
     

4
Princípio dos Trabalhos Virtuais  

4.1.Contínuo de Cosserat Elástico 

As equações para a teoria da elasticidade e da plasticidade serão 

apresentadas para o contínuo de Cosserat 2D, conforme apresentadas nas 

referências [9] e [10]. 

Neste item serão demonstradas as grandezas cinemáticas para um continuo 

de Cosserat 2D, as coordenadas do plano cartesiano serão 21 , xx  e 3x . Cujo plano 

de deformação será representado por 1x e 2x , o vetor posição será, conforme 

equação 121 até 123 e Figura 6: 

 

iiexR � 2,1�i  ·························································································································121 

 

O vetor deslocamento será: 

iieuu �   ········································································································································122 

 

E o vetor de rotação será: 

33ecc �� �  ···································································································································123 
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Figura 6 – (a) Campo de deslocamento e rotação no continuo de Cosserat; (b) Curvatura 

– gradiente de micro rotações [10]. 

 

Por simplicidade é assumido que o gradiente de deslocamento e rotação são 

infinitesimais até que comece a se formar as bandas de cisalhamento. Assim sendo 

no contínuo de Cosserat 2D o estado de deformação é descrito por seis 

componentes. As deformações referentes ao contínuo macroscópico, 

correspondentes a quatro das seis deformações mencionadas acima, são dividas na 

parcela simétrica, referente à equação 127 e 128, e na parcela anti-simétrica, 

referente à equação 129 e 130. E as outras duas deformações são referentes ao 

gradiente do tensor relativo (equação 133 e 134) que no caso é puramente anti-

simétrico, kijx ][ . 

jiijij u��� )()( �� ························································································································124 

ijijijijij �	��	� ][][][ 
�� ···································································································125 

k
c

ijkij e �	�� ······························································································································126 

1111)11( u��� �� ·························································································································127 

2222)22( u��� �� ·························································································································128 

cu 312]12[]12[]12[ �
�� ���	� ······························································································129 

cu 321]21[]21[]21[ �
�� 	��	� ······························································································130 
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ijijkijx ����� ][][ 
 ···················································································································131 

k
c

iix ��� ····································································································································132 

k
cx �11 �� ····································································································································133 

k
cx �22 �� ···································································································································134 

A Figura 7 demonstra como o tensor relativo, no caso a parcela anti-

simétrica, são obtidos, conforme equação 129 e 130. 
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Figura 7 – (a) Tensor relativo conforme 129(b) Tensor relativo conforme 130 [12]. 
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4.1.1.Princípio do Trabalho Virtual para Contínuo de Cosserat

Para representar as condições cinemáticas relacionadas com as seis 

equações apresentadas acima temos tensores duais ij
c�  (tensor dual de Cosserat) 

e  km (tensor dual de tensões-momento, cuja unidade é momento por área ou forca 

por comprimento), conforme Figura 8.  

kijkkij me	�][ ······························································································································135 

meM ijkij 	�][ ······························································································································136 

kijkij e �	�� ][ ······························································································································137 

Desprezando as forças de massa e os momentos de massa e utilizando o 

tensor de permutação para obter os tensores duais temos as seguintes condições de 

equilíbrio e contorno.  

Substituindo da equação 135 até 137 entre a equação 65 até 68 temos: 

0)( �� ij
c

j� ····································································································································138 

0���	 kk
c
ijijk me � ····················································································································139 

01221 ���	 kk
cc m�� ·················································································································140 

 

iij
c

i nT �� ·····································································································································141 

 

kk nmm �  ···································································································································142 
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Figura 8 – (a) Tensor dual de Cosserat e de tensões-momento nas faces do elemento do 

contínuo (b) Exemplo de campo de tensões não homogêneo na escala da partícula [10]. 

 

Como já dito anteriormente para material linear isotrópico, teoria de 

Cosserat, é necessário definir quatro parâmetros sendo estes: � e G , parâmetros 

clássicos de Lamé, e outros dois referentes à partícula, o primeiro é o módulo de 

cisalhamento anti-simétrico ou rotacional  cG  e o segundo é o módulo de flexão 

B . Como já mencionado B  tem dimensão de força e por isto sua relação com 

qualquer outro parâmetro é de comprimento ao quadrado, [35] sugeriu a relação 

entre B  e G , já que as maiorias dos autores se preocupam em medir a partir de 

ensaios de laboratório o comprimento característico, o coeficiente dois foi adotado 

apenas por conveniência segundo [12].  Então são apresentados abaixo para 

problemas 2D as equações constitutivas e o significado de seus parâmetros.  

][22 ijcijkkijij
c GG ������ ���  ···························································································143 

2)( 32 eeGc 	� ·························································································································144 

iBxm �  ·········································································································································145 

2��B ············································································································································146 

G
Bl

2
� ········································································································································147 

Das equações mencionadas em 4.1.1 podemos definir vetores generalizados 

de deslocamento, deformação, tensão e tensão de condição de contorno para o 

contínuo de Cosserat 2D, conforme da equação 148 até 151. 
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),,( 21
cg uuu �� ·························································································································148 

),,,,,( 2121122211 lxlxg ����� �  ······························································································149 

)/,/,,,,( 2121122211 lmlmg ����� � ···················································································150 

),,( 21 mTTT g �  ··························································································································151 
 

4.2.Contínuo de Cosserat Elastoplástico 

Um carregamento externo causa deformações e tensões no corpo. Quando o 

carregamento externo é retirado, o corpo pode ou não voltar à configuração 

inicial. Até agora só temos tratado de materiais que retornam ao seu estado inicial 

quando o carregamento é removido, o que é chamado de material elástico. Neste 

item consideraremos materiais que retém parte da deformação no 

descarregamento, estes tipos de materiais são conhecidos como materiais plásticos 

ou inelásticos [1]. 

Ensaios de laboratório demonstraram que alguns tipos de materiais tal como 

o aço se comportam de maneira elástica até certo estágio de carregamento. Uma 

curva típica de tensão deformação de ensaio de extensão é apresentada na Figura 

9, onde o trecho OA representa a parcela na qual o material é elástico. Quando a 

amostra é carregada além do ponto A o material passa a ter comportamento 

elastoplástico, ou seja, supomos que o material seja carregado até o ponto B 

quando o mesmo é descarregado apresentará uma deformação permanente, 

deformação plástica. Quando a amostra é recarregada do ponto C até o ponto B 

apresenta comportamento elástico. Como a trajetória de recarregamento não segue 

a trajetória original de carregamento, as deformações dependem da trajetória de 

carregamento que o material já sofreu. Como é o caso do ponto F e G que com 

diferentes tensões aplicadas possuem mesma deformação.  
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Figura 9 – Curva típica tensão deformação de ensaio de extensão de aço [1]. 

A figura acima mostra que as deformações são compostas de deformação 

elástica e deformação plástica, conforme equação 152. 

 

ij
p

ij
e

ij ��� ��  ···························································································································152

 

O critério de escoamento é definido como o limite até onde ocorrem apenas 

deformações elásticas, devido a um determinado estado de tensão. Este critério de 

escoamento é matematicamente expresso por uma função escalar dependente, no 

caso do continuo de Cosserat e material isotrópico, do tensor de tensões 

generalizado. 

)/,/,,,,()( 2121122211 lmlmFFF g ����� ��  ······························································153 

A seguir, conforme Figura 10, serão apresentadas duas idealizações, a 

primeira referente a comportamento elastoplástico perfeito e a última referente a 

comportamento elastoplástico com endurecimento. 
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Figura 10 – (a) Modelo idealizado e curva típica de tensão vs deformação para 

comportamento elastoplástico perfeito (b) Modelo idealizado e curva típica de tensão vs 

deformação para comportamento elastoplástico com endurecimento [1]. 

A definição do comportamento do escoamento plástico dos materiais é 

importante na relação tensão deformação, por isto uma lei de fluxo é definida. 

Quando o estado de tensão, sob o qual o material está submetido, atinge o critério 

de escoamento  F , o corpo passa a apresentar deformações plásticas, que é 

definido como escoamento plástico. Na teoria da plasticidade a direção das 

deformações plásticas é definida através de uma lei de fluxo, supõe-se a existência 

de uma função de potencial plástico Q , expresso como função do estado de 

tensão: 

))/,/,,,,()( 2121122211 lmlmQQQ g ����� ��  ·····························································154 
 

O qual é ortogonal com relação ao incremento de deformação plástica  

ij
pgd�  e o mesmo pode ser expresso da seguinte forma: 

ij
gij

pg Qhd
�

�
�
�

�  ·······················································································································155 

Para o modelo de Cosserat o tensor de tensões é correspondente aquele 

expresso na equação 150 e h  é um escalar positivo que representa um fator de 

proporcionalidade referente ao endurecimento e/ou amolecimento. Quando o 

potencial plástico coincide com o critério de escoamento, pode-se dizer que a lei 

de fluxo é associada, equação 156, e quando os mesmos não são iguais diz-se que 

a lei de fluxo é não associada, equação 157. 

FQ � ·············································································································································156 
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FQ �  ············································································································································157 
Da condição de consistência apresentada no item seguinte o escalar dh  

pode ser expresso da seguinte maneira, segundo [9]: 

ge
g

t

dCF
H

dh �
��

�
�

1
··················································································································158 

 

Onde H pode ser expresso da seguinte maneira: 

BAQCFH g
e

g

t

	�
�
�

�
�

�
��

······································································································159 

gg

t QFrA
�� �
�

�
�

� ··························································································································160 

h
FB

�
�

	� ······································································································································161 

 

Onde A corresponde a parcela do amolecimento, r corresponde à taxa de 

amolecimento que ocorre no parâmetro de coesão e/ou ângulo de atrito, B 

corresponde à parcela do endurecimento e eC  representa a matriz de rigidez 

elástica. O comportamento de endurecimento e/ou amolecimento existente em 

alguns materiais geotécnicos será apresentado nos itens seguintes. Por hora será 

apresentada a relação entre incremento de tensão em relação ao de deformação de 

maneira abrangente, ou seja, com endurecimento e amolecimento.  

A taxa de tensão pode ser determinada da seguinte maneira: 

ij
gep

ij
g dCd �� �  ·······················································································································162 

Onde a matriz de rigidez elastoplástica epC pode ser definida como: 
peep CCC 	�  ···························································································································163

E a matriz de rigidez plástica pC pode ser definida como: 

e
g
ij

t

g
ij

ep CFQC
H

C
�� �

�
�
�

�
1

 ······································································································164 

 

Daí tem-se que o incremento de tensão pode ser expresso da seguinte 

maneira: 

ij
ge

g
ij

t

g
ij

ee
ij
g dCFQC

H
Cd �

��
�

�
�
�

�

�
�
�

�
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 ········································································165 
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4.2.1.Implicações do Trabalho Plástico 

O conceito de trabalho plástico é importante nas relações de tensões 

deformação, o trabalho total realizado por unidade de volume de um corpo 

durante o incremento de deformação é definido: 

ij
g

ij
g ddW ��� ···························································································································166 

O incremento de deformação total, ij
gd� , possui sua parcela plástica e 

elástica conforme apresentado abaixo: 

ij
gp

ij
ge

ij
g ddd ��� �� ··························································································167 

Substituindo na equação 166 a 167 tem: 

)( ij
gp

ij
ge

ij
g dddW ��� �� ····································································································168 

pe dWdWdW �� ·····················································································································169 
 

A quantidade de trabalho elástico edW  realizado é recuperável, porém a 

quantidade de trabalho plástico pdW não o é, já que as deformações plásticas são 

permanentes.  

O trabalho que será referido agora, não representa o trabalho total, mas sim 

somente o trabalho realizado devido ao incremento de tensões que geram 

incrementos de deformações. E o mesmo é governado pelos seguintes postulados 

[1]: 

� Durante a aplicação da tensão, o trabalho realizado pelos agentes 

externos será positivo; e 

� Durante o ciclo de carregamento e descarregamento de tensão, o 

trabalho realizado será nulo ou positivo. 

Em outras palavras, o trabalho plástico implica que a energia gasta não pode 

ser retirada do material que está sujeito a carregamento externo.  

Para estabelecer relações matemáticas destes postulados, são apresentadas 

as equações abaixo: 

 

0)( �� ij
gp

ij
ge

ij
g ddd ��� ······································································································170 

0�ij
gp

ij
g dd �� ··························································································································171 
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Agora duas hipóteses são assumidas [1]: 

� Existe uma superfície, chamada de superfície de escoamento, que 

representa o limite do escoamento associado ao estado de tensão 

para qualquer trajetória de tensão. Somente deformações elásticas 

ocorrem para mudanças de tensões que ocorram dentro da superfície 

de escoamento, enquanto deformações plásticas para qualquer 

mudança de tensão que ocorra apontada para fora ou para dentro da 

superfície de escoamento; e 

� A relação entre mudanças infinitesimais de tensões e deformações 

plásticas é linear. Isto significa que o somatório de incrementos de 

deformações plásticas obtidos por dois conjuntos de incrementos de 

tensões ij
gd '� e ij

gd ''� será o mesmo que a deformação plástica 

resultante de  ij
g

ij
g

ij
g ddd ''' ��� �� . 

Além disto, algumas condições precisam ser satisfeitas para assegurar uma 

correta descrição do processo físico envolvido nas deformações plásticas. Quatro 

condições foram formuladas por Prager, sendo estas [1]: 

� Condição de continuidade – Considera-se um estado de tensão que 

está sobre a superfície de escoamento. Uma mudança infinitesimal 

de tensão causa um carregamento ou descarregamento, ou 

carregamento neutro, dependendo se a trajetória de tensão esta 

apontada para fora ou para dentro da superfície de escoamento ou 

tangente a mesma, respectivamente. Para evitar descontinuidades nas 

relações de tensão-deformação, requer que um carregamento neutro 

não cause deformação plástica;  

� Condição de unicidade – Isto garante que para um estado de tensão 

do material, os acréscimos de tensões e deformações são únicos; 

� Condição de irreversibilidade – Esta condição requer que devido ao 

fato das deformações plásticas serem permanentes, que o trabalho 

plástico realizado seja positivo: 

0�ij
gp

ij
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� Condição de consistência – Carregamento de um estado plástico 

levará forçosamente a outro estado plástico, o que satisfaz o critério 

de escoamento enquanto o material permanecer em regime plástico.  

 Estas quatro condições implicam que para um incremento de tensão apenas 

a parcela normal contribui para incremento de deformação plástica, por isto o 

incremento de deformação plástica é normal a superfície de escoamento, 

conforme Figura 11.  
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Figura 11 – Superfície de escoamento e direção do incremento de deformação plástica 

[1].

4.2.2.Comportamento de Endurecimento e Amolecimento 

Devido ao escoamento plástico o endurecimento e/ou amolecimento pode 

acontecer em certos materiais. Neste trabalho será adotada a hipótese de Hill o 

qual assume que o endurecimento e o amolecimento são funções do trabalho 

plástico, são independentes da trajetória de tensões e são funções do estado de 

tensão atuante g
a� . Daí tem o seguinte critério de escoamento e o potencial 

plástico: 

),( pg
a Wff ��  ························································································································173 

),( pg
a WQQ ��  ························································································································174 

 

Onde o estado de tensão atuante pode ser expresso da seguinte maneira [9]:  

��� 	� gg
a ······························································································································175 

 

O estado de tensão atuante é reduzido por um fator �  cuja derivada é obtida 

através da lei cinemática de Prager [9]: 

 
prdd �� � ····································································································································176 
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Onde r é a taxa de amolecimento da coesão e/ou do ângulo de atrito.  

O material pode apresentar dois tipos de endurecimento o isotrópico e o 

cinemático. Aqui apenas será apresentado o endurecimento isotrópico, o qual 

corresponde à expansão da superfície de escoamento inicial devido ao histórico de 

tensões, conservando sua forma e origem no espaço de tensões, como exemplo 

abaixo. 

 

 
Figura 12 – Endurecimento plástico isotrópico. 

 

O comportamento unidimensional de endurecimento e amolecimento está 

apresentado na  Figura 13, então o comportamento de amolecimento pode ser 

generalizado da mesma forma que o endurecimento para estado de tensão e 

deformação multiaxial. Primeiro será visto o comportamento do endurecimento e 

amolecimento no espaço de tensão conforme Figura 14a. Se no estágio A está na 

superfície de escoamento, 0�F , porém o material ainda está no intervalo de 

endurecimento, o incremento de tensão estará apontado para fora de maneira a 

produzir incrementos plásticos e elásticos de deformação. Neste caso um 

incremento de tensão que esteja apontado para dentro da superfície apenas irá 

causar deformação elástica. O movimento crescente do estado de tensão do ponto 

A, ao percorrer a superfície de escoamento, corresponde à parcela de 

endurecimento ou ascendente na curva de tensão-deformação para o caso 

unidimensional. Já para o caso em que o material esta no intervalo de 

amolecimento, a deformação plástica ocasiona diminuição da superfície ou que o 

estado de tensão diminua, o segundo caso é o que será utilizado neste trabalho. O 

movimento decrescente do estado de tensão do ponto C, ao percorrer a superfície 

de escoamento, corresponde à parcela de amolecimento ou descendente na curva 

de tensão-deformação para o caso unidimensional. Como na formulação do 

espaço de tensões, o comportamento do amolecimento é idêntico ao do 
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descarregamento elástico é por isto difícil diferenciar um do outro, razão pela qual 

será apresentada a formulação de espaço de deformação para a superfície de 

escoamento conforme Figura 14b. 

Conforme Figura 13, ao observar o ponto A e C percebe-se que o 

incremento de deformação é positivo em ambos os casos e negativo nos trechos 

AG e CH referentes a descarregamento elástico. Para qualquer deformação tanto 

no ponto A como no C, o acréscimo de deformação aponta para fora da superfície 

o que representa o caso de carregamento plástico. Quando o acréscimo de 

deformação aponta para dentro da superfície representa o descarregamento 

elástico, e por isto não existe ambigüidade na formulação [6]. 
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Figura 13 – Acréscimo de trabalho plástico para o trecho AB com endurecimento e para 

o trecho CD com amolecimento [6]. 
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Figura 14 – (a) Superfície de escoamento no espaço de tensões (b) Superfície de 

escoamento no espaço de deformações [6]. 

 

  

4.2.3.Modelo de Mohr-Coulomb 

A envoltória de Mohr-Coulomb, conforme Figura 15, é obtida através de 

ensaios realizados com tensões confinantes distintas respectivamente. A tensão 

confinante do ensaio triaxial corresponde à menor tensão na ruptura ( 3� ) e a 

tensão axial do ensaio triaxial corresponde à maior tensão na ruptura ( 1� ). O 

envelope de Mohr-Coulomb, conforme Figura 15, é uma função linear expressa da 

seguinte forma: 

��� tanns c �� ·······················································································································177 
 

Onde c é a coesão, que corresponde ao intercepto da reta no eixo  s� ,  � � é 

o ângulo de atrito, que corresponde à tangente da inclinação da reta, s�  é a tensão 

cisalhante no plano de ruptura, n�  é a tensão efetiva normal a superfície de falha 

e RT é a resistência a tração.  

A envoltória do diagrama p-q, conforme Figura 16, é uma função linear 

expressa da seguinte forma: 

�� tannpaq �� ······················································································································178 
 

Onde: 
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22
31 cdp

���� �
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�
� ···········································································································179 
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� ······················································································································180 

 

 

Onde a  corresponde ao intercepto da reta com o eixo q e sua relação com a 

coesão se encontra expressa na equação 182, '� �corresponde à tangente da 

inclinação da reta, e sua relação com o ângulo de atrito se encontra na equação 

181.  

 

�� sin'tan � ································································································································181 
�cosca � ····································································································································182 
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Figura 15 – Parâmetros do Modelo de Mohr-Coulomb, onde 3�  é a menor tensão 

principal de ruptura e 1�  é a maior tensão principal de ruptura dos diversos testes. 
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Figura 16 – Parâmetros do Modelo de Mohr-Coulomb diagrama p-q. 

 

A função de escoamento e o potencial plástico para o critério de Mohr-

Coulomb são definidos em função do primeiro invariante do tensor de tensões e 

do segundo invariante do tensor de tensões desviador. A generalização do 

segundo invariante do tensor de tensões desviadoras incorpora o efeito das 

tensões-momento e da assimetria de tensões, conforme equações 183 e 184 

respectivamente [10]. 

�� cossin 21 cJJF D 	��  ································································································183 

!" cossin 21 cJJQ D 	��  ······························································································184 

 

O critério de Mohr-Coulomb pode ser associado quando o potencial plástico 

é igual à função de escoamento, então !� � , caso o critério seja não associado 

então !� � . O ângulo de dilatância !  expressa à relação existente entre os 

incrementos de deformação plástica volumétrica e de deformação plástica 

cisalhante. 
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Figura 17 – Círculo de Mohr para estado de deformação. 

 

O primeiro invariante 1J , conforme equação 185, é idêntico ao utilizado no 

continuo clássico, o segundo invariante do tensor de tensões desviador DJ 2 , 

conforme equação 187, já é distinto do continuo clássico, pois incorpora o tensor-

momento devido às partículas. Porém quando não existir o tensor-momento, o 

tensor de tensões será simétrico e DJ 2  deverá ser o correspondente ao do contínuo 

clássico [10]. 

21
kkJ

�
�  ·······································································································································185 

ij
kk

ijijs �
�

�
2

	� ························································································································186 

23212 l
mmhsshsshJ ii

jijiijijD ��� ·················································································187 

 

Mühlhaus e Vardoulakis chegaram a dois conjuntos de ih  [12], ambos 

obtidos, a partir de uma função de distribuição de probabilidade uniforme para 

ocorrência de contatos entre partículas vizinhas, isso para a microestrutura 

representativa do meio de Cosserat. 

O primeiro conjunto é denominado cinemático c
ih , pois as considerações 

estáticas, deslocamento relativo, normal e tangencial aos contatos entre as 

partículas, são referentes à cinemática do meio, conforme equação 188. 
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#
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4
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8
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8
3c

ih ····························································································································188

O segundo conjunto é denominado estático e
ih , pois as considerações 

estáticas, forças de interação, normais e tangenciais, distribuídas pela área total 

dos grãos em contato, são referentes à estática do meio, conforme equação 189. 

 

#
$
%

&
'
(	�

8
1,

4
1,

4
3e

ih ·························································································································189 

Substituindo equação 188 ou 189 na equação 187 e considerando a não 

existência do tensor-momento, tem: 

 

ijijD ssJ
2
1

2 � ····························································································································190

 

Que corresponde com o segundo invariante de tensões desviadoras do 

continuo clássico, condição esta que a equação 187 deve obedecer. 

Alguns autores (Borst, Yu, Borst&Sluys) têm utilizado um terceiro conjunto 

denominado de padrão p
ih , o motivo deste conjunto ser utilizado é devido ao fato 

que para os algoritmos de integração das equações incrementais da plasticidade o 

retorno do estado de tensões a superfície de plastificação é exato e não requer 

iterações [12], conforme equação 191. 
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ih ···························································································································191 

 

 

4.2.4.Modelo de Bogdanova-Lippmann

A motivação da adoção de novas funções de potencial plástico e de 

escoamento é que haja uma resposta separada da influência de cada grandeza 

estática adicional introduzida, assim não será mais utilizado seja conjunto 

cinemático ou estático para incorporar através de uma distribuição estatística o 

comportamento do material. 
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Antes de apresentar as funções de potencial plástico e de escoamento será 

apresentado o círculo de Mohr 2D com o tensor de tensões assimétrico já que este 

efeito aparece na função de escoamento, conforme Figura 18. 

 

4.2.4.1.Circulo de Mohr – Tensor Assimétrico 

Na  Figura 18a, é apresentado um diagrama de corpo livre com o tensor de 

tensões assimétrico, as faces do diagrama estão orientadas perpendicularmente aos 

eixos coordenados xi e a um vetor unitário ni. A orientação do vetor unitário é 

fixada pelo ângulo �)*que o mesmo faz com o eixo x1 no sentido anti-horário, seus 

componentes são: 

 +tt
i senn �� ,cos� ·····················································································································192 

  

E para o vetor paralelo a ni, denominando si seus componentes são: 

 +tt
i sens �� cos,	� ·················································································································193 

 

O equilíbrio de forças Fi é então obtido pelas componentes do vetor de 

tensões assimétrico no plano normal a ni, segundo equação 194, e suas 

componentes normais e cisalhantes se encontram descritas abaixo. 

 

jiji nF �� ····································································································································194 

ijijii
n nnnF �� �� ···················································································································195 

ijijii
s snsF �� �� ····················································································································196 

 

A seguir são apresentadas as equações 195 e 196 por extenso: 

 

��������� cos)(cos 2112
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2

11 sensenn ���� ····················································197 

��������� cos)(1cos 1122
2

12
2

21 sensens 	�� ·······················································198 
 

Das equações 197 e 198 temos a equação de um circulo plano ( ,n� s� ): 
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Onde da Figura 18b temos que as componentes de tensão normal média 

m� e tensão cisalhante anti-simétrica a� são: 
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2211 ��
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�a ···························································································································201 
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Figura 18 – (a)Diagrama de corpo livre (b) Círculo de Mohr 2D para um tensor de 

tensões assimétrico [12]. 

 

Como pode se perceber na Figura 19, a tensão cisalhante é responsável pelo 

mecanismo de distorção e a tensão cisalhante anti-simétrica é responsável pelo 

mecanismo de rotação. Percebe-se que a tensão cisalhante anti-simétrica mede o 

gradiente de tensões-momento, que representa a diferença entre a rotação da 

parcela macroscópica e da partícula. 
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Figura 19 – Componentes simétricas e anti-simétricas das tensões cisalhantes e como 

elas atuam num continuo de Cosserat [12]. 

 

4.2.4.2.Elastoplasticidade para modelo de Bogdanova-Lippmann 

 Bogdanova e Lippmann [11] propuseram em 1974 dois conjuntos de 

funções de potencial plástico e escoamento conforme equações 203, 202, 207 e 

208. A diferença entre as funções do modelo de Mohr-Coulomb e do modelo 

mencionado acima é referente à parcela da função que inclui a� , que pode ser 

considerado como um amolecimento.  

Já para o segundo par de funções temos c  que pode ser considerado como 

uma resistência coesiva referente ao tensor-momento, e o segundo invariante de 

tensor desviador é referente também ao tensor-momento conforme equação 209. 

Como é possível notar na Figura 20 ocorre uma translação na superfície de 

escoamento, fato este que ocorre na Elastoplasticidade clássica no amolecimento 

cinemático. Então é possível conjecturar que a partícula do meio possa explicar de 

certa forma o amolecimento que é observado nos materiais. 
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Figura 20 – Possível relação entre a existência da microestrutura e o amolecimento 

cinemático clássico [12]. 

Como o modelo possui duas funções de potencial plástico foi adotada a 

mesma solução da elastoplasticidade clássica, lei de fluxo de Koiter para 

tratamento de superfícies com vértices e/ou arestas [11]. 

Assim quando violados ambos os critérios de escoamento o incremento da 

deformação plástica poderá ser calculado como o somatório da parcela de cada 

função de potencial plástico, conforme: 
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4.2.4.3.Elastoplasticidade para modelo de Bogdanova-Lippmann 
Modificado

Unterreiner sugeriu eliminar a�  da equação 202 e 203, assim sendo, 

voltaríamos a ter para o primeiro par de funções, as funções da elastoplasticidade 

clássica de Mohr-Coulomb, conforme equação 211 e 212 e incluir no segundo par 

de funções a parcela da tensão anti-simétrica com o tensor-momento, conforme 

equação 213 e 214. Isto corresponde a separar critérios para grandezas estáticas 

que tem diferentes mecanismos de deformação conforme Figura 19 [13].  
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