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3
Control strategies

As the objective of the work in this thesis is to reduce torsional vibrations
and eliminate the stick-slip, the designed controller is projected to maintain a
desired constant angular velocity wy for the entire drill-string. So, the objective
when designing a controller for this kind of system is to regulate the nonlinear
drillstring with frictions system to a desired setpoint wy using a designed
controller.

The measurements available with a good precision for the controller are
the top drive angular velocity w;y and the reactive torque on the top drive
Trp, which implies that only surface measurements can be implemented as
state feedback. The system, on a real drilling problem can be controlled by the
top drive torque Trp. The controller should be designed in a way that it:

1. Locally stabilizes the rotational velocity of the drill-string, eliminating
torsional vibrations, specially stick-slip.

2. Ensures robustness with respect to uncertainties in the nonlinear bit-
rock interaction, time delays on measurements, and unmodeled dynamics of
the system.

3. Guarantees the satisfaction of closed-loop performance specifications,

considering the dynamical limitation of the actuators.

3.1 PID control

The most widely used type of control is the proportional-integral-
derivative (PID) control. This controller is widely applied due to its simplicity,
ease of implementation and for the characteristics of being easy to tune without
modeling the plant, only by observing the behavior of the plant and adjusting
3 gains until de desirable result is obtained. A PID controller continuously
calculates an error value e(t) as the difference between a desired setpoint r(t)
and a measured process variable y(t) and applies a correction based on pro-
portional, integral, and derivative terms. The controller attempts to minimize
the error over time by adjustment of a control variable u(t), to a new value
determined by a weighted sum given by

u(t) = Kye(t) + K, /O t e(t)dt + dete(t) (3.1)
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where K, K; and K, are non-negative scalars that denote the coefficients
for the proportional, integral, and derivative gains. Figure (3.1) shows the block

diagram implementation of the PID structure.
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Figure 3.1: PID Control closed loop structure

In addition of the trial and error method for tuning the PID gains, some
other mathematical methods can be used of optimum tuning of the system
based on the knowledge of the plant model. One of the most famous methods
is the Ziegler-Nichols. Todays simulation softwares have many methods for
tuning ready for use.

The main limitation of the PID is that it is a linear control and it
has bad results on time varying plants and in the presence of time delays.
Other limitation is that it has constant gains, so in the presence of plant
changes, unmodeled dynamics, delays, uncertainties, etc., this control looses

its efficiency and in most cases cannot stabilize the system.

3.2 Adaptive control

A system considered adaptive is the one capable of maintaining its
performance and stability despite of changes in the environment, on its own
parts and in the presence of uncertainties. This is valid for a variety of systems,
not only in engineering but systems in nature, population and social patterns,
living organisms, etc. The maintenance of the good performance of the system
in the presence of large changes of either the systems environment or the system
itself is named adaptation in the control systems literature.

In all cases, adaptive systems are by essence nonlinear, as they have
parameters that are functions of their states. Thus, adaptive systems are
simply a special class of nonlinear systems that measure their own performance,
operating environment, and operating condition of components, and adapt
their dynamics, or those of their operating environments to ensure that

measured performance is close to targeted performance or specifications.
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Adaptive control differs from robust control by the fact that it does not need
a priori information about the bounds on these uncertain or time-varying
parameters. Robust control on the other hand, guarantees that if the changes
are within given bounds the control law need not be changed, while adaptive
control is based in the control law changing itself.

The first steps in the use of adaptive control theories were due to the
advances in the aerospace industry during the 1950s in an attempt to improve
the design of autopilots [7]. The control theories known in those years were not
able to satisfy the requirements for the new aircrafts that were being designed.
After the successful implementation of jet engines into aircraft, flight envelopes
largely increased resulting in a wide range of operating conditions for a single
aircraft. Flight envelopes grew even more with developing interest in hypersonic
vehicles from the community. The existing autopilots at the time left much to
be desired in the performance across the flight envelope, and engineers began
experimenting with methods that would eventually lead to Model Reference
Adaptive Control (MRAC).

In the early developments of MRAC control architectures the notion of
stability in the feedback loop and in adaptation was not well understood or as
mature as today and that, combined with the limited capabilities of on board
computers put in doubt the effectiveness of MRAC models, especially after
some accidents with test airplanes.

The late 1950s and early 1960s saw the formulation of the state-space
system representation as well as the use of Lyapunov stability for general
control systems, by both Kalman and Bertram [22] [23]|. Aleksandr Lyapunov
first published his book on stability in 1892, but the work went relatively
unnoticed (at least outside Russia) until the 1960’s. It has since then been the
main tool used for general system stability and adaptation law design. The first
MRAC adaptation law based on Lyapunov design was published by Parks in
1966 [1]. During this time Filippov, Dubrovskii and Emelyanov were working
on the adaptation of variable structure systems, more commonly known as
sliding mode control [46].

Adaptive Pole Placement, often referred to as Self-Tuning Regulators,
were also developed in the 1970s by Astrom and Egardt with many successful
applications |6] [8|, with the added benefit of application to non-minimum
phase systems.

Recent developments in adaptive control from 2000s until today, are a
little controversial. From 2006 to 2011 it was presented to the community
in conferences and papers the creation of the L; adaptive control method
[12] [13] [15] [11] [16] [17] which garnered a lot of excitement and widespread
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implementation including some very important applications in the aerospace
industry for several years. Some of the advantages of the method included:
decoupling adaptation and robustness, guaranteed fast adaptation, guaranteed
transient response without persistent excitation, and guaranteed time-delay
margin.

In 2014, Ioannou et.al. [19] reviewed some of the assumptions of I,
control. It analyses if the L; adaptive controller provides improvements over
the pre-existent MRAC schemes by analysing a simple plant with all states
observed. His analysis shows that the insertion of the proposed low-pass
filter deteriorates the performance and robust stability margin bounds when
compared to standard MRAC. In the authors words: "The use of high adaptive
gains recommended in the L; approach may cause two major problems. First,
it makes the differential equation of the adaptive law very stiff leading to
possible numerical instabilities. Second, it makes the adaptive scheme less
robust with respect to unmodeled dynamics". However, the analysis made
by this author was not done in the general formulation of the L; adaptive
controller. Instead, he analyzed a controller that is a standard MRAC with a
low pass filter. The author misses the point that in L; control architectures,
the filtered control signal is sent to both the plant and the state predictor, the
filter is thus embedded into the adaptive architecture, which implies that one
cannot analyze the closed-loop system as if the adaptive controller and the
filter were acting in series.

Ortega and Panteley [31]| stated, in the title of the article that: L,
Adaptive Control Always Converges to a Linear PI Control and Does Not
Perform Better than the PI (in authors words). In the article, it is said that
the L; controller coincides with a full-state feedback, linear time-invariant
proportional plus integral (PI) controller with a decaying additive disturbance.
It is also shown in the article that if the PI controller does not stabilize the
plant the L; adaptive controller will not stabilize it either. The assumptions
made in this article are in part true, but this convergence to a linear PI control
only occurs in a very specific and limited set of applications. As the problem
analyzed in this thesis is not related to the ones presented by [31], this will not
affect the implementations of L; in this thesis.

Naira Hovakimyan, in a response letter published in her website [1],
addressed many of the questions posed to the L; adaptive control. In this
article, it is shown that the bandwidth-limited low pass filter C(s) must be
placed in the correct point of the L controller architecture to properly decouple
the estimation loop from the control loop, which is critical to allow to increase

the adaptation gain without compromising the robustness margins. It is also
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shown that the time delay margins of the L, adaptive controller is much better
than the one from the MRAC controller when the adaptation gain is increased.
For large adaptation gains the MRAC controller time delay margin tends to
Z€er0.

In 2014 Hsu [18] proposed a combination of two known methods that
share common features with L; control (Smooth sliding control and Binary
model reference adaptive control) as a solution to overcome some limitations
of the L; adaptive control, this method was named extended binary model
reference adaptive control.

From the above mentioned articles, it was concluded that the problems
and limitations of the L; adaptive controller presented in literature does not
affect in a negative way the implementation of this control architecture for the
torsional dynamics of the drillsting model, object of this thesis.

Most of the confusion and reports of bad results with the L; adaptive
control comes from the fact that there are some small differences on the
architecture of the L; adaptive controller depending on the type of model
one is trying to control. In this thesis only one architecture is presented, the

one adequate to control the output feedback models used.

3.3 MRAC control

Within all the adaptive controller types, the most used by far is the
Model Reference Adaptive Control (MRAC). The basic structure of a MRAC

scheme is shown in Fig. (3.2).
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Figure 3.2: MRAC Controller scheme

The goal of the designed reference model is to generate the desired
trajectory, y,, that the plant output y, has to follow. The tracking error
€1 = Yp — Ym represents the deviation of the plant output from the desired
trajectory. The closed-loop plant is made up of a common feedback control

law that contains the plant and a controller C'(f); an adjustment mechanism
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that generates the controller parameter estimates 6(t) on-line. The objective
is to design the controller and parameter adjustment mechanism so that all
signals in the closed-loop plant are bounded and the plant output y, tracks y,,
as close as possible.

Equation 3.2 represents the dynamical behavior of the system in the form

of a differential equation.

i(t) = Apz(t)+b(ut) + klx(t)), z(0) = o,
y(t) = cla(t), (3:2)

where z(t) is the state of the system (measured), A,, is the state matrix
of the system, b and ¢ are known constant vectors, k, is a vector of unknown
constant parameters, u(t) is the control input, and y(t) is the regulated output.
The objective is to define an adaptive feedback signal u(t) such that y(t) tracks
r(t) with desired specifications, while all the signals remain bounded.

The controller is given by:

u(t) = kL () (t) + kr(t) (3.3)
where k, ensures that y,,(t) tracks step reference inputs with zero steady-
state error. The hat over a term indicates an estimate of it.

And the update law is given by:

ko(t) = =Ta(t)e’ (), ka(0) = ky(0) (3-4)
where I is the adaptation gain.

As explained in details in [16] from the MRAC control law and the ad-
aptive laws, it follows that large adaptive gains result in high-gain feedback
control, which manifests itself in high-frequency oscillations in the control sig-
nal and reduced tolerance to time delays. Moreover, applications requiring
identification schemes with time scales comparable with those of the closed-
loop dynamics appear to be extremely challenging due to undesirable inter-
actions of the two processes. Due to lack of systematic design guidelines to
select an adequate adaptation gain, tuning of such applications is being com-
monly resolved by either computationally expensive Monte Carlo simulations
or trial-and-error methods following some empirical guidelines and intuition.
As a consequence, proper tuning of MRAC architectures represents a major

challenge and has largely remained an open question in literature.
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3.4 L, adaptive control

The L, adaptive control structure key idea is to enable fast adaptation
with guaranteed robustness to overcome one of the main limitations of MRAC
control structure. A simple stable scalar system with constant disturbance can
be used to highlight the advantages of L, control, specially showing how the
fast adaptation of the L, controller actually improves the system robustness.

Considering the scalar system:
(t) = —x(t) + 0 + u(t), z(0) = o (3.5)

where 6 is the unknown constant acting as undesired perturbation, and
u(t) is the control input. For this system a general MRAC architecture reduces

to an integral controller of structure

u(t) = —0(t) = —kTx(t) (3.6)

where é(t) is the estimate of # given by
0(t) = —D(am(t) —x(t)),  6(0)=6, I'>0 (3.7)

and z,,(t) is the reference signal. One can notice that this reference
system is obtained from the original system (3.5) by substitution of the
ideal nonminimal controller ., (t) = —0 into it, assuming then a perfect
cancellation of the uncertain parameter # in the system.
The negative feedback loop transfer function of this system is
r

Lus) = s(s+1)

(3.8)

As the closed-loop system (3.8) remains linear time-invariant (LTT), it is
possible to use standard classical control tools to analyze its stability margins.
The two most commonly used stability margins are the gain and the phase
margin. As the Nyquist of L;(s) never crosses the negative part of the real
axis, the closed-loop system has infinite gain margin (gm = oo) and the gain

crossover frequency wg. can be computed from
, r
| L1 (jwge)| = ——F5=—= =1 (3.9)

Wyer/Wa, + 1

and the system phase margin

1
Om =T + LL1(Jw,e) = arctan ( ) (3.10)
Wge

An inspection indicates that increasing I" leads to higher gain crossover

frequency and consequently reduces the phase margin, so, if increasing I'


DBD
PUC-Rio - Certificação Digital Nº 1221636/CA


PUC-Rio- CertificagcaoDigital N° 1221636/CA

Chapter 3. Control strategies 40

improves the tracking performance for all ¢ > 0, including the transient phase,
it compromises the robustness (or relative stability) of the closed-loop system.
Thus, the adaptation rate I' is the key to the trade-off between performance and
robustness. Since tracking and robustness cannot be achieved simultaneously
using this architecture, the goal is to explore if the architecture can be modified
so that the trade-off between tracking and robustness is resolved differently
and the adaptation gain I' can be safely increased for transient performance
improvement without compromising the robustness of the closed-loop system.

To obtain the L; adaptive controller for this system, the controller in
(3.6) and (3.7) will be modified in two ways. First, we add the state predictor

(t) = —2(t) + 0(t) +u(t)  #(0) = (3.11)
which leads to the following prediction error dynamics, independent of

the control choice

I(t) = —&(t) +
where Z(t) = #—x(t) and 0(t) =
by (3.7), is then substituted by

)(t)  #(0) = xo (3.12)
0

(t) — 0. The parametric estimate, given

0(t) = —Ti(t),  6(0)=6;,, T >0 (3.13)
Then, the adaptive controller written as u(t) = —0(t), is replaced by a

new version of §(t) with a low-pass filter C(s).

u(s) = —=C(s)0(s) (3.14)

where u(s) and 0(s) are the Laplace transforms of u(t) and 0(t) respect-

ively, and C(s) is a bounded-input bounded-output (BIBO) stable strictly

proper transfer function subject to C'(0) = 1 with zero initialization for its

state-space realization. Figure 3.3 shows the closed-loop block diagram of this
system.

Considering the first order low pass filter C(s)

w
C(s) = — 3.15
() = o (3.15)
and the negative feedback loop transfer function
I'C(s)

LQ(S) =

SGIDTT0—C() (3.16)

one can notice that in the case where there is no filter C(s), the L,
controller becomes a conventional MRAC type integral controller. From (3.8)
i.e. La(s) = Ly(s).

The phase and the gain margins of the L; controller are not significantly
affected by large values of I'. While the phase margin of the MRAC type

3
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Figure 3.3: L; Control closed loop structure

integral controller vanishes as the adaptation gain I' is increased, the [
adaptive controller has a guaranteed bounded away from zero phase and gain
margins in the presence of fast adaptation.

One can also notice that as T' — oo the expression in (3.16) leads to the
following loop transfer function

C(s) We
T1-C(s) s
This loop transfer function gain margin converges to gm = 6.02dB when

Ly(s) (3.17)

[' — oo and a phase margin of ¢, — m/2. One can also notice that the high-
frequency dynamics of the adaptation loop does not appear in the limiting

loop transfer function.

3.5 L control formulation

Considering a single input single output (SISO) system in the form:

y(s) = Als)(u(s) + d(s)) (3.18)

where u(s) is the Laplace transform of the systems input signal wu(t); y(s)
is the Laplace transform of the systems output signal y(t); A(s) is a strictly
proper unknown transfer function and d(s) is the Laplace transform of the
uncertainties and disturbances.

This system in (3.18) can be rewritten in terms of the reference system,
defined by M(s), as:

y(s) = M(s)(u(s) + a(s)) (3.19)
where the uncertainties due to A(s) and d(s) are lumped into the signal
a(s):
(A(s) — M(s))u(s) + A(s)d(s)

o(s) = A7) (3.20)
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Another important step into calculating the design of the L; adaptive
controller is to calculate a strictly proper low pass filter C(s) respecting
C(0) =1 in the form:

A(s) M (s)

H(s) = 3.21
)= GEOAR + (- CEOME 520
such that H(s) is stable, and the L;-norm condition holds:
|G(s)||, L <1 (3.22)
where
G(s) = H(s)(1—C(s)) (3.23)
The output predictor is written in the form:
J(t) = —mi(t) + m(u(t) + 6(t)) (3.24)

where (0) = 0 and & (¢) is the adaptive estimate. The adaptation law of
a(t) is:

5(t) = TProj(6(t), j(1)) (3.25)
where (0) = 0 and Proj is the projection operator.
Which leads to the following L architecture:

r(t) ¥(t)
*~©_. C(s) y(s) = A(s)(u(s) + d(s)
M Y
$(1) = =mP(e) + mu(r) + #(1)) —{)

a(t) = TProj(#(t), - §(1))

Figure 3.4: Closed loop L; architecture

As described in [47], the selection of C(s) and M (s) must ensure that
A(s)M(s)

H(s) = 3.26
)= GE@AE + (- CEOME (320

is stable, and that the L; gain of the system is upper bounded as:
[1H (s)(1 = C(s))[|2, <1 (3.27)

where C(s) is a low pass filter with DC gain C'(0) = 1.

3.5.1 [, Control simulation results

In order to better understand the implementation of the L; control, the

two cart model was simulated with an adaptive L, controller.
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The two cart problem (fig. 3.5), was originally proposed as a benchmark
to analyze the results of robust control theories. This model, that is a more
complex version of the one cart mass-spring-damper model, will be used in to
test and benchmark the proposed L; controller, as it is used in literature [16]
to analyze the results of adaptive controllers.

As the L; adaptive control is a new formulation that present some
difficulties in the implementation, it was chosen to initially implement a model
(two cart) that has simulations presented by the authors of the control law in
order to evaluate the MatLab code of the control before implementing it on

the rotational system, core of this thesis.

Figure 3.5: Two cart mass spring damper system

The dynamics of this system can be written in a state space form by:

o 0 1 0 0 0 EXOl

o 0 0 1 0 0 0
A=l w o ow g BE|L| e N (3.28)

mi m1 mi mi mi

T TERE o TE ) 0] |20

Where the states xy(t) and x9(¢) represent the positions of the two carts,
whose respective masses are my and ms, respectively but in this problem only
xo(t) is measured, d(t) is a normally distributed random disturbance force
acting on the mass mo, u(t) is the control force, which acts upon the mass my,
and « is a constant that multiplies the disturbance.

The complete state space matrices are written in the form:

& = Az + Bu (3.29)

where u is the input vector.
This classical benchmark problem has been modified to insert a friction
between mass ms and a moving belt in order to create a stick-slip behavior on

mass my although the control input force u(t) still acts on mass m;.
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Figure 3.6: Two cart mass spring damper system with friction on ms

Equations of motion for this system in the state space form can be ob-
tained by adding the friction laws 2.16 and 2.17 to the state space represent-
ation of the two cart model 3.28. This system was then simulated with the

flowing conditions:

mq :mgzlk’g, kl :k2:OI5N/m, b1:b2:0.1N/m/s, a=0.1
(3.30)

Those values are the same ones used in [17] and [20] to test the response

of adaptive controllers.
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Figure 3.7: Displacement of the cart ms of the mass spring damper system
with dry friction on msy

Figure 3.7 shows the displacement over time for this system, where the
belt under mass ms moves at a constant speed of 1m/s. This simulation is
performed to show that the known robust control benchmark problem can

be modified to have a stick-slip behavior and test the effectiveness of a given
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control law to mitigate the stick-slip on this simple problem. The results for
an adaptive controller will be presented in chapter 3.

In this system the belt is moving with constant speed and the control
aims to place the mass ms in the reference position r(¢) by actuating on the
mass my. d(t) is a disturbance force acting on mass my For this simulation,
the reference model is a third order system whose respective transfer function
is shown in eq. (3.31). This transfer function is obtained from the system

described in eq. 3.28 with the parameters from eq. (3.30).
1

M = 3.31
() = S 145+ 0175 + 0.052 (8:31)
And the low pass filter used in the control law:
1 1
C(s) = 0.185 4+ 0.19 (3.32)

s% 4+ 2.8s* + 3.3s3 + 2.0s2 + 0.66S + 0.19

This C(s) filter is a low pass filter, with cutoff frequency of 0.4rad/s as
described in section 3.4 and its bode plot:

Bode Diagram

-100

Magnitude (dB)

Phase (deg)
o

Frequer;;' (rad/s)
Figure 3.8: C(s) filter bode plot

Figures 3.9 and 3.10 show the result of the L; controller in comparison
with the open loop system that is subjected to the stick-slip due to the moving
belt under the mass mo. The reference signal r(¢) in this case was 0, the
displacements observed in fig. 3.9 are caused only by the friction force with
the belt, and the displacements on the system with L; (fig. 3.10) are caused
by this same friction but in this case, also by the control force u(t).

The control effort in this simulation is shown in fig. 3.14:
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Figure 3.9: Displacement of the cart ms without control

Displacement

Figure 3.10: Displacement of the cart my with L; control
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Figure 3.11: Control effort of the L, controller
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Which complies with the expected behavior in this case, that is, after
the system is stabilized by the controller adaptation, the steady state becomes
almost constant, applying on the system the force needed to compensate the
dynamical friction force of the belt.

To test the controller performance in the presence of unmodeled disturb-
ances, the same simulations were performed adding a disturbance force d(t)
modeled as normally distributed random force of power = 0.01.

Figures 3.12 and 3.13 show the result of the L; controller in comparison
with the open loop system both with the disturbance force on the mass ms;.
The reference signal r(t) in this case was 0, the displacements observed in fig.
3.12 are caused only by the friction force with the belt and the disturbance,
and the displacements on the system with L; (fig. 3.13) are caused by this

same friction and disturbance but in this case, also by the control force wu(t).

251

200

o

o
-

Displacement (m)

0 10 20 a0 40 50 (] 70 B0 80 100
Tima (seconds)

Figure 3.12: Simulation results for the 2 DOF linear system: Displacement of
the cart mq without control

The control effort in this system is shown in fig. 3.14.

Continuing this analysis, the response of the L; controller is analyzed
for a non constant reference signal r(t). The displacement of mass my and the
reference signal r(t) are shown in fig. 3.15.

The control effort in this system is shown in fig. 3.16.
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Figure 3.13: Simulation results for the 2 DOF linear
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Figure 3.14: Control effort of the L, controller
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Figure 3.15: Displacement of mgy (blue) and reference signal r(t) (orange)
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Figure 3.16: Control effort of the L; controller

As one can see, the proposed L; control shows good results for the two

cart example in the presence of unmodeled contact with a moving belt under

ma.

3.6 L augmented PID control

Ly augmented PID control is a closed loop control that tries to combine

the good results that can be achieved using a well tuned PID control (Section

3.1) on linear systems with the adaptiveness and robustness of the L; control

(Section 3.4). This way, it is possible to obtain a fast response system based on

PID that can overcome the PID limitations, being able to tolerate non modeled

dynamics, time delays, sensor noises, etc.

L;Control
Law

Plant (t)

r(t) PID
Controller

y()

16—

L

Output
Predictor

O

=

Adaptive
Law

Figure 3.17: Ly augmented PID control structure

In this strategy, we tune a PID controller to a reference system without

delays and disturbances, then we project the L; adaptive control in order

eliminate every possible unknown disturbances and delays, bringing the system

to the known configuration used to tune the PID.
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As the main advantage of the L; controller is to enable an increase of the
adaptation rate without compromising the robustness of the system as stated
in section 3.4, one can say that, theoretically, it should be possible to increase
the adaptation gain I' until the desired response in achieved. That would be
possible, but the limitation imposed on the design of this simulations was to
have a discrete control loop with a loop time of 10ms as this is a achievable
target for normal control hardwares. This way, our goal is to design a system
that can be implemented for a real laboratory reduced scale test rig.

In order to test the advantages of the proposed L; adaptive control
applied to the investigated drilling problem, a time delay of 20ms was added

on the angular speed of J; measurement shown in fig. 3.18

L, Control

Law
¥it)
I % Plant (t)
r(t) PID Transport

Controller delay

Output
Predictor o
Adaptive

Law

Figure 3.18: L; augmented PID control structure with time delay

It was also added as disturbance, a second point of dry friction, with
the same mathematical modeling as the one acting on the inertia J; but with
the applied torques for each speed being half of the ones acting on J;. This
disturbance intends to simulate a point of contact of the drill string with the
well walls, something that is common in operations, specially when non-vertical
well are being digged. This friction was positioned at half length of the reduced

scale drill string model.

JiMotor
2" Friction -||
Motor Ideal disk I Friction
(no inertia) Inertia (J;)

Figure 3.19: Mechanical model with second dry friction point

For this simulations a L; control was used with the following reference

system:
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0 1 0 0 0
= —Cm Ky _ o o
A=10 o woam| B= 0 x= |0 (3.33)
— Ky —Rpc 0.1 7,
Lpc Lpc Lpc

where the state space equations are in the form:

& = Ax + Bu (3.34)

This system is a 2 DOF model of a DC motor with an inertia (J;)

connected directly to the motor inertia (.J,,), where K; is the torque constant
and Rpc and Lpc are the motor electrical resistance and inductance.

This system is then transformed to a transfer function representation

using the parameters from table 3.1, after removing a pole-zero pair in the

transfer function.

Parameter Value Unit
Motor Viscous friction (C),) 1.784 x 1074 | kgm?/s
Moment of inertia of motor (J,,,) | 0.37 x 1073 kgm?

Armature inductance (Lpc) 1.10 x 1073 H

Armature resistance (Rp¢) 0.33 Q
Torque constant (K;) 0.12 Nm/A
Speed constant (K,) 6.02 x 1072 | V/(rad/s)

Table 3.1: Model parameters

376.3

M(s) = 3.35
()= 30115 1 3198 (3.85)
And the low pass filter C(s):
204
C(s) = —— 3.36
(S) (5 _|_ 20)4 ( )

Figure 3.20 shows the reference system (3.35) response to step of amp-
litude 20rad/s.
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Figure 3.20: Reference system response to a step at 1" = 1s with amplitude of

20

Figure 3.21 shows the bode plot of the C(s) filter. It is a low pass filter
with —3dB frequency of 8.68 rad/s and unitary gain on the pass band.

Bode Diagram
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Figure 3.21: Magnitude and phase plot of the C/(s) filter

As one can note, the step response is slow due to the high inertia to
motor-power ratio, and no overshoot is present. It is also notable that this
system has a DC gain slightly different from 1, being DCyq;, = 1.0760

The PID response for this system is shown in fig. (3.22). The system was
simulated in open loop from T = 0 to T = 10s. Then the PID controller is
turned ON and tries to stabilize the speed at 10 rad/s. Table 3.2 shows the
gains of the PID controller.
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Parameter Value
Proportional gain (P) | 8.0468
Integral gain (I) 31.6684
Derivative gain (D) | 1.3682

Table 3.2: PID gain

2

g8 8 3

Velocity (rad/s)
- [X] w F
(=] [=] =3 =]

o

1 s i L 1 i L 1 L
0 2 4 & 8 10 12 14 18 18 20
Time (s)

Figure 3.22: Angular velocity response of PID control

As one can note, the stick slip is very severe in the system without control
(before T=10s), there is a lot of overshoot when the control is turned on, and

the settling time is very high.
The L; control for this case, has a result even further away from what is

desirable as fig. 3.23 shows.
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|
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Figure 3.23: L, control system response

The result for this L; implementation actually makes the system even
worse, the stick-slip is still present but now with a larger amplitude.
Implementing the L; augmented control strategy proposed, a much better

result is obtained, the overshoot is smaller than the expected in PID, and the
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oscillations are also smaller.

257

20+ I I Il I 4
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1] 2 4 1 B 10 12 14 16 18 20

Figure 3.24: PID augmented L; controller response

Figure 3.24 shows the system response of the PID augmented L; control.
The control is again turned on at T=10s, after the system has established a
stick-slip behavior. The Control, can then mitigate the oscillations in a short

period and smoothly bring the system to the set point.

Control effort

L 1 H L L A 1 i H 4
0 2 4 [ 8 10 12 14 16 18 20
Time (s)

Figure 3.25: PID augmented L; controller control effort

Figure 3.25 shows the control effort of the L; in this simulation. The
contol effort is shown from T=0, but it is not being fed into the system before
T=10s.

In the case where the control is ON since T' = 0s, we can observe a much
better response of the system controlled by PID, as the time delay added on
the measurement of .J; is not much important in the beginning. Figure 3.26
shows the result of the PID for this case.
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Figure 3.26: PID controlled system response

One can note that there is a severe overshoot in the response, but
the system is stabilized effectively. Again, L; control alone has an unstable

behavior (fig.3.27) and therefore no applicability on this problem.
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Figure 3.27: L; controlled system response

Just as the previous case, the use of the PID augmented L; controller,

has an even better result when applied since the beginning of the test.

204 1

Welocity (rad's)
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o
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Figure 3.28: PID augmented L; controller response
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Figure 3.28 shows the result of this simulation. One can note that the
overshoot of the velocity in J; response comes from above 40 rad/s in the case
of the PID controller to around 20 in the case of the augmented L; controller,

noting that the reference signal to be tracked is 10 rad/s.

.
15+ .
5
it
§ 1
£
E o5+ |
o
2
0 N " i
b
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0 2 4 6 8 10 12 14 16 18 20
Time (s)

Figure 3.29: PID augmented L controller control effort

Figure 3.29 plots the control effort of the L; augmented control.

Next, the time delay described in fig. 3.18 is increased from 20ms to 40ms
to test the time delay margins of the system. The system operates in open loop
until 7" = 10s, when the controller is turned on to reduce the stick-slip. Figure
3.30 shows the result of the angular velocity of J; for this simulation. One can
note that the time delay on the output measurement induces a small amplitude

steady state oscillation on the system.

251 1

- ]
o =]

Velocity (rad/s)
S

Figure 3.30: PID augmented L; controller response with 40ms time delay

The PID controller with the same 40ms time delay (fig. 3.31) shows the
same steady state small amplitude oscillations and the large overshoot when

the controller is turned on at 7" = 10s.
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Figure 3.31: PID augmented L; controller response with 40ms time delay

In both cases (PID and L;) the controllers eliminated the stick-slip, even
with a 40ms time delay present in the output measurement. The oscillations
of the system indicate that the controllers are close to the time delay margins

for this case.

3.7 Multi-Objective Filter Optimization for Out-
put Feedback L; Adaptive Controller

As the filter C'(s) is the most challenging part of the L; structure to be
designed and tuned, there are still many divergences and proposed methods to
design and tune this low pass filter. Formulation presented in section 3.4, the
one used up to this point, shows a good result, but novel techniques aim to
improve the response of the L; controller by better tuning the C(s) low pass
filter.

In the most recent and most promising article in this line, Hamidreza
[20] presents a Convex Multi-Objective filter optimization for output feedback
in L, adaptive controller, and therefore this section is based on this proposed
methodology and presents the results of using this multi-objective optimization
on the drilling problem object of this thesis.

One of the main advantages of L; adaptive control architecture, presented
in section 3.4, is that the estimation loop is decoupled from the control law.
This decoupling allows for the use of arbitrary fast estimation rates, leading
to uniform performance bounds and guaranteed robustness in the presence of
nonlinearities and uncertainties. As a result, the closed-loop system converges
to the reference system, which is linear, and hence has a scalable, repeatable,
and predictable response.

This decoupling in the L; adaptive control architecture, is achieved by a

low-pass filter C'(s) , which attenuates high-frequency signals resulting from the
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fast estimation. The filter design is therefore critical for the trade-off between
performance and robustness of the closed-loop system.

The optimal filter design can be obtained by formulating the problem as a
constrained optimization problem. In addition to the robust stability condition,
we define the performance criteria for trade-off of robust stability and robust

performance.

) M) K(s) 3 e

Cref

Figure 3.32: Simplified output feedback system

Figure 3.32 shows an output feedback system where the signals Z, and
Z, are the performance outputs. The signal Z, is the weighted error signal
between the desired system output and the actual reference output s .
We(s) is the weight function on the error signal which is chosen based on
tracking performance requirements. The other performance measure, 7, is the
weighted control input as shown in fig. (3.32). W,,(s) is the weight function on
the control input. By minimizing the norm defined for weighted control input
in the cost function, we can reduce undesirable control actuation. In this case,
we minimize the Hy-norm of the transfer functions from reference input r to
the performance output signals Z, and Z,. Minimizing the Hs-norm ensures
zero steady-state tracking which corresponds to DC-gain condition for the filter
design (C(0) = 1).

Considering:
B sC(s)
K= e 340
and
T(s) = fi(fu(G(5), Als)), K(s)) (3-38)

where f, and f; denote linear upper and linear lower fractional trans-
formations, respectively. A combination of a mixed L;/H, cost-function and

Lq robust stability constraint ensures uniform bound on transient response
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and zero steady-state error. Therefore, the constrained optimization problem

for filter design is proposed as follows:

infrs) | Taa(K ()5, + | Tas (B ()|l + cl| 712 (K ()], (3-39)

subject to:

(K ()], <1 (3.40)

where T}; is a mapping from the input w; (i*" element of input vector) to
the output v;. In this formulation, the L;-norm constraint ensures stability of
the closed-loop system in the presence of three sources of uncertainties (delay,
input nonlinearities and disturbances, and system parametric uncertainties).
Depending on the specific problem, if some of the uncertainties are not present,
the mapping can be reduced to a lower dimensional system.

In order to optimize the filter, it is necessary to obtain a reference model
of the system that presents the closest representation of the behavior of the
plant as possible. In this case a 2DOF mechanical system with addition of the
DC motor dynamics was chosen. This reference model is obtained based on a

simplification of the actual plant we intend to control.

0 1 0 0 0 | (0,0

S o] |
A=1]0 o0 0 10 B=|0]| z=|6| (341

e e S S P b

000 :

When comparing the step response of this system (fig. 3.33) with the
one composed only by the motor attached directly to the inertia (fig. 3.20),
one can note the characteristic oscillation that comes from the addition of the
torsional spring between the motor inertia (.J,,) and the inertia disk (.J;)

By solving the proposed equations to optimize the filter we obtain

equation (3.42) for the low pass filter.

Cls) = 0.000918s? + 0.03327s2 + 0.5077s + 0.1127
5% 4+ 5.88453 + 24.8152 + 5.903s + 0.1127

(3.42)

Figure 3.34 shows the bode plot of the optimized filter (3.42). We note
that is a 4" order low pass filter with —3dB frequency of 0.021rad/s and
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Figure 3.33: Step response of the reference system

unitary gain on the pass band as it should be.
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Figure 3.34: Bode plot of the optimized low pass filter

The optimized L; augmented controller, turned on at ¢ = 10s, after the

beginning of the stick slip phase, shows a very good response, there is almost

no oscillations after the control is turned on, stabilizing the angular velocity

of Jy at 10 rad/s. Simulations are performed with the addition of a second dry

friction point acting on half length of the drill string and a 20ms time delay

on the measurement of the output (i.e. velocity of .J;) as shown in fig. 3.18.
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Figure 3.35: Ly control system after optimization

Figure 3.35 shows the angular speed of J; over time for the optimized L,
control. The advantages of this proposed optimized L; controller become very
clear when we compare the result with the ones obtained simulating the same

system controlled by a well tunned PID controller, as shown in fig. 3.36.
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Figure 3.36: PID controlled system

One can see that the maximum amplitude of the overshoot in the velocity
of J; is around 70 rad/s, more than 4 times bigger than the desired speed of
10 rad/s. And the settling time on this control is around 6s versus around 1s
on the L; control case (i.e. 6 times bigger). This bad performance of the PID

is expected, specially for systems with considerable time delays, as this case.
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Figure 3.37: Control effort of the optimized L; controller

Figure 3.37 shows the control effort of the L; augmented control, con-
firming that little adaptation is needed in this case.

If we consider the same system but with the L; control starting from
T=0s L1 control is still able to control the system with an overshoot similar

to the one experienced when turning the control on at T=10s (fig.3.35).
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Figure 3.38: L; control system after optimization starting at T—0s

The PID response in this case (fig. 3.39) is much better than the one with
the control turned on at T= 10s (fig. 3.36). This occurs as starting the control
since the beginning on a steady state system the 20ms time delay applied on
the output has a reduced influence on the overall performance of the system.

The settling time and the overshoot are much smaller in this case.
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Figure 3.39: PID controlled system starting at T—0s

From the simulations presented in this section one can note that the
design of the low pass filter C(s) of the L; adaptive controller has a big
influence on its results. Despite there is still not yet in literature a best method
to design the filter, the method from Hamidreza [20] used in this section
provides good results in the problem of the drillstring studied in this thesis.

In the next chapter, the experimental setup of a torsional system is
described, its components, mechanical characterization and in the end, an
experimental and mathematical methodology for stick-slip avoidance based

on the dynamical behavior of the system is presented.
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