

Luis Carlos Castillo Martínez

Otimização dos Circuitos de Refrigerante nos Trocadores de Calor de Sistemas de Refrigeração por Compressão de Vapor

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: José Alberto dos Reis Parise Co-orientadores: Samuel Fortunato Yana Motta Elizabet del Carmen Vera Becerra

Rio de Janeiro, Abril de 2009

Luis Carlos Castillo Martínez

Otimização dos Circuitos de Refrigerante nos Trocadores de Calor de Sistemas de Refrigeração por Compressão de Vapor

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. José Alberto dos Reis Parise Orientador

Pontifícia Universidade Católica do Rio de Janeiro

Prof. José Viriato Coelho Vargas Universidade Federal do Parana

Prof. Carlos Eduardo Reuther de Siqueira

Universidade Católica de Petropolis

Prof. Nisio de Carvalho Lobo Brum

Universidade Federal do Rio de Janeiro

Prof. Marco Aurélio Cavalcanti Pacheco

Pontifícia Universidade Católica do Rio de Janeiro

Prof. Sergio Leal Braga Pontifícia Universidade Católica do Rio de Janeiro

Prof. Frank Chaviano Pruzaesky Pontifícia Universidade Católica do Rio de Janeiro

Jose Eugenio Leal

Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de Abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Luis Carlos Castillo Martínez

Formado como Engenheiro Naval na Universidad Nacional de Ingenieria, Lima, Perú (2002) e como Mestre em Engenharia Mecânica pela PUC-Rio (2004). Envolveu-se na Equipe de Simulação Numérica em Fluidos e Transferência de Calor da UNI (1999), com pesquisa experimental no Laboratório de Refrigeração da PUC-Rio (2003) e em projetos de simulação e otimização de sistemas térmicos utilizando metodologias inteligentes de otimização (PUC-Rio, 2007).

Ficha Catalográfica

Castillo Martínez, Luis Carlos

Otimização dos circuitos de refrigerante nos trocadores de calor de sistemas de refrigeração por compressão de vapor / Luis Carlos Castillo Martínez ; orientador: José Alberto dos Reis Parise ; co-orientadores: Samuel Fortunato Yana Motta, Elizabet del Carmen Vera Becerra. – 2009.

247 f. : il. ; 30 cm

Tese (Doutorado em Engenharia Mecânica)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

Engenharia mecânica – Teses. 2. Otimização. 3.
 Simulação. 4. Sistemas de refrigeração por compressão de vapor. 5. Circuito de refrigerante. 6. Algoritmos Genéticos.
 Trocadores de calor de tipo tubo-aletado. 8.
 Condensadores de microcanais. I. Parise, José Alberto dos Reis. II. Motta, Samuel Fortunato Yana. III. Vera Becerra, Elizabet del Carmen. IV. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. V. Título.

PUC-Rio - Certificação Digital Nº 0510825/CB

A Nosso Senhor, A meus pais, Luis e Natalia, A minha Abi, pelo amor, apoio e confiança.

Agradecimentos

Na verdade muita gente ajudou a completar este trabalho. Em primeiro lugar gostaria de agradecer ao meu orientador, o Prof. José Alberto Parise, pela paciência e pela confiança depositada e, sobretudo, pelos sábios conselhos em diferentes situações que me tocou sortear.

Também gostaria de agradecer à Honeywell International, Inc. USA., de maneira particular a Samuel e Elizabet, por seu apoio e pela oportunidade de nos brindar um caso de estudo prático, de interesse e aplicação direta para a indústria, o qual foi sinônimo de motivação para o desenvolvimento deste trabalho.

Aos meus caros companheiros de estudos do Laboratório de Refrigeração da PUC-Rio, pelas horas compartilhadas, os quais estiveram sempre prontos a me apoiar.

Gostaria de terminar fazendo uma menção especial à bibliotecária Mônica Oliveiros pela simpatia e pela enorme ajuda emprestada ao longo de minha pesquisa.

Agradecimento em particular para o órgão de fomento à pesquisa, CNPq, pelo apoio fornecido, sem o qual este trabalho simplesmente não teria sido possível.

Martínez, Luis Castillo; Parise, José Alberto Reis. **Otimização dos Circuitos de Refrigerante nos Trocadores de Calor de Sistemas de Refrigeração por Compressão de Vapor.** Rio de Janeiro, 2009. 247p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Em sistemas de refrigeração por compressão de vapor, o projeto adequado dos circuitos para o refrigerante nos trocadores de calor pode ter um impacto significativo no seu coeficiente de performance (COP). O projeto otimizado dos circuitos de refrigerante em sistemas de refrigeração com trocadores de calor do tipo tubo-aletado não é trivial, devido à complexidade de sua representação assim como o elevado número de possíveis combinações, mesmo quando metodologias inteligentes de otimização são empregadas. No presente trabalho propõe-se uma nova metodologia para a otimização simultânea (condensador e evaporador) dos circuitos do refrigerante em sistemas de refrigeração com trocadores de calor de tipo tubo-aletado. Esta metodologia, aqui denominada como GAFIS (Genetic algorithms applied in filtered spaces), mostra-se mais eficiente que as metodologias até então descritas na literatura. Foi aplicado o método GAFIS, em conjunto com um simulador completo para o sistema de refrigeração, Genesym, na otimização de unidades comerciais de condicionamento de ar de alto desempenho. Estudaram-se casos onde o sistema atingiu aumentos de até 15,3% no coeficiente de performance. Em outros estudos, obtiveram-se casos onde o custo de produção foi reduzido em 3,85% (do custo total da unidade), mantendo-se um similar desempenho (capacidade e COP). Testes de otimização, considerando-se diferentes diâmetros dos tubos, na construção dos trocadores de calor, e sistemas com distribuição não uniforme de velocidade de ar, também foram realizados com o GAFIS. Igualmente foram estudados condensadores de microcanais, devido ao interesse atual da indústria com estes trocadores de calor. A otimização do circuito para o refrigerante, neste caso, é relativamente simples, devido ao baixo custo computacional das simulações. Entretanto, modelos de simulação adequados para estes tipos de trocadores de calor só recentemente começaram a surgir, e não têm sido explorados de maneira adequada até a presente data. Explorou-se no presente trabalho, a influência, no desempenho térmico do condensador, dos parâmetros que definem o circuito do refrigerante. Para tal efeito, desenvolveu-se um modelo de simulação baseado em análise local, validado com dados experimentais disponíveis, de condensadores de microcanais de uso automotivo com diâmetro hidráulico (lado do refrigerante) de 0,9 e 1,0mm, para refrigerantes R-134a, Fluid-H e R-1234yf. Foram encontradas relações diretas entre os parâmetros geométricos que definem os circuitos de refrigerante no condensador e seu desempenho térmico. Tal fato pode ser utilizado como orientação expedita para o projeto do circuito ótimo do condensador.

Palavras-chave

Otimização, Simulação, Sistemas de refrigeração por compressão de vapor, Circuito de refrigerante, Algoritmos Genéticos, Trocadores de calor de tipo tubo-aletado, Condensadores de microcanais.

Martínez, Luis Castillo; Parise, José Alberto Reis (Advisor). **Optimization the circuiting refrigeration of the heat exchangers in Vapor Compression Refrigeration Systems.** Rio de Janeiro, 2009. 247p. D.Sc. Thesis - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Refrigerant circuiting in condensers and evaporators has a significant effect in the performance of refrigeration systems. The optimized project of the refrigerant circuits in refrigeration systems with plate-fin heat exchangers is not trivial, due to the complexity of their representation as well as the high number of possible combinations, even when methodologies of intelligent optimization are used. The present work proposes a new methodology for the simultaneous optimization of refrigerant circuiting in air-air refrigeration systems with plate-fin heat exchangers. This new methodology, here defined as GAFIS (Genetic algorithms applied in filtered spaces), has proven to be more efficient than traditional methods. The GAFIS method was applied, in conjunction with a full refrigeration system simulator, Genesym, for the optimization of high performance commercial air-conditioning units. Typical cases were studied and a coefficient of performance improvement of up to 15.3% has been observed. In other studies, there were cases where the manufacturer's predicted cost was reduced in 3,85% (of total cost of the unit), while a similar thermal performance (capacity and COP) was maintained. Optimization tests, considering different diameters of tube, for the construction of heat exchangers, as well as systems with non-uniform air velocity distribution, were also performed with the GAFIS method. Microchannel condensers were also studied, given the current interest of industry on this kind of heat exchanger. The optimization of the refrigerant circuiting, in this case, would not be a major problem, due to the low computational cost of its simulation. However, simulation models appropriate for these types of heat exchangers have only been recently in use, and, to date, have not been adequately explored. In the present work, the influence on condenser performance of parameters that define the refrigerant circuiting has been investigated. For this purpose, a simulation model, based on local analysis, was developed. It was validated against experimental data, available from automotive microchannel condenser tests, with hydraulic diameters (refrigerantside) of 0.9 and 1.0mm for refrigerants R-134a, Fluid-H and R-1234yf. A direct relation was found between the geometric parameters that define the condenser refrigerant circuiting and its thermal performance. This fact can be appropriately used as guidance for expeditious design practices of the optimal refrigerant circuit of the condenser.

Keywords

Optimization, Simulation, Vapor-Compression Refrigeration System, Refrigerant circuits, Genetic Algorithms, Finned Tube Heat Exchanger, Microchannels condenser.

Sumário

1. Introdução	26
1.1. Motivação	28
1.1.1. Redução do impacto ambiental	28
1.1.2. Otimização energética em sistemas de refrigeração	29
1.1.3. Falta de um método eficiente de otimização para o circuito do refrigerante	
em trocadores de calor de tipo tubo-aletado	29
1.1.4. Tendência ao uso de trocadores de calor de microcanais	29
1.1.5. Falta de um método de busca do circuito ótimo em um trocador de calor	
de microcanais	30
1.1.6. Potencial de uso com a chegada de novos refrigerantes	30
1.2. Revisão Bibliográfica	30
1.2.1. Simulação de sistemas de refrigeração	30
1.2.2. Simulação de trocadores de calor de tipo tubo-aletado	31
1.2.3. Otimização de trocadores de calor tipo tubo-aletado	31
1.2.4. Trocadores de calor de microcanais	36
1.3. Objetivos e Contribuições	36
1.3.1. Nova metodologia de otimização	36
1.3.2. Otimização simultânea dos dois trocadores de calor de tipo tubo-aletado	37
1.3.3. Simulação e otimização de Condesadores de Microcanais	37
1.4. Estrutura do Trabalho	37
2. Métodos de otimização	40
2.1. Introdução	40
2.1.1. Conceitos gerais	41
2.1.2. Representação matemática de um problema de otimização	42
2.2. Classificação dos Métodos de Otimização	42
2.2.1. Métodos Determinísticos	42
2.2.2. Métodos Probabilísticos	43
2.3. Computação Evolucionária	45
2.3.1. Programação evolutiva	46
2.3.2. Estratégias evolutivas	46
2.3.3. Programação genética	47
2.3.4. Algoritmos genéticos	47

2.4. Comentários sobre os métodos de otimização e o problema de otimização	
de sistemas de refrigeração com TCTA's através dos circuitos	47
2.5. Método dos Algoritmos Genéticos	49
2.5.1. Introdução	49
2.5.2. Conceitos gerais	50
2.5.3. Princípio básico de um Algoritmo Genético	52
2.5.4. Operadores Genéticos	53
2.5.4.1. Operador de Cruzamento	54
2.5.4.2. Operador de Mutação	54
2.5.5. Parâmetros do Método dos Algoritmos Genéticos	55
2.5.5.1. Tamanho da população	55
2.5.5.2. Probabilidade de Cruzamento	55
2.5.5.3. Probabilidade de Mutação	56
 Simulação de Sistemas de Refrigeração por Compressão de Vapor 	57
3.1. Introdução	57
3.2. Revisão bibliográfica	59
3.3. Simulador Genesym	65
3.3.1. Dados de entrada	67
3.3.2. Método de solução	73
3.3.3. Dados de saída	74
4. Metodologia de otimização	76
4.1. Introdução	76
4.2. Descrição do problema	77
4.2.1. Objetivo da otimização	77
4.2.2. Variáveis do problema	78
4.2.3. Restrições	78
4.3. Definição do número ótimo de ramais nos trocadores de calor	79
4.4. Nova metodologia de otimização (GAFIS)	79
4.4.1. Algoritmo (GAFIS)	80
4.4.2. Representação dos circuitos	82
4.4.3. Filtro de restrições e Geração do banco de dados	85
4.4.4. Operadores Genéticos	86
4.5. Ajuste dos parâmetros para o método de AG	87
4.6. Validação do método	90
4.6.1. Comparação com o método de busca aleatória	90
4.6.2. Qualidade das soluções	92

94
95
95
98
103
106
109
109
112
115
117
119
119
123
128
130
134
134
138
142
144
146
146
151
151
152
154
154
155
156
157
157
160
161

6.2.4.4. Modelos para a queda de pressão no lado do ar	164
6.2.5. Metodologia de Solução	165
6.2.6. Dados de entrada e saída do programa	169
6.2.6.1. Dados de entrada	169
6.2.6.2. Dados de saída	170
6.2.7. Teste de discretização	172
6.3. Validação com dados experimentais	173
6.3.1. Plano de Testes realizado	173
6.3.2. Dados experimentais	173
6.3.2.1. Dados experimentais para o CD1 utilizando R134a e Fluid-H	174
6.3.2.2. Dados experimentais para o CD2 utilizando R134a e 1234yf	175
6.3.2.3. Comentários sobre os dados experimentais	177
6.3.3. Comentários das comparações com os dados experimentais	178
6.4. Circuito ótimo num condensador de microcanais	186
6.4.1. Abordagem utilizada	186
6.4.1.1. Representação e restrições de um circuito	186
6.4.1.2. Metodologia utilizada	188
6.4.2. Resultados da busca exaustiva	189
6.4.3. Análise de resultados	192
6.4.4. Circuito ótimo para o CD1 na condição 07LSH45	195
7. Conclusões	199
8. Recomendações e Sugestões	205
Bibliografia	208
Apêndice A - Análise Exergética	229
Apêndice B – Correlações do Genesym	233
Apêndice C – Resumo de características para os testes realizados	239
Apêndice D – Estudos referentes a microcanais	240

Lista de tabelas

Tabela 1. Resumo dos dados de entrada necessários para o processo de	
simulação.	73
Tabela 2. Resumo dos dados de saída providos pelo Simulador Genesym.	74
Tabela 3. Resumo dos testes utilizando diferentes parâmetros de otimização.	90
Tabela 4. Resumo de valores adequados para os parâmetros do GAFIS.	90
Tabela 5. Resumo de testes utilizando os mesmos parâmetros de otimização.	93
Tabela 6. Dados gerais do projeto AC-ICP-3TON-A (Sistema da ICP).	97
Tabela 7. Configurações dos circuitos nos testes C1T1, C1T2 e C1T3.	99
Tabela 8. Resumo de resultados dos testes de otimização na Unidade da ICP.	102
Tabela 9. Análise de irreversibilidades do sistema original e do sistema	
otimizado no teste C1T3.	106
Tabela 10. Dados gerais do projeto b010330k (Sistema da Lennox).	111
Tabela 11. Configurações dos circuitos nos testes C2T1 e C2T2.	112
Tabela 12. Resumo de resultados dos testes de otimização no sistema Lennox.	114
Tabela 13. Custo de material e de fabricação considerados.	115
Tabela 14. Custos de fabricação da unidade original e das unidades otimizadas.	116
Tabela 15. Análise de irreversibilidades, sistema original - sistema otimizado.	117
Tabela 16. Dados gerais do projeto a001208a-case01mod (Sistema da Lennox).	121
Tabela 17. Dados gerais do projeto a001208a-case02mod (Sistema da Lennox).	121
Tabela 18. Dados gerais do projeto a001208a-case03mod (Sistema da Lennox).	122
Tabela 19. Dados gerais do projeto a001208a-case04mod (Sistema Lennox).	122
Tabela 20. Configuração utilizada para os circuitos no teste C3T1 ao C3T4.	124
Tabela 21. Configuração utilizada para os circuitos no teste C3T5 ao C3T8.	124
Tabela 22. Resumo de resultados dos testes de otimização do sistema Lennox	
para R22.	127
Tabela 23. Resumo de resultados dos testes de otimização do sistema Lennox	
para R410A.	127
Tabela 24. Análise de irreversibilidades, sistema original - sistema otimizado.	130
Tabela 25. Análise de irreversibilidades, sistema original - sistema otimizado.	132
Tabela 26. Dados gerais do projeto R22-9580base (Sistema da Haier).	137
Tabela 27. Configurações dos circuitos nos testes C4T1 e C4T2.	138
Tabela 28. Resumo de resultados dos testes de otimização do sistema Haier.	141
Tabela 29. Análise de irreversibilidades, sistema original - sistema otimizado.	144
Tabela 30. Expressões relativas à transferência de calor.	154
Tabela 31. Correlações para o cómputo da efetividade da superfície aletada.	156

Tabela 32. Componentes para a queda de pressão.	156
Tabela 33. Número de Nusselt para fluxo monofásico no lado do refrigerante.	157
Tabela 34. Correlações para o número de Nusselt na zona bifásica no lado do	
refrigerante.	159
Tabela 35. Modelo para o fator de Coulburn no lado do ar.	160
Tabela 36. Correlações para o fator de atrito em escoamento monofásico.	161
Tabela 37. Modelos para a queda de pressão bifásica no lado do refrigerante.	163
Tabela 38. Modelo para o cálculo do coeficiente de atrito no lado do ar.	164
Tabela 39. Condições de entrada para um elemento genérico de controle.	167
Tabela 40. Dados de entrada considerados necessários para a simulação do	
condensador de microcanais.	170
Tabela 41. Combinações de modelos teóricos para a transferência de calor e	
queda de pressão que foram utilizadas nas simulações.	173
Tabela 42. Dados experimentais para o CD1, utilizando R134a.	175
Tabela 43. Dados experimentais para o CD2, utilizando R134a.	176
Tabela 44. Detalhe da instrumentação utilizada e sua precisão.	177
Tabela 45. Estatísticas de erro de comparação dos modelos teóricos, para o	
CD1 utilizando R134a.	182
Tabela 46. Estatísticas de erro de comparação dos modelos teóricos, para o	
CD1 utilizando Fluid-H.	183
Tabela 47. Estatísticas de erro de comparação dos modelos teóricos, para o	
CD2 utilizando R134a.	184
Tabela 48. Estatísticas de erro de comparação dos modelos teóricos, para o	
CD2 utilizando 1234yf.	185
Tabela 49. Resultados da simulação numérica, para diversos arranjos de	
circuitos no CD1 com R134a, para a condição 07LSH45.	198

Lista de figuras

Figura 1. Principais algoritmos da Computação Evolucionária (Adaptado de	
Holtz, 2005).	46
Figura 2. Ramos da Inteligência Artificial (Holtz, 2005).	49
Figura 3. Diagrama de Fluxo básico de um Algoritmo Genético.	52
Figura 4. Princípio básico de um algoritmo genético (Pacheco, 2006).	53
Figura 5. Exemplo de aplicação de um operador de cruzamento.	54
Figura 6. Exemplo de aplicação de um operador de mutação.	55
Figura 7. Ciclo de refrigeração por compressão de vapor no diagrama P-h.	58
Figura 8. Interface gráfica do Simulador Genesym v1.0.	68
Figura 9. Dados geométricos necessários para definir um trocador de calor.	68
Figura 10. Geometria do Trocador de Calor no Genesym.	69
Figura 11. Seleção das junções entre os tubos para definir o circuito e definição	
do perfil de velocidade para o ar (no caso, uniforme).	70
Figura 12. Dados necessários para definir o compressor.	71
Figura 13. Detalhes para definir a conexão da linha de sucção.	71
Figura 14. Condições de operação e modo de avaliação do ciclo.	72
Figura 15. Exemplo de resultados tubo-a-tubo com queda de pressão no lado	
do refrigerante.	75
Figura 16. Diagrama de fluxo do processo de otimização – GAFIS.	82
Figura 17. Sistema de condicionamento de ar com trocadores de calor de tipo	
tubo-aletado.	83
Figura 18. Representação dos circuitos.	84
Figura 19. Filtragem de soluções para gerar os bancos de dados.	85
Figura 20. Efeito dos operadores genéticos.	87
Figura 21.a Evolução do COP médio para a população de soluções.	89
Figura 21.b Evolução da dispersão do COP para a população de soluções.	89
Figura 22. Maximo COP obtido com GAFIS versus o método de busca aleatória.	91
Figura 23. Convergência de soluções pelo GAFIS.	92
Figura 24. Evaporador do Sistema Mini-Split de 3 TR da ICP.	96
Figura 25. Unidade Condensadora do Sistema Mini-Split de 3 TR da ICP.	96
Figura 26. Circuitos originais do refrigerante no sistema da ICP.	96
Figura 27. Teste C1T1 – Circuitos otimizados considerando a configuração base.	. 99
Figura 28. Teste C1T2 - Circuitos otimizados para a Unidade da ICP.	100
Figura 29. Teste C1T3 - Circuitos otimizados para a Unidade da ICP.	101
Figura 30. Teste C1T4 - Circuitos otimizados para a Unidade da ICP.	101

Figura 31. Test C1T2 - Evolução dos principais parâmetros de funcionamento	
do ciclo de refrigeração durante a otimização.	105
Figura 32. (a) Irreversibilidades no sistema, (b) Variação no ciclo derefrigeração.	108
Figura 33. Unidade evaporadora para o sistema comercial da Lennox – modelo	
HSX19.	110
Figura 34. Unidade condensadora para o sistema comercial da Lennox - modelo)
HSX19.	110
Figura 35. Circuitos originais do sistema Lennox.	110
Figura 36. Teste C2T1 – Circuitos otimizados considerando a configuração base	113
Figura 37. Teste C2T2 - Circuitos otimizados do caso Lennox.	114
Figura 38. (a) Irreversibilidades no sistema, (b) Variação no ciclo de refrigeração	118
Figura 39. Circuitos originais do sistema Lennox (projeto a001208a-mod).	119
Figura 40. Teste C3T1 - Circuitos otimizados (a001208a-mod com R22).	125
Figura 41. Teste C3T2 - Circuitos otimizados (a001208a-mod com R22).	125
Figura 42. Teste C3T3 - Circuitos otimizados (a001208a-mod com R22).	125
Figura 43. Teste C3T4 - Circuitos otimizados (a001208a-mod com R22).	125
Figura 44. Teste C3T5 - Circuitos otimizados (a001208a-mod com R410A).	126
Figura 45. Teste C3T6 - Circuitos otimizados (a001208a-mod com R410A).	126
Figura 46. Teste C3T7 - Circuitos otimizados (a001208a-mod com R410A).	126
Figura 47. Teste C3T8 - Circuitos otimizados (a001208a-mod com R410A).	126
Figura 48. Teste C3T1 - Evolução dos principais parâmetros de funcionamento	
do ciclo de refrigeração durante a otimização.	129
Figura 49. (a) Irreversibilidades no sistema, (b) Variação no ciclo de refrigeração	131
Figura 50. (a) Irreversibilidades no sistema, (b) Variação no ciclo de refrigeração	133
Figura 51. Esquema da Bomba de Calor da Haier.	135
Figura 52. Esquema típico de um sistema de condicionamento de ar tipo "split".	135
Figura 53. Fotografias do (a) Evaporador e (b) Condensador do sistema Haier	
de 0,9 TR.	135
Figura 54. Circuitos originais do sistema Haier (projeto R22-9580base).	136
Figura 55. Perfil de velocidade adimensional no trocador de calor interno	
(evaporador).	136
Figura 56. Perfil de velocidade adimensional no trocador de calor externo	
(condensador).	136
Figura 57. Teste C4T1 - Circuitos otimizados deixando tubos sem utilizar.	139
Figura 58. Teste C4T2 - Circuitos otimizados utilizando todos os tubos.	140
Figura 59. Teste C4T3 – Teste com condensador desbalanceado.	140
Figura 60. Teste C4T3 – Teste com ramal de subresfriamento no condensador.	140
Figura 61. Teste C4T3 – Teste deixando tubos sem utilizar no condensador.	141

Figura 62. C4T2 - Evolução dos principais parâmetros de funcionamento do	
ciclo de refrigeração durante a otimização.	143
Figura 63. (a) Irreversibilidades no sistema, (b) Variação no ciclo de refrigeração	145
Figura 64. Condensador de microcanais de uso automotivo.	151
Figura 65. Detalhe das aletas com persianas num condensador de microcanais	152
Figura 66. Elemento básico de análise.	152
Figura 67. Dimensões geométricas envolvidas na definição das áreas de	
transferência de calor num elemento básico de controle.	155
Figura 68. Geometria das aletas com persianas (adaptado de Chang et al. 2006)) 165
Figura 69. Sistema de coordenadas considerado para a Matriz de elementos de	
controle.	166
Figura 70. Definição do circuito e acompanhamento do fluxo do refrigerante.	166
Figura 71. Algoritmo para a solução do condensador.	169
Figura 72. Variação de parâmetros ao longo do condensador (07LSH35).	171
Figura 73. Variação do título e campo de temperatura para o ar (Test.07LSH35).	171
Figura 74. Análise de sensibilidade na solução do sistema (Test.07 LSH35).	172
Figura 75. Geometria do Condensador CD1.	174
Figura 76. Geometria do Condensador CD2.	175
Figura 77. Esquemas da câmara controlada de climatização e da bancada	
experimental.	177
Figura 78. Comparação entre valores previstos pelas simulações e os dados	
experimentais, para o CD1 utilizando R134a.	182
Figura 79. Comparação entre valores previstos pelas simulações e os dados	
experimentais, para o CD1 utilizando Fluid-H.	183
Figura 80. Comparação entre valores previstos pelas simulações e os dados	
experimentais, para o CD2 utilizando R134a.	184
Figura 81. Comparação entre valores previstos pelas simulações e os	
dadosexperimentais, para o CD2 utilizando 1234yf.	185
Figura 82. Múltiplas possibilidades de arranjo para o circuito, considerando	
n passes.	187
Figura 83. Algoritmo para a exploração das possibilidades de desenho do	
circuito.	188
Figura 84. Variação da Taxa de Transferência de Calor e da Queda de Pressão	
em função do número de passes.	191
Figura 85. Variação da Taxa de Transferência de Calor e da Queda de Pressão	
dentro de um grupo com igual número de passes.	193

Figura 86. Variação da Taxa de Transferência de Calor e da Queda de Pressão	
dentro de um subgrupo com igual número de passes e de flats nos quatro	
primeiros passes.	194
Figura 87. Taxa de transferência de calor e queda de pressão encontradas nas	
simulações em torno do valor capacidade-queda de pressão do circuito original.	196
Figura 88. Ampliação da fig.87 – com respeito à taxa de transferência de calor	
e à queda de pressão nas simulações em torno do valor capacidade-queda de	
pressão original.	196

Lista de símbolos

A	Área, [m²].
С	Constante, [-].
С	Capacidade calorífica do fluido, [kJ / K].
Cr	Razão entre capacidades caloríficas, [-].
carga	Carga, relativo ao refrigerante, [kg].
CA	Parâmetro na equação de Chisholm.
CF_1, CF_2	Parâmetros na equação de Friedel, [-].
CM_1, CM_2	Parâmetros na equação de Muller e Heck, [-].
COP	Coeficiente de performance, [-].
cruz	Cruzamento, [-].
Ср	Calor específico, [kJ / kg.K].
D	Diâmetro, [m].
Dm	Diâmetro menor, [m].
disp	Dispersão, [-]
е	Espessura [m], Rugosidade, [-].
err	Erro
Ex	Exergia, [kW].
f	Fator de atrito de Darcy, Função objetivo [-].
$f_{\scriptscriptstyle F}$	Fator de atrito de Fanning, [-].
F	Parâmetro na equação de Traviss, [-].
Fr	Número de Froude, [-].
g	Função de restrição; Gravidade, [m / s²].
G	Fluxo volumétrico, [m ³ / s].
Ga	Número de Galileo, $Ga = g L^3 / v^2$, [-].
h	Entalpia específica, [kJ / kg].
h^*	Coeficiente convectivo de transferência de calor, [W / m ² .K].
Н	Altura, [m].
HE	Altura de um elemento, [m].
HC	Altura de um microcanal, [m].
j	Fator de Colburn, [-].

k	Condutividade térmica, [kW / m.K].
K_c, K_e	Coeficientes de expansão e contração abrupta, [-].
L	Comprimento, [m].
LE	Comprimento de um elemento, [m].
• m	Vazão mássica, [kg / s].
М	Massa molar, [kg / mol].
MAPE	Erro médio percentual absoluto, [%].
MPE	Erro médio percentual, [%].
mut	Mutação, [-].
<i>m</i> _{alt}	Parâmetro para o cálculo da efetividade da aleta, [-].
n	Expoente de Blasius, [-]; Indicador de numeral, [-].
Nc	Número de microcanais por elemento, [-].
NTU	Número de unidades de transferência de calor, [-].
Nu	Número de Nusselt, $Nu = h^*D/k$, [-].
Pr	Número de Prandtl, $\Pr=\mu \ Cp/k$, [-].
Р	Perímetro, [m].
р	Pressão, [kPa].
Ps	Passo, [m].
$\dot{\varrho}$	Taxa de transferência de calor, [kW].
R	Fator de correlação, [%].
Re	Número de Reynolds, $\text{Re} = \rho.v.D / \mu$, [-].
RMSPE	Erro quadrático médio percentual, [%].
S	Entropia específica, [kJ / kg.K].
Т	Temperatura, [K].
t	Espessura, [m]; Tempo, [s].
U	Coeficiente global de transferência de calor, [kW / m ² .K].
UA	Condutância total, [kW / K].
V	Volume, [m ³].
W	Fator de ponderação na equação de Chang, [-].
W	Trabalho, [kW]; Largura [m].
We	Número de Webber, [-].
WE	Largura externa do Elemento, [m].
WI	Largura interna do Elemento, [m].

- *WB* Largura do Webb, [m].
- *x* Variável de projeto, Titulo, [].
- χ_{tt} Parâmetro de Martinelli, [].
- *Y* Parâmetro na equação de Chisholm, [].

Símbolos gregos

α	Razão de aspecto, [-].
β	Ângulo de inclinação, [-].
σ	Tensão superficial, [N / m].
Е	Efetividade, [-]; Fração de vazio, [-].
η	Eficiência, [-].
ψ	Eficiência exergética, [-].
• I	Irreversivibilidade, [kW].
δ	Razão de irreversibilidade respeito à irreversibilidade do sistema, [-]
Δ	Variação; queda, [-].
ρ	Massa específica, [kg / m³].
μ	Viscosidade, [Pa.s].
υ	Viscosidade cinemática, [m² / s].
θ	Ângulo, [grados].
ϕ	Umidade relativa, [-].
Φ^2	Fator multiplicador bifásico, [-].

Subscritos

air	Ar
alt	Aleta
асит	Acumulativo
anul	Anular
С	Canal
cd	Condensador
cond	Condensação
сотр	Compressor
des	Descarga
eq	Equivalente
ev	Evaporador
evap	Evaporação
exp	Experimental
fric	Atrito
fz	Forcado
J2 Go	Somente dás
h	Homogâneo, Hidráulico
n in	Entrada
1	
ı Lo	Somente líquido
m	Médio (a)
min	Mínimo
max	Máximo, [-].
med	Média. [-].
тот	Momentum
orig	Original
out	Saída
per	Persiana
pred	Previsto
r	Reduzida
ref	Refrigerante
,	. tonigoranto

sat	Saturado
stat	Estática
SUC	Sucção
ST	Superfície de transferência de Calor
tot	Total
tub	Tubo ou flat
v	Vapor
Vo	Somente vapor
W	Molhado
wall	Parede
wavy	Ondulado
web	Web
ST	Seção transversal.
TI	Relativo à àrea de Transferência de calor indireta.
TT	Relativo à àrea de Transferência de calor total.

PUC-Rio - Certificação Digital Nº 0510825/CB

Es común afirmar que Newton habría dicho que si él alcanzaba a ver más lejos que sus contemporáneos no era porque tuviese méritos especiales, no hacía más que apoyarse en el trabajo de otros, como un enano que se alza en hombros de un gigante.

Exactamente eso es lo que nos brinda los estudios, un punto diferente de partida para abrir nuevos horizontes.