
2
Fundamentação Teórica

2.1
Modelo cinemático do robô móvel

A cinemática é o estudo mais básico do comportamento do sistema
mecânico. Nos robôs móveis precisamos compreender este comportamento para
um apropriado projeto e compreensão de como criar o software de controle. O
processo para compreender o movimento do robô começa com o processo de
descrição na contribuição do movimento de cada roda do robô móvel.

2.1.1
Modelo cinemático e restrição

Deduzindo um modelo para um movimento completo de todo o processo,
cada roda individualmente contribui ao movimento do robô, ao mesmo tempo,
e estabelece restrições sobre o movimento do robô. As rodas são tratadas em
conjunto com o chassi do robô, mas as forças e restrições de cada roda tem
que ser expressadas em relação à referência do chassi; isto é particularmente
importante na robótica móvel porque estas ações são precisamente a natureza
do movimento (Sie04).

Representando a posição do robô

Através deste análise, modelamos o robô como um corpo rígido sobre
rodas, operado em um plano horizontal. As dimensões do robô no plano são
três, dois para a posição no plano e um para a orientação no eixo vertical que
é ortogonal ao plano. Assume-se que existem graus de liberdade e flexibilidade
adicionais devido ao eixo da roda, e as juntas que existem na roda. No entanto,
neste análise considera-se o robô como corpo rígido ignorando as juntas e graus
de liberdade internos do robô e de suas rodas.

Para especificar a posição do robô no plano, estabelecemos uma relação
entre a referência global no plano e a referência local no robô, como se ilustra
na Fig. 2.1. Os eixos XI e YI definem uma base inercial arbitrária sobre o
plano como uma referência global com origem O : XI , YI . Para especificar a
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posição do robô, escolhemos um ponto P sobre o chassi como sua posição de
referência. A base XR e YR define dois eixos relativos a P sobre o chassi do
robô e deste modo o sistema de referência local do robô. A posição de P em
relação ao sistema de referência global é especificada pelas coordenadas x e y,
e a diferença angular entre as referencias global e local é dada por θ. Agora
pode-se descrever a posição do robô com o vetor de três elementos, como se
ilustra na equação 2-1.

Figura 2.1: sistema de Referência global e sistema de referência local do robô

ξI =

 x

y

θ

 (2-1)

Para descrever o movimento do robô em termos de componentes de movi-
mento, será necessário traçar o movimento ao longo do eixo de referência global
para o movimento dos eixos locais sobre o robô. O traçado é acompanhado us-
ando a matriz de rotação ortogonal.

R(θ) =

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (2-2)
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Esta matriz pode ser usada para traçar o movimento em relação ao
sistema de referência global XI , YI em termos do sistema de referência local
XR, YR. Esta operação é denotada por R(θ)ξ̇I porque o cálculo depende do
valor de θ. Por exemplo, consideremos o robô da figura 2.2. Para este robô,
θ = π

2
podemos calcular a matriz de rotação instantânea do robô segundo as

equações 2-3 e 2-4.

Figura 2.2: Robô móvel alinhado com os eixos do sistema de referência local

˙ξR = R(
π

2
)ξ̇I (2-3)

R(
π

2
) =

 0 1 0

−1 0 0

0 0 1

 (2-4)

Dada uma velocidade (ẋ, ẏ, θ̇) no sistema de referência global, podemos
calcular as componentes de movimento ao longo do eixo local.

˙ξR = R(
π

2
)ξ̇I =

 0 1 0

−1 0 0

0 0 1


 ẋ

ẏ

θ̇

 =

 ẏ

−ẋ

θ̇

 (2-5)
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Modelo cinemático direto

No caso mais simples, o mapeamento descrito pela equação 2-3 é sufi-
ciente para gerar a fórmula que captura a cinemática direta do robô móvel.
Como se desloca o robô dado sua geometria e a velocidade da suas rodas?.
Mais formalmente, considere-se o exemplo ilustrado na figura 2.3.

Figura 2.3: Referência global da unidade do robô

O robô possui duas rodas, cada uma com um motor próprio e indepen-
dente, e cada roda tem um diâmetro r. Seja um ponto P centrado entre as
duas rodas, cada uma a uma distancia l de P . Dados r, l, θ, e a velocidade
própria de cada roda, φ̇1 e φ̇2, o modelo da cinemática direta poderia predizer
a velocidade de todo o robô em relação ao sistema de referência global:

ξ̇I =

 ẋ

ẏ

θ̇

 = f(l, r, θ, φ̇1, φ̇2) (2-6)

Da equação 2-3 sabemos que podemos calcular o movimento do robô no
sistema de referência global do movimento em relação ao sistema de referência
local: ξ̇I = R(θ)−1ξ̇R. Por conseguinte, a estratégia seria primeiro calcular a
contribuição de cada roda no sistema de referência local ξ̇R.

Suponha que o sistema de referência local esteja alinhado tal que o robô
se desloque ao longo do eixo +XR, como se ilustra na figura 2.1. Primeiro
consideremos a contribuição da velocidade de cada roda para a velocidade de
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translação em P na direção de +XR. Ambas rodas têm que girar à mesma
velocidade se quisermos que o robô avance numa só direção, a contribuição de
cada roda à velocidade do ponto P é a mesma, ẋr1 = rφ̇1, ẋr2 = rφ̇2 e ẋr1 = ẋr2.
Para poder assegurar uma velocidade correta no componente ẋR de ξ̇R, fazemos
com que a velocidade no ponto P seja uma velocidade ponderada das rodas. O
valor de ẏR é sempre zero, porque nenhuma roda contribui com o movimento
nessa direção. Finalmente, calculamos o componente rotacional θ̇R de ξ̇R. Outra
vez, a contribuição de cada roda pode ser calculada independentemente e
adicionada; considere-se a roda direita (Roda1). O contínuo giro desta roda
resulta num contador no sentido contrário de giro do relógio no ponto P .
Lembrando que se a roda 1 gira sozinho, o robô gira com a Roda2(roda
esquerda) como apoio. A velocidade de rotação ω1 em P pode ser calculado
porque a roda esta girando instantaneamente ao longe do arco de circulo de
radio 2l:

ω1 =
rφ̇1

2l
(2-7)

A mesma equação 2-7 se aplica à roda esquerda, com a exceção que o
giro resulta num giro no sentido de giro do relógio no ponto P , 2-8.

ω2 = −rφ̇2

2l
(2-8)

Combinando estas equações individuais 2-7 e 2-8, o modelado cinemático
da unidade do robô é:

ξ̇I = R(θ)−1


rφ̇1+rφ̇2

2

0
rφ̇1

2l
+ rφ̇2

2l

 (2-9)

Esta aproximação do modelado cinemático 2-9 pode prover informação
acerca do movimento do robô dado seus componentes de velocidade das rodas.
De qualquer modo nós desejamos determinar o possível espaço do movimento
para cada desenho de chassi do robô, para fazer isto se tem que estudar as
restrições sobre o movimento do robô imposto pelas rodas.

Restrições na cinemática da roda

O primeiro passo para encontrar o modelo cinemático do robô é expressar
as restrições sobre o movimento das rodas individualmente (Sie04). O movi-
mento individual das rodas pode mais tarde ser combinado para calcular o
movimento de todo o robô. Há muitos tipos de modelos básicos das rodas com
propriedades cinemática variadas, sim embargo aqui só trataremos de dos tipos
que são os que mais interessam neste trabalho.
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De qualquer modo, muitas suposições importantes simplificaram esta
apresentação, é assumido que o plano da roda sempre é vertical e que existe
um único ponto de contato entre a roda e o chão; mais lá disto é assumido que
não há deslizamento no ponto de contato. Isto é, a roda experimenta somente
movimento baixo condições de rolamento e rotação pura no eixo vertical através
do ponto de contato.

Baixo estas suposições, apresenta-se dois restrições para cada tipo de
roda; a primeira restrição reforça o conceito de contato de rolamento - que a
roda deve girar quando o movimento toma lugar na direção apropriada -; A
segunda restrição reforça o conceito de não deslizamento lateral - que a roda
não deve deslizar-se ortogonalmente ao plano da roda.

A roda que tratamos neste trabalho é a roda standard fixa que não tem
eixo vertical de rotação para cabeceio. Seu ângulo ao chassi é fixo, e isto limita
seu movimento só para atrás e adiante e no plano de rotação do ponto de
contato com o chão, a figura 2.4, descreve uma roda fixa standard A e indica a
posição de sua postura relativo ao sistema de referência local XR, YR. A posição
de A esta expressado em coordenadas polares pela distância l e o ângulo α.
O ângulo do plano da roda relativo ao chassi esta denotado por β, o qual é
fixa. A roda de radio r, pode girar no tempo, e então seu posição rotacional
em torno de seu eixo horizontal é uma função do tempo t : φ(t).

As restrições de rolamento para esta roda reforça que tudo movimento
ao longe da direção do plano da roda deve ser acompanhado a ração de giro
da roda tal que exista puro rolamento no ponto de contato:

(
sin(α+ β) − cos(α+ β) (−l) cos β

)
R(θ)ξ̇I − rφ̇ = 0 (2-10)

O primeiro termo da equação 2-10 denota o movimento total ao longe
do plano da roda; os três elementos do vetor sobre a esquerda representam o
mapeamento de cada variável ẋ, ẏ, θ̇ para as contribuições do movimento ao
longe do plano da roda. Note que o termo R(θ)ξ̇I é usado para transformar os
parâmetros do movimento ξ̇I que esta no sistema de referência global XI , YI

dentro dos parâmetros do movimento no sistema de referência local XR, YR

que são mostradas na equação 2-3.
A restrição de deslizamento para esta roda reforça que o componente do

movimento ortogonal da roda ao plano da roda deve ser zero, como se amostra
na equação 2-11:(

cos(α+ β) sin(α+ β) l sin β
)
R(θ)ξ̇I = 0 (2-11)
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Figura 2.4: Roda standard fixa e seus parâmetros

Restrição na cinemática do robô

Dado o robô móvel com m rodas, pode-se calcular as restrições cinemática
do chassi do robô (Sie04). Cada roda impõe restrições ao movimento do robô e
então o processo é simplificado à combinação apropriada de todas as restrições
cinemática aparecidas de todas as rodas.

A roda standard fixa que usamos neste trabalho tem impacto sobre a
cinemática do chassi do robô e sim embargo requer considerações quando se
calcula as restrições cinemática do robô. Suponha que o robô tem um total
de Nf rodas standard e βf seja a orientação dessas rodas fixas. Denotaremos
φ̇f (t) como a velocidade angular das rodas.

Então a restrição de rolamento de todas as rodas pode agora ser cole-
cionada numa única equação 2-12:

J1(βf )R(θ)ξ̇I − J2φ̇ = 0 (2-12)

Nesta expressão 2-12 se tem que J2 é uma matriz constante diagonal
N ×N onde as entradas são os valores dos rádios r de cada roda; J1(β) denota
uma matriz com projeção para todas as rodas no movimento. Onde na equação
2-13 J1f é uma matriz constante das projeções de todas as rodas fixas. Isto
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tem o tamanho (Nf × 3), com cada fila consistindo dos três termos na matriz
da equação 2-10 para cada roda fixa.

J1(βf ) =
(

J1f

)
(2-13)

Em resumo, a equação 2-12 representa a restrição que todas as rodas
standard tem ao girar em torno a seu eixo horizontal. Agora usamos a mesma
técnica para colecionar as restrições de deslizamento para todas as rodas numa
única expressão:

C1(βf )R(θ)ξ̇I = 0 (2-14)

C1(βf ) =
(

C1f

)
(2-15)

Das equações 2-14 e 2-15, C1f é uma matriz de (Nf ×3) onde seus termos
são os mesmos da equação 2-11 para todas as rodas fixas. Assim a equação
2-14 é uma restrição sobre todas as rodas fixas e que seus termos de movimento
ortogonal aos planos da roda devem ser zero. Esta restrição sobre todas as rodas
fixas tem um grão significado sobre a manobrabilidade do chassi do robô. Pelo
tanto a equação geral para a cinemática do robô queda como amostra-se na
equação 2-16. (

J1(βf

C1(βf

)
R(θ)ξ̇I =

(
J2φ

0

)
(2-16)

2.2
Percepção Sensorial

Uma das mais importantes tarefas de um sistema autônomo de alguma
classe é adquirir conhecimento acerca do ambiente. Isto é realizado fazendo
medições usando vários tipos de sensores e logo extraindo informação signi-
ficativa dessas medidas.

Nesta seção se apresentam os mais comuns sensores usados em robôs
móveis e logo se discute um pouco sobre a estratégia da extração da informação
dos sensores (Eve95).

Sensores para robôs móveis

Há uma amplia variedade de sensores usados em robôs móveis, alguns
destes sensores são usados para medidas de simples valores como a temperatura
interna da eletrônica do robô ou a velocidade angular dos motores. Outros, mais
sofisticados podem ser usados para adquirir informação acerca do ambiente do
robô ou sobre a medida direita da posição global do robô. Nesta seção trata
sobre sensores usados para a extração acerca do ambiente do robô.
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H

Tabela 2.1: Classificação dos sensores usados nas aplicações de robôs móveis
Classificação General Sensor y Sistema PC ou EC A ou P

Sensores Tacteies ópticos EC A
Sensores do motor encoders e potenciómetros PC P

Velocidade doppler som EC A
Visão CCD/CMOS câmeras EC P

Segundo (Sie04) classificam-se os sensores usando dos importantes eixos
funcionais : proprioceptive/exteroceptive e passive/active.

Sensores Proprioceptive medem valores internos do sistema do robô;
por exemplo, velocidade do motor, carga da roda, ângulo da junta do robô,
voltagem da bateria.

Sensores Exteroceptive adquiram informação do ambiente do robô, por
exemplo, medida da distancia, intensidade da luz, amplitude do som.

O sensor Passive mede as condições ambientais da energia de entrada ao
sensor, por exemplo as sondas de temperatura, microfones e CCD das câmaras.

O sensor Active pode dirigir mais interações controladas com o ambiente,
eles muitas vezes realizam um desempenho superior; de qualquer modo, estes
sensores introduz muito risco como a interferência entre seus sinais.

A tabela 2.1 amostra a classificação dos sensores mais usados para
aplicações de robôs móveis. Os sensores mais utilizados vão ser comentados
brevemente. Onde A = ativos; P = passivos; P/A = passivos e ativos; PC =
proprioceptive; EC, Exteroceptive.

Os tipos de sensores da tabela 2.1 estão ordenadas em ordem ascendente
de complexidade. a continuação se descreve alguns sensores brevemente.

Encoder ópticos

Os encoder ópticos são os dispositivos mais populares para a medida
angular da posição e velocidade para o controle do motor. Nos robôs móveis,
os encoder são usados para o controle da posição e a velocidade das rodas.
Eles estimam a posição do robô no sistema do robô e quando é aplicado ao
problema da localização, algumas correções são requeridas para estes casos
como será discutido mais adiante.

A Figura 2.5 ilustra um disco típico do sensor montado no eixo do motor
para aplicações de leitura da posição e direção do motor. Quando o motor gira,
o estator gera 2 quadratura de pulsos e um pulso index. A partir destes dados
é possível inferir velocidades. Estes sinais são ilustradas na Figura 2.6:
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Figura 2.5: Disco do sensor de posição, usado para inferir velocidade

Sensores ultra-som

O principio básico de estes sensores é transmitir um paquete de pressão
em forma de onda e medir o tempo que toma em refletir esta onda e retornar
ao receptor. A distância d do objeto que causa a reflexão pode ser calculado
baseado sobre a velocidade de propagação do som c e o tempo de vôo t.

d =
c× t

2
(2-17)

A velocidade do som no ar esta dado por:

c =
√

γRT (2-18)

Onde : γ = taça da temperatura específica; R = constante do gás; T =

temperatura em K;
A forma de como se propaga esta onda se ilustra na Figura 2.7

2.3
Localização-Posicionamento

A navegação é um dos mais grandes desafios que enfrenta o robô móvel,
o êxito da navegação requer o êxito na percepção, na localização, na cognição
e no controle de movimento, o robô tem que modular a saída do motor para
conseguir a trajetória desejada.
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Figura 2.6: Pulsos de quadratura do encoder

Figura 2.7: Intensidade típica da distribuição de um sensor ultra-sônico

Se poderia-se ajuntar um sensor GPS ao robô móvel, muitos dos prob-
lemas da localização poderiam ser obviados; este sensor poderia informar ao
robô sua posição exata, dentro e fora do ambiente, logo a resposta à pergunta,
Onde estou?, poderia ser disponível, infelizmente, tão sensor não é geralmente
prático, primeiro por o alto custo e segundo porque a localização implica mais
que o conhecimento da posição absoluta no sistema de referência terrestre.
Considere-se um robô que inter-atua com humanos. Este robô poderia precisar
identificar seu posição absoluta, mas seu posição relativa em relação ao humano
também é igual de importante. Sua localização pode incluir a identificação de
humanos usando um arranjo de sensores, logo calcular sua posição relativa ao
humano.

Claramente, os sensores e atuadores do robô jogam um papel integral no
processo de localização. Isto é porque da imprecisão e imperfeição dos sensores
e atuadores que a localização dificulta-se.

Os sensores são fundamentalmente importantes para o processo de per-
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cepção, e por conseguinte o grau ao qual estes sensores podem distinguir o
estado do ambiente é crítico, o ruído nos sensores induz uma limitação sobre
a consistência da leitura do sensor no mesmo ambiente. Muitas vezes a fonte
do problema no ruído do sensor é que algumas características do ambiente não
são capturadas pela representação do robô e são obviados.

Por exemplo o sistema sensorial humano, particularmente visual, tende
a recepcionar entradas únicas em cada local único, é dizer que cada lugar se
mira diferente. A capacidade deste único mapa é somente aparente quando um
considera situações onde a falha se mantém; é dizer se um humano passa por
um edifício não conhecido e completamente obscuro, quando seu sistema visual
somente observa a obscuridade, o sistema de localização diminui rapidamente.

Nos robôs, a leitura do sensor não é único, isto é chamado aliasing do
sensor, e é uma norma e não a exceção. Num robô com muitos sensores tem
uma grande variedade de estados no ambiente por perceber e que muitos destes
estados poderiam ativar o mesmo valor a estes sensores, assim o robô não
pode distinguir de entre muitos estados, Outro problema de localização é o
ruído do atuador, em particular uma só ação tomada por o robô pode ter
muitos possíveis resultados diferentes, em resumo o atuador de um robô móvel
introduz incerteza sobre o estado futuro, por conseguinte o simples fato do
movimento tende a incrementar a incerteza do robô móvel.

É importante notar que desde o ponto de vista do robô, a incerteza
do atuador é visto como um erro em odometria, o a incapacidade do robô de
estimar seu própria posição no tempo usando o conhecimento da sua cinemática
e dinâmica. A fonte do erro geralmente amostra um modelo incompleto do
ambiente, porque o robô não modela o fato de que o chão possa ser escorregado
e possa deslizar-se, todos estes fontes de erro não modeladas resultam numa
imprecisão entre o movimento físico do robô, a intenção de movimento e a
estimarão sensorial do movimento (Sie04).

2.3.1
Modelo do erro para a estimarão da posição por odometria

Geralmente a posição de um robô é representada por o vetor:

p =

 x

y

θ

 (2-19)

Para um robô diferencial a posição pode ser estimada começando do
conhecimento da posição e integrando o movimento (somando o incremento
da distancia percorrida), para um sistema discreto com um intervalo de
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amostragem fixo △t o incremento das distâncias de percorrido (△x;△y;△θ)

são:

△x = △s cos(θ +
△θ

2
) (2-20)

△y = △s sin(θ +
△θ

2
) (2-21)

△θ =
△sr −△sl

b
(2-22)

△s =
△sr +△sl

2
(2-23)

onde: (△x;△y;△θ) = trajetória percorrida no ultimo intervalo de
amostragem; △sr;△sl = distancia percorrida pela roda direita e esquerda
respectivamente; b = distância entre as dois rodas do robô diferencial.

Assim obtemos a posição atual p′:

p′ =

 x′

y′

θ′

 = p+


△s cos(θ +

△θ

2
)

△s sin(θ +
△θ

2
)

△θ



=

 x

y

θ

+


△s cos(θ +

△θ

2
)

△s sin(θ +
△θ

2
)

△θ

 (2-24)

Usando a relação para (△s;△θ) das equações 2-23 e 2-22, mais adiante
obtemos a equação básica para a atual posição de odometria (para robôs de
manejo diferencial).

p′ = f(x, y, θ,△sr,△sl)

=

 x

y

θ

+


△sr +△sl

2
cos(θ +

△sr −△sl
2b

)

△sr +△sl
2

sin(θ +
△sr −△sl

2b
)

△sr −△sl
b

 (2-25)

Tal como foi discutido antes, a atual posição de odometria pode dar
somente uma estimarão da posição atual irregular. Devido à integração das
incertezas do erro de p e o erro de movimento durante o movimento incremental
(△sr;△sl), a posição do erro baseado na integração da odometria cresce com
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o tempo.
Agora se tem que estabelecer o modelo para a integração da posição

p′ para obter a matriz de co-variância
∑

p′ da posição estimada. Para fazer
isto, assumimos que o ponto inicial da matriz de co-variância

∑
p é conhecido;

para o incremento do movimento (△sr;△sl) assumimos a seguinte matriz de
co-variância

∑
△:

∑
△

= covar(△sr,△sl) =

(
kr|△sr| 0

0 kl|△sl|

)
(2-26)

Onde △sr y △sl são as distâncias da trajetória de cada roda, e kr, kl

são as constantes do erro representando os parâmetros não determinísticos do
controle do motor e a inter-ação da roda com o chão, como se observa na
equação 2-26 temos feito as seguintes suposições:

– Os dois erros do controle individual das rodas são independentes.

– As variâncias dos erros (ambas rodas), são proporcionais ao valor abso-
luto das distancias percorridas (△sr;△sl).

Os erros do movimento são devido ao movimento impreciso por motivos
de deformação das rodas, deslizamento, rugosidade do chão, erro nos encoder,
etc. O valor das constantes de erro kr y kl dependem do robô e o ambiente e
deveriam ser experimentalmente estabelecidos para melhorar o desempenho.

Se assumimos que p y △rl = (△sr;△sl) não são correlacionados,
e a derivada da equação 2-25 é favoravelmente aproximada pela expansão
de Taylor de primeiro ordem ( linearização), concluímos usando a lei de
propagação do erro:∑

p′

= ∇pf.
∑
p

.∇pf
T +∇△rl

f.
∑
△

.∇△rl
fT (2-27)

A matriz de co-variância
∑

p é por suposto sempre permitido pela
∑

p′ do
passo anterior, e pode assim ser calculado depois de especificar o valor inicial.

Usando a equação 2-25, podemos desenvolver os Jacobianos, Fp = ∇pf e
F∇rl

= ∇∇rl
f :

Fp = ∇pf = ∇p(f
T ) =

(
∂f

∂x

∂f

∂y

∂f

∂θ

)

=


1 0 −△s sin(θ +

△θ

2
)

0 1 △s cos(θ +
△θ

2
0 0 1

 (2-28)
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F△rl
=


1
2
cos(θ + △θ

2
)− △s

2b
sin(θ + △θ

2
) 1

2
cos(θ + △θ

2
) + △s

2b
sin(θ + △θ

2
)

1
2
sin(θ + △θ

2
) + △s

2b
cos(θ + △θ

2
) 1

2
sin(θ + △θ

2
)− △s

2b
cos(θ + △θ

2
)

1
b

−1
b


(2-29)

2.4
Navegação de robôs móveis

A navegação baseada em sensores propicia ao robô um comportamento
dependente da situação interna do veiculo e do meio onde está inserido (Fre92).
O sistema de percepção é o responsável pelo tratamento e envio de dados
coletados por sensores, determinando o tipo de movimento a ser executado
pelo veículo.

Periodicamente podem ser verificados vários parâmetros internos próprios
do robô (nível de energia, presença de falhas entre outros). Esses fatores podem
ser responsáveis por avarias e problemas que impeçam o perfeito desempenho
do robô. Uma vez detectamos, poderão ser solucionadas pelo sistema de
controle.

Este ambiente também pode ser sensoriado periodicamente, possibili-
tando diretamente a execução de uma determinada ação com base nos dados
obtidos por sensoriamento, ou a execução da sub-tarefa de mapeamento do
ambiente.

Na navegação baseada em sensores, as três sub-tarefas que compõem as
técnicas de controle são realizadas em tempo real de operação. Ao contrário
da navegação em locais conhecidos, em que o mapa do ambiente previamente
conhecido, sendo o planejamento determinado numa fase anterior, a navegação
por sensores, além de exigir um sistema de percepção mais complexo, necessita
de técnicas de controle de alto desempenho de execução nas tomadas de
decisão, e ao nível operacional, a cada instante. A capacidade de tratar ruídos
outra característica que devem apresentar os sistemas baseados em sensores,
pois esses são bastante comuns quando se trata com tais tipos de dispositivos .
O sistema de controle deve ser tolerante a sinais ruidosos, conseguindo diminuir
a sua influencia maléfica no comportamento do veículo.

Uma das vantagens propiciadas pela utilização de sensores é a possibil-
idade do robô móvel operar autonomamente. Tal fato possibilita a existência
de veículos que possam realizar suas tarefas completamente desconectados de
qualquer tipo de hardware de apoio, como também sem qualquer tipo de in-
terferência externa (Ben96). Assim, um comportamento inteligente pode ser
esperado dos robôs que realizam suas tarefas, baseados nas informações obti-
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das do ambiente e de si próprios. O trabalho desenvolvido aborda o estudo de
sistemas de controle que se enquadram nessa categoria de controle de naveg-
ação.

2.4.1
Controle de agentes

Ao se tratar com navegação baseada em sensores, consideram-se os robôs
móveis envolvidos como agentes. Um agente é um processo capaz de possuir
percepção, computação e ação dentro de seu mundo, podendo ser físico ou no.

Arquiteturas para controle de agentes

Baseado em planos (planner-based approach), que é uma estratégia
deliberativa, onde a arquitectura de controle é do tipo top-down(Mat94). É
usado um modelo de mundo centralizado para verificar a informação sensorial
e gerar ações. Essa abordagem permite a formulação explícita das tarefas e
metas do sistema, e estimarão da qualidade da desempenho do agente.

Muitos dos métodos tradicionais utilizados para planejamento de cam-
inho em locais conhecidos estão sendo modificados para serem utilizados no
caso de navegação por sensores planner-based. Estudos estão sendo realizados
para utilizarem-se heurísticas do tipo campo potencial e diagrama de Voronoi
na navegação sensoriada (Cho95). Por outro lado, incertezas que possam vir a
ocorrer no sensoriamento e mudanças do ambiente podem requerer freqüente
remanejamento, sendo o seu custo muitas vezes alto para sistemas complexos.
A abordagem baseada em planejamento é criticado devido a esta dificuldade
de convivência com a complexidade do problema conseqüentemente no per-
mitindo reações em tempo real e tratamento de ruídos.

Várias pesquisas estão sendo realizadas com o objetivo de desenvolverem-
se sistemas de controle de agentes em tempo real . Uma das abordagens mais
proeminentes são do tipo bottom-up e implementam estratégias de controle
para agentes como uma coleção de pares de ação-reação pré-programados com
mínimos estados. Esses sistemas não mantém modelos internos de represen-
tação do ambiente, mas simplesmente comandam a ação apropriada para um
determinado conjunto de valores sensoriados. Conta-se com uma relação direta
entre os valores sensoriados e a ação , associada a uma rápida realimentação
do ambiente. Estratégias puramente reativas tem-se mostrado eficazes para
uma variedade de problemas que podem ser definidos temporiamente, mas
são inflexíveis para a execução em tempo real dividido a sua incapacidade de
armazenar informação dinamicamente.
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Arquiteturas híbridas enfocam um compromisso entre abordagens pura-
mente reativas e abordagens deliberativas pelo emprego de um sistema reativo
para controle de baixo nível e um planejamento para decisões de alto nível. Sis-
temas híbridos formam um campo de elevado potencial para pesquisa. Como
exemplo, pose-se citar o planejamento reativo ou execução reativa que utiliza
primitivas de alto nível para planejamento,as quais cuidam de todos os de-
talhes da execução (Reactive Actions Packages), bem como o PRS (Procedure
Reasoning System)que é uma arquitectura para inovação de regras flexíveis
(Mat94) entre outros. Esses sistemas tendem separar os módulos de controle
em duas o mais partes independentes, mas intercomunicação. Em muitos casos,
processos reativos de baixo nível cuidam das ações imediatas de sobrevivência
do robô, enquanto os níveis mais altos selecionam as seqüencias de ações.

A abordagem baseada em comportamento é uma extensão de sistemas
reativos, mas que apresenta alguns aspectos da abordagem baseada em plane-
jamento (Jor03).Embora algumas vezes seja encontrada numa forma relativa-
mente confusa na literatura, a estratégia baseada no comportamento consid-
eravelmente mais potente do que as abordagens puramente reativas, uma vez
que no possui limitações em seus estados internos, formado por pares restritos
de ação-reação. Mesmo que os sistemas baseados no comportamento possuam
algumas propriedades dos sistemas reativos, casualmente contenham compo-
nentes reativos, sua computação no limitada a consultas. Esses sistemas podem
usar diferentes formas de representação interna do ambiente bem como execu-
tar computação distribuída, a fim de decidir qual ação-efeito aplicar (Mat94).

2.4.2
Técnicas de controle inteligentes

O comportamento inteligente pretendido pode ser alcançado com o uso de
módulos controladores baseados em sistemas inteligentes artificiais, utilizando
as arquiteturas aplicáveis a agentes (Lak98). Técnicas de controle advindas
da inteligência computacional, tanto simbólica como conexionista, estão sendo
utilizadas nas três sub-tarefas de controle (mapeamento, planejamento e exe-
cução). Estes módulos recebem os dados provenientes dos sensores, podendo, a
partir dos dados sensoriados: montar mapas internos de representação, fornecer
ações e comportamentos a serem executados, modificar-se conforme o ambi-
ente entre outros. Controladores que utilizam redes neurais (Lak98), sistemas
fuzzy (Les04), sistemas especialistas (Ben96) e algoritmos genéticos (Koz94),
estão sendo utilizados como módulos de controle de comportamento. A seguir
serão vistos mais detalhadamente cada um destes módulos.
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Módulos com sistemas especialistas baseados em regras

Neste tipo de módulo de controle, as sinais provenientes dos sensores são
analisados por sistemas especialistas (Vee95). Estes sistemas são formados por
tabelas ou regras que tentam mapear as possíveis situações que possam vir a
ser apresentadas ao robô. Leszek (Les04) propõe um sistemas de interpretação
que, ao receber os dados dos sensores, compara-os com uma série de regras e,
baseado nestas, toma decisões. Esses sistemas são previamente definidos por
um especialista que procura cercar as situações possíveis de acontecer. Desta
forma, a robustez do sistema está diretamente relacionada com o número de
regras. a medida que o número de regras aumenta, tornam-se mais difíceis o
gerenciamento e os testes. Os sistemas baseados em regras possuem um bom
desempenho para manipulações simbólicas, o que no o caso da classificação
dos dados sensoriados, onde existe a necessidade de transformação de dados
numéricos em símbolos. Um outro problema é a dificuldade de, uma vez
definido o sistema, expandi-lho para um número maior de regras, a fim de
cobrir novas situações, a dependência de dados fidedignos também é grande
neste tipo de tratamento.

Módulo por sistemas fuzzy

Módulos de controle por sistemas fuzzy utilizam a lógica fuzzy para a
interpretação dos sinais recebidos dos sensores. A lógica fuzzy baseada na teoria
de conjuntos e na teoria das possibilidades. Na teoria de conjuntos clássicos,
um elemento pertence ou no a determinado conjunto (Zad84). J na teoria dos
conjuntos fuzzy, um elemento pode pertencer parcialmente a um determinado
conjunto, ou seja, existe um determinado grau de possibilidade de o elemento
pertencer ao conjunto. Isso pode ser ilustrado pelo gráfico na figura 2.8

Se fosse desejado categorizar a distancia de um obstáculo ao robô
da figura 2.8 em noções difusas de distância, seria possível dizer que: um
obstáculo à distancia de 38 metros do robô encontrasse-se a uma distancia
"um pouco"perto e "um pouco"média. J um obstáculo a 10 metros, estaria
totalmente perto. Tal sentença traduz a noção que o ser humano tem das
grandezas físicas (Zad84). A mente humana no sabe exatamente o quanto a
água esta fria ou quanto está morna, porém consegue tomar decisões baseadas
nessa noção difusa das grandezas. A abordagem fuzzy bastante simbólica, por
tratar com noções qualitativas do universo de tratamento.

O controle fuzzy está baseado na idéia difusa das grandezas. O contro-
lador recebe os valores advindo dos sensores e, então, os fuzzyfica, ou seja, ele
determina qual o grau de possibilidade da medida pertencer a cada um dos
conjuntos fuzzy de entrada, neste caso representando os possíveis estados do
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Figura 2.8: Conjuntos fuzzy - A variável distância apresenta três conjuntos
fuzzy que representam os três conceitos lingüísticos: perto, médio, longe

robô em relação ao meio (por exemplo, perto de obstáculos, longe do alvo en-
tre outros). Feito isso, consulta-se a base de regras e toma-se uma decisão. A
base de regras um conjunto de proposições do tipo SE..ENTÃO... Por exemplo:
SE perto ENTÃO desvie, onde a saída um comportamento do robô. Uma vez
avaliadas todas as regras, realiza-se uma espécie de ponderação das mesmas,
de modo a se obter um comportamento final da saída (Zad84).

Da mesma forma que o módulo de controle por sistemas especialistas,
o controle por fuzzy composto por regras do tipo SE/ENTO, as quais são
facilmente entendidas se comparadas com equações matemáticas. A vantagem
que, devido às suas funções, esses sistemas permitem uma interface entre o nível
simbólico (das regras) e o nível de sinal (dos sensores), realizando perfeitamente
o casamento entre os dois. Ressalta-se o fato de que, nos sistemas fuzzy, o
elemento a ser tratado pertence parcialmente a um conjunto de regras, havendo
trânsito gradual entre os diversos tipos, o que no ocorre nas regras heurísticas
(Les04).

Infelizmente, esse tipo de estrutura em forma de regras dificulta modifi-
cação do sistema e conseqüente adaptação a novas situações, que seria uma das
exigências básicas para o funcionamento dos sistemas ditos autônomos. Outra
dificuldade é a extração de regras dos conjuntos de dados a ser realizada por
um operador humano. Em decorrência desses fatos, estuda-se sua utilização
em combinação com outros sistemas mais flexíveis.

Módulo por redes neurais artificiais

Redes neurais artificiais (RNAs) foram criadas na tentativa de obter-se
um modelo que descrevesse o funcionamento do cérebro. RNAs são formadas,
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em sua maioria, por elementos no lineares, altamente conectados, denominados
de neurônios artificiais (Ben96). As redes neurais apresentam a habilidade de
aprender com a experiência. O aprendizado se d através da modificação do
valor das conexões entre os neurônios (pesos).

Módulos de controle por RNAs utilizam-nas para a interpretação dos
dados provenientes dos sensores e geração de alguma ação nos atuadores. Esta
dissertação utiliza várias características que as redes neurais possuem, e que
são requeridas pelos princípios de autonomia em ambientes reais. Algumas
dessas propriedades são as seguintes: flexibilidade e generalização, tolerância a
falhas em componentes físicos, facilidade de convivência com a micro-estrutura
do robô (podendo modelar sua própria estrutura de maneira a explorar as
melhores características senso-motoras do robô)(Fre92), tolerância a ruído,
natureza paralela (veloz para aplicações em tempo real)(Vee95), e se no forem
impostos limites arquitectura da rede (conexões e funções de transferência),
ter-se- um dispositivo com grande potencial para o tratamento de estruturas
temporais e mapeamentos complexos.

A utilização de redes neurais para controle de RNAs pode ser executada
através do desenvolvimento de redes cujo aprendizado (e conseqüente modifi-
cação dos valores dos pesos) acontece de forma que a rede aprenda a tomar
atitudes corretas na presença de determinadas situações sensoriais verificadas.

A rede recebe como entrada os valores providos dos sensores e fornece
como saída um determinado comportamento a ser executado pelo sis-
tema de acionamento do robô. Essas redes podem ser treinaras anterior-
mente (supervisionadas) ou podem dinamicamente sofrer modificações (no-
supervisionado)(Fre92).

Como desvantagem do uso de redes neurais para controle de robôs está
o fato de que o mapeamento das características e a classificação dos sinais,
internamente na rede, não são visíveis e são de difícil entendimento. Assim, no
se sabe de que forma a rede está armazenado determinado conhecimento, nem
em que local isso é feito (Fre92).

Outro problema existente quanto convergência de aprendizado, o que
algumas vezes pode ser muito lento, prejudicando assim o desempenho do
robô. Além disso, em alguns casos, o próprio aprendizado não é garantido, o
que inicializa a sua posterior utilização.

Support vetor machine

"support vetor machine"(SVM)é um procedimento construtivo universal
de aprendizagem baseado em "statistical learning theory". O termo universal
significa que o SVM pode ser utilizado para o aprendizado de várias repre-
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sentações como as redes neurais, as funções de base radial, "splines"e funções
polinomiais. Atualmente é uma técnica usada com muitas vantagens sobre out-
ros métodos de aprendizado de maquinas e com pesquisas em SVM baseados
no algoritmo Simultaneous Localization and Mapping (SLAM)que permite a
um robô autônomo móbil navegar num ambiente dinâmico ou estático (Jia07).
Fazendo uma comparação com redes neurônais, o SVM tem funções kernel que
mapeiam um espaço dimensional muito grande, o espaço de busca só tem um
único mínimo local, o treinamento e a classificação é extremosamente eficiente
fornecendo a precisão e a robustez.

Módulo de controle por algoritmos genéticos

Algoritmos genéticos (AGs) são algoritmos de procura baseados em
mecanismos de seleção natural e genética natural (Ash06). Ao contrário das
redes neurais, nas quais a busca de soluções pode ser obtida através do uso de
funções matemáticas de minimização de erros (Les04), os algoritmos genéticos
combinam a capacidade de sobrevivência de estruturas entre suas cadeias, onde
as melhores estruturas são trocadas randomicamente, gerando novas estruturas
e gerando um algoritmo de busca inovador. Os AGs eficientemente exploram
informações históricas para especular e gerar novos ponto de busca com a
expectativa de aumento do desempenho dos sistemas.

Módulos de controle por algoritmos genéticos podem ser utilizados in-
dividualmente onde o controlador recebe os dados provenientes dos sensores,
gerando uma população de possíveis ações que serão avaliadas e reproduzi-
das, resultando numa ação final de execução. O algoritmo-base deste tipo de
módulo pode ser considerado como um tipo de tentativa-e-erro [Fuk94], o que
pode levar o sistema a encontrar um mínimo global e no local, como em outros
métodos. Por esta razão, algoritmos genéticos são uma potente ferramenta de
otimização que pode ser utilizados por outros módulos de controle.

Módulo de controle híbrido

Fukada (Fuk94) faz uma comparação entre os diversos tipos de módulos
de controle inteligente ver tabela 2.2 . Como se pode notar, todos os méto-
dos apresentam diferentes características. Com o objetivo de aliarem-se as
vantagens presentes em cada abordagem, está-se voltando para o uso de mó-
dulos de controle híbridos. Como exemplo, podem-se usar redes neurônais e
sistemas fuzzy como pré-processadores de regras heurísticas, transformando
dados numéricos em conjuntos de dados simbólicos a serem manipulados.
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Tabela 2.2: Comparação entre controladores: FO-Forte, ME-Médio, RA-
Razoável e FR-Fraco

1 MM AP TR RC NL OT

Locais Conhecidos FO FR RA FR FR FR
Redes Neurais FR FO FO FR FO ME

Fuzzy ME FR FO RA FO FR
Sistemas especialistas RA FR FR FO RA FR

Onde: MM - Modelamento Matemático, AP - Aprendizado, TR - Tempo
Real, RC - Representação do conhecimento, NL - No Linearidade, OT -
Otimização.

Outra aplicação decorre de sistemas em possuem um elevado número de
parâmetros de entrada, o que torna difícil para um operador humano deter-
minar o completo conjunto de regras de descrição do sistema. Pode-se aplicar
redes neurônais, pois essas no exigem tais procedimentos, uma vez que ape-
nas criam relações entre pares entra/sada (Fuk94). Combinações de sistemas
fuzzy com redes neurônais estão sendo desenvolvidas. Redes fuzzy neurônais
possuem o seu conhecimento estruturado e fornecido por especialistas através
de funções de pertinência, ao mesmo tempo em que essas funções são modifi-
cadas por processos de aprendizado (Koz94). Algoritmos genéticos estão sendo
utilizados para otimizar topologías de redes neurais, propiciando a estas pos-
sibilidades de evoluo (conformar discutido anteriormente). Também a capaci-
dade de manipulação de símbolos apresentada pelos algoritmos genéticos pode
produzir novas regras ou conhecimento para sistemas especialistas.

2.4.3
Técnicas por Visão Computacional

Correspondência de imagens é fundamental em diversos problemas de
visão computacional como reconhecimento de objetos, reconhecimento de ce-
nas, montagem automática de mosaicos, obtenção da estrutura 3D de múltiplas
imagens, correspondência estéreo e perseguição de movimentos. Uma abor-
dagem para se trabalhar com correspondência de imagens é se usar descritores
locais para se representar uma imagem. Descritores são vetores de caracterís-
ticas de uma imagem ou de determinadas regiões de uma imagem e podem
ser usados para se comparar regiões em imagens diferentes. Este vetor de
características é normalmente formado em imagens diferentes. Este vetor de
características é normalmente formado por descritores locais ou globais. De-
scritores locais computados em pontos de interesse provaram ser bem sucedido
em aplicações como correspondência e reconhecimento de imagens (Mik03).
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Descritores são distintos, robustos à oclusão e não requerem segmentação.
Existem diversas técnicas para se descrever regiões locais em uma imagem
(Mik03). O mais simples descritor é um vetor com as intensidades dos pixels
da imagem. A medida de correlação cruzada pode ser então usada para com-
putar a similaridade entre duas regiões. Porém, a alta dimensionalidade de tal
descritor aumenta a complexidade computacional da comparação. Então, esta
técnica é principalmente usada para se encontrar correspondências ponto a
ponto entre duas imagens. A vizinhança de um ponto também pode ser escal-
ada de modo a reduzir sua dimensão. Outro descritor simples é a distribuição
de intensidades de uma região representada por seu histograma.

Trabalhos recentes têm se concentrado em fazer descritores invariáveis
a transformações nas imagens. Mikolajczyk e Schimid (Mik04) propuseram
um detector de pontos de interesse invariável a transformações afins através
da combinação de um detector invariável à escala e da técnica "second
moment of Harris corners" (Har88). Ling e Jacobs (lin05) propuseram um
sistema para a construção de descritores de intensidade locais invariáveis a
deformações em geral. Lowe (Low99) propôs uma maneira rápida e eficiente
de computar características invariáveis a transformações em escala, que medem
a distribuição do gradiente em regiões detectados invariáveis à escala.

Transformação SIFT

SIFT (Scale Invariant Feature Transform) é uma técnica de processa-
mento de imagens que permite a detecção e extração de descritores locais,
favoravelmente invariáveis a mudanças de iluminação, ruído de imagem, ro-
tação, escala e pequenas mudanças de perspectiva. Estes descritores podem
ser utilizados para se fazer a correspondência de diferentes visões de um ob-
jeto ou cena. Descritores obtidos com a técnica SIFT são altamente distintos,
ou seja, um determinado ponto pode ser corretamente encontrado com alta
probabilidade em um banco de dados extenso com descritores para diversas
imagens. Um aspecto importante da técnica SIFT é a geração de um número
grande de descritores que conseguem cobrir densamente uma imagem quanto
a escalas e localizações. A quantidade de descritores é particularmente im-
portante para o reconhecimento de objeto, onde a capacidade de se encontrar
pequenos objetos em ambientes desordenados requer ao menos 3 pontos encon-
trados em comum para uma identificação confiável. A obtenção de descritores
SIFT é feita através das seguintes etapas:

– Detecção de extremos: Nesta primeira etapa é feita procura para todas
escalas e localizações de uma imagem. Isto é feito utilizando-se a difer-
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ença de filtros gaussianos de modo a se identificar pontos de interesse
invariáveis à escala e rotação.

– Localização de pontos chave: Para cada localização em que foi detectado
um extremo, um modelo detalhado é ajustado de modo a se determinar
localização e escala. Pontos chaves, ou pontos de interesse, são então
selecionados baseando-se em medidas de estabilidade.

– Definição de orientação: É definida a orientação de cada ponto chave
através dos gradientes locais da imagem. Toda operação a partir de então
será feita com relação a dados da imagem transformados em relação à
orientação, escala e localização de cada ponto chave. Desta maneira se
obtém invariância a estas transformações

– Descritor dos pontos chaves: Nesta etapa é feita a construção dos
descritores ao se medir Gradientes locais em uma região vizinha a cada
ponto de interesse. Estas medidas são então transformadas para uma
representação que permite níveis significativos de distorção e mudança
na iluminação.

Em tarefas de comparação de imagens e reconhecimento, descritores
SIFT são extraídos das imagens para então poderem ser comparados.

Transformada Hough

A transformada hough (?) é uma técnica de extração de características
chaves numa imagem, sim embargo pode ser extensiva para a identificação
de posições de formas diversas. A transformada hough pode ser entendida de
modo genérico como uma tabela de parâmetros que descrevem um modelo, a
tabela seria preenchida para cada dado de um conjunto de dados apresentados,
encontrando todos os modelos possíveis que coincidissem com cada ponto e
atualizando a tabela, aumentando às células referentes aos possíveis parâmetros
dos modelos encontrados.

A idéia básica da transformada hough se ilustra na Figura 2.9, onde uma
linha é um conjunto de pontos (u, v) tal que 2-30:

u× cos θ + v × sin θ = d (2-30)

Para algum ponto (u, v), existe uma família de parâmetros de linhas
através deste ponto, dado pela equação 2-30. Cada ponto obtém um voto por
cada linha na família; se há uma linha que tem muitos votos, então isso deveria
ser a linha que passa através dos pontos. Com esta técnica é possível encontrar
nas imagens objetos como linhas, círculos o elipses.
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Figura 2.9: Idéia básica da Transformada Hough

Transformada RANSAC

O algoritmo RANSAC (Random Sample Consensus Algorithm), é ap-
resentado em (Fis81)(Lac00), como um método para estimar os parâmetros
de um modelo para um conjunto de dados conhecidos mas com presença de
diversos dados errôneos.

O algoritmo não é aplicado independentemente porque seu eficiência é
limitada quando há um grande número de dados, não conseguindo uma boa
estimação do modelo. Por isso é sugerido que se aplique anteriormente Hough,
o outra técnica conseguindo gerar um conjunto mais robusto que o inicial.

RANSAC é um algoritmo bem simples definido como segue. Dado um
modelo com parâmetros x⃗ se deseja estimar-os. Para tal, é assumido:

– Os parâmetros podem ser estimados a partir de um número N de ítens
num conjunto de dados conhecidos.

– A probabilidade de um dado selecionado aleatoriamente para ser parte
de um bom modelo é dada por pg.

– A probabilidade de que o algoritmo termine sim que se encontre um bom
modelo é dada por pfalla.

O algoritmo é então executado através das seguintes etapas:e

1. N ítens são escolhidos de modo aleatório.

2. A partir dos ítens escolhidos, x⃗ é estimado.

3. Logo encontra-se o número de ítens que encaixam ao modelo para
determinada tolerância especificada. Este número é chamado de K.
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4. Caso K seja grande ou suficiente, para um limite escolhido, o algoritmo
termina com sucesso.

5. O algoritmo é repetido de 1 a 4 um número L de vezes.

6. Caso o Algoritmo não tenha terminado depois de L tentativas, o algo-
ritmo falho.

2.5
Planejamento da Trajetória

O planejamento da trajetória path planning, já seja global ou local,
consiste em encontrar uma rota segura capaz de levar ao veículo desde a posição
atual até a especificada do destino. O conceito de rota segura implica o cálculo
de um caminho ao menos continuo na posição, que seja livre de obstáculos.
Em virtude desta rota, o gerador constituirá as referencias que entregam-se ao
controle de movimento.

Existem vários métodos de planificação, todos eles se fundamentam em
uma primeira fase de construção de algum tipo de grafo sobre o espaço livre,
segundo a informação adquirida do entorno, para posteriormente usar um
algoritmo de busca em grafos que encontre o caminho ótimo segundo à função
de custo, entre eles temos os seguintes:

– Planificação baseada em grafos de visibilidade.

– Planificação baseada em diagramas de Voronoi.

– Planificação baseada em modelado do espaço livre.

– Planificação baseada na descomposição de células.

– Planificação baseada em campos potenciais.

A fundamentação teoria apresentada neste capitulo será utilizada na
proposta de uma metodologia para auto localização e mapeamento de um
robô móvel. no próximo capitulo, o ambiente de desenvolvimento é descrito,
incluindo o robô móvel utilizado e seus sensores e atuadores.
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