

Ricardo Rodrigues de Araujo

Comportamento Estrutural de Colunas de Aço Estaiadas e Protendidas

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia.

> Orientador: Sebastião A. L. de Andrade Co-Orientador: Luís A. P. S. da Silva Co-Orientador: Pedro C. G. da S. Vellasco

Rio de Janeiro Agosto de 2009

Ricardo Rodrigues de Araujo

Comportamento Estrutural de Colunas de Aço Estaiada e Protendida

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sebastião Arthur Lopes de Andrade Presidente / Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Pedro Colmar Gonçalves. da Silva Vellasco Co-orientador

Departamento de Estruturas e Fundações - UERJ

Prof. Luís Filipe da Costa Neves

ISISE - Departamento de Engenharia Civil – UC

Prof. Raul Rosas e Silva

Departamento de Engenharia Civil - PUC-Rio

Prof. Luciano Rodrigues Ornelas de Lima

Departamento de Estruturas e Fundações - UERJ

Prof. José Guilherme Santos da Silva Departamento de Engenharia Mecânica - UERJ

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 19 de agosto de 2009.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ricardo Rodrigues de Araujo

Graduou-se em Engenharia Civil com Ênfase em Estruturas pela Universidade do Estado do Rio de Janeiro (2002), mestrado em Engenharia Civil pela Pontifícia Universidade Católica do Rio de Janeiro (2005). Publicou um artigo em periódico especializado, oito trabalhos e dois resumos em anais de eventos. Possui um prêmio de menção honrosa. Tem experiência na área de Engenharia Civil, com ênfase em Estruturas Metálicas, atuando principalmente nos seguintes temas: pre-stressed stayed steel columns, colunas de aço estaiadas e protendidas, análise experimental, bayesian neural networks e experimental analysis.

Ficha Catalográfica

Araújo, Ricardo Rodrigues

Estudo do Comportamento Estrutural de Colunas de Aço Estaiadas e Protendida / Ricardo Rodrigues de Araujo ; orientador: Sebastião A. L. de Andrade, Luis A. P. S. da Silva ; co-orientador: Pedro C. G. da S. Vellasco. – Rio de Janeiro : PUC, Departamento de Engenharia Civil. – 2009.

301 f. : il. ; 30 cm

Tese (Doutorado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui referências bibliográficas.

 Engenharia civil – Teses. 2. Colunas de aço estaiadas e protendidas. 3. Tensoestruturas. 4. Aço – Estruturas. I. Andrade, Sebastião A. L. de. II. Silva, Luis Alberto Proença Simões da Pessoa. III. Vellasco, Pedro Colmar Gonçalves da Silva. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. V. Título.

Dedico esta tese as duas pessoas que mais me apoiaram, e me trouxeram alegrias durante todo desenvolvimento deste projeto. Aos meus queridos, adorados e muito amados esposa e filho Renata e Pedro Ricardo, por quem sou eternamente grato. Amo vocês do fundo da minha alma.

Agradecimentos

A melhor maneira de agradecer alguém é lembrando em nossos corações e mentes. Sendo assim, quero fazer um agradecimento em especial a Deus por proporcionar esse momento muito feliz em minha vida e por estar sempre ao meu lado, até mesmo quando achamos estar sozinhos.

Também quero agradecer, mais uma vez em especial, à minha esposa por compreender e aturar as muitas horas de estudo, estresse e aborrecimentos e mesmo assim continuar me apoiando, dando forças e não deixando que eu desista. A você, meu amor, eu estarei eternamente grato. E ao meu filho que me traz muitas felicidades e me faz compreender a cada dia o que é ser um Pai.

Aos meus pais e irmãos, por estarem sempre juntos me apoiando e ajudando de toda forma possível com muito amor e carinho. À minha sogra e meu sogro pelo carinho a mim transmitido e por tomarem conta do meu filho durante minhas horas de dedicação ao estudo.

Aos meus orientadores Sebastião Andrade e Pedro Vellasco que me ajudaram na elaboração deste projeto orientando o melhor caminho a se tomar. E aos professores José Guilherme e Luciano Lima pelo apoio e incentivo. Ao professor Luís Simões pela orientação e apoio durante a minha estadia em Coimbra. Sem eles eu não teria terminado.

Aos meus amigos e professores de Coimbra pelo apoio e ajuda num momento muito difícil da minha vida, em particular ao amigo Luís Gaspar.

Aos meus amigAços, Alexandre Del Sávio, Fernando Ramires e Juliana Vianna que estiveram comigo desde o mestrado me ajudando em todos os momentos, e pelas horas de descontração e os cafezinhos da tarde. Ao meu amigo Alberto Leite, pelo apoio num momento de crise e por toda força que fez voltar aos trilhos e continuar caminhando rumo à finalização deste projeto. Também aos Més Amis do CP2 Lincoln, André, Gil e Vinícius, pelos momentos de RPG, de jogatina e pelos churrascos lá em casa.

Aos amigos do LEM da PUC-Rio, pela ajuda na concretização dos meus ensaios. Ao LABBAS na UERJ pelo apoio na realização das análises computacionais. À empresa Metalfenas pelo financiamento e montagem das colunas de aço e pelos funcionários cedidos para a realização da mesma. Ao ITUC pela confecção dos corpos de prova e pelos ensaios. A CAPES e CNPq pelo apoio financeiro.

E a todos que estiveram comigo nesta caminhada, meus sinceros agradecimentos.

Resumo

Araujo, Ricardo Rodrigues de; Andrade, Sebastião Arthur Lopes de (Orientador), Silva, Luis Alberto Proença Simões da (Co-Orientador); Vellasco, Pedro Colmar Gonçalves da Silva Vellasco (Co-Orientador). **Comportamento Estrutural de Colunas de Aço Estaiadas e Protendidas**. Rio de Janeiro, 2009. 301p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Colunas de aço estaiadas e protendidas são conhecidas como excelente solução em escoramento de grandes estruturas, como colunas de coberturas de lonas tensionadas, etc. Este trabalho apresenta uma série de ensaios experimentais tri-dimensionais em escala real desenvolvidos para determinação do comportamento estrutural de colunas de aço estaiadas e protendidas. Foram estudadas as variações no nível de protensão e na rigidez dos estais, além de descrever como os ensaios experimentais das três colunas de aço estaiadas são realizados: compreendendo os materiais utilizados; um novo sistema de medição de força nos estais; os passos e dificuldades na montagem das três colunas e o sistema de protensão aplicado. Existem alguns parâmetros que influenciam diretamente na resistência dessas colunas estaiadas, como por exemplo, a altura da coluna, o diâmetro externo, entre outros. Devido ao comportamento complexo deste tipo de colunas e ao grande esforço computacional para simulação do comportamento estrutural, através de uma análise paramétrica, optou-se por utilizar um projeto de experimentos junto com redes neurais a fim de extrapolar e obter novos resultados para carga crítica do sistema estrutural sem a necessidade de análise por programas de elementos finitos. De forma a complementar a tese, realizou-se um estudo do comportamento do sistema estrutural sujeito a ações dinâmicas através do programa de elementos finitos ANSYS com o objetivo de determinar as freqüências naturais associadas aos seus modos de vibração. Também foi estudada a aplicação de um carregamento súbito para determinação do fator de amplificação dinâmico da coluna de aço estaiada e protendida.

Palavras-chave

Colunas de aço estaiadas e protendidas; análise experimental; inteligência computacional; projeto de experimentos; redes neurais; análise modal; análise transiente e método dos elementos finito.

Abstract

Araujo, Ricardo Rodrigues de; Andrade, Andrade, Sebastião Arthur Lopes de (Advisor); Silva, Luis Alberto Proença Simões da (Co-Advisor); Vellasco, Pedro Colmar Gonçalves da Silva (Co-Advisor). Structural behaviour of prestressed stayed steel columns. Rio de Janeiro, 2009. 301p. DSc. Thesis – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Prestressed steel columns are known as an efficient structural solution for great variety of temporary or permanent supporting systems for large span spatial frames and tensile surface structures. This work presents of full-scale three-dimensional tests carriedout for the assessment of structural behaviour of prestressed stayed steel columns. It was studied the effect prestress force level, stiffness of column braces and stays. Test setup and a new force measuring system for the column stays is fully described. Prestressed stayed steel columns have their strength dependant of parameters like: length, hollow section diameter, brace length and stiffness and axial stiffness of stays. Due to the complex behaviour of such columns that demands great computational effort for numerical simulations required for a parametric analysis it was used an experiment design tool coupled with neural network techniques employed to generate new data for the prestressed column buckling load. A study of the dynamic behaviour of prestressed columns using the finite element package ANSYS was carried-out in order to determine the column natural frequencies and their associated vibration modes. It was also studied the application of sudden loads to determine the dynamic amplification factor of this type of prestressed stayed steel column.

Keywords

Prestressed stayed steel column; experimental analysis; computational intelligence; experimental design; neural networks; modal analysis; transient analysis and finit element method.

Sumário

1 Introdução	24
1.1 Motivação	25
1.2 Objetivos	30
1.3 Escopo	32
2 Revisão Bibliográfica	33
2.1 Estudo da coluna estaiada por Belenya	33
2.2 Estudo da coluna estaiada por Hafez e Temple [5]	39
2.3 Estudo da coluna estaiada por Wong e Temple [6]	51
2.4 Estudo da coluna estaiada por Chan [7]	54
2.5 Estudo da coluna estaiada por Jan Van Steirteghem [13]	57
2.6 Estudo da coluna estaiada por Saito [9-11]	63
3 Programa Experimental	75
3.1 Visão global da coluna de aço estaiada	75
3.2 Sistema de reação de carga e obtenção dos esforços	76
3.3 Células de carga para os estais	80
3.3.1 Parâmetros da análise numérica da célula de carga	83
3.3.2 Primeira análise	84
3.3.3 Segunda análise	86
3.3.4 Terceira analise	88
3.3.5 Quarta analise	90
3.3.7 Primeiro Modelo	94
3.3.8 Segundo Modelo	94
3.4 Sistema de apoio da coluna de aço estaiada	96
3.5 Instrumentação da coluna de aço estaiada	97
3.6 Montagem dos estais e processo de protensão da Coluna 1	99
3.7 Montagem dos estais e processo de protensão da Coluna 2	103

3.8 Montagem dos estais e processo de protensão da Coluna 3	104
4 Resultados Experimentais	108
4.1 Primeira coluna de aço estaiada	108
4.1.1 Coluna em "modo x"	111
4.1.2 Primeira Coluna em "modo +"	128
4.2 Segunda coluna de aço estaiada	140
4.2.1 Segunda Coluna em "modo x"	141
4.2.2 Segunda Coluna em "modo +"	155
4.3 Terceira coluna de aço estaiada	168
4.3.1 Terceira Coluna em "modo x"	170
4.3.2 Terceira Coluna em "modo +"	183
5 Inteligência Computacional	197
5.1 Projeto de Experimentos	197
5.2 Análise Paramétrica com Uso de Redes Neurais Bayesianas	203
5.2.1 Aprendizado Bayesiano	204
5.2.2 Método da Aproximação Gaussiana	204
5.2.3 Previsão da Carga de Flambagem da Coluna de Aço Estaiada e	
Protendida	206
5.3 Resultados Obtidos Com as Redes Neurais	207
6 Análise Dinâmica	214
6.1 Modelagem computacional	214
6.2 Análise modal	216
6.2.1 Análise modal de coluna de aço sem estais	216
6.2.2 Análise modal de coluna de aço estaiada sem protensão	216
6.2.3 Análise modal de coluna de aço estaiada com protensão	220
6.2.4 Visão global das simulações	224
6.3 Análise Transiente	227
6.3.1 Determinação do valor de amortecimento	227
6.3.2 Fator de amplificação dinâmica	229
7 Considerações finais	233
7.1 Conclusões	234
7.2 Principais contribuições	237
7.3 Sugestões para Trabalhos Futuros	238
Referências	239

Anexo A Inteligência Computacional	244
A1 Tabela Completa de Dados de Entrada e Saída	244
Anexo B Resultados Experimentais	247
B.1 Primeira Coluna	247
B.1.1 Modo x	247
B.1.2 Modo +	248
B.2 Segunda Coluna	260
B.2.1 Modo x	260
B.2.2 Modo +	270
B.3 Terceira Coluna	281
B.3.1 Modo x	281
B.3.2 Modo +	291

Lista de Figuras

Figura 1.1 Utilização de colunas de aço estaiada e protendida durante a	
montagem do Palco Mundo do Rock in Rio III.	25
Figura 1.2 Palco Mundo na fase final da construção- Evento Rock in Rio III.	26
Figura 1.3 Coluna de aço estaiada utilizada como suporte temporário	
durante a construção do palco mundo no evento Rock in Rio III.	26
Figura 1.4 Estais, tubos transversais e cantoneiras de reforço.	27
Figura 1.5 Coluna estaiada versus andaimes.	28
Figura 1.6 Sequência de retirada da coluna de aço estaiada.	29
Figura 2.1 Cálculo da estabilidade de uma coluna de n-painéis protendida	
estaiada. (a) sistema estrutural; (b) sistema para cálculo; (c) primeiro	
modo de flambagem; (d) segundo modo de flambagem. [1]	34
Figura 2.2 (a) Coluna estaiada protendida de dois painéis bi-rotulada;	
(b) Primeiro modo de flambagem – Modo I; (c) Segundo modo de	
flambagem – Modo II.	40
Figura 2.3 Mudança no comprimento dos estais devido a deformação	
axial da coluna.	42
Figura 2.4 Mudança no comprimento dos estais devido a deformação	
axial da coluna.	46
Figura 2.5 Ensaio bi-dimensional da coluna estaiada protendida com	
dois painéis.	50
Figura 2.6 Comparação entre a carga de flambagem teórica e a experimental.	51
Figura 2.7 Coluna estaiada com o efeito da imperfeição inicial e seus	
modos de flambagem.	52
Figura 2.8 Modelo experimental da coluna estaiada realizado por Wong	
e Temple [6].	53
Figura 2.9 Carga de flambagem teórica e experimental versus a	
protensão inicial.	54
Figura 2.10 Aplicação do modelo para imperfeição inicial no elemento [7].	55
Figura 2.11 Tipos de imperfeições iniciais [7].	56
Figura 2.12 Gráfico da deformação lateral pela carga total de protensão [7].	56
Figura 2.13 Gráfico do deslocamento axial pela carga total de protensão [7].	56
Figura 2.14 Gráfico da relação entre a carga de flambageme e a	
protensão inicial[7].	57
Figura 2.15 Modelo de restrição da coluna estaiada.	58

Figura 2.16 Modos de flambagem para as diferentes colunas	
estaiadas estudas [13].	60
Figura 2.17 Efeito do ângulo de abertura entre os braços [13].	62
Figura 2.18 Modo de flambagem da coluna com o sistema de travamento	
na diagonal [13].	62
Figura 2.19 Modos de flambagem da coluna com simétrico e assimétrico [9].	64
Figura 2.20 Tipos de flambagem n Modo 2 [9].	65
Figura 2.21 Variação do comprimento dos braços.	67
Figura 2.22 Variação do diâmetro dos estais.	68
Figura 2.23 Variação do módulo de elasticidade dos estais.	68
Figura 2.24 Carga crítica P_{C} versus protensão inicial T para o modo 1 [9].	69
Figura 2.25 Carga crítica P_C versus protensão inicial T para o modo 2 [9].	70
Figura 2.26 Gráficos comparativos para o modo 1 entre o modelo analítico	
e o modelo de elementos finitos [9].	70
Figura 2.27 Gráficos comparativos para o modo 2 entre o modelo analítico	
e o modelo de elementos finitos [9].	71
Figura 2.28 Transição das imperfeições para a variação de μ 1 [11].	72
Figura 2.29 Deformação da coluna estaiada para a variação do estais	
quando utilizado a "Interação 2": (a) gráfico 3d adimensional	
apresentando o comportamento da coluna no meio do vão com o	
aumento da carga; (b) Gráfico adimensional da relação entre a	
deformação e a rotação no meio do vão da coluna [11].	73
Figura 2.30 Deformação da coluna estaiada para a variação do comprimento	
dos braços quando utilizado a "Interação 2": (a) gráfico 3d adimensional	
apresentando o comportamento da coluna no meio do vão com o	
aumento da carga; (b) Gráfico adimensional da relação entre a	
deformação e a rotação no meio do vão da coluna [11].	74
Figura 3.1 Visão global da coluna de aço estaiada	76
Figura 3.2 Modos de ensaios no laboratório – "modo x" e "modo +"	
respectivamente	76
Figura 3.3 (a)Macaco hidráulico; (b)células de carga externa; (c)células de	
carga interna; (d)rótula universal (lado do macaco hidráulico).	77
Figura 3.4 Rótula universal (lado das células de carga para os estais).	77
Figura 3.5 (a)tirantes; (b)base; (c)coluna; (d)viga de apoio; (e)viga de	
ancoragem; (f)barras de ancoragem de 25,4mm; (g)barras de	
ancoragem de 50,8mm.	78
Figura 3.6 Barras de ancoragem dos estais (novo sistema)	79
Figura 3.7 Barras de ancoragem dos estais (antigo sistema)	79
Figura 3.8 Especificação para a célula de carga do tipo "S"	81
Figura 3.9 Posicionamento representativo da célula na "cabeça" da coluna	81

Figura 3.10 Células de carga do tipo "MAT-XX". [223]	82
Figura 3.11 Esboço de projeto da célula de carga para os estais.	82
Figura 3.12 Geração automática da malha na célula de carga	84
Figura 3.13 Pontos de aplicação das cargas.	84
Figura 3.14 Tensão normal ao logo do eixo z (em MPa).	85
Figura 3.15 Tensões normais nas direções x e y, respectivamente (em MPa).	85
Figura 3.16 Deslocamento ao logo do eixo z (em mm).	86
Figura 3.17 Deslocamentos nas direções x e y, respectivamente (em mm).	86
Figura 3.18 Tensão normal ao logo do eixo z (em MPa).	87
Figura 3.19 Tensões normais nas direções x e y, respectivamente (em MPa).	87
Figura 3.20 Deslocamento ao logo do eixo z (em mm).	88
Figura 3.21 Deslocamentos nas direções x e y, respectivamente (em mm).	88
Figura 3.22 Tensão normal ao logo do eixo z (em MPa).	89
Figura 3.23 Tensões normais nas direções x e y, respectivamente (em MPa).	89
Figura 3.24 Deslocamento logo do eixo z (em mm).	90
Figura 3.25 Deslocamentos nas direções x e y, respectivamente (em mm).	90
Figura 3.26 Tensão normal ao logo do eixo z (em MPa).	91
Figura 3.27 Tensões normais nas direções x e em y, respectivamente (em MPa).	91
Figura 3.28 Deslocamento ao logo do eixo z (em mm).	92
Figura 3.29 Deslocamentos nas direções x e y, respectivamente (em mm).	92
Figura 3.30 Dimensões em milímetros (mm) da célula de carga usada em	
cada estai.	93
Figura 3.31 Célula de carga para medição dos esforços nos estais.	93
Figura 3.32 Primeiro modelo de célula de carga.	94
Figura 3.33 Ponte completa para a célula de carga, onde V é o	
extensômetro no eixo axial da célula e H é o extensômetro no diametral.	95
Figura 3.34 Segundo modelo de célula de carga.	95
Figura 3.35 Calibração da célula de carga na prensa hidráulica	96
Figura 3.36 Apoio para sustentação da coluna no vão central	97
Figura 3.37 Posicionamento dos LVDTs na coluna principal.	98
Figura 3.38 LVDTs 2, 3, 4 e 5 próximos ao centro da coluna.	98
Figura 3.39 Posicionamento dos extensômetros na coluna de aço estaiada.	99
Figura 3.40 Relógios analógicos para controle visual dos deslocamentos	
da coluna.	99
Figura 3.41 Ancoragem na extremidade da coluna próximo ao macaco	
hidráulico.	100
Figura 3.42 Posição correta de travamento dos cabos.	101
Figura 3.43 Esquematização da montagem dos estais em uma das	
extremidades da coluna.	102
Figura 3.44 Barras de ancoragem montada com as células de carga.	102

Figura 3.45 Aplicação de protensão utilizando um tifor.	102
Figura 3.46 Aplicação de protensão utilizando quatro tifor.	104
Figura 3.47 Passagem dos estais pelos braços.	105
Figura 3.48 Travamento dos estais nas barras de ancoragem próximo	
as células de carga dos estais.	106
Figura 3.49 Travamento dos estais nas barras de ancoragem próximo	
ao macaco hidráulico.	107
Figura 4.1 Comparações entre o nível de protensão aplicada em cada	
estai e a resistência da primeira coluna estaiada ensaiada.	109
Figura 4.2 Gráfico do deslocamento horizontal para o LVDT 3. Onde	
SP = Sem Presilha; En1 = primeiro ensaio da coluna sem cabo;	
En2 = segundo ensaio da coluna sem cabo.	111
Figura 4.3 Gráfico do deslocamento horizontal para o LVDT 2	112
Figura 4.4 Gráfico do deslocamento horizontal para o LVDT 12	113
Figura 4.5 Gráfico do deslocamento vertical para o LVDT 9	114
Figura 4.6 Gráfico do deslocamento horizontal para o LVDT 1	114
Figura 4.7 Gráfico do deslocamento vertical para o LVDT 6	115
Figura 4.8 Gráfico do deslocamento axial para o LVDT 11	116
Figura 4.9 Gráfico do deslocamento axial no pórtico de reação do macaco	
hidráulico para o LVDT 10	117
Figura 4.10 Gráfico do deslocamento axial no pórtico de reação oposto ao	
macaco hidráulico para o LVDT 10	117
Figura 4.11 Carga externa versus carga interna (carga aplicada + carga	
dos quatro estais) na coluna principal.	118
Figura 4.12 Comportamento do estai 1 durante a aplicação da carga externa	
na estrutura.	119
Figura 4.13 Comportamento do estai 3 durante a aplicação da carga externa	
na estrutura.	119
Figura 4.14 Comportamento do estai 2 durante a aplicação da carga externa	
na estrutura.	120
Figura 4.15 Comportamento do estai 4 durante a aplicação da carga externa	
na estrutura.	120
Figura 4.16 Gráfico referente ao extensômetro 17.	121
Figura 4.17 Gráfico referente ao extensômetro 18.	122
Figura 4.18 Gráfico referente ao extensômetro 19.	123
Figura 4.19 Gráfico referente ao extensômetro 20.	123
Figura 4.20 Gráfico referente ao extensômetro 21.	124
Figura 4.21 Gráfico referente ao extensômetro 22.	124
Figura 4.22 Gráfico referente ao extensômetro 23.	125
Figura 4.23 Gráfico referente ao extensômetro 24.	125

Figura 4.24 Gráfico referente ao extensômetro 25.	126
Figura 4.25 Gráfico referente ao extensômetro 27.	126
Figura 4.26 Gráfico referente ao extensômetro 26.	127
Figura 4.27 Gráfico referente ao extensômetro 28.	127
Figura 4.28 Ensaio da primeira coluna em modo x apresentando o primeiro	
modo de flambagem.	128
Figura 4.29 Gráfico do deslocamento horizontal para o LVDT 3 em "modo +"	129
Figura 4.30 Gráfico do deslocamento horizontal para o LVDT 2 "em modo +"	129
Figura 4.31 Gráfico do deslocamento horizontal para o LVDT 12 em "modo +"	130
Figura 4.32 Gráfico do deslocamento horizontal para o LVDT 1 em "modo +"	131
Figura 4.33 Gráfico do deslocamento axial medido pelo LVDT 11 em "modo +"	132
Figura 4.34 Gráfico do deslocamento axial no pórtico de reação oposto ao	
macaco hidráulico para o LVDT 13 em "modo +"	132
Figura 4.35 Gráfico do deslocamento axial no pórtico de reação do macaco	
hidráulico para o LVDT 10 em "modo +"	133
Figura 4.36 Carga externa versus carga interna (carga aplicada + carga	
dos quatro estais) na coluna principal em "modo +".	133
Figura 4.37 Comportamento do estai 1 durante a aplicação da carga externa	
na estrutura em "modo +".	134
Figura 4.38 Gráfico referente ao extensômetro 17 em "modo +".	135
Figura 4.39 Gráfico referente ao extensômetro 18 em "modo +".	136
Figura 4.40 Gráfico referente ao extensômetro 19 em "modo +".	136
Figura 4.41 Gráfico referente ao extensômetro 20 em "modo +".	137
Figura 4.42 Gráfico referente ao extensômetro 25 em "modo +".	138
Figura 4.43 Gráfico referente ao extensômetro 27 em "modo +".	138
Figura 4.44 Gráfico referente ao extensômetro 26 em "modo +".	139
Figura 4.45 Gráfico referente ao extensômetro 28 em "modo +".	139
Figura 4.46 Comparações entre o nível de protensão aplicada em cada estai	
e a resistência da segunda coluna estaiada ensaiada.	141
Figura 4.47 Gráfico do deslocamento horizontal para o LVDT 3 para a	
segunda coluna.	142
Figura 4.48 Gráfico do deslocamento horizontal para o LVDT 2 para a	
segunda coluna.	142
Figura 4.49 Gráfico do deslocamento horizontal para o LVDT 12	143
Figura 4.50 Gráfico do deslocamento vertical para o LVDT 9	144
Figura 4.51 Gráfico do deslocamento horizontal para o LVDT 1	144
Figura 4.52 Gráfico do deslocamento vertical para o LVDT 6	145
Figura 4.53 Ensaio da segunda coluna em modo x	145
Figura 4.54 Gráfico do deslocamento axial medido pelo LVDT 11	146

Figura 4.55 Gráfico do deslocamento axial no pórtico de reação oposto ao	
macaco hidráulico para o LVDT 13	147
Figura 4.56 Gráfico do deslocamento axial no pórtico de reação do macaco	
hidráulico para o LVDT 10	147
Figura 4.57 Carga externa versus carga interna (carga aplicada + carga dos	
quatro estais) na coluna principal	148
Figura 4.58 Comportamento do estai 1 durante a aplicação da carga externa	
na estrutura em "modo +".	149
Figura 4.59 Comportamento do estai 2 durante a aplicação da carga externa	
na estrutura em "modo +".	149
Figura 4.60 Gráfico referente ao extensômetro 17.	150
Figura 4.61 Gráfico referente ao extensômetro 18.	151
Figura 4.62 Gráfico referente ao extensômetro 19.	151
Figura 4.63 Gráfico referente ao extensômetro 20.	152
Figura 4.64 Gráfico referente ao extensômetro 37.	153
Figura 4.65 Gráfico referente ao extensômetro 39.	153
Figura 4.66 Gráfico referente ao extensômetro 38.	154
Figura 4.67 Gráfico referente ao extensômetro 40.	154
Figura 4.68 Gráfico do deslocamento horizontal para o LVDT 3 em "modo +"	155
Figura 4.69 Gráfico do deslocamento horizontal para o LVDT 2 "em modo +"	156
Figura 4.70 Gráfico do deslocamento horizontal para o LVDT 12 em "modo +"	156
Figura 4.71 Gráfico do deslocamento vertical para o LVDT 9 em "modo +"	157
Figura 4.72 Gráfico do deslocamento horizontal para o LVDT 1 em "modo +"	157
Figura 4.73 Gráfico do deslocamento vertical para o LVDT 6 em "modo +"	158
Figura 4.74 Ensaio apresentando o segundo modo de flambagem	158
Figura 4.75 Visão oposta do ensaio apresentando o segundo modo de	
flambagem	159
Figura 4.76 Ensaio apresentando o primeiro modo de flambagem	159
Figura 4.77 Gráfico do deslocamento axial medido pelo LVDT 11 em "modo +"	160
Figura 4.78 Gráfico do deslocamento axial no pórtico de reação oposto ao	
macaco hidráulico para o LVDT 13 em "modo +"	161
Figura 4.79 Gráfico do deslocamento axial no pórtico de reação do macaco	
hidráulico para o LVDT 10 em "modo +"	161
Figura 4.80 Carga externa versus carga interna (carga aplicada + carga dos	
quatro estais) na coluna principal em "modo +".	162
Figura 4.81 Comportamento do estai 2 durante a aplicação da carga externa	
na estrutura em "modo +".	163
Figura 4.82 Gráfico referente ao extensômetro 17 em "modo +".	164
Figura 4.83 Gráfico referente ao extensômetro 18 em "modo +".	164
Figura 4.84 Gráfico referente ao extensômetro 19 em "modo +".	165

Figura 4.85 Gráfico referente ao extensômetro 20 em "modo +".	165
Figura 4.86 Gráfico referente ao extensômetro 37 em "modo +".	166
Figura 4.87 Gráfico referente ao extensômetro 39 em "modo +".	167
Figura 4.88 Gráfico referente ao extensômetro 38 em "modo +".	167
Figura 4.89 Gráfico referente ao extensômetro 40 em "modo +".	168
Figura 4.90 Comparações entre o nível de protensão aplicada em cada estai	
e a resistência da terceira coluna estaiada ensaiada.	170
Figura 4.91 Gráfico do deslocamento horizontal para o LVDT 3 para a terceira	
coluna em modo X.	171
Figura 4.92 Gráfico do deslocamento horizontal para o LVDT 2 para a terceira	
coluna em modo X.	171
Figura 4.93 Gráfico do deslocamento horizontal para o LVDT 12 para a terceira	
coluna em modo X.	172
Figura 4.94 Gráfico do deslocamento vertical para o LVDT 9 para a terceira	
coluna em modo X.	173
Figura 4.95 Gráfico do deslocamento horizontal para o LVDT 1 para a terceira	
coluna em modo X.	173
Figura 4.96 Gráfico do deslocamento vertical para o LVDT 6 para a terceira	
coluna em modo X.	174
Figura 4.97 Ensaio da a terceira coluna em modo X	174
Figura 4.98 Gráfico do deslocamento axial medido pelo LVDT 11 para a terceira	
coluna em modo X.	175
Figura 4.99 Gráfico do deslocamento axial no pórtico de reação oposto ao	
macaco hidráulico para o LVDT 13 para a terceira coluna em modo X.	176
Figura 4.100 Gráfico do deslocamento axial no pórtico de reação do macaco	
hidráulico para o LVDT 10 para a terceira coluna em modo X.	176
Figura 4.101 Carga externa versus carga interna (carga aplicada + carga dos	
quatro estais) na coluna principal para a terceira coluna em modo X-	177
Figura 4.102 Comportamento do estai 1 durante a aplicação da carga externa	
na estrutura em "modo X".	177
Figura 4.103 Comportamento do estai 3 durante a aplicação da carga externa	
na estrutura em "modo X".	178
Figura 4.104 Gráfico referente ao extensômetro 17 para terceira coluna em modo X.	179
Figura 4.105 Gráfico referente ao extensômetro 18 para terceira coluna em modo X.	179
Figura 4.106 Gráfico referente ao extensômetro 19 para terceira coluna em modo X.	180
Figura 4.107 Gráfico referente ao extensômetro 20 para terceira coluna em modo X.	180
Figura 4.108 Gráfico referente ao extensômetro 37 para terceira coluna em modo X.	181
Figura 4.109 Gráfico referente ao extensômetro 39 para terceira coluna em modo X.	181
Figura 4.110 Gráfico referente ao extensômetro 38 para terceira coluna em modo X.	182
Figura 4.111 Gráfico referente ao extensômetro 40 para terceira coluna em modo X.	182

Figura 4.112 Gráfico do deslocamento horizontal para o LVDT 3 para terceira	
coluna em modo +.	184
Figura 4.113 Gráfico do deslocamento horizontal para o LVDT 2 para terceira	
coluna em modo +.	184
Figura 4.114 Gráfico do deslocamento horizontal para o LVDT 12 para terceira	
coluna em modo +.	185
Figura 4.115 Gráfico do deslocamento vertical para o LVDT 9 para terceira	
coluna em modo +.	185
Figura 4.116 Gráfico do deslocamento horizontal para o LVDT 1 para terceira	
coluna em modo +.	186
Figura 4.117 Gráfico do deslocamento vertical para o LVDT 6 para terceira	
coluna em modo +.	186
Figura 4.118 Ensaio apresentando o segundo modo de flambagem para	
terceira coluna em modo +.	187
Figura 4.119 Visão oposta do ensaio apresentando o segundo modo de	
flambagem para terceira coluna em modo +.	187
Figura 4.120 Ensaio apresentando o primeiro modo de flambagem para	
terceira coluna em modo +.	188
Figura 4.121 Gráfico do deslocamento axial medido pelo LVDT 11 para	
terceira coluna em modo +.	189
Figura 4.122 Gráfico do deslocamento axial no pórtico de reação oposto	
ao macaco hidráulico para o LVDT 13 para terceira coluna em modo +.	189
Figura 4.123 Gráfico do deslocamento axial no pórtico de reação do macaco	
hidráulico para o LVDT 10 para terceira coluna em modo +.	190
Figura 4.124 Carga externa versus carga interna (carga aplicada + carga dos	
quatro estais) na coluna principal para terceira coluna em modo +.	190
Figura 4.125 Comportamento do estai 2 durante a aplicação da carga externa	
na estrutura para terceira coluna em modo +.	191
Figura 4.126 Gráfico referente ao extensômetro 17 para terceira coluna em modo +.	192
Figura 4.127 Gráfico referente ao extensômetro 18 para terceira coluna em modo +.	193
Figura 4.128 Gráfico referente ao extensômetro 19 para terceira coluna em modo +.	193
Figura 4.129 Gráfico referente ao extensômetro 20 para terceira coluna em modo +.	194
Figura 4.130 Gráfico referente ao extensômetro 37 para terceira coluna em modo +.	195
Figura 4.131 Gráfico referente ao extensômetro 39 para terceira coluna em modo +.	195
Figura 4.132 Gráfico referente ao extensômetro 38 para terceira coluna em modo +.	196
Figura 4.133 Gráfico referente ao extensômetro 40 para terceira coluna em modo +.	196
Figura 5.1. Variáveis da coluna de aço estaiada para os dados de entrada.	199
Figura 5.2 Método D-Optimun e a quantidade de variáveis.	200
Figura 5.3 Variável raio de giração com seus níveis e respectivos valores	201
Figura 5.4 Variável nível de protensão com seus níveis e respectivos valores	201

Figura 5.5 Tabela com o arranjo das análises pelo Design Expert.	202
Figura 5.6 Menor valor de erro MAP da validação para cada análise.	210
Figura 5.7 Menor valor de erro RMS da validação para cada análise.	211
Figura 5.8 Treinamento para a segunda configuração com dez neurônios na	
camada escondida.	211
Figura 5.9 Teste para a segunda configuração com dez neurônios na camada	
escondida.	212
Figura 5.10 Validação para a segunda configuração com dez neurônios na	
camada escondida.	212
Figura 5.11 Erro geral para a segunda configuração com ruído na entrada e	
na saída, onde Nh é o número de neurônios na camada escondida.	213
Figura 6.1 Posicionamento representativo da célula na extremidade da coluna	215
Figura 6.2 Modos de vibração para a coluna sem protensão: a) associado com	
a 1ª freqüência natural f ₀₁ =2,80 Hz; b) associado com a 2ª freqüência	
natural f ₀₂ =2,80 Hz;	218
Figura 6.3 Modos de vibração para a coluna sem protensão: a) associado com	
a 3ª freqüência natural f ₀₃ =7,89 Hz; b) associado com a 4ª freqüência	
natural f ₀₄ =7,89 Hz;	218
Figura 6.4 Modos de vibração para a coluna sem protensão: a) associado com	
a 5ª freqüência natural f ₀₅ =14,18 Hz; b) associado com a 6ª freqüência	
natural f ₀₆ =14,18 Hz;	219
Figura 6.5 Modos de vibração para a coluna com protensão: a) associado com	
a 1ª freqüência natural f ₀₁ =2,71 Hz; b) associado com a 2ª freqüência	
natural f ₀₂ =2,71 Hz;	222
Figura 6.6 Modos de vibração para a coluna com protensão: a) associado com	
a 3ª freqüência natural f ₀₃ =7,22 Hz; b) associado com a 4ª freqüência	
natural f ₀₄ =7,22 Hz;	222
Figura 6.7 Modos de vibração para a coluna com protensão: a) associado com	
a 5 ^a freqüência natural f ₀₅ =13,55 Hz; b) associado com a 6 ^a freqüência	
natural f ₀₆ =13,55 Hz;	223
Figura 6.8 Freqüência fundamental da coluna de aço estaiada sem protensão;	225
Figura 6.9 Freqüência fundamental da coluna de aço estaiada e protendida com	
os estais simulados como cabos de aço;	226
Figura 6.10 Freqüência fundamental da coluna de aço estaiada e protendida com	
os estais simulados como barras;	226
Figura 6.11 Apresentação dos nós que serão avaliados na análise transiente.;	228
Figura 6.12 Gráfico do deslocamento devido a carga súbita de 10% de P_{cr} ;	231
Figura 6.13 Gráfico do deslocamento devido a carga súbita de 10% de P_{cr} na	
coluna com protensão;	232

Lista de Tabelas

Tabela 2.1. Seleção de pontos para investigação da pós-flambagem [9].	69
Tabela 2.2. Seleção de combinações de μ 1 e μ 2 para a imperfeição.	72
Tabela 4.1 Primeira coluna, resultados experimentais e numéricos em termo	
de carga última. Valores em kN.	109
Tabela 4.2 Segunda coluna, resultados experimentais e numéricos em termo	
de carga última. Valores em kN.	140
Tabela 4.3 Terceira coluna, resultados experimentais e numéricos em termo	
de carga última. Valores em kN.	169
Tabela 5.1. Nível de variação para cada fator investigado.	199
Tabela 5.2. Dados de entrada e saída.	202
Tabela 5.3 Análise sem dados ruidosos – 1a Estratégia de normalização	208
Tabela 5.4 Análise sem dados ruidosos – 2a Estratégia de normalização	208
Tabela 5.5 Análise 1 - ruidos nos dados de entrada e 1a estratégia de	
normalização	208
Tabela 5.6 Análise 2 - ruidos nos dados de entrada e saída e 1a estratégia	
de normalização.	209
Tabela 5.7 Análise 3 - ruidos nos dados de entrada e 2a estratégia de	
normalização.	209
Tabela 5.8 Análise 4 - ruidos nos dados de entrada e saída e 2a Estratégia	
de normalização.	209
Tabela 6.1 – Tabela com as freqüências naturais da coluna de aço sem estais;	216
Tabela 6.2 – Freqüências naturais para o modelo com cabos sem protensão	
nos estais;	217
Tabela 6.3 – Freqüências naturais para o modelo com barras sem protensão	
nos estais;	220
Tabela 6.4 – Freqüências naturais para o modelo com cabos e com protensão	
nos estais;	221
Tabela 6.5 – Freqüências naturais para o modelo com cabos e com protensão	
nos estais;	224
Tabela 6.6 – Fator de amplificação dinâmico para a coluna estaiada	
sem protensão;	230
Tabela 6.7 – Fator de amplificação dinâmico para a coluna estaiada	
com protensão ideal;	231

Lista de Símbolos

А	Área do tubo principal
A _d	Área das barras perpendiculares ao tubo principal
A _t	Área dos estais
В	Índice que identifica uma barra de aço
С	Índice que identifica um cabo de aço
Dx	Deslocamento lateral no meio do vão da coluna estaiada
Dy	Deslocamento na extremidade da coluna estaiada
Е	Módulo de elasticidade de aço
F _e	Carga de Euler
F _{max}	Carga máxima de flambagem
Fy	Tensão de escoamento
H, L	Comprimento total da coluna estaiada
h	Comprimento entre as barras perpendiculares em relação ao eixo
	axial do tubo principal
I	Inércia do tubo principal
K, K _c	Rigidez axial do tubo principal
K_{d},K_{ca}	Rigidez axial das barras perpendiculares ao tubo principal
K _t , K _s	Rigidez axial dos estais
k	Constante elástica
P, F, Pa	Carga externa aplicada na coluna
Pcr, Fcr	Carga crítica
Μ	Momento fletor
Q	Esforço cortante
R ₀	Reação de apoio
r	Raio de giração
T _f	Força de tração nos estais após aplicação da carga externa
T _{fl}	Força nos estais do lado convexo
T _{fr}	Força nos estais do lado côncavo
T _i	Carga de protensão inicial nos estais
T _{max}	Carga de protensão máxima

- $\mathsf{T}_{\mathsf{min}}$ Carga de protensão mínima efetiva T_{opt} Carga de protensão ótima Imperfeição inicial **V**₀ Magnitude da imperfeição no meio do vão da coluna estaiada V_{m0} Inclinação dos estais em relação ao tubo principal α Coeficiente linear de resistência $\overline{\alpha}$ $\overline{\beta}$ Coeficiente angular de resistência Deslocamento na seção k δ_{k} Imperfeição inicial Δ_{m} Diâmetro do tubo principal; coeficiente de segurança ø Diâmetro das barras perpendiculares ao tubo principal ϕ_{d} φt Diâmetro dos estais Esbeltez λ Esbeltez efetiva λi Rotação na seção k θ_k Tensão de Euler σ_r
- σ_y Tensão de escoamento
- μ Coeficiente de poison

Lista de Abreviaturas

PUC-RIO	Pontifícia Universidade Católica do Rio de Janeiro
UERJ	Universidade do Estado do Rio de Janeiro
ERE	Extensômetro de Resistência Elétrica
DEC	Departamento de Engenharia Civil – PUC-Rio
LEM	Laboratório de Estruturas e Materiais
ITUC	Instituto Tecnológico PUC-RIO
LVDT	"Linear Variable Differrential Transducer"