
3
Contínuo Generalizado 

Um meio contínuo clássico é composto por partículas, distribuídas de 

maneira uniforme, sendo cada uma delas representadas por um ponto, aqui 

denominado de P. Este ponto material possui coordenadas cartesianas, que faz 

referência a um sistema de eixos ortogonais xi, sendo i=1,2 e 3. Do ponto de visto 

cinemático, o meio continuo clássico possui graus de liberdade associados por 

vetores de deslocamentos ui, e a partícula do material terá os graus de liberdade 

associados a micro deslocamentos e micro rotações.  

Nesta seção será apresentado como a microestrutura do material pode ser 

levada em consideração num meio contínuo. Os primeiros a formalizarem a teoria 

foram os irmãos Cosserat [31], e posteriormente durante a década de 60, Mindlin 

[35], [36], [37] e [38] Mindlin & Tiersten [39] e Erigen [43] publicaram estudos 

teóricos a cerca do contínuo generalizado, cada um com uma cinemática de 

partícula distinta. 

Posteriormente o meio com microestrutura, também chamados de meio 

micromórfico, multipolares, entre outros, foi estudado sistematicamente por 

Germain [8] através da aplicação do príncipio do trabalho virtual. Este conseguiu 

formular matematicamente através do PVT a decorrência de grandezas estáticas 

através de equações constitutivas que levam em consideração a energia, trabalho, 

gerado pela cinemática da partícula.  

Durante a década de 70 e 80, Cowin & Nunziato [42], Eringen [44] e 

Mühlhaus [40] e [41] publicaram estudo sobre o contínuo generalizado com outras 

proposições a cerca da cinemática da partícula. 

Na teoria que leva em consideração a microestrutura do material, cada 

partícula ainda é representada por um ponto P. Porém suas propriedades 

cinemáticas são definidas sob um ponto de vista microscópico. Deste ponto de 

observação, o ponto P passa a ser definido como um contínuo de pequena 

extensão C(P) ao redor do ponto P.
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Para a teoria de Mindlin [35], o material linear isotrópico possui 18 

parâmetros, conforme descrito abaixo. 

 Na teoria da elasticidade clássica o tensor constitutivo do meio é isotrópico. 

Sendo assim os tensores de ordem zero ou nulos de qualquer ordem são 

isotrópicos. Já os tensores de ordem impar não são isotrópicos e os de ordem par 

são expressos como função linear do delta de Kronecker para serem considerados 

isotrópicos. Por extensão da lei de Hooke tem-se a seguinte  33: 
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 ···························································································  33 

  

Como os tensores ijklm� , ijpkl� , ijklm� e ijpkl�  são de ordem impar, estes não 

podem ser considerados como tensores isotrópicos e por isto seus parâmetros não 

precisam ser determinados. Devido à condição de isotropia a matriz dos tensores 

de parâmetros constitutivos precisa ser simétrica, para isto, ijkl� = ijkl� . A seguir 

são apresentados os tensores de ordem par, isotrópicos, em função do delta de 

Kronecker, conforme equação 34 até 37. 

jkiljlikklijijkl GG �������� 21 ���
 ···························································································································································34 

jkiljlikklijijkl ���������� 321 ���  ······················································································35 

jkiljlikklijijkl ���������� 321 ���  ························································································36 

jlimpkilpmjk

pljmikjmilpkimpljkpmjlikkljmpimkjlpilmjkpi

klimjpmkiljplmikjpklpmijmkplijlmpkijijpklm

��������

����������������������������

�������������������������

1514

13121110987

654321

�

������

������

 ···························································································································································37 
 

Como jiklijkl �� � , jiklijkl �� �  e  klmijpijpklm �� �
devido à simetria, 

21 GG � , 32 �� � , 61 �� � , 92 �� � , 75 �� � e 1211 �� � , conforme demonstrado 

abaixo. 

 

jkiljlikklijijkl GG �������� 21 ��� ······················································································   38 
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ikjliljkkljijikl GG �������� 21 ��� ·····················································································   39 

jiklijkl �� � ····································································································································   40 

ikjliljkkljijkiljlikklij GGGG �������������� 2121 ����� ········································  41 

)()()( 21 jkilikjljlikiljkkljiklij GG ������������� ����� ········································   42 

��� jiij � ······································································································································   43 

)()( 21 jkilikjljlikiljk GG �������� ���  ·············································································  44 

GGG �� 21 ·································································································································  45 
 

Por analogia chegam-se aos mesmos resultados para �  e � . Então os 

parâmetros necessários para material linear isotrópico são: � e G , parâmetros 

clássico de Lamé, 1� , 2� , 1� , 2� , 3� , 1� , 2� , 3� , 4� , 5� , 8� , 10� , 11� , 13� , 14�  e 15� . 

Das equações  33 até 37 e as condições de simetria descritas acima, as 

equações constitutivas são: 

 

)(2 21 jiijkkijijkkijij G ����������� �����  ································································  46 

jiijkkijijkkijijS ������������ 32121 2 ����� ································································  47 
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1514131110

854321

)(

)()()(

�����

���������������

�����

���������

  ·························································································································································  48 
 

3.1.Contínuo de Cosserat 

O contínuo micropolar de Cosserat assume que a partícula C(P) tem 

movimento de corpo rígido. Conseqüentemente o tensor ][ij�  é puramente anti-

simétrico e isto corresponde ao movimento de rotação individual de cada 

partícula, como conseqüência kijx ][ também é anti-simétrico, conforme equação 49 

e Figura 5 abaixo.  

 

ijijij ��� ][�� ··························································································································  49 
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Figura 5 - Representação esquemática do contínuo micropolar. 

Segundo o modelo de Cosserat, este permite que o contínuo macroscópico 

se comporte como um contínuo clássico e ao mesmo tempo permite rotação livres 

para o contínuo microscópico. Para representar as condições cinemáticas 

mencionadas acima associadas em energia, para o trabalho virtual das forças 

internas, existem os seguintes tensores: o tensor convencional, tensões de Cauchy 

( ij� ), ou tensões macroscópicas, tensões microscópicas ( ijS ), ou tensões relativas 

e segunda tensão microscópica ( kij][� ), ou tensão dupla, pois kijx ][  é puramente 

anti-simétrico. Para o trabalho virtual das forças externas de massa ( if ) e 

superfície ( iT ), a força dupla da massa ( ][ij ) e a força dupla de superfície ( ][ijM ), 

ambas anti-simétricas já que kij ][�  é puramente anti-simétrica . 

Além disto, no contínuo de Cosserat, para o material linear isotrópico é 

necessário definir mais dois parâmetros além dos necessários para o contínuo 

clássico. O primeiro é o módulo de cisalhamento anti-simétrico ou rotacional (Gc) 

e o segundo é o módulo de flexão (B ). O módulo de cisalhamento rotacional 

controla a influência da partícula nas distribuições de tensões da macroestrutura. 

O módulo de flexão relaciona-se a própria flexão da partícula e de seu momento, 

DBD
PUC-Rio - Certificação Digital Nº 0510741/CA



  47   

rotação e curvatura induzidas. Como a dimensão desta grandeza corresponde à 

força, sendo assim a razão desta com qualquer outro módulo tem dimensão de 

comprimento ao quadrado. Daí o fato de que o módulo de flexão ser uma medida 

indireta do comprimento característico da partícula, ou da microestrutura.  

Os irmãos Cosserat introduziram o conceito de tensões de Cosserat, 50, 

descrita como tensor total, anteriormente, que é também divido agora em parcela 

simétrica e anti-simétrica, conforme equação 51 e 52.  

 

ijijij
c S�� �� ·······························································································································50

)()( ijijij
c S�� �� ··························································································································51 

][][ ijij
c S�� ·····································································································································52 

O gradiente relativo é assimétrico, porém sua parcela simétrica é igual à 

deformação macroscópica, e o mesmo é um tensor simétrico, daí )()( jiij �� � , pois 

][ij�  é puramente assimétrico. 

 

)()( ijij �� � ········································································································································53 

ijijij ����][�  ····························································································································54

 Da equação 53 e da condição de simetria tem-se: 

 

ijkkijijkkijij G ���������� 21 22 ���� ··············································································55 

 

Da   47 e da condição de simetria, e dividindo o tensor microscópico 

assimétrico na parcela simétrica e anti-simétrica, tem-se: 

 

)(2 32)(121)( ���!������� ����� ijkkijijkkijijS  ···························································  56 

 

)( 32][][ ��� �� ijijS ·····················································································································  57 

 

Substituindo na equação 51 a equação  53, 55 e  56 têm-se: 
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ijkkijij
c G ���������� )4(2)2( 32211)( �������  ··················································  58 

 

Substituindo na equação 52 a  57 tem-se: 

 

)( 32][][ ���� �� ijij
c  ··················································································································  59 

 

Do princípio dos trabalhos virtuais, tem-se para um meio que ocupa um 

volume V e uma fronteira " , o trabalho virtual das forças internas (
IW� ): 

dVxSSW ijkkijijijij
V

ijij
I )){( ][][ �������� #���� $  ·························································60 

Substituindo as equações 51 e 52 na equação 60 temos: 

dVxW ijkkijijij
c

ij
V

ij
cI )( ][][][)( ��������� #��� $ ·······························································61 

 

Aplicando a integração por partes: 

 

"����#�#�� $$
"

dnnudVuW kijij
c

kijiiij
c

ijij
c

kijki
V

jij
c

I })({})({( ][][][)(][][][)( �������������

····························································································································································62 
 

O passo seguinte é introduzir o trabalho virtual das forças externas, que 

pode ser dividido em trabalho virtual devido as forças externas de massa e devido 

as forças externas de superficie, conforme primeiro paragrafo do 3.1. Suas 

equações se encontram apresentadas abaixo. 

 

dVufW ijiji
V

iE
V )( ][][ ����  �� $  ······························································································63 

"�� $
"

" dMuTW ijijiiE )( ][][ ���� ·······························································································64 

Como já explanado anteriormente podemos igualar diretamente os 

coeficientes do trabalho virtual devido as forças externas e internas de massa. 

Assim temos as seguintes equações de equilibrio e condições de contorno: 

0)( �#� ij
c

jif �  ···························································································································65 

0][][ �#�� kijk
c
ijij �� ················································································································66 
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iij
c

i nT �� ·······································································································································  67 

 

kkijij nM ][][ ��  ·······························································································································68 

 

3.2.Contínuo referente à Teoria do 2º Gradiente 

A teoria do segundo gradiente é obtida ao assumir que a partícula está sujeita a 

mesma deformação que o contínuo macroscópico. Com isto o mesmo é válido, 

entre a deformação da partícula e do contínuo macroscópico, parte simétrica, e a 

rotação da partícula e do contínuo macroscópico, parte anti-simétrica, conforme 

equações 69, 70 e 71. 

 

ijiju ��#  ········································································································································69 

)()( ijij �� � ·······································································································································70 

][][ ijij �� � ·······································································································································  71 

 

Como as deformações e rotações da partícula são as mesmas do continuo 

macroscópico, não há mais grandezas relativas ij�  e as tensões associadas a esta 

grandeza tornam-se indeterminadas. Como o tensor relativo de terceira ordem, 

define a variação do tensor de segunda ordem ij� . Tanto da sua parcela simétrica 

quanto da anti-simétrica, ou seja, o gradiente ij� , referente à rotação e 

deformação da partícula, coincide com o gradiente ij� , referente à rotação e 

deformação do continuo macroscópico. Então o tensor relativo de terceira ordem 

corresponde à segunda derivada do deslocamento e da rotação do contínuo 

macroscópico, daí o nome da teoria do segundo gradiente, conforme 72 até 77. 

Como já explanado rotação do contínuo macroscópico não é uma grandeza 

objetiva e por isto não entrará nas equações constitutivas. 

 

ijkijkx �#� ······································································································································72 

kijijk xx )(�  ······································································································································73 

)(ijkijkx �#�  ··································································································································74 
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)(ijkijkx �#� ····································································································································75 

ijkijk ux ##�  ·································································································································76 

ijkijk ux #� ······································································································································77 

 

Para representar as condições cinemáticas mencionadas acima associadas 

em energia, para o trabalho virtual das forças internas, existem os seguintes 

tensores: somente o tensor convencional, referente ao contínuo macroscópico, 

denominado de Cauchy ( ij� ), o tensor microscópico é indeterminado ( ijS ), já que 

a grandeza relativa ij�  é nula devido à condição referente à equação 69, e o tensor 

duplo é simétrico kij)(� , já que a parcela anti-simétrica ][ij� , macro rotação, não é 

objetiva. Para o trabalho virtual das forças externas de massa e superfície, existem 

forças: a força de massa ( if ) e a força de superfície ( iT ), ambos referentes ao 

tensor convencional do ponto de vista macroscópico, a força dupla da massa 

( )(ij ) e a força dupla de superfície ( )(ijM ), ambas simétricas, pois são referentes 

ao tensor duplo, que devido à equação 72, somente a parcela simétrica é uma 

grandeza objetiva. 

Da equação  46 tomando a equação 72 em consideração, as equações 

constitutivas do continuo macroscópico são as mesmas do continuo clássico: 

ijkkijij G����� 2��  ·················································································································  78 

 

O tensor duplo simétrico kij)(�  corresponderá: 

kijijkkij x )()( %� � ···························································································································  79 

Da equação 77 sabemos: 
 

)()( ijkkijx �#� ······························································································································  80   

A relação entre kijijk x )(%  pode ser descrita através de um tensor de 4ª ordem, já 

que as componentes que de fato contribuem são as relações entre  ij%  e ij� . Para 

material linear e isotrópico, da teoria da elasticidade, sabemos que para descrever 

a relação entre dois tensores simétricos são necessários dois parâmetros 

independentes, conforme equação 81. 
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ijkkijij �&��&% 21 �� ·················································································································81 

Então para descrever o material isotrópico linear são necessários quatro 

parâmetros 21,, &&� eG . 

Do principio dos trabalhos virtuais, tem-se para um meio que ocupa um 

volume V e uma fronteira " , o trabalho virtual das forças internas (
IW� ): 

dVxW ijkkijij
V

ij
I )( )()( ������ #�� $  ·······················································································82 

 

Aplicando a integração por partes: 

 

"��#�#�� $$
"

dnnudVuW kijijkiiijijijkki
V

jijI }{}{( �����������  ·······························83 

 

Substituindo na equação 83 a equação  79 e  80 tem: 

"#��##�#�� $$
"

dnunudVuuW kijijkiiijijijkki
V

jijI }{}{ �%���%��� ···························84 

 

Podemos escrever a equação de trabalho virtual interno para um volume V e 

uma fronteira " da seguinte maneira: 

0}}{ �"#��#�#� $$
"

dnuFnuEdVBuAW kijijkiiijij
V

ijkkijijI ������ ·····························85 

 

Para poder aplicar diretamente a expressão do trabalho virtual é necessário 

escrever a parte esquerda da equação 85 de forma que apenas variáveis 

independentes relacionadas ao deslocamento virtual apareçam. Então para obter a 

integral de volumes manipularemos a equação 85 da seguinte forma: 

0){( �"#�#�� $$
"

dunBdVuBAW ijjij
V

ijijkijI ��� ································································86 

 

Como a integral de volume é zero independente do valor de iju�# , temos 

que: 

0�� ijki BA ·······················································································································87 

 

Substituindo na equação 86 a equação 29 e 30, temos: 

)( ijijiij SfA ��� �  ····················································································································88 
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ijkkijijijk SB %#�� �  ···············································································································  89 

 

Escrevendo: 

ijkkijijij %�' #� ��  ················································································································  90 

 

Por analogia com a equação 29 temos: 

0�#� ijjif ' ································································································································  91 

 

Substituindo a equação  91 na equação  90 temos a seguinte equação 

constitutiva: 

0)( �#� �#� ijkkijijjif %� ··································································································  92 

 

A integral de superfície da equação  85 é apresentada abaixo: 

(�"�� $$
("

" duRduDNuTW iiiiiiI ���� )}{  ·········································································  93 

 

Onde: 

$
(

(d   é integral de linha 

Dai temos as seguintes condições de contorno naturais: 

)()( kijkjkjijklljiji nDnnnDnT %%' ��� ·················································································  94 

kjijki nnN %�  ·································································································································  95 

) *kjijki nR %%�  ······························································································································  96 

 

Das condicões de contorno naturais podemos perceber que é necessário 

prescrever a condição de contorno referente ao tensor convencional e ao tensor 

duplo juntamente. O mesmo sucede com as condições de contorno essenciais já 

que iu� e ij��  são linearmente dependentes um do outro. O problema de 

localização de deformações é dependente das condições de contorno existentes, 

porém estas não são de fácil determinação. 

Sendo assim devido às condições cinemáticas propostas não há um grau de 

liberdade a mais como no contínuo de Cosserat, conforme equação  92, os graus 

de liberdade são os mesmos do continuo clássico e é necessário prescrever a 
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condição de contorno sobre a fronteira referente ao tensor de Cauchy e ao tensor 

de forças duplas simétrica, sem momento, pois o tensor duplo simétrico é auto-

equilibrado.  

Esta teoria é apenas apresentada devido à hipótese de que a partícula em 

questão apresenta movimento de corpo rígido, devido à diferença de rigidez entre 

o grão e o continuo, fato que não ocorre nesta teoria, além do que a rotação da 

partícula, parcela anti-simétrica, não existe na teoria, fato que para representar o 

comportamento de alguns meios granulares é importante.   

 

3.3.Contínuo referente à Teoria das tensões-momento 

A teoria das tensões-momento é obtida através da hipótese de que a 

partícula tem movimento de corpo rígido, conforme equação 97, e que a micro-

rotação da partícula é igual à rotação do contínuo macroscópico.  

Devido ao fato da partícula apresentar apenas movimento de corpo rígido 

existem, o trabalho virtual das forças internas é constituído da parcela do tensor 

convencional ( ij� ), do tensor relativo ( ijS ) e do tensor duplo, apenas a parte anti-

simétrica ( kij][� ).  

Como as rotações são idênticas da partícula e do continuo macroscópico, o 

gradiente relativo só possui parcela simétrica ( )(ij� ), conforme demonstrado entre 

as equações  98 e 103. 

  

0)( �ij�  ·········································································································································  97 

][][)( ijijijij ���� ���  ··············································································································  98 

][][ ijijij u �� �#�  ························································································································  99

][ijiju ��#  ···································································································································100 

ijij ���  ······································································································································101 

0][ �ij�  ·········································································································································102

ijijijijij uu #��#�� )()( ���  ······························································································103 

 

Para um meio que ocupa um volume V e uma fronteira " , o trabalho virtual 

das forças internas é apresentado abaixo, utilizando as considerações mencionadas 
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no parágrafo anterior, e da equação 20 e da equação 97 até 103, teremos o 

seguinte trabalho virtual interno:  

 

dVxSW ijkijijijij
V

ijI )( ][][)( �������� ��� $  ········································································104 

ijijij
c S�� ��  ····························································································································105

)()( ijijij
c S�� ��  ························································································································106 

][][ ijij
c S��  ··································································································································107 

 

Substituindo na equação 104 as equações 105, 106 e 107, teremos a seguinte 

equação para trabalho virtual interno: 

dVxW ijkij
V

ijij
c

ijij
c

I )][][][][)( ��������� ��� $  ··································································108 

Como 0][ �ij� , ][ij
c�  fica indeterminado e o termo referente à tensão total 

de Cosserat parcela anti-simétrica não contribui para o trabalho virtual interno, daí 

temos a seguinte equação: 

dVxW ijkij
V

ijij
c

I )( ][][)( ������ �#� $ ······················································································109 

 

Integrando por partes a equação 109 e utilizando as equações  6 e 9 temos: 

 

"�"�#�#�� $$$$
""

dndnudVdVuW kijkijjiij
c

V
ijkijki

V

ij
c

j
I

][][)(][][)( �����������

··························································································································································110 
 

Para poder aplicar diretamente a expressão do trabalho virtual é necessário 

escrever a parte esquerda da equação 85 de forma que apenas variáveis 

independentes relacionadas ao deslocamento virtual apareçam. Então para obter a 

integral será utilizada a equação 86. 

Como a integral de volume é zero independente do valor de iju�# , temos 

que: 

0�� ijki BA ·····················································································································111 

 

Substituindo na equação 110 a equação 29 e 30, temos: 
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)(ij
c

iij fA ��� ·····························································································································112

 

kijkijijkB ][][ �#� �  ···················································································································113 

 

Escrevendo: 

kijkijij
c

ij ][][)( ��' #� ��  ·······································································································114 

 

Por analogia com equação 29 temos: 

0�#� ijjif '  ······························································································································115 

 

Substituindo a equação 114 na equação 115 temos a seguinte equação 

constitutiva: 

0)( ][][)( �#� �#� kijkijij
c

jif �� ·························································································116 

 

A integral de superfície da equação 85 é apresentada abaixo: 

 

(�"�� $$
("

" duRduDNuTW iiiiiiI ���� )}{  ········································································117 

 

Onde: 

$
(

(d   é integral de linha 

Dai temos as seguintes condições de contorno naturais: 

)()( ][][ kkijjkjkijlljiji nDnnnDnT ��' ��� ···········································································118 

kjkiji nnN ][��  ······························································································································119 

) *kjkiji nR %� ][�  ···························································································································120

 

As condições de contorno essenciais na teoria de tensões-momento não 

podem ser prescrita de maneira desacoplada como na teoria de Cosserat, pois 

][ijiju ��# , e por isto não são independente, então é necessário prescrever uma 

condição de contorno que atenda ao tensor convencional e ao tensor duplo, no 

caso com momento, parcela anti-simétrica. O mesmo ocorre nas condições de 

contorno naturais. E pelo mesmo problema mencionado na teoria do segundo 

gradiente, estas condições de contorno não são de fácil determinação. 
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Na teoria de Cosserat é inserido um grau de liberdade a mais, fato que não 

ocorre na teoria das tensões-momento, conforme equação 116, assim como na 

teoria do segundo gradiente. 
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