

Karen Camila Ribeiro Lobato

Simulação Física e Numérica de Problemas de Estabilidade

de Poços

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação e, Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil da PUC-Rio.

Orientador: Eurípedes do Amaral Vargas Júnior

Rio de Janeiro, setembro de 2009.

Karen Camila Ribeiro Lobato

Simulação Física e Numérica de Problemas de Estabilidade

de Poços

Dissertação apresentada como requisito parcial para obtenção de título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio e aprovada pela comissão Examinadora abaixo assinada.

> Prof. Eurípedes do A. Vargas Jr. Orientador Departamento de Engenharia Civil – PUC-Rio

> **Dr. Armando Prestes de Menezes Filho** Departamento de Engenharia Civil – PUC-Rio

> > **Dr. Antônio Cláudio Soares** PDP/TEP – Cenpes – Petrobras

> > > Dr. André Luís Müller Tecgraf – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 15 de Setembro de 2009.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Karen Camila Ribeiro Lobato

Graduou-se em Engenharia Civil na UERJ (Universidade Estadual do Rio de Janeiro) em 2001. Ocupa o cargo de engenheira de petróleo no Cenpes/Petrobras.

Ficha Catalográfica

Lobato, Karen Camila Ribeiro

Simulação física e numérica de problemas de estabilidade de poços / Karen Camila Ribeiro Lobato; orientador: Eurípedes do Amaral Vargas Júnior. – 2009.

270 f. : il. (color.) ; 30 cm

Dissertação (Mestrado em Engenharia Civil)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

 Engenharia civil – Teses. 2. Teoria de Cosserat. 3. Simulação física e numérica. 4. Ensaio cúbico e cilíndrico de parede espessa. 5. Banda cisalhante tipo cúspide e orelha de cachorro. I. Vargas Júnior, Eurípedes do Amaral. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Agradecimentos

Ao Prof. Vargas, como orientador e pela liberdade a mim concedida em estudar a respeito do assunto que fosse do meu interesse.

Aos colegas de trabalho Marcus Soares, Júlio Beltrami, Marcos Dantas e Rodrigo Alves, sem eles não teria sido possível realizar este trabalho. Em especial ao técnico Marcus Soares pela pró-atividade, paciência e persistência com que me ajudou a realizar os ensaios de simulação física.

Ao colega e grande colaborador Armando Prestes que além de me incentivar me concedeu subsídios para que estudasse o assunto.

Ao Dr. André Müller pela presteza com que programou em tempo recorde os modelos necessários a simulação numérica, e ao Dr. Anderson Moraes que é um dos responsáveis pelo desenvolvimento do Tectos ferramenta utilizada.

Ao colega Antônio Cláudio pelo incentivo e apoio durante a dissertação.

A Petrobras que me concedeu o privilégio de trabalhar em um lugar que incentiva as pessoas a se desenvolverem tecnicamente através da capacitação profissional.

Ao meu marido e amor, Marcio, pela compreensão durante esta caminhada.

A minha mãe, Elizete, que me concedeu a vida e me proporcionou vivê-la de maneira plena como ser humano.

Resumo

Lobato, Karen Camila Ribeiro; Vargas, Eurípedes do A. Jr. Simulação Física e Numérica de Problemas de Estabilidade de Poços. Rio de Janeiro, 2009. 270p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação apresenta resultados de simulação física e numérica do comportamento mecânico de cavidades circulares em meios contínuos. Na simulação numérica foi possível reproduzir o comportamento tensão-deformação registrado nos ensaios. O comportamento mecânico do contínuo foi abordado de duas formas: i) Teoria clássica e ii) Modelo generalizado de Cosserat. A segunda abordagem, por dispor de um grau de liberdade extra, permite a reprodução numérica de algumas feições observadas ao redor das cavidades circulares em testes de laboratório de maneira mais realística. A teoria clássica de contínuo foi associada somente ao modelo constitutivo de Mohr-Coulomb. Já para Cosserat, foram utilizados dois modelos constitutivos: Mohr-Coulomb e Bogdanova-Lippmann Modificado. A motivação para apresentar contínuo generalizado neste trabalho é que o mesmo inclui a parcela referente ao comportamento das partículas. Em todos os testes foram utilizadas amostras do arenito Botucatu, obtidas em São Paulo e Paraná. Para caracterização mecânica deste material foram realizados ensaios uniaxiais, triaxiais e brasileiros. Já a simulação física do comportamento de cavidades circulares foi analisada segundo duas geometrias: cúbica (com aplicação de estado de tensão biaxial) e cilíndrica (TWC - Thick Walled Cylinder). O acompanhamento da ruptura das cavidades cilíndricas foi feito de forma visual (amostras cúbicas) e com monitoramento tomográfico em tempo real (amostras cilíndricas). Com base na observação experimental da ruptura das cavidades cilíndricas e nas simulações numéricas considerando o contínuo clássico e de Cosserat, foi possível verificar que, ambas as abordagens possibilitaram a reprodução das feições observadas.

Palavras-Chave

Teoria de Cosserat, Simulação Física e Numérica, Ensaio cúbico e cilíndrico de parede espessa, Banda cisalhante tipo cúspide e orelha de cachorro.

Abstract

Lobato, Karen Camila Ribeiro; Vargas, Eurípedes do A. Jr. Physical and Numerical Simulation of Borehole Stability Problems. Rio de Janeiro, 2009. 270p. MSc. Dissertation - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

This work seeks to realize physical and numerical simulation of the mechanical behavior of the wellbore stability for continuum environment. The Continuum's mechanical behavior is approach by two ways: i) Classic Continuum Theory and ii) Cosserat Continuum. On the second approach, the theory allows an extra degree of freedom, which plays an important rule on instabilities and bifurcation problems; this allows a more realistic numerical simulation of the failure mechanism observed on circular cavity. The Classic Continuum Theory is associated to a Mohr-Coulomb constitutive model. On the other hand for Cosserat Theory's applied tow constitutive models: Mohr-Coulomb and Modified Bogdanova-Lippmann.The generalized continuum takes in account the microstructure of the material.It's used on all tests Botucatu's specimens, which were acquired at São Paulo and Paraná. For characterize the rock's behavior it's realized triaxial, uniaxial and brazilian tests. Then the physical simulation of the circular cavity's behavior was analyzed for two geometries: cubic samples (biaxial stress) and cylindric samples (TWC - Thick Walled Cylinder). The failure mechanism of circular cavity was followed visually (cubic samples) and with CT X-Ray in real time (cylindric samples). From the experimental observations of the failure mechanism of circular cavity and numerical simulations, with Classic Continuum and Cosserat, was possible to verify that both approaches reproduce the behavior of the rocks observed on experimental data.

Keywords

Cosserat Theory, Physical and Numerical Simulation, TWC and cubic samples, different types of breakout, one like a dog-ear and other like cuspid.

Sumário

1 Introdução	27
1.1. Conteúdo	29
2 Principio do Trabalho Virtual (PTV)	31
2.1. Continuo com microestrutura	31
2.2. Principio D'Alembert	35
2.3. PTV do Contínuo Generalizado	37
3 Contínuo Generalizado	43
3.1. Contínuo de Cosserat	45
3.2. Contínuo referente à Teoria do 2º Gradiente	49
3.3. Contínuo referente à Teoria das tensões-momento	53
4 Princípio dos Trabalhos Virtuais	57
4.1. Contínuo de Cosserat Elástico	57
4.1.1. Princípio do Trabalho Virtual para Contínuo de Cosserat	60
4.2. Contínuo de Cosserat Elastoplástico	62
4.2.1. Implicações do Trabalho Plástico	66
4.2.2. Comportamento de Endurecimento e Amolecimento	68
4.2.3. Modelo de Mohr-Coulomb	71
4.2.4. Modelo de Bogdanova-Lippmann	75
5 Caracterização Mecânica de Rocha	81
5.1. Metodologia de Ensaio	81
5.1.1. Ensaio Compressão Triaxial	81
5.1.2. Ensaio Compressão Uniaxial	86
5.1.3. Ensaio Brasileiro	88

5.1.4. Ensaio Poliaxial	90
5.1.5. Ensaio Thick-Walled Hollow Cylinder (TWC)	92
5.1.6. Ensaio de Granulometria	94
5.1.7. Ensaio de Densidade	96
5.1.8. Tomografia Computadorizada	97
5.1.9. Formação de Imagem Reconstruída	99
5.1.10. Unidades Utilizadas em Imagens Tomográficas	101
5.1.11. Escala de cores ou tons de cinza	101
6 Resultado dos Ensaios de Caracterização Mecânica de Rocha	103
6.1. Ensaios Bloco A	104
6.2. Ensaios Bloco B	112
7 Simulação Física	125
7.1. Ensaios na Célula Poliaxial	125
7.2. Ensaio Cilíndrico de Parede Espessa (TWC)	148
7.2.1. Descrição dos ensaios TWC	152
8 Simulação Numérica	201
8.1. Simulação Numérica dos Ensaios na Célula Poliaxial	201
8.1.1. Resultado das Simulações Numéricas FEM – NRM	203
8.1.2. FEM – Relaxação Dinâmica	208
9 Considerações Finais	213
9.1. Conclusões	213
9.2. Sugestões para Trabalhos Futuros	216
Referências Bibliográficas	217
Anexo A	221
Anexo B	222

Lista de figuras

Figura 1 – Representação esquemática do contínuo clássico e microcontínuo.	32
Figura 2 – Representação física do tensor relativo de segunda ordem η_{ij} [12].	34
Figura 3- Representação dos gradientes relativo de rotação e/ou deformação	
micromórfica e das tensões duplas conjugadas ao gradiente [12].	35
Figura 4 – Forças de Superfície Externas e Forças Internas [2]	39
Figura 5 - Representação esquemática do contínuo micropolar.	46
Figura 6 – (a) Campo de deslocamento e rotação no continuo de Cosserat; (b)	
Curvatura – gradiente de micro rotações [10].	58
Figura 7 – (a) Tensor relativo conforme Equação 129(b) Tensor relativo confor	rme
Equação 130 [12].	59
Figura 8 – (a) Tensor dual de Cosserat e de tensões-momento nas faces do	
elemento do contínuo (b) Exemplo de campo de tensões não homogêneo a	na
escala da partícula [10].	61
Figura 9 – Curva típica tensão deformação de ensaio de extensão de aço [1].	63
Figura 10 – (a) Modelo idealizado e curva típica de tensão vs deformação para	
comportamento elastoplástico perfeito (b) Modelo idealizado e curva típic	ca
de tensão vs deformação para comportamento elastoplástico com	
endurecimento [1].	64
Figura 11 - Superfície de escoamento e direção do incremento de deformação	
plástica [1].	68
Figura 12 – Endurecimento plástico isotrópico.	69
Figura 13 - Acréscimo de trabalho plástico para o trecho AB com endurecimen	nto
e para o trecho CD com amolecimento [6].	70
Figura 14 - (a) Superfície de escoamento no espaço de tensões (b) Superfície d	le
escoamento no espaço de deformações [6].	71
Figura 15 – Parâmetros do Modelo de Mohr-Coulomb, onde σ_3 é a menor tens	são
principal de ruptura e σ_1 é a maior tensão principal de ruptura dos diverso	os
testes.	72
Figura 16 – Parâmetros do Modelo de Mohr-Coulomb diagrama p-q.	73

Figura 17 – Círculo de Mohr para estado de deformação.	74
Figura 18 – (a)Diagrama de corpo livre (b) Círculo de Mohr 2D para um tensor	de
tensões assimétrico [12].	77
Figura 19 - Componentes simétricas e anti-simétricas das tensões cisalhantes e	;
como elas atuam num continuo de Cosserat [12].	78
Figura 20 – Possível relação entre a existência da microestrutura e o	
amolecimento cinemático clássico [12].	79
Figura 21 – Representação esquemática do ensaio triaxial.	82
Figura 22 - Representação esquemática das tensões e forças atuantes no ensaio)
triaxial.	83
Figura 23 – Foto CP 16 dentro da célula triaxial da MTS815 para realizar ensai	0-
Bloco B.	83
Figura 24 - Curva tensão deformação axial e esquema de como é obtido o mód	ulo
de deformabilidade.	84
Figura 25 - Curva tensão deformação axial e esquema de como é obtido o mód	ulo
de elasticidade no trecho de descarregamento/carregamento.	85
Figura 26 - Curva tensão deformação axial e radial e esquema de como é obtid	0 0
Poisson.	85
Figura 27 – Representação esquemática do ensaio uniaxial.	87
Figura 28 – Representação esquemática da força atuante no ensaio uniaxial.	88
Figura 29 – Representação esquemática do ensaio brasileiro.	89
Figura 30 – Representação esquemática da força atuante no ensaio brasileiro.	89
Figura 31 – Foto CP 16A, com diâmetro de 49.71mm e espessura de 24.85mm,	,
dentro da célula para ensaio brasileiro na MTS816 para realizar ensaio–	
Bloco B.	90
Figura 32 - Representação esquemática das forças atuantes no ensaio poliaxial	no
plano xy.	92
Figura 33 - Representação esquemática das tensões atuantes no ensaio poliaxia	ıl.
	92
Figura 34 – Representação esquemática do ensaio TWC.	93
Figura 35 – Representação esquemática das tensões atuantes no ensaio TWC.	94
Figura 36 – Separador de partícula por frações da Restch, modelo AS200	
(http://www.retsch.com).	95

Figura 37 - Analisador de partículas e feixe de raios-X atravessando amostra	е
atingindo o detector (<u>http://www.micrometics.com.br/tec_tampart.html</u>).	96
Figura 38 – Picnômetro a gás (http://www.bonsaiadvanced.com).	96
Figura 39 – Formação de imagem reconstruída.	99
Figura 40 – Atenuação o feixe.	100
Figura 41 – (a) Escala de cores (b) Tonalidades de cinza.	102
Figura 42 – Gráfico de deformação "radial" - resistência a tração do ensaio	
brasileiro CP-01A.	106
Figura 43 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-02A.	106
Figura 44 – Gráfico de deformação axial, radial vs tensão desviadora do ensai	0
compressão convencional triaxial do CP-08, com confinante de 2.5MPa.	107
Figura 45 – Gráfico de deformação axial, radial vs tensão desviadora do ensai	0
compressão convencional triaxial do CP-06, com confinante de 5MPa.	107
Figura 46 - Gráfico de deformação axial, radial vs tensão desviadora do ensai	0
compressão convencional triaxial do CP-05, com confinante de 10MPa.	108
Figura 47 - Gráfico de deformação axial, radial vs tensão desviadora do ensai	0
compressão convencional triaxial do CP-07, com confinante de 15MPa.	108
Figura 48 – Envoltória de Resistência com base nos ensaios realizados no Blo	co
Α.	109
Figura 49 – Ensaio de Granulometria realizado no Bloco A.	110
Figura 50 - Gráfico percentagem acumulada vs diâmetro da partícula referent	e ao
Ensaio de Granulometria realizado no Bloco A.	111
Figura 51 – Gráfico do resultado da média das cinco amostras do ensaio de	
densidade para o Bloco A e B.	112
Figura 52 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-03A.	114
Figura 53 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-04A.	114
Figura 54 - Gráfico de deformação axial, radial vs tensão desviadora do ensai	0
uniaxial do CP-10.	115
Figura 55 – Gráfico de deformação axial, radial vs tensão desviadora do ensai	0
uniaxial do CP-11.	115

Figura 56 - Gráfico de deformação axial, radial vs tensão desviadora do ensaio	С
uniaxial do CP-12.	116
Figura 57 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-13A.	116
Figura 58 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-15A.	117
Figura 59 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-16A.	117
Figura 60 – Gráfico de deformação "radial" vs resistência a tração do ensaio	
brasileiro CP-17A.	118
Figura 61 - Gráfico de deformação axial, radial vs tensão desviadora do ensaio	С
uniaxial do CP-19.	118
Figura 62 - Gráfico de deformação axial, radial vs tensão desviadora do ensaio	С
uniaxial do CP-20.	119
Figura 63 - Gráfico de deformação axial, radial vs tensão desviadora do ensaio	С
compressão convencional triaxial do CP-14, com confinante de 2.5MPa.	119
Figura 65 - Gráfico de deformação axial, radial vs tensão desviadora do ensaio	С
compressão convencional triaxial do CP-15, com confinante de 10MPa.	120
Figura 66 - Gráfico de deformação axial, radial vs tensão desviadora do ensaio	С
compressão convencional triaxial do CP-13, com confinante de 15MPa.	121
Figura 67 – Envoltória de Resistência com base nos ensaios realizados no Bloc	co
В.	121
Figura 68 – Ensaio de Granulometria realizado no Bloco B.	123
Figura 69 - Gráfico percentagem acumulada vs diâmetro da partícula referente	e ao
Ensaio de Granulometria realizado no Bloco B.	124
Figura 70 – Foto do conjunto célula, linhas de pressão e amostra do ensaio	
poliaxial.	126
Figura 71 – Exemplo para estado de tensão normal de três opções de direção p	ara
perfurar o poço e as tensões no far field.	127
Figura 72 - Mecanismo de ruptura ao cisalhamento para estado de tensão norm	nal
de três opções de direção para perfurar o poço e as tensões no far field.	127
Figura 73 – Vista da ruptura por tração obtida através da tomografia da seção o	da
amostra cúbica CP-01 após ensaio poliaxial.	128

Figura 74 – (a) Modos de rupturas tipo orelha de cachorros e cúspide [24] e (b)
Modo de ruptura tipo espiral.	129
Figura 75 – Tomografia do CP-01 antes do ensaio poliaxial– Bloco A.	131
Figura 76 – Tomografia do CP-01 depois do ensaio poliaxial– Bloco A.	132
Figura 77 - Comparativo entre antes e depois do ensaio poliaxial do CP-01 @	-
37.50mm – Bloco A.	133
Figura 78 - Comparativo entre antes e depois do ensaio poliaxial do CP-01 $@$	-
38.75mm Bloco A.	133
Figura 79 – Tomografia do CP-04 antes do ensaio poliaxial– Bloco A.	134
Figura 80 – Tomografia do CP-04 depois ensaio poliaxial – Bloco A.	135
Figura 81 - Comparativo entre antes e depois do ensaio poliaxial do CP-04@ -	-
35mm loco A.	136
Figura 82 - Comparativo entre antes e depois do ensaio poliaxial do CP-04@ -	-
36.25mm Bloco A.	136
Figura 83 – Tomografia do CP-08 antes do ensaio poliaxial – Bloco A.	137
Figura 84 – Tomografia do CP-08 depois do ensaio poliaxial – Bloco A.	138
Figura 85 - Comparativo entre antes e depois do ensaio poliaxial do CP-08@ -	-
15mm Bloco A.	139
Figura 86 - Comparativo entre antes e depois do ensaio poliaxial do CP-08@ -	-
16.25mm Bloco A.	139
Figura 87 - Comparativo entre antes e depois do ensaio poliaxial do CP-08@ -	-
17.50mm Bloco A.	140
Figura 88 - Comparativo entre antes e depois do ensaio poliaxial do CP-08@ -	-
18.75mm Bloco A.	140
Figura 89 - Comparativo entre antes e depois do ensaio poliaxial do CP-08@ -	-
20.00mm Bloco A.	141
Figura 90 – Tomografia do CP-13 antes do ensaio poliaxial– Bloco A.	142
Figura 91 – Tomografia do CP-13 depois do ensaio poliaxial – Bloco A.	143
Figura 92 - Comparativo entre antes e depois do ensaio poliaxial do CP-13@ -	-
2.50mm Bloco A.	144
Figura 93 - Comparativo entre antes e depois do ensaio poliaxial do CP-13@ -	
3.75mm Bloco A.	144
Figura 94 - Comparativo entre antes e depois do ensaio poliaxial do CP-13@ -	

35.00mm Bloco A.	145
Figura 95 - Comparativo entre antes e depois do ensaio poliaxial do CP-13@	-
36.25mm Bloco A.	145
Figura 96 – Foto CP-13, ensaio triaxial verdadeiro – Bloco A.	146
Figura 97 – Foto CP-13 vista do breakout do ensaio triaxial verdadeiro – Bloc	o A.
	146
Figura 98 – Detalhe da câmara de tensão axial no projeto da célula.	150
Figura 99 – (a) Modo de ruptura tipo cúspide (b) Modo de ruptura tipo orelha	de
cachorro e (c) Modo de ruptura tipo espiral [30].	150
Figura 100 – Foto conjunto célula triaxial e bombas ENERPAC na mesa do	
tomógrafo.	151
Figura 101 – Foto conjunto célula triaxial e bombas ENERPAC que será	
tomografado.	152
Figura 102 - Seção transversal do corpo de prova antes do ensaio TWC do CH	P-10
-TWC-01- Bloco B.	153
Figura 103 – Tomografia das seções perpendiculares do CP-10, do ensaio TW	C,
realizadas com tensão confinante de 8.6MPa- TWC-01- Bloco B.	154
Figura 104 – Tomografia das seções perpendiculares do CP-10, do ensaio TW	C,
realizadas com tensão confinante 41.4MPa- TWC-01- Bloco B.	155
Figura 105 – Tomografia das seções perpendiculares do CP-10, do ensaio TW	C,
realizadas com tensão confinante de 42.8MPa –TWC-01- Bloco B.	156
Figura 106 – Tomografia das seções perpendiculares do CP-10, do ensaio TW	C,
realizadas com tensão confinante de 44.1MPa –TWC-01- Bloco B.	157
Figura 107 - Fotografia de seção transversal, onde se observa breakout, ao eix	o do
poço após ensaio do CP-10 –TWC-01- Bloco B.	158
Figura 108 – Fotografia com vista lateral da seção transversal, a fim de observ	ar
uma das bandas de cisalhamento ao longo do eixo do poço após ensaio d	0
CP-10 –TWC-01- Bloco B	158
Figura 109 – Seção transversal do corpo de prova antes do ensaio TWC do CP	-15-
TWC-02-Bloco B.	160
Figura 110 – Tomografia das seções perpendiculares do CP-15, do ensaio TW	C,
realizadas antes de se aplicar tensão confinante-TWC-02 - Bloco B.	161
Figura 111 – Tomografia das seções perpendiculares do CP-15, do ensaio TW	C,

realizadas com tensão confinante de 35.9MPa – TWC-02-Bloco B.	162
Figura 112 – Seção transversal do corpo de prova depois do ensaio TWC do C	P-15
-TWC-02-Bloco B.	163
Figura 113 – Fotografia de seção transversal, onde se observa breakout, ao eixe	o do
poço após ensaio do CP-15 –TWC-02- Bloco B.	164
Figura 114 – Fotografia com vista lateral da seção transversal, a fim de observa	ar
uma das bandas de cisalhamento ao longo do eixo do poço após ensaio de	0
CP-15 –TWC-02- Bloco B	164
Figura 115 – Seção transversal do corpo de prova antes do ensaio TWC do CP	-18-
TWC-03-Bloco B.	166
Figura 116 – Tomografia das seções perpendiculares do CP-18, do ensaio TWO	C,
realizadas antes de se aplicar tensão confinante- TWC-03- Bloco B.	167
Figura 117 - Tomografia das seções perpendiculares do CP-18, do ensaio TWO	C,
realizadas com tensão confinante de 25.5MPa - Bloco B.	168
Figura 118 – Seção transversal do corpo de prova depois do ensaio TWC do C	P-18
– TWC-03 -Bloco B.	169
Figura 119 - Seção transversal do corpo de prova antes do ensaio TWC do CP	-12-
TWC-04-Bloco B.	171
Figura 120 – Tomografia das seções perpendiculares do CP-12, do ensaio TWO	C,
realizadas antes de se aplicar tensão confinante- TWC-04- Bloco B.	172
Figura 121 –17ª Tomografia das seções perpendiculares do CP-12, do ensaio	
TWC, realizadas com tensão confinante de 40.3 MPa – TWC-04-Bloco B	3.
	173
Figura 122 –18ª Tomografia das seções perpendiculares do CP-12, do ensaio	
TWC, realizadas com tensão confinante de 41 MPa – TWC-02-Bloco B.	174
Figura 123 –19ª Tomografia das seções perpendiculares do CP-12, do ensaio	
TWC, realizadas com tensão confinante de 41 MPa – TWC-04-Bloco B.	175
Figura 124 –20ª Tomografia das seções perpendiculares do CP-12, do ensaio	
TWC, realizadas com tensão confinante de 41 MPa – TWC-04-Bloco B.	176
Figura 125 – Seção transversal do corpo de prova depois do ensaio TWC do C	P-12
– TWC-04 -Bloco B.	177
Figura 126 – Fotografia de seção transversal, onde se observa breakout, ao eixe	o do
poço após ensaio do CP-12 –TWC-04- Bloco B.	178

Figura 127 – Fotografia com vista lateral da seção transversal, a fim de observar uma das bandas de cisalhamento ao longo do eixo do poço após ensaio do CP-12 -TWC-04- Bloco B. 178 Figura 128 - Seção transversal do corpo de prova antes do ensaio TWC do CP -14-TWC-05-Bloco B. 180 Figura 129 - Tomografia das seções perpendiculares do CP-14, do ensaio TWC, realizadas antes de se aplicar tensão confinante- TWC-05- Bloco B. 181 Figura 130 - Tomografia das seções perpendiculares do CP-14, do ensaio TWC, realizadas com tensão confinante de 34.5 MPa - TWC-05-Bloco B. 182 Figura 131 - Tomografia das seções perpendiculares do CP-14, do ensaio TWC, realizadas com tensão confinante de 34.8 MPa - TWC-05-Bloco B. 183 Figura 132 – 12^a Tomografia das seções perpendiculares do CP-14, do ensaio TWC, realizadas com tensão confinante de 35.2 MPa - TWC-05-Bloco B. 184 Figura 133-13ª Tomografia das seções perpendiculares do CP-14, do ensaio TWC, realizadas com tensão confinante de 35.2 MPa - TWC-05-Bloco B. 185 Figura 134 – Seção transversal do corpo de prova depois do ensaio TWC do CP-14 - TWC-05 -Bloco B. 186 Figura 135 – Fotografia de seção transversal, onde se observa breakout, ao eixo do poço após ensaio do CP-14 -TWC-05- Bloco B. 187 Figura 136 – Fotografia com vista lateral da seção transversal, a fim de observar uma das bandas de cisalhamento ao longo do eixo do poço após ensaio do CP-14 -TWC-05- Bloco B. 187 Figura 137 – Seção transversal do corpo de prova antes do ensaio TWC do CP -16-TWC-06-Bloco B. 189 Figura 138 - Tomografia das seções perpendiculares do CP-16, do ensaio TWC, realizadas antes de se aplicar tensão confinante- TWC-06- Bloco B. 190 Figura 139 - Tomografia das seções perpendiculares do CP-14, do ensaio TWC, realizadas com tensão confinante de 22.8 MPa - TWC-05-Bloco B. 191 Figura 140 – Tomografia das seções perpendiculares do CP-16, do ensaio TWC, realizadas com tensão confinante de 23.4 MPa - TWC-06-Bloco B. 192 Figura 141 – Seção transversal do corpo de prova depois do ensaio TWC do CP-14

- TWC-05 -Bloco B.

Figura 142 -Fotografia de seção transversal, onde se observa breakout, ao eix	o do
poço após ensaio do CP-16 –TWC-06- Bloco B.	194
Figura 143 –Fotografia com vista lateral da seção transversal, a fim de observ	ar
uma das bandas de cisalhamento ao longo do eixo do poço após ensaio d	0
CP-16 – TWC-06- Bloco B.	194
Figura 144 – Tomografia de uma seção transversal do CP-10 e CP-12- Bloco I	3.
	198
Figura 145 – Tomografia de três seções transversais do CP-15 e CP-14- Bloco) B.
	198
Figura 146 – Tomografia de duas seções transversais do CP-18 e de três seçõe	es
transversais do CP-16- Bloco B.	199
Figura 147 – Ajuste da relação TWCxUCS de Tronvoll e Wilson e dados obti-	dos
da literatura e dos ensaios realizados no Botucatu do Bloco B.	200
Figura 148 – Geometria e malha do problema simulado em deformação plana.	202
Figura 149 – Área Plastificada , modelo Mohr-Coulomb, contínuo clássico para	
CP-01.	222
Figura 150 – Deformação yy ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-01.	223
Figura 151 – Deformação xx ao longo da geometria com malha deformada e r	ıão
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-01.	223
Figura 152 – Malha deformada, modelo Mohr-Coulomb, contínuo clássico par	a
CP-01.	224
Figura 153 – Área Plastificada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-01.	224
Figura 154 – Deformação yy ao longo da geometria com malha deformada e r	ıão
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para O	CP-
01.	225
Figura 155 – Deformação xx ao longo da geometria com malha deformada e r	ıão
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para O	CP-
01.	225
Figura 156 – Malha deformada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-01.	226

193

Figura 157 – Área Plastificada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-01.	226
Figura 158 – Deformação yy ao longo da geometria com malha deformada e	não
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	-01.
	227
Figura 159 – Deformação xx ao longo da geometria com malha deformada e	não
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	-01.
	227
Figura 160 – Malha deformada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-01.	228
Figura 161 – Área Plastificada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-01.	228
Figura 162 – Deformação yy ao longo da geometria com malha deformada e	não
deformada, modelo Bogdanova e Lippmann Modificado o, contínuo Cos	sserat
para CP-01.	229
Figura 163 – Deformação xx ao longo da geometria com malha deformada e	não
deformada, modelo Bogdanova e Lippmann Modificado, contínuo Cosso	erat
para CP-01.	229
Figura 164 – Malha deformada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-01.	230
Figura 165 – Área Plastificada, modelo Mohr-Coulomb, contínuo clássico par	ra
CP-08.	230
Figura 166 – Deformação yy ao longo da geometria com malha deformada e	não
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-08.	231
Figura 167 – Deformação xx ao longo da geometria com malha deformada e	não
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-08.	231
Figura 168 – Malha deformada, modelo Mohr-Coulomb, contínuo clássico par	ra
CP-08.	232
Figura 169 – Área Plastificada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-08.	232
Figura 170 – Deformação yy ao longo da geometria com malha deformada e	não
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para	CP-
08.	233

Figura 171 – Deformação xx ao longo da geometria com malha deformada e n	não
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para	CP-
08.	233
Figura 172 – Malha deformada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-08.	234
Figura 173 – Área Plastificada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-08.	234
Figura 174 - Deformação yy ao longo da geometria com malha deformada e n	ião
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	08.
	235
Figura 175 – Deformação xx ao longo da geometria com malha deformada e n	não
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	08.
	235
Figura 176 – Malha deformada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-08.	236
Figura 177 – Área Plastificada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-08.	236
Figura 178 – Deformação yy ao longo da geometria com malha deformada e r	ıão
deformada, modelo Bogdanova e Lippmann Modificado o, contínuo Cos	serat
para CP-08.	237
Figura 179 – Deformação xx ao longo da geometria com malha deformada e r	ıão
deformada, modelo Bogdanova e Lippmann Modificado, contínuo Cosse	erat
para CP-08.	237
Figura 180 – Malha deformada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-08.	238
Figura 181 – Área Plastificada, modelo Mohr-Coulomb, contínuo clássico par	a
CP-13.	238
Figura 182 – Deformação yy ao longo da geometria com malha deformada e	não
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-13.	239
Figura 183 – Deformação xx ao longo da geometria com malha deformada e r	ıão
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-13.	239
Figura 184 – Malha deformada, modelo Mohr-Coulomb, contínuo clássico par	a
CP-13.	240

Figura 185 – Área Plastificada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-13.	240
Figura 186 – Deformação yy ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para C	CP-
13.	241
Figura 187 – Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para C	CP-
13.	241
Figura 188 – Malha deformada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-13.	242
Figura 189 – Área Plastificada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-13.	242
Figura 190 – Deformação yy ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	13.
	243
Figura 191 – Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	13.
	243
Figura 192 – Malha deformada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-13.	244
Figura 193 – Área Plastificada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-13.	244
Figura 194 – Deformação yy ao longo da geometria com malha deformada e r	ião
deformada, modelo Bogdanova e Lippmann Modificado o, contínuo Cos	serat
para CP-13.	245
Figura 195 – Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Bogdanova e Lippmann Modificado, contínuo Cosse	rat
para CP-13.	245
Figura 196 – Malha deformada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-13.	246
Figura 197 – Área Plastificada, modelo Mohr-Coulomb, contínuo clássico par	a
CP-01.	247
Figura 198 – Deformação yy ao longo da geometria com malha deformada e na	ão

deformada, modelo Mohr-Coulomb, contínuo clássico para CP-01.	247
Figura 199 – Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-01.	248
Figura 200 – Malha deformada, modelo Mohr-Coulomb, contínuo clássico par	ra
CP-01.	248
Figura 201 – Área Plastificada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-01.	249
Figura 202 – Deformação yy ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para	CP-
01.	249
Figura 203 –Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para	CP-
01.	250
Figura 204 – Malha deformada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-01.	250
Figura 205 – Área Plastificada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-01.	251
Figura 206 – Deformação yy ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	01.
	251
Figura 207 – Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	01.
	252
Figura 208 – Malha deformada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-01.	252
Figura 209 – Área Plastificada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-01.	253
Figura 210 – Deformação yy ao longo da geometria com malha deformada e r	ião
deformada, modelo Bogdanova e Lippmann Modificado o, contínuo Cos	serat
para CP-01.	253
Figura 211 – Deformação xx ao longo da geometria com malha deformada e r	ião
deformada, modelo Bogdanova e Lippmann Modificado, contínuo Cosse	erat
para CP-01.	254

Figura 212 – Malha deformada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-01.	254
Figura 213 – Área Plastificada, modelo Mohr-Coulomb, contínuo clássico par	a
CP-08.	255
Figura 214 –Deformação yy ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-08.	255
Figura 215 –Deformação xx ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb, contínuo clássico para CP-08.	256
Figura 216 – Malha deformada, modelo Mohr-Coulomb, contínuo clássico par	a
CP-08.	256
Figura 217 – Área Plastificada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-08.	257
Figura 218 –Deformação yy ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para	CP-
08.	257
Figura 219 –Deformação xx ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para	CP-
08.	258
Figura 220 – Malha deformada, modelo Mohr-Coulomb cinemático, contínuo	
Cosserat para CP-08.	258
Figura 221 – Área Plastificada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-08.	259
Figura 222 –Deformação yy ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	08.
	259
Figura 223 –Deformação xx ao longo da geometria com malha deformada e n	ão
deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-	08.
	260
Figura 224 – Malha deformada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-08.	260
Figura 225 – Área Plastificada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-08.	261
Figura 226 – Deformação yy ao longo da geometria com malha deformada e n	ão

deformada, modelo Bogdanova e Lippmann Modificado o, contínuo Cosserat para CP-08. 261 Figura 227 – Deformação xx ao longo da geometria com malha deformada e não deformada, modelo Bogdanova e Lippmann Modificado, contínuo Cosserat para CP-08. 262 Figura 228 – Malha deformada, modelo Bogdanova e Lippmann Modificado, 262 contínuo Cosserat para CP-08. Figura 229 – Área Plastificada, modelo Mohr-Coulomb, contínuo clássico para CP-13. 263 Figura 230 – Deformação yy ao longo da geometria com malha deformada e não deformada, modelo Mohr-Coulomb, contínuo clássico para CP-13. 263 Figura 231 – Deformação xx ao longo da geometria com malha deformada e não deformada, modelo Mohr-Coulomb, contínuo clássico para CP-13. 264 Figura 232 - Malha deformada, modelo Mohr-Coulomb, contínuo clássico para CP-13. 264 Figura 233 – Área Plastificada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para CP-13. 265 Figura 234 – Deformação yy ao longo da geometria com malha deformada e não deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para CP-13. 265 Figura 235 – Deformação xx ao longo da geometria com malha deformada e não deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para CP-13. 266 Figura 236 - Malha deformada, modelo Mohr-Coulomb cinemático, contínuo Cosserat para CP-13. 266 Figura 237 - Área Plastificada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-13. 267 Figura 238 – Deformação yy ao longo da geometria com malha deformada e não deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-13. 267 Figura 239 – Deformação xx ao longo da geometria com malha deformada e não deformada, modelo Mohr-Coulomb estático, contínuo Cosserat para CP-13.

268

Figura 240 – Malha deformada, modelo Mohr-Coulomb estático, contínuo	
Cosserat para CP-13.	268
Figura 241 – Área Plastificada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-13.	269
Figura 242 –Deformação yy ao longo da geometria com malha deformada e nã	0
deformada, modelo Bogdanova e Lippmann Modificado o, contínuo Cosse	erat
para CP-13.	269
Figura 243 –Deformação xx ao longo da geometria com malha deformada e nã	0
deformada, modelo Bogdanova e Lippmann Modificado, contínuo Cosser	at
para CP-13.	270
Figura 244 –Malha deformada, modelo Bogdanova e Lippmann Modificado,	
contínuo Cosserat para CP-13.	270

Lista de tabelas

Tabela 1 – Tensões confinantes σ_c aplicadas nos ensaios triaxiais.	104	
Tabela 3 – Resultados dos ensaios triaxias, uniaxiais e brasileiros.	113	
Tabela 4 – Relação de ensaios poliaxiais e sua respectiva tensão maior e men	or de	
ruptura.	130	
Tabela 5 – Relação de ensaios poliaxiais e sua respectiva área antes e depois	do	
ensaio e a área plastificada em percentual.	148	
Tabela 6 – Relação de ensaios TWC e respectivas relações OD: ID.	151	
Tabela 7 - Passo a passo dos incrementos de tensão axial e/ou confinante par	a	
CP-10 – Bloco B.	152	
Tabela 8 – Passo a passo dos incrementos de tensão axial e/ou confinante par	a	
CP-15 – Bloco B.	159	
Tabela 9 - Passo a passo dos incrementos de tensão axial e/ou confinante par	a	
CP-18 – Bloco B.	165	
Tabela 10 – Passo a passo dos incrementos de tensão axial e/ou confinante pa	ıra	
CP-12 – Bloco B.	170	
Tabela 11 – Passo a passo dos incrementos de tensão axial e/ou confinante pa	ıra	
CP-14 – Bloco B.	179	
Tabela 12 - Passo a passo dos incrementos de tensão axial e/ou confinante pa	ıra	
CP-16 – Bloco B.	188	
Tabela 13 – Parâmetros de rocha dos CP-01, CP-08 e CP-13 – Bloco A.	201	
Tabela 14 – Comparativo entre a área plastificada observada e a simulada		
numericamente para diferentes modelos se escolheu a seção mais próxin	na da	
porção central do eixo do furo, NRM.	206	
Tabela 15 – Comparativo entre a área plastificada observada e a simulada		
numericamente para diferentes modelos representa a média das áreas		
plastificadas observadas em cada ensaio ao longo do furo, NRM.	207	
Tabela 16 – Comparativo entre a área plastificada observada e a simulada		
numericamente para diferentes modelos se escolheu a seção mais próxima da		
porção central do eixo do furo, RXD.	211	

PUC-Rio - Certificação Digital Nº 0510741/CA

Tabela 17 – Comparativo entre a área plastificada observada e a simuladanumericamente para diferentes modelos representa a média das áreasplastificadas observadas em cada ensaio ao longo do furo, RXD.212