5 Modelagem sísmica

O objetivo da substituição de fluidos é modelar as propriedades sísmicas (velocidades sísmicas) e a densidade da rocha saturada a uma condição do reservatório dada (i.e. pressão, temperatura, porosidade, tipo de mineral e salinidade) e a saturação de fluido (Kumar, 2006). A velocidade sísmica de um material isotrópico pode ser calculada usando a Equação 5.8 (V_p) e a Equação

5.9 (*V_s*).

Para o cálculo das propriedades dos fluidos (módulos de incompressibilidade e densidades), utilizam-se as equações de Batzle e Wang (1992), que modelam essas propriedades em função da pressão, temperatura e características relativas às suas composições químicas. Admite-se que as propriedades dos fluidos calculadas segundo Batzle e Wang (1992) representam boas aproximações, conforme testado por Vasques e Dillon (1993).

O módulo de incompressibilidade dos grãos, K_{matrix} , é calculado pela Equação 5.1 e densidade dos grãos, ρ_{matrix} , pela Equação 5.2:

$$K_{matrix} = \frac{1}{2} \left[\left[V_{clay} K_{clay} + V_{qtz} K_{qtz} \right] + \left[\frac{V_{clay}}{K_{clay}} + \frac{V_{qtz}}{K_{qtz}} \right] \right]$$
(5.1)

onde:

$$V_{clay} = 0,7V_{sh}$$
e
$$V_{qtz} = 1 - V_{clay}$$

$$\rho_{matrix} = V_{clay}\rho_{clay} + V_{qtz}\rho_{qtz}$$
(5.2)

Os valores de K_{matrix} e ρ_{matrix} são constantes durante a substituição de fluidos pela Equação de Gassmann.

O módulo de incompressibilidade da rocha saturada, K_{sat} , é calulada pela Equação 5.3, e o módulo cisalhante da rocha saturada, μ_{sat} , pela Equação 5.4:

$$K_{sat} = \rho_{sat} \left(V_p^2 - \frac{4}{3} V_s^2 \right)$$
(5.3)

$$\mu_{sat} = \rho_{sat} V_s^2 \tag{5.4}$$

O módulo de incompressibilidade da matriz rochosa, K_{frame} , é calculado pela Equação 5.5:

$$K_{frame} = \frac{K_{sat} \left(\frac{\phi K_{matriz}}{K_{fl}} + 1 - \phi\right) - K_{matriz}}{\frac{\phi K_{matriz}}{K_{fl}} + \frac{K_{sat}}{K_{matriz}} - 1 - \phi}$$
(5.5)

Onde K_{f} é o módulo de incompressibilidade do fluido saturante.

A densidade as rocha saturada, ρ_{sat} , depois da saturação de fluidos é calculada pela Equação 5.6:

$$\rho_{sat} = \phi \rho_{fl} + (1 - \phi) \rho_{matriz} \tag{5.6}$$

Onde $\rho_{\rm fl}$ é a densidade do fluido saturante.

O módulo de incompressibilidade da rocha saturada depois da substituição de fluidos, K_{sat} , é calculado pela Equação 5.7:

$$K_{sat} = K_{frame} + \frac{\left(1 - \frac{K_{frame}}{K_{matriz}}\right)^2}{\frac{\phi}{K_{fl}} + \frac{\left(1 - \phi\right)}{K_{matriz}} - \frac{K_{frame}}{K_{matriz}^2}}$$
(5.7)

As velocidades de onda compressional, V_p , e cisalhante, V_s , depois da substituição de fluidos são calculadas pelas Equações 5.8 e Equação 5.9, respectivamente:

$$V_p = \sqrt{\frac{K_{sat} + \frac{4}{3}\mu_{sat}}{\rho_{sat}}}$$
(5.8)

e,

e,

$$V_s = \sqrt{\frac{\mu_{sat}}{\rho_{sat}}}$$
(5.9)

A impedância acústica é calculada pela Equação 5.10:

$$IA = V_p \cdot \rho_{sat} \tag{5.10}$$

Na parte de propriedades de física das rochas, foram calculadas a variação absoluta da impedância acústica para os dois tipos de rocha após 9 anos de injeção contínua de vapor (e separação vertical entre poços de 14, 28 e

42 ft) (Figura 5.1 até a Figura 5.12). A mesma variação da impedância acústica foi apresentada em forma porcentual (Figura 5.13 até a Figura 5.24).

Foram calculados sismogramas para os dois tipos de rochas (e separação vertical entre poços de 14, 28 e 42 ft) para a Base (condição inicial) e o Monitor (após 9 anos de injeção contínua de vapor) (Figura 5.26 até a Figura 5.31)

5.1. Variação da impedância acústica

5.1.1.

Variação absoluta da impedância acústica para a rocha mais resistente e menos compressiva

Foi empregada a Equação de Gassmann para realizar a substituição de fluidos, Gassmann (1951). Foram tomados os valores de pressão, temperatura, saturação de óleo, gás e água para o tempo inicial e para o tempo de abandono (9 anos) das simulações fluxo-termo-geomecânicas. Foram empregadas as equações de Batzle e Wang (1992) para calcular as propriedades sísmicas dos fluidos.

A Tabela 5.1 apresenta as condições iniciais para a substituição de fluidos pela Equação de Gassmann

API	10	
Densidade inicial do gás	1,2	
Tempearatura inicial	212 °F	100 °C
Pressão inicial	1350 psi	9,31 Mpa
Porosidade	0,32	
Volume de folhelho	0,03632	
Saturação inicial de óleo	0,748	
Saturação inicial de gás	0,088	
Saturação inicial de água	0,164	
Velocidade de onda compressional	8397 ft/s	2558 m/s
Velocidade de onda cisalhante	3759 ft/s	1146 m/s
Densidade inicial da rocha saturada	2,065 gm/cm ³	
Módulo de incompressibilidade da argila	20,9 Gpa	
Módulo de incompressibilidade do quartzo	36,6 Gpa	
Densidade da argila	2,58 gm/cm ³	
Densidade da quartzo	2,65 gm/cm ³	

Tabela 5.1 Condições iniciais para a substituição de Fluidos pela Equação de Gassmann

Figura 5.1. Variação da impedância acústica (gm/cm³·m/s) e temperatura (°F) após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft

Figura 5.2. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft

Figura 5.3. Variação da impedância (gm/cm³·m/s) acústica e temperatura (°F) após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

Figura 5.4. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

Figura 5.5. Variação da impedância acústica (gm/cm³·m/s) e temperatura (°F) após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.6. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.7. Variação da impedância acústica (gm/cm³·m/s) e temperatura (°F) após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 5.8. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 5.9. Variação da impedância (gm/cm³·m/s) acústica e temperatura (°F) após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 28 ft

Figura 5.10. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 28 ft

Figura 5.11. Variação da impedância acústica (gm/cm³·m/s) e temperatura (°F) após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.12. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

5.1.3. Variação porcentual da impedância acústica para a rocha mais resistente e menos compressiva

Figura 5.14. Variação porcentual da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

Figura 5.15. Variação porcentual da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.16. Histogramas da variação porcentual da impedância acústica para a rocha mais resistente e um espaçamento vertical de (a) 14 ft, (b) 28 e (c) 42 ft

A temperatura tem um comportamento similar ao comportamento da variação da impedância acústica, porque a região mais quente corresponde à região que tem sofrido um maior deslocamento de óleo, por tanto, uma maior variação da saturação de óleo.

Na rocha mais resistente e menos compressiva a variação porcentual máxima da impedância acústica foi de -4,5% (entre a base e o monitor), sendo predominantemente um valor de 0,75% para as três separações verticais (Figura 5.16). O valor da impedância acústicia inicial é de 5288 gm/cm³·m/s.

Os valores de freqüência para os espaçamentos verticais de 14 ft, 28 ft e 42 ft (6%, 7,5% e 10% (das 23142 células) respectivamente), para a variação porcentual da impedância acústica de -4,5% significam um maior volume de óleo sendo drenado do reservatório, e por tanto um maior volume da câmara de vapor.

5.1.4.

Variação porcentual da impedância acústica para a rocha menos resistente e mais compressiva

Figura 5.17. Variação porcentual da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 5.18. Variação porcentual da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 28 ft

Figura 5.19. Variação porcentual da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.20. Histogramas da variação porcentual da impedância acústica para a rocha menos resistente e um espaçamento vertical de (a) 14 ft, (b) 28 e (c) 42 ft

Na rocha menos resistente e mais compressiva a variação porcentual máxima da impedância acústica foi de -4,5% (entre o monitor e a base), sendo predominantemente um valor de 0,75% para as três separações verticais (Figura 5.20). O valor da impedância acústicia inicial é de 5288 gm/cm³·m/s.

Os valores de freqüência para os espaçamentos verticais de 14 ft, 28 ft e 42 ft (4%, 5% e 7% (das 23142 células) respectivamente), para a variação porcentual da impedância acústica de -4,5% significam um maior volume de óleo sendo drenado do reservatório, e por tanto um maior volume da câmara de vapor.

5.1.5.

Variação absoluta da impedância acústica entre a rocha mais resistente e menos compressiva e a menos resistente e mais compressiva

(c) Topo do reservatório Figura 5.21. Variação da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor entre a rocha mais resistente e menos resistente e um espaçamento vertical entre poços de 14 ft

⁽b) Secção paralela ao par de poços

(c) Topo do reservatório Figura 5.22. Variação da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor entre a rocha mais resistente e menos resistente e um espaçamento vertical entre poços de 28 ft

(b) Secção paralela ao par de poços

Figura 5.23. Variação da impedância acústica (gm/cm³·m/s) após 9 anos de injeção de vapor entre a rocha mais resistente e menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.24. Histogramas dos valores de diferenças na impedância acústica absoluta entre a rocha mais resistente e a menos resistente para espaçamento vertical entre poços: (a) 14 ft, (b) 28 e (c) 42 ft

A variação na impedância acústica absoluta entre a rocha mais resistente e menos compressiva, e a rocha menos resistente e mais compressiva é de aproximadamente 10 gm/cm³·m/s, um valor baixo (uma freqüência de aproximadamente de 40% das 23142 células para os três espaçamentos). Existem valores marginais ao redor de 100 gm/cm³·m/s, porém com freqüência menor de 1% (possivelmente devido a altos valores na saturação de óleo e gás). A Equação de Gassmann é altamente sensível à incompressibilidade da rocha seca (*dry bulk*) (Artola e Alvarado 2005).

5.2. Sismogramas sintéticos

Os sismogramas sintéticos de incidência vertical foram calculados com base na solução da equação da onda pelo método das diferenças finitas. A fonte está localizada numa superfície livre e gera ondas Ricker (Ricker *wavalet*) com uma freqüência dominante de 60Hz. As fontes (receptores) estão separadas 7,25 m (29 fontes e 29 receptores). A taxa de amostragem (*sampling rate*) é de 1ms.

A sobrecarga (folhelho) tem uma velocidade de onda compressional de 2000 m/s, uma densidade de 1,5 gm/cm³ e uma velocidade de onda cisalhante de 1000 m/s. O *underburden* (folhelho) tem uma velocidade de onda compressional de 3000 m/s, uma densidade de 2,5 gm/cm³ e uma velocidade de onda cisalhante de 1500 m/s.

A Figura 5.25 apresenta a posição das fontes e receptore, e a sobrecarga, reservatório e *underburden*.

Figura 5.25. Representação da sobrecarga, reservatório e underburden

5.2.1. Sismogramas sintéticos para a rocha mais resistente e menos compressiva

(b) Monitor

Figura 5.27. Sismogramas sintéticos para a Base e Monitor após a injeção vapor por 9 anos para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

(a) Base

(b) Monitor

Figura 5.28. Sismogramas sintéticos para a Base e Monitor após a injeção vapor por 9 anos para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

Figura 5.29. Sismogramas sintéticos para a Base e Monitor após a injeção vapor por 9 anos para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

(b) Monitor

Figura 5.30. Sismogramas sintéticos para a Base e Monitor após a injeção vapor por 9 anos para a rocha menos resistente e um espaçamento vertical entre poços de 28 ft

(b) Monitor

Figura 5.31. Sismogramas sintéticos para a Base e Monitor após a injeção vapor por 9 anos para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Existe uma pequena variação de contrastes na amplitude em todos os sismogramas sintéticos na região central (onde se encontra a frente de vapor). A variação da impedância acústica depois de 9 anos de injeção de vapor foi de 4,5% na média para todos os casos simulados (Figura 5.16 e Figura 5.20). Segundo concluíram Lumley *et al.* (1997), para detectar alterações no reservatório através da sísmica, a variação da impedância deve ser maior do que 4% entre a base e o monitor (neste caso estamos 0,5% acima desse valor). Por esse motivo existe pouca diferença na resposta sísmica entre a base e o monitor nos dois casos estudados, isto é, segundo os cálculos realizados as propriedades sísmicas não mudaram significativamente para serem apreciadas numa análise sísmica 4D. Um dos principais motivos é a rigidez da rocha (alta imcompressibilidade ou alto módulo *bulk*). Resultados similares foram obtidos por Theune *et al.* 2003.