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2
Mathematical formulations

The problem of modelling the torsional dynamics of a flexible shaft can
be approached in different ways. From that, only two different models were
studied in this thesis, one with concentrated parameters, the other a 2 DOF
torsional mass-spring system considering only the mechanical part of the top

drive motor (fig. 2.1).

Inertia ( /,) Inertia (/;)

Torque( T,,) == 4 Torque(T,)

Bearing ( b,;,)

Bearing ( by)

Figure 2.1: 2DOF mechanical system

This model can provide fast simulations with a good description of the
problem, it is also used as the reference model for Model Reference Adaptive
Controllers i.e. MRAC without compromising computational effort. The model
was written in state-space form with the A matrix and the state vector x
described in eq.(2.1).
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A=|-1 0 1 B=1|0 = |0, —6 (2.1)
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where the dynamics equation is:

t=Az+ B (2.2)

and by is the bearing friction on the inertia J;, and J; the moment of
inertia of the rotor. K, is the drill string torsional constant, 7}, and 7T, are the
torque on the motor and the reaction torque, b, is the bearing viscous friction
on the motor, and J,, is the motor inertia . 0., is the angular speed of the
motor and 91 is the angular speed of J;.

The DC motor (fig. 2.2) is modeled by the equations of the mechanical
Eq.(2.3) and electrical parts Eq.(2.4) as well as the torque constant k; that is

the relation between 7T}, and 1.


DBD
PUC-Rio - Certificação Digital Nº 1221636/CA


PUC-Rio- CertificagcaoDigital N° 1221636/CA

Chapter 2. Mathematical formulations 22

All the parameters used for the motor were obtained by [3| from the test

rig.
20 do
y
Lé:—M+V—e (2.4)

where 7 is the electrical current in amperes, R is the resistance in ohms,
L is the inductance in Henry, V is the voltage, and e the back emf, that is

proportional to the angular velocity of the shaft by a constant factor Ke.
e =K. (2.5)
Then, we can introduce the motor dynamics 2.3 and 2.4 in the state
space of the 2DOF mechanical system 2.1 to obtain a better state space

representation of the system and therefore a 3 DOF sytem. Where the

dynamics equation is:

& = Ax + Bu (2.6)

where u is the input vector, and the state matrix A and vector B are:

[0 1 0 0 0] [0 ] (0,

i T B U B
A=10 0 0 1 B=|0| z=|6] (27
R S 0 b
0 0 0 =EN =R I i

where Dy is the damping from internal losses of the drill string, K, is
the DC motor speed constant, and N is the gearbox attached to the motor
relation.

The second model is a 20 DOF Lumped parameters flexible shaft (fig.
2.3), that was used to obtain a more complete and therefore more complex
model of the system. This model also uses a DC motor model with electrical
and mechanical parts, modeling this way the dynamics of the DC motor.

In the lumped parameters model (fig.2.3), each element or DOF is an

elemetary inertia-damper-spring system modeled as:
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Figure 2.2: DC Motor scheme - Image from The MathWorks, Inc.
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Figure 2.3: Lumped parameters flexible shaft

d*0 df
I— = —kf —b— 2.8
dt? dt (2:8)
Writing the differential equations in (2.8) for each sub system and

assembling them in a matrix form it becomes:

MO+ BO+KO=7 (2.9)
where 6 is the state vector representing the angular displacements of the
lumped masses, 7 is the external torques vector, the system mass matrix M,

the damping matrix B, and the spring matrix K are:

Ji
J>

=
I

(2.10)
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_ " " i
—by (b1 +by) —by
B = —by (2.11)
(b18 - bm) _bm
—b,, b,
_ N L i
—k1 (k1 +ke) —ko
K= —ky (2.12)
(k1s — k19) —kio
| _k19 k19 i

This way, the mechanical lumped parameters of the drill string can be
written substituting (2.11) and (2.12) in (2.9).

2.1 Torque on bit formulation

The contact between bit and rock is modeled, according to Armstrong
[4] by the sum of a Coulomb static friction coefficient, a dynamic coefficient
and a viscous friction, dependent of the angular speed. This contact appears

in the model on the inertia J;.

T. = (Te + (Tyr — Tc) - exp(—cy|w|))sign(w) + fw ifw| > wy (2.13)

and:

w(fwth + (Te + Ty — Tc) - exp(—cowin)))
Wth,

T, =

iflw] <wp  (2.14)

where: T, is the friction torque, T is the Coulomb friction torque, Ty,
is the static friction torque, ¢, is the dynamic friction coefficients, w is the
angular speed, f is the viscous friction coefficient and wy, is the velocity of

threshold that is in the order of 10~* included to avoid numerical problems.
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Figure 2.4: Friction torque by angular speed

2.2 Stick-Slip

Stick-slip is a phenomenon that has an important role in different areas
of engineering. It is the main source of noise in car breaking systems. It is
heavily associated with earthquakes, as it is one of the main sources of seismic
incidents, as the rock becomes distorted, or bent, but holds its position until
the earthquake occurs. When the rock snaps back into an unstrained position
it is called elastic rebound. Stick-slip displacement on a fault radiates energy
in the form of seismic waves, creating an earthquake.

And, the focus of this thesis, is one of the major failures cause in drilling
for oil. The stick-slip vibration phenomenon has become an important risk
element to be evaluated in the planning of oil and gas well drilling. the
reason for this is the widespread use of new, highly efficient drill bits using
polycrystaline diamond cutters (PDC) that cut the rock by shear rotary force
compared to the previous roller-cone bits that crushed the formations and
required only a limited amount of energy to turn.

The stick-slip action is characterized by a relatively slow absorption and
fast release of energy and its main origin is the difference between a bigger
static and a lower dynamic friction coefficient. In drilling, the drillstring can
accumulate energy during several complete rotations before the slip begins.
When that happens, the angular speed of the drill can achieve more than 4
times the desired speed, many times leading to failure of components.

In the slip or release phase, the string spins out of control and this is

what creates stick-slip-associated destructive vibrations. Stick-slip occurring
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where the PDC cutters meet the rock has the potential to create the longest
stick and most violent slip periods.

Stick-slip can also be produced by the friction between the hole wall and
the drill-string itself, specially in horizontal wells where the gravity pulls the
drillstring against the formation. In this interface, there is no potential for
holding up the rotation for a long stick period and the stick-slip from friction
is typically less threatening, but also requires attention as it contributes to
torsional vibrations in the column.

In next two sections simple dynamical problems are presented as an
introduction to how the stick-slip happens and its characteristics to allow
a better understanding of this complex phenomenon to later develop the

simulations of the rotational drilling problem.

2.2.1 One cart mass-spring-damper system stick-slip

The most common stick-slip problem in literature is the one happening
on a linear 1 degree of freedom (DOF) mass-spring-damper system where the
mass is positioned over a moving belt (fig.2.5) This model is presented to clarify

the dynamics of the stick-slip movement on a simple system.

x(t)
k
u(t) m
b

Q—0O

v(D)

Figure 2.5: 1 DOF linear stick-slip

Where m is the mass, k is the spring constant, b is the damper coefficient,
v(t) is the speed of the belt and u(t) is a control force that may act on the
system. x(t) is the position of the mass and #(t) is the mass speed relative to

the ground. The dynamics of this system can be written as:

mi + bi + kx = F, + u(t) (2.15)

The contact force between the mass and the belt is modeled as:

F, = (Fo+ (Fyr — Fo) - exp(—cy, |v|(t)])) sign(v) + pv if |v] > vy (2.16)
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and

fowm + (Fe+ (Fpri — Fr) - exp(—cyvm)))
Uth

F, = v( if vl <oy (2.17)

where: F, is the friction force, F is the Coulomb friction force, Fyp,; is
the static friction force, ¢, is the dynamic friction coefficient, () is the relative
speed between the mass and the belt, and p is the viscous friction coefficient.
This system was then simulated in open loop (no control input w(t)) using
parameters from tab. 2.1, with the velocity of the belt v(¢) being constant. The
results for the linear displacement of the mass and the velocity of the mass in

reference to the ground are shown in (fig. 2.6(a) and 2.6(h))

Parameter Value | Unit
Breakaway friction force (Fp.) 7 N
Coulomb friction force (F,) 0.47 N
Mass (m) 0.7 kg
Damper (b) 1 m]\;s
Spring (k) 21.6 X
Speed of the belt (v) 0.061 o

Table 2.1: 1IDOF model parameters
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Figure 2.6: Simulation results for the 1 DOF linear system: (a) Displacement
in m and (b) Velocity in m/s

On the displacement graph (fig. 2.6(a)) one can see the characteristic
periodic stick-slip phenomenon where the sections of the curve banked to the
right are the stick phases and the almost vertical regions are the slip

The phase plot speed vs. displacement of this system, ploted in (fig. 2.7),
shows a line starting from left with constant speed representing the energy
accumulation of the mass in contact with the belt, an then a "D" shaped
curve representing the periodic stick-slip oscillations of the mass on top of the

constant speed belt.
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Figure 2.7: Phase plot of the 1 DOF linear system

With the basics of the stick-slip movement presented, the next section

(2.3) will describe the stick-slip movement of a rotational system.

2.3 Rotational stick-slip system

The stick-slip also occurs in rotational motion, like the one in drilling
systems. In every rotational system where different flexible bodies, with
different angular velocities become in contact there may be the appearance of
stick-slip. The study of stick-slip in rotational motion systems will focus in this
thesis on the drilling problem, where the system shown in fig. 2.8 is simulated
to analyze the influence of friction laws on the behavior of the system.

In the simulation results presented in this section all graphs show in
blue the angular speed of the Bit, and in green the angular speed of the top
drive motor. Simulations were performed using the 20DOF lumped parameters

model presented on section 2 for the drillstring.

I I

Motor ” Friction mmmp

Inertia ( /;)

Figure 2.8: Rotational stick-slip model

This system was simulated with the Motor being an infinite torque source
with controlled RPM. The friction law used is the one shown in section 2.1

and the initial values of the parameters are shown in Table 2.2
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Parameter Value | Unit
Breakaway friction coefficient (pux) 0.5
Coulomb friction coefficient () 0.47 —
Normal force on Bit (Ny) 26 N
Viscous friction coefficient (b) 0.001 | Ao

Table 2.2: Friction parameters

Table 2.3 show the mechanical and electrical parameters used in this

simulations.
Parameter Value Unit
String length (L) 1.7 m
String diameter (mm) 3 mm
Total inertia of Jy(J;) 0.01555819 kgm?
String stiffness (K) 0.2548 Nm/rad
Moment of inertia of motor (J,,,) | 0.37 x 1073 kgm?
Armature inductance (Lpc) 1.10 x 1073 H
Armature resistance (Rp¢) 0.33 Q
Torque constant (K;) 0.12 Nm/A
Speed constant (K,) 6.02 x 1072 | V/(rad/s)

Table 2.3: Simulation parameters

The simulation with this set of parameters, and the speed of top drive
being constant Vrp = 2(rad/s) results in the stick-slip behavior shown in fig.
2.9

-

Angular speed (rad/s)

u
T
|

Figure 2.9: Simulation with parameters from Table 2.2

Next, we simulate the same system with the Coulomb friction coefficient
1= 0.48 and as one can see in fig. 2.10, there is no longer stick slip, after the
energy accumulation on the torsional spring in the beginning of the simulation,

the bit breaks loose but now, with this slightly increase of the Coulomb friction
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coefficient the bit stabilizes at the same speed of the top drive after a few

oscillations.

-

Angular speed (rad/s)
~ w -
|

J

}{

|

|

|

|

|

1

o

Time (s}

Figure 2.10: Simulation with Coulomb friction coefficient p = 0.48

By simulating the system increasing the breakaway friction coefficient
from 0.5 to 0.6, with all the parameters shown in tab. 2.4, one can see that
with the increase of the breakaway friction coefficient, the stick phase of the
system increases when compared to the case shown in fig. 2.9, as more torque
is needed to break loose the bit, and this bigger torque takes longer to be

accumulated on the drillstring.

Parameter Value | Unit
Breakaway friction coefficient (pux) 0.6 -
Coulomb friction coefficient () 0.47 -

Normal force on Bit (Ny) 26 N
Viscous friction coefficient (b) 0.001 | D

Table 2.4: Friction parameters

Anguksr speod {racis)

Tima (s}

Figure 2.11: Simulation with Coulomb friction coefficient © = 0.6
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Following, we compare how the viscous friction can affect the stick-slip.

Figure 2.12 shows the simulation with parameters shown in tab. 2.2 as a base

case.

Angular spoed (radis)

Time (5]

Figure 2.12: Simulation with viscous friction coefficient b = 0.001

We then modify the viscous friction coefficient to p = 0.005 with the

other parameters shown in tab. 2.5. One can see that this increase of the

viscous friction coefficient avoids the stick-slip of the system for the same set

of parameters, even though it doesn’t eliminate the torsional oscillations and

over speed on the bit.

Parameter Value | Unit
Breakaway friction coefficient (g4 ) 0.5
Coulomb friction coefficient (1) 0.47 -
Normal force on Bit (Ny) 26 N
Viscous friction coefficient (b) 0.005 | S

Table 2.5: Friction parameters

Arguinr spood {racs

Figure 2.13: Simulation with viscous friction coefficient b = 0.005

Results presented in this section shows that changing, even slightly, the

friction coefficients can modify the stick slip behavior or even eliminate the

stick slip. This is an important conclusion about how the friction parameters
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influence the formation of stick-slip motion, and gives a direction about a
possibility to develop methods and devices to avoid stick-slip oscillations.

In the next chapter some control formulations will be presented and its
simulation results analyzed. These controllers are first tested in a two cart
problem, to validate its results with literature, and then simulations are made
with the 20 DOF model of the drillstring, where the output is the angular

velocity of J; and the top drive motor speed is the controlled parameter.
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