3 Modelo Evolucionário para Sustentabilidade Inteligente

Este capítulo introduz um modelo evolucionário para a otimização dos parâmetros de uma construção de modo a minimizar o impacto da mesma sobre os custos ambientais, de construção e de consumo de energia. Com este objetivo em mente, propõe-se um modelo genérico que integre um método de otimização baseado em algoritmos genéticos a um sistema de simulação capaz de fazer os cálculos necessários para se atender aos objetivos que se pretende alcançar.

O modelo proposto neste trabalho é mostrado na figura 3.1.

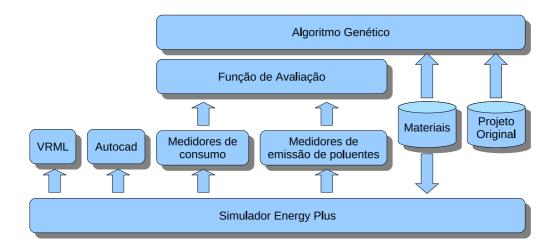


Figura 3.1: Estrutura do modelo proposto.

O algoritmo genético é responsável por ler as informações sobre os materiais que podem ser usados em um projeto, bem como o projeto original fornecido pelo usuário do sistema. Estes dados são usados pelo AG para criar os indivíduos que serão avaliados pela função de avaliação. Esta função fornece o projeto completo, que está codificado dentro de cada indivíduo da população do algoritmo genético, para o EnergyPlus que, por sua vez, executa uma simulação completa fornecendo como saída medições de consumo de eletricidade e de emissão de poluentes. Estes dados são então usados pela função de avaliação para calcular um único valor de avaliação para o indivíduo que foi simulado.

Ao final do processo de otimização, pode-se fazer com que o EnergyPlus gere arquivos para o Autocad e arquivos VRML (Virtual Reality Modelling Language) que podem ser visualizados externamente por programas adequados para este fim.

Deste modo, para se alcançar os objetivos definidos por este modelo, faz-se necessário definir:

- Quais as medidas ou métricas que o EnergyPlus é capaz de fornecer e que se deseja otimizar?
- Quais os parâmetros relacionados a uma construção que têm impacto direto nas medidas ou métricas mencionadas e que, portanto, devem ser manipulados pelo algoritmo genético?

A primeira pergunta está relacionada diretamente com a própria arquitetura e características do EnergyPlus. Considerando-se então que o foco deste trabalho encontra-se na otimização do custo ambiental e do custo financeiro, pode-se listar os seguintes itens como possíveis candidatos a serem usados como objetivos da função de avaliação:

- Consumo de eletricidade para iluminação;
- Consumo de eletricidade para refrigeração;
- Consumo de eletricidade para aquecimento;
- Emissão de poluentes derivados do uso de combustíveis para geração de eletricidade;
- Custo do material para construção da edificação.

Além destes itens principais, pode-se também otimizar alguns itens secundários:

- Taxa de aquecimento ou resfriamento de um ou mais cômodos;
- Ganho de calor por radiação, convecção ou calor latente;
- Temperatura média dentro de um ou mais cômodos.

A segunda pergunta está relacionada aos parâmetros físicos de uma construção, que influenciam nas métricas citadas acima, e que podem ser otimizadas por um algoritmo genético. Constituem o cromossomo do modelo ideal, que será visto na seção 3.2, e tem relação com:

- orientação localização geográfica;
- janelas tipo de vidro, altura e largura, uso ou não de bloqueadores;
- paredes espessura e tipo de material;

- árvores posicionamento, definição de quantidade e de espécie;
- lâmpadas posicionamento, quantidade, potência.

A próxima seção descreve cada um dos possíveis objetivos que podem ser usados na função de avaliação.

3.1 Objetivos da Otimização

3.1.1

Consumo de eletricidade para iluminação

Para cada cômodo da edificação, o projetista pode especificar um valor de incidência luminosa (em *lux* ou *lumens/m*²) desejada para um ou dois pontos dentro deste cômodo (por exemplo, qual a incidência luminosa desejada sobre uma escrivaninha). A partir deste valor de incidência luminosa e utilizando-se uma tabela que relaciona os tipos de lâmpada, o consumo em watts dessa lâmpada e a saída em *lumens* que essa mesma lâmpada produz, é possível fornecer ao EnergyPlus qual o consumo de uma lâmpada capaz de fornecer a incidência luminosa desejada no caso de total ausência de qualquer outra fonte de luz dentro do cômodo em questão. Com esta informação, o EnergyPlus é capaz de calcular então a influência de outras fontes luminosas e regular através de um *dimmer* qual a potência que está sendo efetivamente utilizada.

3.1.2 Consumo de eletricidade para refrigeração

O EnergyPlus é capaz de simular diversos tipos diferentes de equipamentos de ventilação e refrigeração. A maior parte destas simulações trabalha com equipamentos que funcionam utilizando *setpoints* que determinam a partir de qual temperatura dentro do cômodo refrigerado o equipamento de refrigeração deve ser acionado.

3.1.3 Consumo de eletricidade para aquecimento

Do mesmo modo que para o consumo de eletricidade relativo à refrigeração, o EnergyPlus também é capaz de simular diversos tipos de equipamentos para aquecimento. Estes equipamentos também trabalham com *setpoints* que determinam a partir de qual temperatura dentro do cômodo aquecido eles devem ser acionados.

3.1.4 Emissão de poluentes

O EnergyPlus é capaz de simular a quantidade de poluentes lançados no meio ambiente decorrentes dos processos de geração de energia. Entre outros tipos de poluentes destacam-se:

- − Dióxido de carbono CO₂
- Monóxido de carbono CO
- Metano CH_4
- Óxidos de nitrogênio NO_x

3.1.5 Custo de materiais para construção

É possível fazer com que o EnergyPlus gere valores de custo para a construção de uma determinada edificação. Desta maneira, é possível calcular, por exemplo, em quanto tempo haverá um retorno do investimento na construção com a economia de energia ao se utilizar materiais mais caros, mas mais adequados para um menor consumo de energia.

Com a definição dos objetivos que se pode otimizar, a próxima etapa consiste em definir quais os parâmetros que têm impacto sobre estes objetivos e que, portanto, devem fazer parte do cromossomo no algoritmo genético. A seção 3.2 trata da definição destes parâmetros.

3.2 Cromossomo do Modelo Ideal

O cromossomo do modelo ideal é aquele capaz de compreender os vários parâmetros de uma edificação, que podem ser otimizados.

Em um processo de otimização busca-se minimizar uma função de várias variáveis que poderia ser representada da seguinte forma: $f(x_1, x_2, x_3, x_4, x_5, ...x_n)$, cujo valor tem que ser o menor possível, onde $(x_1, x_2, x_3, x_4, x_5, ...x_n)$ são as variáveis da função. Estas variáveis devem, de algum modo, estar relacionadas aos objetivos que se quer minimizar, de modo que a manipulação dos valores destas variáveis permita que se altere o valor destes objetivos. Alguns dos parâmetros que podem influenciar os objetivos são:

Espessura de uma parede – a espessura da parede está diretamente relacionada a transmissividade de radiação térmica, tanto do exterior da construção para o interior, quanto do interior para o exterior. Pode-se definir uma espessura mínima desejada e uma espessura máxima para que o algoritmo possa encontrar o melhor valor dentro desta faixa;

- Tipo de material de uma parede uma parede (tanto interna como externa)
 pode ser construída a partir de um ou mais materiais diferentes. A escolha dos materiais e a disposição dos mesmos em camadas também pode ser otimizada pelo algoritmo genético;
- Altura da parede (pé-direito) a altura do pé-direito está intimamente relacionada à circulação de ar no interior da construção e ao volume de ar que se necessita para aquecer ou resfriar um determinado cômodo. Os valores mínimos e máximos desejáveis para o pé-direito podem ser fornecidos para o algoritmo genético para que o mesmo faça a otimização desta altura;
- Altura de uma janela a altura de uma janela tem impacto na capacidade de ventilação, na quantidade de iluminação e na quantidade de radiação térmica que entra no cômodo. Fixando-se a altura do peitoril da janela, pode-se definir uma altura mínima e máxima que se deseja e permitir que o algoritmo genético faça a otimização deste parâmetro;
- Largura de uma janela do mesmo modo que a altura da janela, a largura tem impacto na capacidade de ventilação, na quantidade de iluminação e na quantidade de radiação térmica que entra no cômodo. A otimização deste parâmetro pode ser feita determinando-se o percentual mínimo e máximo que a janela pode ocupar em relação a largura total da parede onde a janela está posicionada;
- Tipo de vidro do mesmo modo que uma parede, o vidro das janelas pode ser feito de diferentes materiais, espessuras e camadas. Estes parâmetros também podem ser otimizados pelo algoritmo genético;
- Orientação da edificação em relação ao norte geográfico a orientação de uma edificação em relação ao norte geográfico tem papel importante pois ajuda a definir quais cômodos recebem luz do sol pela manhã e quais recebem luz do sol no período da tarde. Isto tem impacto direto na iluminação dos cômodos e na necessidade de refrigeração e aquecimento dos cômodos;
- Posicionamento de árvores em relação à edificação as árvores oferecem uma proteção natural quanto ao calor gerado pela luz do sol. Por outro lado, bloqueiam a entrada de luz solar e podem fazer com que seja necessário acender luzes no interior dos cômodos. A otimização da posição das árvores dentro do terreno da construção bem como o tipo de árvore, pode ajudar a encontrar a melhor disposição possível para minimizar os custos de refrigeração e iluminação;
- Posicionamento de lâmpadas em um ambiente o EnergyPlus permite que, para cada cômodo, se defina até dois pontos onde se deseja fazer uma medição da intensidade luminosa. A partir desta definição o EnergyPlus calcula qual

a intensidade que os pontos de luz devem ter para fornecer a intensidade desejada. No caso em que se define dois pontos de medição de luz, pode ser interessante otimizar a posição do ponto de luz de forma a se obter a configuração mais econômica possível.

É possível definir ainda outros parâmetros que podem ser otimizados visando minimizar o consumo de energia elétrica e aumentar o conforto térmico para o usuário da construção. No entanto, os parâmetros relacionados anteriormente são os que estão mais fortemente relacionados com os possíveis objetivos que se quer minimizar no processo de otimização.