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Abstract 

Pasqualette, Marcelo de Alencastro; Nieckele, Angela Ourivio (Advisor); 

Carneiro, João Neuenschwander Escosteguy (Co-Advisor). Optimization of 

the interfacial shear stress and assessment of closure relations for 

horizontal viscous oil-gas flows in the stratified and slug regimes. Rio de 

Janeiro, 2017. 199p. Dissertação de mestrado - Departamento de Engenharia 

Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

The current depletion of traditional oil fields is increasing the demand for the 

production and transport of unconventional oils, which might possess a high 

dynamic viscosity. In this context, the study of the simultaneous flow of gas and 

viscous oils in pipelines is of paramount importance for the Oil & Gas industry. 

One-dimensional numerical simulations play a key role in such studies, especially 

the ones based on the 1D Two-Fluid Model, whose numerical solution in fine 

meshes consists in the Regime Capturing Methodology. The purpose of this work 

is to use this approach for reproducing the experimental data of isothermal slug and 

stratified wavy viscous oil-gas flows in a horizontal laboratory-scale pipe. For 

improving the results of the methodology, experimental data were used together 

with an optimization procedure and a simplified version of the 1D Two-Fluid 

Model for successfully creating two new expressions for the interfacial friction 

factor, which showed better efficiency than standard literature correlations. The 

effect of introducing a dynamic pressure, axial momentum diffusion and dynamic 

interfacial shear in the 1D Two-Fluid Model was examined. Results of pressure 

gradient and liquid holdup (histograms, mean values and transient profiles) were 

compared against experimental data. It was seen, with the aid of well-posedness 

analyses, that the dynamic pressure and the new expressions for the interfacial shear 

stress provided satisfactory results. 

Keywords 
 1D Two-Fluid Model; Viscous-Oil Gas Flow; Regime Capturing 

Methodology; Interfacial Shear Stress; Closure Models.  
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Resumo 

Pasqualette, Marcelo de Alencastro; Nieckele, Angela Ourivio; Carneiro, 

João Neuenschwander Escosteguy. Otimização da tensão cisalhante 

interfacial e avaliação das relações de fechamento para escoamentos 

horizontais de óleo viscoso-gás nos regimes estratificado e golfadas. Rio de 

Janeiro, 2017. 199p. Dissertação de mestrado - Departamento de Engenharia 

Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

O atual esgotamento de campos de petróleo tradicionais tem aumentado a 

demanda pela produção e transporte óleos não convencionais, que podem possuir 

uma alta viscosidade dinâmica. Neste contexto, o estudo do escoamento simultâneo 

de gás e óleos viscosos em tubulações é de grande importância para a indústria de 

Óleo & Gás. Simulações numéricas uni-dimensionais desempenham um papel 

essencial nestes estudos, especialmente aquelas baseadas no Modelos de Dois-

Fluidos 1D, cuja solução numérica em malhas refinadas consiste na Metodologia de 

Captura de Regimes. O propósito deste trabalho é utilizar esta abordagem para 

reproduzir dados experimentais de escoamentos óleo viscoso-gás em golfadas e 

estratificado ondulado em um duto horizontal em escala laboratorial. Para aprimorar 

os resultados desta metodologia, dados experimentais foram usados conjuntamente 

com um procedimento de otimização e uma versão simplificada do Modelos de Dois-

Fluidos 1D para criar duas novas expressões para o fator de atrito interfacial, as quais 

mostraram maior eficiência que correlações padrão da literatura. O efeito da 

introdução da pressão dinâmica, difusão axial de quantidade de movimento e tensão 

interfacial dinâmica no Modelo de Dois-Fluidos 1D foi analisado. Resultados de 

gradiente de pressão e de fração volumétrica de líquido (histogramas, valores médios 

e perfis transientes) foram comparados com dados experimentais. Observou-se, com 

o auxílio de análises de boa-colocação, que a pressão dinâmica e as novas expressões 

para o fator de atrito interfacial fornecem resultados satisfatórios. 

Palavras-chave 
 Modelo 1D de Dois-Fluidos; Escoamento Óleo Viscoso - Gás; Metodologia 

de Captura de Regime; Tensão Cisalhante Interfacial; Modelos de Fechamento.  
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in Related to the inlet section conditions of the pipe 

𝐾 Related to the gas or liquid phase, 𝐾 ∈ {𝐺, 𝐿} 

lam Related to the laminar regime 

𝐿 Related to the liquid phase 

𝑀 Related to the mixture 

max Related to a maximum value 

min Related to a minimum value 

out Related to the outlet section conditions of the pipe 

pm Related to calculations by the Point Model 

𝑃 Related to the nodal point 𝐏 of the mesh 

ref Related to reference variables 

𝒮 Related to an air-water system at 1atm and 20°C 

𝑆𝐹 Single-phase monitor variable 

𝑆𝐹𝓈𝓅 Single-phase monitor variable critical value 

𝑡2D Related to the appearance of two-dimensional waves at the 
interface, according to Tzotzi & Andritsos (2013) 

𝑡KH Related to the appearance of Kelvin-Helmholtz waves at the 
interface, according to Tzotzi & Andritsos (2013) 

turb Related to the turbulent regime 

𝑤 Related to the face 𝑤 of the mesh 

𝑊 Related to the nodal point 𝐖 of the mesh 

𝑤𝑤 Related to the face 𝑤𝑤 of the mesh 

𝑊𝑊 Related to the nodal point 𝐖𝐖 of the mesh 

Superscripts 

0 Related to a previous time step 

𝑖𝑡 Related to the iteration 𝑖𝑡 

𝓅𝒾 Related to the previous iteration 

Operators 

𝜎𝜓 Standard deviation of 𝜓 

�̃� Variable calculated through the upwind scheme 

�̌� Variable calculated as an arithmetic mean 
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〈𝜓〉 Mean value of 𝜓 

�̅�𝐴 Area-average of 𝜓 

𝜓𝐾̅̅ ̅̅
𝛼

 Volumetric-fraction-weighted mean of 𝜓 for phase 𝐾 
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“Two roads diverged in a wood, and I –  

I took the one less traveled by, 

And that has made all the difference.” 

(Robert Frost) 

 

“ - Por que renuncias à luta? 

- Perdi as esperanças. 

- Pois luta sem esperanças! 

- Mas, se perdi a fé? 

- Luta sem fé! 

- Mas se me abandonaram? 

- Persiste sozinho. Faze de teu coração uma lança, de teu peito um escudo, segue 

o impulso do teu braço, e fere o último esforço do teu desespero. ” 

(Mário Ferreira dos Santos) 

 

“(...) mas dispusestes tudo com medida, quantidade e peso” 

(Sb 11,20) 
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1. INTRODUCTION 

In the oil & gas industry, both acquired data and projections show that the rate 

of increase of the conventional oil sources (crude oil and natural gas liquids) 

production has being diminishing at least for a decade, due to the depletion of 

traditional petroleum fields (I.A.E., 2015). This is the case, for example, of the 

Norwegian conventional crude oil production, which fell from 1.80×108 Sm³, in 

2001, to 0.94×108 Sm³ in 2016 (Norsk Petroleum, 2017), as it can be seen in Figure 

1.1.  

 

Figure 1.1 – Norwegian annual crude oil, condensate, NGL (Natural Gas Liquid) and gas 

production from 1971 to 2016. Data extracted from Norsk Petroleum (2017). 

At the same time, there has been a significant increase in the demand for the 

exploitation of unconventional oils, which tends to continue according to 

projections made for several scenarios, as shown in Figure 1.2, according to the 

World Energy Outlook 2014 (I.A.E., 2015).  

The Schlumberger Oilfield Glossary (Schlumberger, 2017) defines an 

unconventional oil as a umbrella term (also applied to gases) that covers oil 

resources "whose porosity, permeability, fluid trapping mechanism, or other 
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characteristics differ from conventional sandstone and carbonate reservoirs". That 

is why Zee Ma & Holditch (2016) go further and define unconventional oils as 

"subsurface hydrocarbon resources that are tight and must be developed using large 

hydraulic fracture treatments or methods", i.e., non-standard techniques. Among 

unconventional oils, besides tar sands and shale and tights oils, heavy oils (specific 

gravity lower than 22.3°API) are a notable example of unconventional oils (Zee Ma 

& Holditch, 2016; Schlumberger, 2017). Usually, such oils also have a dynamic 

viscosity (henceforth referred to as just “viscosity”) much higher than the 1cp, 

which is, the viscosity of water, and it has the same order of magnitude than the 

viscosity of most conventional oils in standard conditions. For this reason, the study 

of the thermo-hydrodynamic features of flows in production lines containing 

viscous oils is a subject that has been attracting many researches and engineers in 

the oil & gas industry. Improving the efficiency and costs of such enterprise is 

always a desirable goal, even in periods of time in which the oil barrel price is low 

(Figure 1.3).   

 

Figure 1.2 – Projections for oil demands in three different scenarios. Extracted from the 

World Energy Outlook 2014 (I.E.A., 2015). 
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Figure 1.3 – Crude Oil Brent in a five years time period with the current price highlighted. 

Adapted from NASDAQ (2017). 

In flows of oils (not just the viscous ones) in petroleum production lines often 

more than one phase is present due to the common co-existence, with the liquid oil, 

of natural gas, water, sand, gravel and flow assurance solids (hydrates, scales, 

waxes, asphaltenes, among others), which characterizes a multiphase flow.  

The use of numerical tools for investigating, making predictions and assisting 

in the design of pipelines in which such flows shall take place is of paramount 

importance. The one-dimensional (1D) simulations play an important role in these 

activities for the fact that the geometries involved in oil production are usually 

pipelines that span kilometers, so that, two- (2D) or three-dimensional (3D) models 

are excessively costly in a computational perspective. This is especially seen in the 

vast use of the 1D commercial multiphase flow simulators such as Olga (Bendiksen 

et al., 1991) and LedaFlow (Danielson et al., 2005) by the oil & gas industry.  

The three most important 1D approaches for simulating gas-liquid flows are 

the Unit-Cell Model (Dukler & Hubbard, 1975), the Slug Tracking Methodology 

(Nydal & Banerjee, 1996) and the Regime Capturing Methodology (also known as 

Slug Capturing Methodology) (Issa & Kempf, 2003; Nieckele & Carneiro, 2017). 

The Unit-Cell Model is the most used from the three, for having a low 

computational cost and a satisfactory robustness. Nevertheless, it is highly 

dependent on empirical and semi-empirical correlations directly related to the flow 

pattern, and their accuracy always decays for conditions outside the ones for which 

they were created. Although it is also not computationally costly, the Slug Tracking 

Methodology, likewise, suffers from excessive dependency on empirical 

expressions for the slug features, especially from the one that defines their presence. 
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Although demanding more CPU time than the other approaches and having to deal 

with the stability-hyperbolicity problem (Prosperetti & Tryggvason, 2007), the 

solution of the 1D Two-Fluid Model (Ishii, 1975) in fine meshes, that is, the Regime 

Capturing Methodology, is much less dependent on empirical expressions than both 

the Unit-Cell Model and the Slug Tracking Methodology. This is justified for the 

interfacial dynamics (growth of instabilities, slugs appearance, among others) being 

a natural product of the methodology as well as the flow pattern. With this 

methodology, the same set of correlations can be used for all the flow patterns, 

which is in great contrast with the other two approaches. Nevertheless, although 

very promising and satisfactorily validated for air-water flows (Carneiro et al., 

2011; Nieckele et al., 2013; Han & Guo, 2015; Ferrari et al., 2017), this 

methodology has, with few exceptions, not being much explored for performing 1D 

simulations of different fluid combinations, especially for viscous oil-gas flows.  

One of the greatest challenges in the use of 1D gas-liquid models is the 

adequate modelling of the interfacial shear stress, for being a parameter in which 

complex phenomena (interfacial waves, relation between them and the turbulence 

of the phases, among others) are included (Hanratty, 2013; Ayati et al., 2016; André 

& Bardet, 2017). For viscous oil-gas flows, an added difficulty is related to the high 

oil viscosity, which induces several effects on the interfacial dynamics that directly 

impacts the interfacial shear stress (Andritsos & Hanratty, 1987b; Newton et al., 

1999; Matsubara & Naito, 2011). Furthermore, most of the literature correlations 

for such variable were empirically created based on air-water flows experimental 

data. This automatically originates uncertainties on the effectiveness of these 

correlations when applied to viscous oil-gas flows, which may be problematic due 

to the great influence it has on the 1D simulation results (Ottens et al., 1999; 

Pasqualette et al., 2015). Adequate expressions for the interfacial shear stress for 

viscous oil-gas flows is still a gap in the literature and new correlations for it still 

need to be built. 

1.1. Objectives of the Dissertation 

With all of this in mind, the main objective of this work is to extend and test 

the Regime Capturing Methodology for viscous oil-gas flows by addressing the 

stability-hyperbolicity problem and by the use of two newly proposed correlations 
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for the interfacial shear stress. Simulations with this methodology are performed 

with the purpose of reproducing the Eskerud Smith et al. (2011) experiments, in 

which the liquid phase is a viscous (viscosity approximately one hundred times the 

one of the water) mineral oil and the gas is sulfur hexafluoride (SF6). They flow 

isothermally in a laboratory-scale horizontal pipe in the stratified wavy and slug 

flow patterns. Well-posedness analyses are performed for assisting the management 

of the stability-hyperbolicity problem. An optimization procedure is proposed and 

used, together with a simplified, steady-state version of the 1D Two-Fluid Model, 

for the development of the two aforementioned new expressions for the interfacial 

shear stress. Then, the new correlations are tested in a transient Two-Fluid Model 

for various mesh spacings, in a Regime Capturing Methodology fashion. Different 

closure models related to the dynamic pressure, axial diffusion and dynamic 

interfacial shear are tested along with the different interfacial friction expressions, 

in order to investigate the stabilizing/destabilizing effects on the transient interfacial 

dynamics. 

1.2. Structure of the Dissertation 

Primarily, a vast literature review and a theoretical background is provided to 

the reader on key themes for illustrating much that was previously mentioned and 

for more precisely defining the gaps in literature. Afterwards, the Regime Capturing 

Methodology is fully presented in its modelling (the 1D Two-Fluid Model) and 

numerical aspects (the numerical method), together with the formulation of the 

well-posedness (characteristic) analysis for the model. Then, the optimization 

procedure proposed for conceiving the two new expressions for the interfacial shear 

stress is detailed. In the following chapter, the results of the well-posedness analyses 

and of the Regime Capturing Methodology simulations for the selected Eskerud 

Smith et al. (2011) database cases in the stratified wavy and slug flow patterns are 

presented, compared to the measurements and discussed. Focus is dedicated to the 

performance of the two new expressions for the interfacial shear stress in the 

methodology and to the effect of different terms of the 1D Two-Fluid Model on the 

interfacial dynamics. Finally, concluding remarks are presented, together with 

suggestions for future works. 
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2. LITERATURE REVIEW AND THEORETICAL 

BACKGROUND 

In this chapter of the work, the literature review considered important for this 

work is presented together with some theoretical background. It is worth to 

highlight that a basic knowledge of the reader on multiphase flow is assumed, in 

which we include subjects often present in the initial pages of textbooks of the area 

(Brennen, 2005; Hanratty, 2013). These are, mostly, the flow pattern classification 

(annular, stratified smooth, stratified wavy, roll waves, slug, churn, among others) 

and elementary terminology, that is, the labelling of key parameters in gas-liquid 

flows. The topics covered in this literature review and theoretical background are 

important for understanding the contribution of this work and how it is inserted in 

the ongoing development of the technology chosen as theme of the former, reason 

why several observations and statements made in this chapter are invoked in the 

following ones. 

The first theme discussed is the influence of the liquid viscosity on essential 

features of gas-liquid horizontal flows, such as how the transitions between flow 

patterns change, always considering air-water flow as reference. Afterwards, an 

overview of the state-of-art 1D modelling of gas-liquid flows is given, in which it 

is discussed the most used mathematical models and approaches. Special attention 

is dedicated to vital literature works that used the Regime Capturing Methodology 

to simulate gas-liquid flows, one of the 1D modelling strategies reviewed, which 

are presented and discussed. The third theme chosen is the stability-hyperbolicity 

problem of the 1D Two-Fluid Model of Ishii (1975), which is one of the most 

important mathematical models in literature for performing 1D simulations of two-

phase flows and which often faces the issue of ill-posedness in the Hadamard (1902) 

sense, described in Drew & Passman (1999) and in Prosperetti & Tryggvason 

(2007). The fourth and last topic introduces the main strategies and expressions for 

representing the interfacial shear stress in the 1D Two-Fluid Model as a closure 

relation for gas-liquid horizontal stratified flows. It is highlighted how such 
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parameter is affected by the presence of interfacial waves. 

The first and third topics are presented primarily to provide the reader the 

findings of key works in a chronological order and, then, a summary of what can 

be concluded from them. In the other topics, however, important points are used as 

guidelines for the presentation, rather than the key works found in literature and 

referenced herein. A summary is also provided for these other topics, though. 

2.1. Influence of the Liquid Viscosity on Gas-Liquid Horizontal Flows 

Taitel & Dukler (1976) were the first authors to systematically address the 

transitions from stratified flow to other flow patterns. In Figure 2.1 (𝑈𝑠𝐿 and 𝑈𝑠𝐺 

are the superficial velocities of the liquid and gas, respectively), the flow pattern 

map of Taitel & Dukler (1976) (extracted from the same work) is compared to the 

one of Mandhane et al. (1974) for a horizontal air-water flow in a 2.5cm ID at 25°C 

and 1atm. Although the semi-theoretical model of Taitel & Dukler (1976) does 

account indirectly for the influence of fluid properties, important underlying 

assumptions do not hold for stratified viscous-oil and gas flows.  

 
Figure 2.1 – Flow pattern map of Taitel & Dukler (1976) for a 25°C, 1 atm air-water 

horizontal flow in a 2.5cm I.D. pipe compared against the map of Mandhane et al. (1974). 

Figure adapted from Taitel & Dukler (1976). 

The description of key works that concern the influence of the liquid viscosity 

on gas-liquid horizontal flows begins with the paper of Weisman et al. (1979). They 

were one of the first groups of researchers to address, in a systematic experimental 

investigation, the impact of important flow parameters, such as the liquid viscosity, 
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on the flow pattern maps. They performed experiments in a 2-inch internal diameter 

6.1m long pipe with air and two different solutions of water and glycerol: one with 

75cp and the other with 150cp of liquid viscosity. They constructed flow pattern 

maps, using the mass flow rate as variable, for these two pairs of fluids and noticed 

little change with the increase in the liquid viscosity regarding the major flow 

patterns, i.e., separated, intermittent and dispersed. Among these little variations, it 

can be highlighted that the transition to slug flow was shifted to lower liquid mass 

flow rates (particularly at high gas mass flow rates) and that the transition to annular 

flow was shifted to slightly higher gas mass flow rates. In addition, it can be 

mentioned that much of the plug flow (similar to slug flow, but with no slug 

aeration) region in the map became slug flow. 

Almost a decade after the work of Weisman et al. (1979), Andritsos & 

Hanratty (1987a) published a research paper in which they looked into the 

interfacial waves characteristics in gas-liquid horizontal flows and the transition 

from stratified smooth to stratified wavy flow. Their work was mainly 

experimental, but they also used a linear stability analysis in which a perturbation 

is added to the liquid phase height. With the latter, they discovered that the increase 

in the liquid viscosity makes it more difficult to predict the transition from stratified 

smooth to stratified wavy flow with two-dimensional (2D) waves. Besides, they 

uncovered that the initiation of waves for high-viscosity liquids is governed by the 

Kelvin-Helmholtz mechanism. Andritsos & Hanratty (1987a) performed 

experiments with air and four solutions of water and glycerol in 2.52cm and 9.53cm 

internal diameter pipes. The viscosity of the referred solutions are of 4.5cp, 12cp, 

70cp and 80cp. They observed that the superficial velocities range in which 2D 

waves in the stratified wavy flow exist is insignificant for the liquids with high 

viscosities. Mostly, the waves are three-dimensional (3D) and irregular, which they 

label as Kelvin-Helmholtz waves. However, Andritsos & Hanratty (1987a) also 

verified that the interfaces appear to be less rough when waves are present for the 

liquids with higher viscosities. Nevertheless, they state that the interfacial shear 

stress should have a significant increase due to the presence of waves at the 

interface. 

The work of Andritsos et al. (1989) used the same experimental setup and 

fluids of Andritsos & Hanratty (1987a) to analyze the transition between horizontal 

stratified and slug flows, by revisiting the findings of Lin & Hanratty (1986). The 
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latter observed that an increase in the liquid viscosity stabilizes the flow and 

consequently diminishes the initiation of slugs. This was confirmed by the new 

experiments of Andritsos et al. (1989). Lin & Hanratty (1986) also remarked that 

the transition to slugs occur through the growth of long wavelength interfacial 

instabilities with the increase of gas superficial velocities. However, Andritsos et 

al. (1989) confirmed this phenomenon only for low-viscosity liquids, while, for the 

high-viscosity liquids, small wavelength instabilities appear primarily. They might 

grow and bridge the pipe section, forming slugs, or might coalesce and give birth 

to long wavelength waves, which might develop into slugs. For this reason, 

Andritsos et al. (1989) confirmed that the inviscid stability analysis of Lin & 

Hanratty (1986) could only predict the transition from stratified to slug flow for air-

water experiments, and it did not manage to capture the same phenomenon for 

liquids with higher viscosities. 

Nädler & Mewes (1995) performed an experimental investigation on the 

effect of liquid viscosity on the phase distribution in gas-liquid slug horizontal flow. 

Air was used as the gas phase and, as the liquid phase, two oils (one with 14cp of 

viscosity and other with 37cp) and water were used. The measurements were 

conducted in a 59mm internal diameter pipe with a total length of 12m. The main 

finding of Nädler & Mewes (1995) was that, by increasing the liquid viscosity, the 

liquid holdup of the slugs barely changes. Besides, they verified that the mean liquid 

holdup of the flow also increases with the liquid viscosity. 

Newton et al. (1999) performed experiments in gas-liquid horizontal flows 

for assessing the effectiveness of commonly used interfacial shear stress 

correlations for liquids with higher viscosities. The necessity of such work 

originated from the fact that most of such correlations were elaborated and validated 

for air-water experimental databases. This creates uncertainty when they are used 

for viscous liquids, especially when waves are present at the interface, which cause 

effects on the flow whose understanding is far for being complete even for low-

viscosity liquids. Newton et al. (1999) used a 12m long 50mm internal diameter 

pipe for performing their measurements, with air as the gas phase and they switched 

between tap water (1cp of liquid viscosity), kerosene (2cp) and a light machine oil 

(46cp) to serve as liquid phase. Their analysis showed that the commonly used 

correlations for the interfacial shear stress are inadequate for liquids whose 

viscosity is higher than its value for water. Newton et al. (1999) also proposed new 
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correlations for the interfacial shear stress. 

Aiming to identify effects of very high-viscosity oils on the flow, Gokcal 

(2008) measured the slug characteristics (length, holdup, frequency, among others) 

for horizontal and slightly inclined flows of air and an oil of that nature. The 

viscosity of the chosen oil was approximately 650cp at 20°C and he used an 

experimental setup composed by an 18.9m long 50.8mm internal diameter pipe. 

Using the relation for the slug translational velocity 𝑈𝑡,  which can be calculated 

through Eq. (2.1) (𝐶𝑜 is a coefficient, 𝑈𝑀 is the mixture velocity and 𝑈𝑑 is the drift 

velocity), Gokcal (2008) verified that increasing the liquid viscosity also increases 

the values of the drift velocity, thus, classical correlations cease to be valid for such 

conditions. 

𝑈𝑡 = 𝐶𝑜𝑈𝑀 + 𝑈𝑑  (2.1) 

In addition, he confirmed the value of approximately 2.0 for 𝐶𝑜 in the case of 

laminar flow within the slugs (Wallis, 1969), which is significantly different from 

usual values found for turbulent flows, i.e., in the range of 1-1.2 (Hanratty, 2013). 

Gokcal (2008), furthermore, assessed that the slug length and frequency decrease 

and increase, respectively, as the liquid becomes more viscous. 

Foletti et al. (2011) elaborated a flow pattern map for air and a highly viscous 

oil (approximately 900cp of liquid viscosity) with a series of experiments 

performed in a 9m long 22mm internal diameter pipe. They obtained a very poor 

agreement between their experimental map and the ones obtained through classical 

methodologies. In addition, they verified that, while in air-water flows the slug flow 

can be described by the alternate passage of dispersed (liquid slug) and stratified 

flow (liquid film region), for high-viscosity liquids it is better characterized as an 

alternation between dispersed  and an eccentric annular flow, due to the constant 

presence of liquid in the pipe walls. It is important to remind that Eq. (2.1) is also 

valid for the translational velocity 𝑈𝑏 of long bubbles in slug flow and that it is 

approximately equal to the translational velocity of slugs for a fully-developed flow 

in dynamic equilibrium. Foletti et al. (2011) found a value of 2.14 for 𝐶𝑜. 

Furthermore, the authors tested standard mechanistic models for evaluating the 

pressure gradient and the long bubbles length for the slug flows and, they obtained 

unsatisfactory agreement with the experimental data. 
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Matsubara & Naito (2011) investigated the influence of the liquid viscosity 

on flow pattern maps, in order to verify the findings of Weisman et al. (1979), 

which, as previously mentioned, stated that such maps do not change much with the 

increase in the referred property. They performed experiments in a 19m long 22mm 

internal diameter pipe using air as the gas phase. For the liquid, they considered 

water and some aqueous solution of polysaccharide thickener, whose viscosity had 

values of 100cp, 250cp, 2500cp, 7500cp and 11000cp. Matsubara & Naito (2011) 

found out that increasing the liquid viscosity makes the flow pattern maps differ 

significantly from those produced through the Taitel & Dukler (1976) method. 

Therefore, they verified that the liquid viscosity does play a significant role in the 

flow pattern maps, which is the contrary of what was observed by Weisman et al. 

(1979). This is seen mainly through the displacement in the maps, for increasing 

liquid viscosities, of the stratified and roll wave regions for intermittent and annular 

flows, respectively. In addition, Matsubara & Naito (2011) observed that the 

predictions of the Taitel & Dukler (1976) flow map for high-viscosity oils improve 

if one considers that the interfacial friction factor is various orders of magnitude 

higher than the gas friction factor. 

In the paper of Eskerud Smith et al. (2011), whose experimental database is 

going to be used in this work and whose main features were already previously 

described, the prediction of the point-model of the Olga flow simulator (Bendiksen 

et al., 1991) were compared against the measurements of pressure drop and liquid 

holdup and the observed flow patterns. For the low-viscosity oil data, the Olga 

point-model predictions agreed well with the experimental data, which was not the 

case for the measurements regarding the highly viscous oil. The use of the Slug 

Tracking module of Olga for performing dynamic simulations managed to improve 

the results for such oil, but not in a significant manner. Eskerud Smith et al. (2011) 

also tested several literature correlations for the interfacial friction factor and 

compared their evaluations with the values calculated from the experimental data, 

but none of the expressions had a positive overall performance. This will be 

explored later more thoroughly. 

For investigating the effects of the high liquid viscosity on the characteristics 

of gas-liquid horizontal flows, Zhao et al. (2013) conducted a series of experiments 

in a 5.5m long 26mm internal diameter pipe. They used air as the gas phase and 

several types of oils as the liquid phase, with viscosities ranging from 1000cp to 
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7500cp. Regarding the flow patterns observed, Zhao et al. (2013) obtained in their 

experiments slug, plug, annular and blow-through-slug (a transitional pattern 

between slug and annular) flow. The most present flow pattern was slug flow, 

followed by plug flow, which indicates that intermittent flow dominates the flow 

pattern map for these fluids and setup. In the slug flow, a thin oil film was observed 

above the long bubbles and stratified flow was not observed for any flow rates 

covered in their measurements. Zhao et al. (2013) measured the liquid slug holdup 

and found no significant impact of liquid viscosity on such parameter. They 

observed that both the mean liquid holdup of the flow and its pressure gradient 

increase with the liquid viscosity. In addition, they used mechanistic models for 

predicting these parameters of the flows. Good agreement against the experiments 

was obtained only for cases with smaller viscosity, as well as low liquid velocity. 

Using air and a high-viscosity oil (900cp), Farsetti et al. (2014) performed 

experimental tests of gas-liquid flow in a nearly horizontal 9m long 22.8mm 

internal diameter pipe. They focused their work on the intermittent flow patterns 

and assessed the pressure gradient, the bubble translational velocity, the slug 

frequencies, the slug lengths, the bubble lengths and the mean slug liquid holdup. 

The measured values are compared to predictions made by widely used simple 

models and correlations that were validated mostly against low-viscosity liquid 

experimental data. The poor agreement obtained led to the conclusion that the 

models and correlations tested cannot be extrapolated to gas-liquid flows in which 

the liquid is highly viscous. 

2.1.1. Summary 

In summary, one can list the following effects of the increase of liquid 

viscosity in gas-liquid horizontal flows: 

 The liquid phase tends to become laminar; 

 Both the pressure gradient and the mean liquid holdup tend to increase; 

 The predictability of mechanistic models, correlations and expressions 

elaborated and validated against experimental data of low-viscosity 

liquids usually become unsatisfactory; 

 Increase of the intermittent (slug flow, plug flow, among others) and 
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annular flow regions with simultaneous decrease of the stratified and roll 

waves flow regions is observed in flow pattern maps; 

 Regarding the stratified flow, the occurrence of smooth interfaces 

becomes rare and, therefore, wavy interfaces appear more often, 

especially with short wavelengths and are governed by the Kelvin-

Helmholtz mechanism; 

 Slug flow is often better described as an alternation between dispersed 

flow and an eccentric annular flow, due to the constant presence of a thin 

liquid film which wets the pipe wall; 

 When the flow pattern is slug (or plug) flow, the average slug length 

diminishes, the slug frequency increases and the coefficient 𝐶𝑜 increases 

from 1.2 to 2.0 as the liquid becomes laminar. The tendency of the slug 

liquid holdup is to barely change; 

 The interfacial friction factor tends to increase when compared to flows 

with lower viscosity liquids at similar conditions 

2.2. Overview of the 1D Modelling of Gas-Liquid Flows 

In the first chapter of this work, the importance of 1D models of gas-liquid 

flows for the industry in general and especially for the oil and gas industry was 

explained. It is also important to highlight that the focus of this overview is in the 

hydrodynamics of the flow, which is represented, primarily, by the mass and 

momentum conservation equations.  

The 1D models of gas-liquid flows can be divided according to the 

mathematical formulation chosen for representing the flow, i.e., the set of 

conservation equations (Nydal, 2012). While "Multi-Fluid" approaches deal with 

sets of conservation equations for each phase, "One-Fluid" approaches treat all 

phases as a single mixture (Prosperatti & Tryggvason, 2007). This is often directly 

dependent on the degree of coupling between the phases, which varies, for example, 

depending on the flow patterns (Ishii & Hibiki, 2011). If the gas and liquid phase 

momenta are treated as two different fields, for which separate balance equations 

are formulated, and similarly for mass and energy, the mathematical model for 

representing the gas-liquid thermo-fluid-dynamics is known as the 1D Two-Fluid 

Model (Ishii, 1975). Gas and liquid phase mass, momentum and energy equations 
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are coupled through source terms representing interfacial interactions. Otherwise, 

if a single field formulation is chosen, Mixture Models (Nydal, 2012) can be 

formulated from the more general Multi-Fluid equations. In this approach, the bulk 

velocities of each phase are calculated for example from the mixture velocity 

through some drift relations (Zuber & Findley, 1965), reason why such approach is 

often labeled as 1D Drift-Flux Model. The latter is widely used in the literature, 

such as in the works of Malekzadeh et al. (2012) and Santim et al. (2017). In the 

former, a drift-flux model was used for performing 1D simulations of severe 

slugging in a pipeline-riser system. In Santim et al. (2017), the authors simulated 

gas-liquid slug flow, analyzing pressure and void waves propagation with a 1D 

drift-flux model and compared it with other methodologies. If no-slip is assumed 

between phases, the so-called 1D Homogeneous Model (Coelho et al., 2016) is a 

special case of the 1D Drift-Flux approach.  

The 1D Two-Fluid Model is the main interest of this work and its 

formulations, intrinsic hypotheses and more particular features are going to be 

detailed later. This model has two main issues: one related to the stability-

hyperbolicity property, which may lead to an ill-posed problem; and the other 

related to the selection of closure models. In fact, the choice of closure models also 

affects the stability and hyperbolicity of the Two-Fluid Model. Both aspects will be 

thoroughly explored in the present work. 

The ill-posedness issue is widely known in the literature and usually 

manifests in fine mesh resolutions. Nevertheless, the 1D Two-Fluid Model is 

widely used and the most common strategy is the use of coarse spatial and temporal 

meshes, for avoiding an excessively high computational cost. This is specially the 

case of standard engineering simulations of long pipelines. One example may be 

taken from Figueiredo et al. (2016), who analyzed horizontal gas-liquid stratified 

flow in gas pipelines.  

In order to capture "small-scale" instabilities at the gas-liquid interface, one 

needs to employ very fine grid resolution, often of the order of the pipe diameter or 

less (Nydal, 2012; Nieckele & Carneiro, 2017). The definition of "large-scale" and 

"small-scale" is of course dependent on the problem requirements. Alves et al. 

(2016), for example, numerically investigated annular and churn vertical gas-liquid 

flows by solving a hyperbolic 1D two-fluid model. The grid sizes were sufficiently 

fine to capture "large-scale" instabilities associated to the annular-churn transition, 
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but local instabilities (such as large amplitude waves in annular flows, for example) 

were not resolved. 

When coarse meshes are employed to solve the 1D Two-Fluid Model one 

must consider two important factors, which may affect the quality of predictions: 

possibility of truncation errors due to the discretization process and the inadequate 

representation of sub-mesh phenomena. This issue is particularly critical, because 

some small-scale events are too complex to be correctly accounted for with simple 

and standard closure relations. The different concepts that are commonly employed 

for representing the small-scale effects in the 1D Two-Fluid Model are listed below 

(Nydal, 2012): 

 The transient Unit-Cell Model; 

 The Regime-Capturing Methodology; 

 The Hybrid Tracking-Capturing Methodology. 

Originally, the Unit-Cell Model (Dukler & Hubbard, 1975) was first 

developed for performing steady-state 1D gas-liquid flow simulations in which 

simple mass, momentum and, when necessary, energy balance equations are written 

for a unit-cell, which is the basic configuration of the model and consists in a liquid 

slug body and a long bubble with a liquid film region. After forming a system of 

algebraic equations, adopting the necessary closure relations, it is solved for 

evaluating the global flow parameters. In spite of its strong dependence on 

correlations, the Unit-Cell Model is interesting, because, besides its low 

computational cost, it considers the slug flow as the standard flow pattern, which, 

through the calculated values of slug body length and liquid film region, may also 

implicitly incorporate dispersed or separated (annular or stratified) flow. If the slug 

body length is null, the flow pattern is considered separated flow, while dispersed 

bubbly flow occurs if the film region disappears. Orell (2005) used the Unit-Cell 

Model by performing 1D simulations of several air-water and air-oil flows for 

various pipe configurations and obtained good agreement against experimental 

data. The Unit-Cell Model was then combined with the 1D Two-Fluid Model, 

providing information for the closure relations (or sub-mesh model) for evaluating 

the source terms of the momentum equation, in an approach often labeled as 

“transient Unit-Cell Model”. This approach is formulated for example in Bendiksen 

et al. (1996) and has been used by several investigators such as in Cazarez-Candia 
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et al. (2011), in which the flow in an oil well was simulated. The transient Unit-

Cell Model is the basic framework of commercial multiphase flow 1D simulators 

of the oil and gas industry, such as Olga and LedaFlow (Danielson et al., 2005), for 

its versatility and the possibility of using coarse meshes. 

A different approach with the 1D Two-Fluid Model is simply to use finer 

meshes for numerically solving it, with different closure relations for representing 

small-scale effects. Issa & Kempf (2003) proved that, for an isothermal gas-liquid 

horizontal pipe flow initially with a stratified flow configuration, it is possible 

through such procedure to capture the initiation and dynamics (growth, decay, 

coalescence, among others) of interfacial instabilities and their development into 

hydrodynamic slugs in a successful way. Consequently, this methodology was 

originally labeled as “Slug Capturing Methodology”, although some authors simply 

refer to it as “Capturing Methodology” (Nydal, 2012). In this work, this approach 

is labeled as “Regime Capturing Methodology” (Nieckele & Carneiro, 2017), 

because it will also be employed to capture interfacial waves in stratified flow. In 

fact, Nieckele & Carneiro (2017) have demonstrated the possibility of capturing 

several flow regimes as a natural outcome of the solution of the 1D Two-Fluid 

Model in fine meshes. 

The transient Unit-Cell Model provides good results for some integral 

parameters of the flow (mean liquid holdup, pressure gradient, among others) and 

it is computationally cheap, but the Regime Capturing Methodology depends less 

on correlations and provides more detailed information. Nevertheless, it comes with 

the cost of a substantially higher computational cost when compared to the one of 

the transient Unit-Cell Model. These two methodologies may also be used in a 

complementary way, with the transient Unit-Cell Model for analyzing the majority 

of the flow domain and the Regime Capturing Methodology employed in certain 

sections of interest of the pipeline geometry. The capability is available, for 

example, in the commercial simulator LedaFlow (Danielson et al., 2005).  

A third approach is the Hybrid Tracking-Capturing Methodology of Renault 

(2007). It combines the best features of the Regime Capturing Methodology and of 

the Slug Tracking Methodology, which is a 1D Lagrangian scheme that tracks the 

advancement of the slug fronts and tails throughout the pipelines. In spite of being 

originally elaborated for simulating hydrodynamic and terrain slugs by Nydal & 

Banerjee (1996), it has been extended to track roll waves (De Leebeeck & Nydal, 
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2010). The Slug Tracking Methodology, or just Tracking Methodology (Nydal, 

2012) has the advantage of being computationally cheap when compared to the 

Regime Capturing Methodology, also with less grid dependency. Eskerud Smith & 

Nydal (2016), for example, successfully used this methodology for simulating 

nitrogen-naphtha severe slugging cases in a 1km long pipeline pressurized at 25 

bar. Nevertheless, the major drawback of this approach is being dependent on user 

input for slug initiation and some empirical correlations imposing slug flow 

parameters. With this in mind, Renault (2007) proposed a hybrid procedure in 

which the simulations start as a Regime Capturing Methodology and, if it detects 

that a slug was formed, it switches to the Slug Tracking Methodology, originating, 

then, the Hybrid Tracking-Capturing Methodology. 

2.2.1. The Regime Capturing Methodology for Gas-Liquid Flows 

Before beginning to describe the features of key literature works that have 

used the Regime Capturing Methodology, it is important to mention that it is not 

the purpose of this review to reproduce neither the exact mathematical model nor 

the numerical methodology used in each work. Solely their main aspects will be 

characterized, since the complete formulation of the methodology will be detailed 

later in this work. 

Having said that, the work of Issa & Kempf (2003) was the first to show that, 

under certain conditions, the solution in fine meshes of the 1D Two-Fluid Model 

was capable to capture the appearance of slugs starting from a stratified flow 

pattern. The used model consisted in two sets of mass and momentum equations, 

for gas and liquid phases. They validated the methodology using experimental data 

from an air-water slug flow in a 36m long pipe with a 78mm internal diameter for 

two configurations: one horizontal and or downwardly inclined by 1.5°. Issa & 

Kempf (2003) also used air-water experimental data for a V-section composed by 

a downhill pipe of 14m and an uphill pipe of 23m, both with 78mm of internal 

diameter and inclinations of 1.5°. Through a simplified analysis and mesh 

convergence tests, Issa & Kempf (2003) found that the simulated cases were well-

posed.  

Bonizzi & Issa (2003) expanded the work of Issa & Kempf (2003) by adding 

the possibility of mechanical gas entrainment and disengagement into the liquid 
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phase. The process of gas entrainment (or aeration phenomenon) in slug flow 

mainly takes place at the slug front. The liquid slug usually moves faster than the 

film ahead of it, creating a highly turbulent zone at the bubble rear. The gas 

deposition (or disengagement, or reabsorption of the bubbles by the gas phase) 

happens at the slug tail because of the slip between the bubbles, which move slower, 

and the liquid slug body. Bonizzi & Issa (2003) rewrote the mass and momentum 

equations for the liquid phase for representing the mixture of liquid and bubbles 

and added to the system of governing equations a mass conservation equation of 

the gas bubbles. Bonizzi & Issa (2003) observed an improvement on the predictions 

of the Regime Capturing Methodology by considering the aeration of the slugs, 

using the same experimental database employed by Issa & Kempf (2003). 

The work of Bonizzi et al. (2009) expanded even more the concept adopted 

by Bonizzi & Issa (2003) by accounting for the possibility of entrainment and 

deposition of liquid droplets in the gas phase and their dynamics for isothermal 

horizontal gas-liquid flows. The entrainment of droplets in the gas phase can be 

caused by their impact on the liquid phase, wave undercut, rupture of bubbles 

located near the interface and, the most important of them, the atomization of the 

crest of large-amplitude interfacial waves (Ishii & Grolmes, 1975). The deposition 

of droplets occurs due to the trajectory mechanism, but, mostly, due to the turbulent 

fluctuations of the droplets in the gas phase and the gravitational effects (Mito & 

Hanratty, 2007). This topic is out of the scope of this work. In their formulation, 

Bonizzi et al. (2009) defined the “fields” as continuous liquid, continuous gas, 

dispersed liquid (droplets) and dispersed gas (bubbles), the “layers” (or mixtures) 

as the combinations of bubbles and continuous liquid and of droplets and 

continuous gas. They used a mass conservation equation for each field and a 

momentum equation for the two layers. Their model was validated against several 

experimental data and they showed that it can satisfactory predict the transition of 

an initially stratified air-water horizontal flow to slug, annular and bubbly flow. The 

possibility of ill-posedness was discarded by Bonizzi et al. (2009) after performing 

a few mesh convergence tests. 

Carneiro et al. (2011) used a Regime Capturing Methodology similar to the 

one of Issa & Kempf (2003) for simulating isothermal air-water slug flow cases in 

a horizontal 10m long 24mm internal diameter pipeline. The obtained values of the 

slug and long bubble statistics (slug frequency, long bubble length, slug length, long 

DBD
PUC-Rio - Certificação Digital Nº 1513633/CA



Literature Review and Theoretical Background _________________________ 46 

 

 

 

bubble translational velocity and slug translational velocity) were compared to 

experimental data and a good agreement was obtained. 

In their work, Nieckele et al. (2013) used the same model as Carneiro et al. 

(2011) for performing a more detailed statistical analysis of the slug and bubble 

lengths, obtaining excellent results and convergence with the experimental data. 

Emamzadeh & Issa (2013a; 2013b) used a version of the Regime Capturing 

Methodology that can be seen as an adaptation of the one developed in Bonizzi & 

Issa (2003) or a simplification of the one registered in Bonizzi et al. (2009). In their 

mathematical model, for considering the dynamics of droplets in the gas and the 

mass transfer between the dispersed and continuous liquid fields (entrainment and 

deposition), they used a mass conservation equation for the droplets along with sets 

of mass and momentum equations for liquid and mixture of gas and dispersed drops. 

Emamzadeh & Issa (2013a) used this model for simulating isothermal air-water 

annular flow in several vertical and horizontal pipes whose internal diameters 

ranged between 1 and 10cm. By comparing the numerical results of droplet 

concentration, droplet entrainment rate, liquid film height and pressure gradient, the 

authors found a satisfactory agreement with measurements. Emamzadeh & Issa 

(2013b) used the same version of the Regime Capturing Methodology, except for 

some differences in the closure relations, for testing its ability to predict the 

transition from an air-water horizontal stratified flow to annular flow. The model 

was successfully validated against an experimental flow pattern map of literature. 

In neither of their works, Emamzadeh & Issa (2013a; 2013b) addressed the 

possibility of ill-posedness of the mathematical model. 

Simões et al. (2014) used a Regime Capturing Methodology for simulating a 

non-boiling gas-liquid horizontal flow including heat transfer. Simões et al. (2014) 

considered two sets of mass, momentum and energy equations and neglected the 

possibility of the presence of dispersed phases. They compared their most important 

numerical results for a stratified flow in a 20m long 52mm internal diameter  pipe 

against values evaluated with well-established correlations, with good agreement. 

Further, the model results were compared against an experimental database for slug 

flow in a pipe with 52mm of internal diameter and 23.81m of total length, also 

showing very good agreement. The well-posedness of the model was shown by a 

mesh convergence test performed for the main parameters of the slug flows 

simulated. 
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For numerically investigating the severe slugging phenomenon, Han & Guo 

(2015) used a Regime Capturing Methodology for simulating the isothermal air-

water severe slugging phenomenon in a pipeline-riser system. A 114m horizontal 

pipe was considered, followed by a -2° downward inclined pipe, by a 15.3m vertical 

riser and a 2m horizontal outlet. The internal diameter was considered constant and 

equal to 50.8mm. In their model, two sets of mass and momentum equations were 

used, disregarding any dispersed field, entrainment or deposition process. A 

simplified hyperbolicity analysis revealed that the model would have issues of ill-

posedness in the vertical riser, which was dealt with by adding a dynamic (or 

interfacial) pressure model to the Regime Capturing Methodology. After validating 

it for a standard literature test case whose analytical solution is available, Han & 

Guo (2015) obtained numerical results with excellent agreement with the 

measurements. 

With an almost equal formulation of the Regime Capturing Methodology of 

Issa & Kempf (2003), Issa & Galleni (2015) performed simulations of vertical 

isothermal slug flow of air and a liquid with a density of 913.39 kg/m³ and viscosity 

of 5cp in a 6m long 67mm pipe. They obtained results with a good agreement 

against experimental data and demonstrated, by mesh convergence tests, that their 

model does not suffer from ill-posedness. 

In their work, Pasqualette et al. (2015) used the same Regime Capturing 

Methodology as Nieckele et al. (2013) for simulating isothermal horizontal viscous 

oil-gas flows. The purpose was to correctly capture the flow pattern transition 

caused by an increase in the superficial gas velocity for a constant liquid flow rate, 

starting from a slug flow to stratified wavy flows with large and small interfacial 

waves. Several literature correlations were tested for the interfacial shear stress, but 

none managed to adequately capture the aforementioned transition. Pasqualette et 

al. (2017) extended the work of Pasqualette et al. (2015), by testing newly made 

interfacial shear stress correlations. 

Fontalvo et al. (2016) used an isothermal 1D Two-Fluid Model in the Regime 

Capturing Methodology framework for simulating interfacial waves in a vertical 

gas-liquid annular flow. For guaranteeing the hyperbolicity of their model, Fontalvo 

et al. (2016) used and compared three different formulations for a dynamic pressure 

term added to the momentum balance equations. Their model was validated against 

air-water flows in a 2m long 1.4-inch pipe using the spectral characteristics (e.g. 
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dominant frequencies) of the liquid holdup numerical signals.  

For simulating the hydrodynamics and heat transfer phenomenon of 

horizontal annular gas-liquid flows, Silva & Nieckele (2016) employed the Regime 

Capturing Methodology, using a non-adiabatic 1D Two-Fluid Model similar to the 

one of Simões et al. (2014). They validated their methodology using the 

experimental data of an air-water flow, for which satisfactory results were obtained. 

Investigative simulations were also performed for a gas condensate mixture flowing 

in a 200m long 6-inch internal diameter submitted to a pressure of 350bar. The gas 

properties were modelled with the ideal gas assumption and with the Peng & 

Robinson (1976) equation of state, whose distinct results were compared and 

discussed. 

Ferrari et al. (2017) implemented a Regime Capturing Methodology for 

simulating gas-liquid isothermal horizontal flows in which, besides the two sets of 

mass and momentum equations for each phase (entrainment and deposition 

phenomena were neglected), a fifth transport equation was used in the model with 

a pressure relaxation term, in which its main function is to hyperbolize the 

mathematical model. Primarily, standard literature tests of air-water flows were 

used for validating the model and, then, Ferrari et al. (2017) simulated some 

isothermal air-water horizontal slug flow cases from the same database used by Issa 

& Kempf (2003). A satisfactory convergence against the experimental data and 

well-established correlations was obtained and the hyperbolicity of the model was 

demonstrated by a characteristic analysis and by mesh convergence tests. Ferrari et 

al. (2016) also performed tests in a similar model concept for horizontal flows of 

air and high-viscosity oils, but they were inconclusive due to the low number of 

presented results. 

2.2.2. Summary 

From the literature works previously described, the following four remarks 

regarding the employment of the Regime-Capturing Methodology can be made: 

 It has been used mostly so far for simulating isothermal flows; 

 Most works only use two sets of mass and momentum equations; 

 It has been mostly used for numerically investigating slug flows and, in a 
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much lower degree, annular flows; 

 With just a few exceptions, such as Ferrari et al. (2016), Silva & Nieckele 

(2016) and (Pasqualette et al., 2015; Pasqualette et al., 2017), the 

methodology has been almost exclusively used for simulating air-water 

flows; 

Especially from the two last remarks, one can see the clear gap in the Regime 

Capturing Methodology literature in relation to its use for simulating isothermal 

horizontal flows of gas and a high-viscosity liquid in the slug and stratified flow 

patterns. 

2.3. The Stability-Hyperbolicity Problem of the 1D Two-Fluid Model 

It is well known that the numerical solution of a mathematical model must be 

independent of the mesh, for sufficiently refined grid levels. This is in consonance 

with the definition of Hadamard (1902) of well-posedness, which states that a well-

posed mathematical problem must fulfill the following conditions, otherwise it 

would be ill-posed: 

 The solution must exist; 

 The solution must be unique; 

 The solution must vary in a continuous and smooth manner with changes 

in the initial conditions of the problem. 

It has been mathematically proven in literature (Dinh et al., 2003) that the 

above requirements for the problem to be considered well-posed in the sense of 

Hadamard (1902) coincide with the features of an initial value problem with a 

strong hyperbolicity. In time, the 1D Two-Fluid Model poses an initial value 

problem, while, in space, it consists in a boundary value problem. In other words, 

from an initial spatial state, the solution will advance in time with the recurrent 

solution of a boundary value problem. 

The degree of hyperbolicity of a system of partial differential equations is 

given by the values of its characteristics, which are mathematical quantities 

associated with the speed in which the information travels throughout the domain. 

They are also associated with the number of boundary conditions required in each 

of the boundaries of the domain (Figueiredo et al., 2016). According to Drew & 
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Passman (1999) and Prosperetti & Tryggvason (2007), if all the characteristics of a 

system of equations are real than it is hyperbolic and well-posed, and if one of them 

is complex than the system is elliptic and ill-posed. In case that all the 

characteristics are real and distinct, then the system is strongly hyperbolic and, if 

they are not, than it is weakly hyperbolic (Dinh et al., 2003). Another way to obtain 

the same rule of correspondence between the values of the characteristics and the 

hyperbolicity of the quasi-linear system of conservation equations is through the 

third requirement of Hadamard (1902) for well-posedness. Mathematically, it 

means that the insertion of a small perturbation on a certain initial condition should 

not lead to the inexistence of a result, but solely a continuously different one. 

However, the relation between well-posedness, stability and hyperbolicity is 

an overly complex matter and, for this reason, a more basic and practical discussion 

is frequently adopted. In hyperbolic (real characteristics) mathematical models, 

when small wavelength perturbations appear in the domain, either from a non-

standard initial condition or from some instability mechanism intrinsic to the 

physical phenomenon represented, they can have their growth rate limited, i.e., they 

become completely stable or decay. Such feature makes the model always tend to 

the same unique solution. However, in elliptic (complex characteristics) systems, 

small wavelength perturbations grow unphysically. This particularity of ill-posed 

and non-hyperbolic systems makes their numerical solution strongly dependent on 

the mesh size used. Very distinct results will be obtained, depending on the amount 

of small instabilities that are captured by the mesh, since their growth is 

uncontrolled. Furthermore, one of the consequences of the explosive instability of 

the small wavelength perturbations is that instabilities of longer wavelengths will 

also grow spuriously, as posed by the stability-hyperbolicity theorem (Prosperetti 

& Tryggvason, 2007). 

The stability-hyperbolicity problem of the 1D Two-Fluid Model has been 

discussed in literature since it has been shown that it might possess complex 

characteristics and, therefore, lose hyperbolicity (Lyczkowski et al., 1975). Not 

every formulation of the 1D Two-Fluid Model is ill-posed and it also depends on 

the conditions of the flow to be simulated. For testing the hyperbolicity of the 1D 

Two-Fluid Model, the most basic test is to perform the analysis of its characteristics, 

as performed by Issa & Kempf (2003). An alternative manner is through a linear 

stability analysis, particularly by calculating the growth rate of small wavelength 
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instabilities, as done by Fullmer et al. (2014). This option is especially 

advantageous for analyzing the effects of higher-order terms, because reducing the 

system of equations to first-order for performing its characteristics analysis might 

lead to issues, as shown by Montini (2011). However, due to the importance and 

influence of the mesh size and the discretization schemes for the numerical solution 

of the 1D Two-Fluid Model, a more rigorous approach is to perform a linear 

stability analysis in the discretized equations of the model. This methodology, 

labeled von Neumann analysis, has been recently used in literature (Liao et al., 

2008; Issa & Galleni, 2015; Sanderse et al., 2017). Nevertheless, due to nonlinear 

effects and to the intricacies of the numerical methodologies that are often used, the 

ultimate test of hyperbolicity (and, of course, well-posedness) is to perform the 

classical mesh convergence test for key parameters of the solution of the 1D Two-

Fluid Model. 

There are several methods to regularize, that is, to recover hyperbolicity of 

the 1D Two-Fluid Model, such as through a model for the dynamic pressure 

(Bestion, 1990), by artificially increasing the numerical and/or physical momentum 

diffusion of the model (Fullmer et al., 2014), or by adding the volume fraction 

conservation equation and using two pressures as variables together with pressure 

relaxation effects (Baer & Nunziato, 1986; Saurel & Abgrall, 1999; Flatten & Lund, 

2011; Ferrari et al., 2017). Pasqualette et al. (2017) showed that increasing 

interfacial shear stress is also capable of stabilizing (and regularize) the 1D Two-

Fluid Model in the Regime Capturing Methodology framework. Other traditional 

regularization methods are: adding artificial axial diffusion to the mass 

conservation equations (Fullmer et al., 2014) and correctly modelling the 

momentum distribution parameters (Song, 2003). More details on the regularizing 

methods just cited will be provided in a later chapter of this work. 

2.3.1. Summary 

The importance of always addressing the stability-hyperbolicity problem of 

the isothermal 1D Two-Fluid Model was shown in this topic. If not adequately taken 

care of, such issue might invalidate the results of the numerical simulations (e.g. of 

the Regime Capturing Methodology), since they would not be well-posed in the 

Hadamard (1902) sense and neither would their results converge with the spatial 
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mesh used for the discretization of the governing equations.   

2.4. Interfacial Shear Stress Modelling in the 1D Two-Fluid Model for 

Gas-Liquid Horizontal Stratified Flows 

The adequate modelling of the interfacial shear stress is one of the most 

challenging tasks when developing and using the 1D Two-Fluid Model. That is due 

to the lack of knowledge and still ongoing debate of which phenomena should be 

accounted for in the evaluation of the interfacial shear stress. The mesh chosen for 

the numerical solution of the 1D Two-Fluid Model can also be a source of problem 

for the modelling of the interfacial shear stress. The reason behind it is that one 

phenomena, which is sub-mesh for coarse grids might not be for finer ones, as it 

was discussed by Pasqualette et al. (2017) and will be further detailed later in this 

topic. The set of closures usually developed for coarse grid models (such as Unit 

Cell or Point Models) might not be adequate for Regime Capturing Methodology 

applications.  

The main phenomenon that the interfacial shear stress must take into account 

is the interfacial waves. Although, it is known (Andritsos & Hanratty, 1987a; 

Andreussi & Persen, 1987) that the presence of interfacial waves should increase 

the interfacial shear stress when compared to a smooth interface, the exact physical 

mechanisms embedded in this relation are not yet fully understood. That is because 

of the complex relation between the turbulent structures of the phases with the 

interfacial dynamics (Ayati et al., 2016) and the way it affects the cross sectional 

velocity profile in each phase (Belcher & Hunt, 1993). In addition, how the different 

components (tangential and normal to the interface) of the interfacial shear stress 

should be accounted for and the questions regarding the consideration of its viscous 

and pressure contributions increase even more the challenge of modelling the 

referred parameter (André & Bardet, 2017). As it was aforementioned, when coarse 

meshes are used for the numerical solution of the 1D Two-Fluid Model, all the 

effects of large and small-scale interfacial waves should be included in the 

interfacial shear stress model. However, when finer meshes are used, as in the 

Regime Capturing Methodology, it is mostly the effects of small-scale interfacial 

instabilities that should be accounted for in the selected interfacial shear stress 

model. Therefore, ideally, it is recommended either to use a very robust model that 
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could include in it the correct physics for each mesh size or to use different 

interfacial shear stress models depending on the spatial grid. The most common 

approach is neither one of these, but it is to use the same simple interfacial shear 

stress models for all the meshes, as it will be clearer later. As it has been shown in 

a previous topic, this relation between the interfacial dynamics and the interfacial 

shear stress also represents an intrinsic relation of the latter with the liquid viscosity, 

because it affects deeply the characteristics of the interfacial waves (Andritsos & 

Hanratty, 1987a). 

The influence of the wall shear stress is another phenomenon that should be 

taken into account by an ideal model for the interfacial shear stress. This is due to 

the former affecting the cross sectional velocity profile, which changes the latter 

(Náraigh et al., 2011). Once an expression representing the relation between the 

shear stresses is used, the question of which shear stress should be modelled is 

raised. In that case, it is of common practice to model the wall shear stress 

(Andritsos & Hanratty, 1987b), although the other option has been used by some 

works, like Biberg (1998). 

The most common strategy in the interfacial shear stress modeling is, firstly, 

to write the interfacial shear stress with the same Darcy or Fanning non-dimensional 

expressions from single-phase flow theory (Hanratty, 2013). In Eq. (2.2), a Fanning 

expression is written, in which 𝜏𝑖 is the interfacial shear stress, 𝑓𝑖 is the Fanning 

interfacial friction factor (henceforth only referred to as “interfacial friction 

factor”), 𝜌𝐺 is the density of the gas phase and 𝑈𝑖  is a reference velocity for the 

interface. 

𝜏𝑖 =
1

2
𝑓𝑖𝜌𝐺|𝑈𝑖|𝑈𝑖 (2.2) 

With Eq. (2.2), therefore, the problem changes from modelling 𝜏𝑖 to finding an 

expression for 𝑓𝑖. The referred equation for 𝜏𝑖 is written in relation to the gas phase 

(by using its density) for the possibility of interpreting 𝜏𝑖 with the same role as a wall 

shear stress for such phase. This perfectly matches with widely adopted 

understanding of the gas phase flowing as if it was a single-phase flow, in which the 

liquid phase, i.e., the interface, is part of the pipe walls (Ng et al., 2004). The velocity 

𝑈𝑖  is usually defined as the relative bulk velocity between the phases, although it 

might also be calculated as an average between them or as the difference between the 
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gas phase bulk velocity and an interfacial wave velocity (Hanratty, 2013). 

Often, to simplify the formulation, it is considered that the interfacial friction 

factor is equal to the gas wall friction factor, when the pipe wall roughness is 

neglected (Hanratty, 2013). This, however, is only a good approximation when the 

interface is smooth, that is, when there are no waves (Andritsos & Hanratty, 1987b). 

In literature, there are a number of expressions for 𝑓𝑖 that try to account for the 

effects of interfacial waves, as reviewed by Ottens et al. (2001). One of the most 

important expressions was elaborated by Andritsos & Hanratty (1987b) and has 

been improved in several works (Newton et al., 1999; Calgaro, 2012; Tzotzi & 

Andritsos, 2013; Zhao et al., 2015). The correlation of Andreussi & Persen (1987) 

is widely used as well as several modifications, which have been proposed in 

literature (Calgaro, 2012; Khaledi et al., 2014). The expression of Spedding & Hand 

(1997), although not much used, also deserved to be highlighted. 

These above mentioned three correlations and their modifications share a 

framework that considers 𝑓𝑖 equal to a reference friction factor (when there are no 

waves at the interface), which increases when waves appear. Andreussi & Persen 

(1987) use a critical Froude number to monitor the surging of interfacial waves and 

Andritsos & Hanratty (1987b) and Spedding & Hand (1997) use a transition gas 

superficial velocity. More than one expression for 𝑓𝑖 might be used in the same 

correlation, when different types of interfacial waves are separately addressed 

(Tzotzi & Andritsos, 2013). The three correlations have also in common the fact 

that the effects of the interfacial waves is compressed in the expression for the 

interfacial friction factor 

Nevertheless, there are other models for the interfacial shear stress that do not 

use Eq. (2.2). Ullmann & Brauner (2006), for instance, modified the referred 

equation by adding to it parameters originated from the analytical solution of a 

laminar-laminar stratified flow. However, the most notorious example is the model 

of Biberg (2007), which does not use the concept of interfacial friction factor. For 

the special case of stratified flows in which both phases are turbulent, Biberg (2007) 

formulated a complex implicit model, which evaluates not only the interfacial shear 

stress but also the wall shear stresses. The model was obtained after a pre-

integration of the cross sectional velocity profile in each phase expressed through 

an analytical model for the turbulent viscosity. In spite of being one of the most 

precise and robust model for the shear stresses in stratified flow, being overly 
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complex, implicit and depending on fully empirical correlations for the turbulent 

intensity on each side of the interface makes the advantages limited. 

By revisiting the derivation of the 1D Two-Fluid Model and considering that 

the interface is wavy according to a known function, Liné & Lopez (1997) managed 

to separate in two terms the interfacial shear stress for a smooth interface and the 

one solely due to the presence of the interfacial waves. However, Liné & Lopez 

(1997) did not manage to find an expression for the interfacial shear stress due to 

the waves that depends only on local parameters of the flow, as it is the ideal for 

the 1D Two-Fluid Model. A model for 𝜏𝑖 with this feature has been proposed by 

Brauner & Maron (1993; 1994). They elaborated a dynamic interfacial shear stress 

model in which the influence of the waves is separated from the smooth interface 

contribution and an expression including the derivative of the liquid phase height 

in relation to the axial coordinate. The advantage of using such variant is that, by 

using local variables, the steepness of the interfacial wave is captured by the 

solution of the 1D Two-Fluid Model. Hence, the wave shape evolution is directly 

related to the interfacial shear stress (Maron & Brauner, 1987). A model 

incorporating the liquid height derivative was also employed by Holmas (2010), 

who modified the expressions for the turbulent intensity on each side of the 

interface within the model of Biberg (2007). Nevertheless, a more detailed 

description of the dynamic model of Brauner & Maron (1993; 1994) will be 

provided later in this work. 

2.4.1. Summary 

In this topic, the importance of correctly modelling the interfacial shear stress 

and its intrinsic difficulties were described. That is why one of the purpose of this 

work is to create new expressions for the interfacial friction factor with the Eskerud 

Smith et al. (2011) experimental database, as it will be detailed in another chapter. 

2.5. Final Comments 

In this presentation of the literature review and the theoretical background of 

this work, several gaps in the literature regarding the themes discussed could be 

identified. Among them, the lack of use of the Regime Capturing Methodology for 
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viscous-oils gas flows, such as the Eskerud Smith et al. (2011) database, can be 

highlighted. This is especially true for an adequate prediction of the complex 

interfacial dynamics, resultant mainly from the high oil viscosity, in the isothermal 

horizontal slug and stratified wavy viscous oil–gas flows. Besides, a systematic 

treatment of the stability-hyperbolicity problem, reflected in the Regime Capturing 

Methodology results convergence (or non-convergence) with the spatial mesh of 

the numerical method, for such types of flows is also an analysis missing in 

literature. Finding good models for the interfacial shear stress for viscous oil-gas 

flows is challenge as well and which has not being accomplished, due to the 

complex interfacial phenomena involved (e.g. relation between waves and 

turbulence). 

This work aims to advance the filling of the previous mentioned literature 

gaps, although it is not its intention to exhaust the themes. As it will be seen, several 

good and interesting analyzes, discussions and investigations are here performed 

with the purpose of attacking such gaps.  
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3. THE REGIME CAPTURING METHODOLOGY 

In order to be able to determine the flow field of a stratified or slug flow, as 

well as the transition from one flow pattern to another, the Regime Capturing 

Methodology was selected. In this chapter, this methodology is properly described 

and detailed. The presentation is divided in the two main aspects of the 

methodology: the 1D Two-Fluid Model and its numerical solution. At the last part 

of the chapter a discussion regarding the stability-hyperbolicity problem of the 1D 

Two-Fluid Model is addressed.  

3.1. The 1D Two-Fluid Model 

The basic and general definition of the 1D Two-Fluid Model was already 

provided in this work, but it is here repeated for its paramount importance.  

The 1D Two-Fluid Model consists in two sets of mass, momentum and energy 

conservation equations formulated separately for each phase and that contain 

interfacial transfer source terms for representing the interaction between the phases. 

Its rigorous mathematical derivation, originally performed by Ishii (1975), starts 

from the local instantaneous balance equations of mass, momentum and energy for 

two phases, together with interfacial jump conditions for the three conserved 

quantities. For making such complex formulations more useful, two analogous 

paths might be taken. In the first one, adopted by Drew & Passman (1999), averages 

are performed in the equations after adding to them a phase indicator function, while 

in the second one, followed by Ishii & Hibiki (2011), ensemble averages are applied 

in the expressions. After using the definition of macroscopic variables in the 

resulting set of equations for making its physical representativeness clearer, the 

three-dimensional (3D) Two-Fluid Model, or just Two-Fluid Model, is obtained. 

Finally, its one-dimensional version, the 1D Two-Fluid Model, is acquired by 

performing a pipe cross section area average in the former, which guarantees that 

the only spatial variable is the axial one. 

Traditionally, simplified approximations are employed in the mathematical 
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procedure just described, leading to a simplified version of the 1D Two-Fluid 

Model, which may not be applicable to more complex situations. For example, as 

mentioned by Liné & Lopez (1997), it is fundamental to consider effects of the 

waviness of the interface in the formulation.  

In the following pages, a version of the isothermal 1D Two-Fluid Model is 

presented, which will be used in the Regime Capturing Methodology, with the 

particular assumptions made in this work. As a starting point, the classical mass and 

momentum conservation equations of the model for a phase 𝐾 ∈ {𝐺, 𝐿} (𝐺 

represents the gas and 𝐿 the liquid) are depicted in Eqs. (3.1) and (3.2), respectively, 

in a manner similar to the formulation of Ishii & Hibiki (2011). 

𝜕 (𝐴𝐾̅̅ ̅̅
𝐴
𝜌𝐾̅̅̅̅

𝛼)

𝜕𝑡
+
𝜕 (𝐴𝐾̅̅ ̅̅

𝐴
𝜌𝐾̅̅̅̅

𝛼𝑈𝐾̅̅ ̅̅
𝛼
)

𝜕𝑥
=  𝛤𝐾̅̅ ̅

𝐴
 (3.1) 

𝜕 (𝐴𝐾̅̅ ̅̅
𝐴
𝜌𝐾̅̅̅̅

𝛼𝑈𝐾̅̅ ̅̅
𝛼
)

𝜕𝑡
+
𝜕 [𝒞𝑚𝐾𝐴𝐾̅̅ ̅̅

𝐴
𝜌𝐾̅̅̅̅

𝛼(𝑈𝐾̅̅ ̅̅
𝛼
)
2
]

𝜕𝑥

= −𝐴𝐾̅̅ ̅̅
𝐴 𝜕𝑃𝐾̅̅ ̅

𝛼

𝜕𝑥
+ [(𝑃𝑖𝐾 − 𝑃𝐾)

𝜕𝐴𝐾
𝜕𝑥

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐴

+
𝜕 (𝐴𝐾̅̅ ̅̅

𝐴
𝒯𝐾̅̅ ̅

𝛼
)

𝜕𝑥

− 𝐴𝐾̅̅ ̅̅
𝐴
𝜌𝐾̅̅̅̅

𝛼𝑔 sin 휃 −
4𝛼𝑤𝐾𝜏𝑤𝐾𝐴

𝐷ℎ𝐾
−𝒟ℱ𝐾̅̅ ̅̅ ̅̅ 𝐴

− (𝛁𝐴𝐾 ∙ 𝜏𝑖∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐴)
𝑥
+ 𝛤𝐾̅̅ ̅

𝐴
𝑈𝑖𝐾̅̅ ̅̅̅

𝛼
 

(3.2) 

In the referred equations, 𝐴𝐾 is the cross section area occupied by phase 𝐾 ∈

{𝐺, 𝐿} and 𝐴 = 𝐴𝐺 + 𝐴𝐿 is the pipe total cross section area. The temporal variable 

is represented by 𝑡 and 𝑥 symbolizes the pipe axial spatial component. Besides, 𝜌𝐾 

is the phase 𝐾 density; 𝑈𝐾 the (bulk) phase velocity and 𝑃𝐾 the phase pressure. 

Furthermore, 𝛤𝐾 is the mass transfer rate to phase 𝐾 from the other phase due to 

phase change; 𝒞𝑚𝐾 is the momentum distribution parameter of phase 𝐾; 𝒯𝐾 is the 

axial momentum diffusion; 𝛼𝑤𝐾 is the phase 𝐾 holdup next to the pipe wall; 𝜏𝑤𝐾 is 

the phase 𝐾 shear stress at the wall; 𝒟ℱ𝐾 is the drag force due to a dispersed phase; 

𝜏𝑖
∗ is an effective interfacial shear stress; and 𝑈𝑖𝐾 and 𝑃𝑖𝐾 are, respectively, the 

interfacial velocity and interface pressure in the side of phase 𝐾. The acceleration 

of gravity is represented by 𝑔, and 휃 is the pipeline angle with the horizontal plane 

(positive when the flow is upward and negative otherwise). Finally, 𝐷ℎ𝐾 = 4𝐴𝐾/𝑆𝐾 

is the classical definition of hydraulic diameter for phase 𝐾 ∈ {𝐺, 𝐿}, where 𝑆𝐾 is 
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the phase wetted perimeter. It is worth mentioning that only the vector component 

in the 𝑥-direction is being considered in the seventh term of the Right-Hand-Side 

(RHS) of Eq. (3.2). 

The ratio of the phase 𝐾 cross section area to the pipeline area is represented 

by 𝛼𝐾 and given by Eq. (3.3). Note that for 1D situations it is equivalent to the 

volumetric ratio, assuming the same infinitesimal axial length 𝑑𝑥, thus, this variable 

is frequently called as volume fraction, or holdup. 

𝛼𝐾 =
𝐴𝐾
𝐴

 (3.3) 

From the definition of holdup in Eq. (3.3), a relation between 𝛼𝐺 and 𝛼𝐿 can 

be easily obtained and it is shown in Eq. (3.4).  

𝛼𝐺 + 𝛼𝐿 = 1 (3.4) 

The operators �̅�𝐴 and 𝜓𝐾̅̅ ̅̅
𝛼

, for the general variable 𝜓, represent, respectively, 

the area-average operation, Eq. (3.5), and the volumetric-fraction-weighted mean 

for phase 𝐾, Eq. (3.6). 

�̅�𝐴 =
1

𝐴
∫𝜓 𝑑𝐴
𝐴

 (3.5) 

𝜓𝐾̅̅ ̅̅
𝛼
=
𝛼𝐾𝜓𝐾̅̅ ̅̅ ̅̅ ̅̅ 𝐴

𝛼𝐾̅̅ ̅̅
𝐴  (3.6) 

Examining Eqs. (3.1) and (3.2) of the 1D Two-Fluid Model, it is clear that 

several parameters still need to be modelled and that further hypotheses still need 

to be made. These equations can be further simplified by adding the following 

assumptions (Issa & Kempf, 2003; Ishii & Hibiki, 2011): 

 The pipe cross sectional area 𝐴 is considered constant, i.e., it does not vary 

in time nor in space; 

 The presence of dispersed phases (bubbles and droplets) is neglected, 

therefore: 𝒟ℱ𝐾̅̅ ̅̅ ̅̅ 𝐴 = 0; 

 Phase change, such as boiling and condensation, due to pressure changes 

is completely neglected: 𝛤𝐾̅̅ ̅
𝐴
= 0; 

 The parameter 𝛼𝑤𝐾 is considered to be approximately equal to 𝛼𝐾. 
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The first two terms on the RHS of Eqs. (3.2) can be rewritten in order to obtain 

the bulk pressure 𝑃𝐾̅̅ ̅
𝛼
 present in just one of the terms, as it can be seen in Eq. (3.7) 

(Issa & Kempf, 2003; Carneiro et al., 2011), where the area-average and the 

volumetric-fraction-weighted-mean operators were dropped. 

−𝛼𝐾
𝜕𝑃𝐾
𝜕𝑥

+ (𝑃𝑖𝐾 − 𝑃𝐾)
𝜕𝛼𝐾
𝜕𝑥

= −𝛼𝐾
𝜕𝑃𝑖𝐾
𝜕𝑥

+
𝜕[𝛼𝐾(𝑃𝑖𝐾 − 𝑃𝐾)]

𝜕𝑥
 (3.7) 

Furthermore, the seventh term in the RHS of Eq. (3.2) might be reformulated 

as done by Ishii & Hibiki (2011), i.e., through Eq. (3.8), where 𝑆𝑖 is the interfacial 

perimeter. 

(𝛁𝐴𝐾 ∙ 𝜏𝑖∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐴)
𝑥
= 𝜏𝑖

∗ 𝑆𝑖
𝐴

 (3.8) 

By dropping the two operators defined in Eqs. (3.5) and (3.6) and by applying 

the aforementioned hypotheses in the mass conservation equations for the gas and 

liquid phases, Eqs. (3.1), they can be rewritten as formulated by Eqs. (3.9) and 

(3.10), respectively. 

𝜕(𝛼𝐺𝜌𝐺)

𝜕𝑡
+
𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑥
= 0 (3.9) 

𝜕(𝛼𝐿𝜌𝐿)

𝜕𝑡
+
𝜕(𝛼𝐿𝜌𝐿𝑈𝐿)

𝜕𝑥
= 0 (3.10) 

If once again the area-average and the volumetric-fraction-weighted-mean 

operators are dropped and the same previous hypotheses are considered, the 

momentum conservation equations for the gas and liquid are also reformulated as 

indicated by, respectively, Eqs. (3.11) and (3.12). In them, the definitions of Eqs. 

(3.7) and (3.8) were also employed. 

𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑡
+
𝜕(𝒞𝑚𝐺𝛼𝐺𝜌𝐺𝑈𝐺

2)

𝜕𝑥

= −𝛼𝐺
𝜕𝑃𝑖𝐺
𝜕𝑥

+
𝜕[𝛼𝐺(𝑃𝑖𝐺 − 𝑃𝐺)]

𝜕𝑥
+
𝜕(𝛼𝐺𝒯𝐺)

𝜕𝑥

− 𝛼𝐺𝜌𝐺𝑔 sin 휃 − 𝜏𝑤𝐺
𝑆𝐺
𝐴
− 𝜏𝑖

∗ 𝑆𝑖
𝐴

 

(3.11) 
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𝜕(𝛼𝐿𝜌𝐿𝑈𝐿)

𝜕𝑡
+
𝜕(𝒞𝑚𝐿𝛼𝐿𝜌𝐿𝑈𝐿

2)

𝜕𝑥

= −𝛼𝐿
𝜕𝑃𝑖𝐿
𝜕𝑥

+
𝜕[𝛼𝐿(𝑃𝑖𝐿 − 𝑃𝐿)]

𝜕𝑥
+
𝜕(𝛼𝐿𝒯𝐿)

𝜕𝑥

− 𝛼𝐿𝜌𝐿𝑔 sin 휃 − 𝜏𝑤𝐿
𝑆𝐿
𝐴
+ 𝜏𝑖

∗ 𝑆𝑖
𝐴

 

(3.12) 

By examining the momentum conservation equations, Eqs. (3.11) and (3.12), 

it is clear the necessity to develop a model and/or closure relations for several 

parameters, such as: 

 The gas density 𝜌𝐺; 

 The momentum distribution parameter 𝒞𝑚𝐾; 

 The relation between the pressures 𝑃𝑖𝐾 at each side of the interface; 

 The difference between the interfacial and bulk pressure (𝑃𝑖𝐾 − 𝑃𝐾); 

 The axial momentum diffusion 𝒯𝐾; 

 Phase wall shear stress 𝜏𝑤𝐾; 

 The effective interfacial shear stress 𝜏𝑖
∗; 

Two-phase flow in pipelines can be arranged in several patterns (Brennen, 

2005; Hanratty, 2013). One key parameter for the 1D formulation is to define a 

basic flow pattern configuration, which will affect not only the cross section 

geometric parameters, like 𝑆𝐾 and 𝑆𝑖, but also which approximation is more 

appropriated for the several parameters mentioned above. In the following topics, 

the modelling of the listed parameters, and others, are performed. 

3.1.1. Base Flow Pattern 

The pipeline configuration of interest in the present work is a horizontal or 

nearly horizontal pipeline, in the presence of both stratified and slug flows. 

Therefore, a possible base flow configuration is to consider the flow to be stratified 

(Issa & Kempf, 2003; Bonizzi et al., 2009; Carneiro et al., 2011; Nieckele et al., 

2013). Such configuration consists in a heavier phase, the liquid, in the cases of 

interest here, located at the bottom of the pipe and a lighter phase, the gas, at its 

upper part, as illustrated in Figure 3.1. 

Besides illustrating the stratified flow configuration, Figure 3.1 also contains 

some of its key geometrical and dynamic parameters. Among them, ℎ𝐿 is the liquid 
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phase height, 𝛿 is half of the liquid wetted angle and 𝐷 is the pipe internal diameter. 

 

Figure 3.1 – Stratified flow configuration with a cross sectional flat interface: (a) cross 

sectional view; (b) lateral view. 

The interface illustrated in Figure 3.1(a) is flat in the cross section. This may 

not always be true, especially for liquid-liquid flows (Rodriguez & Baldani, 2012) 

or for gas-liquid flows with a gas inertia much higher than the liquid inertia, such 

as stratified wavy flows near the transition to the annular pattern (Ullmann & 

Brauner, 2006; Zhang & Sarica, 2011). As in this work neither one of these 

scenarios have to be dealt with, assuming the interfacial flat in the cross section is 

a good approximation.  

All key geometrical parameters (𝑆𝐿, 𝑆𝐺, 𝑆𝑖 and ℎ𝐿) of the stratified 

configuration of a can be obtained based on the angle 𝛿, as shown in Table 3.1. 

Table 3.1 – Expressions for geometrical parameters as a function of 𝜹. 

Variable Expression 

𝑆𝐿/𝐷 𝛿 

𝑆𝐺/𝐷 𝜋 − 𝛿 

𝑆𝑖/𝐷 sin 𝛿 

ℎ𝐿/𝐷 1
2⁄ (1 − cos 𝛿) 

The parameter 𝛿 in the schematic drawing of Figure 3.1(a) can be easily 

related to the liquid holdup 𝛼𝐿, by using simple trigonometry, as shown in             

Eq. (3.13). 

𝛼𝐿 =
1

𝜋
(𝛿 −

1

2
sin 2𝛿) (3.13) 
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However, the previous equation is implicit with relation to 𝛿, which is an 

undesired aspect since a root-finding algorithm would have to be used in order to 

provide 𝛿 for a given 𝛼𝐿. With this in mind, Biberg (1999a) proposed an explicit 

approximation for 𝛿 in relation to 𝛼𝐿, which was successfully tested by Pasqualette 

et al. (2014) in the Regime Capturing Methodology. The referred expression, seen 

in Eq. (3.14), will be used throughout the present work. 

𝛿 ≈ 𝜋𝛼𝐿 + (
3𝜋

2
)
1/3

[1 − 2𝛼𝐿 + 𝛼𝐿
1 3⁄ − (1 − 𝛼𝐿)

1 3⁄ ]

−
1

200
𝛼𝐿(1 − 𝛼𝐿)(1 − 2𝛼𝐿){1 + 4[𝛼𝐿

2 + (1 − 𝛼𝐿)
2]} 

(3.14) 

3.1.2. Equation of State for the Gas Phase 

As performed in several works (Issa & Kempf, 2003; Bonizzi et al., 2009; 

Carneiro et al., 2011; Han & Guo, 2015; Ferrari et al., 2017), compressibility is 

only considered to the gas phase, i.e., the liquid is considered as incompressible. 

Further, as already mentioned, the gas compressibility factors of SF6, the Eskerud 

Smith et al. (2011) database gas phase, are close to the unity. Thus, the gas density 

is calculated through the ideal gas law, shown in Eq. (3.15).  

𝜌𝐺 =
𝑃𝐺
ℛ𝐺𝑇

≅
𝑃𝑖𝐺
ℛ𝐺𝑇

 (3.15) 

In the referred equation, ℛ𝐺  is the gas constant (approximately 55 J/kg.K for 

the SF6) and 𝑇 is the flow temperature, which is constant due to the isothermal 

hypothesis of the present formulation. Finally, to determine the average density of 

the gas phase, the gas bulk pressure is approximated to the interfacial pressure at 

the side of the gas phase (𝑃𝑖𝐺). 

3.1.3. The Momentum Distribution Parameter 

The definition of the momentum distribution parameter 𝒞𝑚𝐾, 𝐾 ∈ {𝐺, 𝐿}, of 

phase 𝐾, present in the convective term of the momentum balance equations of the 

1D Two-Fluid Model, Eqs. (3.11) and (3.12), is provided by Eq. (3.16) (Ishii & 

Hibiki, 2011). 
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𝒞𝑚𝐾 =
𝛼𝐾𝑈𝐾

2̅̅ ̅̅ ̅̅ ̅̅ ̅𝐴

𝛼𝐾̅̅ ̅̅
𝐴𝑈𝐾̅̅ ̅̅

𝐴
𝑈𝐾̅̅ ̅̅

𝐴 (3.16) 

According to Eq. (3.16), the momentum distribution parameter represents the 

ratio between the average of the products and the product of the averages. It is 

evident that, for calculating such parameters, the velocity profiles in both gas and 

liquid are necessary. If only one phase is present, the momentum distribution 

parameter is well known for fully developed flow. For laminar flow, it is equal to 

1.33 and for turbulent flow, it depends on empirical velocity profile, and it is near 

unity (Ishii & Hibiki, 2011).  

For two-phase laminar flow, analytical expressions for 𝒞𝑚𝐾 can also be 

determined based on the solution of the axial steady-state fully developed 

momentum equation for phase 𝐾, for particular flow patterns. For turbulent flow, 

further approximations are needed, such as turbulence model, or empirical data. For 

turbulent stratified flow, Biberg (2007) determined this parameter based on the wall 

and interfacial shear stresses, which must be coupled through the velocity profile. 

Unfortunately, empirical data on three-dimensional velocity fields in stratified-

wavy and slug flows is scarce. Hence, as the momentum distribution parameter is 

not the priority of this work and its modelling might be a source of uncertainties for 

the 1D Two-Fluid Model and the Regime Capturing Methodology, 𝒞𝑚𝐾 is 

considered to be unity, Eq. (3.17), as commonly found in several publications (Issa 

& Kempf, 2003; Bonizzi et al., 2009; Carneiro et al., 2011; Han & Guo, 2015; 

Ferrari et al., 2017). 

𝒞𝐾 = 1 (3.17) 

3.1.4. Interfacial Pressure Jump 

The interfacial pressure jump can be determined by applying the Young-

Laplace formula, Eq. (3.18), where 𝜎 is the interfacial (or surface) tension, which 

is a properties of the phases in contact to each other, and 𝜅 is the curvature of the 

associated surface. 
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𝑃𝑖𝐺 − 𝑃𝑖𝐿 = 𝜎𝜅 (3.18) 

Figure 3.2 illustrates the interface curvature 𝜅 through the curvature radius 𝑟𝜅, 

together with the phasic interfacial pressures 𝑃𝑖𝐾, 𝐾 ∈ {𝐺, 𝐿}. 

 

Figure 3.2 – Curvature radius for the interface and phasic interfacial pressures. 

In the case of a single important curvature radius, the curvature 𝜅 is expressed 

as indicated by Eq. (3.19) (Carneiro, 2006). 

𝜅 =
1

𝑟𝜅
 (3.19) 

Through the infinitesimal geometric analysis of the curvature depicted in 

Figure 3.2, Ramshaw & Trapp (1978) and Carneiro (2006) determined that the 

curvature 𝜅 might be expressed as a function of the axial derivative of the liquid 

phase height 𝜕ℎ𝐿/𝜕𝑥, as shown in Eq. (3.20). 

𝜅 =

𝜕2ℎ𝐿
𝜕𝑥2

[1 + (
𝜕ℎ𝐿
𝜕𝑥
)
2

]

3/2  
(3.20) 

By considering that the local variations of 𝜕ℎ𝐿/𝜕𝑥 are not significant, 

Ramshaw & Trapp (1978) and Carneiro (2006) simplified Eq. (3.20) to Eq. (3.21).   

𝜅 =
𝜕2ℎ𝐿
𝜕𝑥2

 (3.21) 

Then, by applying the definition of Eq. (3.21) into Eq. (3.18), the Young-

Laplace formula becomes Eq. (3.22). 

𝑃𝑖𝐺 − 𝑃𝑖𝐿 = 𝜎
𝜕2ℎ𝐿
𝜕𝑥2

 (3.22) 

With the Young-Laplace formula, Eq. (3.22), the interfacial pressure on the 

liquid side, 𝑃𝑖𝐿, can be eliminated from the set of conservation equations. 
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3.1.5. Interfacial-Bulk Pressure Difference  

The difference between the interfacial and bulk pressure for a phase 𝐾, 

(𝑃𝑖𝐾 − 𝑃𝐾), is one of the most difficult terms to be modelled, because it is affected 

by the pressure distribution around interfacial waves, which can result in very 

complex terms (Stuhmiller, 1977; Galimov et al., 2005). However, such degree of 

complexity was avoided here.  

Frequently, the interfacial-bulk pressure difference is considered to be 

originated from the cross sectional hydrostatic pressure distribution in each phase. 

This assumption is followed by several Regime Capturing Methodology works in 

literature, such as Issa & Kempf (2003), Carneiro et al. (2011), Han & Guo (2015) 

and Ferrari et al. (2017). The "hydrostatic pressure" approach is satisfactory and 

provides a valid physical interpretation to the pressure terms, when the vertical 

velocity is very small. In this context, the "dynamic pressure" seeks to take into 

consideration the effect on the interfacial-bulk pressure difference to distortions 

on the hydrostatic pressure distribution caused by the flow in the phases. This is 

the contribution to (𝑃𝑖𝐾 − 𝑃𝐾) that is influenced by the pressure distribution 

around interfacial waves (Stuhmiller, 1977; Galimov et al., 2005) as well as by 

the axial velocity profile and cross sectional dynamic effects excluded from the 

1D Two-Fluid Model by the area-averaging procedure (Renault, 2007). The 

dynamic pressure is often inappropriately, in the opinion of the author of this 

work, referred to as "interfacial pressure" in literature (Stuhmiller, 1977; Fullmer 

et al., 2014). 

With all of this in mind, the interfacial-bulk pressure difference for phase 𝐾 

can be written as a function of a hydrostatic pressure term, Δ𝑃ℋ,𝐾, and a dynamic 

pressure term, Δ𝑃𝒟,𝐾, as shown by Eq. (3.23). 

𝑃𝑖𝐾 − 𝑃𝐾 = Δ𝑃ℋ,𝐾 + Δ𝑃𝒟,𝐾 (3.23) 

By applying the definition of Eq. (3.23) to the second term on the RHS of Eq. 

(3.7), the same can be written as formulated by Eq. (3.24). 

𝜕[𝛼𝐾(𝑃𝑖𝐾 − 𝑃𝐾)]

𝜕𝑥
=
𝜕(𝛼𝐾Δ𝑃ℋ,𝐾)

𝜕𝑥
+
𝜕(𝛼𝐾Δ𝑃𝒟,𝐾)

𝜕𝑥
 (3.24) 

In the next topics, an expression for the hydrostatic pressure term is derived, 
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according to literature procedures, followed by an equation for the dynamic 

pressure term. 

3.1.5.1. Hydrostatic Pressure  

To derive an expression for the hydrostatic pressure, it is convenient to refer 

to Figure 3.3, in which 𝑦 is the cross sectional coordinate and 𝑝𝐾(𝑦) is the 𝑦-

dependent local pressure in phase 𝐾 ∈ {𝐺, 𝐿}. 

 

Figure 3.3 – Hydrostatic pressure distribution. 

The relation between 𝑃𝑖𝐾 and 𝑝𝐾 can be straightforwardly obtained by the 

hydrostatic relation: 𝑃𝑖𝐾 − 𝑝𝐾(𝑦) = −𝜌𝐾 𝑔 cos 휃 (ℎ𝐿 − 𝑦). Since the hydrostatic 

term on the RHS of Eq. (3.24) is actually an area-average (the operator has been 

dropped) and by applying the previous expression to it, it can be formulated as 

shown in Eq. (3.25) (Tomasello, 2009). In such equation, there is an implicit extra 

hypothesis that the inclination angle 휃 does not vary with 𝑥; and 𝑦min,𝐾 and 𝑦max,𝐾 

are the 𝑦-axis integration limits related to each phase: 0 and ℎ𝐿, for the liquid, and 

ℎ𝐿 and 𝐷, for the gas, respectively. 

𝜕(𝛼𝐾Δ𝑃ℋ,𝐾)

𝜕𝑥
= −(

𝑔 cos 휃

𝐴
)
𝜕

𝜕𝑥
[∫ 𝜌𝐾(ℎ𝐿 − 𝑦)𝐷 sin𝛿 𝑑𝑦

𝑦max,𝐾

𝑦min,𝐾

] (3.25) 

After some algebraic development of the RHS of Eq. (3.25), Eq. (3.26) was 

obtained, in which the parameters Ψ𝐾, 𝐾 ∈ {𝐺, 𝐿}, are expressed according to Eqs. 

(3.27) and (3.28) for the gas and the liquid, respectively (Tomasello, 2009). 

𝜕(𝛼𝐾Δ𝑃ℋ,𝐾)

𝜕𝑥
= −𝜌𝐾𝛼𝐾𝑔 cos 휃

𝜕ℎ𝐿
𝜕𝑥

− (
𝑔 cos 휃

𝐴
)Ψ𝐾

𝜕𝜌𝐾
𝜕𝑥

 (3.26) 
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Ψ𝐺 = ℎ𝐿𝐴𝐺 −
𝐷3

4
(
𝜋 − 𝛿

2
+
sin3 𝛿

3
+
sin 2𝛿

4
) (3.27) 

Ψ𝐿 = ℎ𝐿𝐴𝐿 −
𝐷3

4
(
𝛿

2
−
sin3 𝛿

3
−
sin 2𝛿

4
) (3.28) 

While the first term on the RHS of Eq. (3.26) is, according to the literature, 

definitely important for the 1D Two-Fluid Model, the same statement cannot de 

made in relation to the second term (Issa & Kempf, 2003; Bonizzi et al., 2009; 

Carneiro et al., 2011; Han & Guo, 2015; Ferrari et al., 2017). This is justified by 

the incompressibility assumption for the liquid, which makes the derivative 𝜕𝜌𝐿/𝜕𝑥 

become null. Although the gas is a compressible phase, the fact that the pressure 

variations along short laboratory-scale pipes, such as the one of the Eskerud Smith 

et al. (2011) database, not being significant makes the values of 𝜕𝜌𝐺 𝜕𝑥⁄  very 

modest. Nevertheless, the possibility that local pressure peaks (such as those found 

in the boundaries of a slug body) lead to significant values of 𝜕𝜌𝐺 𝜕𝑥⁄  and, 

consequently, make the two terms in the RHS of Eq. (3.26) become of the same 

order of magnitude is valid. This is a subject that needs to be investigated in the 

future, due to the uncertainties surrounding this term. However, this work follows 

the current practice of, for simplification, neglecting the second term of the RHS of 

Eq. (3.26), originating Eq. (3.29). 

𝜕(𝛼𝐾Δ𝑃ℋ,𝐾)

𝜕𝑥
= −𝜌𝐾𝛼𝐾𝑔 cos 휃

𝜕ℎ𝐿
𝜕𝑥

 (3.29) 

3.1.5.2. Dynamic Pressure 

As previously said, there are several complex methods for determining an 

expression for the dynamic pressure term Δ𝑃𝒟,𝐾. These include those derived from 

a given interfacial wave characteristics and form, such as sinusoidal, from which 

the pressure distribution in the wave can be computed (Galimov et al., 2005), or 

from the cross section momentum balance equation (Renault, 2007). Nevertheless, 

the most used expression is the one made by Bestion (1990), which is the one that 

guarantees that the standard 1D Two-Fluid Model is hyperbolic. The Regime 
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Capturing Methodology works, such as in Han & Guo (2015) and in Fontalvo 

(2017), successfully with the expression of Bestion (1990), providing satisfactory 

results. Such expression, for Δ𝑃𝒟,𝐾, 𝐾 ∈ {𝐺, 𝐿}, is given by Eq. (3.30). 

Δ𝑃𝒟,𝐾 = −휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺)
2 (3.30) 

In the referred equation, the constant 휂𝒟 is defined as 1.2 (Bestion, 1990; Han 

& Guo, 2015; Fontalvo, 2017), while the density 𝜌𝒟 is formulated as shown in Eq. 

(3.31). 

𝜌𝒟 =
𝛼𝐺𝛼𝐿𝜌𝐺𝜌𝐿
𝛼𝐺𝜌𝐿 + 𝛼𝐿𝜌𝐺

 (3.31) 

As it can be seen in the referred equation, 𝜌𝒟 is a weighted average between 

the phasic densities 𝜌𝐺 and 𝜌𝐿. The dynamic pressure contribution to the momentum 

equations can, thus, be expressed by Eq. (3.32). 

𝜕(𝛼𝐾Δ𝑃𝒟,𝐾)

𝜕𝑥
= −

𝜕[𝛼𝐾휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺)
2]

𝜕𝑥
 (3.32) 

3.1.6. Molecular and Turbulent Axial Momentum Diffusion  

The axial momentum diffusion term for phase 𝐾, 𝒯𝐾, lumps up the two 

physical effects that promotes diffusion: molecular and turbulent effects. They are 

represented, as shown in Eq. (3.33), by a single effective phasic dynamic viscosity 

𝜇𝐾
𝑒𝑓𝑓

, 𝐾 ∈ {𝐺, 𝐿}, defined in Eq. (3.34) (Fullmer et al., 2011), as performed by 

Fullmer et al. (2014). 

𝒯𝐾 = 𝜇𝐾
𝑒𝑓𝑓 𝜕𝑈𝐾

𝜕𝑥
 (3.33) 

𝜇𝐾
𝑒𝑓𝑓 = 휂𝜇(𝜇𝐾 + 𝜇𝐾

𝑡 ) (3.34) 

In Eq. (3.34), 𝜇𝐾 is the molecular dynamic viscosity and 𝜇𝐾
𝑡  is the turbulent 

dynamic viscosity for phase 𝐾 ∈ {𝐺, 𝐿}. 휂𝜇 ≥ 1 is a constant whose purpose is to 

increase 𝜇𝐾
𝑒𝑓𝑓

 in order to compensate for the cross sectional diffusion effects that 

cannot be explicitly taken into account due to the area-averaging procedure 
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performed for obtaining the 1D Two-Fluid Model (Fullmer et al., 2014). 

For modelling the turbulent viscosities, there are a huge number of options in 

literature, from enormously complex approaches to very simple ones (Pope, 2000). 

The complexity of the model used should be compatible with the 1D Two-Fluid 

Model, reason why a simple algebraic model is preferred here. The fact of the 

conventional derivation of the Reynolds-Average-Navier-Stokes (RANS) is not 

being followed, which is clear by the absence of the turbulent kinetic energy in Eq. 

(3.33) (Pope, 2000) also points to the use of a simple algebraic expression for 

computing 𝜇𝐾
𝑡 . Based on the discussions and descriptions by Pope (2000) of this 

type of equation, a formulation, shown in Eq. (3.35), is proposed. 

𝜇𝐾
𝑡 = 휂𝜇𝑡𝜌𝐾𝐷ℎ𝐾|𝑈𝐾| (3.35) 

In the proposed 𝜇𝐾
𝑡  expression, Eq. (3.35), the characteristic velocity is the 

phase velocity and the characteristic length is proportional to the phase hydraulic 

diameter 𝐷ℎ𝐾, 𝐾 ∈ {𝐺, 𝐿}. Such variable is not calculated by its classical definition, 

previously introduced, but for expressions, Eqs. (3.38) and (3.39), that contain 

assumptions on the gas and liquid flow and that will be properly presented in a next 

topic. In Eq. (3.35), the constant 휂𝜇𝑡 is estimated as the ratio between the von 

Kármán constant 0.4 and an empirical Reynolds turbulent number approximately 

equal to 13 (Pope, 2000). The resulting value for 휂𝜇𝑡 is, thus, 0.03 

3.1.7. Phase Wall Shear Stress 

The wall shear stresses for each phase 𝐾 ∈ {𝐺, 𝐿}, 𝜏𝑤𝐾, are expressed using a 

Fanning-like adimensionalization. This is depicted in Eq. (3.36), where 𝑓𝐾 is the 

wall Fanning friction factor of phase 𝐾 (henceforth referred to simply as “phase 𝐾 

friction factor”). 

𝜏𝑤𝐾 =
1

2
𝑓𝐾𝜌𝐾|𝑈𝐾|𝑈𝐾 (3.36) 

The friction factor for each phase depends on the flow regime (laminar or 

turbulent) and it is defined based on the phase Reynolds number Re𝐾, formulated 

in Eq. (3.37), or the phase superficial Reynolds number Re𝑠𝐾. 

DBD
PUC-Rio - Certificação Digital Nº 1513633/CA



The Regime Capturing Methodology _______________________________ 71 

 

 

 

Re𝐾 =
𝜌𝐾|𝑈𝐾|𝐷ℎ𝐾

𝜇𝐾
 (3.37) 

A key point in the calculation of Re𝐾 is the manner with which the hydraulic 

diameters 𝐷ℎ𝐾 of each phase are calculated. Primarily, it is important to remember 

that the hydraulic diameter is four times the ratio between the cross sectional area 

and the wetted perimeter, as previously shown. The basic assumption regarding the 

flow of the gas phase in gas-liquid horizontal stratified flows is that the gas flows 

as if the interface was considered a wall (Ng et al., 2004; Hanratty, 2013). This 

corresponds to an analogy of single-phase gas flow, where the liquid was stationary, 

which can be a good hypothesis in many scenarios due to the gas bulk velocity 

being usually much higher than the liquid velocity. Following this reasoning, the 

wetted perimeter of the gas, when calculating its hydraulic diameter, is considered 

the sum of the actual gas wetted perimeter with the interfacial perimeter. The basic 

assumption of the flow in the liquid phase, on the other hand, is that the liquid flows 

as if the interface was a free surface, that is, as an open channel flow (Ng et al., 

2004; Hanratty, 2013). This way, the liquid wetted perimeter for the hydraulic 

diameter is, without any complications, equal to the actual liquid wetted perimeter. 

This entire discussion can be summarized in the two expressions, Eqs. (3.38) and 

(3.39), for the gas and liquid, respectively, with which 𝐷ℎ𝐾 can be calculated. 

𝐷ℎ𝐺 =
4𝐴𝐺
𝑆𝐺 + 𝑆𝑖

 (3.38) 

𝐷ℎ𝐿 =
4𝐴𝐿
𝑆𝐿

 (3.39) 

The superficial Reynolds number of phase 𝐾 ∈ {𝐺, 𝐿}, Re𝑠𝐾, defined in Eq. 

(3.40), is based on the pipe diameter 𝐷 and on the phasic superficial velocities 𝑈𝑠𝐾, 

formulated in Eq. (3.41). 

Re𝑠𝐾 =
𝜌𝐾|𝑈𝑠𝐾|𝐷

𝜇𝐾
 

(3.40) 

𝑈𝑠𝐾 = 𝛼𝐾𝑈𝐾 (3.41) 

These two Reynolds numbers, Re𝑠𝐾 and Re𝐾 , can be related, for the stratified 

flow configuration of Figure 3.1, through Eqs. (3.42) and (3.43) for the gas and 
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liquid, respectively. 

Re𝑠𝐺
Re𝐺

= 1 −
𝛿

𝜋
+
sin 𝛿

𝜋
 (3.42) 

Re𝑠𝐿
Re𝐿

=
𝛿

𝜋
 (3.43) 

As different wall friction factors expressions are used for when the flow in 

the phase is laminar, (𝑓𝐾)lam, or turbulent, (𝑓𝐾)turb, the scheme in Eq. (3.44) is 

proposed for calculating 𝑓𝐾. 

𝑓𝐾 = {

(𝑓𝐾)lam                                             ;   Re𝐾 ≤ Relam                     

𝑤𝑡(𝑓𝐾)turb + (1 − 𝑤𝑡)(𝑓𝐾)lam   ;   Relam < Re𝐾 < Returb   
(𝑓𝐾)turb                                            ;   Re𝐾 ≥ Returb                    

 (3.44) 

In the previous equation, 𝑤𝑡 is an interpolation function that is commonly 

assumed linear in relation to the Reynolds number, as shown in Eq. (3.45) (Khaledi 

et al., 2014). However, throughout this work a smoother form for the interpolation 

function based on the hyperbolic tangent, Eq. (3.46), is proposed and used. 

𝑤𝑡 =
Re𝐾 − Relam
Returb − Relam

 (3.45) 

𝑤𝑡 =
1

2
+
1

2
tanh [

3(2 Re𝐾 − Returb − 3 Relam)

Returb − Relam
] (3.46) 

In Figure 3.4, the two previously mentioned forms for the interpolation 

function are compared and it is possible to see the advantage of the form in Eq.  in 

terms of smoothness.  

 

Figure 3.4 – Comparison of the forms for 𝒘𝒕. 
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There are several correlations to determine de phase friction factor as a 

function of the Reynolds number. A few of them are analyzed in the next chapter 

devoted to propose new correlations for the interfacial friction factor through an 

optimization technique. 

3.1.8. Effective Interfacial Shear Stress 

As previously mentioned in the literature review on the interfacial shear stress 

modelling, Brauner & Maron (1993; 1994) proposed an expression for the effective 

interfacial shear stress (nomenclature used for the 1D Two-Fluid Model), in which 

the effects of waves and of the smooth interface are separated. Their expression is 

given by Eq. (3.37). 

𝜏𝑖
∗ = 𝜏𝑖 + 𝒥𝑖

𝜕ℎ𝐿
𝜕𝑥

 (3.47) 

The first term in the RHS of the previous equation is the usual interfacial 

shear stress (“pseudo-smooth” interfacial shear stress), which aims to represent the 

contribution of the smooth interface or of a wavy interface in which the instabilities 

are not being captured by the model (Brauner & Maron, 1993; 1994). The second 

term on the RHS of Eq. (3.47) is the explicit contribution of the interfacial waves 

to the effective interfacial shear stress 𝜏𝑖
∗. Although obvious, it is important to state 

that if such explicit contributions of the interface waviness are not taken into 

account, than the effective interfacial shear stress is equal to the “pseudo-smooth” 

one. According to Brauner & Maron (1993; 1994), due to the presence of the 

derivative 𝜕ℎ𝐿/𝜕𝑥 in in the expression for 𝜏𝑖
∗, this model is labeled as “dynamic 

interfacial shear stress”. 

3.1.8.1. Interfacial Shear Stress 

The most common strategy to determine the interfacial shear stress 𝜏𝑖 is 

analogous to the phase wall shear stress, i.e., by relating the interfacial shear stress 

𝜏𝑖 to 𝑓𝑖, which is the Fanning interfacial friction factor (henceforth only referred to 

as “interfacial friction factor”). For reasons of convenience, the expression of Eq. 

(2.2) is repeated in Eq. (3.48). 
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𝜏𝑖 =
1

2
𝑓𝑖𝜌𝐺|𝑈𝑖|𝑈𝑖 (3.48) 

The common definition of the reference interfacial velocity 𝑈𝑖  as the 

difference between the gas and liquid bulk velocities (Hanratty, 2013) is used in 

this work, Eq. (3.49). 

𝑈𝑖 = 𝑈𝐺 − 𝑈𝐿 (3.49) 

As it will be seen in a more detailed way in the next Chapter, the interfacial 

friction factor 𝑓𝑖 depends on the interfacial flow regime (laminar or turbulent) and 

also on the interfacial Reynolds number Re𝑖, defined by Eq. (3.50). 

Re𝑖 =
𝜌𝐺|𝑈𝐺 − 𝑈𝐿|𝐷ℎ𝐺

𝜇𝐺
 (3.50) 

The definition of the interfacial friction factor is crucial for an accurate 

prediction of the gas-liquid flow. This is specifically critical for when the presence 

of waves is strong at the interface. With this in mind, the next chapter is devoted to 

the definition of the interfacial friction factor, where two new correlations are being 

proposed at the present work, based on an optimization procedure. 

3.1.8.2. Dynamic Interfacial Shear Stress 

The presence of the derivative 𝜕ℎ𝐿/𝜕𝑥 in Eq. (3.47) is a sensible manner 

found by Brauner & Maron (1993; 1994) to represent the behavior of the effective 

interfacial shear stress around an interfacial wave. Using the gas phase as reference, 

they state that in the windward side of an interfacial wave, where 𝜕ℎ𝐿 𝜕𝑥⁄ > 0, 𝜏𝑖
∗ 

should increase and that in the leeward side, where 𝜕ℎ𝐿 𝜕𝑥⁄ < 0, 𝜏𝑖
∗ should 

decrease. The described behavior, for the gas phase, is summarized in Figure 3.5. 

The fact that the opposite behavior is valid for the liquid phase is automatically 

taken into account by the natural switch of the sign of 𝜏𝑖
∗ in the gas and momentum 

balance equations, Eqs. (3.11) and (3.12). 

The coefficient 𝒥𝑖 that multiplies 𝜕ℎ𝐿/𝜕𝑥 in Eq. (3.47) is expressed by Eq. 

(3.51) (Brauner & Maron, 1993; 1994). 

𝒥𝑖 = 𝐶ℎ𝜌𝐺(𝑈𝐺 − 𝑈𝐿)
2 (3.51) 
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Figure 3.5 – Behavior if the effective interfacial shear around an interfacial wave, 

according to Brauner & Maron (1993; 1994). 

Brauner & Maron (1993; 1994) created an equation for the memory 

coefficient 𝐶ℎ in Eq. (3.51). This equation was developed by assuming that the 

transition between stratified smooth and stratified wavy flow obtained with a linear 

stability analysis of the 1D Two-Fluid Model, including the dynamic term, should 

match experimental observations for a wide variety of conditions. The parameter 

𝐶ℎ is evaluated in the equilibrium condition (steady-state and fully-development) 

and it is shown in Eq. (3.52), as a function of the Reynolds number Re𝐿,pm and the 

liquid height Froude number Frℎ𝐿,pm , which are calculated through Eqs. (3.53) and 

(3.54), respectively. 

𝐶ℎ = 2.45 × 10
−4 [

Re𝐿,pm

(Frℎ𝐿,pm)
2]

𝓂

 (3.52) 

Re𝐿,pm =
𝜌𝐿𝑈𝐿,pm𝐷ℎ𝐿,pm

𝜇𝐿
 (3.53) 

Frℎ𝐿,pm =
𝑈𝐿,pm

√𝑔ℎ𝐿,pm cos 휃
 (3.54) 

The subscript "pm" present in so many terms in Eqs. (3.52)-(3.54) stands for 

"Point Model", which is the solution of an equilibrium version of the 1D Two-Fluid 

Model, as it will be more thoroughly detailed in the next chapter. All the terms 

containing such subscript were evaluated with the Point Model. 

The exponent 𝓂 in Eq. (3.52) depends on the phasic flow regime (if it is 

laminar, transitional or turbulent). Therefore, the same scheme of Eq. (3.44), used 

for calculating the wall friction factors 𝑓𝐾, 𝐾 ∈ {𝐺, 𝐿}, is proposed for evaluating 
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𝓂, as it can be seen in Eq. (3.55). This is not what was originally proposed by 

Brauner & Maron (1993; 1994), but it is what is adopted in this work for reasons of 

consistency with the procedures employed for evaluating 𝑓𝐾. 

𝓂 = {

(𝓂)lam                                             ;   Re𝐿,pm ≤ Relam                     

𝑤𝑡(𝓂)turb + (1 − 𝑤𝑡)(𝓂)lam   ;   Relam < Re𝐿,pm < Returb   

(𝓂)turb                                            ;   Re𝐿,pm ≥ Returb                    

 (3.55) 

The expressions for the laminar, (𝓂)lam, and turbulent, (𝓂)turb, exponents 

𝓂 are written in Eqs. (3.56) and (3.57), respectively. 

(𝓂)lam = 1 (3.56) 

(𝓂)turb = 1.565 − 0.072 ln Re𝐿,pm (3.57) 

3.1.9. Final 1D Two-Fluid Model 

By applying the closure relations, Eqs. (3.17), (3.22), (3.24), (3.29), (3.33) 

and (3.47), presented in the previous sections into Eqs. (3.9)-(3.12), the final form 

of the 1D Two-Fluid Model employed in the present work for horizontal and nearly 

horizontal pipelines can be shown. Those are: the gas mass conservation equation, 

Eq. (3.58), the liquid mass conservation equation, Eq. (3.59), the gas momentum 

conservation equation, Eq. (3.60), and the liquid momentum balance equation, Eq. 

(3.61). 

𝜕(𝛼𝐺𝜌𝐺)

𝜕𝑡
+
𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑥
= 0 (3.58) 

𝜕(𝛼𝐿𝜌𝐿)

𝜕𝑡
+
𝜕(𝛼𝐿𝜌𝐿𝑈𝐿)

𝜕𝑥
= 0 (3.59) 

𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑡
+
𝜕(𝛼𝐺𝜌𝐺𝑈𝐺

2)

𝜕𝑥

= −𝛼𝐺
𝜕𝑃

𝜕𝑥
− (𝜌𝐺𝛼𝐺𝑔 cos 휃 + 𝒥𝑖

𝑆𝑖
𝐴
)
𝜕ℎ𝐿
𝜕𝑥

−
𝜕(𝛼𝐺Δ𝑃𝒟,𝐺)

𝜕𝑥

+
𝜕

𝜕𝑥
(𝛼𝐺𝜇𝐺

𝑒𝑓𝑓 𝜕𝑈𝐺
𝜕𝑥

) − 𝛼𝐺𝜌𝐺𝑔 sin 휃 − 𝜏𝑤𝐺
𝑆𝐺
𝐴
− 𝜏𝑖

𝑆𝑖
𝐴

 

(3.60) 
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𝜕(𝛼𝐿𝜌𝐿𝑈𝐿)

𝜕𝑡
+
𝜕(𝛼𝐿𝜌𝐿𝑈𝐿

2)

𝜕𝑥

= −𝛼𝐿
𝜕𝑃

𝜕𝑥
− (𝜌𝐿𝛼𝐿𝑔 cos 휃 − 𝒥𝑖

𝑆𝑖
𝐴
)
𝜕ℎ𝐿
𝜕𝑥

−
𝜕(𝛼𝐿Δ𝑃𝒟,𝐿)

𝜕𝑥

+
𝜕

𝜕𝑥
(𝛼𝐿𝜇𝐿

𝑒𝑓𝑓 𝜕𝑈𝐿
𝜕𝑥

) − 𝛼𝐿𝜎
𝜕3ℎ𝐿
𝜕𝑥3

− 𝛼𝐿𝜌𝐿𝑔 sin 휃

− 𝜏𝑤𝐿
𝑆𝐿
𝐴
+ 𝜏𝑖

𝑆𝑖
𝐴

 

(3.61) 

The single pressure chosen for the model, is the gas interfacial pressure 𝑃𝑖𝐺, 

whose subscripts are dropped in Eqs. (3.60) and (3.61), becoming the variable 𝑃. 

Therefore, the four unknown variables for the 1D Two-Fluid Model are one of the 

holdups, the bulk velocities and the gas interfacial pressure 𝑃. 

3.1.9.1. Boundary and Initial Conditions 

The 1D Two-Fluid Model comprises a boundary value problem (in space 𝑥) and 

an initial value problem (in time 𝑡). For the boundary value problem, as it has four basic 

unknown variables (one of the holdups, the bulk velocities and the pressure), four 

boundary conditions are needed. The ones used in the present work are: 

 The inlet superficial gas velocity (𝑈𝑠𝐺,in); 

 The inlet superficial liquid velocity (𝑈𝑠𝐿,in); 

 The outlet pressure (𝑃out); 

 The gas holdup derivative at the outlet (𝜕𝛼𝐺 𝜕𝑥⁄ |out). 

The first three boundary conditions are Dirichlet-type and the last one is of 

the Neumann type. While the first three conditions are an input of the problem, that 

is, it depends on the flow case simulated, the gas holdup flux at the outlet is always 

considered null. Such boundary conditions are better displayed in Figure 3.6. 

 

Figure 3.6 – Boundary conditions of the Regime Capturing Methodology. 
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A constant pressure field was considered as the initial pressure distribution, 

being equal to the outlet pressure 𝑃out. The initial gas holdup field was determined 

assuming stratified flow in equilibrium, i.e., constant liquid level and velocities.  

The initial bulk velocities were also constant and determined from the ratio 

between the inlet phase superficial velocities and the equilibrium phase holdup, 

Eq. (3.41). 

3.2. Numerical Method 

To solve the system of conservation equations of the 1D Two-Fluid Model, 

the Finite Volumes Method (Patankar, 1980) is used. Here a brief presentation of 

the numerical solution methodology is made. Detailed information can be found in 

Carneiro (2006) and Fontalvo (2017).  

The Finite Volume Method (Patankar, 1980) consists of dividing the domain 

of interest in control volumes and integrating the conservation equations in time 

and space in each control volume in order to guarantee global conservation of all 

variables of interest. Therefore, to present the method, first, the spatial mesh defined 

for the former are described, followed by the interpolation schemes used. Then, the 

discretized conservation equations used for evaluating the variables of interest (one 

of the holdups, the bulk phase velocities and the pressure) in the domain are 

presented and, afterwards, the numerical approach for handling local occurrences 

of single-phase flow is covered. At last, the numerical solution procedure as a whole 

is outlined. 

3.2.1. Spatial Mesh  

The spatial mesh used in the Finite Volume Method was defined using the 

Method A of Patankar (1980), in which first 𝑁𝐿 nodal points are uniformly 

distributed throughout the spatial domain (coordinate 𝑥). Then, the faces of the 

finite volume elements are positioned in the middle of each pair of nodal points, 

equidistant to them. Besides, two additional faces are defined in the boundaries of 

the domain, coincident with the starting and final nodal points, providing a total of 

(𝑁𝐿 + 1) faces. Figure 3.7 illustrates the resulting mesh and its key parameters. In 

the present work, a uniform mesh was employed. 
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Figure 3.7 – Spatial mesh used in the Finite Volume Method. 

In the referred figure, 𝑥𝑗, 𝑗 ∈ {1,𝑁𝐿} is the 𝑗-th nodal point position; 𝑥𝑗
𝑢, 𝑗 ∈

{1, 𝑁𝐿 + 1}, is the 𝑗-th face position; 𝛿𝑥𝑗, 𝑗 ∈ {1, 𝑁𝐿 − 1}, is the distance between 

the 𝑗-th and (𝑗 + 1)-th nodal points; and Δ𝑥𝑗, 𝑗 ∈ {1,𝑁𝐿}, is the distance between 

the 𝑗-th and (𝑗 + 1)-th face. As characteristic of the Method A for mesh 

construction, the distance between the first two and last two faces is half of all the 

other distances Δ𝑥𝑗 and 𝛿𝑥𝑗  of the mesh. This can be seen in Eqs. (3.62) and (3.63), 

which express the former and latter distances, respectively. In them, Δ𝑥 (without 

the subscript 𝑗) is the most important distance of the mesh and it is defined by (3.64). 

Δ𝑥𝑗 = {
Δ𝑥 2⁄  ;   𝑗 = 1,𝑁𝐿
Δ𝑥      ;   𝑗 ≠ 1, 𝑁𝐿

                        (3.62) 

𝛿𝑥𝑗 = Δ𝑥 ;   𝑗 ∈ {1,… ,𝑁𝐿 − 1} (3.63) 

Δ𝑥 =
𝐿

𝑁𝐿 − 1
 (3.64) 

In accordance with recommendations of Patankar (1980), in order to avoid 

an oscillatory pressure field, a staggered mesh is used for the discretization of the 

conservation equations, i.e., at the nodal points, scale variables (e.g. holdups and 

pressure) are stored, while flow variables (e.g. bulk velocities) are stored at the 

control volumes faces. Figures 3.8(a) and 3.8(b) illustrates the main scalar control 

volume and the velocities (staggered) control volume, respectively, in which 𝐏, 𝐖, 

𝐖𝐖, 𝐄 and 𝐄𝐄 allude, also respectively, the reference nodal point, and its neighbors 

from both sides, west and east. The faces 𝑤, 𝑤𝑤, 𝑒𝑒, 𝑒 correspond to the face 

location at west and east side of the main central point. 
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Figure 3.8 – Spatial meshes: (a) scalar variables; and (b) velocities. 

3.2.2. Discretized Equations 

To perform the time integration of the conservation equations, the fully 

implicit 1st order Euler scheme was applied, since it is unconditionally stable. The 

time steps are represented by the variable Δ𝑡 and, during the procedure in time, the 

superscript “0” is used to refer to the previous time instant value of a variable. 

To discretize the spatial convective terms, the first-order upwind scheme was 

employed. The operator �̃�, of a general variable 𝜓, means that the upwind scheme 

was used for evaluating it. Thus, the values of scalar quantities at the control volume 

faces 𝑒 and 𝑤 were determined with Eqs. (3.65) and (3.66), respectively, and at the 

nodal points 𝑃 and 𝑊 with Eqs.  and , respectively. 

�̃�𝑒 = ⟦sign(𝑈𝑒), 0⟧𝜓𝑃 − ⟦−sign(𝑈𝑒), 0⟧𝜓𝐸 (3.65) 

�̃�𝑤 = ⟦sign(𝑈𝑤), 0⟧𝜓𝑊 − ⟦−sign(𝑈𝑤), 0⟧𝜓𝑃 (3.66) 

�̃�𝑃 = ⟦sign(𝑈𝑃), 0⟧𝜓𝑤 − ⟦−sign(𝑈𝑃), 0⟧𝜓𝑒 (3.67) 

�̃�𝑊 = ⟦sign(𝑈𝑊), 0⟧𝜓𝑤𝑤 − ⟦−sign(𝑈𝑊), 0⟧𝜓𝑤 (3.68) 

For computing the values of the general variable 𝜓 in nodal points 𝐏 and 𝐖 

as a function of the face-stored variables, one might use simple arithmetic mean 

operations, as shown in Eqs. (3.69) and (3.70), respectively. Proceeding in an 
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analogous way, an average of the scalar quantities at the faces 𝑒 and 𝑤 can be 

determined as shown by Eqs. (3.71) and (3.72), respectively. The operator �̌�, in the 

general variable 𝜓, represents such arithmetic mean. 

�̌�𝑃 =
𝜓𝑤 + 𝜓𝑒

2
 (3.69) 

�̌�𝑊 =
𝜓𝑤𝑤 + 𝜓𝑤

2
 (3.70) 

�̌�𝑒 =
𝜓𝑃 + 𝜓𝐸

2
 (3.71) 

�̌�𝑤 =
𝜓𝑃 + 𝜓𝑊

2
 (3.72) 

To facilitate the presentation of the discretized conservation equations, it is 

convenient to define the pseudo-fluxes 𝐹𝐾
∗, 𝐾 ∈ {𝐺, 𝐿}, and the fluxes 𝐹𝐾, 𝐾 ∈

{𝐺, 𝐿} at the faces 𝒻 ∈ {𝑒𝑒, 𝑒, 𝑤, 𝑤𝑤}. This is performed in Eqs. (3.73) and (3.74), 

respectively. 

(𝐹𝐾
∗)𝒻 = (�̃�𝐾)𝒻(𝑈𝐾)𝒻  𝐴 (3.73) 

(𝐹𝐾)𝒻 = (�̌�𝐾)𝒻 (�̌�𝐾)𝒻(𝑈𝐾)𝒻  𝐴 (3.74) 

3.2.2.1. Gas Holdup 

The holdup chosen as a basic variable of the 1D Two-Fluid Model was the 

gas holdup. Therefore, the conservation equation for 𝛼𝐺 throughout the domain is 

the gas mass conservation equation, Eq. (3.58). The Finite Volume Method 

discretization of such equation in the standard spatial mesh of Figure 3.8(a) 

provides the discretized expression formulated in Eq. (3.75) for the nodal point 𝐏 

as a function of its neighbors 𝐄 and 𝐖. 

(𝑎𝛼𝐺)𝑃(𝛼𝐺)𝑃 = (𝑎𝛼𝐺)𝐸(𝛼𝐺)𝐸 + (𝑎𝛼𝐺)𝑊(𝛼𝐺)𝑊 + (𝑏𝛼𝐺)𝑃 (3.75) 

The coefficients 𝑎𝛼𝐺 at the nodal points 𝐏, 𝐄 and 𝐖 and at 𝐏 for the previous 
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time step are defined by Eqs. (3.76)-(3.79), respectively, and the discretized source 

term 𝑏𝛼𝐺 at 𝐏 is given by Eq. (3.80). 

(𝑎𝛼𝐺)𝑃 = (𝑎𝛼𝐺)𝐸 + (𝑎𝛼𝐺)𝑊 + (𝜌𝐺)𝑃 𝐴
Δ𝑥𝑃
Δ𝑡

+ [(𝐹𝐺
∗)𝑒 − (𝐹𝐺

∗)𝑤] (3.76) 

(𝑎𝛼𝐺)𝐸 = ⟦−(𝐹𝐺
∗)𝑒, 0⟧  (3.77) 

(𝑎𝛼𝐺)𝑊 = ⟦ (𝐹𝐺
∗)𝑤, 0⟧  (3.78) 

(𝑎𝛼𝐺)𝑃
0 = (𝜌𝐺)𝑃

0  𝐴
Δ𝑥𝑃
Δ𝑡

 (3.79) 

(𝑏𝛼𝐺)𝑃 = (𝑎𝛼𝐺)𝑃
0  (𝛼𝐺)𝑃

0  (3.80) 

3.2.2.2. Liquid and Gas Bulk Velocities 

For the evaluation of the bulk velocities of the gas and liquid phases, 𝑈𝐺  and 

𝑈𝐿, the momentum conservation equations of the 1D Two-Fluid Model, Eqs. (3.60) 

and (3.61), were discretized in the staggered mesh of Figure 3.8(b). After 

performing the Finite Volume discretization of these equations and using a sub-

relaxation factor 𝜍, fixed as 0.7 for facilitating the convergence, Eq. (3.81) is 

obtained. It expresses the bulk velocity 𝑈𝐾, 𝐾 ∈ {𝐺, 𝐿}, value at face 𝑤 as a function 

of faces 𝑒 and 𝑤𝑤, of the pressure differences between the nodal points 𝐖 and 𝐏 

and its values for the previous iteration (different from the previous time instant), 

represented by the superscript “𝓅𝒾”. 

(𝑎𝑈𝐾)𝑤(𝑈𝐾)𝑤 = (𝑎𝑈𝐾)𝑒(𝑈𝐾)𝑒 + (𝑎𝑈𝐾)𝑤𝑤(𝑈𝐾)𝑤𝑤 + (𝑏𝑈𝐾)𝑤

+ (�̌�𝐾)𝑤  𝐴(𝑃𝑊 − 𝑃𝑃) 
(3.81) 

The Eq. (3.81) can be reformulated as indicated by Eq. (3.82), using the 

variable 𝑑𝐾, which is expressed by Eq. (3.83) at the face 𝑤, and the concept of 

pseudo-velocity �̂�𝐾, 𝐾 ∈ {𝐺, 𝐿}, which is defined in Eq. (3.84) for the face 𝑤. 

(𝑈𝐾)𝑤 = (�̂�𝐾)𝑤 + (𝑑𝐾)𝑤 (𝑃𝑊 − 𝑃𝑃)       (3.82) 
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(𝑑𝐾)𝑤 =
(�̌�𝐾)𝑤𝐴

(𝑎𝑈𝐾)𝑤
 (3.83) 

(�̂�𝐾)𝑤 =
1

(𝑎𝑈𝐾)𝑤
[(𝑎𝑈𝐾)𝑒(𝑈𝐾)𝑒 + (𝑎𝑈𝐾)𝑤𝑤(𝑈𝐾)𝑤𝑤 + (𝑏𝑈𝐾)𝑤] (3.84) 

In Eqs. (3.85)-(3.88), the coefficients 𝑎𝑈𝐾, 𝐾 ∈ {𝐺, 𝐿}, for faces 𝑤, 𝑒 and 𝑤𝑤 

and for 𝑤 at the previous time step are respectively defined. The discretized source 

term 𝑏𝑈𝐾 at face 𝑤 is formulated in Eq. (3.89). 

(𝑎𝑈𝐾)𝑤 =
1

𝜍
[(𝑎𝑈𝐾)𝑒 + (𝑎𝑈𝐾)𝑤𝑤 + (𝑎𝑈𝐾)𝑤

0 − (𝑠𝓅,𝑈𝐾)𝑤𝛿𝑥𝑤𝐴
] (3.85) 

(𝑎𝑈𝐾)𝑒 = ⟦−(�̌�𝐾)𝑃, 0⟧ +
(𝛼𝐾)𝑃 (𝜇𝐾

𝑒𝑓𝑓)
𝑃
 𝐴

Δ𝑥𝑃
 (3.86) 

(𝑎𝑈𝐾)𝑤𝑤 = ⟦(�̌�𝐾)𝑊, 0⟧ +
(𝛼𝐾)𝑊 (𝜇𝐾

𝑒𝑓𝑓)
𝑊
 𝐴

Δ𝑥𝑊
 (3.87) 

(𝑎𝑈𝐾)𝑤
0 = (�̌�𝐾)𝑤

0 (�̌�𝐾)𝑤
0  𝐴

𝛿𝑥𝑤
Δ𝑡

 (3.88) 

(𝑏𝑈𝐾)𝑤 = (𝑎𝑈𝐾)𝑤
0 (𝑈𝐾)𝑤

0 + (𝑠𝒸,𝑈𝐾)𝑤𝛿𝑥𝑤 𝐴 + (1 − 𝜍)(𝑎𝑈𝐾)𝑤(𝑈𝐾)𝑤
𝓅𝒾

 (3.89) 

The source terms of the momentum conservation equations of the 1D Two-

Fluid Model were approximated as linear functions of 𝑈𝐾. The linear and angular 

coefficients of these functions, 𝑠𝒸,𝑈𝐾 and 𝑠𝓅,𝑈𝐾, 𝐾 ∈ {𝐺, 𝐿}, are calculated by the 

expressions depicted for the face 𝑤 in Eqs. (3.90) and (3.96), respectively. The 

hydrostatic pressure, dynamic pressure, surface tension, gravitational and 

interfacial contributions (ℬℋ,𝑈𝐾, ℬ𝒟,𝑈𝐾, ℬ𝜎,𝑈𝐾, ℬ𝒢,𝑈𝐾 and ℬ𝑖,𝑈𝐾, respectively) to 

the linear coefficient 𝑠𝑐,𝑈𝐾 are calculated for face 𝑤 through Eqs. (3.91)-(3.95), 

respectively. In Eq. (3.91), the upper sign of “∓” refers to the gas phase and the 

lower one to the liquid. The second order derivatives present in Eqs. (3.93) must be 

approximated by finite differences. 
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(𝑠𝒸,𝑈𝐾)𝑤 = (ℬℋ,𝑈𝐾)𝑤 + (ℬ𝒟,𝑈𝐾)𝑤 + (ℬ𝜎,𝑈𝐾)𝑤 + (ℬ𝒢,𝑈𝐾)𝑤
+ (ℬ𝑖,𝑈𝐾)𝑤 

(3.90) 

(ℬℋ,𝑈𝐾)𝑤 = − [
(�̌�𝐾)𝑤(�̌�𝐾)𝑤𝑔 cos 휃 ∓ (𝒥𝑖)𝑤

(𝑆𝑖)𝑤
𝐴

]
(ℎ𝐿)𝑃 − (ℎ𝐿)𝑊

𝛿𝑥𝑤
 (3.91) 

(ℬ𝒟,𝑈𝐾)𝑤 =
(𝛼𝐾Δ𝑃𝒟,𝐾)𝑃 − (𝛼𝐾Δ𝑃𝒟,𝐾)𝑊

𝛿𝑥𝑤
 (3.92) 

(ℬ𝜎,𝑈𝐾)𝑤 = {

0                                                                        ; 𝐾 = 𝐺

(�̌�𝐿)𝑤𝜎 [(
𝜕2ℎ𝐿
𝜕𝑥2

)
𝑃

− (
𝜕2ℎ𝐿
𝜕𝑥2

)
𝑊

]
1

𝛿𝑥𝑤
      ; 𝐾 = 𝐿  (3.93) 

(ℬ𝒢,𝑈𝐾)𝑤
= − (�̌�𝐾)𝑤(�̌�𝐾)𝑤𝑔 sin 휃 (3.94) 

(ℬ𝑖,𝑈𝐾)𝑤 =
1

2
(𝑓𝑖)𝑤 (�̌�𝐺)𝑤|(𝑈𝐺)𝑤 − (𝑈𝐿)𝑤|(𝑈𝐾)𝑤 (3.95) 

(𝑠𝓅,𝑈𝐾)𝑤 = −
1

2
(𝑓𝐾)𝑤(�̌�𝐾)𝑤|(𝑈𝐾)𝑤|

−
1

2
(𝑓𝑖 )𝑤(�̌�𝐺)𝑤|(𝑈𝐺)𝑤 − (𝑈𝐿)𝑤| 

(3.96) 

3.2.2.3. Pressure 

The evaluation of the pressure values in the domain is more complicated than 

it was for the gas holdup and for the bulk velocities, because the pressure is not 

present in the remaining conservation equation for the liquid mass. Indeed, the 

conservation equation used is a global mass balance, obtained after combining the 

phasic mass balance equations, Eqs. (3.58) and (3.59), normalized with their 

respective phasic densities (Issa & Kempf, 2003; Carneiro et al., 2011). The 

normalization is performed since the order of magnitude of the liquid density is 

much larger than the gas density. This way, both mass conservation equations have 

similar order of magnitude, with the same weight to influence the determination of 

the pressure (Issa & Kempf, 2003; Carneiro et al., 2011). Eq. (3.97) formulates such 
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global mass balance equation, in which 𝜌𝐺,ref is a reference gas density evaluated 

with the ideal gas law, Eq. (3.15), for a reference pressure 𝑃ref (defined as equal to 

𝑃out). 

𝜕𝛼𝐿
𝜕𝑡

+
𝜕(𝛼𝐿𝑈𝐿)

𝜕𝑥
+

1

𝜌𝐺,ref
[
𝜕(𝛼𝐺𝜌𝐺)

𝜕𝑡
+
𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑥
] = 0 (3.97) 

The discretization of the global mass conservation equation, Eq. (3.97), in the 

scalar control volume of Figure 3.8(a) and its multiplication by 𝐴 provides Eq. 

(3.98). 

[(𝛼𝐿)𝑃 − (𝛼𝐿)𝑃
0]𝐴𝛥𝑥𝑃 + [(𝛼𝐿𝑈𝐿)𝑒 − (𝛼𝐿𝑈𝐿)𝑤]𝐴Δ𝑡

+ [(𝛼𝐺𝜌𝐺)𝑃 − (𝛼𝐺𝜌𝐺)𝑃
0]
𝐴Δ𝑥𝑃
𝜌𝐺,ref

+ [(𝛼𝐺𝜌𝐺𝑈𝐺)𝑒 − (𝛼𝐺𝜌𝐺𝑈𝐺)𝑤]
𝐴Δ𝑡

𝜌𝐺,ref
= 0 

(3.98) 

By applying the definition of Eq. (3.82) for the discretized phasic bulk 

velocities at faces 𝑒 and 𝑤 into Eq. (3.98) and by applying the ideal gas law of Eq. 

(3.15), 𝜌𝐺 = 𝑃 (ℛ𝐺𝑇)⁄ , the discretized pressure equation, Eq. (3.99), is obtained. 

(𝑎𝑃)𝑃𝑃𝑃 = (𝑎𝑃)𝐸𝑃𝐸 + (𝑎𝑃)𝑊𝑃𝑊 + (𝑏𝑃)𝑃 (3.99) 

The coefficients 𝑎𝑃 of the discretized pressure equation at the nodal points 𝐏, 

𝐄 and 𝐖 and the discretized source term 𝑏𝑃 at the point 𝐏 are given by Eqs. (3.100)-

(3.103), respectively. 

(𝑎𝑃)𝑃 = (𝑎𝑃)𝐸 + (𝑎𝑃)𝑊 +
(𝛼𝐺)𝑃𝐴

𝑃ref
(
Δ𝑥𝑃
Δ𝑡
) (3.100) 

(𝑎𝑃)𝐸 = (𝑑𝐿)𝑒(�̃�𝐿)𝑒 𝐴 + (𝑑𝐺)𝑒(�̃�𝐺)𝑒𝐴
(�̃�𝐺)𝑒
𝜌𝐺,ref

 (3.101) 

(𝑎𝑃)𝑊 = (𝑑𝐿)𝑤(�̃�𝐿)𝑤 𝐴 + (𝑑𝐺)𝑤(�̃�𝐺)𝑤𝐴
(�̃�𝐺)𝑤
𝜌𝐺,ref

 (3.102) 

(𝑏𝑃)𝑃 = [(𝛼𝐿)𝑃
0 − (𝛼𝐿)𝑃 + (𝛼𝐺)𝑃

0
(𝜌𝐺)𝑃

0

𝜌𝐺,ref
]
𝐴Δ𝑥𝑃
Δ𝑡

+ (�̃�𝐿)𝑤(𝒰𝐿)𝑤

− (�̃�𝐿)𝑒(�̂�𝐿)𝑒

+ [(�̃�𝐺)𝑤(�̂�𝐺)𝑤
(�̃�𝐺)𝑤
𝜌𝐺,ref

− (�̃�𝐺)𝑒(�̂�𝐺)𝑒
(�̃�𝐺)𝑒
𝜌𝐺,ref

] 

(3.103) 
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3.2.3. Treatment of the Local Occurrence of Single-Phase Flow 

Due to both physical and numerical reasons, local occurrences of single-phase 

might be a possibility, in spite of the flow being fundamentally two-phase. A liquid 

slug body free of gas is an example of local liquid single-phase flow in a 

macroscopic gas-liquid flow. When a phase vanishes, its corresponding discretized 

momentum (bulk velocity) equation becomes singular. To deal with this issue, a 

single-phase flow detector (flag), 𝑆𝐹, is defined for the faces employing a harmonic 

mean between the gas holdups of the neighbor nodal points, as shown by Eq. 

(3.104) for face 𝑤 (Ortega, 2004; Carneiro, 2006). 

(𝑆𝐹)𝑤 =
2(𝛼𝐺)𝑊(𝛼𝐺)𝑃
(𝛼𝐺)𝑊 + (𝛼𝐺)𝑃

 (3.104) 

When 𝑆𝐹 is lower than a critical value 𝑆𝐹𝓈𝓅, defined in this work as 0.02, the 

gas-liquid flow becomes liquid single-phase flow. On the other hand, when 𝑆𝐹 is 

higher than (1 − 𝑆𝐹𝓈𝓅), then the flow becomes gas single-phase flow. In terms of 

the numerical solution, when the two-phase flow becomes single-phase for a certain 

phase, the bulk velocities of the other phase is considered to be null. Besides, since 

theoretically there is no interface for this situation, the term ℬ𝑖,𝐾 in Eq. (3.90) is 

neglected. For more information on the numerical consequences of this strategy for 

handling the occurrence of single-phase flow, the reader should refer to Ortega 

(2004), Carneiro (2006) and Fontalvo (2017). 

3.2.4. Numerical Procedure 

The numerical procedure to solve the set of discretized conservation 

equations consists in two levels: the transient one and the spatial one. The former 

is related to the initial value problem and the latter with the boundary value 

problem. Thus, for a given initial condition, a boundary value problem is solved 

and then the solution advances to the next time step with a time interval of Δ𝑡, 

calculated by Eq. (3.105). In it, CFL is the Courant-Friedrichs-Levy number, used 

for guaranteeing a proper distribution between the spatial and temporal meshes, in 

order to capture correctly the simulated phenomena in both space and time. The 

value chosen for CFL is of 0.05. Besides, Δ𝑡min and Δ𝑡max are, respectively the 
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input minimum and maximum values of the Δ𝑡, and 𝑈max is the maximum bulk 

velocity of the phases in the entire domain. 

Δ𝑡 = −⟦−⟦
CFL

𝑈maxΔ𝑥
, Δ𝑡min⟧ ,−Δ𝑡max⟧ (3.105) 

The solution of the boundary value problem is iterative and the convergence 

is obtained after the maximum residue, resmax, in the domain for the four unknown 

variables (𝛼𝐺, 𝑈𝐺 , 𝑈𝐿 and 𝑃) is lower than a tolerance 𝑡𝑜𝑙 of 10-6. A maximum 

number 𝑖𝑡max of iterations, 𝑖𝑡, was fixed as 20. The residue, res, for a variable 𝒶 ∈

{𝛼𝐺 , 𝑃} at a nodal point 𝐏 and the residue of a variable 𝒻 ∈ {𝑈𝐺 , 𝑈𝐿} at a face 𝑤 are 

computed by, respectively, Eqs. (3.106) and (3.107), in which 𝜓 is a general 

variable and 𝑎 and 𝑏 are a coefficient and a discretized source term, respectively. 

(res𝒶)𝑃 = (𝑎𝒶)𝑃𝜓𝑃 − [(𝑎𝒶)𝐸𝜓𝐸 + (𝑎𝒶)𝑊𝜓𝑊 + (𝑏𝒶)𝑃] (3.106) 

(res𝒻)𝑤 =
(𝑎𝒻)𝑤𝜓𝑤 −

[(𝑎𝒻)𝑒𝜓𝑒 +
(𝑎𝒻)𝑤𝑤𝜓𝑤𝑤 +

(𝑏𝒻)𝑤
] (3.107) 

Each linear system of equations composed by the discretization equation for 

all the domain composes a tridiagonal matrix, solved by the Thomas Algorithm 

(Patankar, 1980). The systems are solved sequentially in each iteration in which 

pressure-velocity coupling is handled with the Pressure Implicit Momentum 

Explicit (PRIME) algorithm (Maliska & Raithby, 1984) modified by Ortega & 

Nieckele (2005).  

Assuming that the input parameters are already defined, the main algorithm 

can be outlined, excluding minor procedures and routines, as following: 

 Step 1: Initialization of the unknown variables (initial conditions) and of the 

time: 𝑡 = 0; 

 Step 2: Solving the boundary-value problem for the time 𝑡: 𝑖𝑡 = 0; 

o Step 2.1: Evaluation of the geometrical parameters and fluid 

properties for the entire domain; 

o Step 2.2: Evaluation of the 𝑈𝐾, 𝐾 ∈ {𝐺, 𝐿}, fields through the 

solution of the linear systems of equations originated from Eq. (3.81) 

for the entire domain; 

o Step 2.3: Evaluation of the 𝑃 field through the solution of the linear 
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system of equations originated from Eq. (3.99) for the entire domain; 

o Step 2.4: Correction of the 𝑈𝐾, 𝐾 ∈ {𝐺, 𝐿}, fields for the entire 

domain through Eq. (3.82); 

o Step 2.5: Evaluation of the 𝛼𝐺 field through the solution of the linear 

system of equations originated from Eq. (3.75) for the entire domain; 

o Step 2.6: Evaluation of the residues field for each variable and for 

the entire domain through Eqs. (3.106) and (3.107); 

o Step 2.7: Check if resmax < 𝑡𝑜𝑙 or if 𝑖𝑡 = 𝑖𝑡max: 

 Step 2.7.1: If yes, then go to Step 3; 

 Step 2.7.2: If no, then 𝑖𝑡 = 𝑖𝑡 + 1 and return to Step 2.1; 

 Step 3: Check if 𝑡 = 𝑡final (𝑡final is the total simulation time): 

o If yes, then terminate the numerical procedure; 

o If not, then calculate Δ𝑡 through Eq. (3.105), update 𝑡 = 𝑡 + Δ𝑡 and 

return to Step 2. 

3.3. The Stability-Hyperbolicity Problem of the 1D Two-Fluid Model 

The stability-hyperbolicity of the 1D Two-Fluid Model can be analyzed in 

terms of the so called "characteristics" of the equation system, which will be defined 

below. In order to determine how the characteristics dictate the hyperbolicity of the 

mathematical problem, an explanation based in Drew & Passman (1999) is 

presented. Initially, a generalized first-order quasi-linear system of partial 

differential equations is considered in Eq. (3.108). 

𝐀(𝚽)
𝜕𝚽

∂𝑡
+ 𝐁(𝛟)

𝜕𝚽

𝜕𝑥
= 𝐜(𝚽) (3.108) 

In Eq. (3.108), 𝚽(𝑥, 𝑡) = [𝛷1(𝑥, 𝑡) 𝛷2(𝑥, 𝑡) ⋯ 𝛷𝑁Φ(𝑥, 𝑡)]
T is a vector 

that contains 𝑁Φ variables 𝛷𝑗(𝑥, 𝑡), 𝑗 ∈ {1,2,… , 𝑁Φ}, dependent on time (𝑡) and 

space (𝑥). 𝐀 = 𝐀(𝚽) and 𝐁 = 𝐁(𝚽) are two coefficient matrices, 𝐜 = 𝐜(𝚽) is a 

source vector and the three of them depend on 𝚽. 

Then, it is assumed that information regarding 𝚽 is available at all points 

(𝑥, 𝑡) specified along a curve 𝒞1 defined as 𝑥 = 𝑥(𝑡) and illustrated in Figure 3.9. 

Provided that the derivatives of 𝚽 can be calculated, Taylor series expansions might 

be used for obtaining the solution for 𝚽 in the neighborhood of 𝒞1. For facilitating 
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the explanation, the variables 𝑛 = 𝑛(𝑥, 𝑡) and 𝑠 = 𝑠(𝑥, 𝑡), which represent the 

normal and tangential directions of 𝒞1, are defined as it can be observed in Figure 

3.9. 
 

 

Figure 3.9 – The curve 𝓒𝟏 and its associated variables 𝒏 and 𝒔. 

By rewriting the quasi-linear system of Eq. (3.108) with the newly defined 

variables 𝑛 and 𝑠, Eq. (3.109) is obtained. 

[𝐀(𝚽)
𝜕𝑛

𝜕𝑡
+ 𝐁(𝚽)

𝜕𝑛

𝜕𝑥
]
𝜕𝚽

∂𝑛
= 𝐜(𝚽) − [𝐀(𝚽)

𝜕𝑠

𝜕𝑡
+ 𝐁(𝚽)

𝜕𝑠

𝜕𝑥
]
𝜕𝚽

𝜕𝑠
 (3.109) 

As 𝚽 is given for all 𝒞1 curve, which is equivalent to the statement that 𝚽 is 

known for all 𝑠 values, the RHS of Eq. (3.109) is entirely known. Therefore, the 

analysis ends up in verifying if the coefficient matrix of 𝜕𝚽 ∂𝑛⁄  is singular or not, 

which can be summarized as shown by Eq. (3.110). The parameter 𝜆 =

− (𝜕𝑛 𝜕𝑡⁄ ) (𝜕𝑛 𝜕𝑥⁄ )⁄  is the characteristic of the system of Eq. (3.108). 

det[𝐁(𝛟) − 𝜆 𝐀(𝛟)] = 0 (3.110) 

If the coefficient matrix of 𝜕𝚽 ∂𝑛⁄  is singular, then the system of Eq. (3.108) 

is hyperbolic, otherwise it is elliptic (Drew & Passman, 1999). The system is 

hyperbolic and well-posed when all the characteristics 𝜆’s of the system of 

equations are real, and it is elliptic and ill-posed if one of them is complex. If all the 

characteristics are real and distinct, then the system is strongly hyperbolic and, if 

they are not, than it is weakly hyperbolic (Dinh et al., 2003). 

To determine the correspondence between the values of the characteristics 

and the hyperbolicity of the quasi-linear system, Prosperetti & Tryggvason (2007) 

presented a procedure based on introducing a perturbed solution 𝚽 = 𝚽0 +𝛟 (𝚽0 
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is a base state temporally and spatially steady and 𝛟 is a small perturbation) is 

inserted in the system of conservation equations. Considering that products between 

𝛟 and its derivatives might be neglected, as well as that derivatives of 𝚽0 are null, 

and using linear Taylor expansions, in a procedure detailed by Prosperetti & 

Tryggvason (2007), one obtains Eq. (3.111). In the referred equation, 𝐃𝑐 = 𝐃𝑐(𝚽0) 

is a matrix that contains the derivatives of each element of the vector 𝐜 in relation 

to each variable 𝛷𝑗, 𝑗 ∈ {1,… , 𝑁Φ}. 

𝐀(𝚽0)
𝜕𝛟

𝜕𝑡
+ 𝐁(𝚽0)

𝜕𝛟

𝜕𝑥
= 𝐃𝑐(𝚽0) ∙ 𝛟 (3.111) 

The small perturbation is then classically defined as shown in Eq. (3.112), 

with the form of a travelling wave. There, 𝕚 = √−1 is the imaginary unit, 𝑘 is the 

wave number, 𝜔 is its angular frequency and 𝛟𝓐 is the vector of amplitudes of the 

perturbations. 

𝛟 = 𝛟𝓐𝑒
𝕚(𝑘𝑥−𝜔𝑡) (3.112) 

After applying the linear definition of 𝛟 from Eq. (3.112) into Eq. (3.111) 

and performing some algebraic manipulations, one obtains a homogeneous linear 

system of equations in relation to 𝛟𝓐, which, for possessing a nontrivial solution 

should fulfill the condition present in Eq. (3.113). 

det [𝐁(𝚽0) − 𝜆 𝐀(𝚽0) +
𝕚

𝑘
𝐃𝑐(𝚽0)] = 0 (3.113) 

In the dispersion relation formulated in Eq. (3.113), it is seen that the 

characteristic 𝜆 = 𝜔/𝑘 appears in the expression. By maintaining the value 𝜆 

constant and considering the limit of instabilities and perturbations with negligible 

wavelengths, 𝑘 → ∞, from Eq. (3.113) one obtains Eq. (3.110) (Ramshaw & Trapp, 

1978). Thus, it has been shown that, through a linear stability analysis, which is 

required according to the third well-posedness condition of Hadamard, one can 

obtain the same rule of correspondence deduced in Drew & Passman (1999) 

between the characteristics and the hyperbolicity of the Eq. (3.108) system. 

As previously stated, the 1D Two-Fluid Model, represented by Eqs. (3.58)-

(3.61), often faces the problem of the ill-posedness (complex characteristics 𝜆), 

which is overcome by the use of regularization methods. Since, at this point of the 
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work, the 1D Two-Fluid Model has been thoroughly presented, it is possible to 

discuss such methods in an improved and more ad hoc manner and with the help of 

Eqs. (3.58)-(3.61). 

Correctly modelling the interfacial-bulk pressure difference (𝑃𝑖𝐾 − 𝑃𝐾) for 

phase 𝐾 ∈ {𝐺, 𝐿} is considered a regularizing method due to the known stabilizing 

features of both the hydrostatic (Chung & Song, 1996) and dynamic (Bestion, 1990; 

Han & Guo, 2015) pressure terms: the first term in the parentheses that multiplies 

the derivative 𝜕ℎ𝐿 𝜕𝑥⁄ , in the RHS of the momentum balance equations, Eqs. 

(3.60)-(3.61), and the third term of the RHS of these equations, respectively. That 

is the reason why vertical flows (cos 휃 = 0°) suffer from serious hyperbolicity 

issues, being in some cases even unconditionally ill-posed (Han & Guo, 2015). The 

dynamic pressure term is capable of completely hyperbolize the 1D Two-Fluid 

Model (Bestion, 1990; Han & Guo 2015), because linear stability analyses have 

shown that it limits the interfacial instabilities growth rate for all the wavelengths 

(Fullmer et al., 2014). The second-order diffusion, induced by the axial momentum 

diffusion term of Eqs. (3.60)-(3.61) (fourth term on the RHS), also helps to 

regularize the model by controlling the growth rate of small wavelength interfacial 

instabilities (Fullmer et al., 2014). The same is true for the third-order term due to 

the surface tension effect in Eq. (3.61) (fifth term on the RHS), although it acts 

mostly in very small wavelength interfacial instabilities (Fullmer et al., 2014).  

The methods and the effects of their associated terms and parameters in the 

1D Two-Fluid Model previously mentioned are well known in literature. The same 

is not truth for the dynamic interfacial shear stress term, that is, the second term in 

the parentheses that multiplies the derivative 𝜕ℎ𝐿 𝜕𝑥⁄  in the RHS of the momentum 

balance equations, Eqs. (3.60)-(3.61).  It was found by the author of this work solely 

one work (De Bertodano et al., 2013) that addresses the effect of such term on the 

stability-hyperbolicity of the 1D Two-Fluid Model. With a simple Kelvin-

Helmholtz stability analysis, De Bertodano et al. (2013) showed that the interfacial 

shear stress term destabilizes the model. 

For checking the conclusion of the work of De Bertodano et al. (2013), 

simplified well-posedness (characteristics) analyses of the 1D Two-Fluid Model 

were performed through the solution of Eq. (3.110). For such investigation, not only 

the liquid phase, but also the gas was considered incompressible. Furthermore, the 

vector of unknown variables 𝚽 can be specified according to Eq. (3.114). 
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𝚽 = [𝛼𝐺 𝑈𝐺 𝑈𝐿 𝑃]T (3.114) 

 The 1D Two-Fluid Model, Eqs. (3.58)-(3.61), should be rewritten as a quasi-

linear system, as in Eq. (3.108). First, the terms of second and third-order of the 

momentum balance equations were neglected (Montini, 2011). Then, the derivative 

𝜕ℎ𝐿/𝜕𝛼𝐿 is formulated in Eq. (3.115) with the assistance of the geometrical 

definitions of Table 3.1 and Eq. (3.13). 

𝜕ℎ𝐿
𝜕𝛼𝐿

= 𝜋𝐷 (
sin 𝛿

2 − cos 𝛿
) (3.115) 

 It is important as well to define the derivative of the dynamic pressure term 

Δ𝑃𝒟,𝐾, 𝐾 ∈ {𝐺, 𝐿}, by taking into account the employment of the Bestion (1990) 

correlation, Eqs. (3.30) and (3.31). This is done in Eq. (3.116) and (3.117), where 

the auxiliary variable ℋ𝒟 is expressed. 

𝜕(Δ𝑃𝒟,𝐾)

𝜕𝑥
= 2휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺) (

𝜕𝑈𝐺
𝜕𝑥

−
𝜕𝑈𝐿
𝜕𝑥

) − ℋ𝒟

𝜕𝛼𝐺
𝜕𝑥

 (3.116) 

ℋ𝒟 = [𝛼𝐿 − 𝛼𝐺 − 𝛼𝐺𝛼𝐿(𝜌𝐿 − 𝜌𝐺)] [
휂𝒟𝜌𝐺𝜌𝐿(𝑈𝐿 − 𝑈𝐺)

2

(𝛼𝐺𝜌𝐿 + 𝛼𝐿𝜌𝐺)2
] (3.117) 

 Afterwards, the gas and liquid mass conservation equations of the 1D Two-

Fluid Model, Eqs. (3.58) and (3.59), are reformulated in Eqs. (3.118) and (3.119), 

respectively, in the same non-conservative form of the quasi-linear system of Eq. 

(3.108), using the unknown variables vector 𝚽, Eq. (3.114). 

𝜌𝐺
𝜕𝛼𝐺
𝜕𝑡

+ 𝜌𝐺𝑈𝐺
𝜕𝛼𝐺
𝜕𝑥

+ 𝛼𝐺𝜌𝐺
𝜕𝑈𝐺
𝜕𝑥

= 0 (3.118) 

−𝜌𝐿
𝜕𝛼𝐺
𝜕𝑡

− 𝜌𝐿𝑈𝐿
𝜕𝛼𝐺
𝜕𝑥

+ 𝛼𝐿𝜌𝐿
𝜕𝑈𝐿
𝜕𝑥

= 0 (3.119) 

 A similar procedure is adopted for rewriting the momentum conservation 

equations, Eqs. (3.60) and (3.61), by additionally using the definitions of Eqs. 

(3.115)-(3.117). Such reshaped conservations equations are shown in Eqs. (3.120) 

and (3.121) for the gas and liquid, respectively. 
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𝜌𝐺𝑈𝐺
𝜕𝛼𝐺
𝜕𝑡

+ 𝛼𝐺𝜌𝐺
𝜕𝑈𝐺
𝜕𝑡

+𝒷𝐼
𝜕𝛼𝐺
𝜕𝑥

+𝒷𝐼𝐼
𝜕𝑈𝐺
𝜕𝑥

+ 𝒷𝐼𝐼𝐼
𝜕𝑈𝐿
𝜕𝑥

+ 𝛼𝐺
𝜕𝑃

𝜕𝑥
= Λ𝐺 (3.120) 

−𝜌𝐿𝑈𝐿
𝜕𝛼𝐺
𝜕𝑡

+ 𝛼𝐿𝜌𝐿
𝜕𝑈𝐿
𝜕𝑡

+𝒷𝐼𝑉
𝜕𝛼𝐺
𝜕𝑥

+ 𝒷𝑉
𝜕𝑈𝐺
𝜕𝑥

+ 𝒷𝑉𝐼
𝜕𝑈𝐿
𝜕𝑥

+ 𝛼𝐿
𝜕𝑃

𝜕𝑥
= 𝛬𝐿 (3.121) 

 The coefficients 𝒷𝑗, 𝑗 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉, 𝑉, 𝑉𝐼}, present in the previous 

expressions are defined in Eqs. (3.122)-(3.127), respectively.  

𝒷𝐼 = 𝜌𝐺𝑈𝐺
2 + 𝛥𝑃𝒟,𝐺 − 𝛼𝐺ℋ𝒟 − (𝛼𝐺𝜌𝐺𝑔 𝑐𝑜𝑠 휃 + 𝒥𝑖

𝑆𝑖
𝐴
)
𝜕ℎ𝐿
𝜕𝛼𝐿

 (3.122) 

𝒷𝐼𝐼 = 2𝛼𝐺[𝜌𝐺𝑈𝐺 + 휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺)] (3.123) 

𝒷𝐼𝐼𝐼 = −2𝛼𝐺휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺) (3.124) 

𝒷𝐼𝑉 = −𝜌𝐿𝑈𝐿
2 − 𝛥𝑃𝒟,𝐿 − 𝛼𝐿ℋ𝒟 − (𝛼𝐿𝜌𝐿𝑔 𝑐𝑜𝑠 휃 − 𝒥𝑖

𝑆𝑖
𝐴
)
𝜕ℎ𝐿
𝜕𝛼𝐿

 (3.125) 

𝒷𝑉 = 2𝛼𝐿휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺) (3.126) 

𝒷𝑉𝐼 = 2𝛼𝐿[𝜌𝐿𝑈𝐿 − 휂𝒟𝜌𝒟(𝑈𝐿 − 𝑈𝐺)] (3.127) 

 The source term Λ𝐾, 𝐾 ∈ {𝐺, 𝐿}, in Eqs. (3.120) and (3.121) contemplate the 

gravitational and shear forces, as shown in Eq. (3.128), where the upper sign in “∓” 

refer to the gas phase and the lower sign to the liquid. 

Λ𝐾 = 𝛼𝐾𝜌𝐾𝑔 sin 휃 − 𝜏𝑤𝐾
𝑆𝐾
𝐴
∓ 𝜏𝑖

𝑆𝑖
𝐴

 (3.128) 

 After rewriting the 1D Two-Fluid Model, one can determine the coefficient 

matrices 𝐀(𝚽) and 𝐁(𝚽) of the system, Eq. (3.108), as depicted in Eqs. (3.129) 

and (3.130), respectively. 

𝐀(𝚽) = [

𝜌𝐺 0 0 0
−𝜌𝐿 0 0 0
𝜌𝐺𝑈𝐺 𝛼𝐺𝜌𝐺 0 0
−𝜌𝐿𝑈𝐿 0 𝛼𝐿𝜌𝐿 0

] (3.129) 
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𝐁(𝚽) = [

𝜌𝐺𝑈𝐺 𝛼𝐺𝜌𝐺 0 0
−𝜌𝐿𝑈𝐿 0 𝛼𝐿𝜌𝐿 0
𝒷𝐼 𝒷𝐼𝐼 𝒷𝐼𝐼𝐼 𝛼𝐺
𝒷𝐼𝑉 𝒷𝑉 𝒷𝑉𝐼 𝛼𝐿

] (3.130) 

 With the already defined matrices 𝐀(𝚽) and 𝐁(𝚽), it is possible to solve Eq. 

(3.110) for finding the characteristics 𝜆's. Such equation might be developed into a 

easily solved quadratic polynomial, shown in Eq. (3.131). The variables 휁𝑗, 𝑗 ∈

{0,1,2} are expressed in Eqs. (3.132)-(3.134), respectively. 

휁0 + 휁1𝜆 + 휁2𝜆
2 = 0 (3.131) 

휁0 = 𝛼𝐺𝛼𝐿
2𝒷𝐼 − 𝛼𝐿

2𝑈𝐺𝒷𝐼𝐼 + 𝛼𝐺𝛼𝐿𝑈𝐿𝒷𝐼𝐼𝐼 − 𝛼𝐺
2𝛼𝐿𝒷𝐼𝑉

+ 𝛼𝐺𝛼𝐿𝑈𝐺𝒷𝑉 − 𝛼𝐺
2𝑈𝐿𝒷𝑉𝐼 

(3.132) 

휁1 = 𝛼𝐿
2𝒷𝐼𝐼 − 𝛼𝐺𝛼𝐿(𝒷𝐼𝐼𝐼 +𝒷𝑉) + 𝛼𝐺

2𝒷𝑉𝐼 (3.133) 

휁2 = −𝛼𝐺𝛼𝐿(𝛼𝐺𝜌𝐿 + 𝛼𝐿𝜌𝐺) (3.134) 

 Assuming that the holdups are equal to steady-state fully-developed 

equilibrium values for a given pair of superficial velocities, Eq. (3.131) is 

straightforwardly employed for evaluating the characteristics of the 1D Two-Fluid 

Model, subjected to the other previously mentioned hypotheses. In a following 

chapter, the results from this analysis, for the Eskerud Smith et al. (2011) database 

and for checking the findings of De Bertodano et al. (2013), are presented and 

discussed.  
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4. OPTIMIZATION OF THE INTERFACIAL SHEAR STRESS 

In this chapter of the work, two new correlations for the interfacial friction 

factor are proposed to improve the predictions of stratified and slug flows. These 

correlations were developed based on the experimental database of Eskerud Smith 

et al. (2011), also used in Johansen et al. (2014) and in Khaledi et al. (2014), of 

viscous oil and gas flow in several regimes. 

As clearly mentioned in the previous chapter, the accuracy of the numerical 

prediction depends strongly on the interfacial friction factor. However, it should be 

made clear that an appropriate interfacial friction factor is necessary not only for 

the Regime Capturing Methodology, described in the previous chapter, but also for 

so called “Point Models”. Point Models are based on simplified (steady-state and 

fully-developed) version of the 1D Two-Fluid Model for holdup and pressure 

gradient (henceforth labelled as “integral parameters”). 

In the literature review regarding the modelling of the interfacial shear stress 

in horizontal stratified gas-liquid flows, a vast number of options was illustrated. 

However, most of the literature correlations for such parameter were made with 

experiments with low viscosity (i.e., close to the water viscosity at standard 

consitions, 1cp), while the Eskerud Smith et al. (2011) database is for a mineral, 

one hundred times more viscous than water. In fact, Pasqualette et al. (2015) have 

shown that correlations such as the ones found in the works of Andritsos & Hanratty 

(1987) and Andreussi & Persen (1987) may generate significantly disparate results, 

when employed in the Regime Capturing Methodology for simulating cases from 

the Eskerud Smith et al. (2011) database. It was shown how inefficient interfacial 

friction factor correlations commonly used in the literature are for simulating the 

Eskerud Smith et al. (2011) database within the referred framework. Therefore, at 

the presented work, needed new correlations based on such experimental data were 

developed. 

This chapter begins by a thorough presentation of the viscous oil-gas 

horizontal flow cases of the Eskerud Smith et al. (2011) database, aiming to select 
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the experimental cases from the database most appropriate to elaborate the new 

correlations. Afterwards, the Point model (steady-state fully-developed version of 

the 1D Two-Fluid Model) used for elaborating the correlations is explained. As the 

solution of this simplified 1D Two-Fluid Model might lead to multiple solutions 

(Ouyang & Aziz, 2002), an investigation was made in order to answer the question 

whether this is an issue (or not) for the cases selected from the database.  

Before determining any interface friction factor expression, an optimization 

method implemented in the present work is described. This method was applied to 

determine an optimized interface friction factor, as well coefficients for new 

correlations for the interface friction factor. 

Then, it is discussed which are the most often used methods for elaborating 

correlations for the interfacial friction factor and why they can be unsatisfactory. In 

the following topic, the wall shear stress correlations that were used in the 

simplified version of the 1D Two-Fluid Model and in the optimization framework 

are presented.  

In the final topic, the elaborated correlations are introduced and the predictions 

for the integral parameters (pressure drop and holdup) obtained by the solution of the 

simplified 1D Two-Fluid Model are presented. Results obtained with other literature 

expressions for the interfacial friction factor are also compared and discussed. 

4.1. The Eskerud Smith et al. (2011) Experimental Database and the 

Selected Cases 

The Eskerud Smith et al. (2011) experimental database comprises of 

isothermal horizontal viscous oil-gas flows in a laboratory-scale pipe. Experimental 

measurements have been performed at the Tiller Laboratory of SINTEF in Norway 

(Eskerud Smith et al., 2011). For each individual case, the complete description of 

flow and experimental conditions cannot be fully disclosed due to confidentiality 

reasons. For this reason, rather than using the superficial velocities for describing 

the flow conditions, the superficial Reynolds number is used. The superficial 

Reynolds number of phase 𝐾, Re𝑠𝐾, is defined by Eq. (4.1)., where 𝐷 is the pipe 

internal diameter, and 𝜌𝐾, 𝑈𝑠𝐾 and 𝜇𝐾 are, respectively, the density, superficial 

velocity and viscosity of phase 𝐾 ∈ {𝐺, 𝐿} (𝐺 represents the gas and 𝐿 the liquid). 
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Re𝑠𝐾 =
𝜌𝐾|𝑈𝑠𝐾|𝐷

𝜇𝐾
 (4.1) 

Furthermore, the description done in this work is limited to the cases 

described by Eskerud Smith et al. (2011), Johansen et al. (2014) and Khaledi et al. 

(2014), who also used the same database.  

The Eskerud Smith et al. (2011) database consists in two sets of experiments, 

both employing SF6 as gas phase. The liquid phase of the first set is Exxsol, which 

is a de-aromatized aliphatic hydrocarbon oil commonly used in experiments for 

being non-flammable, nontoxic and transparent. The liquid phase of the second set 

is Nexbase 3080, a catalytically hydroisomerized and dewaxed base oil composed 

by hydrogenated and highly isoparaffinic hydrocarbons, and is also non-flammable 

and transparent. The main difference between these two mineral oils is that Exxsol 

D80 has a viscosity of the same order of magnitude than the viscosity of water, that 

is, 1cp, while the viscosity of Nexbase 3080 is approximately one hundred times 

this same value at pressures and temperatures close to standard conditions (1atm 

and 15°C). Since, the present work is concerned with viscous liquid, only the set of 

experiments that used Nexbase 3080 as the liquid was considered here.  

The test section, or flow loop, used for performing the Nexbase 3080 and SF6 

experiments comprises of a horizontal pipe with an internal diameter of 6.86cm, 

i.e., 2.7 inches, and a length of 52.92m measured from the gas-liquid mixing point 

to the pipe outlet section, from where a large separator follows. From single-phase 

flow experiments, the internal wall absolute roughness of the pipe was evaluated as 

7𝜇m.  

In the complete set of experiments, the absolute flow pressure and average 

temperature varied, respectively, between 7.0 and 7.6 bar and between 18.0 and 

24.6°C. In such thermodynamic conditions, the key properties of the fluids used, 

varied within the range indicated in Table 4.1. Furthermore, both the gas viscosity 

and the interfacial tension were approximately constant in the experiments and had 

the values of, respectively, 0.0151cp and 0.2 N/m. From Table 4.1, the high 

viscosity of the mineral oil Nexbase 3080, at least much higher than the viscosity 

of the water, is very clear, as well as two particularities of the SF6. First, it is the 

possibility of considering it as an ideal gas due to the values of its compressibility 

factor being so close to the unity. In addition, a gas constant about five times lower 

than the air gas constant, makes the SF6 have a density five times higher than the 
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density that air would have in the same conditions. Thus, it is clear the significant 

deviation of the properties of the present viscous oil-gas flow cases from air-water 

flows in standard conditions. It is important to mention that the methods and 

instruments used for measuring the fluid properties are not explored in this work 

and, for more information it is recommended referring to Eskerud Smith et al. 

(2011). 

Table 4.1 – Minimum and maximum key fluid properties in the experiments. 

Fluid Property Minimum Value Maximum Value 

SF6 compressibility factor 0.96 0.99 

SF6 density 43.3 kg/m³ 47.0 kg/m³ 

Nexbase 3080 density 847.9 kg/m³ 852.6 kg/m³ 

Nexbase 3080 viscosity 79.6cp 113.7cp 

  

The pipe of the test section was equipped with six pressure cells, which 

provided an accurate measurement of the pressure gradient. The value measured by 

the first of these cells, located at 25.6m downstream from the mixing point, was 

considered the absolute pressure of the flow, whose values varied according to the 

limits previously mentioned. A broad-beam gamma densitometer was fixed at 

approximately 38.15m downstream from the mixing point and was used to acquire 

time traces of the liquid holdup 𝛼𝐿 at a frequency of 10Hz. From such signals, the 

mean liquid holdup for each case could be determined. Only the broad-beam 

gamma densitometer measurements, the pressure gradient, the fluid properties and 

the flow conditions for each case were available to the author of this work. That is 

why, the other instruments present in the test section, e.g. narrow-beam gamma 

densitometer and high-speed videos, were not here described. Their detailing and 

the specification of the uncertainties of each instrument used can be found in 

Eskerud Smith et al. (2011).  

Eighty flow cases of viscous oil (Nexbase 3080) and SF6 (gas) had its main 

parameters and conditions measured in the previously described flow loop. In the 

database, the superficial Reynolds number of the gas phase, Re𝑠𝐺, varied between 

5.18×104 and 2.30×106 and the liquid superficial Reynolds number, Re𝑠𝐿, ranged 

from 60 to 2.06×103. Although it is not exactly Re𝑠𝐾 that determines if a phase is 

laminar, transitional or turbulent, from them it can be seen that, while the gas should 

always be turbulent, the liquid probably will be either laminar or transitional. 
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It should be emphasized here that one of the purposes of developing a new 

correlation for the interfacial shear stress is to include it in methodologies that use 

the 1D Two-Fluid Model, such as the Regime Capture Methodology, but also 

similar formulations, as well as in Point Model formulations. 

Considering the Regime Capture Methodology presented in the previous 

chapter, its base configuration for horizontal or slightly horizontal pipelines is a 

stratified flow, therefore, these flow patterns should be identified from the Eskerud 

Smith et al. (2011) database for the correlations development. Further, within the 

framework of the Regime Capturing Methodology in fine meshes, large-scale 

waves are naturally captured and only small-scale interfacial effects must be 

included in the interfacial shear stress. Thus, the stratified wavy flows must also be 

subdivided depending on the wave’s amplitude. 

If it is assumed that only small-scale interfacial effects must be included in 

the interfacial shear stress, since those of large-scale should theoretically be 

captured, the new correlations for the interfacial shear stress should be developed 

employing only cases with small-amplitude interfacial waves. Therefore, the 

stratified wavy flow with large-amplitude waves are excluded from the elaboration 

of the correlations and solely those with small-amplitude waves are used. 

In order to identify the flow pattern of the eighty cases selected from Eskerud 

Smith et al. (2011) database, the signal of the broad-beam gamma densitometer 

liquid holdup 𝛼𝐿 was employed. At the present work, the Eskerud Smith et al. 

(2011) database was examined and the following classification was considered:  

 Slug flow; 

 Bubbly flow; 

 Stratified wavy flow with small amplitude waves; 

 Stratified wavy flow with large amplitude waves; 

 High gas flow rate flow patterns. 

No stratified smooth flow was observed in the present database due to the 

viscosity of the oil. Very high gas flow rate cases, with flow patterns such as 

annular, misty and stratified low-liquid loading flows were lumped into the single 

label “high gas flow rate flow patterns”, because it is not possible to differentiate 

between them only using the gamma densitometer signals. Further, these patterns 

were not the focus of the present work.  
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The procedure used for determining the flow pattern of each case with the 

broad-beam gamma densitometer liquid holdup time traces is summarized in 

Figure 4.1.  

 

Figure 4.1 – Procedure for the flow pattern classification of the Eskerud Smith et al. 

(2011) database. 

Beginning in the upper box in Figure 4.1, the procedure starts by analyzing 

the histogram of the liquid holdup signal. If the histogram has two peaks, being one 

of them for a value of 𝛼𝐿 higher than 0.8, the flow is classified as slug flow. The 

value of 0.8 was selected in order to avoid that slug aeration leads the procedure to 

a fallacious classification. After checking if the flow has slugs, it should be verified 

if the mean liquid holdup value, 〈𝛼𝐿〉 is higher than 0.8. If it is, than the case is 

bubbly flow, otherwise, it is verified if 〈𝛼𝐿〉 is lower than 0.08. If yes, than the flow 

gains the previous mentioned label of “high gas flow rate flow patterns” and, if not, 

than it is already known that the flow regime consists in stratified wavy flow. For 

determining if its waves have a small or large amplitude, one must convert the liquid 

holdup 𝛼𝐿 signals of the gamma densitometer to dimensionless liquid height ℎ𝐿/𝐷 

signals, by using the geometrical relations of the stratified flow configuration 

(Figure 3.1). If the ratio between the standard deviation of the liquid height 𝜎ℎ𝐿/𝐷 

and the mean dimensionless liquid height value 〈ℎ𝐿/𝐷〉 is superior to 0.52, it 

indicates that the stratified flow has large-amplitude waves. Otherwise, the 

stratified flow has small-amplitude waves and it is adequate to be used in the 

elaboration of the new correlations for the interfacial friction factor. It is important 

to mention that the values in Figure 4.1 were especially chosen for the Eskerud 
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Smith et al. (2011) database, with the aid of available video footages of the flows, 

as a manner for systematizing the flow pattern classification 

To identify the type of wave of a stratified wavy flow, one can examine the 

absolute wave amplitude. However, in order to classify the type of wave in a 

rigorous way, one must employ the ratio of dimensionless standard deviation and 

liquid height 𝜎ℎ𝐿/𝐷/〈ℎ𝐿/𝐷〉, with the threshold value of 0.52 to separate the small 

and large amplitude waves. Figure 4.2 shows the liquid holdup time traces of the 

two cases, with the same superficial Reynolds number, Figure 4.2(a) is a case with 

𝜎ℎ𝐿/𝐷/〈ℎ𝐿/𝐷〉 = 0.519, and contains the liquid holdup signal of a stratified wavy 

flow with small-amplitude waves while Figure 4.2(b) corresponds to large-

amplitude waves case (𝜎ℎ𝐿/𝐷/〈ℎ𝐿/𝐷〉 = 0.549).  

 

Figure 4.2 – Stratified wavy flow cases in the threshold of 𝜎ℎ𝐿/𝐷/〈ℎ𝐿/𝐷〉 = 0.52: 

(a) small-amplitude waves; (b) large-amplitude waves. 

In Figure 4.3, the experimental liquid holdup 𝛼𝐿 time traces, obtained with 

the broad-beam gamma densitometer, of one example-case is depicted for each type 

of flow pattern from the previously defined classification. An example of a bubbly 

flow case is clearly seen in Figure 4.3(a) due to its high liquid holdup. In Figure 

4.3(b), the liquid holdup signal of a slug flow case, characterized by the 

intermittency between separated flow and liquid slug bodies, is visible. The two 

peaks in slug flow holdup histograms represent those two intermittent features. 

Both the liquid holdup time traces of Figures 4.3(c) and 4.3(d) belong to stratified 

wavy flows. In them, small-amplitude interfacial waves are present, resembling 

almost a type of roughness, but only in Figure 4.3(c) there are also large-amplitude 

waves. Lastly, in Figure 4.3(e), the very low displayed liquid holdup signal points 

to a high gas flow rate case. It is clear how challenging it would be to confirm if, in 

the latter figure, a misty flow, an annular flow or a stratified wavy flow with a much 
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curved interface (low-liquid loading condition) is present. 

 

Figure 4.3 – Liquid holdup time traces measured by the broad-beam gamma 

densitometer: (a) bubbly flow case; (b) slug flow case; (c) stratified wavy flow case with 

large amplitude waves case; (d) stratified wavy flow case with small amplitude waves 

case; (e) high gas flow rate case. 

 

Figure 4.4 – Liquid holdup histograms of one case for each flow pattern from the 

classification. 

The liquid holdup histograms of the same cases, whose broad-beam gamma 

densitometer measurements were plotted in Figure 4.3, are displayed in Figure 4.4. 

The histograms were plotted in the style of a Probability Density Function for 

reasons of aesthetic. It is interesting to observe in the referred figure that, excluding 
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the slug flow case, the “width” of the histogram peaks represent the degree of 

intermittency of the flow. Some of the same observations made with Figure 4.3 can 

also be made with Figure 4.4. 

The previous paragraphs have shown that Eskerud Smith et al. (2011) 

database is quite large, with a variety of flow patterns. To develop the new 

interfacial friction factor correlations, a sub-set of cases was selected as described. 

To summarize, the gas-liquid considered were SF6-Nexbase 3080. Further, only the 

stratified wavy flow with small amplitude waves were considered. 

4.2. The Point Model 

To develop the new interfacial friction factor, the Point Model was applied, 

which corresponds to a steady state and fully developed flow. The same base flow 

configuration employed in the previous chapter was considered here, i.e., a 

stratified flow, with a flat interface in the cross section as shown in Figure 3.1(a) 

and with geometrical variables expressed by Table 3.1 and Eq. (3.14).  

To obtain the Point Model, the conservation equations for the Regime 

Capturing Model presented in the previous chapter, Eqs. (3.60) and (3.61), were 

simplified, considering steady state and fully developed flow, resulting in the gas 

and liquid momentum balances of Eqs. (4.2) and (4.3). 

𝜕𝑃𝐺
𝜕𝑥

= −𝜌𝐺𝑔 sin 휃 − 𝜏𝑤𝐺
𝑆𝐺
𝐴𝐺

− 𝜏𝑖
𝑆𝑖
𝐴𝐺

 (4.2) 

𝜕𝑃𝐿
𝜕𝑥

= −𝜌𝐿𝑔 sin 휃 − 𝜏𝑤𝐿
𝑆𝐿
𝐴𝐿
+ 𝜏𝑖

𝑆𝑖
𝐴𝐿

 (4.3) 

In the referred equations, the interfacial pressure gradient was rewritten 

employing the phasic pressure gradient, using Eq. (3.7), and the phase holdup was 

written as  𝛼𝐾 = 𝐴𝐾/𝐴. 

The two algebraic momentum balance equations, Eqs. (4.2) and (4.3), are the 

core of the simplified 1D Two-Fluid Model. Its solution is plainly defined as finding 

a value of liquid holdup 𝛼𝐿 for which the pressure gradient in both phases are equal 

(Andritsos & Hanratty, 1987b). This is mathematically represented in Eq. (4.4) by 

the necessity of finding the zero of the function 𝒢(𝛼𝐿). 

DBD
PUC-Rio - Certificação Digital Nº 1513633/CA



Optimization of the Interfacial Shear Stress __________________________ 104 

 

 

 

𝒢(𝛼𝐿) =
𝜕𝑃𝐺
𝜕𝑥

|
𝛼𝐿

−
𝜕𝑃𝐿
𝜕𝑥
|
𝛼𝐿

 (4.4) 

The function 𝒢(𝛼𝐿) can be rewritten, by substituting, Eqs. (4.2) and (4.3) in 

Eq. (4.4), resulting in Eq. (4.5). 

𝒢(𝛼𝐿) = 𝜏𝑤𝐿
𝑆𝐿
𝐴𝐿
− 𝜏𝑤𝐺

𝑆𝐺
𝐴𝐺

− 𝜏𝑖 (
𝑆𝑖
𝐴𝐿
+
𝑆𝑖
𝐴𝐺
) + (𝜌𝐿 − 𝜌𝐺)𝑔 sin 휃 (4.5) 

In this way, the solution of the simplified 1D Two-Fluid Model is able to 

provide estimates for the pressure gradient and the liquid holdup of the flow. 

Finding the zero of 𝒢(𝛼𝐿) is a task that can be executed through several algorithms. 

However, in this work, a simple and standard secant method was found to be 

sufficient. It is interesting to see that, as a contrast to the complete 1D Two-Fluid 

Model, there is no need for spatial grid resolution in its simplified version. That is 

why the solution of the simplified 1D Two-Fluid Model for obtaining values for the 

integral parameters of the flow is labelled in this work as “Point Model”. 

The shear stresses for each phase 𝐾 ∈ {𝐺, 𝐿}, 𝜏𝑤𝐾, and interface shear stress 

𝜏𝑖 (here equal to the effective interface shear stress 𝜏𝑖
∗) are expressed using Eqs. 

(3.36) and (3.48), which are repeated here as Eqs. (4.6) and (4.7), with the definition 

of Eq. (3.49). 

𝜏𝑤𝐾 =
1

2
𝑓𝐾𝜌𝐾|𝑈𝐾|𝑈𝐾      (4.6) 

𝜏𝑖 =
1

2
𝑓𝑖𝜌𝐺|𝑈𝐺 − 𝑈𝐿|(𝑈𝐺 − 𝑈𝐿) (4.7) 

Thus, to complete the problem formulation, it remains to determine the phase 

𝐾 friction factor 𝑓𝐾  and interface friction factor 𝑓𝑖. As already mentioned, the 

former depend on the phase Reynolds number Re𝐾 or superficial phase Reynolds 

number Re𝑠𝐾, and the latter on the interface Reynolds number Re𝑖. Further, it is 

important to determine the regime of each phase, i.e., if it is laminar, transitional or 

turbulent. In the Point-Model and in the Regime Capturing Methodology, the 

threshold for transition of laminar and turbulent regime were defined based on the 

recommendations of Khaledi et al. (2014). In other words, for Re ≤ Relam = 1400 

the flow is laminar, for Re > Returb = 4000 it is turbulent, otherwise, there is a 

transition. To obtain a smooth transition of friction factor between regimes, it was 
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handled as explained in the previous chapter, employing Eq. (3.44). 

4.3. Multiple Solutions Problem 

As pointed out in the literature, the Point Models might possess multiple 

solutions. In other words, there are situations in which there is more than one 𝛼𝐿 

root of the function 𝒢(𝛼𝐿) in Eq. (4.4). Landman (1991) analytically solved the 

model for a scenario in which both phases were laminar, and verified the non-

uniqueness of the solution. The same work also uncovered that, when there are 

multiple solutions, the lowest root of 𝒢(𝛼𝐿) is the most stable one, while the highest 

𝛼𝐿 root is surely unstable and the intermediate values might be stable or not. 

Nevertheless, for this work the main question is if the occurrence of multiple 

solutions is a problem for the isothermal horizontal stratified gas-liquid flows cases 

with small-amplitude waves selected from the database. Ouyang & Aziz (2002) 

stated that the existence of multiple solutions depends on several flow parameters 

(e.g. pipe diameter, fluid properties, pipe inclination angle and flow rates), but is 

more commonly found in upward (positive angle 휃) inclined flows. Since the 

present work is concerned with horizontal flows, the possibility of multiple 

solutions being an issue is small, however, the uncertainty persists. 

To verify the possibility of occurrence of multiple solutions the following 

procedure often employed in the literature (Landman, 1991; Ouyang & Aziz, 2002) 

can be applied. Let’s assume that 𝜕𝑃𝐺 𝜕𝑥⁄ = 𝜕𝑃𝐿 𝜕𝑥⁄ , i.e., equating Eqs. (4.2) to 

(4.3), and by dividing the resulting equation by 𝜏𝑤𝐺, one obtains Eq. (4.8). 

𝑋𝐿
𝑆𝐿
𝛼𝐿
− 𝑋𝑖𝑆𝑖 (

1

𝛼𝐺
+
1

𝛼𝐿
) + 𝑋𝒲 −

𝑆𝐺
𝛼𝐺

= 0 (4.8) 

The dimensionless parameters 𝑋𝐿, 𝑋𝑖 and 𝑋𝒲 are defined according to Eqs. 

(4.9)-(4.11), respectively. The parameter 𝑋𝐿 is analogous to the widely known 

parameter of Lockhart & Martinelli (1949). 

𝑋𝐿 =
𝜏𝑤𝐿
𝜏𝑤𝐺

 (4.9) 

𝑋𝑖 =
𝜏𝑖
𝜏𝑤𝐺

 (4.10) 
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𝑋𝒲 =
(𝜌𝐿 − 𝜌𝐺)𝑔 sin 휃

𝜏𝑤𝐺
 (4.11) 

As the stratified gas-liquid flows with small-amplitude waves selected from 

the Eskerud Smith et al. (2011) database refer to a totally horizontal pipe, the 

parameter 𝑋𝒲, defined by Eq. (4.11), is null. Therefore, Eq. (4.8) can be rewritten 

as Eq. (4.12). 

𝑋𝑖 = (𝑋𝐿
𝛿

𝛼𝐿
−
𝜋 − 𝛿

𝛼𝐺
) (
𝛼𝐺𝛼𝐿
sin 𝛿

) (4.12) 

By examining Eq. (4.12), it can be seen that for a horizontal flow, only three 

variables control de behavior of the Point Model: 𝑋𝑖, 𝑋𝐿 and the liquid holdup 𝛼𝐿. 

Then, a multiple solution scenario would occur when for the same values of 𝑋𝑖 and 

𝑋𝐿 there were two or more values of 𝛼𝐿 that satisfy Eq. (4.12). For checking this, 

the variable 𝑋𝑖 was computed for 𝛼𝐿 ∈ ]0.0,1.0[ and for six very disparate values 

of 𝑋𝐿. The results were plotted in the diagram shown in Figure 4.5, where it is 

evident that for all values of 𝑋𝐿, except 0.01, and for low liquid holdups, one value 

of 𝑋𝑖 can be associated with two values of 𝛼𝐿. Therefore, there is a non-uniqueness 

of the Point Model for situations in which 𝛼𝐿 is lower than approximately 0.08. 

However, cases of the Eskerud Smith et al. (2011) database with such values of 

mean liquid holdup 〈𝛼𝐿〉 were classified as “high gas flow rate flow patterns” and 

were not used in the elaboration of the new interfacial friction factor correlations. 

As a result, it can be considered that for stratified wavy flow with small-amplitude 

waves cases there is no multiple solutions problem when using the Point Model. 

 
Figure 4.5 – Diagram for analyzing Point Model multiple solutions for horizontal flows. 
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4.4. Optimization Method 

The optimization procedure implement in this work, is based on two objective 

function formulations. Both objective function formulations depend on a root-

mean-squared error, 𝑒, that combines the relative (to the measurements) errors of 

the Point Model results for pressure gradient and liquid holdup: 𝑒𝑑𝑃 𝑑𝑥⁄  and 𝑒𝛼𝐿, 

respectively. Such variables are formulated in Eqs. (4.13) and (4.14), for a Eskerud 

Smith et al. (2011) database stratified wavy flow with small-amplitude waves case 

𝑗𝑐, where the subscript “pm” represents what was calculated by the Point Model, 

and Eq. (4.15) shows the expression for the aforementioned error 𝑒. One should 

recall that the Point Model is valid when 𝒢(𝛼𝐿) = 0, Eq. (4.4). 

𝑒𝑑𝑃 𝑑𝑥⁄ |
𝑗𝑐
=
𝑑𝑃/𝑑𝑥|pm,𝑗𝑐 − 𝑑𝑃/𝑑𝑥|exp,𝑗𝑐

𝑑𝑃/𝑑𝑥|exp,𝑗𝑐
 

(4.13) 

𝑒𝛼𝐿|𝑗𝑐 =
𝛼𝐿|pm,𝑗𝑐 − 𝛼𝐿|exp,𝑗𝑐

𝛼𝐿|exp,𝑗𝑐
 (4.14) 

𝑒|𝑗𝑐 = √(𝑒𝛼𝐿|𝑗𝑐)
2
+ (𝑒𝑑𝑃 𝑑𝑥⁄ |

𝑗𝑐
)
2

 (4.15) 

The optimization procedure proposed in this work has the purpose of 

minimizing the errors of the calculations of the Point Model, i.e., to obtain values 

for liquid holdup and pressure gradient closest to the measurements as possible. 

Two optimization problems were considered here. The first optimization problem 

was applied aiming to determine an optimized interface friction factor. This is 

performed by considering 𝑓𝑖 as the optimization variable of the procedure and by 

solving the optimization problem for each flow case. The objective function 

formulation ℱobj
𝐼  that should be used in this framework is the one shown in Eq. 

(4.16) for case 𝑗𝑐 ∈ {1, … ,𝑁𝑐} (𝑁𝑐 is the number of cases used in the optimization). 

ℱobj
𝐼 |

𝑗𝑐
= 𝑒|𝑗𝑐 (4.16) 

The second optimization problem was applied to determine the new 

correlations for the interface friction factor, and its application will be presented in 

another topic. In the second optimization problem, the optimization procedure has 

the coefficients 휂𝑗 , 𝑗 ∈ {1,… ,𝑁𝑣} (𝑁𝑣 is the total number of coefficients) as 
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variables, contained in the vector 𝛈, of a pre-proposed expression for 𝑓𝑖, rather than 

the values of 𝑓𝑖 themselves. Besides that, the coefficients in 𝛈 are optimized for all 

selected flow cases, that is, are not case-specific anymore, such as the first 

optimization problem described. In this way, the new expressions for the interfacial 

friction factor are elaborated. With these remarks in mind, the objective function of 

Eq. (4.17) shall be used in this optimization problem. 

ℱobj
𝐼𝐼 =

1

𝑁𝐶
∑𝑒|𝑗𝑐

𝑁𝐶

𝑗𝑐=1

 (4.17) 

 In terms of best possible values (optimized) of pressure gradient, 

𝑑𝑃 𝑑𝑥⁄ |opt,𝑗𝑐, and liquid holdup, 𝛼𝐿|opt,𝑗𝑐, for each case 𝑗𝑐, it is worth mentioning 

that the first optimization problem provides better results than the second one, since, 

in the latter, the interfacial friction factor is constrained by a pre-proposed 

expression and the procedure is not case-specific. The two optimization problems 

just described, originated from the same optimization procedure, are outlined in 

Figure 4.6, by the depiction of its optimization variables, objective functions used 

and main outputs. 

 

Figure 4.6 – The two optimization problem formulations: (a) for evaluating the best 

possible results of the Point Model (applied to each specific case 𝑗𝑐); (b) for elaborating 

new correlations for the interfacial friction factor. 
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 For solving the optimization procedure in both optimization problems, 

outlined in Figure 4.6, the Particle Swarm Optimization (PSO) algorithm (Kennedy 

& Eberhart, 1995) was chosen. In this evolutionary algorithm, a population of 

samples (or particles), each one represented by the vector 𝐩 which contains all the 

optimization variables, is initialized and then recursively updated as shown by Eqs. 

(4.18) and (4.19). 

𝐯𝑗𝑠
𝑖𝑡+1 = 𝛽𝜔𝐯𝑗𝑠

𝑖𝑡 + 𝛽1𝐫1𝑗𝑠(𝐢𝐛𝑗𝑠
𝑖𝑡 − 𝐩𝑗𝑠

𝑖𝑡 ) + 𝛽2𝐫2𝑗𝑠(𝐠𝐛
𝑖𝑡 − 𝐩𝑗𝑠

𝑖𝑡 ) (4.18) 

𝐩𝑗𝑠
𝑖𝑡+1 = 𝐩𝑗𝑠

𝑖𝑡 + 𝐯𝑗𝑠
𝑖𝑡+1 (4.19) 

In the referred equations, the subscript 𝑗𝑠 is the index of the sample in the 

population and the superscript 𝑖𝑡 is the number of the update or iteration in the 

algorithm. In addition, 𝐯 is the update vector, defined by Eq. (4.18) and 𝛽𝜔, 𝛽1, 𝛽2 

are constants that control, respectively, the inertia, the individuality and the 

sociability of each sample. The elements of the vectors 𝐫1𝑗𝑠 and 𝐫2𝑗𝑠 are taken from 

a uniform distribution between 0 and 1. The vector 𝐢𝐛 is the individual best of a 

sample, that is, the best values that the sample has had since the beginning of the 

iterations of the optimization algorithm, while 𝐠𝐛 is the global best, i.e., a vector 

with the globally best values obtained so far in the procedure. The term “best 

values” means the values of the sample that provided the minimum value for the 

objective function. All the vectors present in Eqs. (4.18) and (4.19) have a number 

of elements equal to the number of optimization variables. 

The PSO algorithm implemented in the present work, is based on the one 

originally elaborated by Kennedy & Eberhart (1995), and it is outlined in Table 4.2, 

where 𝑖𝑡 is the iteration number. Here, the following values for the constants in Eq. 

(4.18) were used: 𝛽𝜔 = 0, 𝛽1 = 2 and 𝛽2 = 2. 

Table 4.2 – Outline of the PSO (Kennedy and Eberhart, 1995) algorithm used in this 

work. 

Step 1 (initialization and definition of the initial population): 

 Define 𝑖𝑡 = 0 ; 

 For initializing the population, each variable of each sample is taken from 

a Gaussian distribution. 

Step 2 (calculation of the objective function): 

 For each sample, the objective function is evaluated. 
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Step 3 (bests): 

 Check which are the individual bests 𝐢𝐛𝑗𝑠
𝑖𝑡  for each sample; 

 Check which is the global best 𝐠𝐛𝑖𝑡. 

Step 4 (is it over?) 

 If 𝑖𝑡 is superior to a maximum number of iterations, finish the algorithm; 

 Otherwise, proceed to Step 5. 

Step 5 (updating the samples): 

 Update 𝑖𝑡 = 𝑖𝑡 + 1; 

 Perform the update of each sample through Eqs. (4.18) and (4.19); 

 Return to Step 2. 

4.5. The “Experimental” Interfacial Friction Factor 

The most common approach to determine the interfacial friction factors is 

through calibration of its value employing estimated “experimental” values of the 

interfacial shear stress. “Experimental” is used in quotes, because the interfacial 

shear stress is never directly measured, but calculated from other measurements. 

The “experimental” interfacial friction factor can be determined by using 

accurate measurements of axial velocity profile and liquid height variation by the 

Particle Image Velocimetry (PIV) technique, as done by André & Bardet (2017). 

Another option would be to use Reynolds shear stress measurements, as performed 

by Kowalski (1987). However, such non-standard measurements are not available 

for the Eskerud Smith et al. (2011) database, which provides only integral 

parameters (mean liquid holdup and the pressure gradient). In this case, as 

anticipated, the use of the momentum balance equations, Eqs. (4.2) and (4.3), of the 

Point Model is the most adopted path. The experimental integral parameters are 

then applied directly to one of the two momentum balance equations and the 

interfacial shear stress (and consequently the interfacial friction factor) is obtained. 

The term “directly applied” means to assume 𝜕𝑃𝐾/𝜕𝑥 and 𝛼𝐾, 𝐾 ∈ {𝐺, 𝐿}, equal to 

their experimental values, respectively, 𝜕𝑃 𝜕𝑥⁄ |exp and 𝛼𝐾|exp. Such calculation is 

easily seen in the rearranged momentum balance equation for phase 𝐾 ∈ {𝐺, 𝐿}, 

shown in Eq. (4.20), where, once again, the upper sign in “∓” refers to the gas phase 

and the lower to the liquid. 

𝜏𝑖 = ∓
𝐴𝐾
𝑆𝑖
(
𝜕𝑃𝐾
𝜕𝑥

+ 𝜌𝐾𝑔 sin 휃 + 𝜏𝑤𝐾
𝑆𝐾
𝐴𝐾
) (4.20) 
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In the previously mentioned framework, the gas phase momentum balance is 

the one most used in literature for calculating the experimental interfacial friction 

factor (Andritsos & Hanratty, 1987b; Spedding & Hand, 1997; Newton & Behnia, 

1998). The presence of the gas wall shear stress 𝜏𝑤𝐺 poses a problem, because 

experimental values for it are not always available, as in Newton & Behnia (1998). 

When such issue is present, a correlation is used for the gas friction factor and the 

gas wall shear stress is then computed (Andritsos & Hanratty, 1987b; Spedding & 

Hand, 1997).  

An alternative option for evaluating the “experimental” interfacial friction 

factor would be to use Eq. (4.21), a combination of the gas and liquid momentum 

balance equations, as well as a correlation for the gas and liquid friction factors. 

𝜏𝑖 = 𝛼𝐺𝛼𝐿
𝐴

𝑆𝑖
[(𝜌𝐿 − 𝜌𝐺)𝑔 sin 휃 + 𝜏𝑤𝐿

𝑆𝐿
𝐴𝐿
− 𝜏𝑤𝐺

𝑆𝐺
𝐴𝐺
] (4.21) 

For the three different approaches to indirectly determine the interface friction 

factor, information about the phase friction factor is need. Thus, first, a model for 

the wall friction factors 𝑓𝐾, 𝐾 ∈ {𝐺, 𝐿}, is necessary. In this topic of the chapter, 

little discussion is dedicated to the modelling of such parameter, since in the 

following topic the subject will be developed and more thoroughly treated.  

In this first analysis, the laminar wall friction factor, (𝑓𝐾)lam, for both phases 

were calculated with Eq. (4.22), adapted from the single-phase Poiseuille flow 

analytical solution in a circular pipe is used (Hanratty, 2013). For the turbulent wall 

friction factor, (𝑓𝐾)turb, the explicit approximation of the Colebrook (1939) 

expression performed by Haaland (1983), shown in Eq. (4.23) (휀 is the internal pipe 

wall absolute roughness) is used at this moment. These correlations will be referred 

here as classical wall friction factor correlations. Again, further discussions on these 

and other correlations will be made later in this work, because those correlations 

are not the ones that were ultimately used in the other topics and analyses.  

(𝑓𝐾)lam =
16

Re𝐾
 

(4.22) 

(𝑓𝐾)turb = {−3.6 log10 [
6.9

Re𝐾
+ (

1

3.7

휀

𝐷ℎ𝐾
)
1.11

]}

−2

 (4.23) 

 The transition between the regimes was handled as explained in the previous 
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chapter, employing Eq. (3.44). 

Theoretically, whether using the gas momentum balance equation, the liquid 

momentum balance equation or Eq. (4.21) should not make any difference in the 

evaluated values of the “experimental” interfacial friction factor. However, due to 

lack of accuracy of the correlations used for the gas friction factor and/or the liquid 

friction factor, the three options for computing the referred parameter provide 

different results. Nevertheless, even if ideal correlations for the wall friction factors 

are used, more fundamental and implicit issues would maintain this consistency 

problem between the three approaches. When the measured values of the integral 

parameters, 𝛼𝐿|exp and 𝜕𝑃 𝜕𝑥⁄ |exp, are used directly in the momentum balance 

equations, for the three approaches to provide the same values of “experimental” 

interfacial friction factor, the answers for the three following Questions must be 

positive: 

 Question 1: Is there a value of 𝛼𝐿 that would make 𝜕𝑃𝐺 𝜕𝑥⁄  equal to 𝜕𝑃𝐿 𝜕𝑥⁄ ? 

 Question 2: If the answer to Question 1 is “yes”, is this value of 𝛼𝐿 equal to 

𝛼𝐿|exp ? 

 Question 3: If the answer to Question 1 is “yes”, is the value of pressure 

gradient equal to 𝜕𝑃 𝜕𝑥⁄ |exp ? 

For the stratified wavy flow cases with small-amplitude waves selected from 

the Eskerud Smith et al. (2011) database, it is very unlikely that the answers to 

Questions 1-3 will be “yes”, due to the hypotheses inherent to the Point Model 

(steady-state, fully hydrodynamic development, among others). Consequently, the 

direct use of the experimental integral parameters will always lead to this just 

described consistency problem between the three approaches. 

4.5.1. Comparison of the “Experimental” and Optimized Interfacial 

Friction Factor  

Rather than choosing one of the approaches described to evaluate the 

“experimental” values of the interfacial friction factor, it can be determined through 

the optimization procedure presented in section 4.4. In it, the experimental integral 

parameters are not used directly in momentum balance equations, but in an indirect 

way through an optimization methodology. To appreciate the results of the 
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optimization procedure of Figure 4.6(a), the optimized pressure gradient and liquid 

holdup are compared with the experimental data in Figures 4.7-4.8.  

The average relative errors obtained for the liquid holdup and pressure 

gradient were equal to 6.9% and 10.5%, respectively. Besides, it can be seen in the 

referred figures that for the majority of cases from the Eskerud Smith et al. (2011) 

database selected (stratified wavy flow with small-amplitude waves), the liquid 

holdup deviation from the experimental data does not surpass 15% and the pressure 

gradient errors also do not overcome 15%. Therefore, it can be concluded that the 

best possible values for the integral parameters are reasonably good. 

 

Figure 4.7 – Comparison of optimized, in the framework of Figure 4.6(a), liquid holdup 

values against the measurements for the classical set of wall friction factor correlations. 

 

Figure 4.8 - Comparison of optimized, in the framework of Figure 4.6(b), pressure 

gradient values against the measurements for the classical of wall friction factor 

correlations. 
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A deeper insight is needed on the difference between the three previously 

described approaches that evaluate the “experimental” interfacial friction factors by 

the direct use of the experimental integral parameters. To this end, a comparison is 

performed with the optimized values of 𝑓𝑖 resulting from the solution of the first 

optimization problem, outlined in Figure 4.6(a). The three “direct” approaches 

considered are, respectively: the one that uses the gas momentum balance equation, 

the one that uses the liquid momentum balance equation, and the one that uses a 

combination of them, as shown in Eq. (4.21). 

 

Figure 4.9 – Comparison between the optimized interfacial friction factors, through the 

optimization problem of Figure 4.6(a), and their “experimental” values obtained with the 

gas momentum balance equation. 

 

Figure 4.10 - Comparison between the optimized interfacial friction factors, through the 

optimization problem of Figure 4.6(a), and their “experimental” values obtained with the 

liquid momentum balance equation. 
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Figure 4.11 – Comparison between the optimized interfacial friction factors, through the 

optimization problem of Figure 4.6(a), and their “experimental” values obtained with the 

total momentum balance equation of Eq. (4.21). 

Figures 4.90-4.11 show a comparison between the “experimental” values of 

the interfacial friction factor of the Eskerud Smith et al. (2011) database stratified 

wavy flow with small-amplitude waves cases with the optimized values.  

In Figures 4.90-4.11, the “experimental” values are compared to the 

optimized ones with the help of equivalence lines (mark the equivalence between 

the values from each graph axis) and of lines that represent deviations of 20%. As 

aforementioned, the main purpose of this initial analysis is just to show the 

differences between these approaches and how they compare to the optimization. 

Primarily, by observing Figures 4.90-4.11, the difference between the results 

of any of the direct approaches and the optimized values is very clear. This is 

actually not surprising, because the distinctions between the methodologies are very 

significant. The exceptions for these large differences are some cases shown in 

Figure 4.9, based on the gas momentum balance equation, which is the mostly 

adopted in literature. This shows that, among the three direct approaches, using the 

gas momentum balance equation is indeed more valid than using the liquid 

momentum balance equation or Eq. (4.21). However, the arguments for the use of 

optimization in this work remain valid. By analyzing Figures 4.90-4.11, the 

consistency problem of the direct approaches is evident, since the calculated 

“experimental” interfacial friction factors of each case differ between approaches. 

After this preliminary analysis, it is wise to perform a complete discussion of 

the wall friction factor correlations used and the possibility of using improved ones 
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not only in the elaboration of new correlations for the interfacial friction factor, but 

in the Regime Capturing Methodology. 

4.6. Analysis of the Wall Friction Factor Expressions 

When presenting the features of the first optimization problem, the one 

outlined in Figure 4.6(a), it was mentioned that one of the possibilities in using the 

interfacial friction factor as an optimization variable was that the wall friction factor 

correlations could be analyzed and different ones compared. Such analysis is 

performed in this topic not just aiming the elaboration of satisfactory new 

correlations for the interfacial friction factor, but also for improving the predictions 

of the Regime Capturing Methodology in the upcoming chapters of this work.  

To improve the quality of the gas wall friction factor for very viscous oil-gas 

flow, it is important to perform a correction in the pipe wall internal roughness in 

the gas phase. Due to the high viscosity of Nexbase 3080 oil, oil filaments stay 

trapped in the gas wall perimeter, increasing its apparent roughness. The expression 

of Eq. (4.24) for the corrected gas wall roughness, 휀𝐺, was proposed by Khaledi et 

al. (2014). 

휀𝐺 = 휀 {1 + 9 exp [−100 (
0.00175

𝜇𝐿
)
2

]} (4.24) 

Also due to the significant viscosity of the liquid, for the range of superficial 

Reynolds number observed in Erro! Fonte de referência não encontrada., 

probably the liquid flow is laminar, and an improved laminar liquid friction factor 

(𝑓𝐿)lam must be seeked. The most commonly used expression in literature is 

actually the one previously defined in Eq. (4.22). Nevertheless, the value of 16 

present in the referred equation is valid solely for a flow in a circular pipe (Çengel, 

2006), and not for a stratified flow, as seen in Figure 3.1(a). Accounting for the 

cross sectional geometry in the evaluation of Re𝐾 through 𝐷ℎ𝐾 is not sufficient. 

Therefore, other constant values are found in the literature, such as 24, taken from 

channel flow (Spedding & Hand, 1997; Çengel, 2006), and 20.76, obtained by 

fitting a mechanistic model (Zhao et al., 2015). However, this value should also 

change with the liquid holdup, due to variations of the cross sectional geometry. 

Biberg (1999c), who analytically solved the steady-state fully developed laminar 
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flow in the liquid phase of a gas-liquid stratified flow, settled this issue and obtained 

an analytical expression for the laminar liquid wall shear stress (𝜏𝑤𝐿)lam, as shown 

in Eq. (4.25). 

(𝜏𝑤𝐿)lam =
8𝜇𝐿𝑈𝐿
𝐷ℎ𝐿
∗ − 𝑐𝑖

∗𝜏𝑖0 (4.25) 

In the referred equation, 𝐷ℎ𝐿
∗  is a modified hydraulic diameter, which takes 

into account the actual liquid phase geometry and its variations with the holdup; 

and 𝑐𝑖
∗ is the influence function, responsible for representing the influence of the 

holdup in (𝜏𝑤𝐿)lam. 𝜏𝑖0 is the interfacial shear stress for a smooth interface, 

determined with Eq. (4.7), based on the smooth interfacial friction factor, 𝑓𝑖0, which 

is determined employing empirical correlations. By examining Eq. (4.25), it is clear 

that depending on the value of 𝑐𝑖
∗𝜏𝑖0, the liquid wall shear stress (𝜏𝑤𝐿)lam, and 

consequently (𝑓𝐿)lam, can become negative, what is undesired. However, 

Pasqualette et al. (2017) examined the second term in the RHS of Eq. (3.36), and 

verified that it is much smaller than the first one. Thus, Biberg (1999c) expression 

was modified by eliminating the second term, resulting in the expression of Eq. 

(4.26) for the laminar liquid wall friction factor. 

(𝑓𝐿)lam =
16

Re𝐿
(
𝐷ℎ𝐿
𝐷ℎ𝐿
∗ ) (4.26) 

For evaluating 𝐷ℎ𝐿
∗ , Biberg (1999c) proposed an approximated rational 

polynomial expression, whose form is given by Eq. (4.27) for a generic parameter 

𝒱 and generic variable 𝜉. 

𝒱 =
∑ 𝓃𝑗𝜉

𝑗13
𝑗=0

∑ 𝒹𝑗𝜉
𝑗6

𝑗=0

 (4.27) 

The values of the coefficients 𝓃𝑗, 𝑗 ∈ {0,… ,13}, and 𝒹𝑗, 𝑗 ∈ {0,… ,6}, which 

depend on the parameter 𝒱, as the choice of variable 𝜉 does, are listed in Table 4.3 

not just for 𝐷ℎ𝐿
∗ , but for other parameters that will appear throughout this work. 

Such parameters, thus, shall be properly described later. 

In Figure 4.12, the laminar wall liquid friction factor, given by Eq. (4.26) is 

plotted versus the liquid holdup. It can be seen that the modified Biberg (1999c) 
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expression, Eq. (4.26), ranges from 15.5 to almost 18.0, showing the 16 constant 

parameter is not adequate, unless for 𝛼𝐿 values between 0.15 and 0.6. 

Table 4.3 – Coefficients and variables of Eq. (4.27) (Biberg 1999b; 1999c). 

Parameter 

(𝒱) 
𝜖𝐺
∗  𝜖𝐿

∗ 𝛾𝐺
∗  𝛾𝐿

∗ 𝐷ℎ𝐿
∗ /𝐷 

Variable 

(𝜉) 
𝜋 − 𝛿 𝛿 𝜋 − 𝛿 𝛿 𝛿/𝜋 

𝓃0 0 0   3.819 × 10−6   1.500 × 10−6 −1.000 × 10−6 

𝓃1    2.991 × 10−5 −8.129 × 10−6   1.204 × 10−1   1.325 × 10−1    3.550 × 10−4 

𝓃2 −7.338 × 10−4    1.424 × 10−6 −1.220 × 10−1 −1.005 × 10−1    6.748 

𝓃3    6.591 × 10−3    1.849 × 10−3   4.794 × 10−2   4.024 × 10−2 −7.093 

𝓃4    5.731 × 10−1    8.964 × 10−1 −8.646 × 10−3 −9.401 × 10−3 −11.96     
𝓃5    1.798 × 10−1    7.751 × 10−2 6.054 × 10−4   9.797 × 10−4 19.60    
𝓃6 −4.049 × 10−1 −7.077 × 10−2 0 0 −7.028 

𝓃7    1.524 × 10−1   2.734 × 10−1 0 0 0 

𝓃8 −1.107 × 10−1   1.728 × 10−2 0 0 0 

𝓃9    9.604 × 10−2 −1.894 × 10−2 0 0 0 

𝓃10 −4.063 × 10−2 −3.185 × 10−3 0 0 0 

𝓃11    8.653 × 10−3   2.820 × 10−3 0 0 0 

𝓃12 −9.172 × 10−4 −5.190 × 10−4 0 0 0 

𝓃13    3.881 × 10−5   3.228 × 10−5 0 0 0 

𝒹0 1 1 1 1 1 

𝒹1 0 0 −8.628 × 10−1 −4.684 × 10−1 −1.113 

𝒹2 0 0    1.881 × 10−1    8.701 × 10−2     1.584 

𝒹3 0 0    3.023 × 10−2 −6.701 × 10−2 −4.451 

𝒹4 0 0 −1.607 × 10−2 2.867 × 10−2     5.941 

𝒹5 0 0     1.588 × 10−3 −3.417 × 10−3 −3.631 

𝒹6 0 0 0 0       0.9412 

 

 

Figure 4.12 – Variation of the term 16(𝐷ℎ𝐿 𝐷ℎ𝐿
∗⁄ ) of Eq. (4.26) with the liquid holdup. 

For the gas phase, which is predominantly turbulent, the laminar wall friction 

factor is not as important as it is for the liquid phase. So, the previous expression, 

Eq. (4.22) is maintained here and repeated in Eq. (4.28). 
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(𝑓𝐺)lam =
16

Re𝐺
 (4.28) 

For evaluating the turbulent wall friction factor of the gas and the liquid, the 

most adopted approach in literature is the one used in the last topic, Eq. (4.23), that 

is, to use an explicit approximation for the Colebrook (1939) equation. This 

equation is coupled with the definition of hydraulic diameters, Eqs. (3.38) and  

(3.39), which contain the hypotheses that the gas flows as if the interface was “part 

of the pipe wall” and that the liquid flows as if the interface was a free surface. 

Although this approach is very useful and practical, since it does not involve 

implicit and complex expressions, such as in the Biberg (2007) framework, it lacks 

accuracy in several situations. One of the reasons of the failure of this correlation 

is due to the fact that it does not account for the influence of the interface dynamics 

on the wall friction factors. Another explanation why the Colebrook (1939) 

expression may not be adequate is directly related to its derivation. Colebrook 

(1939) equation is a combination of the Prandtl (Pope, 2000) and von Kármán 

(Pope, 2000) expressions for smooth and rough pipes, respectively. They are 

obtained after a pre-integration of the axial velocity profiles based on the 

corresponding logarithmic law of the wall of each situation, which use the wall 

friction velocity (based on the wall shear stress) and the wall roughness (Pope, 

2000). Standard logarithmic law of the wall (Pope, 2000) is often unable to 

represent the velocity profile near the interface when it is wavy (Belcher & Hunt, 

1993). Another reason is associated with the coupling of the hydraulic diameters 

expressions with Colebrook (1939) equation for evaluating (𝑓𝐾)turb, 𝐾 ∈ {𝐺, 𝐿}. 

The gas hydraulic diameter assumes that the wall shear stress acts on the interface, 

and for the liquid hydraulic diameter, there is no shear stress at the interface. 

Further, it is assumed that the interface has a surface roughness equal to the pipe 

wall internal roughness. It is clear from the aforementioned facts that it is also 

necessary to improve the phase wall friction factors.  

Biberg (1998) attacked the problem by deducing a new expression for 

(𝑓𝐺)turb. This was done by the pre-integration of a double-logarithm velocity 

profile, originated from two laws of the walls (one for the interface and another for 

the actual wall), of the gas stream of a turbulent gas-liquid flow in a horizontal 

channel. By using two different laws of the walls, it was possible for Biberg (1998) 
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to use the interfacial shear stress in the law applied to the interface and the wall 

shear stress for the law applied to the actual wall. After some simplifications and 

several algebraic manipulations, the expression in Eq. (4.29) was obtained.  

(𝑓𝐺)turb = {
−3.6 log10 [

6.9
Re𝐺

+ (
1
3.7

휀𝐺
𝐷ℎ𝐺

)
1.11

]

1 + 4√𝑓𝑖0
|𝑈𝐺 − 𝑈𝐿|
|𝑈𝐺|

log10 (1 +
𝑆𝑖
𝑆𝐺
)
}

−2

 (4.29) 

In the case of the liquid, Nossen et al. (2000) elaborated an expression for 

computing (𝑓𝐿)turb seeking to represent the effects of the interface dynamics and 

to improve the results when the basic hypothesis involved in the liquid hydraulic 

diameter expression fails. The correlation proposed, Eq. (4.30), is an interpolation 

of the Hand (1991) empirical correlation and the explicit approximation for the 

Colebrook (1939) expression of Haaland (1983). With the interpolation term 𝓏𝑡, 

Eq. (4.31), the correlation can approach Haaland (1983) expression when the free 

surface flow hypothesis is more valid, otherwise it can approach the Hand (1991) 

expression. The effect of the interface dynamics can be seen in the presence of the 

smooth interfacial Froude number Fr𝑖0, Eq. (4.32), in the expression for 𝓏𝑡 in Eq. 

(4.31). 

(𝑓𝐿)turb = {6.178𝓏𝑡(𝛼𝐿Re𝑠𝐿)
0.0695

− 3.6(1 − 𝓏𝑡) log10 [
6.9

Re𝐿
+ (

1

3.7

휀

𝐷ℎ𝐿
)
1.11

]}

−2

 

(4.30) 

𝓏𝑡 = tanh(2000 Fr𝑖0)
𝑆𝑖
𝑆𝐿

 (4.31) 

Fr𝑖0 =
𝜏𝑖0

(𝜌𝐿 − 𝜌𝐺)𝑔𝐷 cos 휃
 (4.32) 

The previous friction factor expressions, show that the turbulent friction 

factors of both phases depend directly on the smooth interfacial friction factor 𝑓𝑖0. 

It can determined employing Issa & Kempf (2003) recommendation: the laminar 

smooth interfacial friction factor, (𝑓𝑖0)lam, Eq. (4.33), is analogous to the laminar 

gas friction factor, and the turbulent smooth interfacial friction factor, (𝑓𝑖0)turb, is 
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determined with the Blasius-like expression of Taitel & Dukler (1976), seen in Eq. 

(4.34). 

(𝑓𝑖0)lam =
16

Re𝑖
 (4.33) 

(𝑓𝑖0)turb = 0.046 Re𝑖
−0.2 (4.34) 

 The same previously defined expression, Eq. (3.50), for Re𝑖 should be used 

for Eqs. (4.33) and (4.34), and it is here repeated for convenience as Eq. (4.35). 

Re𝑖 =
𝜌𝐺|𝑈𝐺 − 𝑈𝐿|𝐷ℎ𝐺

𝜇𝐺
 (4.35) 

 Once again, a smooth transition between the regimes was handled by 

employing a scheme similar to the one of Eq. (3.44) for interpolating between the 

smooth interfacial friction factors of each regime. 

For evaluating the effectiveness of these new set of wall friction factor 

correlations presented in this topic, with the ones used in the analysis of the previous 

topic, Eqs. (4.22) and (4.23), the optimization problem of Figure 4.6(a) is solved 

for both cases. The resulting optimized integral parameters (liquid holdup and 

pressure gradient) are compared to the experimental values in Figures 4.13 and 

4.14, for the classical set of wall friction factor correlations, and in Figures 4.15 and 

4.16, for the new set. Both in the classical and in the new sets of wall friction factor, 

the gas roughness correction of Eq. (4.24) was used. 

Examining Figures 4.15 and 4.16, it can be seen that an improvement on the 

results obtained with the new correlations was obtained: the average relative errors 

are 5.5%, for the liquid holdup, and 8.5%, for the pressure gradient. Furthermore, 

in Figures 4.15 and 4.16, neither the results for the liquid holdup nor the ones for 

the pressure gradient, in their majority, have a deviation much greater than 10%.  

The improvements obtained were modest, because for the majority of the 

cases selected, the regime of the liquid phase is laminar, and the liquid holdup 𝛼𝐿 

varies in the range from 0.15 to 0.6, when there is no practical difference between 

the Biberg (1999c) expression for (𝑓𝐿)lam, Eq. (4.26), and the expression of the old 

set of wall friction factors, Eq. (4.22), as shown in Figure 4.12. Therefore, the 

change of expressions for evaluating (𝑓𝐿)lam indeed should not make difference for 
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such cases, nevertheless, it will for cases with lower and higher liquid holdups. 

 

 

Figure 4.13 - Comparison of optimized, through the optimization problem of Figure 4.6(a), 

liquid holdup values against the measurements for the classical set of wall friction factor 

correlations. 

 

Figure 4.14 - Comparison of optimized, through the optimization problem of Figure 4.6(a), 

liquid holdup values against the measurements for the classical set of wall friction factor 

correlations. 

 
 

DBD
PUC-Rio - Certificação Digital Nº 1513633/CA



Optimization of the Interfacial Shear Stress __________________________ 123 

 

 

 

 

Figure 4.15 - Comparison of optimized, through the optimization problem of Figure 4.6(a), 

liquid holdup values against the measurements for the new set of wall friction factor 

correlations. 

 

Figure 4.16 - Comparison of optimized, through the optimization problem of Figure 4.6(a), 

pressure gradient values against the measurements for the new set of wall friction factor 

correlations. 

Although, the improvement in the results with the new set of wall friction 

factor correlations was not significant, the major advantages of the new wall friction 

factor correlations must actually appear in hydrodynamic conditions outside the 

range of the stratified wavy flow cases with small-amplitude waves flow. Thus, it 
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is expected to lead to more accurate results when applying the Regime Capturing 

Methodology to simulate slug and stratified flow cases from the Eskerud Smith et 

al. (2011) database. Thus, this new set of wall friction factor correlations was used 

throughout this entire work. 

 

Figure 4.17 – Comparison of the optimized interfacial friction factors with the alternative 

wall friction factor correlations and the common ones. 

For a deeper insight on the difference between the new and the classical sets 

of wall shear stress correlations, Figure 4.17 compares the optimized, Figure 4.6(a), 

interfacial friction factors obtained for these two sets. It is interesting to observe 

that the deviation between such values does not surpass 15%, for most cases. 

4.7. Proposed Expressions for the Interfacial Friction Factor 

 In this topic, the new correlations for the interfacial friction factor, elaborated 

in this work, will finally be presented. The correlations should be explicit and 

simple, features that drew the attention of this work to expressions of the type that 

calculates the ratio between the interfacial friction factor and a reference friction 

factor, such as the correlations of Andritsos & Hanratty (1987b), Andreussi & 

Persen (1987) and Spedding & Hand (1997). It is important to compare the Point 

Models results for liquid holdup and pressure gradient obtained with the new 

interfacial friction factor correlations against the ones provided with literature 
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correlations, which are the ones here firstly presented.  

One of these literature correlations for the interfacial friction factor is the one 

of Andreussi & Persen (1987) modified by Calgaro (2012), formulated in Eq. 

(4.36), in which, 𝑓𝐺0 is the gas wall friction factor for a null pipe wall roughness. 

𝑓𝑖
𝑓𝐺0

= {

1                                                             ;   Fr𝐺 ≤ Fr𝐺,crit

1 + 29(Fr𝐺 − Fr𝐺,crit)
0.7
(
ℎ𝐿
𝐷
)
0.2

  ;   Fr𝐺 > Fr𝐺,crit
 (4.36) 

Also in Eq. (4.36), Fr𝐺 is the gas Froude number, evaluated with Eq. (4.37), 

in which the derivative 𝑑𝐴𝐿/𝑑ℎ𝐿 is expressed by Eq. (4.38), obtained with the 

geometrical relations of the stratified configuration of Figure 3.1. 

Fr𝐺 = 𝑈𝐺√(
𝜌𝐺

𝜌𝐿 − 𝜌𝐺
)
𝑑𝐴𝐿
𝑑ℎ𝐿

(
1

𝑔𝐴𝐺 cos 휃
)  (4.37) 

𝑑𝐴𝐿
𝑑ℎ𝐿

= √1 − (
2ℎ𝐿
𝐷
− 1)

2

 (4.38) 

In Eq. (4.36), Fr𝐺,crit is the critical gas Froude number, which marks the 

appearance of waves at the gas-liquid interface and, as a consequence, the increase 

in the interfacial friction factor. Rather than using the constant value of 0.36, 

originally proposed by Andreussi & Persen (1987), Fr𝐺,crit is calculated with Eq. 

(4.39), as suggested by Calgaro (2012). The critical gas superficial velocity 𝑈𝐺,crit, 

which appears in Eq. (4.39), is evaluated with Eq. (4.40), in which the critical 

wavenumber 𝑘crit should be computed with Eq. (4.41). 

Fr𝐺,crit = 𝑈𝐺,crit√(
𝜌𝐺

𝜌𝐿 − 𝜌𝐺
)

1

𝑔𝐷 cos 휃
  (4.39) 

𝑈𝐺,crit = 𝑈𝐿 +√
2𝜌𝐿𝑔

𝜌𝐺𝑘crit
 (4.40) 

𝑘crit = √
𝜌𝐿𝑔 cos 휃

𝜎
 (4.41) 

The other literature correlation for the interfacial friction factor to be 
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compared with the newly elaborated correlations is the one of Tzotzi & Andritsos 

(2013), depicted in Eq. (4.42). 

𝑓𝑖
𝑓𝐺0

=

{
 
 
 

 
 
 
1                                                                                 ; 𝑈𝑠𝐺 ≤ 𝑈𝑠𝐺,𝑡2D

1 + 0.35(𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡2D)√
2ℎ𝐿
𝐷
        ; 𝑈𝑠𝐺,𝑡2D < 𝑈𝑠𝐺 < 𝑈𝑠𝐺,𝑡KH

2(
𝜇𝐿
𝜇𝐿,ref

)

0.1

(
ℎ𝐿
𝐷
)
0.1

+ 4(𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡KH)√
ℎ𝐿
𝐷
  ; 𝑈𝑠𝐺 > 𝑈𝑠𝐺,𝑡KH

 (4.42) 

 In the referred equation, 𝑈𝑠𝐺,𝑡2D is the gas superficial velocity that marks the 

transition from a smooth interface to one with 2D waves and 𝑈𝑠𝐺,𝑡KH represents the 

appearance of Kelvin-Helmholtz irregular waves. These superficial gas velocities 

are evaluated with Eqs. (4.43) and (4.44), respectively. 

𝑈𝑠𝐺,𝑡2D =
1

1.95
(
𝜌𝐿
𝜌𝐿,𝒮

)

0.1

(
𝜌𝐺,𝒮
𝜌𝐺
)
0.5

(
𝜇𝐿
𝜇𝐿,𝒮

)

0.35

ln [
0.8

𝑈𝑠𝐿
(
𝜇𝐿
𝜇𝐿,𝒮

)

0.2

] (4.43) 

𝑈𝑠𝐺,𝑡KH =
1

0.65
(
𝜌𝐿
𝜌𝐿,𝒮

)

0.5

(
𝜌𝐺,𝒮
𝜌𝐺
)
0.5

(
𝜎𝒮
𝜎
)
0.35

ln [
1.39

𝑈𝑠𝐿
(
𝜇𝐿,𝒮
𝜇𝐿
)
0.15

] (4.44) 

 In Eqs. (4.42)-(4.44), all the variables with the subscript “𝒮” are evaluated for 

an air-water system at 1 atm and 20°C. 

In the new interfacial friction factor correlations to be constructed, instead of 

using the gas friction factor with null wall roughness as reference of friction factor, 

as in Andreussi & Persen (1987) and Tzotzi & Andritsos (2013), it is proposed to 

use the smooth interfacial friction factor. This physically makes more sense, since 

in the interfacial friction factor correlations the ratio between it and the reference 

friction factor deviates from unity when waves appear at the interface. Therefore, 

the new correlations are written for 𝑓𝑖/𝑓𝑖0. However, considering such ratio to be 

unity can be a valid approach, since in literature, when the increase in the interfacial 

friction factor due to waves is not taken into account, it is taken to be equal to the 

reference friction factor. It is defined, then, the “Standard Expression” for the 

interfacial friction factor, shown in Eq. (4.45). 

𝑓𝑖
𝑓𝑖0
= 1 (4.45) 
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To illustrate the need to develop a new correlation for the interface friction 

factor, Point Model results were computed for the previously selected Eskerud 

Smith et al. (2011) cases, with the Standard Correlation, the Andreussi & Persen 

(1987) correlation modified by Calgaro (2012) and the correlation of Tzotzi & 

Andritsos (2013).  

In Figure 4.18, the calculated Point Model results of liquid holdup and 

pressure gradient, respectively, for the three referred literature correlations are 

shown and compared against the experimental data. 

 
Figure 4.18 - Point Model calculations with literature correlations for the interfacial friction 

factor for: (a) liquid holdup; and (b) pressure gradient. 

In the referred figure, the degree of scattering of the plots, in which few results 

appear close to the equivalence line, is astonishing. In the results shown for the  

liquid holdup Point Model, in Figure 4.18(a), almost all the values presented a 
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deviation in relation to the measurements significantly larger than 20%, for the three 

correlations of 𝑓𝑖. The average relative liquid holdup error is of 61.0%, for the 

Standard Correlation, 33.7%, for the Tzotzi & Andritsos (2013) correlation, and 

57.0%, for the Andreussi & Persen (1987) modified by Calgaro (2012). 

Respectively, the pressure gradient average relative errors from these same 

correlations are 31.1%, 30.9% and 38.9%. With few exceptions, such as the group 

of cases with smaller values of pressure gradient, the results for such parameter, in 

Figure 4.18(b), have a relative error that surpasses 20%. 

 Those very negative results obtained with the Point Model and the three 

previously mentioned correlations for 𝑓𝑖 confirm that the current literature 

correlations are not satisfactory for the Eskerud Smith et al. (2011) database, and 

new correlations must be developed. 

Along this chapter, it has been mentioned, several times, that two new 

correlations for the interfacial friction factor were elaborated in this work. Before 

the explanation advances, it is important to tackle the question of why elaborating 

two new correlations and not just one. Several proposed expressions for such 

parameter can be satisfactorily adjusted via the solution of the optimization problem 

of Figure 4.6(b) with the experimental data of the stratified wavy flow cases with 

small-amplitude waves from the Eskerud Smith et al. (2011) database. The greater 

issue is to come up with a correlation that behaves adequately outside the range of 

flow parameters of the cases used for elaborating it. That is why two qualitatively 

different correlations, rather than solely one, were elaborated here. When the 

Regime Capturing Methodology is used in this work, it will be analyzed which one 

of the two provides the best results. 

As in the new interfacial friction factor correlations, it is desired to take into 

account the increase in the latter due to a roughened interface, it is important to 

know at which conditions this should take place. Instead of using a critical gas 

Froude number as criterion, as in Andreussi & Persen (1987), it was chosen to use 

the superficial gas velocity 𝑈𝑠𝐺 to monitor the formation of waves and when 𝑓𝑖/𝑓𝑖0 

should not be unity anymore. Thus, the correlation of Tzotzi & Andritsos (2013), 

with its complete and accurate expressions for the transition gas superficial 

velocities 𝑈𝑠𝐺,𝑡2D and 𝑈𝑠𝐺,𝑡KH, comes to mind. According to the calculated values 

of 𝑈𝑠𝐺,𝑡2D and 𝑈𝑠𝐺,𝑡KH for the stratified wavy flow cases with small-amplitude 
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waves from the Eskerud Smith et al. (2011) database, they all possess Kelvin-

Helmholtz irregular waves, which is in consonance with the remarks of Tzotzi & 

Andritsos (2013) on viscous oil-gas flows. Thus, 𝑈𝑠𝐺,𝑡KH is used as transition gas 

superficial velocity and indicator of when 𝑓𝑖 should increase in relation to 𝑓𝑖0 in the 

two new correlations. 

Since the liquid viscosity is a key parameter for this work, it is an interesting 

idea to insert it directly in the new correlations, which is performed through the 

mixture viscosity 𝜇𝑀 of Biberg (1999b), defined by Eq. (4.46). In it, it is possible 

to see that 𝜇𝑀 is a type of weighted harmonic mean between the viscosities of each 

phase (𝜇𝐿 and 𝜇𝐺), whose weights are 𝛾𝐿
∗ and 𝛾𝐺

∗  and given by Eq. (4.27) together 

with Table 4.3. 

𝜇𝑀 =
𝜇𝐺𝜇𝐿

𝛾𝐿
∗𝜇𝐺 + 𝛾𝐺

∗𝜇𝐿
 (4.46) 

As the balance between viscous and surface tension effects is important for 

small-scale phenomena (Biberg, 1999b), such as the small-amplitude waves of the 

Eskerud Smith et al. (2011) database cases selected, the Capillary number should 

be used in the new correlations. Two formulations are used, one for each 

correlation, for this non-dimensional number: the one proposed by Biberg (1999b), 

seen in Eq. (4.47), and a new one, formulated in Eq. (4.48).  

Ca𝑖 =
𝜇𝑀
𝜎
|
𝑈𝑠𝐺
𝜖𝐺
∗ −

𝑈𝑠𝐿
𝜖𝐿
∗ | (4.47) 

Ca𝑠𝐺 =
𝜇𝑀
𝜎
|𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡KH| (4.48) 

The Capillary numbers of the referred equations are the interfacial Capillary 

number Ca𝑖, for Eq. (4.47), and the superficial gas Capillary number Ca𝑠𝐺, for Eq. 

(4.48). The label of the former originates from the use, in Eq. (4.47), of a relative 

velocity between a modified gas and liquid velocities, calculated as the ratio 

between the respective superficial velocity of each phase and a modified holdup 𝜖𝐾
∗ , 

𝐾 ∈ {𝐺, 𝐿}, calculated with Eq. (4.27) and the definitions in Table 4.3. Similarly, 

the label of 𝐶𝑎𝑠𝐺 comes from the use of the gas superficial velocity in Eq. 

(4.48). 

 The first correlation for the interfacial friction factor in the condition of 
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irregular Kelvin-Helmholtz waves (𝑈𝑠𝐺 > 𝑈𝑠𝐺𝑡,KH), according to Tzotzi & 

Andritsos (2013) is given by Eq. (4.49). Henceforth, it is labeled as “Proposed 

Expression 1” (PE1). 

𝑓𝑖
𝑓𝑖0
= 1 + 휂1Ca𝑖

𝜂2(𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡KH)
𝜂3

 (4.49) 

In PE1, 휂𝑗, 𝑗 ∈ {1,2,3}, are the coefficients to be determined through the 

solution of the optimization problem outlined in Figure 4.6(b). Furthermore, in PE1, 

it can be seen the interfacial Capillary number Ca𝑖, defined in Eq. (4.47), and the 

important term (𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡KH) that provides the degree of dynamics in the 

interface in relation to the condition of appearance of waves in 𝑈𝑠𝐺 = 𝑈𝑠𝐺,𝑡KH. The 

known effect of the liquid height in 𝑓𝑖 is implicit in Ca𝑖.  

The second new correlation for the interfacial friction factor, also for 𝑈𝑠𝐺 >

𝑈𝑠𝐺,𝑡KH, shall be labeled as “Proposed Expression 2” (PE2) and it is formulated in 

Eq. (4.50). In it, the gas superficial Capillary number Ca𝑠𝐺 contains the significant 

parameter (𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡KH). The exponential term in PE2, which represents the 

influence of the liquid height, was inspired by the work of Spedding & Hand (1997) 

and the reasonable results provided by its correlation for 𝑓𝑖 in the Regime Capturing 

Methodology of Pasqualette et al. (2015). That is why the original value for 휂3 =

3.1 from Spedding & Hand (1997) was maintained in this work and solely 휂𝑗, 𝑗 ∈

{1,2}, are to be evaluated through optimization. 

𝑓𝑖
𝑓𝑖0
= 1 + 휂1Ca𝑠𝐺

𝜂2 exp (휂3
ℎ𝐿
𝐷
) (4.50) 

Through the solution of the optimization problem in Figure 4.6(b) and the 

experimental data of viscous oil-gas stratified wavy flow with small-amplitude 

waves selected, the coefficients 𝛈 = [휂1 휂2 휂3]T, for PE1, and 𝛈 = [휂1 휂2]T, 

for PE2, were determined. The final values of all the coefficients for PE1 and PE2 

are registered in Table 4.4. 

Table 4.4 – Coefficients of PE1 and PE2. 

Proposed Expression 휂1 휂2 휂3 

1, Eq. (4.49)  150 0.65 0.38 

2, Eq. (4.50) 993 1.29 3.10 
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With the two solutions of the referred optimization problem, the optimized 

values of liquid holdup and pressure gradient, for each Proposed Expression, are 

depicted and compared against experimental data in Figures 4.19 and 4.20. 

 

Figure 4.19 – Optimized liquid holdup values of PE1 and PE2 compared against 

experimental data. 

 

Figure 4.20 – Optimized pressure gradient values of PE1 and PE2 compared against 

experimental data. 

In Figure 4.19, it can be seen that the liquid holdup optimized values, in their 

majority, does not deviate from the experimental data in more than 15%. Their 

average relative errors are, for PE1, 6.7% and, for PE2, 8.8%. For the pressure 

gradient (Figure 4.20), the average relative errors for PE1 and PE2 are, respectively, 
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8.2% and 9.3%. The deviation of the pressure gradient results in relation to the 

measurements does not exceed 15%, similarly to the values of liquid holdup. With 

these results, it can be concluded that the optimization procedure performed for 

obtaining two qualitatively different correlations, PE1 and PE2, was successful. 

The optimized values of 𝑓𝑖 obtained through the solution of the problem in 

Figure 4.6(a) and the ones provided by the newly created PE1 and PE2 are compared 

in Figure 4.21. In it, it is possible to see that the calculated values from PE1 are 

closer to the optimized values (most deviations are inside the 15% limit) than those 

provided by the PE2. This justifies the better results for the former, in comparison 

with the latter, for the optimized liquid holdup (Figure 4.19) and pressure gradient 

(Figure 4.20) values. 

 

Figure 4.21 – Comparison of the optimized interfacial friction factors with the alternative 

wall friction factor correlations and the common ones. 

As previously mentioned, both PE1 and PE2 assume that 𝑈𝑠𝐺 > 𝑈𝑠𝐺,𝑡KH, 

which is a valid condition for all the cases selected from the Eskerud Smith et al. 

(2011) database, due to the high viscosity of the Nexbase 3080 oil. However, how 

to apply these new correlations for flows which are not in the previously described 

condition? The framework shown in Eqs. (4.51) and (4.52), for PE1 and PE2, 

respectively, is then employed. 
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𝑓𝑖
𝑓𝑖0
= {

1                                                                    ;   𝑈𝑠𝐺 ≤ 𝑈𝑠𝐺,𝑡2D

1 + 150 Ca𝑖
0.65(𝑈𝑠𝐺 − 𝑈𝑠𝐺,𝑡KH)

0.38
     ;  𝑈𝑠𝐺 > 𝑈𝑠𝐺,𝑡KH

 (4.51) 

𝑓𝑖
𝑓𝑖0
= {

1                                                                    ;   𝑈𝑠𝐺 ≤ 𝑈𝑠𝐺,𝑡2D

1 + 993 Ca𝑠𝐺
1.29 exp (3.1

ℎ𝐿
𝐷
)              ;  𝑈𝑠𝐺 > 𝑈𝑠𝐺,𝑡KH

 (4.52) 
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5. SIMULATIONS AND RESULTS 

In this chapter, the results from the Regime Capturing Methodology applied 

to some cases from the Eskerud Smith et al. (2011) database are shown and 

discussed. To this end, three cases were selected from the Eskerud Smith et al. 

(2011) database to be simulated: one corresponds to a slug flow and two of a wavy 

stratified flow pattern. Those cases are explained and detailed below. Then, the 

numerical results are presented and compared to measurements. 

The strategy employed in the present work to investigate the performance of 

the Regime Capturing Methodology to predict viscous oil/gas flow is to begin by 

analyzing the classical 1D Two-Fluid Model, mostly used in literature (Issa & 

Kempf, 2003; Bonizzi et al., 2009; Nieckele et al., 2013). As presented, the classical 

model does not consider the dynamic pressure contribution (𝜟𝑷𝓓,𝑲 = 𝟎) nor the 

axial momentum diffusion (𝝁𝑲
𝒆𝒇𝒇

= 𝟎) and dynamic interfacial shear stress (𝓙𝒊 =

𝟎). However, those effects must be contemplated to evaluate their impact in the 1D 

Two-Fluid Model predictions.  

Based on the simplified incompressible characteristics analysis of the 1D Two 

Fluid Model, without its high-order derivative terms (shown in chapter 3), it was 

verified that the dynamic pressure contribution acts to increase the region in which 

the pair of superficial velocities of gas and liquid are well-posed. The same analyses 

showed that the dynamic interfacial shear stress acts in the opposite direction, 

however, the combined effect, might render the solution well-posed and also 

improve the quality of the predictions. Therefore, a map delimitating the well/ill 

posed region of superficial velocities for the fluids considered in the present work 

is created to verify the result. Finally, as discussed in chapter 3, since the axial 

momentum diffusion is a second order term, it does not appear in the simplified 

characteristics analysis. However, it is well know that diffusion is has a stabilizing 

effect in the flow. Therefore, the set of simulations outlined in Table 5.1 was 

performed, together with the first one which does not consider any of the new terms 

(𝚫𝑷𝓓,𝑲, 𝝁𝑲
𝒆𝒇𝒇

 and 𝓙𝒊). Table 5.1 shows that the second set solely takes into account 
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the dynamic pressure, the third set considers only the axial momentum diffusion 

and the fourth set regards both dynamic pressure and dynamic interfacial shear 

stress.  

Table 5.1 – Modelling setup for each set of simulations. 

Set Δ𝑃𝒟,𝐾 , 𝐾 ∈ {𝐺, 𝐿} 𝜇𝐾
𝑒𝑓𝑓
, 𝐾 ∈ {𝐺, 𝐿} 𝒥𝑖 

1st 0 0 0 

2nd Eq. (3.30)  0 0 

3rd 0 Eq. (3.34) 0 

4th Eq. (3.30) 0 Eq. (3.51) 

 

Coupled with the set of simulations listed in Table 5.1, simulations were also 

performed to evaluate the impact in the solution of the new proposed correlations 

for the interfacial friction factor, Proposed Expressions 1 and 2, Eqs. (4.60) and 

(4.61), respectively, when compared with the Standard Expression, Eq. (4.56). The 

main purpose of these tests was to assess if the new correlations managed to 

improve the predictions of the Regime Capturing Methodology in the same manner 

they did for the Point Model of Eq. (4.6). 

In all tests performed here, the wall-shear stresses, 𝜏𝑤𝐾, 𝐾 ∈ {𝐺, 𝐿}, are 

modelled precisely as presented in the optimization procedure that led to the 

elaboration of the Proposed Expressions 1 and 2 (sections 4.6 and 4.7). 

5.1. The Selected Cases 

Three cases were selected from the isothermal horizontal viscous oil-SF6 

flows (in a laboratory-scale pipeline) Eskerud Smith et al. (2011) database. Key 

features of the cases are registered in Table 5.2, which includes the gas and liquid 

superficial Reynolds numbers and the flow patterns. All the data on these cases 

shown in this work is also present in Johansen et al. (2014). 

Cases 1, 2 and 3, as seen in Table 5.2, consist in one slug flow (Case 1) and 

two stratified wavy flow with small-amplitude waves (Cases 2 and 3). It should be 

noted that Cases 2 and 3 were also used in the optimization procedure for 

elaborating the Proposed Expressions 1 and 2 for the interfacial friction factor 𝑓𝑖. 
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Table 5.2 – Key features of the selected cases from the Eskerud Smith et al. (2011) 

database. 

Case Re𝑠𝐺  Re𝑠𝐿  Flow Pattern 
Used in the 

optimization? 

1 1.03×105 615 Slug No 

2 6.47×105 492 
Stratified Wavy  

(Small-Amplitude Waves) 
Yes 

3 1.08×106 583 
Stratified Wavy  

(Small-Amplitude Waves) 
Yes 

 

Cases 2 and 3 were selected to allow a comparison of the optimized Point 

Model results, for such expressions, with the numerical results from the Regime 

Capturing Methodology. Such comparison can act as a verification tool for the 

Regime Capturing Methodology, because, for very coarse meshes, its results must 

coincide with the predictions of the Point Model. It also makes possible the desired 

evaluation of whether or not the new Proposed Expressions for 𝑓𝑖 improve the 

methodology predictions in relation to the Standard Expression, in the same manner 

as they do in the Point Model.  

Including a slug flow in the simulations, Case 1, is of paramount importance 

for analyzing how the Proposed Expressions for 𝑓𝑖, elaborated with small-amplitude 

interfacial waves data, behave when a large intermittency (small and large waves 

together with slugging) takes place. 

 

Figure 5.1 – Histograms of the liquid holdup signals (x = 38.15m) for Cases 1, 2 and 3. 

As is was previously detailed, experimental time traces for the in situ liquid 

holdup 𝛼𝐿 for each case are available due to the measurements of a broad beam-

gamma densitometer, located 38.15m downstream the pipe inlet section (Eskerud 

Smith et al., 2011). The histograms of these 𝛼𝐿 signals for Cases 1, 2 and 3 are 
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plotted in Figure 5.1, which confirms their listed flow patterns.  

It can be seen a high probability of the liquid holdup with a constant value for 

Cases 2 and 3, confirming that these cases correspond to stratified flow pattern. On 

the other hand, for Case 1, the highest probability is related to liquid holdup equal 

to 1, indicating the presence of slug flow, and there is a wide range of liquid holdups 

from 0.7 to 0.9 with also a high probability of occurrence.  

Figure 5.2 shows the time evolution of the experimental liquid holdup for 

Cases 1, 2 and 3, for a 30s interval. The slug flow pattern of Case 1, Figure 5.2(a), 

and the stratified wavy (with small-amplitude waves) flow pattern of Cases 1 and 

2, Figures 5.2(b) and 5.2(c), can be clearly noticed. 

 
Figure 5.2 – Experimental liquid holdup profiles in time at x = 38.15m for: 

(a) Case 1; (b) Case 2; and (c) Case 3. 

The numerical results of the Regime Capturing Methodology simulations for 

liquid holdup histograms and transient profiles will be compared against the 

experimental data shown in Figures 5.1 and 5.2. Besides, the mean (in time and at 

the same position of 38.15m) liquid holdup 𝛼𝐿, obtained with the gamma 

densitometer data, and the pressure gradients 𝑑𝑃/𝑑𝑥, provided by pressure cells 

measurements, are also used for comparing with the predictions of the methodology 

for Cases 1, 2 and 3. Table 5.3 lists the experimental values for these mean 

parameters for the three Cases. 

For a joint comparison of the numerical results for the mean liquid holdup 

and for the pressure gradient against experimental data, a root-mean-squared error, 

𝑒𝑅𝑀𝑆, is defined by Eq. (5.1), inspired by Eqs. (4.14)-(4.15). The subscript “num” 

refers to the simulation results. 
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Table 5.3 – Some features of the selected cases from the Eskerud Smith et al. (2011) 

database. 

Case 

Measurements 

(gamma densitometer and pressure cells) 

𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 

1 0.823 507.8 

2 0.525 945.9 

3 0.392 1236.9 

 

𝑒𝑅𝑀𝑆 = √(
𝛼𝐿|num − 𝛼𝐿|exp

𝛼𝐿|exp
)

2

+ (
𝑑𝑃/𝑑𝑥|num − 𝑑𝑃/𝑑𝑥|exp

𝑑𝑃/𝑑𝑥|exp
)

2

 
(5.1) 

As Cases 2 and 3 were used in the Point Model optimization procedure that 

resulted in two new Proposed Expressions for 𝑓𝑖, it is important to list not just the 

optimized mean liquid holdup and pressure gradient values for these expressions, 

but also the Point Model predictions with the Standard Expression of Eq. (4.45). 

Those values are all shown in Table 5.4. It is important to mention that these values 

do not have a meaning for Case 1, since the Point Model cannot be applied to slug 

flows. 

Table 5.4 – Integral parameters Point Model predictions for the selected cases from the 

Eskerud Smith et al. (2011) database. 

Case 

Predicted Values  

(Standard Expression) 

Optimized Values  

(Proposed Expression 1) 

Optimized Values 

(Proposed Expression 2) 

𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 

2 0.638 735.8 0.497 848.3 0.460 862.2 

3 0.518 863.1 0.355 1113.4 0.330 1128.1 

5.2. Stability-Hyperbolicity Analysis 

Due to the known stability-hyperbolicity problem of the isothermal 1D Two-

Fluid Model, a mesh convergence test is performed for each Case for every different 

simulation setup. During these tests, the mean liquid holdup, pressure gradient and 

liquid holdup histograms are monitored as the spatial mesh is refined, that is, as the 

mesh aspect ratio (Δ𝑥/𝐷) is decreased. If these results stabilizes after a certain value 
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of Δ𝑥/𝐷, the simulation is considered to be well-posed and the stabilized results are 

considered the valid Regime Capturing Methodology predictions. On the other 

hand, if the results do not stop varying with Δ𝑥/𝐷, then the simulation is considered 

ill-posed. 

Assuming that the Regime Capturing Methodology is ideally well-posed and 

mesh-convergent, when Cases 2 and 3 are simulated with the Proposed Expressions 

1 and 2, the provided liquid holdup profile should be completely flat. This is 

because the effects of small-amplitude waves are already included in these 

correlations for the interfacial friction factor. Nevertheless, in Case 1 the large-

amplitude waves and the liquid pipe section bridging (slugging) should be captured. 

When, the Standard Expression for 𝑓𝑖 is used, the small-amplitude interfacial waves 

should be predicted in Cases 1, 2 and 3. 

5.2.1. Well/ill-posedness Maps 

As previously said (in section 3.3), although the effects on the stability-

hyperbolicity problem of the dynamic pressure and of the axial momentum 

diffusion terms are known (Fullmer et al., 2014; Han & Guo, 2015), the influence 

of considering the dynamic interfacial shear stress of Brauner & Maron (1993; 

1994) has not been much explored in literature. The only exception, recapitulating, 

is the work of De Bertodano et al. (2013), which verified that such term destabilizes 

the flow, which tends to enhance the stability-hyperbolicity problem. 

As described in section 3.3, for checking if the finding of De Bertodano et al. 

(2013) is valid for the Eskerud Smith et al. (2011) database, well-posedness 

analyzes were performed by the evaluation of the 1D Two-Fluid Model quasi-linear 

system, Eq. (3.108), characteristics. This task was accomplished in a previous 

chapter in Eqs. (3.131)-(3.134) with their intrinsic and previously provided 

hypotheses. Both symbolic and numerical operations were performed with the 

Wolfram Mathematica software. Besides, the effect of the dynamic interfacial shear 

stress of Brauner & Maron (1993; 1994), the influence of the dynamic pressure of 

Bestion (1990) was also verified. The effects of the axial momentum diffusion was 

obviously not verified here, because the second and third-order derivatives terms 

cannot be accounted in the such well-posedness analysis. Therefore, 𝜇𝐾
𝑒𝑓𝑓

 is 

considered null in this topic. 
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Through this methodology, the 𝑈𝑠𝐿 vs. 𝑈𝑠𝐺 well-posedness maps for the 

Eskerud Smith et al. (2011) database of Figures 5.3 and 5.4 were obtained. In them, 

the red color region corresponds to the region where the system of equations are ill-

posed. Figure 5.3(a) corresponds to the classical case, i.e., without dynamic 

pressure contribution (𝛥𝑃𝒟,𝐾 = 0) nor the dynamic interfacial shear stress (𝒥𝑖 = 0). 

It can be seen that for a wide range of liquid superficial velocities, when the gas 

superficial velocities is high, the system is ill-posed. The map presented in Figure 

5.3(b) corresponds to the solution, when only the dynamic pressure difference is 

added to the model. Note that, according to this simplified analysis, for all 

superficial velocities the system is well-posed. This result is expected, since Bestion 

(1990) designed the dynamic pressure distribution to render the system well-posed. 

                

 

(a) 𝛥𝑃𝒟,𝐾 = 0; 𝜇𝐾
𝑒𝑓𝑓

= 0;  𝒥𝑖 = 0. 

 

(b) 𝛥𝑃𝒟,𝐾 ≠ 0; 𝜇𝐾
𝑒𝑓𝑓

= 0;  𝒥𝑖 = 0. 

Figure 5.3 – Well-posedness for the Eskerud Smith et al. (2011) database, without the 
dynamic interfacial shear stress. 

 

 

 

(a) 𝛥𝑃𝒟,𝐾 = 0; 𝜇𝐾
𝑒𝑓𝑓

= 0;  𝒥𝑖 ≠ 0. 

 

(b) 𝛥𝑃𝒟,𝐾 ≠ 0; 𝜇𝐾
𝑒𝑓𝑓

= 0;  𝒥𝑖 ≠ 0. 

 Figure 5.4 – Well-posedness for the Eskerud Smith et al. (2011) database 
considering the dynamic interfacial shear stress. 

The maps presented in Figure 5.4 were constructed with the dynamic 
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interfacial shear stress of Brauner & Maron (1993; 1994). In Figure 5.4(a), there is 

no dynamic pressure contribution. Comparing this map, with the map of Figure 

5.3(a), one can clearly see that the dynamic interfacial shear stress reduced the size 

of the well-posed region. This result agrees with De Bertodano et al. (2013) 

observation, that the dynamic interfacial shear stress of Brauner & Maron (1993; 

1994) destabilizes the flow. On the other hand, the map obtained with the simplified 

analysis, showed that the presence of the dynamic pressure contribution guarantees 

a well-posed solution, even in the presence of the dynamic interfacial shear stress.  

The present map results indicates that the dynamic pressure contribution is a 

positive factor to render the system of equations well-posed, even in the presence 

of the dynamic shear stress term, what is an encouragement, to investigate, the 

performance of the Regime Capturing Methodology, for these situations. 

5.3. First Set of Simulations 

In the first set of simulations, as aforementioned, the dynamic pressure, the 

axial diffusion and the dynamic interfacial shear stress terms are not considered in 

the 1D Two-Fluid Model of Eqs. (3.58)-(3.61) (Table 5.1). In the presentation of 

the results, first the predictions for Case 1 (slug flow) are shown, followed by the 

results of Cases 2 and 3 of wavy stratified flow. 

5.3.1. Case 1: Standard Expression 

The first results obtained for Case 1, based on the classical 1D Two-Fluid 

Model, employed the Standard Expression for the interfacial friction factor. The 

simulations were performed with several spatial meshes with the aspect ratios Δ𝑥/𝐷 

of 0.5, 0.75, 1.0, 1.5, 2, 5, and 10. Figure 5.6 depicts the results for the mean liquid 

holdup 𝛼𝐿 (at the position of 38.15m) and pressure gradient 𝑑𝑃/𝑑𝑥, while Figure 

5.6 presents the combined error, 𝑒𝑅𝑀𝑆, Eq. (5.1). 

In Figure 5.5(a), it can be seen that 𝛼𝐿 starts with a numerical value higher 

than the experimental one, which decreases as the mesh is refined until it stabilizes 

for Δ𝑥/𝐷 values lower than 2.5. The 𝛼𝐿 value for which the results stabilized is 

lower than the measurement and has a larger deviation than the starting 𝛼𝐿 value 

for Δ𝑥 𝐷⁄ = 10. In an analogous manner, in Figure 5.5(b), the pressure gradient 
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prediction for Δ𝑥 𝐷⁄ = 10 is lower than experimental value and, as the aspect ratio 

decreases, |𝑑𝑃 𝑑𝑥⁄ | increases until stabilizing for aspect ratios lower than 2.5 in a 

value very close to the experimental one. 

 

                     (a)  Mean liquid holdup                                    (b) Pressure gradient 

Figure 5.5 – Grid test for Case 1 with the Standard Expression in the first set of 

simulations. 

 

Figure 5.6 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Standard Expression in the first set of simulations. 

By combining the observations of Figures 5.5(a) and 5.5(b), one comes to the 

conclusion that the Regime Capturing Methodology for Case 1, with the Standard 

Expression for 𝑓𝑖 in the first set of simulations is well-posed and mesh-convergent 

for values of Δ𝑥/𝐷 lower than 2.5. It is interesting to see, in Figure 5.6, the 

evolution of 𝑒𝑅𝑀𝑆 with the refinement of the spatial mesh and how it barely changes 

for Δ𝑥/𝐷 lower than 2.5. 

From the three previous figures, it is easily identified three groups of results: 

for the mesh aspect ratio of 10, 5 and for values lower than 2.5, when the former 

stabilizes. This is a consequence of three different interfacial dynamic behaviors, 
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observed in Figure 5.7 through the transient profiles of the numerical liquid holdup 

for Case 1, relative to the aspect ratios 10, 5 and 0.5. The pipe position (38.15m) 

from which the values of 𝛼𝐿 were taken is the same position of the gamma 

densitometer, whose measurements are also plotted in Figure 5.2. 

 

Figure 5.7 – Case 1 numerical liquid holdup profiles at 38.15m for the Standard 

Expression in the first set of simulations and for: (a) mesh aspect ratio of 10; (b) mesh 

aspect ratio of 5; and (c) mesh aspect ratio of 0.5. 

In Figure 5.7(a), due to the small number of nodal points, the mesh is not fine 

enough to capture the appearance of interfacial instabilities, growth and 

development into slugs. Therefore, the interface remains axially flat and very 

different from the data obtained by the gamma densitometer. For the aspect ratio of 

5, in Figure 5.7(b), waves arise originating a very regular interfacial behavior. 

However the mesh is still not fine enough for predicting the slug flow of Case 1, 

although the values of numerical 𝛼𝐿 slightly resemble the measured ones in Figure 

5.7(b). A slug flow is only obtained for aspect ratios lower than 2.5, the value for 

which the results stabilize, as it can be seen in Figure 5.7(c). Figure 5.7 shows, 

therefore, that the ability of capturing interfacial dynamics, for Case 1 (slug flow), 

is improved as the mesh is refined, until it converges to a well-posed solution. The 

higher amplitudes of the liquid holdups, when compared to the ones of the 

experimental signals, represent how the numerical interfacial behavior is still 

different from the experimental one, although the predictions of mean 𝛼𝐿, Figure 

5.5(a), and pressure gradient, Figure 5.5(b), are satisfactory, Figure 5.6. 

Similar observations can be drawn from Figure 5.8, which shows the 

numerical and experimental histograms at 38.15m, for the same results obtained for 
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Case 1, from the first set of simulations obtained with the Standard Expression.  

 

Figure 5.8 – Liquid holdup histograms for Case 1 with the Standard Expression in the first 

set of simulations. 

Besides the same aspect ratios of Figure 5.7, Figure 5.8 also includes the 

histograms of the other Δ𝑥/𝐷 values registered in Figures 5.5 and 5.6. The 

previously mentioned three distinct interfacial behaviors (for the aspect ratios 10, 5 

and the ones lower than 2.5) can be identified in Figure 5.8. As Case 1 consists in 

a slug flow, two peaks can be observed in the histograms: one related to the slugs 

(𝛼𝐿 close to unity) and another regarding the liquid films (intermediate 𝛼𝐿). 

Comparing the numerical histograms for aspect ratios lower than 2.5 and the 

gamma densitometer histogram, in Figure 5.8, it can be seen that the numerical 

liquid film peaks correspond to liquid holdups lower than it does for the 

measurements. This is a consequence of the greater 𝛼𝐿 amplitudes aforementioned 

regarding Figure 5.7(c). Furthermore, the numerical slug histogram peak is much 

higher than the experimental one. This fact alone could imply either longer slugs or 

higher slug frequencies, than the measured ones. However, it is also possible that 

this discrepancy occurs due to entrainment of gas bubbles into the slugs in the 

experiments. As mentioned before, gas entrainment is not taken into account in the 

current model. 

5.3.2. Case 1: Proposed Expressions 1 and 2 

With the intention of improving the numerical predictions for the integral 

parameters (mean liquid holdup and pressure gradient) and the transient liquid 
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holdup behavior, depicted in Figure 5.7, the new interfacial friction factor 

expressions (Proposed Expressions 1 and 2), created in the optimization procedure 

previously described, are used. Starting with the Proposed Expression 1, Figures 

5.9(a), 5.9(b) and 5.10 show, respectively, the variation of the mean liquid holdup, 

the pressure gradient and of 𝑒𝑅𝑀𝑆 with the spatial mesh aspect ratio Δ𝑥/𝐷 for the 

Case 1 simulation results in the first set of simulations. 

 

                     (a)  Mean liquid holdup                                    (b) Pressure gradient 

Figure 5.9 – Grid test for Case 1 with the Proposed Expression 1 in the first set of 

simulations. 

 

Figure 5.10 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 1 in the first set of simulations. 

In Figures 5.9 and 5.10, the behavior with the mesh aspect ratio is very similar 

to what was obtained when the Standard Expression was used (Figures 5.5 and 5.6). 

The main difference lies in the necessity, for the Proposed Expression 1, of smaller 

grid spacing  for obtaining mesh convergence when compared to the Standard 

Expression simulations. This is actually not a surprise, since higher interfacial shear 

stresses tend to suppress the formation of interfacial instabilities, although it does 

not affect the classical well-posedness analysis (Issa & Kempf, 2003; Liao et al., 
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2008; Fullmer et al., 2014; Pasqualette et al., 2017). This is more clearly seen in 

Figure 5.11, where the predicted liquid holdup histograms (at 38.15m) for the 

Proposed Expression 1 are plotted together with the experimental one. 

 

Figure 5.11 – Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the 

first set of simulations. 

In the referred figure, it can be seen that slugs only start to appear for an aspect 

ratio of 0.75, in which, besides the liquid film and slug holdup peaks, there is an 

evident occurrence of 𝛼𝐿 values between 0.7 and 0.9, which is not the case neither 

for Δ𝑥 𝐷⁄ = 0.5 nor for Δ𝑥 𝐷⁄ = 0.25. For these aspect ratios, the results can be 

considered mesh convergent and well-posed, if one observes Figures 5.9 and 5.10. 

By analyzing the converged numerical histogram results for Proposed Expression 

1, it can be seen that the same disparities verified for Standard Expression when 

compared against the experimental data, are again obtained for Proposed 

Expression 1. Those are the high probability of liquid holdups close to unity (slugs) 

and the low holdups in the liquid film region .  

The same results of Figures 5.9 and 5.10 are now shown in Figures 5.12 and 

5.13, respectively, , but now for Case 1, in the first set of simulations, with the 

Proposed Expression 2 for the interfacial friction factor. 

The behavior of the numerical mean liquid holdup, pressure gradient and 

𝑒𝑅𝑀𝑆 results for Case 1, using the Proposed Expression 2, with the mesh aspect ratio 

is, again, very similar to the one obtained for the Standard Expression (Figures 5.5 

and 5.6) and for the Proposed Expression 1 (Figures 5.9 and 5.10). 
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                     (a)  Mean liquid holdup                                    (b) Pressure gradient 

Figure 5.12 – Grid test for Case 1 with the Proposed Expression 2 in the first set of 

simulations. 

 

Figure 5.13 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 2 in the first set of simulations. 

 

Figure 5.14 – Liquid holdup histograms for Case 1 with the Proposed Expression 2 in the 

first set of simulations. 

What separates the Proposed Expression 2 results from the others is that a 
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stabilization of the results is only roughly obtained. This is also evident in Figure 

5.14, where the numerical liquid holdup histograms are plotted, for the Proposed 

Expression 2, the same way as they were in Figures 5.7 and 5.11 for the Standard 

Expression and Proposed Expression 1, respectively. 

The similarity between the slug flow histograms obtained with Proposed 

Expression 2, in Figure 5.14, with the ones in Figures 5.7 and 5.11, is evident. This 

is especially true when histogram results for the mesh aspect ratios of 0.75 (Figure 

5.14) and 0.5 (Figure 5.11) are compared. The histogram of the Proposed 

Expression 2 liquid holdup results for Δ𝑥 𝐷⁄ = 0.5 is extremely similar to the 

histogram correspondent to mesh convergent conditions for the Standard 

Expression and for the Proposed Expression. That is the reason why it is safe to 

state that, although a clear convergence of the results does not take place in Figures 

5.12 and 5.13, the Proposed Expression 2 results are well-posed for aspect ratios 

equal or lower to 0.25.  

For directly comparing the converged numerical liquid holdup values at 

38.15m for Case 1 (first set of simulations), obtained with the Standard Expression 

(Δ𝑥 𝐷⁄ = 0.50),  Proposed Expressions 1 (Δ𝑥 𝐷⁄ = 0.50) and 2 (Δ𝑥 𝐷⁄ = 0.25), 

such time traces are plotted in Figure 5.15 for a 30s time interval together with the 

gamma densitometer measurements. 

 

Figure 5.15 – Case 1 numerical liquid holdup profiles for aspect ratio of 0.5 in the first set 

of simulations and for: (a) Standard Expression (aspect ratio of 0.5); (b) Proposed 

Expression 1 (aspect ratio of 0.5); and (c) Proposed Expression 2 (aspect ratio of 0.25). 

By observing the transient liquid holdup results in Figure 5.15, it can be seen 

that the converged Case 1 simulations in the first set of simulations tend to similar 

interfacial behavior. The same high intermittency amplitudes and the low holdup of 
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the liquid film region, when compared to the measured 𝛼𝐿 signals, were obtained 

with Δ𝑥 𝐷⁄ = 0.5 for the Standard Expression, Figure 5.15(a), for the Proposed 

Expression 1, Figure 5.15(b), and for the Proposed Expression 2, Figure 5.15(c). 

What also draws attention are the similar 𝛼𝐿 and 𝑑𝑃/𝑑𝑥 results for these converged 

simulations, which are outlined in Table 5.5. Nevertheless, the results for such 

integral parameters are satisfactory: relative errors of about 13% for the liquid 

holdup and 1% for the pressure gradient. 

Table 5.5 – Case 1 integral parameter results for converged results in the first set of 

simulations. 

 Δ𝑥/𝐷 𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 
Relative Error  

(𝛼𝐿) 

Relative Error 

(𝑑𝑃/𝑑𝑥) 
𝑒𝑅𝑀𝑆 

Standard 

Expression 
0.50 0.711 513.0 -13.56% 1.01% 0.14 

Proposed 

Expression 1 
0.50 0.716 509.9 -12.95% 0.40% 0.13 

Proposed 

Expression 2 
0.25 0.709 514.1 -13.87% 1.23% 0.14 

5.3.3. Case 1: Slug Statistics 

This analysis, so far, has revealed that the use of more precise interfacial 

friction factor expression that increase its values has no significant impact on the 

qualitative interfacial behavior or on the predictions of integral parameters. In other 

words, the switch from the Standard Expression to the Proposed Expressions 1 and 

2 did not improve the already satisfactory integral parameters, nor did it make the 

predicted interfacial dynamics physically consistent with the measurements. For 

advancing the analysis, it is important to assess the slug statistics for just comparing 

the converged results from each interfacial friction factor expression for Case 1 in 

the first set of simulations. With this in mind, for such simulations, the average and 

standard deviation of the Taylor bubbles velocities (𝑈𝑏) and lengths (𝐿𝑏) and of 

slugs translational velocities (𝑈𝑡) and lengths (𝐿𝑆), together with the slug frequency 

(𝜈𝑆), are shown in Table 5.6. It is important to highlight that the absolute values of 

the slug statistics do not receive attention, that is, it is not evaluated if they are close 

to experiments or to correlations predictions or not, since the analysis is only for 

comparing the different aspects of numerical predictions. 

Once again, the similarity between the numerical slug statistics from each 
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interfacial friction factor expression is remarkable in Table 5.6. The only exceptions 

are the standard deviation of 𝐿𝑆/𝐷 and the average value of 𝐿𝑏/𝐷, for the Proposed 

Expression 1. This confirms that, for Case 1 and for the first set of simulations, the 

use of the newly obtained Proposed Expression 1 and 2 did not affect any significant 

parameter of the results, when compared to the Standard Expression, neither 

qualitatively nor quantitatively, once the simulations are converged and well-posed. 

The sole aspect affected is the aspect ratio necessary for obtaining mesh 

convergence, due to the values of 𝑓𝑖 from the Proposed Expressions 1 and 2 being 

higher than the ones from the Standard Expression. Furthermore, one cannot help 

to notice that the ratio between 〈𝑈𝑏〉 (or 𝑈𝑡, nearly equal to 𝑈𝑏 when the flow 

reaches steady-state) and 𝑈𝑀 is approximately 1.45. For laminar flow, the case of 

the present liquid phase due to the oil viscosity, such ratio is the 𝐶0 parameter of 

Eq. (2.1), whose experimental value, as observed in literature, is about 2.0 (Gokcal, 

2008; Foletti et al., 2011), very different from the 1.45 obtained. It is important 

mentioning that for such laminar flows, the 𝑈𝑑  velocity in Eq. (2.1) is 

approximetely null (Foletti et al., 2011). 

Table 5.6 – Case 1 slug statistics for the converged results in the first set of simulations. 

 Δ𝑥/𝐷 

𝑈𝑏  (m s⁄ ) 𝐿𝑏/𝐷 (−) 𝑈𝑡  (m s⁄ ) 𝐿𝑆/𝐷 (−) 
𝜈𝑆 (Hz) 

〈𝑈𝑏〉 𝜎𝑈𝑏  〈𝐿𝑏/𝐷〉 𝜎𝐿𝑏/𝐷 〈𝑈𝑡〉 𝜎𝑈𝑡 〈𝐿𝑆/𝐷〉 𝜎𝐿𝑆/𝐷 

Standard 

Expression 
0.50 2.03 1.00 21.50 5.95 1.93 0.16 18.60 12.48 0.80 

Proposed 
Expression 1 

0.50 1.94 1.10 31.16 5.57 1.99 0.20 18.74 16.36 0.80 

Proposed 

Expression 2 
0.25 1.98 0.97 19.52 5.13 1.90 0.16 19.49 12.34 0.82 

5.3.4. Cases 2 and 3: Standard Expression 

After presenting and discussing the Case 1 simulation results with the three 

expressions for the interfacial friction factor, the integral parameters obtained by 

simulating the stratified wavy Cases 2 and 3, with the Standard Expression for 𝑓𝑖, 

are presented. In Figures 5.16 and 5.17, the numerically obtained mean liquid 

holdup and pressure gradient, respectively, are plotted as a function of the mesh 

aspect ratio Δ𝑥/𝐷 together with the experimental values and the Point Model, Eq. 
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(4.4), predictions, registered in Tables 5.3 and 5.4. Figure 5.18, the 𝑒𝑅𝑀𝑆 values of 

such results of Cases 2 and 3 are depicted. 

The first observation to be made regarding Figures 5.16 and 5.17 is that, for 

both Cases 2 and 3, the Regime Capturing Methodology results for the very coarse 

mesh of Δ𝑥 𝐷⁄ = 40 coincide with the Point Model predictions. This is exactly 

what was to be expected, since a mesh of a single finite volume (in the limiting 

case) becomes the Point Model. In Figures 5.16-5.18, as the mesh is refined, the 

mean liquid holdup decreases, the pressure gradient augments and the 𝑒𝑅𝑀𝑆 values 

first decreases and then increases. However, it can be noticed that neither the 𝛼𝐿 

results nor the 𝑑𝑃/𝑑𝑥 values stabilize: the former keeps decreasing and the latter 

increasing, as the mesh aspect ratios diminishes. Therefore, the Case 2 and 3 results 

(in the first set of simulations) for the Standard Expression are not mesh convergent 

and are ill-posed. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.16 – Mean liquid holdup numerical results for Cases 2 and 3 with the 

Standard Expression in the first set of simulations. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.17 – Pressure gradient numerical results for Cases 2 and 3 with the Standard 

Expression in the first set of simulations. 
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(a) Case 2. 

 
(b) Case 3. 

Figure 5.18 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 

with the Standard Expression in the first set of simulations. 

Such loss of hyperbolicity of Cases 2 and 3 is more clearly seen in Figure 

5.19, where the experimental and numerical liquid holdup histograms (aspect ratios 

of 40, 20, 10, 5, 2, 1.5, 1, 0.75 and 0.5) at 38.15m are depicted. In Figure 5.19(a), it 

is remarkable how, for the aspect ratio of 20, interfacial instabilities already appear. 

The amplitudes of such spurious waves grow indefinitely, forming slugs for 

Δ𝑥 𝐷⁄ ≤ 1.5, making the histogram format never become steady. The same is 

observed, with less intensity, in Figure 5.19(b) for Case 3. Besides being 

inconsistent to compare the numerical histogram with the experimental ones in such 

strongly ill-posed simulations, one cannot avoid noticing how the former are 

different from the latter. 

 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.19 – Liquid holdup histograms for Cases 2 and 3 with the Standard 

Expression in the first set of simulations. 

For correctly simulating Cases 2 and 3 and for comparing the efficiency of 

the newly developed expressions for the interfacial friction factor against the 

Standard Expression on such stratified flows, it is of utmost importance to make the 
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simulations well-posed and mesh convergent. Due to the strong ill-posedness of 

Cases 2 and 3 with the Standard Expression (observed in Figures 5.16-5.19), it is 

very improbable that the increase in 𝑓𝑖 due to using either Proposed Expression 1 

or 2 would control the growth of the spurious interfacial instabilities enough for 

making the simulations mesh convergent. Besides, as aforementioned, although an 

augment of the interfacial shear stress makes more difficult the appearance and 

growth of interfacial waves, as seen in Figures 5.8, 5.11 and 5.14 and in literature 

(Fullmer et al., 2014; Pasqualette et al., 2017), it does not affect the well-posedness 

(hyperbolicity) analysis (Liao et al., 2008). Therefore, there is no point in repeating 

Case 2 and 3 simulations of this first set for Proposed Expressions 1 and 2. 

Therefore, for trying to obtain the desired hyperbolicity for such cases, one should 

consider in the 1D Two-Fluid Model of the Regime Capturing Methodology the 

terms initially neglected in the first set of simulations (Table 5.1). This work starts 

by taking into account the dynamic pressure terms in the second set of simulations. 

5.4. Analysis of the Dynamic Pressure Term (Second Set of 

Simulations) 

As seen in Table 5.1, in the second set of simulations, the dynamic pressure 

term (Δ𝑃𝒟,𝐾) is considered in momentum conservation equations, Eqs. (3.60) and 

(3.61), of the 1D Two-Fluid Model, while both the axial diffusion (𝜇𝐾
𝑒𝑓𝑓

) and the 

dynamic interfacial shear stress (𝒥𝑖) remain null. As aforementioned, the primary 

purpose of considering the dynamic pressure is to make the simulations of Cases 2 

and 3 mesh-convergent and well-posed in order to compare the efficiency of the 

Standard Expression and the Proposed Expressions 1 and 2. Nevertheless, the 

results for Case 1 for this three interfacial friction factor expression should also be 

presented, since one might obtain improvements for Cases 2 and 3 (stratified wavy), 

but, at the same time, worsen the results for Case 1 (slugs). 

5.4.1. Case 1 (𝜟𝑷𝓓,𝑲 ≠ 𝟎) 

Following the same presentation order of the first set of simulations, the mean 

liquid holdup (at 38.15m) and pressure gradient results for Case 1 with the Standard 

Expression for 𝑓𝑖 are shown in Figure 5.20 as a function of the mesh aspect ratios, 
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together with the measured values of Table 5.3. In Figure 5.21, the 𝑒𝑅𝑀𝑆 values 

relative to those variables are plotted. 

In Figure 5.20, the same behavior, previously observed for the mean 𝛼𝐿 and 

pressure gradient numerical values regarding the mesh refinement, is verified: the 

former starts decreasing for a certain aspect ratio, in which the latter begins to 

augments. As seen before, this is a consequence of the appearance of interfacial 

instabilities that start to be captured, for Case 1, with the Standard Expression with 

𝛥𝑃𝒟,𝐾 ≠ 0, for 𝛥𝑥 𝐷⁄ = 2, as the mesh is refined. 

 

                     (a)  Mean liquid holdup                                    (b) Pressure gradient 

Figure 5.20 – Grid test for Case 1 with the Standard Expression in the second set of 

simulations. 

 

Figure 5.21 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Standard Expression in the second set of simulations. 

This is also observed in Figure 5.22, where the numerical liquid holdup 

histograms of the present simulations for several aspect ratios (10, 5, 2, 1.5, 1, 0.75, 

0.5 and 0.25) and the correspondent experimental data are plotted. The results in 

Figures 5.20 and 5.21 resemble in several aspects the predictions of Case 1 with the 

Proposed Expression 2 (Figures 5.12 and 5.13), , in the first set of simulations, 
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including their almost non-convergence with the mesh. The reason for this 

behavior, is that both augmenting the interfacial shear stress and adding a pressure 

dynamic term suppress the growth rate of interfacial instabilities (Fullmer et al., 

2014). By examining Figure 5.22, the presence of slugs can be seen in the 

histograms for aspect ratios smaller than they were for Figure 5.8 (Case 1, with the 

Standard Expression, in the first set of simulations, 𝛥𝑃𝒟,𝐾 = 0). 

 

Figure 5.22 – Liquid holdup histograms for Case 1 with the Standard Expression in the 

second set of simulations. 

The same numerical parameters (liquid holdup, pressure gradient and error) 

for Case 1, plotted in Figures 5.20 and 5.21, as a function of the mesh aspect ratios, 

are depicted in Figures 5.23 and 5.24 with the Proposed Expression 1 in the second 

set of simulations (𝛥𝑃𝒟,𝐾 ≠ 0).  

 

                     (a)  Mean liquid holdup                                    (b) pressure gradient 

Figure 5.23 – Grid test for Case 1 with the Proposed Expression 1 in the second set of 

simulations. 

It is promptly noticed in Figures 5.23 and 5.24 that the Case 1 results for the 

Proposed Expression 1 barely change with the Δ𝑥/𝐷 values, the range of which 
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varies from 0.5 to 10. This might indicate that no significant interfacial instability 

was captured by the simulations, which is confirmed by the liquid holdup 

histograms of these simulations, for each aspect ratio, in Figure 5.25.  

 

Figure 5.24 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 1 in the second set of simulations. 

 

Figure 5.25 – Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the 

second set of simulations. 

By looking at the histograms regarding the aspect ratios 0.75 and 0.5 (Figure 

5.25) it can be seen that a mesh convergence was obtained. Nevertheless, the 

instabilities are small and do not grow enough for developing into slugs. This 

suppression of the interfacial waves is a product of the combined effects of the 

dynamic pressure term and of the greater 𝑓𝑖 values of the Proposed Expression 1, 

when compared to the Standard Expression. Therefore, although slugs were 

obtained for the Proposed Expression 1 in the Case 1 results of first set of 

simulations (Figures 5.9-5.11), the addition of the dynamic pressure term was 

excessive. One could argue that, if the mesh was refined even more, in Figures 5.23-
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5.25, large-amplitude waves and possibly slugs could have been represented by the 

Regime Capturing Methodology. However, such meshes would have to possess a 

very small aspect ratio, which would increase computational costs significantly. 

Besides, as aforementioned, a mesh-convergence was obtained for a liquid holdup 

histogram shape that does not indicate the existence of any slugs (Figure 5.25). 

Moving on to Proposed Expression 2, such correlation for the interfacial 

friction factor was used in the Case 1 simulations that led to the liquid holdup, 

pressure gradient and 𝑒𝑅𝑀𝑆 numerical values plotted, respectively, in Figures 5.26 

and 5.27, as a function of Δ𝑥/𝐷 and together with the measurements.  

 

Figure 5.26 – Grid test for Case 1 with the Proposed Expression 2 in the second set of 

simulations. 

 

Figure 5.27 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 2 in the second set of simulations. 

Similarly to what has been verified for Proposed Expression 1 in Figures 5.23 

and 5.24, the joint stabilizing effects of the dynamic pressure term and of the high 

𝑓𝑖/𝑓𝑖0 values from Proposed Expression 2, have rendered the results for these 

simulations  almost not sensitive to the mesh refinement (see Figures 5.26 and 5.27). 

The clear lack of large-amplitude waves observed in the numerical liquid holdup 
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histograms plotted in Figure 5.28 (resembles significantly Figure 5.25) proves the 

previous statement.  

From the Case 1 results presented for the second set of simulations with the 

Standard Expression and with the Proposed Expressions 1 and 2, it can be 

concluded that the dynamic pressure term used stabilizes excessively the flow. This 

either suppresses completely the appearance of slugs or creates the need of using 

meshes so refined that would make the Regime Capturing Methodology simulations 

unfeasible computationally. The physical background of the dynamic pressure term 

was described in a previous chapter of this work, therefore, rather than revealing an 

inconsistency in considering a dynamic pressure, the present observation asserts the 

inadequacy of the Bestion (1990) formulation for such parameter. As already 

described, the Bestion (1990) expression for Δ𝑃𝒟,𝐾, 𝐾 ∈ {𝐺, 𝐿}, was made for 

hyperbolizing a 1D Two-Fluid Model different from the one used in this work. Eqs. 

(3.58)-(3.61) aim, especially, to make well-posed simulations for vertical pipes, in 

which hydrostatic term Δ𝑃ℋ,𝐾 (with its stabilizing effect) is not present. As a 

consequence, it is not exactly a surprise that the Bestion (1990) dynamic pressure 

might suppress the growth rates instabilities for certain horizontal flows, 

particularly, when a greater (than usual) interfacial shear stress is present and for a 

flow which is already well-posed and mesh-convergent even when Δ𝑃ℋ,𝐾 is 

neglected. Therefore, independently from the effects of the dynamic pressure on 

Case 2 and 3 simulations, the Bestion (1990) formulation is unfit for Case 1 

simulations for harming the satisfactory results obtained for this case in the first set 

of simulations. 

 

Figure 5.28 – Liquid holdup histograms for Case 1 with the Proposed Expression 2 in the 

second set of simulations. 
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5.4.2. Cases 2 and 3: (𝜟𝑷𝓓,𝑲 ≠ 𝟎) 

The results of Cases 2 and 3, in this second set of simulations, are presented, 

starting by the ones obtained with the Standard Expression for the interfacial 

friction factor. Figures 5.29-5.31 depict the behavior, with the mesh aspect ratios, 

respectively, of the numerical liquid holdup, pressure gradient and 𝑒𝑅𝑀𝑆 values, for 

Cases 2 and 3 with such correlation for 𝑓𝑖. In the referred figures, together with the 

experimental data, the predictions of the Point Model of Eq. (4.4) (Table 5.4) are 

also illustrated. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.29 – Mean liquid holdup numerical results for Cases 2 and 3 with the 

Standard Expression in the second set of simulations. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.30 – Pressure gradient numerical results for Cases 2 and 3 with the Standard 

Expression in the second set of simulations. 

Neither in Figure 5.29, for the liquid holdup, nor in Figure 5.30, for the 

pressure gradient, significant variations on the integral parameters were observed, 

in contrast to the results presented in Figures 5.16 and 5.17 also for Cases 2 and 3 

with the Standard Expression, with 𝛥𝑃𝒟,𝐾 = 0. On the contrary: the decrease in 𝛼𝐿 

and the increase in the pressure gradient, Figures 5.29 and 5.30, with the refinement 

of the mesh take place smoothly. For the smaller aspect ratios of 0.75 and 0.50, 
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these integral parameters barely change, which indicates that the mesh converged 

and that the simulation setup is well-posed. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.31 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 

with the Standard Expression in the second set of simulations. 

The consistency between the Point Model and the Regime Capturing 

Methodology is obtained in the referred results, since the predicted integral 

parameters for the different approaches coincide for high values of 𝛥𝑥/𝐷. It is 

interesting to observe that the 𝑒𝑅𝑀𝑆 values, in Figure 5.31, decrease (improve) as 

the mesh becomes finer, until it almost stabilizes for the aspect ratios 0.75 and 0.5. 

The reason for such behavior of the results with 𝛥𝑥/𝐷 is the same that was explored 

before, especially in Figure 5.7, and it is verified again in Figure 5.32, in which the 

numerical and experimental liquid holdup time traces for Case 2 are plotted for a 

30s interval, at 38.15m, for three different mesh aspect ratios: 10, 1.5 and 0.5. 

 

Figure 5.32 – Case 2 numerical liquid holdup profiles (at 38.15m) for the Standard 

Expression in the second set of simulations and for: (a) aspect ratio of 10; (b) aspect ratio 

of 1.5; and (c) aspect ratio of 0.5. 

Similarly to the previous analysis for slug flow in Figure 5.7, Figure 5.32 
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illustrates for the stratified wavy Case 2 that, as the mesh is refined, more interfacial 

instabilities are captured by the solution of the 1D Two-Fluid Model. It begins with 

a completely flat transient profile, in Figure 5.32(a), reason why the corresponding 

predictions are equivalent to the ones of the Point Model. Then, irregular interfacial 

waves appear for Δ𝑥 𝐷⁄ = 1.5, Figure 5.32(b), which increase in regularity and 

amplitude in Figure 5.32(c), for Δ𝑥 𝐷⁄ = 0.5. Therefore, according to the 𝑒𝑅𝑀𝑆 

values, the capturing of waves for mesh-convergent simulations leads to improved 

predictions in comparison to the Point Model. This remark is consistent with the 

fact that the Regime Capturing Methodology has potentially more predictability 

than the Point Model. 

More detailed information on the Case 2 (Standard Expression with 𝛥𝑃𝒟,𝐾 ≠

0) regarding the numerical liquid holdup profiles can be extracted from their 

respective histograms, depicted in Figure 5.33 for several mesh aspect ratios and with 

the gamma densitometer signal histogram. Once again, it can be seen in the referred 

figure that the mesh refinement causes the appearance of interfacial waves and that 

for the aspect ratios of 0.75 and 0.5 a mesh-convergence was obtained. It is 

remarkable how different such histograms are from the ones of the simulations 

without the dynamic pressure term, Figure 5.19, demonstrating the efficiency of the 

Bestion (1990) expression in controlling the instabilities growth rate for Cases 2 and 

3. Nevertheless, the numerical mesh-convergent liquid holdup time traces are 

qualitatively different from the experimental ones, which can be seen both in the 

transient profile of Figure 5.32(c), for Case 2, and on the histograms of Figure 5.33.  

 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.33 – Liquid holdup histograms for Cases 2 and 3 with the Standard 

Expression in the second set of simulations. 
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It should be highlighted that small-amplitude instabilities, for Cases 2 and 3, do 

have to be obtained by the Regime Captured Methodology when the Standard 

Expression is used, as a consequence of the lack of modelling of such instabilities in 

the interfacial friction factor, which happens solely for the Proposed Expressions 1 

and 2.  

Aiming to improve the qualitative interfacial dynamics of the numerical 

results, so that they are closer to the measurements and to reduce the 𝑒𝑅𝑀𝑆 values, 

the Proposed Expression 1 is firstly used in Cases 2 and 3. The respective mean 

liquid holdup, pressure gradient and 𝑒𝑅𝑀𝑆 values for these simulations from the 

second set (with 𝛥𝑃𝒟,𝐾 ≠ 0) are plotted in Figures 5.34-5.36, together with the 

experimental data and the Point Model predictions (Table 5.4).  

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.34 – Mean liquid holdup numerical results for Cases 2 and 3 with the 

Proposed Expression 1 in the second set of simulations. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.35 – Pressure gradient numerical results for Cases 2 and 3 with the Proposed 

Expression 1 in the second set of simulations. 

Primarily, in Figures 5.34 and 5.35, it can be seen that the Regime Capturing 

Methodology results for very high aspect ratios and the Proposed Expression 1 results 

of the Point Model coincide, which is valid and consistent. The same behavior 
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previously observed is once again verified for the liquid holdup, Figure 5.34, and for 

the pressure gradient, Figure 5.35: the former decreases with the Δ𝑥/𝐷 values and 

the latter increases. For both Cases 2 and 3, the results of Figures 5.34-5.36, show 

that a mesh convergence of the results was obtained for the mesh aspect ratios equal 

to or lower than 0.75, which indicates the ability of the dynamic pressure of Bestion 

(1990) for making such stratified wavy flow simulations well-posed. This is more 

clearly seen in Figure 5.37, where the numerical and experimental liquid holdup 

histograms of the Case 2 and 3 simulations of the second set of the Proposed 

Expression 1 are plotted. The formats of the 𝛼𝐿 histograms related to the aspect ratios 

of 0.75 and 0.5 are practically equal, which enhances the mesh convergence of the 

predictions. Furthermore, it illustrates the appearance of interfacial intermittencies 

with the mesh refinement and that the Proposed Expression 1 did not manage to 

improve the consonance between the converged numerical histograms and the one 

from the measurements.  

Lastly, the behavior of the 𝑒𝑅𝑀𝑆 values, in Figure 5.36, draws attention for being 

opposed to the one of Figure 5.31. In other words, when the Proposed Expression 1 is 

used in Cases 2 and 3, the 𝑒𝑅𝑀𝑆 tends to increase with the lowering of the Δ𝑥/𝐷, while, 

for the Standard Expression, it decreased. This shows that the relation between the 

Point Model predictions and the ones of the Regime Capturing Methodology (when 

fine meshes are used) is not so straightforward, that is, not necessarily the numerical 

integral parameters of the latter are better than the former. 

 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.36 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 

with the Proposed Expression 1 in the second set of simulations. 
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(a) Case 2. 

 
(b) Case 3. 

Figure 5.37 – Liquid holdup histograms for Cases 2 and 3 with the Proposed 

Expression 1 in the second set of simulations. 

As previously stated, Proposed Expression 2 was also employed in the Cases 

2 and 3 simulations of this second set aiming an improvement in the results obtained 

in relation to the Standard Expression. Figures 5.38-5.40 depict the behavior of 

liquid holdup, pressure gradient and 𝑒𝑅𝑀𝑆 values for such simulations, with the 

mesh refinement, together with the measurements and the Point Model predictions 

(Table 5.4). 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.38 – Mean liquid holdup numerical results for Cases 2 and 3 with the Proposed 

Expression 2 in the second set of simulations. 

 Most of the observations made for the results of Cases 2 and 3 employing 

Proposed Expression 1, shown in Figures 5.34-5.36, can be verified in Figures 5.38-

5.40, corresponding to the use of the Proposed Expression 2. Among them, are the 

consistency between the Point Model and the Regime Capturing Methodology, the 

"classical" integral parameters behavior with the mesh refinement and the augment 

of the 𝑒𝑅𝑀𝑆 values with the decrease in Δ𝑥/𝐷. 
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(a) Case 2. 

 
(b) Case 3. 

Figure 5.39 – Pressure gradient numerical results for Cases 2 and 3 with the Proposed 

Expression 2 in the second set of simulations. 

A particular feature of the Proposed Expression 2 results is that a complete 

mesh convergence was not obtained, since the pressure gradient still has a non-null 

derivative in relation to the mesh aspect ratio for 𝛥𝑥 𝐷⁄ = 0.5 in Figure 5.39. 

Nevertheless, combining the stabilization of the liquid holdup results for the lower 

mesh aspect ratios in Figure 5.38 and the fact that the pressure gradient values are 

clearly on the verge of stabilizing, in Figure 5.39, it is safe to state that a mesh 

convergence was obtained for these simulations with the use of the dynamic 

pressure term. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.40 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 with the 

Proposed Expression 2 in the second set of simulations. 

Figure 5.41 shows the numerical liquid holdup histograms for the same Cases 

2 and 3 simulations with the Proposed Expression 2, together with the respective 

experimental ones. As in Figure 5.37, the mesh convergence for the lowest 𝛥𝑥/𝐷 

value can be observed in Figure 5.41, besides the persistent difference between the 

numerically converged liquid holdup histograms and the ones obtained by the 

gamma densitometer.  
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                                   (a) Case 2.                                                (b) Case 2. 

Figure 5.41 – Liquid holdup histograms for Cases 2 and 3 with the Proposed Expression 

2 in the second set of simulations. 

After obtaining mesh convergence for the Cases 2 and 3 employing the three 

interfacial friction factor correlations (Standard Expression and Proposed 

Expressions 1 and 2) with the dynamic pressure term, it is possible to compare their 

respective results. First, for a qualitative evaluation of interfacial dynamics related 

to each expression for 𝑓𝑖, Figures 5.42 and 5.43 show for, respectively, Cases 2 and 

3, the numerical and experimental transient liquid holdup profiles at 38.15m and in 

a 30s time interval for the aforementioned expressions and for a value of 0.5 for 

Δ𝑥/𝐷. 

It is primarily noticed in Figures 5.42 and 5.43 the major difference in the 

interfacial behavior between each expression for the interfacial friction factor. For 

both Cases 2 and 3, it is observed that the frequency of instabilities appears to be 

lower for the Standard Expression results. Furthermore, it increases for the 

Proposed Expression 1 and that it has its greater value for the proposed Expression 

2. Concerning the amplitude of such instabilities, it seems, especially for Case 3 

(Figure 5.43), that this variable is slightly higher for the Proposed Expression 2 

when compared to both Standard Expression and Proposed Expression 1. These 

differences are related to the qualitative differences in the form of the expressions 

for interfacial friction factor, which, unsurprisingly, lead to distinct behaviors of the 

growth rate of instabilities with their scale (Fullmer et al., 2014). 

When comparing the transient liquid holdup profiles in Figures 5.42 and 5.43 

with the measured signals from the gamma densitometer for the stratified wavy 

flows (with small-amplitude waves) of Cases 2 and 3, several facts stand out. The 

first is that, for both Cases, employing the Standard Expression leads to unphysical 
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large-amplitude interfacial waves, since the experimental 𝛼𝐿 profile solely shows 

small-amplitude waves. Another fact is that such large-amplitude waves are still 

present even when the Proposed Expression 1 and 2 are used. This is inconsistent, 

because, as previously explained, the interface should have presented a fully 

stabilized (flat) numerical behavior since the effects of the only type of waves, the 

small-amplitude ones, are already implicit in the newly created correlations for the 

interfacial friction factor. Therefore, although the dynamic pressure term of Bestion 

(1990) managed to produce a well-posed solution (mesh convergent results) for 

Cases 2 and 3, a correct qualitative prediction of the interfacial dynamic of such 

stratified wavy (small-amplitude) flows is still a challenge for the Regime 

Capturing Methodology.  

 
Figure 5.42 – Case 2 numerical liquid holdup profiles for aspect ratio of 0.5 in the second 

set of simulations and for: (a) Standard Expression; (b) Proposed Expression 1; and (c) 

Proposed Expression 2. 

 
Figure 5.43 – Case 3 numerical liquid holdup profiles for aspect ratio of 0.5 in the second 

set of simulations and for: (a) Standard Expression; (b) Proposed Expression 1; and (c) 

Proposed Expression 2. 
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After the former qualitative comparison between the Cases 2 and 3 transient 

𝛼𝐿 profile for each expression for the interfacial friction factor, it is of paramount 

importance comparing in a clear quantitative manner the resulting integral 

parameters of the simulations. With this purpose, Tables 5.7 and 5.8 outline for, 

respectively, Cases 2 and 3, the 𝛼𝐿 and 𝑑𝑃/𝑑𝑥 results for the converged (Δ𝑥 𝐷⁄ =

0.5) simulations of this second set and their respective relative errors (in relation to 

the experiments) and 𝑒𝑅𝑀𝑆 values. 

In Table 5.7 (Case 2), it can be seen that, for the Standard Expression, a good 

relative error was obtained for the liquid holdup, while a significant one was 

observed for the pressure gradient. When using the Proposed Expression 1 or 2, the 

latter error improves considerably, which is compensated by the worsening of the 

relative errors of the liquid holdup. This provides similar 𝑒𝑅𝑀𝑆 values for the three 

interfacial friction factor expressions. Nevertheless, it can be verified that the 

Proposed Expression 2 slightly increased 𝑒𝑅𝑀𝑆, when compared to the Standard 

Expression, and that Proposed Expression 1 made such value better. 

Table 5.7 – Case 2 integral parameter results for the mesh aspect ratio of 0.5 in the 

second set of simulations. 

 𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 
Relative Error 

(𝛼𝐿) 

Relative Error 

(𝑑𝑃/𝑑𝑥) 
𝑒𝑅𝑀𝑆 

Standard 

Expression 
0.562 749.8 7.07% -20.73% 0.22 

Proposed 

Expression 1 
0.427 872.7 -18.66% -7.74% 0.20 

Proposed 

Expression 2 
0.394 932.8 -25.00% -1.39% 0.25 

 

Table 5.8 – Case 3 integral parameter results for the mesh aspect ratio of 0.5 in the 

second set of simulations.  

 𝛼𝐿 (−) −𝑑𝑃 𝑑𝑥⁄ (Pa m⁄ ) 
Relative Error 

(𝛼𝐿) 

Relative Error 

(𝑑𝑃/𝑑𝑥) 
𝑒𝑅𝑀𝑆 

Standard 

Expression 
0.459 913.4 17.13% -26.15% 0.31 

Proposed 

Expression 1 
0.312 1185.0 -20.35% -4.20% 0.21 

Proposed 

Expression 2 
0.288 1309.7 -26.38% 5.89% 0.27 
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While the liquid holdup relative errors, in  

Table 5.8 (Case 3), of the three 𝑓𝑖 expressions are high, employing the 

Proposed Expressions 1 and 2 managed to improve the pressure gradient relative 

error of the Standard Expression. Consequently, the resulting 𝑒𝑅𝑀𝑆 values of 

Proposed Expressions 1 and 2 are both lower than the one from the Standard 

Expression. Between the two, Proposed Expression 1 provided a better 𝑒𝑅𝑀𝑆 value.  

A key feature of the currently analyzed results, as previously mentioned, is 

that those from the Regime Capturing Methodology (converged simulations) are 

not always better than those of the Point Model.  This is not expected, since the 

predictability of the former is greater than of the latter. To illustrate this more 

clearly, Table 5.9 lists the 𝑒𝑅𝑀𝑆 values for Cases 2 and 3 from the Regime Capturing 

Methodology (converged simulations) and the Point Model. 

Table 5.9 – Comparison of the root-mean-squared error of Eq. (5.1) for the Regime 

Capturing Methodology converged simulations (second set) results and the predictions of 

the Point Model. 

Interfacial 

friction factor 

expression 

Regime Capturing Methodology 

(Δ𝑥 𝐷⁄ = 0.5) - 𝑒𝑅𝑀𝑆 
Point Model - 𝑒𝑅𝑀𝑆 

Case 2 Case 3 Case 2 Case 3 

Standard 

Expression 
0.22 0.31 0.31 0.44 

Proposed 

Expression 1 
0.20 0.21 0.12 0.14 

Proposed 

Expression 2 
0.25 0.27 0.15 0.18 

 

In the referred table, it is evident that, while the Standard Expression with the 

Regime Capturing Methodology provides better 𝑒𝑅𝑀𝑆 values than the Point Model, 

the opposite is true for the Proposed Expressions 1 and 2 in both Cases. In the 

Regime Capturing Methodology, simulations in high resolution meshes are in 

theory able to capture more interfacial instabilities, which make the pressure 

gradient increase and the liquid holdup decrease. For both Cases 2 and 3, the three 

expressions for the interfacial friction factor, applied in the Point Model, result in 

an underpredicted pressure gradient. Such model should coincide with the Regime 

Capturing Methodology with very coarse meshes. Therefore, mesh refinement 

would lead to an increase in pressure gradient and, therefore, decrease its relative 

error (Figures 5.35 and 5.36). On the other hand, while the Point Model with the 
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Standard Expression overpredicts the liquid holdup, when the Proposed Expression 

1 or 2 are applied in the Point Model, the liquid holdup is underpredicted (Figures 

5.34 and 5.38). Therefore, when the mesh is refined, the 𝛼𝐿 results for the Standard 

Expression improve and the ones for the Proposed Expressions 1 and 2 worsen. 

Therefore, for a refined and converged mesh for Cases 2 and 3 employing  the 

Regime Capturing Methodology lead to 𝑒𝑅𝑀𝑆 values for the Standard Expression 

that are better than the ones of the Point Model, while, for the Proposed Expressions 

1 and 2, the former values are worse than the latter.   

5.4.3. Summary 

In this second set of simulations, in which the dynamic pressure term was 

considered in the 1D Two-Fluid Model (Table 5.1), it was observed that it excessively 

stabilizes the flow in Case 1, avoiding the formation of slugs. However, it managed 

to make the Case 2 and 3 simulations mesh convergent and well-posed and made it 

possible for comparing the Proposed Expressions 1 and 2 with the Standard 

Expression. By comparing the integral parameters predictions for the converged 

Cases 2 and 3 simulations, it can be verified in Tables 5.7 and 5.8 that the Proposed 

Expression 1 provided the best results for both Cases. For this reasons, henceforth, in 

the third and fourth sets of simulations (Table 5.1), only such correlation for the 

interfacial friction factor is used in the Regime Capturing Methodology. 

However, it was verified that the dynamic pressure term of Bestion (1990) 

was not capable of controlling the growth rate of interfacial instabilities with the 

intensity enough for avoiding the existence of large-amplitude waves for Cases 2 

and 3 (Figures 5.42 and 5.43). This might be caused by the incapacity of the 

dynamic pressure term to dissipate the large-scale instabilities, as diffusive terms in 

the 1D Two-Fluid Model are capable of doing (Fullmer et al., 2014). In other words, 

according to the linear stability analysis of Fullmer et al. (2014), the dynamic 

pressure leads to smaller (or even null)  growth rate of waves or , but never negative. 

Combining such remarks with the fact that the Bestion (1990) expression is more 

physically valid for vertical flows (Han & Guo, 2015), it can be understood that it 

is important to search for alternative solutions to improve the model´s result. One 

should test alternative ways for acquiring mesh convergence, and at the same time 

improve the quality of the results, that the dynamic pressure could not. Further, it 
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is important that the alternative modeling does not harm the predictions that were 

already satisfactory in the first set of simulations. With this in mind, the third set of 

simulations neglects the dynamic pressure term for testing the axial momentum 

diffusion term (Table 5.1). 

5.5. Analysis of the Axial Momentum Diffusion Term (Third Set of 

Simulations)  

In the third set of simulations, the axial momentum diffusion term is 

considered in the 1D Two-Fluid Model momentum conservation equations, Eqs. 

(3.60) and (3.61), while the dynamic pressure and dynamic interfacial shear stress 

terms are neglected (Table 5.1). As previously said, the main purpose of this topic 

is to test an improved alternative to the employment of the dynamic pressure for 

obtaining satisfactory and mesh-convergent results for Cases 1, 2 and 3 with the 

Regime Capturing Methodology.  

The main parameter of the axial diffusion term, Eq. (3.33), is the effective 

dynamic viscosity 𝜇𝐾
𝑒𝑓𝑓

 of phase 𝐾, 𝐾 ∈ {𝐺, 𝐿}, which is calculated by Eq. (3.34). 

The coefficient 휂𝜇 of such expression is primarily considered to be equal to 1.0 and 

the turbulent viscosity 𝜇𝐾
𝑡  is calculated precisely as formulated in Eq. (3.35). As 

aforementioned, due to the good performance of the Proposed Expression 1 in the 

second set of simulations, especially for Cases 2 and 3, it is the only correlation for 

the interfacial friction factor used in the third set of simulations. 

5.5.1. Case 1 (𝝁𝑲
𝒆𝒇𝒇

≠ 𝟎) 

The first numerical integral parameter results shown for the present set of 

simulations are plotted in Figures 5.44 and 5.45 as a function of the mesh aspect 

ratio Δ𝑥/𝐷. Such figures illustrate for Case 1 simulations, respectively, the mean 

liquid holdup (at 38.15m), the pressure gradient and the 𝑒𝑅𝑀𝑆 values together with 

the measurements.  

Several observations can be made regarding the results present in Figures 5.44 

and 5.45, but the most important one is that such results are similar in every aspect 

to those of Case 1 with the Proposed Expression 1, in the first set of simulations 
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(Figures 5.9 and 5.10). Therefore, the same remarks valid for the latter are also true 

for the present results (Figures 5.44 and 5.45). 

 

                     (a)  Mean liquid holdup                                    (b) Pressure gradient 

Figure 5.44 – Grid test for Case 1 with the Proposed Expression 1 in the third set of 

simulations (𝜼𝝁 = 𝟏). 

 

Figure 5.45 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 1 in the third set of simulations (𝜼𝝁 = 𝟏). 

 

Figure 5.46 – Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the 

third set of simulations (𝜼𝝁 = 𝟏). 
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The similarity between numerical 𝛼𝐿 histograms of Case 1, in the third set of 

simulations, plotted in Figure 5.46 for various mesh aspect ratios, and the 

histograms for the previously referred results from the first set of simulations 

(Figure 5.11) is also noteworthy. This equivalence between such results might 

indicate that considering the axial momentum diffusion term has no impact on the 

slug flow simulated and its integral parameters, at least when modelling 𝜇𝐾
𝑒𝑓𝑓

 as 

described (휂𝜇 = 1).  

5.5.2. Cases 2 and 3 (𝝁𝑲
𝒆𝒇𝒇

≠ 𝟎) 

For extending the analysis for Cases 2 and 3, with the Proposed Expression 1 

and for 휂𝜇 = 1, Figures 5.47-5.49 depict the liquid holdup, pressure gradient and 

𝑒𝑅𝑀𝑆 values as a function of the mesh refinement, the same way as Figures 5.44 and 

5.45. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.47 – Mean liquid holdup numerical results for Cases 2 and 3 with the 

Proposed Expression 1 in the third set of simulations (𝜼𝝁 = 𝟏). 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.48 – Pressure gradient numerical results for Cases 2 and 3 with the Proposed 

Expression 1 in the second set of simulations (𝜼𝝁 = 𝟏). 
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(a) Case 2. 

 
(b) Case 3. 

Figure 5.49 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 

with the Proposed Expression 1 in the second set of simulations (𝜼𝝁 = 𝟏). 

 A clear ill-posedness of the simulations is observed in Figures 5.47-5.49 as a 

consequence of the lack of stabilization of the 𝛼𝐿 and 𝑑𝑃/𝑑𝑥 values for the refined 

meshes. As already extensively assessed in this work, this is due to the appearance 

and uncontrolled growth of interfacial instabilities as the mesh aspect ratio 

diminishes, which is more clearly observed in the liquid holdup histogram plots of 

Figure 5.50 for the same simulations of Cases 2 and 3. 

 

 

 

                         (a) Case 2.                                                  (b) Case 3 

Figure 5.50 – Liquid holdup histograms for Cases 2 and 3 with the Proposed Expression 

1 in the third set of simulations (휂𝜇 = 1). 

 Considering the axial diffusion term, as previously described (휂𝜇 = 1), it 

could be observed that it was not enough for making the simulations of such Cases 

mesh convergent, even when a correlation for 𝑓𝑖 that provides high values for it 

(Proposed Expression 1), when compared to the Standard Expression, is employed. 

This is evidenced by the fact that the results of Figures 5.47-5.50 generally resemble 
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more those of the same Cases with the Standard Expression in the first set of 

simulations (Figures 5.16-5.19), than those with the Proposed Expression 1 in the 

second set of simulations (Figures 5.34-5.37). 

5.5.3. Increased Diffusion 

From the previously analyzed results for Cases 1, 2 and 3, it is very clear that 

the axial diffusion term made no significant difference in the hyperbolicity and 

mesh convergence of the simulations. A possible reason for this is that the effective 

dynamic viscosity 𝜇𝐾
𝑒𝑓𝑓

 should possess higher values than the ones provided by the 

current model. This is represented by the possible low value chosen for the 

coefficient 휂𝜇 of Eq. (3.34) fixed as unity for the simulations of Figures 5.44-5.50. 

Fullmer et al. (2014), for example, considered 휂𝜇 equal to 8.1, in contrast to 휂𝜇 = 

1.0, which might not be enough for the current objectives (i.e., introducing a 

dissipative effect). It is important to state that a very large value for 휂𝜇 should also 

not be considered, because the physical meaning of the coefficient would be lost. 

Therefore, for exploring this possibility, the simulations of this third set for Cases 

1, 2 and 3 with the Proposed Expression 1 were remade, but equating 휂𝜇 to 10. 

For 휂𝜇 = 10 and the Proposed Expression 1, Figures 5.51 and 5.52 illustrate 

the mean liquid holdup, pressure gradient and 𝑒𝑅𝑀𝑆 values, respectively, as a 

function of Δ𝑥/𝐷 for Case 1 together with its experimental data. 

 
                     (a)  Mean liquid holdup                                    (b) pressure gradient 

Figure 5.51 – Grid test for Case 1 with the Proposed Expression 1 in the third set of 

simulations (𝜼𝝁 = 𝟏𝟎). 
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Figure 5.52 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 1 in the third set of simulations (𝜼𝝁 = 𝟏𝟎). 

By looking at the plots in the referred Figures 5.51 and 5.52 and comparing 

them with the ones obtained for 휂𝜇 = 1 (Figures 5.44 and 5.45), it is clear that 

increasing it to 10 did not impact significantly on the integral parameters of Case 1. 

In other words, these new results for such Case still considerably resemble the 

values plotted in Figures 5.9 and 5.10 for the first set of simulations. A similar 

conclusion can be reached when the liquid holdup histograms for each Δ𝑥/𝐷 value, 

depicted in Figure 5.53, are compared against the ones obtained for 휂𝜇 = 1 (Figure 

5.46). Therefore, increasing the 휂𝜇 value from 1 to 10 was not enough for 

reasonably influencing the dynamics of the flow in this case.  

 

Figure 5.53 – Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the 

third set of simulations (𝜼𝝁 = 𝟏𝟎). 

For the stratified wavy flow (with small-amplitude interfacial waves) Cases 

2 and 3, simulated again in this third set with 휂𝜇 = 10, Figures 5.54-5.56 plot as a 
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function of the mesh aspect ratios, respectively, the 𝛼𝐿 values, pressure gradient 

and 𝑒𝑅𝑀𝑆 values, together with the measurements and Point Model predictions 

(Table 5.4). 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.54 – Mean liquid holdup numerical results for Cases 2 and 3 with the 

Proposed Expression 1 in the third set of simulations (𝜼𝝁 = 𝟏𝟎). 

Regarding mesh dependency, the same  behavior is again verified for 휂𝜇 =

10 in Figures 5.54-5.56, when compared to the results for 휂𝜇 = 1. The same can be 

verified in Figure 5.57 in which the numerical liquid holdup histograms are depicted 

together with the ones acquired by the gamma densitometer. Therefore, the increase 

in the value of coefficient 휂𝜇, Eq. (3.34), from 1 to 10 was not sufficient for making 

the Cases 2 and 3 simulations mesh-convergent. It is important to comment that the 

Regime Capturing Methodology results in Figures 5.54 and 5.55 for coarse meshes 

would probably only coincide with the Point Model predictions for aspect ratios 

higher than 25, as in Figures 5.16 and 5.17. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.55 – Pressure gradient numerical results for Cases 2 and 3 with the Proposed 

Expression 1 in the second set of simulations (𝜼𝝁 = 𝟏𝟎). 
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(a) Case 2. 

 
(b) Case 3. 

Figure 5.56 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 with the 

Proposed Expression 1 in the second set of simulations (𝜼𝝁 = 𝟏𝟎). 

 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.57 – Liquid holdup histograms for Cases 2 and 3 with the Proposed Expression 1 

in the third set of simulations (𝜼𝝁 = 𝟏𝟎). 

In this third set of simulations, it was seen that taking into account the axial 

momentum diffusion term in the 1D Two-Fluid Model does not lead to improved 

results, for Case 1, nor to mesh-convergence, for Cases 2 and 3. Actually, it has 

little impact on the results, which is true for both 휂𝜇 values tested: 1 and 10, even 

with the significant molecular viscosity of the mineral oil of the Eskerud Smith et 

al. (2011) database. It should be stated that such remarks are only valid for the 

specific model for the axial diffusion term chosen for this work. In other words, a 

more extensive analysis on several approaches for modelling 𝒯𝐾, Eqs. (3.11) and 

(3.12), is necessary, as well as an assessment of the minimum order of magnitude 

for 𝜇𝐾
𝑒𝑓𝑓

 required for the axial diffusion to really influence the simulations. This 

should be performed even knowing that, for most flows, as previously mentioned, 

a further increase in 휂𝜇 would be unphysical and purely artificial. In spite of this 
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approach being considered equally artificial in literature, an alternative could be the 

addition of diffusion on the mass conservation equations of the 1D Two-Fluid 

Model, Eqs. (3.58) and (3.59), (Fullmer et al., 2014).  

5.5.4. Summary 

For Case 1, the simulations of the first set are preferable over the ones of the third 

set for being similar in results, but for having one less term in the 1D Two-Fluid Model 

momentum equations (Table 5.1). For Cases 2 and 3, the simulations of the second set 

were the most satisfactory due to the ability of the Bestion (1990) dynamic pressure to 

render mesh convergence and well-posedness. Nevertheless, the previously 

commented problems of the dynamic pressure term still persist and it is desirable to 

overcome them, especially the excessive stabilization of Case 1 and the appearance of 

large-amplitude instabilities. With this purpose, in the fourth set of simulations, the 

dynamic interfacial shear stress expression of Brauner & Maron (1993; 1994) is taken 

into account together with the dynamic pressure term (Table 5.1).  

5.6. Analysis of the Dynamic Interfacial Shear Stress Term (Fourth Set 

of Simulations) 

In this topic, the results of the fourth set of simulations, in which the dynamic 

pressure and the dynamic interfacial shear stress terms are considered in the 

momentum conservation equations of the 1D Two-Fluid Model, are presented. As 

in the third set of simulations, only the Proposed Expression 1 is employed for 

modelling the interfacial friction factor. 

5.6.1. Case 1 (𝜟𝑷𝓓,𝑲 ≠ 𝟎 ; 𝓙𝒊 ≠ 𝟎) 

Starting with Case 1, Figures 5.58 and 5.59 show the plots, as a function of 

the mesh aspect ratio, of the liquid holdup, the pressure gradient and the 𝑒𝑅𝑀𝑆 values 

from the simulations and the measurements. 
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                     (a)  Mean liquid holdup                                    (b) Pressure gradient 

Figure 5.58 – Grid test for Case 1 with the Proposed Expression 1 in the fourth set of 

simulations. 

 

Figure 5.59 – Values of the root-mean-squared error of Eq. (5.1) for Case 1 with the 

Proposed Expression 1 in the fourth set of simulations. 

Comparing the results of the referred figures with the ones for the same Case 

1, with the Proposed Expression 1, of the second set of simulations (Figures 5.23 

and 5.24) it can be seen how remarkably similar they are. The same can be stated 

about the numerical liquid holdup histograms of the current simulations, located in 

Figure 5.60, and those from the previously mentioned simulations of the second set 

(Figure 5.25). Nevertheless, by comparing the histograms for Δ𝑥 𝐷⁄ = 0.5 in 

Figures 5.25 and 5.60, one can see that the dynamic interfacial shear stress of 

Brauner & Maron (1993; 1994) did manage to slightly destabilize the flow, and a 

few slugs could be captured. However, the numerical liquid holdup histogram for 

this mesh aspect ratio in Figure 5.60 is still very different from the experimental 

one. Besides, the results behavior in Figures 5.58 and 5.59 indicate the mesh 

convergence was not obtained. Despite all of this, the Case 1 results for the fourth 

set of simulations indicate that using the dynamic interfacial shear stress combined 

with the dynamic pressure might be the right way for improving the second set of 

simulations predictions.  
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Figure 5.60 – Liquid holdup histograms for Case 1 with the Proposed Expression 1 in the 

fourth set of simulations. 

5.6.2. Cases 2 and 3 (𝜟𝑷𝓓,𝑲 ≠ 𝟎 ; 𝓙𝒊 ≠ 𝟎) 

 For the originally stratified wavy (with small-amplitude waves) flows of 

Cases 2 and 3, the integral parameter results for the fourth set of simulations are 

shown in Figures 5.61-5.63. They depict the plots of, respectively, the liquid 

holdup, the pressure gradient and the 𝑒𝑅𝑀𝑆 values together with the corresponding 

measurements and Point Model predictions (Table 5.4). 

It is interesting to observe that the results in Figures 5.61-5.63 are almost 

identical to those from Cases 2 and 3 of the second set of simulations, with the 

Proposed Expression 1, in Figures 5.34-5.36. The same can be said regarding the 

liquid holdup histogram results of the Cases 2 and 3 fourth-set simulations, plotted 

in Figure 5.64 and of those plotted in Figure 5.37.  

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.61 – Mean liquid holdup numerical results for Cases 2 and 3 with the 

Proposed Expression 1 in the fourth set of simulations. 
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(a) Case 2. 

 
(b) Case 3. 

Figure 5.62 – Pressure gradient numerical results for Cases 2 and 3 with the Proposed 

Expression 1 in the fourth set of simulations. 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.63 – Values of the root-mean-squared error of Eq. (5.1) for Cases 2 and 3 

with the Proposed Expression 1 in the fourth set of simulations. 

 

 
(a) Case 2. 

 
(b) Case 3. 

Figure 5.64 – Liquid holdup histograms for Cases 2 and 3 with the Proposed 

Expression 1 in the fourth set of simulations. 

After the presentation of the results from this forth set of simulations, it can 

be concluded that the inclusion of the dynamic interfacial shear stress term (together 

with the dynamic pressure) did not destabilize the flow sufficiently in order to 
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compensate the overly stabilizing effect of Δ𝑃𝒟,𝐾. The reason might be that the 

Brauner & Maron (1993; 1994) modelling for 𝒥𝑖 provides low values, which do not 

play a significant role in the 1D Two-Fluid Model. Therefore, a more thorough 

investigation on this term is needed, due to its solid physical background and 

destabilizing effect evidenced in the well-posedness analysis and present 

simulations.  Hence, potential improvement in the Regime Capturing Methodology 

may be possible with this term. 
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6. CONCLUSIONS 

 In this work, an attempt was made for extending the Regime Capturing 

Methodology, extensively validated for air-water flows (Issa & Kempf, 2003; 

Nieckele et al., 2013; Ferrari et al., 2017), to viscous oil-gas flows, through 

simulations of isothermal horizontal stratified wavy and slug cases from the 

Eskerud Smith et al. (2011) database. With this purpose, two new expressions for 

the interfacial friction factor were generated using the stratified wavy flow (small-

amplitude waves) data and a new framework based on an optimization procedure, 

solved with the PSO algorithm (Kennedy & Eberhert, 1995). These new 

expressions (Proposed Expressions 1 and 2) provided liquid holdup and pressure 

gradient values, with the Point Model, much closer to the measurements than more 

common literature formulations. Besides, through a different formulation for the 

optimization problem, it was also possible to evaluate the most efficient wall 

friction factor correlations. It was seen that the Biberg (1999) expression, modified 

by Pasqualette et al. (2017), for (𝑓𝐿)lam, the Nossen et al. (2002) correlation for 

(𝑓𝐿)turb and the Biberg (1998) equation for (𝑓𝐺)turb were more efficient, in terms 

of objective function, than standard literature approaches. 

 Well-posedness (characteristics) analyzes of the 1D Two-Fluid for the 

Eskerud Smith et al. (2011) database were performed, considering the gas as 

incompressible and neglecting second-order and higher order derivative terms. 

From the analysis, it became clear that the dynamic pressure term, as expected, 

contributes to the well-posedness and that the dynamic interfacial shear stress 

makes the model more unstable and ill-posed.  

 Four sets of Regime Capturing Methodology simulations (Table 5.1) were 

performed and their results were presented for three Eskerud Smith et al. (2011) 

database cases: one slug flow (Case 1) and two stratified-wavy flows (Cases 2 and 

3). In the first set of simulations, the slug flow case was mesh convergent and well-

posed and the analysis of integral parameters, liquid holdup histograms and their 

transient profiles revealed that the use of Proposed Expressions 1 and 2 only slightly 
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changes the results, when compared to the Standard Expression. Such comparison 

was not possible to be made for Cases 2 and 3, because those cases were ill-posed. 

In the second set of simulations, i.e., using the dynamic pressure of Bestion (1990), 

Case 1 become overly stabilized, which harmed the prediction of slugs, while Cases 

2 and 3 become mesh-convergent and the analysis of their results showed a 

superiority of the Proposed Expression 1, when compared to the Standard 

Expression and to the Proposed Expression 2. The simulations of the third set were 

aimed to replace the excessive stabilizing effects due to the dynamic pressure by 

the axial momentum diffusion. However, it did not manage to guarantee that Cases 

2 and 3 were well-posed. It was suggested that only an artificial augmentation of 

the diffusion would cause the desired effect. Finally, the four set of simulations 

tested the impact of the model of Brauner & Maron (1993; 1994) for the dynamic 

interfacial shear stress in the simulations. However, it was observed that such term 

does have little impact, probably due to low values of adjusting parameters provided 

by the model of Brauner & Maron (1993; 1994). 

 As seen, this work managed to make several interesting remarks, new 

knowledge and observations on the use of the Regime Capturing Methodology for 

viscous oil-gas flows. Furthermore, it contains an optimization-based new method 

for creating interfacial friction factor expressions and for analyzing wall friction 

factor correlations. Several analyzes, approaches and descriptions of topics were 

made in manners different and better than what is currently found in the literature. 

Therefore, this work had several contributions to the development of the technology 

studied: the Regime Capturing Methodology. Nevertheless, much more can still be 

performed as it can be grasped from the following suggestions for future works. 

6.1. Suggestions for Future Work 

 In the optimization of the interfacial shear stress, a suggestion for a future 

work would be to generalize the Proposed Expressions 1 and 2 by using extra 

experimental database for different fluids. In addition, one should look for even 

better wall shear stress correlations than the ones used in this work. The 

consideration in the Point Model of the term of Liné & Lopez (1997), which 

explicitly takes into account the effects of the interfacial waves on the interface 

would also be a novel task to be performed. 
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 Regarding the stability-hyperbolicity problem, rather than only using well-

posedness (characteristics) analyses, it is recommendable to use also a linear 

stability analysis and/or the von Neumann analysis. The former would make 

possible to assess the effects of the higher-order terms and to have a more complete 

mapping of the model stability for all wavelengths. The von Neumann analysis 

would go even further and provide as well the influence of the discretization 

schemes in the stability-hyperbolicity problem. 

 For the Regime Capturing Methodology, it is interesting to explore more wall 

and interfacial shear stress closure relations for the viscous-oil gas flows. Besides, 

the analysis of the axial momentum diffusion and of the dynamic interfacial shear 

stress should advance, because part of what was performed in this work on such 

topics was inconclusive. Testing the effects of the artificial diffusion on the mass 

equations is also significantly important, for being an effect that may significantly 

dampen the growth rate of spurious instabilities (Fullmer et al., 2014) and for being 

a strong candidate for improving qualitatively the transient liquid holdup profiles 

and their histograms. Using Power-Spectrum-Density (PSD) plots, as in Fontalvo 

(2017), is recommendable in the future for being a resource that provides deep 

information on the numerical results.  

 Lastly, for slug flows, the incorporation of gas entrainment effects is 

important, especially at higher mixture velocities. This effect is not taken into 

account in the current version of the model and may help to improve hold-up 

predictions, as evidenced by numerical results shown here. Excessively high peaks 

in the histograms of the hold-up signals were obtained for 𝛼𝐿 values close to one, 

which were not observed in the experiments. 
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