a de-aromatized aliphatic hydrocarbon oil commonly used in experiments for
being non-flammable, nontoxic and transparent. The liquid phase of the second set
is Nexbase 3080, a catalytically hydroisomerized and dewaxed base oil composed
by hydrogenated and highly isoparaffinic hydrocarbons, and is also non-flammable
and transparent. The main difference between these two mineral oils is that Exxsol
D80 has a viscosity of the same order of magnitude than the viscosity of water, that
is, 1cp, while the viscosity of Nexbase 3080 is approximately one hundred times
this same value at pressures and temperatures close to standard conditions (1atm
and 15°C). Since, the present work is concerned with viscous liquid, only the set of
experiments that used Nexbase 3080 as the liquid was considered here.

The test section, or flow loop, used for performing the Nexbase 3080 and SFe
experiments comprises of a horizontal pipe with an internal diameter of 6.86cm,
i.e., 2.7 inches, and a length of 52.92m measured from the gas-liquid mixing point
to the pipe outlet section, from where a large separator follows. From single-phase
flow experiments, the internal wall absolute roughness of the pipe was evaluated as
Tum.

In the complete set of experiments, the absolute flow pressure and average
temperature varied, respectively, between 7.0 and 7.6 bar and between 18.0 and
24.6°C. In such thermodynamic conditions, the key properties of the fluids used,
varied within the range indicated in Table 4.1. Furthermore, both the gas viscosity
and the interfacial tension were approximately constant in the experiments and had
the values of, respectively, 0.0151cp and 0.2 N/m. From Table 4.1, the high
viscosity of the mineral oil Nexbase 3080, at least much higher than the viscosity
of the water, is very clear, as well as two particularities of the SFe. First, it is the
possibility of considering it as an ideal gas due to the values of its compressibility
factor being so close to the unity. In addition, a gas constant about five times lower

than the air gas constant, makes the SFs have a density five times higher than the


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Optimization of the Interfacial Shear Stress 98

density that air would have in the same conditions. Thus, it is clear the significant
deviation of the properties of the present viscous oil-gas flow cases from air-water
flows in standard conditions. It is important to mention that the methods and
instruments used for measuring the fluid properties are not explored in this work
and, for more information it is recommended referring to Eskerud Smith et al.
(2011).

Table 4.1 — Minimum and maximum key fluid properties in the experiments.

Fluid Property Minimum Value | Maximum Value
SFes compressibility factor 0.96 0.99
SFe density 43.3 kg/m? 47.0 kg/m?3
Nexbase 3080 density 847.9 kg/m3 852.6 kg/m?
Nexbase 3080 viscosity 79.6¢p 113.7¢cp

The pipe of the test section was equipped with six pressure cells, which
provided an accurate measurement of the pressure gradient. The value measured by
the first of these cells, located at 25.6m downstream from the mixing point, was
considered the absolute pressure of the flow, whose values varied according to the
limits previously mentioned. A broad-beam gamma densitometer was fixed at
approximately 38.15m downstream from the mixing point and was used to acquire
time traces of the liquid holdup «;, at a frequency of 10Hz. From such signals, the
mean liquid holdup for each case could be determined. Only the broad-beam
gamma densitometer measurements, the pressure gradient, the fluid properties and
the flow conditions for each case were available to the author of this work. That is
why, the other instruments present in the test section, e.g. narrow-beam gamma
densitometer and high-speed videos, were not here described. Their detailing and
the specification of the uncertainties of each instrument used can be found in
Eskerud Smith et al. (2011).

Eighty flow cases of viscous oil (Nexbase 3080) and SFe (gas) had its main
parameters and conditions measured in the previously described flow loop. In the
database, the superficial Reynolds number of the gas phase, Rey, varied between
5.18x10% and 2.30x10¢ and the liquid superficial Reynolds number, Rey,, ranged
from 60 to 2.06x103. Although it is not exactly Reyy that determines if a phase is
laminar, transitional or turbulent, from them it can be seen that, while the gas should

always be turbulent, the liquid probably will be either laminar or transitional.
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It should be emphasized here that one of the purposes of developing a new
correlation for the interfacial shear stress is to include it in methodologies that use
the 1D Two-Fluid Model, such as the Regime Capture Methodology, but also
similar formulations, as well as in Point Model formulations.

Considering the Regime Capture Methodology presented in the previous
chapter, its base configuration for horizontal or slightly horizontal pipelines is a
stratified flow, therefore, these flow patterns should be identified from the Eskerud
Smith et al. (2011) database for the correlations development. Further, within the
framework of the Regime Capturing Methodology in fine meshes, large-scale
waves are naturally captured and only small-scale interfacial effects must be
included in the interfacial shear stress. Thus, the stratified wavy flows must also be
subdivided depending on the wave’s amplitude.

If it is assumed that only small-scale interfacial effects must be included in
the interfacial shear stress, since those of large-scale should theoretically be
captured, the new correlations for the interfacial shear stress should be developed
employing only cases with small-amplitude interfacial waves. Therefore, the
stratified wavy flow with large-amplitude waves are excluded from the elaboration
of the correlations and solely those with small-amplitude waves are used.

In order to identify the flow pattern of the eighty cases selected from Eskerud
Smith et al. (2011) database, the signal of the broad-beam gamma densitometer
liquid holdup «; was employed. At the present work, the Eskerud Smith et al.

(2011) database was examined and the following classification was considered:

e Slug flow;

e Bubbly flow;

o Stratified wavy flow with small amplitude waves;
o Stratified wavy flow with large amplitude waves;

¢ High gas flow rate flow patterns.

No stratified smooth flow was observed in the present database due to the
viscosity of the oil. Very high gas flow rate cases, with flow patterns such as
annular, misty and stratified low-liquid loading flows were lumped into the single
label “high gas flow rate flow patterns”, because it is not possible to differentiate
between them only using the gamma densitometer signals. Further, these patterns

were not the focus of the present work.
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The procedure used for determining the flow pattern of each case with the
broad-beam gamma densitometer liquid holdup time traces is summarized in

Figure 4.1.

Two peaks in the PDF YES | ol UG FLOW
(one for a; = 0.8) ?

NO
h 4

(@) >08? |—=>_» BUBBLY FLOW

NO
h 4

YES _ HIGHGAS FLOWRATE
(@) <0087 " F OWPATTERNS

NO

YES __ STRATIFIEDWAVY FLOW
On,/p/{h1/D) > 0527 » (LARGE AMPLITUDE WAVES)

o]

STRATIFIED WAVY FLOW
(SMALL AMPLITUDE WAVES)

Figure 4.1 — Procedure for the flow pattern classification of the Eskerud Smith et al.
(2011) database.

Beginning in the upper box in Figure 4.1, the procedure starts by analyzing
the histogram of the liquid holdup signal. If the histogram has two peaks, being one
of them for a value of a; higher than 0.8, the flow is classified as slug flow. The
value of 0.8 was selected in order to avoid that slug aeration leads the procedure to
a fallacious classification. After checking if the flow has slugs, it should be verified
if the mean liquid holdup value, (a,) is higher than 0.8. If it is, than the case is
bubbly flow, otherwise, it is verified if (a; ) is lower than 0.08. If yes, than the flow
gains the previous mentioned label of “high gas flow rate flow patterns” and, if not,
than it is already known that the flow regime consists in stratified wavy flow. For
determining if its waves have a small or large amplitude, one must convert the liquid
holdup «;, signals of the gamma densitometer to dimensionless liquid height h; /D
signals, by using the geometrical relations of the stratified flow configuration
(Figure 3.1). If the ratio between the standard deviation of the liquid height a3, /p
and the mean dimensionless liquid height value (h,/D) is superior to 0.52, it
indicates that the stratified flow has large-amplitude waves. Otherwise, the
stratified flow has small-amplitude waves and it is adequate to be used in the
elaboration of the new correlations for the interfacial friction factor. It is important
to mention that the values in Figure 4.1 were especially chosen for the Eskerud


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Optimization of the Interfacial Shear Stress 101

Smith et al. (2011) database, with the aid of available video footages of the flows,
as a manner for systematizing the flow pattern classification

To identify the type of wave of a stratified wavy flow, one can examine the
absolute wave amplitude. However, in order to classify the type of wave in a
rigorous way, one must employ the ratio of dimensionless standard deviation and
liquid height o, ,p/(h, /D), with the threshold value of 0.52 to separate the small
and large amplitude waves. Figure 4.2 shows the liquid holdup time traces of the
two cases, with the same superficial Reynolds number, Figure 4.2(a) is a case with
on, /p/{h,/D) = 0.519, and contains the liquid holdup signal of a stratified wavy
flow with small-amplitude waves while Figure 4.2(b) corresponds to large-
amplitude waves case (o, /p/(h,/D) = 0.549).

(a)

a.(-)

0 (b)
time interval (60s)

Figure 4.2 — Stratified wavy flow cases in the threshold of oy, /p /(h, /D) = 0.52:

(a) small-amplitude waves; (b) large-amplitude waves.

In Figure 4.3, the experimental liquid holdup «; time traces, obtained with
the broad-beam gamma densitometer, of one example-case is depicted for each type
of flow pattern from the previously defined classification. An example of a bubbly
flow case is clearly seen in Figure 4.3(a) due to its high liquid holdup. In Figure
4.3(b), the liquid holdup signal of a slug flow case, characterized by the
intermittency between separated flow and liquid slug bodies, is visible. The two
peaks in slug flow holdup histograms represent those two intermittent features.
Both the liquid holdup time traces of Figures 4.3(c) and 4.3(d) belong to stratified
wavy flows. In them, small-amplitude interfacial waves are present, resembling
almost a type of roughness, but only in Figure 4.3(c) there are also large-amplitude
waves. Lastly, in Figure 4.3(e), the very low displayed liquid holdup signal points
to a high gas flow rate case. It is clear how challenging it would be to confirm if, in

the latter figure, a misty flow, an annular flow or a stratified wavy flow with a much


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Optimization of the Interfacial Shear Stress

102

curved interface (low-liquid loading condition) is present.

R VWUV N VAR AT

(c)

(d)

e e WY i Wy

(e)

time inferval (60s)

Figure 4.3 — Liquid holdup time traces measured by the broad-beam gamma

densitometer: (a) bubbly flow case; (b) slug flow case; (c) stratified wavy flow case with

large amplitude waves case; (d) stratified wavy flow case with small amplitude waves

case; (e) high gas flow rate case.
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Figure 4.4 — Liquid holdup histograms of one case for each flow pattern from the

classification.

The liquid holdup histograms of the same cases, whose broad-beam gamma

densitometer measurements were plotted in Figure 4.3, are displayed in Figure 4.4.

The histograms were plotted in the style of a Probability Density Function for

reasons of aesthetic. It is interesting to observe in the referred figure that, excluding
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the slug flow case, the “width” of the histogram peaks represent the degree of
intermittency of the flow. Some of the same observations made with Figure 4.3 can
also be made with Figure 4.4.

The previous paragraphs have shown that Eskerud Smith et al. (2011)
database is quite large, with a variety of flow patterns. To develop the new
interfacial friction factor correlations, a sub-set of cases was selected as described.
To summarize, the gas-liquid considered were SFs-Nexbase 3080. Further, only the

stratified wavy flow with small amplitude waves were considered.

4.2. The Point Model

To develop the new interfacial friction factor, the Point Model was applied,
which corresponds to a steady state and fully developed flow. The same base flow
configuration employed in the previous chapter was considered here, i.e., a
stratified flow, with a flat interface in the cross section as shown in Figure 3.1(a)
and with geometrical variables expressed by Table 3.1 and Eq. (3.14).

To obtain the Point Model, the conservation equations for the Regime
Capturing Model presented in the previous chapter, Egs. (3.60) and (3.61), were
simplified, considering steady state and fully developed flow, resulting in the gas

and liguid momentum balances of Egs. (4.2) and (4.3).

dPg . Sg Si

W=_pcgmn9_TWGE_TiZ (4.2)
P, . Sy S

W = —pL9 sin@ — TwLA—L + TiA—L (43)

In the referred equations, the interfacial pressure gradient was rewritten
employing the phasic pressure gradient, using Eg. (3.7), and the phase holdup was
written as ay = Ag/A.

The two algebraic momentum balance equations, Egs. (4.2) and (4.3), are the
core of the simplified 1D Two-Fluid Model. Its solution is plainly defined as finding
a value of liquid holdup «; for which the pressure gradient in both phases are equal
(Andritsos & Hanratty, 1987b). This is mathematically represented in Eq. (4.4) by

the necessity of finding the zero of the function G(«a;).
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aPG
ax

_op,

el (4.4)

G(ay) =

The function G(a;) can be rewritten, by substituting, Egs. (4.2) and (4.3) in
Eq. (4.4), resulting in Eq. (4.5).

Y S¢ (Sl

5 _
G() = T 55 = g 22 — 11 (S +21) + (o — pe)g sin @ (45)
a,” ™

A, Ag

In this way, the solution of the simplified 1D Two-Fluid Model is able to
provide estimates for the pressure gradient and the liquid holdup of the flow.
Finding the zero of G(a,,) is a task that can be executed through several algorithms.
However, in this work, a simple and standard secant method was found to be
sufficient. It is interesting to see that, as a contrast to the complete 1D Two-Fluid
Model, there is no need for spatial grid resolution in its simplified version. That is
why the solution of the simplified 1D Two-Fluid Model for obtaining values for the
integral parameters of the flow is labelled in this work as “Point Model”.

The shear stresses for each phase K € {G, L}, t,,x, and interface shear stress
7; (here equal to the effective interface shear stress t;) are expressed using Egs.
(3.36) and (3.48), which are repeated here as Eqgs. (4.6) and (4.7), with the definition
of Eqg. (3.49).

Twie = 5 fipilUx|Ug (4.6)

1
T; = EfipGlUG - U, l(Ug —Up) (4.7)

Thus, to complete the problem formulation, it remains to determine the phase
K friction factor fi and interface friction factor f;. As already mentioned, the
former depend on the phase Reynolds number Rey or superficial phase Reynolds
number Regg, and the latter on the interface Reynolds number Re;. Further, it is
important to determine the regime of each phase, i.e., if it is laminar, transitional or
turbulent. In the Point-Model and in the Regime Capturing Methodology, the
threshold for transition of laminar and turbulent regime were defined based on the
recommendations of Khaledi et al. (2014). In other words, for Re < Re|,;,, = 1400
the flow is laminar, for Re > Rey,p, = 4000 it is turbulent, otherwise, there is a

transition. To obtain a smooth transition of friction factor between regimes, it was
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handled as explained in the previous chapter, employing Eq. (3.44).
4.3. Multiple Solutions Problem

As pointed out in the literature, the Point Models might possess multiple
solutions. In other words, there are situations in which there is more than one «;,
root of the function G(a,) in Eqg. (4.4). Landman (1991) analytically solved the
model for a scenario in which both phases were laminar, and verified the non-
uniqueness of the solution. The same work also uncovered that, when there are
multiple solutions, the lowest root of G(«; ) is the most stable one, while the highest
a; root is surely unstable and the intermediate values might be stable or not.
Nevertheless, for this work the main question is if the occurrence of multiple
solutions is a problem for the isothermal horizontal stratified gas-liquid flows cases
with small-amplitude waves selected from the database. Ouyang & Aziz (2002)
stated that the existence of multiple solutions depends on several flow parameters
(e.g. pipe diameter, fluid properties, pipe inclination angle and flow rates), but is
more commonly found in upward (positive angle 6) inclined flows. Since the
present work is concerned with horizontal flows, the possibility of multiple
solutions being an issue is small, however, the uncertainty persists.

To verify the possibility of occurrence of multiple solutions the following
procedure often employed in the literature (Landman, 1991; Ouyang & Aziz, 2002)
can be applied. Let’s assume that dP;/dx = dP,/0dx, i.e., equating Egs. (4.2) to
(4.3), and by dividing the resulting equation by t,,., one obtains Eg. (4.8).

S, 1 1 Sg
X, —=XSi|—+—)+Xp——= 4.8
LaL lSl <aG +aL) + w 0 ( )

The dimensionless parameters X;, X; and Xy, are defined according to Eqgs.
(4.9)-(4.11), respectively. The parameter X; is analogous to the widely known
parameter of Lockhart & Martinelli (1949).

T
X, == (4.9)
Twe
Ti

Twe
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(pL — pg)gsinb
X, = 4.11
w Twe ( )

As the stratified gas-liquid flows with small-amplitude waves selected from
the Eskerud Smith et al. (2011) database refer to a totally horizontal pipe, the

parameter Xy, defined by Eq. (4.11), is null. Therefore, Eq. (4.8) can be rewritten
as Eq. (4.12).

6 m—90\ aza;
Xi_<XLa_L_ ag )(sinS) (4.12)

By examining Eq. (4.12), it can be seen that for a horizontal flow, only three
variables control de behavior of the Point Model: X;, X; and the liquid holdup «;.

Then, a multiple solution scenario would occur when for the same values of X; and
X, there were two or more values of «; that satisfy Eq. (4.12). For checking this,
the variable X; was computed for a; € ]0.0,1.0[ and for six very disparate values
of X;. The results were plotted in the diagram shown in Figure 4.5, where it is
evident that for all values of X;, except 0.01, and for low liquid holdups, one value
of X; can be associated with two values of «; . Therefore, there is a non-uniqueness
of the Point Model for situations in which «; is lower than approximately 0.08.
However, cases of the Eskerud Smith et al. (2011) database with such values of
mean liquid holdup (a;) were classified as “high gas flow rate flow patterns” and
were not used in the elaboration of the new interfacial friction factor correlations.

As a result, it can be considered that for stratified wavy flow with small-amplitude

waves cases there is no multiple solutions problem when using the Point Model.
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Figure 4.5 — Diagram for analyzing Point Model multiple solutions for horizontal flows.
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4.4. Optimization Method

The optimization procedure implement in this work, is based on two objective
function formulations. Both objective function formulations depend on a root-
mean-squared error, e, that combines the relative (to the measurements) errors of
the Point Model results for pressure gradient and liquid holdup: egp/q4x and ey,
respectively. Such variables are formulated in Egs. (4.13) and (4.14), for a Eskerud
Smith et al. (2011) database stratified wavy flow with small-amplitude waves case
jc, where the subscript “pm” represents what was calculated by the Point Model,
and Eq. (4.15) shows the expression for the aforementioned error e. One should
recall that the Point Model is valid when G(a;) = 0, Eq. (4.4).

. | = dP/dx|pm,jc — dP/dx|exp jc (4.13)
dpr/dx jc - dP/dxlexp,jC

arlom,jc = @ lexp,j
earlje = ——= = (4.14)
aLIexp,jc

2
eljc = \/ (el ,-C)2 + (edp/dx|jc) (4.15)

The optimization procedure proposed in this work has the purpose of
minimizing the errors of the calculations of the Point Model, i.e., to obtain values
for liquid holdup and pressure gradient closest to the measurements as possible.
Two optimization problems were considered here. The first optimization problem
was applied aiming to determine an optimized interface friction factor. This is
performed by considering f; as the optimization variable of the procedure and by
solving the optimization problem for each flow case. The objective function

formulation Tébj that should be used in this framework is the one shown in Eq.

(4.16) for case jc € {1, ..., N.} (N, is the number of cases used in the optimization).

Fonjl , = elje (4.16)

The second optimization problem was applied to determine the new
correlations for the interface friction factor, and its application will be presented in
another topic. In the second optimization problem, the optimization procedure has

the coefficients n;,j € {1,..,N,} (N, is the total number of coefficients) as
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variables, contained in the vector 1, of a pre-proposed expression for f;, rather than
the values of f; themselves. Besides that, the coefficients in i are optimized for all
selected flow cases, that is, are not case-specific anymore, such as the first
optimization problem described. In this way, the new expressions for the interfacial
friction factor are elaborated. With these remarks in mind, the objective function of
Eq. (4.17) shall be used in this optimization problem.

Nc¢
1
Fobj = N Z eljc (4.17)

je=1

In terms of best possible values (optimized) of pressure gradient,
dP/dx|op,jc, and liquid holdup, a, |ope,jc. for each case jc, it is worth mentioning
that the first optimization problem provides better results than the second one, since,
in the latter, the interfacial friction factor is constrained by a pre-proposed
expression and the procedure is not case-specific. The two optimization problems
just described, originated from the same optimization procedure, are outlined in
Figure 4.6, by the depiction of its optimization variables, objective functions used

and main outputs.

s ~a
\ filjc,'
h -

Optimization

Procedure with F ;|
OPTIMIZATION e
VARIABLE

fi Iopt.jc

i:: dP/dxloptjc
(a) “'L|opt,jc

Optimization
Procedure with FLf;

OPTIMIZATION
VARIABLE(S)

dP/dx|qpe jes j € {1, ..., Nc}

aylopeje-J€ € {1, ..., N}

(b)

Figure 4.6 — The two optimization problem formulations: (a) for evaluating the best
possible results of the Point Model (applied to each specific case jc); (b) for elaborating

new correlations for the interfacial friction factor.
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For solving the optimization procedure in both optimization problems,
outlined in Figure 4.6, the Particle Swarm Optimization (PSO) algorithm (Kennedy
& Eberhart, 1995) was chosen. In this evolutionary algorithm, a population of
samples (or particles), each one represented by the vector p which contains all the
optimization variables, is initialized and then recursively updated as shown by Egs.
(4.18) and (4.19).

Vjist+1 = ,Biji; + .31r1js(ib]l:§ - p;ts) + ﬁzrzjs(gbit - p;ts (4.18)

Pl = bl + it (419

In the referred equations, the subscript js is the index of the sample in the
population and the superscript it is the number of the update or iteration in the
algorithm. In addition, v is the update vector, defined by Eq. (4.18) and 8, S1, B2
are constants that control, respectively, the inertia, the individuality and the
sociability of each sample. The elements of the vectors r; ;; and r; ;5 are taken from
a uniform distribution between 0 and 1. The vector ib is the individual best of a
sample, that is, the best values that the sample has had since the beginning of the
iterations of the optimization algorithm, while gb is the global best, i.e., a vector
with the globally best values obtained so far in the procedure. The term “best
values” means the values of the sample that provided the minimum value for the
objective function. All the vectors present in Egs. (4.18) and (4.19) have a number
of elements equal to the number of optimization variables.

The PSO algorithm implemented in the present work, is based on the one
originally elaborated by Kennedy & Eberhart (1995), and it is outlined in Table 4.2,
where it is the iteration number. Here, the following values for the constants in Eq.
(4.18) were used: 8, =0, B = 2 and B, = 2.

Table 4.2 — Outline of the PSO (Kennedy and Eberhart, 1995) algorithm used in this

work.

Step 1 (initialization and definition of the initial population):

e Defineit=0;

e Forinitializing the population, each variable of each sample is taken from
a Gaussian distribution.

Step 2 (calculation of the objective function):
e For each sample, the objective function is evaluated.
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Step 3 (bests):

e Check which are the individual bests ib}ﬁ for each sample;

e Check which is the global best gb‘t.

Step 4 (is it over?)

e If it is superior to a maximum number of iterations, finish the algorithm;
e Otherwise, proceed to Step 5.

Step 5 (updating the samples):

e Update it = it + 1;

e Perform the update of each sample through Egs. (4.18) and (4.19);
e Return to Step 2.

4.5. The “Experimental” Interfacial Friction Factor

The most common approach to determine the interfacial friction factors is
through calibration of its value employing estimated “experimental” values of the
interfacial shear stress. “Experimental” is used in quotes, because the interfacial
shear stress is never directly measured, but calculated from other measurements.

The “experimental” interfacial friction factor can be determined by using
accurate measurements of axial velocity profile and liquid height variation by the
Particle Image Velocimetry (PIV) technique, as done by André & Bardet (2017).
Another option would be to use Reynolds shear stress measurements, as performed
by Kowalski (1987). However, such non-standard measurements are not available
for the Eskerud Smith et al. (2011) database, which provides only integral
parameters (mean liquid holdup and the pressure gradient). In this case, as
anticipated, the use of the momentum balance equations, Egs. (4.2) and (4.3), of the
Point Model is the most adopted path. The experimental integral parameters are
then applied directly to one of the two momentum balance equations and the
interfacial shear stress (and consequently the interfacial friction factor) is obtained.
The term “directly applied” means to assume dPy/0x and ag, K € {G, L}, equal to

their experimental values, respectively, 0P /0x ey, and a|exp. Such calculation is

easily seen in the rearranged momentum balance equation for phase K € {G, L},
shown in Eq. (4.20), where, once again, the upper sign in “+” refers to the gas phase
and the lower to the liquid.

— AK <6PK SK)

T, =+— W+ngsin0+erE

5 (4.20)
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In the previously mentioned framework, the gas phase momentum balance is
the one most used in literature for calculating the experimental interfacial friction
factor (Andritsos & Hanratty, 1987b; Spedding & Hand, 1997; Newton & Behnia,
1998). The presence of the gas wall shear stress t,,; poses a problem, because
experimental values for it are not always available, as in Newton & Behnia (1998).
When such issue is present, a correlation is used for the gas friction factor and the
gas wall shear stress is then computed (Andritsos & Hanratty, 1987b; Spedding &
Hand, 1997).

An alternative option for evaluating the “experimental” interfacial friction
factor would be to use Eq. (4.21), a combination of the gas and liquid momentum
balance equations, as well as a correlation for the gas and liquid friction factors.

A , S S
T = aga o [(pL — pe)gSiNG + Ty, S5 — Ty = (4.21)
S; A, Ag

For the three different approaches to indirectly determine the interface friction
factor, information about the phase friction factor is need. Thus, first, a model for
the wall friction factors fx, K € {G, L}, is necessary. In this topic of the chapter,
little discussion is dedicated to the modelling of such parameter, since in the
following topic the subject will be developed and more thoroughly treated.

In this first analysis, the laminar wall friction factor, (fx)jam, for both phases
were calculated with Eq. (4.22), adapted from the single-phase Poiseuille flow
analytical solution in a circular pipe is used (Hanratty, 2013). For the turbulent wall
friction factor, (fx)wurbn, the explicit approximation of the Colebrook (1939)
expression performed by Haaland (1983), shown in Eq. (4.23) (¢ is the internal pipe
wall absolute roughness) is used at this moment. These correlations will be referred
here as classical wall friction factor correlations. Again, further discussions on these
and other correlations will be made later in this work, because those correlations

are not the ones that were ultimately used in the other topics and analyses.

16
(fK)lam = E (4'22)
69 1 &\
(fidturb = {—3-610&0 [R_eK + (ﬁD—hK) l} (4.23)

The transition between the regimes was handled as explained in the previous
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chapter, employing Eq. (3.44).

Theoretically, whether using the gas momentum balance equation, the liquid
momentum balance equation or Eq. (4.21) should not make any difference in the
evaluated values of the “experimental” interfacial friction factor. However, due to
lack of accuracy of the correlations used for the gas friction factor and/or the liquid
friction factor, the three options for computing the referred parameter provide
different results. Nevertheless, even if ideal correlations for the wall friction factors
are used, more fundamental and implicit issues would maintain this consistency
problem between the three approaches. When the measured values of the integral
parameters, a|exp and dP/0x|exp, are used directly in the momentum balance
equations, for the three approaches to provide the same values of “experimental”
interfacial friction factor, the answers for the three following Questions must be

positive:

e Question 1: Is there a value of «;, that would make dP;/dx equal to P, /0x?

e Question 2: If the answer to Question 1 is “yes”, is this value of «; equal to
aLleXp ?

e Question 3: If the answer to Question 1 is “yes”, is the value of pressure

gradient equal to 0P /9x|exp ?

For the stratified wavy flow cases with small-amplitude waves selected from
the Eskerud Smith et al. (2011) database, it is very unlikely that the answers to
Questions 1-3 will be “yes”, due to the hypotheses inherent to the Point Model
(steady-state, fully hydrodynamic development, among others). Consequently, the
direct use of the experimental integral parameters will always lead to this just
described consistency problem between the three approaches.

4.5.1. Comparison of the “Experimental” and Optimized Interfacial

Friction Factor

Rather than choosing one of the approaches described to evaluate the
“experimental” values of the interfacial friction factor, it can be determined through
the optimization procedure presented in section 4.4. In it, the experimental integral
parameters are not used directly in momentum balance equations, but in an indirect

way through an optimization methodology. To appreciate the results of the
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optimization procedure of Figure 4.6(a), the optimized pressure gradient and liquid
holdup are compared with the experimental data in Figures 4.7-4.8.

The average relative errors obtained for the liquid holdup and pressure
gradient were equal to 6.9% and 10.5%, respectively. Besides, it can be seen in the
referred figures that for the majority of cases from the Eskerud Smith et al. (2011)
database selected (stratified wavy flow with small-amplitude waves), the liquid
holdup deviation from the experimental data does not surpass 15% and the pressure
gradient errors also do not overcome 15%. Therefore, it can be concluded that the

best possible values for the integral parameters are reasonably good.
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A deeper insight is needed on the difference between the three previously
described approaches that evaluate the “experimental” interfacial friction factors by
the direct use of the experimental integral parameters. To this end, a comparison is
performed with the optimized values of f; resulting from the solution of the first
optimization problem, outlined in Figure 4.6(a). The three “direct” approaches
considered are, respectively: the one that uses the gas momentum balance equation,
the one that uses the liquid momentum balance equation, and the one that uses a

combination of them, as shown in Eq. (4.21).
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Figure 4.9 — Comparison between the optimized interfacial friction factors, through the
optimization problem of Figure 4.6(a), and their “experimental” values obtained with the

gas momentum balance equation.
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Figure 4.11 — Comparison between the optimized interfacial friction factors, through the
optimization problem of Figure 4.6(a), and their “experimental” values obtained with the
total momentum balance equation of Eq. (4.21).

Figures 4.90-4.11 show a comparison between the “experimental” values of
the interfacial friction factor of the Eskerud Smith et al. (2011) database stratified
wavy flow with small-amplitude waves cases with the optimized values.

In Figures 4.90-4.11, the “experimental” values are compared to the
optimized ones with the help of equivalence lines (mark the equivalence between
the values from each graph axis) and of lines that represent deviations of 20%. As
aforementioned, the main purpose of this initial analysis is just to show the
differences between these approaches and how they compare to the optimization.

Primarily, by observing Figures 4.90-4.11, the difference between the results
of any of the direct approaches and the optimized values is very clear. This is
actually not surprising, because the distinctions between the methodologies are very
significant. The exceptions for these large differences are some cases shown in
Figure 4.9, based on the gas momentum balance equation, which is the mostly
adopted in literature. This shows that, among the three direct approaches, using the
gas momentum balance equation is indeed more valid than using the liquid
momentum balance equation or Eq. (4.21). However, the arguments for the use of
optimization in this work remain valid. By analyzing Figures 4.90-4.11, the
consistency problem of the direct approaches is evident, since the calculated
“experimental” interfacial friction factors of each case differ between approaches.

After this preliminary analysis, it is wise to perform a complete discussion of
the wall friction factor correlations used and the possibility of using improved ones
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not only in the elaboration of new correlations for the interfacial friction factor, but

in the Regime Capturing Methodology.
4.6. Analysis of the Wall Friction Factor Expressions

When presenting the features of the first optimization problem, the one
outlined in Figure 4.6(a), it was mentioned that one of the possibilities in using the
interfacial friction factor as an optimization variable was that the wall friction factor
correlations could be analyzed and different ones compared. Such analysis is
performed in this topic not just aiming the elaboration of satisfactory new
correlations for the interfacial friction factor, but also for improving the predictions
of the Regime Capturing Methodology in the upcoming chapters of this work.

To improve the quality of the gas wall friction factor for very viscous oil-gas
flow, it is important to perform a correction in the pipe wall internal roughness in
the gas phase. Due to the high viscosity of Nexbase 3080 oil, oil filaments stay
trapped in the gas wall perimeter, increasing its apparent roughness. The expression
of Eq. (4.24) for the corrected gas wall roughness, &., was proposed by Khaledi et
al. (2014).

0.00175\2
&g =¢€71+9exp|—100 (.U—) (4.24)
L

Also due to the significant viscosity of the liquid, for the range of superficial
Reynolds number observed in Erro! Fonte de referéncia ndo encontrada.,
probably the liquid flow is laminar, and an improved laminar liquid friction factor
(fi)iam Must be seeked. The most commonly used expression in literature is
actually the one previously defined in Eqg. (4.22). Nevertheless, the value of 16
present in the referred equation is valid solely for a flow in a circular pipe (Cengel,
2006), and not for a stratified flow, as seen in Figure 3.1(a). Accounting for the
cross sectional geometry in the evaluation of Reg through Dy is not sufficient.
Therefore, other constant values are found in the literature, such as 24, taken from
channel flow (Spedding & Hand, 1997; Cengel, 2006), and 20.76, obtained by
fitting a mechanistic model (Zhao et al., 2015). However, this value should also
change with the liquid holdup, due to variations of the cross sectional geometry.

Biberg (1999c), who analytically solved the steady-state fully developed laminar
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flow in the liquid phase of a gas-liquid stratified flow, settled this issue and obtained
an analytical expression for the laminar liquid wall shear stress (t,,;)1am, @ Shown
in Eq. (4.25).

8u,U, .
(Twdtam =~ = €{Tio (4.25)
hL

In the referred equation, Dj;; is a modified hydraulic diameter, which takes
into account the actual liquid phase geometry and its variations with the holdup;
and ¢; is the influence function, responsible for representing the influence of the
holdup in (7,,.)1am- Tio IS the interfacial shear stress for a smooth interface,
determined with Eq. (4.7), based on the smooth interfacial friction factor, f;,, which
is determined employing empirical correlations. By examining Eq. (4.25), it is clear
that depending on the value of c¢/t;,, the liquid wall shear stress (z,,;)1am, and
consequently (fi)iam, Can become negative, what is undesired. However,
Pasqualette et al. (2017) examined the second term in the RHS of Eq. (3.36), and
verified that it is much smaller than the first one. Thus, Biberg (1999c) expression
was modified by eliminating the second term, resulting in the expression of Eqg.

(4.26) for the laminar liquid wall friction factor.

16 (Dy,
(fL)lam = R_eL <D;’:L> (4-26)

For evaluating Dy, Biberg (1999c) proposed an approximated rational

polynomial expression, whose form is given by Eq. (4.27) for a generic parameter

PV and generic variable &.

13 j
_ jzon§

V= : (4.27)
]6'=0 djf]

The values of the coefficients #;, j € {0, ...,13}, and &;, j € {0, ...,6}, which
depend on the parameter V, as the choice of variable ¢ does, are listed in Table 4.3
not just for Dy, , but for other parameters that will appear throughout this work.
Such parameters, thus, shall be properly described later.

In Figure 4.12, the laminar wall liquid friction factor, given by Eq. (4.26) is
plotted versus the liquid holdup. It can be seen that the modified Biberg (1999c)
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expression, Eq. (4.26), ranges from 15.5 to almost 18.0, showing the 16 constant

parameter is not adequate, unless for «; values between 0.15 and 0.6.

Table 4.3 — Coefficients and variables of Eq. (4.27) (Biberg 1999b; 1999c).

i € G vi i D /D
Vang'e -8 P -8 P 5/m
ng 0 0 3.819 x 10~¢ 1.500 x 107¢ | —1.000 x 107
ny 2.991 x 10™° | —8.129 x 10~¢ 1.204 x 1071 1.325 x 1071 3.550 x 10™*
n, —7.338 x 10™* 1.424 x 107¢ | —=1.220 x 101 | —1.005 x 107! 6.748
ng 6.591 x 1073 1.849 x 1073 4794 x 1072 4.024 x 1072 —7.093
Ny 5.731 x 107! 8964 x 1071 | —8.646 x 1073 | —9.401 x 1073 -11.96
ng 1.798 x 1071 7.751x 1072 | 6.054x 1074 9.797 x 10™* 19.60
ng —4.049 x 107 | —7.077 x 1072 0 0 —-7.028
n, 1.524 x 1071 2.734 x 1071 0 0 0
ng —1.107 x 1071 1.728 x 1072 0 0 0
g 9.604x 1072 | —1.894 x 1072 0 0 0
o —4.063x 1072 | —3.185x 1073 0 0 0
Ny 8.653x 1073 2.820 x 1073 0 0 0
o -9.172x10™* | —5.190 x 10~* 0 0 0
M3 3.881 x 1073 3.228 x 1075 0 0 0
do 1 1 1 1 1
d, 0 0 —8.628 x 1071 | —4.684 x 1071 -1.113
dy 0 0 1.881 x 1071 8.701 x 1072 1.584
ds 0 0 3.023x 1072 | —6.701 x 1072 —4.451
dy 0 0 —-1.607 x 1072 | 2.867 x 1072 5.941
ds 0 0 1.588 x 1073 | —3.417 x 1073 -3.631
de 0 0 0 0 0.9412
18.5
18.0 -
17.5 A
. 17.0 A
o
\:' 16.5
o
©O
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Figure 4.12 — Variation of the term 16(Dy, /Dy, ) of Eq. (4.26) with the liquid holdup.

For the gas phase, which is predominantly turbulent, the laminar wall friction

factor is not as important as it is for the liquid phase. So, the previous expression,

Eq. (4.22) is maintained here and repeated in Eq. (4.28).
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16

Reo (4.28)

(feham =

For evaluating the turbulent wall friction factor of the gas and the liquid, the
most adopted approach in literature is the one used in the last topic, Eq. (4.23), that
is, to use an explicit approximation for the Colebrook (1939) equation. This
equation is coupled with the definition of hydraulic diameters, Egs. (3.38) and
(3.39), which contain the hypotheses that the gas flows as if the interface was “part
of the pipe wall” and that the liquid flows as if the interface was a free surface.
Although this approach is very useful and practical, since it does not involve
implicit and complex expressions, such as in the Biberg (2007) framework, it lacks
accuracy in several situations. One of the reasons of the failure of this correlation
is due to the fact that it does not account for the influence of the interface dynamics
on the wall friction factors. Another explanation why the Colebrook (1939)
expression may not be adequate is directly related to its derivation. Colebrook
(1939) equation is a combination of the Prandtl (Pope, 2000) and von Karman
(Pope, 2000) expressions for smooth and rough pipes, respectively. They are
obtained after a pre-integration of the axial velocity profiles based on the
corresponding logarithmic law of the wall of each situation, which use the wall
friction velocity (based on the wall shear stress) and the wall roughness (Pope,
2000). Standard logarithmic law of the wall (Pope, 2000) is often unable to
represent the velocity profile near the interface when it is wavy (Belcher & Hunt,
1993). Another reason is associated with the coupling of the hydraulic diameters
expressions with Colebrook (1939) equation for evaluating (fx)turb, K € {G,L}.
The gas hydraulic diameter assumes that the wall shear stress acts on the interface,
and for the liquid hydraulic diameter, there is no shear stress at the interface.
Further, it is assumed that the interface has a surface roughness equal to the pipe
wall internal roughness. It is clear from the aforementioned facts that it is also
necessary to improve the phase wall friction factors.

Biberg (1998) attacked the problem by deducing a new expression for
(fe)turb- This was done by the pre-integration of a double-logarithm velocity
profile, originated from two laws of the walls (one for the interface and another for
the actual wall), of the gas stream of a turbulent gas-liquid flow in a horizontal

channel. By using two different laws of the walls, it was possible for Biberg (1998)
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to use the interfacial shear stress in the law applied to the interface and the wall
shear stress for the law applied to the actual wall. After some simplifications and
several algebraic manipulations, the expression in Eq. (4.29) was obtained.

_3610g10 6.9 +(l€_6)1.11] -2

3.7D
(fG)turb = |UG he

14 4/fip 71 IUI (1+g)

(4.29)

In the case of the liquid, Nossen et al. (2000) elaborated an expression for
computing (fL)wrp Seeking to represent the effects of the interface dynamics and
to improve the results when the basic hypothesis involved in the liquid hydraulic
diameter expression fails. The correlation proposed, Eq. (4.30), is an interpolation
of the Hand (1991) empirical correlation and the explicit approximation for the
Colebrook (1939) expression of Haaland (1983). With the interpolation term z,,
Eq. (4.31), the correlation can approach Haaland (1983) expression when the free
surface flow hypothesis is more valid, otherwise it can approach the Hand (1991)
expression. The effect of the interface dynamics can be seen in the presence of the
smooth interfacial Froude number Fr;,, Eq. (4.32), in the expression for z; in Eq.
(4.31).

(f)turb = {6.178zt (cry Reg; )0-0695

69 (1 e\""|\ (430
- 3 6(1 Zt) 10g10 [R + (3 7 DhL) l}
Si
%, = tanh(2000 Fr;) 5 (4.31)
L
T.
Fryo = 0 (4.32)

(oL — PG)gD cos 0

The previous friction factor expressions, show that the turbulent friction
factors of both phases depend directly on the smooth interfacial friction factor f;.
It can determined employing Issa & Kempf (2003) recommendation: the laminar
smooth interfacial friction factor, (f;)1am, EQ. (4.33), is analogous to the laminar

gas friction factor, and the turbulent smooth interfacial friction factor, (fio)turb, IS
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determined with the Blasius-like expression of Taitel & Dukler (1976), seen in Eq.
(4.34).

16

(fio)tam = Re. (4.33)
A

(fio)turb = 0.046 Re; ™" (4.34)

The same previously defined expression, Eg. (3.50), for Re; should be used

for Eqgs. (4.33) and (4.34), and it is here repeated for convenience as Eq. (4.35).

Re; = pclUg — Up|Dyg (4.35)
He

Once again, a smooth transition between the regimes was handled by

employing a scheme similar to the one of Eq. (3.44) for interpolating between the

smooth interfacial friction factors of each regime.

For evaluating the effectiveness of these new set of wall friction factor
correlations presented in this topic, with the ones used in the analysis of the previous
topic, Eqgs. (4.22) and (4.23), the optimization problem of Figure 4.6(a) is solved
for both cases. The resulting optimized integral parameters (liquid holdup and
pressure gradient) are compared to the experimental values in Figures 4.13 and
4.14, for the classical set of wall friction factor correlations, and in Figures 4.15 and
4.16, for the new set. Both in the classical and in the new sets of wall friction factor,
the gas roughness correction of Eq. (4.24) was used.

Examining Figures 4.15 and 4.16, it can be seen that an improvement on the
results obtained with the new correlations was obtained: the average relative errors
are 5.5%, for the liquid holdup, and 8.5%, for the pressure gradient. Furthermore,
in Figures 4.15 and 4.16, neither the results for the liquid holdup nor the ones for
the pressure gradient, in their majority, have a deviation much greater than 10%.

The improvements obtained were modest, because for the majority of the
cases selected, the regime of the liquid phase is laminar, and the liquid holdup «;
varies in the range from 0.15 to 0.6, when there is no practical difference between
the Biberg (1999c) expression for (f;)iam, EQ. (4.26), and the expression of the old
set of wall friction factors, Eq. (4.22), as shown in Figure 4.12. Therefore, the

change of expressions for evaluating (f;)1am indeed should not make difference for
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such cases, nevertheless, it will for cases with lower and higher liquid holdups.
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Figure 4.13 - Comparison of optimized, through the optimization problem of Figure 4.6(a),

liquid holdup values against the measurements for the classical set of wall friction factor

correlations.
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Figure 4.14 - Comparison of optimized, through the optimization problem of Figure 4.6(a),

liquid holdup values against the measurements for the classical set of wall friction factor

correlations.
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Figure 4.16 - Comparison of optimized, through the optimization problem of Figure 4.6(a),

pressure gradient values against the measurements for the new set of wall friction factor

correlations.

Although, the improvement in the results with the new set of wall friction

factor correlations was not significant, the major advantages of the new wall friction

factor correlations must actually appear in hydrodynamic conditions outside the

range of the stratified wavy flow cases with small-amplitude waves flow. Thus, it
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is expected to lead to more accurate results when applying the Regime Capturing
Methodology to simulate slug and stratified flow cases from the Eskerud Smith et
al. (2011) database. Thus, this new set of wall friction factor correlations was used
throughout this entire work.
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Figure 4.17 — Comparison of the optimized interfacial friction factors with the alternative
wall friction factor correlations and the common ones.
For a deeper insight on the difference between the new and the classical sets
of wall shear stress correlations, Figure 4.17 compares the optimized, Figure 4.6(a),
interfacial friction factors obtained for these two sets. It is interesting to observe

that the deviation between such values does not surpass 15%, for most cases.

4.7. Proposed Expressions for the Interfacial Friction Factor

In this topic, the new correlations for the interfacial friction factor, elaborated
in this work, will finally be presented. The correlations should be explicit and
simple, features that drew the attention of this work to expressions of the type that
calculates the ratio between the interfacial friction factor and a reference friction
factor, such as the correlations of Andritsos & Hanratty (1987b), Andreussi &
Persen (1987) and Spedding & Hand (1997). It is important to compare the Point
Models results for liquid holdup and pressure gradient obtained with the new

interfacial friction factor correlations against the ones provided with literature
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correlations, which are the ones here firstly presented.
One of these literature correlations for the interfacial friction factor is the one
of Andreussi & Persen (1987) modified by Calgaro (2012), formulated in Eqg.

(4.36), in which, f;, is the gas wall friction factor for a null pipe wall roughness.

1 ) FrG < Fr‘G,crit
fi _
- h;

fao |1+ 29(Frg — Frg o) (3

0.2 (4.36)
) ; Fre > Fre crit
Also in Eq. (4.36), Fr is the gas Froude number, evaluated with Eq. (4.37),
in which the derivative dA;/dh; is expressed by Eq. (4.38), obtained with the
geometrical relations of the stratified configuration of Figure 3.1.

Pe dAL ( 1 )
= 4.37
g UG\/(,DL — pG> dh; \gA; cos 6 (4.37)
2
ady _ |, (2_’% _ 1) (4.38)
dh,;, D

In Eq. (4.36), Frg ¢ is the critical gas Froude number, which marks the
appearance of waves at the gas-liquid interface and, as a consequence, the increase
in the interfacial friction factor. Rather than using the constant value of 0.36,
originally proposed by Andreussi & Persen (1987), Frg (it Is calculated with Eq.
(4.39), as suggested by Calgaro (2012). The critical gas superficial velocity Ug it
which appears in Eq. (4.39), is evaluated with Eq. (4.40), in which the critical
wavenumber k. should be computed with Eq. (4.41).

Pe ) 1
F C=Un 4.39
rG,crlt G,crlt\/(pL — pe gD cos 6 ( )

2
Ugern = Uy + [ (4.40)
crit

pLg cos 6
Kerie = /—L - (4.41)

The other literature correlation for the interfacial friction factor to be
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compared with the newly elaborated correlations is the one of Tzotzi & Andritsos
(2013), depicted in Eq. (4.42).

(1 s Use < Usgr2p

2h;
fi 1+ 0.35(U56 - USG,tZD) D s Usg,e2p < Usg < Usg ekn
) (4.42)

foo o o
1253 T h\ h;
\2 <.“L,ref> (E> + 4(Use — Usg.exn) /E s Use > Us,exn

In the referred equation, U ¢p is the gas superficial velocity that marks the

transition from a smooth interface to one with 2D waves and U (kg represents the
appearance of Kelvin-Helmholtz irregular waves. These superficial gas velocities
are evaluated with Eqgs. (4.43) and (4.44), respectively.

o1 035 021
o (p_) (2es)” (ﬂ_) In %(ﬁ) (4.43)
sG,t2D 1.95 PLs P Urs Ust, His ]
1 oL 0.5 Pcs 0.5 O 0.35 1.39 s 0.157
Usgikn = —=|— (—) (—) In <—) (4.44)
: 0.65\pLs) \pg d Yo Ml

In Eqs. (4.42)-(4.44), all the variables with the subscript “S” are evaluated for
an air-water system at 1 atm and 20°C.

In the new interfacial friction factor correlations to be constructed, instead of
using the gas friction factor with null wall roughness as reference of friction factor,
as in Andreussi & Persen (1987) and Tzotzi & Andritsos (2013), it is proposed to
use the smooth interfacial friction factor. This physically makes more sense, since
in the interfacial friction factor correlations the ratio between it and the reference
friction factor deviates from unity when waves appear at the interface. Therefore,
the new correlations are written for f;/f;,. However, considering such ratio to be
unity can be a valid approach, since in literature, when the increase in the interfacial
friction factor due to waves is not taken into account, it is taken to be equal to the
reference friction factor. It is defined, then, the “Standard Expression” for the

interfacial friction factor, shown in Eq. (4.45).

Ji _
=1 (4.45)
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To illustrate the need to develop a new correlation for the interface friction
factor, Point Model results were computed for the previously selected Eskerud
Smith et al. (2011) cases, with the Standard Correlation, the Andreussi & Persen
(1987) correlation modified by Calgaro (2012) and the correlation of Tzotzi &
Andritsos (2013).

In Figure 4.18, the calculated Point Model results of liquid holdup and
pressure gradient, respectively, for the three referred literature correlations are

shown and compared against the experimental data.
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Figure 4.18 - Point Model calculations with literature correlations for the interfacial friction
factor for: (a) liquid holdup; and (b) pressure gradient.
In the referred figure, the degree of scattering of the plots, in which few results
appear close to the equivalence line, is astonishing. In the results shown for the

liquid holdup Point Model, in Figure 4.18(a), almost all the values presented a
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deviation in relation to the measurements significantly larger than 20%, for the three
correlations of f;. The average relative liquid holdup error is of 61.0%, for the
Standard Correlation, 33.7%, for the Tzotzi & Andritsos (2013) correlation, and
57.0%, for the Andreussi & Persen (1987) modified by Calgaro (2012).
Respectively, the pressure gradient average relative errors from these same
correlations are 31.1%, 30.9% and 38.9%. With few exceptions, such as the group
of cases with smaller values of pressure gradient, the results for such parameter, in
Figure 4.18(b), have a relative error that surpasses 20%.

Those very negative results obtained with the Point Model and the three
previously mentioned correlations for f; confirm that the current literature
correlations are not satisfactory for the Eskerud Smith et al. (2011) database, and
new correlations must be developed.

Along this chapter, it has been mentioned, several times, that two new
correlations for the interfacial friction factor were elaborated in this work. Before
the explanation advances, it is important to tackle the question of why elaborating
two new correlations and not just one. Several proposed expressions for such
parameter can be satisfactorily adjusted via the solution of the optimization problem
of Figure 4.6(b) with the experimental data of the stratified wavy flow cases with
small-amplitude waves from the Eskerud Smith et al. (2011) database. The greater
issue is to come up with a correlation that behaves adequately outside the range of
flow parameters of the cases used for elaborating it. That is why two qualitatively
different correlations, rather than solely one, were elaborated here. When the
Regime Capturing Methodology is used in this work, it will be analyzed which one
of the two provides the best results.

As in the new interfacial friction factor correlations, it is desired to take into
account the increase in the latter due to a roughened interface, it is important to
know at which conditions this should take place. Instead of using a critical gas
Froude number as criterion, as in Andreussi & Persen (1987), it was chosen to use
the superficial gas velocity U to monitor the formation of waves and when f;/fio
should not be unity anymore. Thus, the correlation of Tzotzi & Andritsos (2013),
with its complete and accurate expressions for the transition gas superficial

velocities Ugs 1op and Ugg ¢k, COMes to mind. According to the calculated values

of Usgap and Usg xy for the stratified wavy flow cases with small-amplitude
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waves from the Eskerud Smith et al. (2011) database, they all possess Kelvin-
Helmholtz irregular waves, which is in consonance with the remarks of Tzotzi &
Andritsos (2013) on viscous oil-gas flows. Thus, Usg (kg is used as transition gas
superficial velocity and indicator of when f; should increase in relation to f;, in the
two new correlations.

Since the liquid viscosity is a key parameter for this work, it is an interesting
idea to insert it directly in the new correlations, which is performed through the
mixture viscosity u,, of Biberg (1999b), defined by Eq. (4.46). In it, it is possible
to see that u,, is a type of weighted harmonic mean between the viscosities of each
phase (u; and ug), whose weights are y; and y; and given by Eq. (4.27) together
with Table 4.3.

UcHp,
Uy =

C Yile + Vil (4.46)

As the balance between viscous and surface tension effects is important for
small-scale phenomena (Biberg, 1999b), such as the small-amplitude waves of the
Eskerud Smith et al. (2011) database cases selected, the Capillary number should
be used in the new correlations. Two formulations are used, one for each
correlation, for this non-dimensional number: the one proposed by Biberg (1999b),

seen in Eq. (4.47), and a new one, formulated in Eq. (4.48).

U U
Ca; = HM (256 _ st (4.47)
ole; €
Um
Cag = 7 |UsG - UsG,tKHl (4-48)

The Capillary numbers of the referred equations are the interfacial Capillary
number Ca;, for Eq. (4.47), and the superficial gas Capillary number Ca,, for Eq.
(4.48). The label of the former originates from the use, in Eq. (4.47), of a relative
velocity between a modified gas and liquid velocities, calculated as the ratio
between the respective superficial velocity of each phase and a modified holdup e,
K € {G, L}, calculated with Eq. (4.27) and the definitions in Table 4.3. Similarly,
the label of Cag; comes from the use of the gas superficial velocity in Eq.
(4.48).

The first correlation for the interfacial friction factor in the condition of
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irregular  Kelvin-Helmholtz waves (Usg > Uggexn), according to Tzotzi &
Andritsos (2013) is given by EQ. (4.49). Henceforth, it is labeled as “Proposed
Expression 1”7 (PE1).

Ji i inc 12 (Uge — Usg exn)

x Nn1La; sG SG,tKH (4.49)

In PEL, n;, j € {1,2,3}, are the coefficients to be determined through the
solution of the optimization problem outlined in Figure 4.6(b). Furthermore, in PEL,
it can be seen the interfacial Capillary number Ca;, defined in Eq. (4.47), and the
important term (UsG — UsG,tKH) that provides the degree of dynamics in the
interface in relation to the condition of appearance of waves in Ugg = Usg (k. The
known effect of the liquid height in f; is implicit in Ca;.
The second new correlation for the interfacial friction factor, also for Ug; >

Use txu» shall be labeled as “Proposed Expression 2” (PE2) and it is formulated in
Eqg. (4.50). In it, the gas superficial Capillary number Cag; contains the significant
parameter (Usg — Usg k). The exponential term in PE2, which represents the
influence of the liquid height, was inspired by the work of Spedding & Hand (1997)
and the reasonable results provided by its correlation for f; in the Regime Capturing
Methodology of Pasqualette et al. (2015). That is why the original value for n; =
3.1 from Spedding & Hand (1997) was maintained in this work and solely n;, j €
{1,2}, are to be evaluated through optimization.

fi

—=1+mn,Ca 772exp(n ﬁ) (4.50)

Through the solution of the optimization problem in Figure 4.6(b) and the
experimental data of viscous oil-gas stratified wavy flow with small-amplitude
waves selected, the coefficientsy = [11 12 n3]T, for PE1, andn = [11 2],
for PE2, were determined. The final values of all the coefficients for PE1 and PE2

are registered in Table 4.4.

Table 4.4 — Coefficients of PE1 and PE2.

Proposed Expression 1 N, N3
1, Eq. (4.49) 150 0.65 0.38
2, Eq. (4.50) 993 1.29 3.10



DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Optimization of the Interfacial Shear Stress 131

With the two solutions of the referred optimization problem, the optimized
values of liquid holdup and pressure gradient, for each Proposed Expression, are

depicted and compared against experimental data in Figures 4.19 and 4.20.
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Figure 4.19 — Optimized liquid holdup values of PE1 and PE2 compared against
experimental data.
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Figure 4.20 — Optimized pressure gradient values of PE1 and PE2 compared against
experimental data.
In Figure 4.19, it can be seen that the liquid holdup optimized values, in their
majority, does not deviate from the experimental data in more than 15%. Their
average relative errors are, for PE1, 6.7% and, for PE2, 8.8%. For the pressure

gradient (Figure 4.20), the average relative errors for PE1 and PE2 are, respectively,
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8.2% and 9.3%. The deviation of the pressure gradient results in relation to the
measurements does not exceed 15%, similarly to the values of liquid holdup. With
these results, it can be concluded that the optimization procedure performed for
obtaining two qualitatively different correlations, PE1 and PE2, was successful.

The optimized values of f; obtained through the solution of the problem in
Figure 4.6(a) and the ones provided by the newly created PE1 and PE2 are compared
in Figure 4.21. In it, it is possible to see that the calculated values from PEL1 are
closer to the optimized values (most deviations are inside the 15% limit) than those
provided by the PE2. This justifies the better results for the former, in comparison
with the latter, for the optimized liquid holdup (Figure 4.19) and pressure gradient
(Figure 4.20) values.
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Figure 4.21 — Comparison of the optimized interfacial friction factors with the alternative

wall friction factor correlations and the common ones.

As previously mentioned, both PE1 and PE2 assume that Ugz > Usg ¢kn,
which is a valid condition for all the cases selected from the Eskerud Smith et al.
(2011) database, due to the high viscosity of the Nexbase 3080 oil. However, how
to apply these new correlations for flows which are not in the previously described
condition? The framework shown in Egs. (4.51) and (4.52), for PE1 and PE2,

respectively, is then employed.
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fi {1 ; Usg < Uggt2p
— = 038

fio 1+ 150 Ca;**(Usg — Ugg txn) s Useg > U ikn
fi 1 ; Use < Usgt2p
== 1.29 hy,

fio 14993 Cay; “" exp 3.13 ; Usg > Ugg exn

133

(4.51)

(4.52)
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5. SIMULATIONS AND RESULTS

In this chapter, the results from the Regime Capturing Methodology applied
to some cases from the Eskerud Smith et al. (2011) database are shown and
discussed. To this end, three cases were selected from the Eskerud Smith et al.
(2011) database to be simulated: one corresponds to a slug flow and two of a wavy
stratified flow pattern. Those cases are explained and detailed below. Then, the
numerical results are presented and compared to measurements.

The strategy employed in the present work to investigate the performance of
the Regime Capturing Methodology to predict viscous oil/gas flow is to begin by
analyzing the classical 1D Two-Fluid Model, mostly used in literature (Issa &
Kempf, 2003; Bonizzi et al., 2009; Nieckele et al., 2013). As presented, the classical
model does not consider the dynamic pressure contribution (APg x = 0) nor the

axial momentum diffusion (uf(f = 0) and dynamic interfacial shear stress (J; =

0). However, those effects must be contemplated to evaluate their impact in the 1D
Two-Fluid Model predictions.

Based on the simplified incompressible characteristics analysis of the 1D Two
Fluid Model, without its high-order derivative terms (shown in chapter 3), it was
verified that the dynamic pressure contribution acts to increase the region in which
the pair of superficial velocities of gas and liquid are well-posed. The same analyses
showed that the dynamic interfacial shear stress acts in the opposite direction,
however, the combined effect, might render the solution well-posed and also
improve the quality of the predictions. Therefore, a map delimitating the well/ill
posed region of superficial velocities for the fluids considered in the present work
is created to verify the result. Finally, as discussed in chapter 3, since the axial
momentum diffusion is a second order term, it does not appear in the simplified
characteristics analysis. However, it is well know that diffusion is has a stabilizing
effect in the flow. Therefore, the set of simulations outlined in Table 5.1 was

performed, together with the first one which does not consider any of the new terms

(AP g, uf(ff and J;). Table 5.1 shows that the second set solely takes into account
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the dynamic pressure, the third set considers only the axial momentum diffusion
and the fourth set regards both dynamic pressure and dynamic interfacial shear

stress.

Table 5.1 — Modelling setup for each set of simulations.

Set | APpx, K €{G,L} | u/7 K € {G,L} Ji
1 0 0 0
2nd Eq. (3.30) 0 0
31 0 Eq. (3.34) 0
4t Eq. (3.30) 0 Eq. (3.51)

Coupled with the set of simulations listed in Table 5.1, simulations were also
performed to evaluate the impact in the solution of the new proposed correlations
for the interfacial friction factor, Proposed Expressions 1 and 2, Egs. (4.60) and
(4.61), respectively, when compared with the Standard Expression, Eq. (4.56). The
main purpose of these tests was to assess if the new correlations managed to
improve the predictions of the Regime Capturing Methodology in the same manner
they did for the Point Model of Eq. (4.6).

In all tests performed here, the wall-shear stresses, 7,,x, K € {G,L}, are
modelled precisely as presented in the optimization procedure that led to the

elaboration of the Proposed Expressions 1 and 2 (sections 4.6 and 4.7).

5.1. The Selected Cases

Three cases were selected from the isothermal horizontal viscous oil-SFe
flows (in a laboratory-scale pipeline) Eskerud Smith et al. (2011) database. Key
features of the cases are registered in Table 5.2, which includes the gas and liquid
superficial Reynolds numbers and the flow patterns. All the data on these cases
shown in this work is also present in Johansen et al. (2014).

Cases 1, 2 and 3, as seen in Table 5.2, consist in one slug flow (Case 1) and
two stratified wavy flow with small-amplitude waves (Cases 2 and 3). It should be
noted that Cases 2 and 3 were also used in the optimization procedure for

elaborating the Proposed Expressions 1 and 2 for the interfacial friction factor f;.
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Table 5.2 — Key features of the selected cases from the Eskerud Smith et al. (2011)

database.
Used in the
Case Rey Reg,, Flow Pattern optimization?
1 | 1.03x10° | 615 Slug No

Stratified Wavy
(Small-Amplitude Waves)

Stratified Wavy
(Small-Amplitude Waves)

2 6.47x10°% | 492 Yes

3 | 1.08x10° | 583 Yes

Cases 2 and 3 were selected to allow a comparison of the optimized Point
Model results, for such expressions, with the numerical results from the Regime
Capturing Methodology. Such comparison can act as a verification tool for the
Regime Capturing Methodology, because, for very coarse meshes, its results must
coincide with the predictions of the Point Model. It also makes possible the desired
evaluation of whether or not the new Proposed Expressions for f; improve the
methodology predictions in relation to the Standard Expression, in the same manner
as they do in the Point Model.

Including a slug flow in the simulations, Case 1, is of paramount importance
for analyzing how the Proposed Expressions for f;, elaborated with small-amplitude
interfacial waves data, behave when a large intermittency (small and large waves

together with slugging) takes place.
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Figure 5.1 — Histograms of the liquid holdup signals (x = 38.15m) for Cases 1, 2 and 3.
As is was previously detailed, experimental time traces for the in situ liquid
holdup «;, for each case are available due to the measurements of a broad beam-
gamma densitometer, located 38.15m downstream the pipe inlet section (Eskerud

Smith et al., 2011). The histograms of these «; signals for Cases 1, 2 and 3 are
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plotted in Figure 5.1, which confirms their listed flow patterns.

It can be seen a high probability of the liquid holdup with a constant value for
Cases 2 and 3, confirming that these cases correspond to stratified flow pattern. On
the other hand, for Case 1, the highest probability is related to liquid holdup equal
to 1, indicating the presence of slug flow, and there is a wide range of liquid holdups
from 0.7 to 0.9 with also a high probability of occurrence.

Figure 5.2 shows the time evolution of the experimental liquid holdup for
Cases 1, 2 and 3, for a 30s interval. The slug flow pattern of Case 1, Figure 5.2(a),
and the stratified wavy (with small-amplitude waves) flow pattern of Cases 1 and

2, Figures 5.2(b) and 5.2(c), can be clearly noticed.

RN AN AN AN AN AV AWAT IS VAN N

0 (a)
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(c)
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time (30s interval)

Figure 5.2 — Experimental liquid holdup profiles in time at x = 38.15m for:
(a) Case 1; (b) Case 2; and (c) Case 3.

The numerical results of the Regime Capturing Methodology simulations for
liquid holdup histograms and transient profiles will be compared against the
experimental data shown in Figures 5.1 and 5.2. Besides, the mean (in time and at
the same position of 38.15m) liquid holdup «;, obtained with the gamma
densitometer data, and the pressure gradients dP/dx, provided by pressure cells
measurements, are also used for comparing with the predictions of the methodology
for Cases 1, 2 and 3. Table 5.3 lists the experimental values for these mean
parameters for the three Cases.

For a joint comparison of the numerical results for the mean liquid holdup
and for the pressure gradient against experimental data, a root-mean-squared error,
erums, 1S defined by Eq. (5.1), inspired by Egs. (4.14)-(4.15). The subscript “num”

refers to the simulation results.
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Table 5.3 — Some features of the selected cases from the Eskerud Smith et al. (2011)

database.
Measurements
Case (gamma densitometer and pressure cells)
a, (=) —dP/dx (Pa/m)

1 0.823 507.8

2 0.525 945.9

3 0.392 1236.9

2 2
e _ <aL|num - aLlexp) <dp/dx|num - dP/deeXp> (5.1)
RMS —

aLlexp dP/dxlexP

As Cases 2 and 3 were used in the Point Model optimization procedure that
resulted in two new Proposed Expressions for f;, it is important to list not just the
optimized mean liquid holdup and pressure gradient values for these expressions,
but also the Point Model predictions with the Standard Expression of Eq. (4.45).
Those values are all shown in Table 5.4. It is important to mention that these values
do not have a meaning for Case 1, since the Point Model cannot be applied to slug
flows.

Table 5.4 — Integral parameters Point Model predictions for the selected cases from the
Eskerud Smith et al. (2011) database.

Predicted Values Optimized Values Optimized Values
Case (Standard Expression) (Proposed Expression 1) (Proposed Expression 2)
a, (=) | —dP/dx(Pa/m) | a, (=) | —dP/dx (Pa/m) | a, () | —dP/dx (Pa/m)
2 0.638 735.8 0.497 848.3 0.460 862.2
3 0.518 863.1 0.355 11134 0.330 1128.1

5.2. Stability-Hyperbolicity Analysis

Due to the known stability-hyperbolicity problem of the isothermal 1D Two-
Fluid Model, a mesh convergence test is performed for each Case for every different
simulation setup. During these tests, the mean liquid holdup, pressure gradient and
liquid holdup histograms are monitored as the spatial mesh is refined, that is, as the

mesh aspect ratio (Ax /D) is decreased. If these results stabilizes after a certain value
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of Ax/D, the simulation is considered to be well-posed and the stabilized results are
considered the valid Regime Capturing Methodology predictions. On the other
hand, if the results do not stop varying with Ax /D, then the simulation is considered
ill-posed.

Assuming that the Regime Capturing Methodology is ideally well-posed and
mesh-convergent, when Cases 2 and 3 are simulated with the Proposed Expressions
1 and 2, the provided liquid holdup profile should be completely flat. This is
because the effects of small-amplitude waves are already included in these
correlations for the interfacial friction factor. Nevertheless, in Case 1 the large-
amplitude waves and the liquid pipe section bridging (slugging) should be captured.
When, the Standard Expression for f; is used, the small-amplitude interfacial waves

should be predicted in Cases 1, 2 and 3.

5.2.1. Well/ill-posedness Maps

As previously said (in section 3.3), although the effects on the stability-
hyperbolicity problem of the dynamic pressure and of the axial momentum
diffusion terms are known (Fullmer et al., 2014; Han & Guo, 2015), the influence
of considering the dynamic interfacial shear stress of Brauner & Maron (1993;
1994) has not been much explored in literature. The only exception, recapitulating,
is the work of De Bertodano et al. (2013), which verified that such term destabilizes
the flow, which tends to enhance the stability-hyperbolicity problem.

As described in section 3.3, for checking if the finding of De Bertodano et al.
(2013) is valid for the Eskerud Smith et al. (2011) database, well-posedness
analyzes were performed by the evaluation of the 1D Two-Fluid Model quasi-linear
system, Eq. (3.108), characteristics. This task was accomplished in a previous
chapter in Egs. (3.131)-(3.134) with their intrinsic and previously provided
hypotheses. Both symbolic and numerical operations were performed with the
Wolfram Mathematica software. Besides, the effect of the dynamic interfacial shear
stress of Brauner & Maron (1993; 1994), the influence of the dynamic pressure of
Bestion (1990) was also verified. The effects of the axial momentum diffusion was

obviously not verified here, because the second and third-order derivatives terms

cannot be accounted in the such well-posedness analysis. Therefore, y,e{f s

considered null in this topic.
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Through this methodology, the Ug; vs. Us; well-posedness maps for the
Eskerud Smith et al. (2011) database of Figures 5.3 and 5.4 were obtained. In them,
the red color region corresponds to the region where the system of equations are ill-
posed. Figure 5.3(a) corresponds to the classical case, i.e., without dynamic
pressure contribution (4Pp x = 0) nor the dynamic interfacial shear stress (J; = 0).
It can be seen that for a wide range of liquid superficial velocities, when the gas
superficial velocities is high, the system is ill-posed. The map presented in Figure
5.3(b) corresponds to the solution, when only the dynamic pressure difference is
added to the model. Note that, according to this simplified analysis, for all
superficial velocities the system is well-posed. This result is expected, since Bestion

(1990) designed the dynamic pressure distribution to render the system well-posed.

x |l-Posedness Region  +Well-Posedness Region
o 10
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@) APpx = 0; u/" = 0; g; = 0. (b) APpx # 0; u/" = 0; g; = 0.

Figure 5.3 — Well-posedness for the Eskerud Smith et al. (2011) database, without the
dynamic interfacial shear stress.
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Figure 5.4 — Well-posedness for the Eskerud Smith et al. (2011) database
considering the dynamic interfacial shear stress.

The maps presented in Figure 5.4 were constructed with the dynamic
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interfacial shear stress of Brauner & Maron (1993; 1994). In Figure 5.4(a), there is
no dynamic pressure contribution. Comparing this map, with the map of Figure
5.3(a), one can clearly see that the dynamic interfacial shear stress reduced the size
of the well-posed region. This result agrees with De Bertodano et al. (2013)
observation, that the dynamic interfacial shear stress of Brauner & Maron (1993;
1994) destabilizes the flow. On the other hand, the map obtained with the simplified
analysis, showed that the presence of the dynamic pressure contribution guarantees
a well-posed solution, even in the presence of the dynamic interfacial shear stress.

The present map results indicates that the dynamic pressure contribution is a
positive factor to render the system of equations well-posed, even in the presence
of the dynamic shear stress term, what is an encouragement, to investigate, the

performance of the Regime Capturing Methodology, for these situations.

5.3. First Set of Simulations

In the first set of simulations, as aforementioned, the dynamic pressure, the
axial diffusion and the dynamic interfacial shear stress terms are not considered in
the 1D Two-Fluid Model of Egs. (3.58)-(3.61) (Table 5.1). In the presentation of
the results, first the predictions for Case 1 (slug flow) are shown, followed by the

results of Cases 2 and 3 of wavy stratified flow.

5.3.1. Case 1: Standard Expression

The first results obtained for Case 1, based on the classical 1D Two-Fluid
Model, employed the Standard Expression for the interfacial friction factor. The
simulations were performed with several spatial meshes with the aspect ratios Ax /D
of 0.5, 0.75, 1.0, 1.5, 2, 5, and 10. Figure 5.6 depicts the results for the mean liquid
holdup «; (at the position of 38.15m) and pressure gradient dP /dx, while Figure
5.6 presents the combined error, egzys, EQ. (5.1).

In Figure 5.5(a), it can be seen that «; starts with a numerical value higher
than the experimental one, which decreases as the mesh is refined until it stabilizes
for Ax/D values lower than 2.5. The «; value for which the results stabilized is
lower than the measurement and has a larger deviation than the starting a; value

for Ax/D = 10. In an analogous manner, in Figure 5.5(b), the pressure gradient
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prediction for Ax/D = 10 is lower than experimental value and, as the aspect ratio
decreases, |dP/dx| increases until stabilizing for aspect ratios lower than 2.5 in a

value very close to the experimental one.
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Figure 5.5 — Grid test for Case 1 with the Standard Expression in the first set of

simulations.
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Figure 5.6 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the
Standard Expression in the first set of simulations.

By combining the observations of Figures 5.5(a) and 5.5(b), one comes to the
conclusion that the Regime Capturing Methodology for Case 1, with the Standard
Expression for f; in the first set of simulations is well-posed and mesh-convergent
for values of Ax/D lower than 2.5. It is interesting to see, in Figure 5.6, the
evolution of egs With the refinement of the spatial mesh and how it barely changes
for Ax/D lower than 2.5.

From the three previous figures, it is easily identified three groups of results:
for the mesh aspect ratio of 10, 5 and for values lower than 2.5, when the former

stabilizes. This is a consequence of three different interfacial dynamic behaviors,
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observed in Figure 5.7 through the transient profiles of the numerical liquid holdup
for Case 1, relative to the aspect ratios 10, 5 and 0.5. The pipe position (38.15m)
from which the values of «; were taken is the same position of the gamma

densitometer, whose measurements are also plotted in Figure 5.2.

---- Experimental ——Numerical |

time (30s interval)
Figure 5.7 — Case 1 numerical liquid holdup profiles at 38.15m for the Standard
Expression in the first set of simulations and for: (a) mesh aspect ratio of 10; (b) mesh
aspect ratio of 5; and (c) mesh aspect ratio of 0.5.

In Figure 5.7(a), due to the small number of nodal points, the mesh is not fine
enough to capture the appearance of interfacial instabilities, growth and
development into slugs. Therefore, the interface remains axially flat and very
different from the data obtained by the gamma densitometer. For the aspect ratio of
5, in Figure 5.7(b), waves arise originating a very regular interfacial behavior.
However the mesh is still not fine enough for predicting the slug flow of Case 1,
although the values of numerical «;, slightly resemble the measured ones in Figure
5.7(b). A slug flow is only obtained for aspect ratios lower than 2.5, the value for
which the results stabilize, as it can be seen in Figure 5.7(c). Figure 5.7 shows,
therefore, that the ability of capturing interfacial dynamics, for Case 1 (slug flow),
is improved as the mesh is refined, until it converges to a well-posed solution. The
higher amplitudes of the liquid holdups, when compared to the ones of the
experimental signals, represent how the numerical interfacial behavior is still
different from the experimental one, although the predictions of mean «;, Figure
5.5(a), and pressure gradient, Figure 5.5(b), are satisfactory, Figure 5.6.

Similar observations can be drawn from Figure 5.8, which shows the

numerical and experimental histograms at 38.15m, for the same results obtained for
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Case 1, from the first set of simulations obtained with the Standard Expression.
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Figure 5.8 — Liquid holdup histograms for Case 1 with the Standard Expression in the first
set of simulations.

Besides the same aspect ratios of Figure 5.7, Figure 5.8 also includes the
histograms of the other Ax/D values registered in Figures 5.5 and 5.6. The
previously mentioned three distinct interfacial behaviors (for the aspect ratios 10, 5
and the ones lower than 2.5) can be identified in Figure 5.8. As Case 1 consists in
a slug flow, two peaks can be observed in the histograms: one related to the slugs
(a;, close to unity) and another regarding the liquid films (intermediate «a;).
Comparing the numerical histograms for aspect ratios lower than 2.5 and the
gamma densitometer histogram, in Figure 5.8, it can be seen that the numerical
liquid film peaks correspond to liquid holdups lower than it does for the
measurements. This is a consequence of the greater a; amplitudes aforementioned
regarding Figure 5.7(c). Furthermore, the numerical slug histogram peak is much
higher than the experimental one. This fact alone could imply either longer slugs or
higher slug frequencies, than the measured ones. However, it is also possible that
this discrepancy occurs due to entrainment of gas bubbles into the slugs in the
experiments. As mentioned before, gas entrainment is not taken into account in the

current model.

5.3.2. Case 1. Proposed Expressions 1 and 2

With the intention of improving the numerical predictions for the integral

parameters (mean liquid holdup and pressure gradient) and the transient liquid
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holdup behavior, depicted in Figure 5.7, the new interfacial friction factor
expressions (Proposed Expressions 1 and 2), created in the optimization procedure
previously described, are used. Starting with the Proposed Expression 1, Figures
5.9(a), 5.9(b) and 5.10 show, respectively, the variation of the mean liquid holdup,
the pressure gradient and of eg,,¢ With the spatial mesh aspect ratio Ax/D for the

Case 1 simulation results in the first set of simulations.

1.0 1600
09+ T T eeeees Experimental
1400 .
c 0.8 =—0— Numerical
2 o7
0. 1200
g _
06 E
f g 1000 +
T 05 - =
S =
é 041 % 800 |
T 031 600 -
S 02l C
------ Experimental 400 -
014 —0— Numerical
0.0 T T 200 T T
0.25 25 25 0.25 25 25
Ax/D () Ax/D (-)
(a) Mean liquid holdup (b) Pressure gradient
Figure 5.9 — Grid test for Case 1 with the Proposed Expression 1 in the first set of
simulations.
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Figure 5.10 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the
Proposed Expression 1 in the first set of simulations.

In Figures 5.9 and 5.10, the behavior with the mesh aspect ratio is very similar
to what was obtained when the Standard Expression was used (Figures 5.5 and 5.6).
The main difference lies in the necessity, for the Proposed Expression 1, of smaller
grid spacing for obtaining mesh convergence when compared to the Standard
Expression simulations. This is actually not a surprise, since higher interfacial shear
stresses tend to suppress the formation of interfacial instabilities, although it does

not affect the classical well-posedness analysis (Issa & Kempf, 2003; Liao et al.,
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2008; Fullmer et al., 2014; Pasqualette et al., 2017). This is more clearly seen in
Figure 5.11, where the predicted liquid holdup histograms (at 38.15m) for the
Proposed Expression 1 are plotted together with the experimental one.

0.50

0.45 1
0.40 -
04—ttt T ....... Experimental
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. —MAD=5
© 0254 T b2
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» 0201 =
8 ——AxD =1
s ] —Ax/D =0.75
—AxD=05
010 ] ——Ax/D=0.25
0.05 - =
I [ &
0.00 ;

Figure 5.11 — Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the
first set of simulations.

In the referred figure, it can be seen that slugs only start to appear for an aspect
ratio of 0.75, in which, besides the liquid film and slug holdup peaks, there is an
evident occurrence of «; values between 0.7 and 0.9, which is not the case neither
for Ax/D = 0.5 nor for Ax/D = 0.25. For these aspect ratios, the results can be
considered mesh convergent and well-posed, if one observes Figures 5.9 and 5.10.
By analyzing the converged numerical histogram results for Proposed Expression
1, it can be seen that the same disparities verified for Standard Expression when
compared against the experimental data, are again obtained for Proposed
Expression 1. Those are the high probability of liquid holdups close to unity (slugs)
and the low holdups in the liquid film region .

The same results of Figures 5.9 and 5.10 are now shown in Figures 5.12 and
5.13, respectively, , but now for Case 1, in the first set of simulations, with the
Proposed Expression 2 for the interfacial friction factor.

The behavior of the numerical mean liquid holdup, pressure gradient and
erums results for Case 1, using the Proposed Expression 2, with the mesh aspect ratio
is, again, very similar to the one obtained for the Standard Expression (Figures 5.5

and 5.6) and for the Proposed Expression 1 (Figures 5.9 and 5.10).
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Figure 5.12 — Grid test for Case 1 with the Proposed Expression 2 in the first set of
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Figure 5.13 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the
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Figure 5.14 — Liquid holdup histograms for Case 1 with the Proposed Expression 2 in the

first set of simulations.

What separates the Proposed Expression 2 results from the others is that a
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stabilization of the results is only roughly obtained. This is also evident in Figure
5.14, where the numerical liquid holdup histograms are plotted, for the Proposed
Expression 2, the same way as they were in Figures 5.7 and 5.11 for the Standard
Expression and Proposed Expression 1, respectively.

The similarity between the slug flow histograms obtained with Proposed
Expression 2, in Figure 5.14, with the ones in Figures 5.7 and 5.11, is evident. This
is especially true when histogram results for the mesh aspect ratios of 0.75 (Figure
5.14) and 0.5 (Figure 5.11) are compared. The histogram of the Proposed
Expression 2 liquid holdup results for Ax/D = 0.5 is extremely similar to the
histogram correspondent to mesh convergent conditions for the Standard
Expression and for the Proposed Expression. That is the reason why it is safe to
state that, although a clear convergence of the results does not take place in Figures
5.12 and 5.13, the Proposed Expression 2 results are well-posed for aspect ratios
equal or lower to 0.25.

For directly comparing the converged numerical liquid holdup values at
38.15m for Case 1 (first set of simulations), obtained with the Standard Expression
(Ax/D = 0.50), Proposed Expressions 1 (Ax/D = 0.50) and 2 (Ax/D = 0.25),
such time traces are plotted in Figure 5.15 for a 30s time interval together with the

gamma densitometer measurements.

| ------ Experimental ——Numerical

0 (c)

time (30s interval)
Figure 5.15 — Case 1 numerical liquid holdup profiles for aspect ratio of 0.5 in the first set
of simulations and for: (a) Standard Expression (aspect ratio of 0.5); (b) Proposed
Expression 1 (aspect ratio of 0.5); and (c) Proposed Expression 2 (aspect ratio of 0.25).
By observing the transient liquid holdup results in Figure 5.15, it can be seen
that the converged Case 1 simulations in the first set of simulations tend to similar

interfacial behavior. The same high intermittency amplitudes and the low holdup of
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the liquid film region, when compared to the measured «; signals, were obtained
with Ax/D = 0.5 for the Standard Expression, Figure 5.15(a), for the Proposed
Expression 1, Figure 5.15(b), and for the Proposed Expression 2, Figure 5.15(c).
What also draws attention are the similar a;, and dP /dx results for these converged
simulations, which are outlined in Table 5.5. Nevertheless, the results for such
integral parameters are satisfactory: relative errors of about 13% for the liquid

holdup and 1% for the pressure gradient.

Table 5.5 — Case 1 integral parameter results for converged results in the first set of

simulations.
Relative Error | Relative Error

Ax/D | a; (=) | —dP/dx (Pa/m) (@) (dP/dx) €rMS

Standard g 55 | 0711 513.0 -13.56% 101% | 0.14
Expression

EPmpo?ed 050 | 0.716 509.9 -12.95% 0.40% 0.13
xpression 1

Proposed | 55 | 709 514.1 -13.87% 1.23% 0.14
Expression 2

5.3.3. Case 1: Slug Statistics

This analysis, so far, has revealed that the use of more precise interfacial
friction factor expression that increase its values has no significant impact on the
qualitative interfacial behavior or on the predictions of integral parameters. In other
words, the switch from the Standard Expression to the Proposed Expressions 1 and
2 did not improve the already satisfactory integral parameters, nor did it make the
predicted interfacial dynamics physically consistent with the measurements. For
advancing the analysis, it is important to assess the slug statistics for just comparing
the converged results from each interfacial friction factor expression for Case 1 in
the first set of simulations. With this in mind, for such simulations, the average and
standard deviation of the Taylor bubbles velocities (Up) and lengths (L,) and of
slugs translational velocities (U;) and lengths (L), together with the slug frequency
(vg), are shown in Table 5.6. It is important to highlight that the absolute values of
the slug statistics do not receive attention, that is, it is not evaluated if they are close
to experiments or to correlations predictions or not, since the analysis is only for
comparing the different aspects of numerical predictions.

Once again, the similarity between the numerical slug statistics from each
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interfacial friction factor expression is remarkable in Table 5.6. The only exceptions
are the standard deviation of Lg/D and the average value of L, /D, for the Proposed
Expression 1. This confirms that, for Case 1 and for the first set of simulations, the
use of the newly obtained Proposed Expression 1 and 2 did not affect any significant
parameter of the results, when compared to the Standard Expression, neither
qualitatively nor quantitatively, once the simulations are converged and well-posed.
The sole aspect affected is the aspect ratio necessary for obtaining mesh
convergence, due to the values of f; from the Proposed Expressions 1 and 2 being
higher than the ones from the Standard Expression. Furthermore, one cannot help
to notice that the ratio between (U,) (or U, nearly equal to U, when the flow
reaches steady-state) and U,, is approximately 1.45. For laminar flow, the case of
the present liquid phase due to the oil viscosity, such ratio is the C, parameter of
Eqg. (2.1), whose experimental value, as observed in literature, is about 2.0 (Gokcal,
2008; Foletti et al., 2011), very different from the 1.45 obtained. It is important
mentioning that for such laminar flows, the U; velocity in Eg. (2.1) is

approximetely null (Foletti et al., 2011).

Table 5.6 — Case 1 slug statistics for the converged results in the first set of simulations.

Up (m/s) Ly/D (=) U (m/s) Lg/D ()
Ax/D vg (Hz)
(Up) ay, (Ly/D) | or,/p | (Ug) ay, (Ls/D) | 01/

Standard

. 0.50 203 | 1.00 | 2150 | 595 | 193 | 0.16 18.60 | 12.48 0.80
Expression

Proposed

Expression 1 0.50 194 | 110 | 31.16 | 557 |1.99 | 0.20 18.74 | 16.36 0.80

Proposed

Expression 2 0.25 1.98 | 097 | 1952 | 513 | 1.90 | 0.16 1949 | 12.34 0.82

5.3.4. Cases 2 and 3: Standard Expression

After presenting and discussing the Case 1 simulation results with the three
expressions for the interfacial friction factor, the integral parameters obtained by
simulating the stratified wavy Cases 2 and 3, with the Standard Expression for f;,
are presented. In Figures 5.16 and 5.17, the numerically obtained mean liquid
holdup and pressure gradient, respectively, are plotted as a function of the mesh

aspect ratio Ax/D together with the experimental values and the Point Model, Eq.
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(4.4), predictions, registered in Tables 5.3 and 5.4. Figure 5.18, the eg)s values of
such results of Cases 2 and 3 are depicted.

The first observation to be made regarding Figures 5.16 and 5.17 is that, for
both Cases 2 and 3, the Regime Capturing Methodology results for the very coarse
mesh of Ax/D = 40 coincide with the Point Model predictions. This is exactly
what was to be expected, since a mesh of a single finite volume (in the limiting
case) becomes the Point Model. In Figures 5.16-5.18, as the mesh is refined, the
mean liquid holdup decreases, the pressure gradient augments and the egys Values
first decreases and then increases. However, it can be noticed that neither the «;
results nor the dP/dx values stabilize: the former keeps decreasing and the latter
increasing, as the mesh aspect ratios diminishes. Therefore, the Case 2 and 3 results
(in the first set of simulations) for the Standard Expression are not mesh convergent

and are ill-posed.
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(a) Case 2. (b) Case 3.
Figure 5.16 — Mean liquid holdup numerical results for Cases 2 and 3 with the

Standard Expression in the first set of simulations.
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Figure 5.17 — Pressure gradient numerical results for Cases 2 and 3 with the Standard

Expression in the first set of simulations.
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Figure 5.18 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3

with the Standard Expression in the first set of simulations.

Such loss of hyperbolicity of Cases 2 and 3 is more clearly seen in Figure
5.19, where the experimental and numerical liquid holdup histograms (aspect ratios
of 40, 20, 10, 5, 2, 1.5, 1, 0.75 and 0.5) at 38.15m are depicted. In Figure 5.19(a), it
is remarkable how, for the aspect ratio of 20, interfacial instabilities already appear.
The amplitudes of such spurious waves grow indefinitely, forming slugs for
Ax/D < 1.5, making the histogram format never become steady. The same is
observed, with less intensity, in Figure 5.19(b) for Case 3. Besides being
inconsistent to compare the numerical histogram with the experimental ones in such
strongly ill-posed simulations, one cannot avoid noticing how the former are

different from the latter.
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(a) Case 2. (b) Case 3.
Figure 5.19 — Liquid holdup histograms for Cases 2 and 3 with the Standard

Expression in the first set of simulations.

For correctly simulating Cases 2 and 3 and for comparing the efficiency of
the newly developed expressions for the interfacial friction factor against the

Standard Expression on such stratified flows, it is of utmost importance to make the
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simulations well-posed and mesh convergent. Due to the strong ill-posedness of
Cases 2 and 3 with the Standard Expression (observed in Figures 5.16-5.19), it is
very improbable that the increase in f; due to using either Proposed Expression 1
or 2 would control the growth of the spurious interfacial instabilities enough for
making the simulations mesh convergent. Besides, as aforementioned, although an
augment of the interfacial shear stress makes more difficult the appearance and
growth of interfacial waves, as seen in Figures 5.8, 5.11 and 5.14 and in literature
(Fullmer et al., 2014; Pasqualette et al., 2017), it does not affect the well-posedness
(hyperbolicity) analysis (Liao et al., 2008). Therefore, there is no point in repeating
Case 2 and 3 simulations of this first set for Proposed Expressions 1 and 2.
Therefore, for trying to obtain the desired hyperbolicity for such cases, one should
consider in the 1D Two-Fluid Model of the Regime Capturing Methodology the
terms initially neglected in the first set of simulations (Table 5.1). This work starts

by taking into account the dynamic pressure terms in the second set of simulations.

5.4. Analysis of the Dynamic Pressure Term (Second Set of

Simulations)

As seen in Table 5.1, in the second set of simulations, the dynamic pressure

term (APp ) is considered in momentum conservation equations, Egs. (3.60) and

(3.61), of the 1D Two-Fluid Model, while both the axial diffusion (u&//) and the
dynamic interfacial shear stress (J;) remain null. As aforementioned, the primary
purpose of considering the dynamic pressure is to make the simulations of Cases 2
and 3 mesh-convergent and well-posed in order to compare the efficiency of the
Standard Expression and the Proposed Expressions 1 and 2. Nevertheless, the
results for Case 1 for this three interfacial friction factor expression should also be
presented, since one might obtain improvements for Cases 2 and 3 (stratified wavy),

but, at the same time, worsen the results for Case 1 (slugs).
5.4.1. Case 1 (APpk + 0)

Following the same presentation order of the first set of simulations, the mean
liquid holdup (at 38.15m) and pressure gradient results for Case 1 with the Standard

Expression for f; are shown in Figure 5.20 as a function of the mesh aspect ratios,
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together with the measured values of Table 5.3. In Figure 5.21, the egys values
relative to those variables are plotted.

In Figure 5.20, the same behavior, previously observed for the mean «; and
pressure gradient numerical values regarding the mesh refinement, is verified: the
former starts decreasing for a certain aspect ratio, in which the latter begins to
augments. As seen before, this is a consequence of the appearance of interfacial
instabilities that start to be captured, for Case 1, with the Standard Expression with

APp i # 0, for Ax/D = 2, as the mesh is refined.
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(a) Mean liquid holdup (b) Pressure gradient
Figure 5.20 — Grid test for Case 1 with the Standard Expression in the second set of
simulations.
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Figure 5.21 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the
Standard Expression in the second set of simulations.

This is also observed in Figure 5.22, where the numerical liquid holdup
histograms of the present simulations for several aspect ratios (10, 5, 2, 1.5, 1, 0.75,
0.5 and 0.25) and the correspondent experimental data are plotted. The results in
Figures 5.20 and 5.21 resemble in several aspects the predictions of Case 1 with the
Proposed Expression 2 (Figures 5.12 and 5.13), , in the first set of simulations,
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including their almost non-convergence with the mesh. The reason for this

behavior, is that both augmenting the interfacial shear stress and adding a pressure

dynamic term suppress the growth rate of interfacial instabilities (Fullmer et al.,

2014). By examining Figure 5.22, the presence of slugs can be seen in the

histograms for aspect ratios smaller than they were for Figure 5.8 (Case 1, with the

Standard Expression, in the first set of simulations, APp x = 0).
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Figure 5.22 — Liquid holdup histograms for Case 1 with the Standard Expression in the

second set of simulations.

The same numerical param

eters (liquid holdup, pressure gradient and error)

for Case 1, plotted in Figures 5.20 and 5.21, as a function of the mesh aspect ratios,

are depicted in Figures 5.23 and 5.24 with the Proposed Expression 1 in the second

set of simulations (4Pp x # 0).
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Figure 5.23 — Grid test for Case 1 with the Proposed Expression 1 in the second set of

simulations.

It is promptly noticed in Figures 5.23 and 5.24 that the Case 1 results for the

Proposed Expression 1 barely change with the Ax/D values, the range of which
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varies from 0.5 to 10. This might indicate that no significant interfacial instability
was captured by the simulations, which is confirmed by the liquid holdup
histograms of these simulations, for each aspect ratio, in Figure 5.25.
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Figure 5.24 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the

Proposed Expression 1 in the second set of simulations.
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Figure 5.25 — Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the
second set of simulations.

By looking at the histograms regarding the aspect ratios 0.75 and 0.5 (Figure
5.25) it can be seen that a mesh convergence was obtained. Nevertheless, the
instabilities are small and do not grow enough for developing into slugs. This
suppression of the interfacial waves is a product of the combined effects of the
dynamic pressure term and of the greater f; values of the Proposed Expression 1,
when compared to the Standard Expression. Therefore, although slugs were
obtained for the Proposed Expression 1 in the Case 1 results of first set of
simulations (Figures 5.9-5.11), the addition of the dynamic pressure term was
excessive. One could argue that, if the mesh was refined even more, in Figures 5.23-
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5.

25, large-amplitude waves and possibly slugs could have been represented by the

Regime Capturing Methodology. However, such meshes would have to possess a

very small aspect ratio, which would increase computational costs significantly.

Besides, as aforementioned, a mesh-convergence was obtained for a liquid holdup

histogram shape that does not indicate the existence of any slugs (Figure 5.25).

Moving on to Proposed Expression 2, such correlation for the interfacial

friction factor was used in the Case 1 simulations that led to the liquid holdup,

pressure gradient and eg,,s Nnumerical values plotted, respectively, in Figures 5.26

and 5.27, as a function of Ax/D and together with the measurements.
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Figure 5.26 — Grid test for Case 1 with the Proposed Expression 2 in the second set of

simulations.
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Figure 5.27 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the

Proposed Expression 2 in the second set of simulations.

Similarly to what has been verified for Proposed Expression 1 in Figures 5.23

and 5.24, the joint stabilizing effects of the dynamic pressure term and of the high

fi/fio values from Proposed Expression 2, have rendered the results for these

simulations almost not sensitive to the mesh refinement (see Figures 5.26 and 5.27).

The clear lack of large-amplitude waves observed in the numerical liquid holdup
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histograms plotted in Figure 5.28 (resembles significantly Figure 5.25) proves the
previous statement.

From the Case 1 results presented for the second set of simulations with the
Standard Expression and with the Proposed Expressions 1 and 2, it can be
concluded that the dynamic pressure term used stabilizes excessively the flow. This
either suppresses completely the appearance of slugs or creates the need of using
meshes so refined that would make the Regime Capturing Methodology simulations
unfeasible computationally. The physical background of the dynamic pressure term
was described in a previous chapter of this work, therefore, rather than revealing an
inconsistency in considering a dynamic pressure, the present observation asserts the
inadequacy of the Bestion (1990) formulation for such parameter. As already
described, the Bestion (1990) expression for APpy, K € {G,L}, was made for
hyperbolizing a 1D Two-Fluid Model different from the one used in this work. Egs.
(3.58)-(3.61) aim, especially, to make well-posed simulations for vertical pipes, in
which hydrostatic term APy, (with its stabilizing effect) is not present. As a
consequence, it is not exactly a surprise that the Bestion (1990) dynamic pressure
might suppress the growth rates instabilities for certain horizontal flows,
particularly, when a greater (than usual) interfacial shear stress is present and for a
flow which is already well-posed and mesh-convergent even when AP is
neglected. Therefore, independently from the effects of the dynamic pressure on
Case 2 and 3 simulations, the Bestion (1990) formulation is unfit for Case 1
simulations for harming the satisfactory results obtained for this case in the first set
of simulations.
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Figure 5.28 — Liquid holdup histograms for Case 1 with the Proposed Expression 2 in the

second set of simulations.
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5.4.2. Cases 2and 3: (APpk # 0)

The results of Cases 2 and 3, in this second set of simulations, are presented,
starting by the ones obtained with the Standard Expression for the interfacial
friction factor. Figures 5.29-5.31 depict the behavior, with the mesh aspect ratios,
respectively, of the numerical liquid holdup, pressure gradient and eg,,s values, for
Cases 2 and 3 with such correlation for f;. In the referred figures, together with the
experimental data, the predictions of the Point Model of Eq. (4.4) (Table 5.4) are

also illustrated.
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Figure 5.29 — Mean liquid holdup numerical results for Cases 2 and 3 with the
Standard Expression in the second set of simulations.
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Figure 5.30 — Pressure gradient numerical results for Cases 2 and 3 with the Standard

Expression in the second set of simulations.

Neither in Figure 5.29, for the liquid holdup, nor in Figure 5.30, for the
pressure gradient, significant variations on the integral parameters were observed,
in contrast to the results presented in Figures 5.16 and 5.17 also for Cases 2 and 3
with the Standard Expression, with APy, , = 0. On the contrary: the decrease in «;,
and the increase in the pressure gradient, Figures 5.29 and 5.30, with the refinement
of the mesh take place smoothly. For the smaller aspect ratios of 0.75 and 0.50,
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these integral parameters barely change, which indicates that the mesh converged

and that the simulation setup is well-posed.
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Figure 5.31 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3
with the Standard Expression in the second set of simulations.

The consistency between the Point Model and the Regime Capturing
Methodology is obtained in the referred results, since the predicted integral
parameters for the different approaches coincide for high values of Ax/D. It is
interesting to observe that the egy,s Values, in Figure 5.31, decrease (improve) as
the mesh becomes finer, until it almost stabilizes for the aspect ratios 0.75 and 0.5.
The reason for such behavior of the results with Ax /D is the same that was explored
before, especially in Figure 5.7, and it is verified again in Figure 5.32, in which the
numerical and experimental liquid holdup time traces for Case 2 are plotted for a

30s interval, at 38.15m, for three different mesh aspect ratios: 10, 1.5 and 0.5.

| ----- Experimental —— Numerical |

0 (b)

0 (c)

time (30s interval)

Figure 5.32 — Case 2 numerical liquid holdup profiles (at 38.15m) for the Standard
Expression in the second set of simulations and for: (a) aspect ratio of 10; (b) aspect ratio
of 1.5; and (c) aspect ratio of 0.5.

Similarly to the previous analysis for slug flow in Figure 5.7, Figure 5.32
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illustrates for the stratified wavy Case 2 that, as the mesh is refined, more interfacial
instabilities are captured by the solution of the 1D Two-Fluid Model. It begins with
a completely flat transient profile, in Figure 5.32(a), reason why the corresponding
predictions are equivalent to the ones of the Point Model. Then, irregular interfacial
waves appear for Ax/D = 1.5, Figure 5.32(b), which increase in regularity and
amplitude in Figure 5.32(c), for Ax/D = 0.5. Therefore, according to the egys
values, the capturing of waves for mesh-convergent simulations leads to improved
predictions in comparison to the Point Model. This remark is consistent with the
fact that the Regime Capturing Methodology has potentially more predictability
than the Point Model.

More detailed information on the Case 2 (Standard Expression with APp x #
0) regarding the numerical liquid holdup profiles can be extracted from their
respective histograms, depicted in Figure 5.33 for several mesh aspect ratios and with
the gamma densitometer signal histogram. Once again, it can be seen in the referred
figure that the mesh refinement causes the appearance of interfacial waves and that
for the aspect ratios of 0.75 and 0.5 a mesh-convergence was obtained. It is
remarkable how different such histograms are from the ones of the simulations
without the dynamic pressure term, Figure 5.19, demonstrating the efficiency of the
Bestion (1990) expression in controlling the instabilities growth rate for Cases 2 and
3. Nevertheless, the numerical mesh-convergent liquid holdup time traces are
qualitatively different from the experimental ones, which can be seen both in the
transient profile of Figure 5.32(c), for Case 2, and on the histograms of Figure 5.33.
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Figure 5.33 — Liquid holdup histograms for Cases 2 and 3 with the Standard

Expression in the second set of simulations.
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It should be highlighted that small-amplitude instabilities, for Cases 2 and 3, do
have to be obtained by the Regime Captured Methodology when the Standard
Expression is used, as a consequence of the lack of modelling of such instabilities in
the interfacial friction factor, which happens solely for the Proposed Expressions 1
and 2.

Aiming to improve the qualitative interfacial dynamics of the numerical
results, so that they are closer to the measurements and to reduce the egys Values,
the Proposed Expression 1 is firstly used in Cases 2 and 3. The respective mean
liquid holdup, pressure gradient and ez Values for these simulations from the
second set (with APy, # 0) are plotted in Figures 5.34-5.36, together with the
experimental data and the Point Model predictions (Table 5.4).
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Figure 5.34 — Mean liquid holdup numerical results for Cases 2 and 3 with the

Proposed Expression 1 in the second set of simulations.
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Figure 5.35 — Pressure gradient numerical results for Cases 2 and 3 with the Proposed
Expression 1 in the second set of simulations.
Primarily, in Figures 5.34 and 5.35, it can be seen that the Regime Capturing
Methodology results for very high aspect ratios and the Proposed Expression 1 results

of the Point Model coincide, which is valid and consistent. The same behavior
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previously observed is once again verified for the liquid holdup, Figure 5.34, and for
the pressure gradient, Figure 5.35: the former decreases with the Ax/D values and
the latter increases. For both Cases 2 and 3, the results of Figures 5.34-5.36, show
that a mesh convergence of the results was obtained for the mesh aspect ratios equal
to or lower than 0.75, which indicates the ability of the dynamic pressure of Bestion
(1990) for making such stratified wavy flow simulations well-posed. This is more
clearly seen in Figure 5.37, where the numerical and experimental liquid holdup
histograms of the Case 2 and 3 simulations of the second set of the Proposed
Expression 1 are plotted. The formats of the «;, histograms related to the aspect ratios
of 0.75 and 0.5 are practically equal, which enhances the mesh convergence of the
predictions. Furthermore, it illustrates the appearance of interfacial intermittencies
with the mesh refinement and that the Proposed Expression 1 did not manage to
improve the consonance between the converged numerical histograms and the one
from the measurements.

Lastly, the behavior of the eg,,s Values, in Figure 5.36, draws attention for being
opposed to the one of Figure 5.31. In other words, when the Proposed Expression 1 is
used in Cases 2 and 3, the e, tends to increase with the lowering of the Ax /D, while,
for the Standard Expression, it decreased. This shows that the relation between the
Point Model predictions and the ones of the Regime Capturing Methodology (when
fine meshes are used) is not so straightforward, that is, not necessarily the numerical

integral parameters of the latter are better than the former.
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Figure 5.36 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3

with the Proposed Expression 1 in the second set of simulations.
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Figure 5.37 — Liquid holdup histograms for Cases 2 and 3 with the Proposed

Expression 1 in the second set of simulations.

As previously stated, Proposed Expression 2 was also employed in the Cases
2 and 3 simulations of this second set aiming an improvement in the results obtained
in relation to the Standard Expression. Figures 5.38-5.40 depict the behavior of
liquid holdup, pressure gradient and ez values for such simulations, with the
mesh refinement, together with the measurements and the Point Model predictions
(Table 5.4).
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Figure 5.38 — Mean liquid holdup numerical results for Cases 2 and 3 with the Proposed
Expression 2 in the second set of simulations.

Most of the observations made for the results of Cases 2 and 3 employing
Proposed Expression 1, shown in Figures 5.34-5.36, can be verified in Figures 5.38-
5.40, corresponding to the use of the Proposed Expression 2. Among them, are the
consistency between the Point Model and the Regime Capturing Methodology, the
"classical™ integral parameters behavior with the mesh refinement and the augment

of the eg s Values with the decrease in Ax/D.
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Figure 5.39 — Pressure gradient numerical results for Cases 2 and 3 with the Proposed
Expression 2 in the second set of simulations.

A particular feature of the Proposed Expression 2 results is that a complete
mesh convergence was not obtained, since the pressure gradient still has a non-null
derivative in relation to the mesh aspect ratio for A4x/D = 0.5 in Figure 5.39.
Nevertheless, combining the stabilization of the liquid holdup results for the lower
mesh aspect ratios in Figure 5.38 and the fact that the pressure gradient values are
clearly on the verge of stabilizing, in Figure 5.39, it is safe to state that a mesh
convergence was obtained for these simulations with the use of the dynamic

pressure term.
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Figure 5.40 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 with the

Proposed Expression 2 in the second set of simulations.

Figure 5.41 shows the numerical liquid holdup histograms for the same Cases
2 and 3 simulations with the Proposed Expression 2, together with the respective
experimental ones. As in Figure 5.37, the mesh convergence for the lowest Ax/D
value can be observed in Figure 5.41, besides the persistent difference between the
numerically converged liquid holdup histograms and the ones obtained by the

gamma densitometer.
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Figure 5.41 — Liquid holdup histograms for Cases 2 and 3 with the Proposed Expression

2 in the second set of simulations.

After obtaining mesh convergence for the Cases 2 and 3 employing the three
interfacial friction factor correlations (Standard Expression and Proposed
Expressions 1 and 2) with the dynamic pressure term, it is possible to compare their
respective results. First, for a qualitative evaluation of interfacial dynamics related
to each expression for f;, Figures 5.42 and 5.43 show for, respectively, Cases 2 and
3, the numerical and experimental transient liquid holdup profiles at 38.15m and in
a 30s time interval for the aforementioned expressions and for a value of 0.5 for
Ax/D.

It is primarily noticed in Figures 5.42 and 5.43 the major difference in the
interfacial behavior between each expression for the interfacial friction factor. For
both Cases 2 and 3, it is observed that the frequency of instabilities appears to be
lower for the Standard Expression results. Furthermore, it increases for the
Proposed Expression 1 and that it has its greater value for the proposed Expression
2. Concerning the amplitude of such instabilities, it seems, especially for Case 3
(Figure 5.43), that this variable is slightly higher for the Proposed Expression 2
when compared to both Standard Expression and Proposed Expression 1. These
differences are related to the qualitative differences in the form of the expressions
for interfacial friction factor, which, unsurprisingly, lead to distinct behaviors of the
growth rate of instabilities with their scale (Fullmer et al., 2014).

When comparing the transient liquid holdup profiles in Figures 5.42 and 5.43
with the measured signals from the gamma densitometer for the stratified wavy
flows (with small-amplitude waves) of Cases 2 and 3, several facts stand out. The

first is that, for both Cases, employing the Standard Expression leads to unphysical
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large-amplitude interfacial waves, since the experimental «; profile solely shows
small-amplitude waves. Another fact is that such large-amplitude waves are still
present even when the Proposed Expression 1 and 2 are used. This is inconsistent,
because, as previously explained, the interface should have presented a fully
stabilized (flat) numerical behavior since the effects of the only type of waves, the
small-amplitude ones, are already implicit in the newly created correlations for the
interfacial friction factor. Therefore, although the dynamic pressure term of Bestion
(1990) managed to produce a well-posed solution (mesh convergent results) for
Cases 2 and 3, a correct qualitative prediction of the interfacial dynamic of such
stratified wavy (small-amplitude) flows is still a challenge for the Regime
Capturing Methodology.
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Figure 5.42 — Case 2 numerical liquid holdup profiles for aspect ratio of 0.5 in the second

set of simulations and for: (a) Standard Expression; (b) Proposed Expression 1; and (c)

Proposed Expression 2.
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Figure 5.43 — Case 3 numerical liquid holdup profiles for aspect ratio of 0.5 in the second

set of simulations and for: (a) Standard Expression; (b) Proposed Expression 1; and (c)

Proposed Expression 2.


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Simulations and Results 168

After the former qualitative comparison between the Cases 2 and 3 transient
a;, profile for each expression for the interfacial friction factor, it is of paramount
importance comparing in a clear quantitative manner the resulting integral
parameters of the simulations. With this purpose, Tables 5.7 and 5.8 outline for,
respectively, Cases 2 and 3, the @, and dP /dx results for the converged (Ax/D =
0.5) simulations of this second set and their respective relative errors (in relation to
the experiments) and egy,s Values.

In Table 5.7 (Case 2), it can be seen that, for the Standard Expression, a good
relative error was obtained for the liquid holdup, while a significant one was
observed for the pressure gradient. When using the Proposed Expression 1 or 2, the
latter error improves considerably, which is compensated by the worsening of the
relative errors of the liquid holdup. This provides similar eg,, s Values for the three
interfacial friction factor expressions. Nevertheless, it can be verified that the
Proposed Expression 2 slightly increased egps, When compared to the Standard
Expression, and that Proposed Expression 1 made such value better.

Table 5.7 — Case 2 integral parameter results for the mesh aspect ratio of 0.5 in the

second set of simulations.

Relative Error | Relative Error

a, (=) | —dP/dx (Pa/m) (@) (dP/dx) erms

Standa_rd 0.562 749.8 7.07% -20.73% 0.22
Expression

= Proposed | ;o7 872.7 -18.66% -7.74% 0.20
xpression 1

Proposed | - 394 932.8 -25.00% -1.39% 0.25
Expression 2

Table 5.8 — Case 3 integral parameter results for the mesh aspect ratio of 0.5 in the

second set of simulations.

Relative Error | Relative Error

a, (=) | —dP/dx (Pa/m) (@) (dP/dx) €rMs

Standard | o ;g 913.4 17.13% -26.15% 0.31
Expression

Proposed | ) 4, 1185.0 -20.35% -4.20% 0.21
Expression 1

Proposed | ( 5aq 1309.7 -26.38% 5.89% 0.27
Expression 2
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While the liquid holdup relative errors, in

Table 5.8 (Case 3), of the three f; expressions are high, employing the
Proposed Expressions 1 and 2 managed to improve the pressure gradient relative
error of the Standard Expression. Consequently, the resulting egys Vvalues of
Proposed Expressions 1 and 2 are both lower than the one from the Standard
Expression. Between the two, Proposed Expression 1 provided a better eg;,s Value.

A key feature of the currently analyzed results, as previously mentioned, is
that those from the Regime Capturing Methodology (converged simulations) are
not always better than those of the Point Model. This is not expected, since the
predictability of the former is greater than of the latter. To illustrate this more
clearly, Table 5.9 lists the egy,s values for Cases 2 and 3 from the Regime Capturing
Methodology (converged simulations) and the Point Model.

Table 5.9 — Comparison of the root-mean-squared error of Eq. (5.1) for the Regime

Capturing Methodology converged simulations (second set) results and the predictions of
the Point Model.

Interfacial Reglmz C/aBtLlrlggsMethodology Point Model - ey
friction factor (Ax/D = 0.5) - erys
expression Case 2 Case 3 Case 2 Case 3
Standard
Expression 0.22 0.31 0.31 0.44
Proposed
Expression 1 0.20 0.21 0.12 0.14
Proposed 0.25 0.27 0.15 0.18
Expression 2

In the referred table, it is evident that, while the Standard Expression with the
Regime Capturing Methodology provides better egy, s Values than the Point Model,
the opposite is true for the Proposed Expressions 1 and 2 in both Cases. In the
Regime Capturing Methodology, simulations in high resolution meshes are in
theory able to capture more interfacial instabilities, which make the pressure
gradient increase and the liquid holdup decrease. For both Cases 2 and 3, the three
expressions for the interfacial friction factor, applied in the Point Model, result in
an underpredicted pressure gradient. Such model should coincide with the Regime
Capturing Methodology with very coarse meshes. Therefore, mesh refinement
would lead to an increase in pressure gradient and, therefore, decrease its relative
error (Figures 5.35 and 5.36). On the other hand, while the Point Model with the
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Standard Expression overpredicts the liquid holdup, when the Proposed Expression
1 or 2 are applied in the Point Model, the liquid holdup is underpredicted (Figures
5.34 and 5.38). Therefore, when the mesh is refined, the «; results for the Standard
Expression improve and the ones for the Proposed Expressions 1 and 2 worsen.
Therefore, for a refined and converged mesh for Cases 2 and 3 employing the
Regime Capturing Methodology lead to egys Values for the Standard Expression
that are better than the ones of the Point Model, while, for the Proposed Expressions

1 and 2, the former values are worse than the latter.

5.4.3. Summary

In this second set of simulations, in which the dynamic pressure term was
considered in the 1D Two-Fluid Model (Table 5.1), it was observed that it excessively
stabilizes the flow in Case 1, avoiding the formation of slugs. However, it managed
to make the Case 2 and 3 simulations mesh convergent and well-posed and made it
possible for comparing the Proposed Expressions 1 and 2 with the Standard
Expression. By comparing the integral parameters predictions for the converged
Cases 2 and 3 simulations, it can be verified in Tables 5.7 and 5.8 that the Proposed
Expression 1 provided the best results for both Cases. For this reasons, henceforth, in
the third and fourth sets of simulations (Table 5.1), only such correlation for the
interfacial friction factor is used in the Regime Capturing Methodology.

However, it was verified that the dynamic pressure term of Bestion (1990)
was not capable of controlling the growth rate of interfacial instabilities with the
intensity enough for avoiding the existence of large-amplitude waves for Cases 2
and 3 (Figures 5.42 and 5.43). This might be caused by the incapacity of the
dynamic pressure term to dissipate the large-scale instabilities, as diffusive terms in
the 1D Two-Fluid Model are capable of doing (Fullmer et al., 2014). In other words,
according to the linear stability analysis of Fullmer et al. (2014), the dynamic
pressure leads to smaller (or even null) growth rate of waves or , but never negative.
Combining such remarks with the fact that the Bestion (1990) expression is more
physically valid for vertical flows (Han & Guo, 2015), it can be understood that it
is important to search for alternative solutions to improve the model’s result. One
should test alternative ways for acquiring mesh convergence, and at the same time

improve the quality of the results, that the dynamic pressure could not. Further, it
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is important that the alternative modeling does not harm the predictions that were
already satisfactory in the first set of simulations. With this in mind, the third set of
simulations neglects the dynamic pressure term for testing the axial momentum
diffusion term (Table 5.1).

5.5. Analysis of the Axial Momentum Diffusion Term (Third Set of

Simulations)

In the third set of simulations, the axial momentum diffusion term is
considered in the 1D Two-Fluid Model momentum conservation equations, Egs.
(3.60) and (3.61), while the dynamic pressure and dynamic interfacial shear stress
terms are neglected (Table 5.1). As previously said, the main purpose of this topic
is to test an improved alternative to the employment of the dynamic pressure for
obtaining satisfactory and mesh-convergent results for Cases 1, 2 and 3 with the
Regime Capturing Methodology.

The main parameter of the axial diffusion term, Eq. (3.33), is the effective
dynamic viscosity u,e{ff of phase K, K € {G, L}, which is calculated by Eq. (3.34).
The coefficient 7, of such expression is primarily considered to be equal to 1.0 and
the turbulent viscosity ut is calculated precisely as formulated in Eq. (3.35). As
aforementioned, due to the good performance of the Proposed Expression 1 in the
second set of simulations, especially for Cases 2 and 3, it is the only correlation for

the interfacial friction factor used in the third set of simulations.

5.5.1. Case 1 (u// # 0)

The first numerical integral parameter results shown for the present set of
simulations are plotted in Figures 5.44 and 5.45 as a function of the mesh aspect
ratio Ax/D. Such figures illustrate for Case 1 simulations, respectively, the mean
liquid holdup (at 38.15m), the pressure gradient and the eg,,s values together with
the measurements.

Several observations can be made regarding the results present in Figures 5.44
and 5.45, but the most important one is that such results are similar in every aspect

to those of Case 1 with the Proposed Expression 1, in the first set of simulations
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(Figures 5.9 and 5.10). Therefore, the same remarks valid for the latter are also true

for the present results (Figures 5.44 and 5.45).
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Figure 5.44 — Grid test for Case 1 with the Proposed Expression 1 in the third set of

simulations (n, = 1).
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Figure 5.45 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the

Proposed Expression 1 in the third set of simulations (n, = 1).
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Figure 5.46 — Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the

third set of simulations (g, = 1).
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The similarity between numerical «; histograms of Case 1, in the third set of
simulations, plotted in Figure 5.46 for various mesh aspect ratios, and the
histograms for the previously referred results from the first set of simulations
(Figure 5.11) is also noteworthy. This equivalence between such results might

indicate that considering the axial momentum diffusion term has no impact on the
slug flow simulated and its integral parameters, at least when modelling uf{f T as
described (n, = 1).

5.5.2. Cases 2 and 3 (u// = 0)

For extending the analysis for Cases 2 and 3, with the Proposed Expression 1
and for n, = 1, Figures 5.47-5.49 depict the liquid holdup, pressure gradient and
erms Values as a function of the mesh refinement, the same way as Figures 5.44 and
5.45.
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Figure 5.47 — Mean liquid holdup numerical results for Cases 2 and 3 with the

Proposed Expression 1 in the third set of simulations (n, = 1).
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Figure 5.48 — Pressure gradient numerical results for Cases 2 and 3 with the Proposed

Expression 1 in the second set of simulations (n,, = 1).


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Simulations and Results 174

0.50 0.50
0.45 3 0.45
0.40 4 0.40
0.35 0.35
0.30 4 0.30

w
=025 - 025
v

€rMs

0.20 4 0.20
0.18 0.15
0.10 4 0.10

0.05 4 0.05

0.00 0.00 - . L S - v e
025 25 25 025 25 25

Ax/D () Ax/D ()

(a) Case 2. (b) Case 3.
Figure 5.49 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3

with the Proposed Expression 1 in the second set of simulations (1, = 1).

A clear ill-posedness of the simulations is observed in Figures 5.47-5.49 as a
consequence of the lack of stabilization of the a; and dP/dx values for the refined
meshes. As already extensively assessed in this work, this is due to the appearance
and uncontrolled growth of interfacial instabilities as the mesh aspect ratio
diminishes, which is more clearly observed in the liquid holdup histogram plots of

Figure 5.50 for the same simulations of Cases 2 and 3.
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Figure 5.50 — Liquid holdup histograms for Cases 2 and 3 with the Proposed Expression

1 in the third set of simulations (n,, = 1).

Considering the axial diffusion term, as previously described (, = 1), it
could be observed that it was not enough for making the simulations of such Cases
mesh convergent, even when a correlation for f; that provides high values for it
(Proposed Expression 1), when compared to the Standard Expression, is employed.

This is evidenced by the fact that the results of Figures 5.47-5.50 generally resemble
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more those of the same Cases with the Standard Expression in the first set of
simulations (Figures 5.16-5.19), than those with the Proposed Expression 1 in the
second set of simulations (Figures 5.34-5.37).

5.5.3. Increased Diffusion

From the previously analyzed results for Cases 1, 2 and 3, it is very clear that
the axial diffusion term made no significant difference in the hyperbolicity and
mesh convergence of the simulations. A possible reason for this is that the effective
dynamic viscosity uf(f T should possess higher values than the ones provided by the
current model. This is represented by the possible low value chosen for the
coefficient n,, of Eq. (3.34) fixed as unity for the simulations of Figures 5.44-5.50.
Fullmer et al. (2014), for example, considered n,, equal to 8.1, in contrast to n,, =
1.0, which might not be enough for the current objectives (i.e., introducing a
dissipative effect). It is important to state that a very large value for n,, should also
not be considered, because the physical meaning of the coefficient would be lost.
Therefore, for exploring this possibility, the simulations of this third set for Cases
1, 2 and 3 with the Proposed Expression 1 were remade, but equating 7,, to 10.

For n,, = 10 and the Proposed Expression 1, Figures 5.51 and 5.52 illustrate
the mean liquid holdup, pressure gradient and egys Vvalues, respectively, as a

function of Ax/D for Case 1 together with its experimental data.
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Figure 5.51 — Grid test for Case 1 with the Proposed Expression 1 in the third set of

simulations (n, = 10).
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Figure 5.52 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the

Proposed Expression 1 in the third set of simulations (g, = 10).

By looking at the plots in the referred Figures 5.51 and 5.52 and comparing

them with the ones obtained for n, = 1 (Figures 5.44 and 5.45), it is clear that

increasing it to 10 did not impact significantly on the integral parameters of Case 1.

In other words, these new results for such Case still considerably resemble the

values plotted in Figures 5.9 and 5.10 for the first set of simulations. A similar

conclusion can be reached when the liquid holdup histograms for each Ax /D value,

depicted in Figure 5.53, are compared against the ones obtained for n, = 1 (Figure

5.46). Therefore, increasing the n, value from 1 to 10 was not enough for

reasonably influencing the dynamics of the flow in this case.
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Figure 5.53 — Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the

third set of simulations (n,,

= 10).

For the stratified wavy flow (with small-amplitude interfacial waves) Cases

2 and 3, simulated again in this third set with n, = 10, Figures 5.54-5.56 plot as a
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function of the mesh aspect ratios, respectively, the a; values, pressure gradient
and epys values, together with the measurements and Point Model predictions
(Table 5.4).
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Figure 5.54 — Mean liquid holdup numerical results for Cases 2 and 3 with the

Proposed Expression 1 in the third set of simulations (17, = 10).

Regarding mesh dependency, the same behavior is again verified for n,, =
10 in Figures 5.54-5.56, when compared to the results for ,, = 1. The same can be
verified in Figure 5.57 in which the numerical liquid holdup histograms are depicted
together with the ones acquired by the gamma densitometer. Therefore, the increase
in the value of coefficientn,,, Eq. (3.34), from 1 to 10 was not sufficient for making
the Cases 2 and 3 simulations mesh-convergent. It is important to comment that the
Regime Capturing Methodology results in Figures 5.54 and 5.55 for coarse meshes
would probably only coincide with the Point Model predictions for aspect ratios
higher than 25, as in Figures 5.16 and 5.17.
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Figure 5.55 — Pressure gradient numerical results for Cases 2 and 3 with the Proposed

Expression 1 in the second set of simulations (n, = 10).
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Figure 5.56 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 with the

Proposed Expression 1 in the second set of simulations (n, = 10).
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Figure 5.57 — Liquid holdup histograms for Cases 2 and 3 with the Proposed Expression 1

in the third set of simulations (n,, = 10).

In this third set of simulations, it was seen that taking into account the axial
momentum diffusion term in the 1D Two-Fluid Model does not lead to improved
results, for Case 1, nor to mesh-convergence, for Cases 2 and 3. Actually, it has
little impact on the results, which is true for both 7, values tested: 1 and 10, even
with the significant molecular viscosity of the mineral oil of the Eskerud Smith et
al. (2011) database. It should be stated that such remarks are only valid for the
specific model for the axial diffusion term chosen for this work. In other words, a
more extensive analysis on several approaches for modelling 7, Egs. (3.11) and
(3.12), is necessary, as well as an assessment of the minimum order of magnitude
for ufff required for the axial diffusion to really influence the simulations. This

should be performed even knowing that, for most flows, as previously mentioned,

a further increase in n, would be unphysical and purely artificial. In spite of this
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approach being considered equally artificial in literature, an alternative could be the
addition of diffusion on the mass conservation equations of the 1D Two-Fluid
Model, Egs. (3.58) and (3.59), (Fullmer et al., 2014).

5.5.4. Summary

For Case 1, the simulations of the first set are preferable over the ones of the third
set for being similar in results, but for having one less term in the 1D Two-Fluid Model
momentum equations (Table 5.1). For Cases 2 and 3, the simulations of the second set
were the most satisfactory due to the ability of the Bestion (1990) dynamic pressure to
render mesh convergence and well-posedness. Nevertheless, the previously
commented problems of the dynamic pressure term still persist and it is desirable to
overcome them, especially the excessive stabilization of Case 1 and the appearance of
large-amplitude instabilities. With this purpose, in the fourth set of simulations, the
dynamic interfacial shear stress expression of Brauner & Maron (1993; 1994) is taken

into account together with the dynamic pressure term (Table 5.1).

5.6. Analysis of the Dynamic Interfacial Shear Stress Term (Fourth Set

of Simulations)

In this topic, the results of the fourth set of simulations, in which the dynamic
pressure and the dynamic interfacial shear stress terms are considered in the
momentum conservation equations of the 1D Two-Fluid Model, are presented. As
in the third set of simulations, only the Proposed Expression 1 is employed for

modelling the interfacial friction factor.

5.6.1. Case 1 (APpk #0;J; # 0)

Starting with Case 1, Figures 5.58 and 5.59 show the plots, as a function of
the mesh aspect ratio, of the liquid holdup, the pressure gradient and the ez, Values

from the simulations and the measurements.
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Figure 5.58 — Grid test for Case 1 with the Proposed Expression 1 in the fourth set of

simulations.
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Figure 5.59 — Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the
Proposed Expression 1 in the fourth set of simulations.

Comparing the results of the referred figures with the ones for the same Case
1, with the Proposed Expression 1, of the second set of simulations (Figures 5.23
and 5.24) it can be seen how remarkably similar they are. The same can be stated
about the numerical liquid holdup histograms of the current simulations, located in
Figure 5.60, and those from the previously mentioned simulations of the second set
(Figure 5.25). Nevertheless, by comparing the histograms for Ax/D = 0.5 in
Figures 5.25 and 5.60, one can see that the dynamic interfacial shear stress of
Brauner & Maron (1993; 1994) did manage to slightly destabilize the flow, and a
few slugs could be captured. However, the numerical liquid holdup histogram for
this mesh aspect ratio in Figure 5.60 is still very different from the experimental
one. Besides, the results behavior in Figures 5.58 and 5.59 indicate the mesh
convergence was not obtained. Despite all of this, the Case 1 results for the fourth
set of simulations indicate that using the dynamic interfacial shear stress combined
with the dynamic pressure might be the right way for improving the second set of

simulations predictions.


DBD
PUC-Rio - Certificação Digital Nº 1513633/CA


PUC-Rio- CertificacaoDigital N° 1513633/CA

Simulations and Results 181

0.50
0.45 “

0.40 7

0.35

e | || s I Experimental
030 | ——Ax/D=10

] ——AxD=5
7 ——AxD=2
0.20 ] e

] —Ax/D =1
—— Ax/D=075
—AxD=05

0.25 ]

Histogram

0.15
0.10 ]

0.05 ]

0.00

Figure 5.60 — Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the
fourth set of simulations.

5.6.2. Cases 2and 3 (APpx #0;J; # 0)

For the originally stratified wavy (with small-amplitude waves) flows of
Cases 2 and 3, the integral parameter results for the fourth set of simulations are
shown in Figures 5.61-5.63. They depict the plots of, respectively, the liquid
holdup, the pressure gradient and the ey, s Values together with the corresponding
measurements and Point Model predictions (Table 5.4).

It is interesting to observe that the results in Figures 5.61-5.63 are almost
identical to those from Cases 2 and 3 of the second set of simulations, with the
Proposed Expression 1, in Figures 5.34-5.36. The same can be said regarding the
liquid holdup histogram results of the Cases 2 and 3 fourth-set simulations, plotted
in Figure 5.64 and of those plotted in Figure 5.37.
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Figure 5.61 — Mean liquid holdup numerical results for Cases 2 and 3 with the

Proposed Expression 1 in the fourth set of simulations.
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Figure 5.62 — Pressure gradient numerical results for Cases 2 and 3 with the Proposed
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Figure 5.63 — Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3

with the Proposed Expression 1 in the fourth set of simulations.
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Figure 5.64 — Liquid holdup histograms for Cases 2 and 3 with the Proposed

Expression 1 in the fourth set of simulations.

After the presentation of the results from this forth set of simulations, it can

be concluded that the inclusion of the dynamic interfacial shear stress term (together

with the dynamic pressure) did not destabilize the flow sufficiently in order to
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compensate the overly stabilizing effect of APp . The reason might be that the
Brauner & Maron (1993; 1994) modelling for J; provides low values, which do not
play a significant role in the 1D Two-Fluid Model. Therefore, a more thorough
investigation on this term is needed, due to its solid physical background and
destabilizing effect evidenced in the well-posedness analysis and present
simulations. Hence, potential improvement in the Regime Capturing Methodology

may be possible with this term.
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6. CONCLUSIONS

In this work, an attempt was made for extending the Regime Capturing
Methodology, extensively validated for air-water flows (Issa & Kempf, 2003;
Nieckele et al., 2013; Ferrari et al., 2017), to viscous oil-gas flows, through
simulations of isothermal horizontal stratified wavy and slug cases from the
Eskerud Smith et al. (2011) database. With this purpose, two new expressions for
the interfacial friction factor were generated using the stratified wavy flow (small-
amplitude waves) data and a new framework based on an optimization procedure,
solved with the PSO algorithm (Kennedy & Eberhert, 1995). These new
expressions (Proposed Expressions 1 and 2) provided liquid holdup and pressure
gradient values, with the Point Model, much closer to the measurements than more
common literature formulations. Besides, through a different formulation for the
optimization problem, it was also possible to evaluate the most efficient wall
friction factor correlations. It was seen that the Biberg (1999) expression, modified
by Pasqualette et al. (2017), for (f.);am, the Nossen et al. (2002) correlation for
(f1)turb and the Biberg (1998) equation for (f;) b Were more efficient, in terms
of objective function, than standard literature approaches.

Well-posedness (characteristics) analyzes of the 1D Two-Fluid for the
Eskerud Smith et al. (2011) database were performed, considering the gas as
incompressible and neglecting second-order and higher order derivative terms.
From the analysis, it became clear that the dynamic pressure term, as expected,
contributes to the well-posedness and that the dynamic interfacial shear stress
makes the model more unstable and ill-posed.

Four sets of Regime Capturing Methodology simulations (Table 5.1) were
performed and their results were presented for three Eskerud Smith et al. (2011)
database cases: one slug flow (Case 1) and two stratified-wavy flows (Cases 2 and
3). In the first set of simulations, the slug flow case was mesh convergent and well-
posed and the analysis of integral parameters, liquid holdup histograms and their

transient profiles revealed that the use of Proposed Expressions 1 and 2 only slightly
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changes the results, when compared to the Standard Expression. Such comparison
was not possible to be made for Cases 2 and 3, because those cases were ill-posed.
In the second set of simulations, i.e., using the dynamic pressure of Bestion (1990),
Case 1 become overly stabilized, which harmed the prediction of slugs, while Cases
2 and 3 become mesh-convergent and the analysis of their results showed a
superiority of the Proposed Expression 1, when compared to the Standard
Expression and to the Proposed Expression 2. The simulations of the third set were
aimed to replace the excessive stabilizing effects due to the dynamic pressure by
the axial momentum diffusion. However, it did not manage to guarantee that Cases
2 and 3 were well-posed. It was suggested that only an artificial augmentation of
the diffusion would cause the desired effect. Finally, the four set of simulations
tested the impact of the model of Brauner & Maron (1993; 1994) for the dynamic
interfacial shear stress in the simulations. However, it was observed that such term
does have little impact, probably due to low values of adjusting parameters provided
by the model of Brauner & Maron (1993; 1994).

As seen, this work managed to make several interesting remarks, new
knowledge and observations on the use of the Regime Capturing Methodology for
viscous oil-gas flows. Furthermore, it contains an optimization-based new method
for creating interfacial friction factor expressions and for analyzing wall friction
factor correlations. Several analyzes, approaches and descriptions of topics were
made in manners different and better than what is currently found in the literature.
Therefore, this work had several contributions to the development of the technology
studied: the Regime Capturing Methodology. Nevertheless, much more can still be

performed as it can be grasped from the following suggestions for future works.

6.1. Suggestions for Future Work

In the optimization of the interfacial shear stress, a suggestion for a future
work would be to generalize the Proposed Expressions 1 and 2 by using extra
experimental database for different fluids. In addition, one should look for even
better wall shear stress correlations than the ones used in this work. The
consideration in the Point Model of the term of Liné & Lopez (1997), which
explicitly takes into account the effects of the interfacial waves on the interface

would also be a novel task to be performed.
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Regarding the stability-hyperbolicity problem, rather than only using well-
posedness (characteristics) analyses, it is recommendable to use also a linear
stability analysis and/or the von Neumann analysis. The former would make
possible to assess the effects of the higher-order terms and to have a more complete
mapping of the model stability for all wavelengths. The von Neumann analysis
would go even further and provide as well the influence of the discretization
schemes in the stability-hyperbolicity problem.

For the Regime Capturing Methodology, it is interesting to explore more wall
and interfacial shear stress closure relations for the viscous-oil gas flows. Besides,
the analysis of the axial momentum diffusion and of the dynamic interfacial shear
stress should advance, because part of what was performed in this work on such
topics was inconclusive. Testing the effects of the artificial diffusion on the mass
equations is also significantly important, for being an effect that may significantly
dampen the growth rate of spurious instabilities (Fullmer et al., 2014) and for being
a strong candidate for improving qualitatively the transient liquid holdup profiles
and their histograms. Using Power-Spectrum-Density (PSD) plots, as in Fontalvo
(2017), is recommendable in the future for being a resource that provides deep
information on the numerical results.

Lastly, for slug flows, the incorporation of gas entrainment effects is
important, especially at higher mixture velocities. This effect is not taken into
account in the current version of the model and may help to improve hold-up
predictions, as evidenced by numerical results shown here. Excessively high peaks
in the histograms of the hold-up signals were obtained for a; values close to one,

which were not observed in the experiments.
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