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Abstract

Senhora, Fernando Vasconcelos ; Menezes, Ivan Fábio Mota (Ad-
visor); Paulino, Glaucio H. (Co-Advisor). Topology Optimiza-
tion with Stress Constraints: an Aggregation-Free Appro-
ach . Rio de Janeiro, 2017. 104p. Dissertação de Mestrado —
Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Structural design methodologies were strongly influenced by the advent

of computing. The advances in numerical analyses, such as the finite element

method, and Computer Aided Design software have literally helped shape

the engineering world as it is today. Structural optimization methods such

as topology optimization aim to take the next step by letting the computer

guide the design, in order to achieve new and more efficient designs. This

approach has the potential to change the future of various industries,

including aircraft, automobile, construction, etc. The introduction of stress

constraints on traditional topology optimization allows for safer and more

reliable solutions that will more closely resemble the final structure. The

successful solution of this problem poses several conceptual and numerical

difficulties. Thus this dissertation details the main issues of this problem and

reviews the current techniques discussed in the literature including some

critiques of their performance. The main contribution of this work is a novel

technique based on the Augmented Lagrangian method that can efficiently

handle a large number of constraints. In contrast to existing methods which

are both problem- and mesh-dependent, the presented approach contains

only a few parameters which need to be adjusted for each new case. In order

to verify the technique’s capabilities, a user friendly MATLAB code was

developed that is both effective and robust. Several representative examples,

including large-scale problems, are presented. Finally, the solutions obtained

here, including some unexpected complications, are thoroughly discussed

and suggestions for future work are also addressed.

Keywords
Topology Optimization; Stress Constraint; Augmented Lagrangian; Sin-

gular Optima.
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Resumo

Senhora, Fernando Vasconcelos ; Menezes, Ivan Fábio Mota; Pau-
lino, Glaucio H.. Otimização Topológica com Restrições de
Tensão: Uma Abordagem Livre de Agregação . Rio de Ja-
neiro, 2017. 104p. Dissertação de Mestrado — Departamento de
Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

As metodologias de projeto estrutural foram fortemente influenciadas

pelo advento da computação. Os avanços nas áreas de análise numérica,

como o método dos elementos finitos, e os softwares de Desenho Assis-

tido por Computador, literalmente ajudaram a moldar o mundo como ele

é hoje. Implementações computacionais das técnicas de otimização estrutu-

ral, como a otimização topológica, permitem a determinação das estruturas

base, gerando uma grande quantidade de projetos novos, mais eficientes,

com o potencial de mudar drasticamente o futuro das aeronaves, automó-

veis, edif́ıcios, etc. Introduzir restrições de tensão na otimização topológica

tradicional permite a obtenção de soluções mais seguras e confiáveis que se

assemelhem mais à estrutura final. Contudo, isto não é uma tarefa trivial,

apresentando várias dificuldades conceituais e numéricas. Nesta dissertação,

as principais questões deste problema são discutidas e as técnicas presentes

hoje na literatura são revisadas e criticadas quanto aos seus desempenhos.

A principal contribuição deste trabalho é uma nova técnica baseada no Mé-

todo do Lagrangiano Aumentado que lida eficientemente com um grande

número de restrições. Em contraste com os métodos existentes, que são de-

pendentes do problema e da malha, a abordagem proposta apresenta poucos

parâmetros que precisam ser ajustados a cada novo caso. Para avaliar suas

potencialidades, desenvolveu-se um código em MATLAB, eficaz e robusto.

Diversos exemplos representativos, incluindo problemas de larga escala, são

apresentados. Finalmente, as soluções obtidas, incluindo algumas complica-

ções inesperadas, são discutidas detalhadamente e sugestões para trabalhos

futuros são propostas.

Palavras–chave
Otimização Topológica; Restrição de Tensão; Lagrangiana Aumentada;

Ótimo Singular.
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Problems worthy of attack prove their worth
by fighting back.

Piet Hein, Grooks 1.
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1
Introduction

The majority of problems in engineering focus on the optimization of

some aspect of a project. Be it minimizing the cost, or maximizing the

performance, it all comes down to making the best use of the resources

available. This point of view may not be the most practical way to find the

solution but it can give some perspective on the importance of this kind of

work.

Structural optimization is the field of study that seeks the optimal

distribution of material based on some measure of performance.

For most of human history, structural design relied mostly on intuition

and trial and error. It was only in the XIX century that the foundations for

structure optimization were settled. Unfortunately, the difficulties in producing

complex geometries limited the utility of such a field since the results are not

always cost-effective for the industry. However, recent advances in manufac-

turing, in general, and in additive manufacturing, in particular, can overcome

this barrier, clearing the way for new and more efficient designs.

This area of research has been particularly popular in the aerospace in-

dustry since reducing the weight of an aircraft can significantly decrease its

fuel consumption. By simply changing material distribution, structural opti-

mization allows for the design of lighter configurations without compromising

its safety. This not only provides an economic advantage, but also follows the

trend of environmental awareness, since it reduces the CO2 emissions per pas-

senger.

Topology optimization is a technique used by structural optimization

and involves the determination of the number, location and shape of holes

in the final design. The main objective of topology optimization is to find

the best material distribution for a physical system. In other words, it is the

technique of removing material while minimizing the detriment to a structure’s

performance. Quoting the engineer and architect Robert Le Ricolais:

“The art of structure is where to put the holes.”
Robert Le Ricolais, (1894 – 1977)
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Chapter 1. Introduction 16

1.1
Motivation and Objective

The most important aspects of structure design are safety and reliability.

There are a lot of ways a structure can fail: instability, corrosion, fatigue,

temperature, etc. The main focus in mechanical sciences is the catastrophic

failure that happens when the structure is not strong enough to support the

load which it is subjected to. Quite a few failure criteria were developed

throughout the years in order to predict when this might occur, and the

majority of them based on stress and stress invariants.

The von Mises yield criterion states that plastic deformation begins

when the second deviatoric stress invariant is greater than a certain material

limit. Eventually, this can cause the structure to fracture or deform beyond

the acceptable range. Therefore, it is natural to want to incorporate this safety

requirement into the design process.

Computer aided design using topology optimization has a typical work-

flow displayed in Fig. 1.1. First, the structural domain is defined as well

as the boundary conditions. This is the entry information for the topology

optimization. The optimized solution then needs to be interpreted, generally

an iso-surface is extracted over a cutoff density. This can be followed by a

shape optimization to reduce eventual anomalies and high stresses. Finally,

the most important part is the engineer’s input and analysis that will lead to

an actual feasible result.

Problem
Domain Interpretation

Shape 
Optimization

Human 
Modeling

Topology
Optimization

Figure 1.1: Typical topology optimization based computer aided design work-
flow.

Traditional topology optimization that focuses on minimizing the com-

pliance can lead to solutions with stress concentrations that will fail under

regular conditions of load. Consequently, the structure needs to be adapted,

DBD
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Chapter 1. Introduction 17

which might demand far more work. The final design will be very different

from the initial optimized concept and the outcome can be suboptimal.

The objective of this research is to incorporate stress constraints in the

optimization process to ensure that the solutions will be close to a feasible

structure, while also minimizing the adjustments that are needed to achieve a

viable final design.

1.2
Literature Review

Topology optimization with stress constraints is a challenging problem

with several numerical complications. Among the many difficulties two stand

out as the most troublesome and are the subject of most papers in the field:

the local property of the stress and the singular optima.

The locality implies that a large number of stress evaluation points is

necessary in order to ensure the integrity of the structure. This induces an

equally large number of constraints, which demands a high computational cost,

often making the problem impracticable (Duysinx & Bendsøe, 1998).

In order to treat these issues, some authors have resorted to a global

measure of stress that is handled as the only constraint of the problem Yang

& Chen (1996). Theoretically, this should be equivalent to constraining the

maximum stress of the structure. Nonetheless the maximum function is not

differentiable, and so it cannot satisfactorily be used with gradient-based

optimization algorithms. A smooth approximation is then performed with the

hope that it will mimic the maximum with enough precision to achieve the

correct result. These are called aggregation techniques. Duysinx & Sigmund

(1998), Holmberg et al. (2013b) and Kiyono et al. (2016) use the p-norm

function, Yang & Chen (1996) uses the Kreisselmeier-Steinhauser function and

obtain similar results. Le et al. (2009) proposes a correction for the p-norm

that increases its consistency, but has a detrimental effect on the convergence

of the optimization. In addition, aggregating the stress masks its local property

which leads to suboptimal results. Le et al. (2009) and Paŕıs et al. (2010) try

to mitigate this problem by using regional clusters over which the aggregation

is performed. However, this raises the question of how many clusters to use

and how to define the distinct regions, which are not only problem-dependent

but also mesh-dependent.

In contrast to aggregation, the Augmented Lagrangian method has also

been adopted to deal with the large number of constraints. In this approach,

the constraints are replaced by a penalization to the objective function that

is adapted throughout the optimization process to achieve a feasible final
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Chapter 1. Introduction 18

solution. Despite allowing a better interpretation of the constraints’ locality,

it requires progressive updates on the optimization parameters, which can

be time-consuming. Pereira et al. (2004) and Emmendoerfer Jr. & Fancello

(2014) use this technique and obtain fairly interesting results but does scarce

comments on its efficiency.

Another less-explored option is the active-set method that only considers

the constraints which are close to being violated. This raises a lot of concerns.

It may not be viable for a large mesh, and by the end of the optimization, a

large number of constraints might be active. The scalability of this approach

is questionable. Guo et al. (2011), Duysinx & Bendsøe (1998) use this to solve

small examples. Bruggi & Duysinx (2012) also uses an active-set method but

introduces a compliance constraint and does a study on its effects. Later,

Holmberg et al. (2013a) combined this idea with aggregation techniques and

was able to improve its performance.

The other issue commonly denominated as singular optima was first

reported by Sved & Ginos (1968) and later developed in Kirsch (1989, 1990).

Rozvany (2001) does a very thorough historical review on the subject. Simply

put, the optimum point is at a degenerated, disconnected region of the solution

space and cannot be reached through traditional optimization methods. This

happens because stress is a vanishing constraint, which basically means that

the constraint is irrelevant when the optimization variable goes to zero. This

kind of optimization problem is thoroughly discussed in Hoheisel (2009). A

more detailed explanation can be seen in Section 3.5 of this work. In the

author’s opinion, this is the main challenge of this problem.

The most popular approach for dealing with this, has been to modify the

constraints in order to include the degenerated optima of the solution space

into the feasible region in a way that they can be easily achieved. Among

the most popular modified constraints are the ε relaxation (Cheng & Guo,

1997) and the q-p relaxation (Bruggi, 2008), from which several variations have

been developed with similar concepts. However, one has to be careful when

altering the constraints so as not to lose consistency with the physical reality.

Otherwise, the solution found might not closely comply with the integrity

requirements.

The damage approach proposed by Verbart et al. (2016a) naturally

handles the locality and singular optima problems in an elegant manner. This

formulation is based on the supposition that the material over the stress limit

is damaged and thus, will contribute less to the overall stiffness. Further details

are given in Subsection C. Although fairly efficient, it lacks consistency and

the stress limit might not be strictly satisfied.
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Most of the methods discussed so far have at least some numerical

parameters that need to be predefined. These tend to be problem-dependent,

or worse, mesh-dependent. Therefore, each new problem requires a step of

empirical adjustment. The approaches used to handle the locality and singular

optima greatly interfere with each other, increasing the difficulty of these issues

even more. Verbart et al. (2016b) tries to unify aggregation and relaxation, and

in doing so, reduces the number of numerical parameters needed.

In a different approach, Amstutz & Novotny (2010) obtains the topo-

logical derivative for plane stress linear elasticity which enable the authors

to compose a shape functional that directs the optimization without using a

conventional density base formulation.

All things considered, topology optimization with stress constraints is

still an open problem. An efficient and robust solution that is appropriately

scalable is not found in literature .

1.3
Outline

The remainder of this dissertation is organized as follows: Chapter 2

gives a brief overview on the topology optimization method. Chapter 3 is

completely dedicated to stress constraints. It presents some of the issues of

this specific problem as well as a few of the methods found in the literature to

solve them. Chapter 4 is the main contribution of this work. It proposes a new,

efficient method for solving the problem based on the Augmented Lagrangian

formulation. In Chapter 5 several numerical examples demonstrating the

robustness of this approach are shown. In addition, important considerations

are made on the practical issues of stress constraints. Finally, Chapter 6 draws

some conclusions and makes suggestion for future research.

DBD
PUC-Rio - Certificação Digital Nº 1512532/CA



2
Formulation

This chapter presents a brief overview of the many aspects of the topology

optimization method.

The first step in defining a specific problem is to determine the domain

(Ω) of the design. Figure 2.1 shows a representation of a general domain, where

the area marked as ω defines the material region.

Figure 2.1: Design domain and boundary conditions. [Image from (Talischi
et al., 2012b)]

The general topology optimization problem is posed in Eq. (2.1), where

f(ω) is the objective function, which is generally a measure of performance of

the underlying structure. The functions hi(ω) and gi(ω) are the equality and

inequality constraints, respectively, which can impose a physical, manufactur-

ing, or other requirement that might be relevant. The design variable ω defines

the material region inside the domain Ω. The resulting material distribution

will depend on the requirements.

minimize
ω∈Ω

f(ω)

subject to hi(ω) = 0

gi(ω) 6 0

(2.1)
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The physics of the system is imposed as a set of equilibrium equations.

Topology optimization has been used in a variety of problems, from fluid flow,

to acoustic. Because this research focuses on structural integrity, the static

linear elasticity model is applied.

Until this point the problem is seen as continuous and the structure’s

shape can vary freely inside the domain. Unfortunately, this formulation is not

solvable with current methods and so it is necessary to discretize the domain

for both the topology optimization and the equilibrium equations. While most

work uses the same mesh to map the optimized structure and to find the

physical response, this is not essential. In fact, Nguyen et al. (2010) explains the

advantages of using separate discretizations for the analysis and the material

distribution.

It is worth noting that any method of solving the equilibrium equations

is valid. The finite element method (FEM) was used, as it is consolidated for

the analysis of solid structures subjected to linear elasticity, which is the focus

of this work.

2.1
Quick Revision of Finite Elements

The Finite Elements Method (FEM) is a numerical approach for solving

differential equations in an arbitrary given domain. In this case, the equations

come from the static linear elastic modeling of solid materials. This model is

derived from three main principles:

Newton’s second law (Equilibrium of Forces):

∇σ + f = 0 (2.2)

Strain-Displacement relation:

ε =
1

2

[
∇u + (∇u)T

]
(2.3)

Constitutive equation (Hooke’s Law):

σ = C : ε (2.4)

where σ is the Cauchy stress tensor, ε is the strain tensor, f are forces, u is

the displacement vector and C is the constitutive stiffness tensor.
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The principle of virtual displacement states that if a body is in equi-

librium, for any small virtual perturbation of the displacements, the internal

virtual work is equal to the external virtual work, i.e.:

∫
Ω

ε : σdΩ−
∫

Γ

uT · fdΓ−R = 0 (2.5)

here u is the virtual displacement, and ε is the strain caused by it. R comprises

the body forces that, in this particular case, are zero. Thus it will not appear

in the subsequent derivations.

Now approximate u by a sum of piecewise linear functions. These

functions are defined in elements with a local support:

Modified equation

u(x) ≈
M∑
i=1

UiNi(x) (2.6)

Ni(x) is one at position xi of the node i, and Nj(x) is zero at the node xi

for every j 6= i. Additionally, Ni(x) is null at every element that does not

share the node i. Consequently, u(xi) = Ui for every node i and the problem

is reduced to finding the Ui.

Using this approximation the gradient is:

Modified equation

∇u(x) ≈
M∑
i=1

Ui∇Ni(x) (2.7)

Therefore, the strain can be written as:

ε ≈
M∑
i=1

1

2

[
Ui∇Ni(x) + (Ui∇Ni(x))T

]
=

M∑
i=1

Ui
2

[
∇Ni(x) + (∇Ni(x))T

]
(2.8)

Renaming the term between brackets as:

Bi(x) =
1

2

[
∇Ni(x) + (∇Ni(x))T

]
(2.9)

This term Bi is called the displacement matrix. The strain can then be

written in a simple expression:
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ε ≈
M∑
i=1

UiBi(x) (2.10)

Replacing Eq. (2.6) and (2.10) in Eq. (2.5):

∫
Ω

M∑
i=1

UiBi(x) : C :
M∑
j=1

UjBj(x)dΩ =

∫
Γ

M∑
i=1

UiNi(x) · fdΓ (2.11)

Here again Ui are the virtual displacements. These can be chosen arbitrarily

provided that they respect the prescribed displacements. If one chooses l =

1..nNodes, sets of
{
Ui

}
l

as Ui = 1 if i = l and Ui = 0 if i 6= l, one obtains a

system of l linear equations:

∫
Ω

Bl(x) : C :
M∑
j=1

UjBj(x)dΩ =

∫
Γ

Nl(x) · fdΓ (2.12)

Expressing this system in matrix form, with U = (Uj)
M
j=1, yields the

familiar result:

KU = F (2.13)

Klj =

∫
Ω

Bl(x) : C : Bj(x)dΩ (2.14)

Fl =

∫
Γ

Nl(x) · fdΓ (2.15)

There are considerably more details to the Finite Element Method than

are displayed here, as this is not the main objective of this text. For further

reading see Bathe (1996).

2.2
Solid Isotropic Material with Penalization (SIMP)

The material distribution also needs a discrete representation. This

is done by associating a design variable, denoted z, to each element of

the mesh, representing the structure. Its values can be one, which signifies
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a material region, or zero: void. This combinatorial problem is especially

troublesome, because it is non-linear, and the number of possible solutions

rapidly exceeds the reasonable computational cost as the number of elements

increases. Moreover, it is part of the set of NP-Hard problems and there isn’t

to this day an efficient method to solve it. In order to use gradient based

optimizers, and, consequently, be able to greatly reduce the computational cost,

a material interpolation with penalization formulation called SIMP (Bendsøe,

1989) is used. In this representation the design variables are allowed to vary

continuously in the interval [0, 1].

However, elements with variables between zero and one have a weak

physical meaning in traditional design, since the intermediate values don’t have

a material counterpart. Furthermore, when dealing with composite material

design, it is possible to develop a formulation in such a way that these rational

values represent fractions in the composition. But this is not the focus of

this work. In order to eliminate this “gray” regions on the final structure, a

penalization function is used to correlate the designs variables with the element

density and stiffness. With ρ being the density and E being the material

interpolation stiffness function:

ρ(z) = z (2.16)

E(z) = ε+ ρ(z)p(1− ε) (2.17)

ε is the Erzat stiffness, a small value to avoid numerical instability while solving

the equilibrium equations. p is a penalization factor greater than one, and as

the limit p→∞ is achieved the discrete problem is reattained.

The material interpolation stiffness function multiplies the constitutive

matrix in the equilibrium equation, and so the penalization makes the inter-

mediate values of z contribute less to the overall stiffness of the structure than

the density. This leads to a solution close to a 0 or 1 design.

CE(E) = E(z)C (2.18)

Klj =

∫
Ω

Bl(x) : Ej(z)CBj(x)dΩ (2.19)
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where the subscript j in Ej(z) links each displacement matrix Bj with its

respective interpolated constitutive matrix.

Alternative formulations for material distribution have been developed

using frontier tracking techniques such as level-set (van Dijk et al., 2013) and

phase-field (Takezawa et al., 2010). Such methods have their own features and

are not elaborated in this work.

2.3
Regularization Techniques

The physical phenomenon of interest is continuous in the length scale of

relevance, as the material region is modeled macroscopically as a continuous

media. Unfortunately, it is not possible for most cases to obtain a continuous

solution with the knowledge available today. For this reason the domain is

discretized in a finite set of points in which a approximated solution is obtained.

The basis for this technique is the hypothesis that the discrete domain can

model its continuous counterpart well enough if a suitable distribution of points

is chosen as such the solution in between them has a predictable behavior. This

foments the intuition that a finer set of points would indulge a more accurate

solution.

However, this is not always the case for some numerical methods with

mesh size-dependent models. Mesh dependency is the effect that the choice

of discretization has on the solution. This anomaly is undesirable since the

modeling of a physical phenomenon cannot depend on the choice of spatial

representation.

A conventional density based material representation in topology opti-

mization suffer from this ailment as the minimum size of structural artifacts

(holes, beams, etc) able to be represented is restricted by the size of the ele-

ments used in the mesh. As the mesh gets refined, the set of admissible solutions

changes because thiner details are able to increase stiffness/weight ratio of the

results. Eventually this leads to the representation of the material microstruc-

ture which is not the objective of traditional structural optimization.

Furthermore, it is worth noting that there are manufacturing limits on

the size of the details that one is able to produce. This means that small holes

and thin trusses may not be constructible.

Another matter of interest is the infamous checkerboard problem ( Fig.

2.2 ) that can appear in meshes where elements have the same hinge connec-

tions as they do in regular square elements in 2D, due to the overestimation

of this pattern’s stiffness. Obviously, these are not valid structures and should

not be in the final solution.
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Figure 2.2: Checkerboard pattern arising in the solution of the topology
optimization problem.

Several works in the literature deal with these issues, and three main

techniques stand out: perimeter control, gradient restriction, and filtering.

2.3.1
Perimeter Control

Perimeter control (Haber et al., 1996) introduces constraints in the

optimization problems that limit the total perimeter of the final structure.

Increasing the number of holes also increases the total perimeter of the design,

and so this results in a solution with fewer small-scale details. However, as

this is a global constraint, it is still possible to have local problematic regions.

Moreover, the numerical approximation of the perimeter can be influenced by

the mesh. This is especially true for regular elements.

The determination of the limit for the total perimeter is not trivial and

has to be done empiracally. This value heavily influences the solution which

makes this technique very problematic for pratical use.

2.3.2
Gradient Restriction

Gradient restriction (Petersson & Sigmund, 1998) introduces a constraint

in the local density variation, producing a smooth distribution of material.This

means that density of an element must be cointaned in a limited range from

the density of its neighboor. An advantage of this is that it allows direct control

of the minimum length scale, as one can choose the variation limit based

on the size of the elements. Unfortunately, this introduces a large number

of constraints which severely slow down the optimization process.
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2.3.3
Filtering Techniques

Filtering techniques (Bourdin, 2001) allows for a local control on the

material distribution and ensures a smooth transition of the density field.

The method consists of defining a map that correlates the design variables

with the element densities. Choosing this mapping wisely, one can naturally

eliminate distributions with abrupt changes in density from the solution space.

Most traditional filters used consist of a convolution of the design variables

with a smooth function S(x, x), causing the density distribution to inherit this

smoothness, i.e.:

ρi(z) =

∫
Ω
S(x,xi)z(x)dx∫
Ω
S(x,xi)dx

(2.20)

where ρ(z) is the density, x are the domain’s space coordinates, and xi is

the location of the i − th design variable. The integral on the denominator

normalizes the value of this functional.

This function is chosen to be local in the sense that is null in all domain

except for a small continuous region. The most common choice for S(x, x) is

the linear hat kernel. This function has its maximum in x, and it decreases

linearly in region rmin > |x − x| until it reaches zero in rmin = |x − x| and is

zero everywhere else. It has this name because its 2D plot resembles a conical

party hat as displayed in Fig 2.3. Simplifying it:

S(xj, xi) = max

(
1− |xi − xj|

r
, 0

)
(2.21)

Figure 2.3: 2D representation of the linear hat kernel.
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In the discrete form considering that the design variable is located at the

centroid of the element this translates to:

ρi(z) =

∑nElem
j=1 max

(
1− |xi − xj|

r
, 0

)
zj∑nElem

l=1 max

(
1− |xi − xl|

r
, 0

) (2.22)

This can be written in matrix form as:

ρi(z) = Pijzj (2.23)

with:

Pij =

max

(
1− |xi − xj|

r
, 0

)
∑nElem

l=1 max

(
1− |xi − xl|

r
, 0

) (2.24)

Alternatively, it is possible to use a polynomial instead of a linear

function, which translates to Eq. (2.25), with the power coefficient “s”. This

diminishes the influence of the more distant elements as can be seen in Fig. 2.4,

facilitating more abrupt changes in densities, and thus, better defined material

boundaries.

S(x, xi) = max

[(
1− |xi − xj|

r

)s
, 0

]
(2.25)

2.4
Polygonal Elements

The use of polygonal elements presents some advantages over the Q4 and

other regular counterparts. First and more obvious, it can be used on complex

domains and provide a good approximation without the need for advanced

meshing techniques as are seen in Fig. 2.5. Moreover, it naturally avoids the

well-known checkerboard and one-node connection problems.

A more subtle matter is that structured meshes tend to have preferential

directions. So, the geometry of the final solution may be dependent on the

geometry of the mesh. This type of mesh dependency can lead to suboptimal
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Figure 2.4: Regularization function for different values of s.

Figure 2.5: Polygonal mesh over curved geometry.

designs in topology optimization. Unstructured meshes tend to be a better

representation for isotropic domains.

From the finite elements point of view this type of discretization leads to

higher precision in the solution of linear elastic problems and are stable with

respect to the Babuska-Brezzi condition (Pereira et al., 2016).

On the other hand, good unstructured meshes are harder to generate.

The ones used in this paper are created using Voronoi diagrams and Loyd

iterations as described in Talischi et al. (2012a).

For a more detailed discussion on the use of polygonal elements for

topology optimization, the reader must refer to Talischi et al. (2010, 2012b,a).
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3
Stress Constraints

Stress is a troublesome constraint with several numerical and conceptual

difficulties, making this a interesting problem. In this chapter the main

complications of this constraint as well as the most relevant ways to deal with

them (as found in the literature) are discussed.

3.1
Optimization Problem

This thesis focus on a specific problem of topology optimization, the

minimization of the structure’s weight subjected to a stress constraint with

a linear elastic model. Simply speaking, it seeks to find the lightest structure

able to withstand the load applied.

The mathematical statement of the optimization problem is:

minimize
z

M(z) =

∑nElem
i mi(z)vi∑nElem

i vi

subject to gj(z) =
σVMj (z)

σlim
− 1 6 0 j = 1 · · ·nStress

0 6 zi 6 1 i = 1, ..., nElem

with K(z)U = F

(3.1)

here mi(z) is the normalized weight per volume of the element “i” which

depends on the optimization variable z and varies in the interval [0, 1], σVMj

is a measure of stress to be defined later, and σlim is a limit value for this

stress, vi is the volume (in the 2D case the area) of the element i and dividing

by the sum of vi normalizes the values of M(z) to the interval [0, 1]. The

nested formulation (Christensen & Klarbring, 2008) is used as the equilibrium

equations are not set as constraints of the problem, but are implicitly imposed

as the stress depends on the displacements.

The stress is evaluated in a finite set of points j = 1 · · ·nStress that need

not to be related to the finite element’s or the topology optimization’s mesh.
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These points need, however, to be dense enough to guarantee the integrity

of the final structure. Due to the local nature of stress, this leads to a high

number of evaluation points. The max is taken over all the j stresses.

The issues with the stress constraints are discussed thoroughly in this

Chapter.

3.2
Objective Function

Most of the papers impose a identity relation between the density ρ(z)

and the weight m(ρ(z)). However, this is not a requirement and one can benefit

from penalizing this relation in a similar manner as one does with the material

interpolation stiffness function.

This can be done through a power weight relation with a factor 0 6 β 6 1

(Fig. 3.1):

m(ρ) = ρβ (3.2)

Figure 3.1: Power weight relations for different values of β.

Alternatively, the exponential weight relation with a factor β > 0 presents

some similar properties (Fig. 3.2):

m(ρ) = 1− e−βρ + ρe−β (3.3)

DBD
PUC-Rio - Certificação Digital Nº 1512532/CA



Chapter 3. Stress Constraints 32

Figure 3.2: Exponential weight relations for different values of β.

Both of the proposed penalization guarantee the monotonic increasing

property of the total weight function.

3.3
Stress Definition

Traditional macroscopic stress can be obtained from the strain on the

material following Eq. (2.4) repeated here:

σ = C : ε

These quantities can be approximated through the use of the finite

element method as described in Section 2.1:

σ̂ = CE(E) :
M∑
j=1

BjUj = EC :
M∑
j=1

BjUj (3.4)

where E is the material interpolation stiffness function defined in Section 2.2.

A careful analysis of Eq. (3.4) shows that the stiffness is proportional to

ρp while the nodal displacements U are proportional to ρ−p. As a matter of

fact, this definition of σ̂ is invariant through the scaling of ρ.

In order to better grasp what is happening imagine that we analyze a

single element from a larger mesh, fixing the density everywhere except for the
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element of interest. To simplify the calculations the effect that the rest of mesh

has on the subject is substitute by equivalent forces. This example is described

in Fig. 3.3.

Figure 3.3: Single element Example.

The displacement at the free the nodes can be computed as:

k(E)U = Ek0U = f (3.5)

where k(E) is the element stiffness matrix of the free degrees of freedom

that is a function of the elements density through the material interpolation

function E, k0 is the same matrix for E = 1, f is the applied force vector. The

displacement is then:

U =
1

E
k−1

0 f (3.6)

As the prescribed degrees of freedom are zero, it is possible to make the

variable E explicit:

U =
1

E
U0 (3.7)

U0 = k−1
0 f are the displacements in the case of E = 1. Substituting U in the

expression for σ̂:
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σ̂ = EC :
M∑
j=1

BjUj = EC :
M∑
j=1

Bj
(U0)j
E

= C :
M∑
j=1

Bj(U0)j (3.8)

In other words, the macroscopic stress in the element does not depend

directly on the design variable of that element. Thus, it does not have an

appropriate behavior for topology optimization.

For this reason it is common practice to use an altered version of

the microscopic stress in a composite porous media proposed by Duysinx &

Bendsøe (1998). To satisfy this, the stress must be inversely proportional to

the density and be finite as it approaches zero. One of simplest formulations

for this is:

σ̂ =
E

ρq
C :

M∑
j=1

BjUj =
ε+ ρp(1− ε)

ρq
C :

M∑
j=1

BjUj ≈ ρ(p−q)C :
M∑
j=1

BjUj (3.9)

The only plausible choice of q is then q = p. In this formulation the stress

does not depend directly on E and it is simply:

σ = C :
M∑
j=1

BjUj (3.10)

3.3.1
Von Mises Stress

The Von Mises stress is defined as the square root of three times the

second invariant of deviator stress tensor. It is extensively used as a failure

criterion for materials with similar behavior in tension and compression. It is

therefore used in this dissertation for the stress constraints. The deviator stress

tensor can be defined as:

σ = σ − tr(σ)

3
δ (3.11)

in which δ is the Kronecker delta and tr() is the trace of the tensor. The Von

Mises stress then can be calculated through Eq. (3.12).
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σVM =

√
3

2
tr(σ2) =

√
3

2

[
tr(σ2)− 1

3
tr(σ)2

]
(3.12)

3.4
Stress Locality

As stated before, the number of stress evaluation points must be dense

in the domain in order to guarantee structural integrity. It is desirable that

the maximum stress on all of these points stays below a certain value.

This translates to a large number of constraint which greatly increases the

computational cost not only for the optimization algorithm but also for the

computation of the sensitivities necessary for gradient based methods.

As a response to this, two main techniques with vastly different theoreti-

cal consequences have been taken.One of them is to use a global measure that

in some way represents all the constraints. This leads to the several aggrega-

tion techniques in the contemporary literature. The other possibility is to use

an approach, such as penalization methods, to reduce the cost of applying a

large number of constraints but to consider each constraint independently.

3.4.1
Aggregation Techniques

It is easy to see that the optimization problem (3.1) and the one in

(3.13) are equivalent in the sense that they have the same solution and the

same feasible space. However, as one uses a gradient based algorithm for the

optimization, it is extremely prejudicial to have the maximum function in the

formulation, as it is not differentiable, in the usual sense, in possibly infinite

many points.

minimize
z

M(z) =

∑nElem
i mi(z)vi∑nElem

i vi

subject to G(z) =
max(σVMj (z))

σlim
− 1 6 0 j = 1 · · ·nStress

0 6 zi 6 1 i = 1, ..., nElem

with K(z)U = F

(3.13)

Aggregation Techniques have been very popular in recent years due

to their simplicity and the idea is to approximate the maximum by a smooth
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function . This greatly reduces the computational cost both in the optimization

algorithm and in the computation of the sensitivities with the adjoint method.

P-norm, P-mean and KS-function

The most popular aggregation functions are defined below:

P-norm : G(x, p) =

 n∑
i=1

(xi)
p

(1/p)

(3.14)

Used in (Holmberg et al., 2013b; Kiyono et al., 2016).

P-mean : G(x, p) =

 n∑
i=1

(xi)
p

n

(1/p)

(3.15)

Used in (Duysinx & Sigmund, 1998; Le et al., 2009).

KS-function : G(x, p) =
1

p
ln

 n∑
i=1

exip

 (3.16)

Used in (Yang & Chen, 1996).

In all three equations p is an adjustable parameter, with the property

that limp→∞G(x, p) = max(x). Generally, a higher value of p translates to a

better approximation of the maximum function, however, its increase can be

detrimental due to numerical instability. This means that the choice of this

parameter has to be a mid-term, high enough to achieve a decent accuracy

but not so much as to disrupt the convergence of the optimization algorithm.

Typical values are set between 2 and 32.

The behavior of all of this functions is similar. However the P-norm and

the KS-function tend to overestimate the maximum, while the P-mean is a

underestimation. The KS-function on the contrary of the other two can be

used with negative values.

The use of one global constraint to represent all stresses in the domain

can be troublesome, especially when the number of evaluations are large and

there are zones of much higher stress, such as geometrical singularities. The

quality of the approximation depends not only on the value of p but also on
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the number of variables n (see Eq. (3.14),(3.15), (3.16)) and the variance of

their values. As n increases, the quality of approximation rapidly degenerates,

which is of great concern, since generally, for topology optimization, one has

to use fine meshes and a high number of stress evaluation points. Moreover, it

is desirable that the method be stable over mesh refinement. This is hard to

achieve with aggregation, because this inherently increases the value of n hence

the solution deteriorates as the mesh is refined. To complicate matters further,

the number of elements necessary for 3D cases is extremely high. This coarse

approximation can lead to suboptimal design and large regions of unnecessary

material with low stress.

Regional Clustering

Regional clustering is an idea very commonly used with aggregation

techniques. It consists of dividing the original domain in regions and applying

aggregation individually over each region. This can better capture the local

property of the stress and enhances the quality of approximation, as it reduces

the number of variables in each aggregation. These clusters are then introduced

in the optimization problem as separate constraints, i.e.:

minimize
z

M(z) =
nElem∑

i

mi(z)vi

subject to G (Ω1)− σlim 6 0

G (Ω2)− σlim 6 0

...

G (Ωm)− σlim 6 0

0 6 z 6 1

with KU = F

(3.17)

where Ωm are the clusters that group the stress evaluations and m is their

number.

This raises the question of how to divide the domains in such regions. A

number of answers have been given in literature but none are conclusive. Di-

viding solely on spatial proximity is ineffective. This will generate preferential

directions for the structural artifacts, because of the spatial discontinuity of

the imposed constraints.

The most conventional way of defining a cluster is adaptively based on

stress. This means that the members of a cluster change based on their value.
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There are two main rules to do this, suppose m is the number of clusters and

n the number of stress evaluations:

– Even Distribution (Le et al., 2009): The stresses are organized in decreas-

ing order and the m highest values belong to a different cluster, doing

the same for the m second highest and so on.

– Order Distribution (Holmberg et al., 2013b): The stresses are organized

in decreasing order and the first n/m evaluations go to the first cluster,

and the n/m evaluations that follow go to the second cluster and so on.

To clarify these methods, imagine an example with 9 stress evaluations:

σ1 > σ2 > σ3 > σ4 > σ5 > σ6 > σ7 > σ8 > σ9 (3.18)

Suppose that we want to divide them in three clusters Ωm, the result

would be:

Even Distribution: Ω1 = {σ1, σ4, σ7}, Ω2 = {σ2, σ5, σ8}, Ω3 = {σ3, σ6, σ9}

Order Distribution: Ω1 = {σ1, σ2, σ3}, Ω2 = {σ4, σ5, σ6}, Ω3 = {σ7, σ8, σ9}

Each cluster generated by an even distribution has a similar value of g(x)

while the order distribution generates clusters with very different values of g(x),

however, the member of a single cluster are similar to the other members of

that same cluster. The best approach depends on which function is chosen for

the aggregation.

It is important to notice that the optimization problem changes each

time the clusters are reorganized. This can lead to a slower convergence

specifically with traditional algorithms. Thus, some authors perform the cluster

composition once every 5, 10 or even 20 iterations. However, Holmberg et al.

(2013b) affirms that the best performance is obtained if the reclustering is done

at each iteration.

The efficiency and precision of clustering has been improved by Holmberg

et al. (2013a), using an active-set type approach, which performs the clustering

only over the points where the stress is above or close to the limit. This greatly

reduces the number of variables over which the aggregation is done, ensuring a

better approximation of the max function because it disregards points of low

stress that are of little relevance to the problem. However, this increases the
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discontinuity of the constraints and has to be done carefully so it doesn’t slow

down the optimization.

Another matter that merits our attention is the optimal number of clus-

ters for a specific problem. Each additional cluster increases the computational

cost because of the higher complexity of the optimization problem with the

extra constraint. Hence, it is desirable to use the smallest number of clusters

possible. Furthermore, Le et al. (2009) reports that an increase in the number

of clusters does not necessarily lead to a better design due to numerical rea-

sons. However the number of subdivisions is not only problem dependent but

also mesh dependent and so far very little success was obtained in determining,

a priori, their necessary number.

3.4.2
Penalty Methods

The use of penalty methods can greatly reduce the expenditure associated

with the large number of constraints while at the same time providing a more

consistent model than the aggregation techniques.

This Section is just a brief introduction to these methods. For further

knowledge the reader can refer to Nocedal & Wright (2006) and Bertsekas

(1996).

Suppose that we have the following optimization problem:

minimize
x

f(x)

subject to gi(x) = 0 i = 1...n
(3.19)

The idea is to transform it into a equivalent unconstrained problem:

minimize
x

J(x) = f(x) +
n∑
i=1

Ii(gi(x)) (3.20)

where Ii are penalization functions based on the constraints. The appropriate

choice of Ii ensures that the solutions of (3.20) are also solutions of (3.19).

This transformation allows us to use unconstrained optimization algorithms to

solve the problem. Ideally, the penalization functions would be such that:

Ii(gi(x)) =

0, if gi(x) = 0

∞, otherwise
(3.21)
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It is easy to see that this would guarantee the same solution for the

original and the modified problem. Unfortunately, the discontinuity of this

function renders it unsuitable for traditional gradient-based optimization. So,

it is desirable to have a continuous function that behaves similarly to Eq.

(3.21).

Quadratic Penalization Method

Historically, the first algorithm developed with this idea was the

quadratic penalization method, in which the penalization function Ii was de-

fined as:

Ii(gi(x)) =
µ

2
(gi(x))2 (3.22)

where µ is a numerical parameter that has to be adjusted for the constraint. A

large value for µ ensures a better feasibility of the solution as it increases the

cost of violating the constraint, but at the same time, increases the steepness

of this function. And, again, this can make the convergence of gradient based

algorithms troublesome. In order to mitigate this, the quadratic penalization

method gradually increases the value of µ solving a sequence of k subproblems,

using the k problems solution as a initial guess for the k+1. In the limit k →∞,

µk →∞ and the condition in Eq. (3.21) is obtained, i.e.:

minimize
x

Jk(x, µk) = f(x) +
n∑
i=1

µk

2
(gi(x))2 (3.23)

µk+1 = βµk β > 1 (3.24)

The choice of β, responsible for the update of µ, can be very problem

dependent. A high value of this parameter intuitively would lead to a faster

convergence to a feasible solution, however a severe update could also mean a

drastical change of the subproblem k to k+ 1 compromising the optimization.

A modest update on the other hand might demand a massive number of

subproblems to achieve feasibility. In the end what dictates the measure of

β is not only the problem as well as the initial guess of each iteration.

Defining the Lagrangian of the original problem (3.19) with the appro-

priate Lagrange multipliers λ∗i as:
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L(x) = f(x) +
n∑
i=1

λ∗i gi(x) (3.25)

The KKT optimality conditions (assuming a well-behaved problem)

states that the gradient of the Lagrangian at the optimum point x∗ with the

appropriate Lagrange multipliers be equal to zero:

∇L(x) = ∇f(x∗) +
n∑
i=1

λ∗i∇gi(x
∗) = 0 (3.26)

At the same time, at the optimum xk of the approximated problem (3.23):

∇Jk(xk, µk) = ∇f(xk) +
n∑
i=1

(µkgi(x
k))∇gi(xk) = 0 (3.27)

Supposing that xk ≈ x∗ as k → ∞, it is possible to make the following

approximations:

∇f(x∗) +
n∑
i=1

λ∗i∇gi(x∗) = ∇f(xk) +
n∑
i=1

(µkgi(x
k))∇gi(xk) (3.28)

λ∗i∇gi(x∗) ≈ (µkgi(x
k))∇gi(xk) (3.29)

λ∗i ≈ (µkgi(x
k)) gi(x

k) ∝ λ∗i
µk

(3.30)

The last equation gives us a insight. At the optimum point x∗, the

constraints must be gi(x
∗) = 0. As they are proportional to

λ∗i
µk

for every

constraint which the Lagrange multiplier λ∗i is different from zero µk must

tend to infinity. In practical terms there is always a numerical tolerance for the

constraint and µk must be just large enough. However, because the increment

on µk has to be done gradually, it can take a considerable time to achieve such

value.
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Augmented Lagrangian

The Augmented Lagrangian is a penalization technique of constrained

optimization. It is an efficient way to deal with a large number of constraints

and it is based on the Lagrangian multipliers. Its formulation was an improve-

ment on the original quadratic penalization method. It introduces the following

penalization function:

Ii(gi(x)) = λigi(x) +
µ

2
(gi(x))2 (3.31)

in which λi is a numerical parameter determined iteratively, and µ is analogous

to the quadratic penalization. Once again, a sequence of k subproblems that

converge to the original one, are solved and the solutions xk tend to the

optimum point of the original problem.

At the optimum point xk similar to Eq. (3.27):

∇Jk(xk, µk, λk) = ∇f(xk) +
n∑
i=1

[
λki + µkgi(x

k)
]
∇gi(xk) = 0 (3.32)

Making the same suppositions as before that xk ≈ x∗ as k → ∞ and

comparing it with Eq. (3.26):

∇f(x∗) +
n∑
i=1

λ∗i∇gi(x∗) = ∇f(xk) +
n∑
i=1

[
λki + µkgi(x

k)
]
∇gi(xk) (3.33)

λ∗i∇gi(x∗) ≈
[
λki + µkgi(x

k)
]
∇gi(xk) (3.34)

λ∗i ≈
[
λki + µkgi(x

k)
]

gi(x
k) ∝ λ∗i − λki

µk
(3.35)

Equation (3.35) gives us a good estimative to update the value of

λk+1
i = max(λki + µkgi(x

k), 0), remembering that the Lagrangian multipliers

are always positive. Also notice that the convergence of gi(x
k)→ 0 is reached

much more quickly with λki → λ∗i . The final scheme is then:

minimize
x

Jk(x, µk) = f(x) +
n∑
i=1

[
λigi(x) +

µ

2
(gi(x))2

]
(3.36)
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λk+1
i = max(λki + µkgi(x

k), 0) µk+1 = βµk β > 1 (3.37)

The descriptions above are just the main ideas of the Augmented La-

grangian method. Several variations exist in literature that present some ad-

vantage for specific problems, but all of them are based on the formulation

presented here.

Furthermore the “k” subproblems are simple approximations and the

advantages of solving them exactly are questionable, as it provides little extra

precision on the real problem solution and increases the computational cost.

It is thus common practice to have a small limit for the maximum number of

iterations of the optimization of these subproblems.

Slack Variables and Inequality Constraints

The careful reader will have noticed by now that the above formulation

only works for equality constraints. However, there is a clever way to extend

this method for inequality constraints with only a few modifications.

The formulation can be transformed to handle inequality constraints with

the use of slack variables “s” in the optimization problem:

hi(x, si) = gi(x) + si = 0 0 6 si (3.38)

gi are the inequality constraints. The si are now optimization variables

of the modified problem:

minimize
x,s1,...,sn

f(x)

subject to hi(x, si) = gi(x) + si = 0 i = 1...n

0 6 si i = 1...n

(3.39)

The Augmented Lagrangian for the above problem is:

minimize
x,s1,...,sn

Jk(x, s1, ..., sn) = f(x) +
n∑
i=1

[
λi(gi(x) + si) +

µ

2
(gi(x) + si)

2

]
subject to 0 6 si i = 1...n

(3.40)

The bound constraints are not removed from the problem, as they

are easy to handle in most optimization algorithms. The minimization of
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Jk(x, s1, ..., sn, µ
k,λk) with respect to s1, ..., sn can be done explicitly for each

fixed x by solving problem (3.41) for every si.

minimize
si

[
λi(gi(x) + si) +

µ

2
(gi(x) + si)

2

]
subject to 0 6 si

(3.41)

Deriving the objective function and setting it to zero:

d

dsi

[
λi(gi(x) + si) +

µ

2
(gi(x) + si)

2

]
= λki + µk(gi(x) + si) = 0 (3.42)

si = −

(
λki
µk

+ gi(x)

)
(3.43)

However, because of the bound constraint, the actual solution to the

optimization problem is:

si = max

0,−

(
λki
µk

+ gi(x)

) (3.44)

From this, it is possible to explicitly obtain the value of h(x):

hi(x) = gi(x) +max

0,−

(
λki
µk

+ gi(x)

) = max

[
gi(x),−λ

k
i

µk

]
(3.45)

From the equations above, we conclude that the slack variables si need

not to be numerically computed and that it is possible to use the Augmented

Lagrangian Method with inequality constraints.

3.5
Singular Optima

The singular optima was first observed by Sved & Ginos (1968) and later

developed by Kirsch in Kirsch (1989, 1990). This kind of numerical issue arises

as a consequence of the choice to use the microscopic stress as a base measure

in the formulation, for which the value of stress in void regions is not null. This

is not physically accurate since the stress needs a material media to propagate.
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It is reasonable to say that the stress constraint does not have meaning

when the density reaches zero, which makes it a vanishing constraint (Hoheisel,

2009) and degenerates the optimization problem. In practical terms, the global

optima lies in a disconnected subspace of the solution domain that cannot be

reached through traditional gradient-based optimization algorithms.

3.5.1
Kirsch three bar truss

One classical example which illustrates this issue is the Kirsch three

truss problem introduced by Kirsch (1990) and described in Fig.3.4. The

optimization variables represent the cross section area of the bars and as the

area of a bar decreases, its stress increases. If the area reaches zero, the stress

becomes singular and has no physical meaning since a bar with zero area is

inexistent. The mathematical statement of the problem is described in Eq.

(3.46).

Figure 3.4: Kirsch three bar truss problem. Image from Verbart et al. (2016a).

minimize
z

M(z) = 4A1 + A2

subject to g1(A1, A2) =
σ1

20
− 1 6 0

g2(A1, A2) =
σ2

20
− 1 6 0

g3(A1, A2) =
σ3

20
− 1 6 0

0 6 A1, A2

with K(A1, A2)σ = F

(3.46)

The solution space of the problem above is represented in Fig. 3.5. From

this image one might think that the first constraint dominates the problem
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and the traditional feasible region with its apparent global optimum is as it

is represented in Fig. 3.6. However, the constraint g1 has no meaning when

A1 = 0 and therefore it must vanish for a physically consistent formulation.

This leads us to consider an extended version of the feasible region in which

the g1 constraint is irrelevant at the A2 axis where A1 is zero. This extended

feasible region is represented in Fig. 3.7 along with the actual global optimum.

Figure 3.5: Solution Space of the Kirsch three bar truss.

Figure 3.6: Kirsch three bar truss traditional feasible regions.
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Figure 3.7: Kirsch three bar truss extended feasible regions.

In contrast to most of the literature, the difficulty in achieving the

optimum point is not based on the fact that the region in which it is contained

has a lower dimension than the rest of the domain. A slight change on the

constraint, described in Eq. (3.47), allows us to include the degenerated region

without increasing its dimensionality or changing the extended feasible region.

The problem with this altered constraint was solved directly using both the

MMA algorithm (Svanberg, 1987) and the MATLAB fmincon function with

the “interior-point” option. The paths to convergence of the algorithms are

shown in Fig. 3.8.

Ai

(
σi
σlim

− 1

)
6 0 (3.47)
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3.8(a): fmincon

3.8(b): MMA

Figure 3.8: Solution of the Kirsch three bar truss with modified constraints
using (a) the fmincon function of MATLAB and (b) the MMA.

3.5.2
Diagonal Square Problem and Disconnected Regions

The real issue with vanishing stress constraints is much more complicated.

In order to explain it, the author provides another example that is much more

closely related to the topology optimization problem. The domain is a 2 by 2
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square with a mesh of 4 regular Q4 elements. Two of those elements have fixed

density of 1 and the other two are the design variables, Z1 and Z2. The load

and support regions can be seen in Fig. 3.9 represented by a red arrow and

blue triangles, respectively.{
Figure 3.9: Diagonal
Square problem.



L = 2m

P = (0.1,−0.1)N

E0 = 1Pa

υ = 0.3

σlim = 1Pa

The mathematical statement of the optimization problem is shown in Eq.

(3.48), where σ1 and σ2 are evaluated at the centroid of the elements. There is

no filtering applied so the density and the design variables are equivalent.

minimize
Z1,Z2

M = Z1 + Z2

subject to
σ1

σlim
− 1 6 0

σ2

σlim
− 1 6 0

0 6 Z1 6 1

0 6 Z2 6 1

with K(Z1, Z2)U = F

(3.48)

The solution space of this problem is shown in Fig. 3.10. The traditional

feasible domain is quite simple and the global optimum is readily apparent.

However, in the same manner as before, it is necessary to disregard the

constraints of the elements with zero density. In contrast to the previous

case, there is now two degenerated regions added this way and both of them

are disconnected from the main feasible space (Fig. 3.11 ). This separation

absolutely prevents traditional gradient-based optimization algorithms from

reaching these regions where, once more, the global optimum is present. It is
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also worth noting that there is a distinct local optimum that is very similar to

the global optimum.

Figure 3.10: Traditional feasible region.

Figure 3.11: Extended feasible region.

The disconnected property of the solution space is, in the author’s

opinion, the main difficulty of the stress-constrained topology optimization.

To the best of the author’s knowledge , there is still no efficient way to solve

this kind of problem exactly in large scale.
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Nonetheless, several heuristic methods have been developed that can find

an approximated solution. The basic idea to overcome this issue is to modify

the constraint to obtain a continuous function that is null at zero density and

is still able to recover the usual stress value.

3.5.3
ε relaxation

The ε relaxation was first proposed by Cheng & Guo (1997) when dealing

with truss optimization. It was later used successfully with the 2D topology

optimization problem. It expands the region of the minimum by introducing a

tolerance ε on the constraint:

g(z) =
σVM

σlim
− 1− ε

ρ
6 0 (3.49)

For any ε > 0 the constraint (3.49) is eventually satisfied for a small

enough ρ. As ε→ 0 the original constraint is obtained. It is common practice

to start with a moderately high value for ε and gradually decrease it in a

continuous manner as to re-obtain the original constraint. However, Stolpe &

Svanberg (2001) proved that this method is flawed, because the global optimum

might not vary continuously with ε.

Another numerical matter that demands attention is the equivalence of

constraints (3.49) and (3.50). Although this holds for optimization algorithms

that strictly satisfy the constraints at each step, this is not true for the

algorithms that allows some degree of constraint violation throughout the

optimization, such as the Augmented Lagrangian method. For the latter, the

value of the constraint in the unfeasible regions is crucial for the optimization.

This can be seen in Fig. 3.12.

g(z) = ρ

(
σVM

σlim
− 1

)
− ε 6 0 (3.50)
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Figure 3.12: Different formulations of ε relaxation.

In this plot ε = 0.5 and σVM are replaced by a simplified model (See Chapter

4 of this work).

Diagonal Square Verification

It is interesting to see what this relaxation does to the feasible region of

the Diagonal Problem defined in Subsection 3.5.2. Figures 3.13 and 3.14 show

how the constraints vary with the values of ε as ε→ 0 the original constraint

is obtained.

Figure 3.13: Z1 Stress constraint of the diagonal square problem using ε
relaxation and different values of ε.
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Figure 3.14: Z2 Stress constraint of the diagonal square problem using ε
relaxation and different values of ε.

3.5.4
q-p relaxation

This relaxation was proposed by Bruggi (2008) and is based on the

definition of stress described in Section 3.3. The basic idea is to choose q < p

in Eq. (3.9). This way the stress is proportional to:

σ ≈ ρp−qCBÛ (3.51)

This nullifies the stress when ρ = 0, which is more physically accurate. On

the other hand if ρ = 1, meaning that the element is in a material region, the

stress regains its traditional value. For intermediate densities, however, there

is a loss in consistency and originally the literature proposed this as simple

numerical tweak. The Von Mises stress using this formulation is:

σVMqp =
√
σTV σ = ρp−q

√
(CBelÛ)TV CBelÛ = ρp−qσVM (3.52)

The constraints are directly derived from σVMqp and vanish as ρ = 0.

Consequently, the necessary regions are included as feasible, i.e.:

g(z) =
σVMqp
σlim

− 1 = ρp−q
σVM

σlim
− 1 6 0 (3.53)
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Diagonal Square Verification

The q-p relaxation has a similar effect to that of the ε relaxation on the

feasible region of the Diagonal Problem defined in Subsection 3.5.2. Figures

3.15 and 3.16 show how the constraints vary with the values of q − p. As

(q − p)→ 0 the original constraint is obtained.

Figure 3.15: Z1 Stress constraint of the diagonal square problem using qp
relaxation and different values of q − p.

Figure 3.16: Z2 Stress constraint of the diagonal square problem using qp
relaxation and different values of q − p.
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3.6
Stress Measure

Although the definition of stress presented in Section 3.3 has some

consistency for topology optimization, it still presents some practical problems,

such as the fact that it has a non-null value for regions without any material.

The interpretation of these values is dubious at best. Stress in a void has

little physical meaning. To demonstrate this issue, imagine the following

configuration of the diagonal square problem and its respective stress map:

3.17(a): Density Configuration 3.17(b): Stress Map

It is apparent that the higher stress is situated at the element with zero

density, and the stress on the structure is below σlim = 1. Therefore, this

would be a feasible solution. However, the stress analyses would not show this,

because the maximum stress of the domain is above the admissible range. One

could choose to disconsider the stress in the elements with a density close

to zero. This would lead to a discontinuous measure which is used by some

engineers. It is also important to note that the stress is not ill-defined only

in regions of zero density. If one strives to manufacture the final design, it

will be hard to come up with a configuration that correctly represents the

values between zero and one. Even with penalization and other techniques to

eliminate intermediate values, these values will still, to some extent, be present.

Consequently, some form of post-processing has to be done to the solution of

the topology optimization. For this reason the stress of the gray regions is not

so meaningful. Following this train of thought, the qp relaxed stress became

very popular as an alternative measure. It is zero when ρ = 0 and it regains

its traditional value when ρ = 1. In addition, it reduces the relevance of the

stress in the transition zones.
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4
Proposed Formulation

This chapter presents the formulation proposed by the author and

it is also the main contribution of this dissertation. It is based on the

Augmented Lagrangian method and uses a local adaptation to properly handle

the vanishing constraints.

Let’s first analyze the stress constraint using the same approach as in

Section 3.3. We will consider the single element problem showed again in Fig.

4.1.

Figure 4.1: Single element Example.

The microscopic stress can be calculated as:

σ = C :
M∑
j=1

BjUj =
1

E
C :

M∑
j=1

Bj(U0)j (4.1)

The computation of the Von Mises stress as described in Eq. (3.12), is

given as:
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σVM =
√
σTVσ =

1

E

√
(σ0)TVσ0 (4.2)

with:

σ0 = C :
M∑
j=1

Bj(U0)j (4.3)

Notice that the term in the square root does not depend directly on the

design variables and so it is possible to define σVM0 as the Von Mises stress of

the element with density equal to 1 (Eq. (4.4)). This value depends only on

the variables that characterize the problem (P , L, E0, ν, etc ), i.e.:

σVM0 =
√

(σ0)TV σ0 (4.4)

Therefore, we can get a simplified expression for the stress:

σVM(E) =
1

E
σVM0 (4.5)

Remembering that:

E = ε+ ρp(1− ε) (4.6)

it is possible to estimate the stress with respect to σVM0 and ρ. Let’s evaluate

the different relaxations of the stress constraints and how they behave. The

penalization factor p = 3 will be chosen for the reasons described in Chapter

2, Subsection B of this work.

– Original Constraint: σVM/σlim − 1 6 0

– q-p Relaxation: ρ0.5σVM/σlim − 1 6 0

– ε Relaxation: σVM/σlim − 1− ε/ρ 6 0

– Vanishing Constraint: ρ(σVM/σlim − 1) 6 0

The disconnected feasible regions discussed in Section 3.5 become ap-

parent as the “hills” presented in the Fig. 4.2. A gradient-based optimization

algorithm handling the constraints strictly throughout the steps would be re-

stricted to zones where the plots are below zero. Figure 4.3 shows these regions
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more clearly. It is easy to understand that the solution would be stuck in the

area next to one and it would not be able to reach zero.

Figure 4.2: Behavior of different variations of the stress constraint with ρ and
σVM0 /σlim = 0.1.

Figure 4.3: Plots of Fig. 4.2 with the vertical axis limited for a better view.
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The Augmented Lagrangian method, however, does not impose direct

constraints on the problem and in fact only ensures constraint satisfaction on

the final solution. The penalization term is defined as:

I(ρ) = λ
[
max(g(ρ),−λ/µ)

]
+
µ

2

[
max(g(ρ),−λ/µ)

]2
(4.7)

where g(ρ) is the constraint function. Choosing initial values λ = 0.001 and

µ = 0.001, it is possible to compute the penalization for the various constraints

displayed so far.

Besides the penalization, the Augmented Lagrangian method has another

term related to the objective function of the original problem, in this case it

is the total weight. This plot is no longer a constraint and the algorithms are

not restricted to the intervals below zero, however most of them don’t take

steps towards directions of increasing value. The weight contribution of this

single element would be m(ρ) and so the objective function of the subproblem

is described in Eq. (4.8). Figure 4.6 shows the plot for the exponential weight

relation described in Section 3.2.

J(ρ, µ, λ) = m(ρ) + λ
[
max(g(ρ),−λ/µ)

]
+
µ

2

[
max(g(ρ),−λ/µ)

]2
(4.8)

Figure 4.4: Plots of the penalization of the Augmented Lagrangian for different
stress constraints.
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Figure 4.5: Plots of Fig. 4.4 with the y axis limited for a better view.

Figure 4.6: Objective Function of the Augmented Lagrangian method.

Considering an initial guess of ρ = 0.5, and that the optimization

algorithm is only capable of going downhill, it still wouldn’t be possible to reach

zero density. To overcome this, one could try to adjust µ and/or λ to reduce

the effect of the constraints. This was the first attempt made, which leads to
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several numerical difficulties, as the stress is a highly nonlinear function. Yet

the weight is a monotonic well behaved function and so multiplying it by a

factor γ preserves its nice properties. Setting γ = 4 yields to a promissory

result displayed in Fig. 4.7. Not only it is now possible to reach zero using

vanishing constraints, but the function is also much more steep, which enables

a faster convergence. Of course, this is just another way of diminishing the

relevance of the constraint.

J(ρ, µ, λ, γ) = γm(ρ) + λ
[
max(g(ρ),−λ/µ)

]
+
µ

2

[
max(g(ρ),−λ/µ)

]2
(4.9)

Figure 4.7: Objective Function of the Augmented Lagrangian method with the
γ parameter.

On the other hand if the constraint is violated, and it should have density

ρel = 1, the increase of the Lagrangian Multipliers will lead to this solution.

Figure 4.8, shows this tendency for the vanishing constraint. Setting γ = 0,

however, leads to this solution immediately (see fig. 4.9). Ultimately lowering

γel and increasing λel is done simultaneously .
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Figure 4.8: Augmented Lagrangian with µ = 0.001 and γel = 1 for various
values of λ using the vanishing constraint.

Figure 4.9: Augmented Lagrangian with λel = 0.001, µ = 0.001 and γel = 0
using the vanishing constraint.
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Of course, Eq. (4.2) is an oversimplification of the stress. In a larger case,

the forces acting on a element are a function of the densities of other elements

as well as its own, which makes the analyses much more difficult. However,

this elementary model gives the idea to use an adaptive γ for each element.

Unfortunately, as one does not know a priori, which elements must have density

one or zero, the adaptation has to be done heuristically using some estimative

of stress. The stress measure defined in Section 3.6 is used for this purpose.

The adjustment of this parameter is done at the same time as the update of

the Lagrangian Multipliers, following this equation:

γk+1
i =


max(a1γ

k
i + b1, γl), if ρ0.5

i

σVMi
σlim

> 1.01

min(a2γ
k
i + b2, γu), otherwise

(4.10)

where γl and γu are lower and upper limits for γ, respectively. The variables

a1, a2, b1, b2 are constant throughout the optimization and the determination

of their values is explained in Appendix A.

The version of the constraint used is a piecewise variation of the vanishing

constraint, i.e.:

gi(ρ) =

ρ3
i (σi − 1)2 if σ > 1

0, otherwise
(4.11)

This is now an equality constraint with continuity C1 in zero, which is

very helpful for numerical convergence. This constraint penalizes more severely

higher stress and is more moderate for stresses closer to the limit.

In order to speed up convergence, when the average step size is lower than

a tolerance, the parameters µ and γu are updated to increase the influence of

the constraints. The iterations stop when the average size of the step is lower

than this tolerance, and the maximum stress measure is within an admissible

range.
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The full algorithm is depicted in the scheme below:

Algorithm 1 Gamma Formulation

1: procedure Gamma adaptation

2: z1=initial guess

3: λ1 = 0.01

4: µ1 = 0.1

5: γ1 = 0

6: step size=1

7: k = 1

8: while step size>tol & max(σ)>σtol do

9: minimize
z

Jk(z, µk, λk, γk), starting at zk

10: zk+1 = solution to the minimization of Jk

11: Compute σVM with zk+1

12: λk+1 = max
[
λk + µkg(zk), 0

]
13: γk+1 = update following Eq. (4.10)

14: step size=sum(|zk − zk+1|)/nElem /∗ Size of the step k + 1

15: if step size < tol then

16: µk+1 = 1.05µk

17: γu = 0.95γu

18: else

19: µk+1 = µk

20: end if

21: k = k + 1

22: end while

23: end procedure

The meaning of the word “minimize” in line number 9 of the algorithm

must be considered very loosely. As stated in Subsection 3.4.2, the advantage

of finding an actual local minimum for the subproblem k is questionable,

as it requires considerable computational time. An approximated solution is

good enough to improve the values of λ and γ, therefore a rather low limit

on the maximum number of iterations for these cases is set. This procedure

of “minimization” was done mostly through the MMA algorithm (Svanberg,

1987).

The optimization is stopped when a certain degree of stagnation is

achieved and the constraints are satisfied to an admissible range. The choice

of stagnation over the KKT conditions as stopping criteria is due to the bound

constraints on the optimization problem. A final design close to a 0 or 1 solution

means a large number of bound constrains active for which the appropriate
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value for the KKT multipliers is not given by the optimization algorithm of

choice. The admissible range for stress is defined for numerical reasons and is

described as σtol in the algorithm.

4.1
Augmented Lagrangian Correction and Mesh Invariance

The progress in feasibility in the Augmented Lagrangian method is only

obtained through the minimization of the objective function. The optimization

is then an equilibrium between the satisfaction of the stress constraints and

the reduction of total weight. This balance is controlled by the factors µ and

λ.

As the mesh is refined, the total number of constraints increases (if

one keeps the rule of one evaluation of stress per element). This shifts the

equilibrium towards the satisfaction of constraints and can lead to suboptimal

designs. In order to overcome this problem, it is necessary to lower the values

of µ and λ.

Another idea is to calibrate the initial values of µ and λ for a certain

number N of elements and use a ratio to adjust the relevance of the constraint.

In other words, to use a correction factor η, given as:

η =
N

Number of Constraints
(4.12)

J(z) = f(z) + η

n∑
i=1

Ii(gi(z)) (4.13)

The correction factor η is then used to multiply the penalization as

shown in Eq. (4.13), and the parameters µ and λ do not need to be adjusted

for each mesh. This approach has proved to be valid not only for mesh

refinement/coarsening but also for different problems with arbitrary domains.

4.2
Well posedness of the problem and a single element definition

Despite being a complicated problem with several local minimums, any

relaxation that allows the elements’ densities to achieve zero, guarantees an

analytical solution to the problem that is fairly easy to describe. Setting all

the design variables to zero minimizes the objective function, and it is a feasible

point, because the relaxed constraints are satisfied by elements with zero

density. This is a rather odd result, which indicates that the best structure
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is no structure at all. This trivial solution is merely the result of the inability

of the numerical model to represent the real, physical world. It must, therefore,

be excluded as a viable solution.

One (simple) way to achieve this is to fix a single (load bearing) element

to have a density of one. The solution for a non-degenerated problem with all

zeros will cause high stresses in this fixed element, thus excluding this type of

solutions from the admissible set. This causes the problem to become physically

better posed.

4.3
Sensitivity Analysis

The formulation proposed is intended to be used with a gradient-based

optimizer and so it is necessary to compute the first order derivative of the

gamma Augmented Lagrangian, displayed in Eq. (4.14), with respect to the

optimization variables z. The Einstein’s tensor notation is used where repeated

index are summed over.

J(z, µ,λ,γ) = M(z,γ) +
nConst∑
i=1

{
λigi(z) +

µ

2

[
gi(z)

]2}
(4.14)

in which nConst is the total number of constraints. The derivation of the

gradient can be separated in two parts, one relative to the objective function

and the other, to the penalization term:

d

dz
J(z, µ,λ,γ) =

d

dz
M(z,γ) +

nConst∑
i=1

d

dz

{
λigi(z) +

µ

2

[
gi(z)

]2}
(4.15)

4.3.1
Total Weight

The derivative of the total Weight M(z,γ) is quite simple:

d

dzj
M(z,γ) =

nElem∑
i=1

γivi
d

dzj
mi(ρi(z)) =

nElem∑
i=1

γivi
d
[
mi(ρi(z))

]
dρi(z)

dρi(z)

dzj
(4.16)

Here the exponential weight relation for mi(ρi(z)) is used. It is defined in Eq.

(3.3), hence:
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d
[
mi(ρi(z))

]
dρi(z)

= βe−βρi(z) + e−β (4.17)

On the other hand, ρi(z) = Pijzj, where Pij is the regularization filter

matrix described in Section 2.3, and:

dρi(z)

dzj
=

d

dzj
Pijzj = Pij (4.18)

Resuming:

d

dzj
M(z,γ) =

nElem∑
i=1

γivi

[
βe−βρi(z) + e−β

]
Pij (4.19)

4.3.2
Penalization Term

The penalization term is more complicated and it will require several

steps:

nConst∑
i=1

d

dz

{
λigi(z) +

µ

2

[
gi(z)

]2}
=

nConst∑
i=1

{
λi + µgi(z)

} d

dz
gi(z) (4.20)

The constraint gi(z), is depicted in Eq. (4.11). If σVMi < σlim then:

d

dz
gi(z) = 0 (4.21)

Otherwise:

d

dz
gi(z) =

d

dz

[
ρ3
i (σ

VM
i − 1)2

]
=
d
[
ρ3
i

]
dz

(σi − 1)2 + ρ3
i

d
[
(σVMi − 1)2

]
dz

(4.22)

d

dz
gi(z) =


0 if σVMi < σlim
d

dz

[
ρ3
i (σ

VM
i − 1)2

]
otherwise

(4.23)
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d
[
ρ3
i

]
dzj

= 3ρ2
jPji (4.24)

d
[
(σi − 1)2

]
dzj

= 2(σi − 1)
d
[
σVMi

]
dzj

(4.25)

The hardest and most computationally expensive part is to compute
d
[
σVMi

]
dzj

, i.e.:

d
[
σVMi

]
dzj

=
d
[
σVMi

]
dσl

d [σl]

dzj
(4.26)

d
[
σVMi

]
dσl

=
3

4σVMi

[
2σl −

2

3
tr(σl)δ

]
(4.27)

To understand the expression above see Eq. (3.12) and note that
d[tr(σ)]
dσ

= δ.

This is equation is quite long so the term
d
[
σVMi

]
dσl

will be carried out for

simplicity.

d [σl]

dzj
=
d [σl]

dUp

d
[
Up
]

dzj
(4.28)

d [σl]

dUp
= C : Bp (4.29)

The expression above comes from Eqs. (2.10) and (2.4). Again for simplicity

the term
d [σl]

dUp
is carried out instead of the above deduction. Summarizing so

far for the derivation of σ:

nConst∑
i=1

{
λi + µgi(z)

}
2ρ3

i (σi − 1)
d
[
σVMi

]
dσl

d [σl]

dUp

d
[
Up
]

dzj
(4.30)

The computation of
d
[
Up
]

dzj
is rather expensive, but it is possible to

circumvent that using the adjoint method. We must start with the equilibrium

DBD
PUC-Rio - Certificação Digital Nº 1512532/CA



Chapter 4. Proposed Formulation 69

equations:

KqpUp − fq = 0

d

dzj

(
KqpUp − fq

)
=
d
[
Kqp

]
dzj

Up +Kqp

d
[
Up
]

dzj
= 0

and noticing that:

ξq

(
d
[
Kqp

]
dzj

Up +Kqp

d
[
Up
]

dzj

)
= 0 (4.31)

can be added to the Eq. (4.30) without modifying it. Here ξi is the adjoint

variable:

nConst∑
i=1

{
λi + µgi(z)

}
2ρ3

i (σi−1)
d
[
σVMi

]
dσl

d [σl]

dUp

d
[
Up
]

dzj
+ξq

(
d
[
Kqp

]
dzj

Up +Kqp

d
[
Up
]

dzj

)
(4.32)

Collecting the terms with
d
[
Up
]

dzj
:


nConst∑
i=1

{
λi + µgi(z)

}
2ρ3

i (σi − 1)
d
[
σVMi

]
dσl

d [σl]

dUp
+ ξqKqp

 d
[
Up
]

dzj
+ξq

d
[
Kqp

]
dzj

Up

(4.33)
The trick now is to define ξq in order to have:

nConst∑
i=1

{
λi + µgi(z)

}
2ρ3

i (σi − 1)
d
[
σVMi

]
dσl

d [σl]

dUp
+ ξqKqp = 0 (4.34)

ξqKqp = −
nConst∑
i=1

{
λi + µgi(z)

}
2ρ3

i (σi − 1)
d
[
σVMi

]
dσl

d [σl]

dUp
(4.35)

Noticing that Kip = Kpi, and defining f̂p as:
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f̂p = −
nConst∑
i=1

{
λi + µgi(z)

}
2ρ3

i (σi − 1)
d
[
σVMi

]
dσl

d [σl]

dUp
(4.36)

Kpqξq = f̂p (4.37)

That way ξq can be obtained solving the linear system with only one right-

hand side. In contrast, using direct differentiation would require the solution of

the linear system for “nConst” right-hand sides. Equation (4.33) breaks down

to:

ξq
d
[
Kqp

]
dzj

Up = ξq
d
[
Kqp

]
dEq

d
[
Eq
]

dρq

d
[
ρq
]

dzj
Up (4.38)

The whole penalization differentiation term is then:

nConst∑
i=1

d

dz

{
λigi(z) +

µ

2

[
gi(z)

]2}
= ξq

d
[
Kqp

]
dz

Up+
nConst∑
i=1

{
λi + µgi(z)

}
3ρ2

jPji(σ
VM
i −1)2

(4.39)
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5
Numerical Results

This Chapter presents the numerical results obtained with the proposed

method (described in Chapter 4) through a MATLAB implementation. Some

problems are used as examples to address concerns over the results, while

others are merely expositions and demonstrate the robustness of the method.

The MMA algorithm was used for the optimization and its adjustable

parameters setting is displayed in Table 5.1. The parameters control how

conservative the algorithm is and significantly influence on the results. For

more information on those see Svanberg (1987).

Table 5.1: MMA adjustable parameters setting

MMA Parameters

Parameter Description Value

asyinit Asymptote Control 0.2

asyinc Asymptote Control 1.2

asydec Asymptote Control 0.7

move Move Limit 0.3

Table 5.2 shows the initial values for µ, λ and γ as well as other numerical

settings. The values are used for all examples unless stated otherwise. Plane

stress is considered for all the 2D cases presented.

Table 5.2: General numerical setting for the proposed method.

Topology Optimization Parameters
Parameter Description Value

µ Penalization factor 0.1
λ Lagrangian Multiplier 0.01
γ Proposed Factor 0.0
σtol Stress Tolerance 1.1σlim
p SIMP Penalization 3
β Weight Penalization 3

zini Initial Guess 0.5
ε Erzats Stiffness 10−4
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A tolerance of 10% over the stress limit is set. Theoretically it is possible

to obtain a solution with σtol = σlim, however this makes the problem

slightly instable, due to numerical reasons, which can degenerate the solution.

Furthermore, tolerances as low as 1% were achieved. Regardless, this is of little

significance as the result still needs to be interpreted to reach a manufacturable

structure. This process of interpretation can severely alter the stress analyses

and so a slight relaxation on the stress measure is not so detrimental. What is

important is that there is a clear control over this allowable range.

The only numerical parameter from the proposed method that needs

to be adjusted for the different mesh sizes is the tolerance for the minimum

step for the stagnation condition that halts the optimization. This is probably

because the finer meshes also need finer adjustments of the design variables in

order to satisfy the stress tolerance. However, it seems to follow the heuristic

Eq. (5.1) used in all the examples shown.

tol = min

[
c

(
1

nElem

)0.5

, 0.01

]
(5.1)

in which “c” is a constant that has value c = 0.2 for 2D cases and c = 1.0 for

3D.

5.1
L-Beam

The first problem analyzed is the L-Beam displayed in Fig. 5.1. The

L-Beam is considered a benchmark problem for stress-constrained topology

optimization because of its sharp corner, which generates a stress singularity.

This causes the results of the compliance minimization and stress constraint to

be much different. The physical parameters used for this problem are displayed

in table 5.3.

Table 5.3: Physical parameter for the L-Beam problem.

Physical Parameters
Parameter Description Value

E0 Young’s Modulus 1 Pa
υ Poisson Ratio 0.3
σlim Stress Limit 42 Pa
L Characteristic Length 1 m
t Thickness 1 m
P Load 1 N
d Load Distribution 0.06 m
r Filter Radius 0.015 m
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Figure 5.1: L-Beam Domain and boundary conditions.

Figure 5.2 shows the results for a polygonal mesh with 16380. The mesh

was generated using the PolyMesher implementation described in Talischi et al.

(2012a) and is based on Voronoi diagrams and Loyd iterations.

Figures 5.3, 5.4, 5.5 and 5.6 show the results for regular Q4 element

meshes with 6, 400 , 16, 384 , 160, 000 and 1, 000, 000 elements and a filter

power of s = 1, s = 1, s = 2 and s = 4, respectively. The reason behind the

different filter powers is explained in Subsection 5.2.1.

Figure 5.2: Result for a mesh of 16380 polygonal Elements and filter power
s = 1. The final volume is 44% of the total volume.
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Figure 5.3: Result for a mesh of 6400 Q4 Elements and filter power s = 1. The
final volume is 42% of the total volume.

Figure 5.4: Result for a mesh of 16384 Q4 Elements and filter power s = 1.
The final volume is 43% of the total volume.
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Figure 5.5: Result for a mesh of 160000 Q4 Elements and filter power s = 2.
The final volume is 45% of the total volume.

Figure 5.6: Result for a mesh of 1000000 Q4 Elements and filter power s = 4.
The final volume is 46% of the total volume.

The results shown here clearly avoid the stress concentration of the sharp

corner and lead to a more viable structure. Nevertheless, they do not converge

with mesh refinement, which might be caused by the need to use different

filters. The apparent tendency is an increase in final volume with the number

of elements. This is expected since it also enhances the capability of the mesh

in capturing the underlying stress.

5.2
Considerations on mesh Refinement

It is desirable that the solution of the topology optimization problem

do not depend on the discretization used. Thus, it should remain reasonably
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constant under mesh refinement. As stated in Section 2.3, some authors have

shown that techniques like Filtering can guarantee mesh convergence for the

compliance minimization formulation. However, the stress constraint problem

presents other subtle characteristics that hamper this.

One of the issues is that the stress on geometric singularities does not

converge to a finite value under mesh refinement. Figure 5.7 shows this phe-

nomenon happening on the L-Beam domain with homogeneous material distri-

bution. Despite having exactly the same properties and boundary conditions,

the maximum stress goes from 600Pa, to 900Pa, and then to 1300Pa, sim-

ply due to the mesh refinement. As it does so, it becomes increasingly more

concentrated at the L-shape corner.

Figure 5.7: Plot of the maximum stress of the L-Beam domain with homoge-
neous material distribution as a function of the mesh size.

A sharp corner like the one present in the domain would not happen in

nature because the stress in such regions is so high that it would deform (at

least microscopically) to a rounded form or fracture completely. Nonetheless,

the model predicts a stress tending towards infinity. Therefore, this numerical

paradigm comes from a lack of consistency with the physical reality.

5.2.1
Mesh Refinement and Filtering

The filter generates regions of intermediate densities around the borders

of the structure even if the design variables depict a clear zero or one frontier

for the distribution of material. This can be seen in Fig. 5.8 for different sized

elements with the same filter radius. Consequently, there is a layer of weaker
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material around the surfaces of the design. This in turn, leads to an unexpected

complications.

Filter Radius

5.8(a): 5.8(b): 5.8(c): 5.8(d):

Figure 5.8: Effect of the filter on the density distribution for meshes of
decreasing element size from (a) to (d).

It is well know that the highest stresses of a structure will be located

at its surface when there are no body forces at play. Yet, these zones are

precisely the ones with the lower stiffness, hence the high stress in these areas

is aggravated. This is even more troublesome when dealing with fine meshes

that have a large quantity of elements in these regions and are therefore, more

capable of capturing the small-scale transition.

The issue can be alleviated using a polynomial filter instead of a linear

one. The increase of the exponent “s” on Eq. (2.25) diminishes the extension

of gray and allows a more abrupt transition between void and material as

can be seen in Fig. 5.9. This allows a better representation of the material

boundaries. Also, if the exponent is too high, it allows the appearance of small

scale artifacts that might be undesirable.

5.9(a): Exponent = 1.0 5.9(b): Exponent = 2.0 5.9(c): Exponent = 4.0

Figure 5.9: Stress map of the L-Beam domain with homogeneous material
distribution and a mesh of (a) 16380 Elements (b) 160000 Elements (c) 1000000
Elements.

These effects can be seen in Table 5.4 where the final solution is displayed

for various values of “s” and regular meshes of different sizes. The red frames

indicate the optimim values for “s” for each mesh size. The evaluation was

based solely on visual comparisons, meaning that there are some inherent
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biases. However, there is a clear deterioration of the results for the 16,384

element mesh with the increase of “s”, at the same time that the results of the

larger meshes improved. Moreover, there is a very apparent deterioration of

the structure after “s” exceeds a certain value.

Of course this increment also causes the appearance of smaller scale

features that are somewhat undesirable. For this reason the value of “s” should

be the smallest possible.

5.3
Stress Constraint on Domains Without Geometrical Singularity

The main focus of the stress constrained topology optimization has been

the generation of structures in domains with geometrical singularities as seen in

the L-Beam case. Many authors have argued that there is a equivalence between

the compliance minimization problem and the stress constrained one. In fact

Christensen & Klarbring (2008) states that this is so for trusses. However, for

topology optimization, it is more complicated.

A common practice when dealing with stress constraints is to remove the

elements around the supports and loads from the optimization, keeping them

fixed throughout the whole process. The reason for keeping them fixed, is that

they are regions of stress singularities, because of the boundary conditions,

and would disrupt the optimization process. This habit is justified by claiming

that this is a artificial phenomenon.

Here it is useful to make a clear distinction between stress concentration

and stress singularities. The first one is a real phenomenon characterized

by a high gradient in the stress within a small, local region. The second

is a numerical consequence of unrealistic modeling and will not converge

towards any value under mesh refinement. In stress constrained topology

optimization problems, stress concentrations are the subject of interest, while

stress singularities should be treated, so as not to disrupt the results.

Although point-applied loads characterize as stress singularities, it is

important to understand that there is a real stress concentration around the

application of forces. For this reason, the load should always be distributed

throughout a large enough region, so as not to violate the stress constraint.

Another point of caution is that the end of a displacement constraint,

such as fixed supports, generally behaves as a sharp corner, causing a stress

singularity that masks another possible stress concentration. The reason for

this is that an infinitely stiff support is not a realistic model. An alternative is

to use a spring like foundation in order to have a better physical representation.
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Table 5.4: Influence of the filter power “s” on regular meshes with different
number of elements.

16,384 Elements 160,000 Elements 1,000,000 Elements

s = 1

s = 2

s = 3

s = 4

s = 5
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5.3.1
MBB Beam

The MBB beam is a classical domain for topology optimization and is

described in the Fig. 5.10. The load and supports are distributed through a

small region to avoid stress singularity, as described in the previous Section.

Figure 5.10: MBB beam Domain and boundary conditions.

Table 5.5: Physical parameter for the MBB problem.

Physical Parameters

Parameter Description Value

E0 Young’s Modulus 1 Pa

υ Poisson Ratio 0.3

σlim Stress Limit 126 Pa

L Characteristic Length 1 m

t Thickness 1 m

P Total Load 5 N

r Filter Radius 0.045 m

Figure 5.11 shows the result excluding the elements around the regions of

load and support. Fig. 5.12 shows the result for the compliance minimization

version of the problem, using a volume constraint equal to the final volume of

the stress-constrained solution. The mesh used has 30,000 regular Q4 elements.

The filter power used was s = 2. Both are pretty similar, insinuating some level
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of equivalence between the two. However the analyses of the stress show that

the pair presents stress concentrations much higher than the limit imposed,

and that they behave quite differently. On a side note, the stress displayed in

Figs. 5.11 and 5.12 was clamped to achieve a better image. The stresses in red

are higher than the maximum value on the color map.

Figure 5.11: MBB beam solution removing the elements around the boundary
conditions.

Figure 5.12: MBB beam solution for the minimization of compliance with a
volume constraint equal to the Fig. 5.11.

The elements around the boundaries are then included in the optimiza-

tion in order to see their influence in the final design. The results are displayed

in Figs. 5.13 and differ significantly from the previous ones. The most promi-

nent feature is the straight beam that eliminates the stress concentration over

the support region.

Figure 5.13: MBB beam solution for the stress constrained problem including
the boundary elements. The final volume is 35% of the total volume.

The presence of the boundary elements dramatically changes the results

and ensures a more realistic model of the structure. The design in Fig. 5.13

is more suitable for a real-life structure while the ones in Figs. 5.11 and 5.12

would probably fracture around the support and load regions.
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5.3.2
Wrench Domain

The wrench domain, shown in the Fig. 5.14, displays the versatility of

the polygonal mesh as it has circles and lines that are neither parallel nor

perpendicular. Two Load cases are applied and ensure symmetry.

Handling multiple load cases in the weight minimization stress con-

strained problem is much more straight forward than for the compliance mini-

mization problem. In the latter the multiple load cases stem a multi-objective

optimization which might be concerning. As for the problem of interest the

multiple load cases only adds more constraints that are treated naturally with

the Augmented Lagrangian method.

5.14(a): Load Case 1 5.14(b): Load Case 2

Figure 5.14: Wrench domain, Support and Load cases.

Table 5.6: Physical parameter for the Wrench domain problem.

Physical Parameters

Parameter Description Value

E0 Young’s Modulus 1 Pa

υ Poisson Ratio 0.3

σlim Stress Limit 120 Pa

L Characteristic Length 2.8 m

t Thickness 1 m

P Total Load 4.70 N

r Filter Radius 0.035 m

The mesh used has 15, 000 polygonal elements. The filter power used was

s = 1. Despite not having stress singularities the results for the minimization

of compliance, Fig. 5.15, and the stress constrained problem, Fig. 5.16, have

some significant differences. Both of the final results have the same percentage

of volume, however, in the stress constrained case the material is concentrated

towards the middle of the tool while the compliance case has more material

in the boundaries of the domain which leads to some stress concentration in

specific regions.
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Figure 5.15: Wrench domain solution for the minimization of compliance with
34% of the total volume. The stress displayed is for the first load case.

Figure 5.16: Wrench domain solution for the stress constrained problem with
34% of the total volume. The stress displayed is for the first load case.

5.4
3D Cases

Although 2D cases are useful for various reasons, ultimately one needs

to do a 3D model for real-life applications. The main complication of adding

an extra dimension is the increase of computational cost, both in memory and

processing power. Not only does the size of the mesh have to grown to maintain

the numerical precision and structure representation capability, but the cost

of solving the equilibrium equations also greatly increases. Nevertheless, the

formulation proposed worked well with the same parameter values described

in Table 5.2. The only modification is the value of constant “c” in Eq. (5.1).

The 3D L-Beam problem was solved with the properties described in

Table 5.7. The generation of a good polygonal mesh in 3D is more complicated.

Hence, only regular hexahedral meshes were used.

Table 5.7: Physical parameter for the 3D L-Beam problem.

Physical Parameters
Parameter Description Value

E0 Young’s Modulus 1 Pa
υ Poisson Ratio 0.3
σlim Stress Limit 420 Pa
L Characteristic Length 1 m
t Thickness 0.1 m
P Load 1 N
d Load Distribution 0.06 m
r Filter Radius 0.015 m
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The results for meshes of 64,000 and 265,000 Elements are displayed in

Figs. 5.17 and 5.20, respectively, together with a iso-surface interpretation of

the structures in Figs. 5.18 and 5.21. Despite having a lot of common features

with the 2D solution, it is interesting to perceive the 3D artifacts that make

the design more efficient.

5.17(a): Isometric view 5.17(b): Side view

Figure 5.17: Results for the 3D L-Beam problem meshed with 64,000 elements.
Displaying the elements with density above 0.5.

5.18(a): Isometric view 5.18(b): Side view

Figure 5.18: Iso-surface of the result displayed in 5.17 with a cutoff value of
0.5.
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Figure 5.19: 3D details of the result in Fig. 5.17.

5.20(a): Isometric view 5.20(b): Side view

Figure 5.20: Results for the 3D L-Beam problem meshed with 64,000 elements.
Displaying the elements with density above 0.5.
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5.21(a): Isometric view 5.21(b): Side view

Figure 5.21: Iso-surface of the result displayed in 5.20 with a cutoff value of
0.5.

Figure 5.22: 3D details of the result in Fig. 5.20.

5.5
Computational Efficiency

The stress-constrained problem is usually associated with a high compu-

tational cost. This Section attests to the efficiency of the proposed method,

which requires only a small number of iterations to achieve the solution.
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The bottleneck of the implementation is the solution of linear systems

both for the equilibrium equations and for sensitivities’ calculation.

The assembling of the stiffness matrix is also problematic and re-

quires significant time. This was alleviated using a third-party implementation

called MILAMIN, an efficient FEM implementation, for more information see

Dabrowski et al. (2008).

All of the tests were conducted in two different machines due to memory

requirements. The first denominated “Van Dyke” had an Intel Core i5-3330

CPU at 3.00 GHz and 8GB of RAM. The second, called “Ncc”, had an i7-

4930k CPU at 3.40 GHz and 64GB of RAM. Both were running on a 64-bit

operating system.

Table 5.8: Table with the efficiency of the proposed method. The letter R
indicates a regular mesh and P a polygonal mesh.

Results
Problem Mesh Machine Iterations Time Volume Figure

2D L-Beam 16,380 P Van Dyke 153 215 s 44 % 5.2
2D L-Beam 6,400 R Van Dyke 144 58 s 43 % 5.3
2D L-Beam 16,380 R Van Dyke 145 56 s 42 % 5.4
2D L-Beam 160,000 R Van Dyke 362 1.14 h 45 % 5.5
2D L-Beam 1,000,000 R Ncc 564 8.84 h 46 % 5.6
2D MBB 30,000 R Van Dyke 479 656 s 35 % 5.13

3D L-Beam 64,000 R Ncc 150 1.5 h 42 % 5.17
3D L-Beam 265,200 R Ncc 243 62.8 h 41 % 5.20

The computational time for the 2D case seems to follow a linear behavior

over the number of elements as can be seen in Fig. 5.23. There is not

enough results of 3D cases to make a similar claim. The number of iterations

necessary also increases with the mesh size, but in a reasonable manner. This is

probably because the finer meshes provide a better representation of the stress,

making fine adjustments necessary in order to satisfy the increasing number of

constraints.
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Figure 5.23: Computational time vs. the number of elements in the mesh for
2D cases.
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6
Conclusions and Future Work

Topology optimization with stress constraints poses remarkable compli-

cations. Hopefully, this text will offer the reader some relevant insights that

lead to a better understanding of this problem.

6.1
Conclusions

The two main concerns of the stress constraints, locality and singular

optima, were discussed in detail. The high number of constraints, due to

the local property of the stress, makes this inherently a large- scale problem.

Therefore, efficiency is crucial to the solution. It was shown that the regions

where the singular optima is presented were not only degenerated but also

disconnected, making the problem remarkably complicated. Nonetheless, these

two issues greatly interfere with each other, and anyone proposing a method

to solve this problem, must take this in consideration.

The literature review of current techniques, meant to address these

concerns brings some serious weaknesses of these techniques to our attention:

Clustering techniques have too many numerical parameters to be adjusted

for each case and do not scale well to large meshes, in addition to have

severely questionable efficiency. The damage approach has weak control over

the maximum stress on the result, and its formulation demands the solution of

at least 3 linear systems for each iteration. As the size of the mesh increases,

or as one handles 3D cases, the computational cost increases, undermining the

efficiency. Finally, the traditional Augmented Lagrangian method has difficulty

reaching the degenerated regions of the solution space where the optimal points

are present. Thus, the final solution becomes more complicated and could

require a much higher number of iterations.

The main contribution of this work was the technique proposed in

chapter 4, which is based on the Augmented Lagrangian, and does not rely on

clustering. The technique uses an adaptive parameter function of a measure of

stress that allows the optimizer to reach the singular optima. This proved

to be quite efficient, requiring only few iterations. It also scales well, as
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it does not need many numerical adjustments, and maintains a reasonable

computational time, which increases linearly with the number of elements.

This work shows the technique to be easily extendable for 3D cases without

any relevant modification.

This new method allows for the solution of large problems that reach

one million elements. The larger problems revealed unfamiliar difficulties of

the stress constraint problem. In particular, it revealed the paradoxical weak

boundary of the material region, caused by the filter and the high stress, as

described in Subsection 5.2.1. This was partially handled using a polynomial

filter and varying its exponent.

Furthermore, it leads us to question the equivalence between the volume-

constrained compliance minimization problem and the stress-constraint volume

minimization problem for domains without geometrical singularities. The MBB

example displayed drastically different solutions for the two problems when

considering the boundary elements as part of the optimization. This, in turn,

is essential for a more realistic modeling of the structure.

6.2
Suggestions for Future Works

It is frustrating to leave unanswered questions, but due to limitations on

time and energy, there was only so much that the author could realistically do.

If the reader found the text relevant, and is interested in the subject, perhaps

the following topics will incite your curiosity as they do mine:

– The stress constrained problem generally does not converge to the same

solution over mesh refinement. This is a concerning issue that needs to be

addressed urgently. It is necessary to find ways to control the minimum

length scale of the result without compromising the material boundaries.

– The update of the factor γ in the proposed method is completely

heuristic and does not depend on the stress value. Finding a consistent

adaptive formulation for it is not trivial and may considerably enhance

the performance.

– The bottleneck of most topology optimization implementation is the

finite element analyses. This is especially costly for 3D cases when it

is necessary to have a considerably large mesh for a decent structure

representation. The computational time can easily become prohibitive.

Each iteration demands the solution of a different, but closely related,
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linear system. The challenge is to use the information from the previous

solution to solve the new system more quickly (Wang et al., 2007).

– A realistic representation of stress demands a fine mesh which, as stated

before, greatly increases computational time. However, the regions of high

stress are the ones most crucial for the final result. It might be beneficial

to refine the mesh locally in those regions during the optimization, so as

to reduce the total number of necessary elements.

– Perform a non-linear Finite Element Anaylisis of the structure and do

the topology optmization based on this criteria. Generally speaking the

non-linear analysis tends to be more consistent with reality. It would be

interesting to compare the results and see the influence that the non-

linearity has on the solution.
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A
Update of the γ parameter

The γ is a numerical parameter used in the proposed formulation in

Chapter 4. Its value must be determined iteratively during the optimization

based on the stress measure

The update must satisfy a straightforward condition, it must decrease the

value of γ if the stress measure is above a certain limit and increase otherwise.

For the sake of simplicity this is done through a piecewise linear function based

on the value of γ and the stress measure. As it can be seen in Eq. (A.1) this

translates to four parameter, a1, a2, b1, b2 which need to be adjusted, γl, γu

are lower and upper limits, respectively, for the value of γ.

γk+1
i =


max(a1γ

k
i + b1, γl), if ρ0.5

i

σVMi
σlim

> 1.01

min(a2γ
k
i + b2, γu), otherwise

(A.1)

The required condition is quite loose and the set of values that satisfy it

is infinity, so additional constrains are set based on reasonable requests:

– If the value of γ is at its lowest and the stress measure is below the limit it

is desirable that it would have a high increment which we set arbitrarily

as 0.75.

– If the value of γ is at its highest, γu, and the stress is below the limit we

want it to stay the same.

– If the stress is above the limit and the value of γ is decreasing we want

that it jumps to the lowest value if it is within a certain range from it,

choosing it to be [γl, γl + 0.7] arbitrarily.

– If the value for γ is high and the stress is above the limit it is desirable

that the decrement be slow.

The empirical values in these items might leave the reader apprehensive.

However their influence on the capability of the method is modest. The
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algorithm is quite robust over the way the γ update is performed, meaning

that this procedure has little influence on its effectiveness. With this extra

demands we obtain a system of linear equations:



a1(γu) + b1 = γu − c

a1(γl + 0.7) + b1 = 0

a2(γu) + b2 = γu

a2(γl) + b2 = γl + 0.75

(A.2)

The variable c is a small value to avoid stagnation in the case that γ reaches

γu. This system gives the solution:

a1 =
10.0 (c− γu)

10.0 γl − 10.0 γu + 7.0
b1 = − (10.0 l + 7.0) (c− γu)

10.0 γl − 10.0 γu + 7.0
(A.3)

a2 = −0.25

[
3.0 + 4.0 γl − 4.0 γu

γl − γu

]
b2 = 0.75

[
γu

γl − γu

]
(A.4)

Setting γu = 4, γl = 0 and c = 0.01 which are typical values used for the

numerical cases in this dissertation the plots on Figs. A.1 and A.2 are obtained

and it is possible to clearly that this equations have the desirable behavior.

Figure A.1: Plot of the piecewise linear functions describe in Eq. (A.1) with
a1, a2, b1, b2 defined as Eqs. (A.3) and (A.4) for γu = 4, γl = 0 and c = 0.01.
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Figure A.2: Values of γk for successive k iterations in the two cases of stress
measure below the limit and above it. The updates follow Eq. (A.1) with a1,
a2, b1, b2 defined as Eqs. (A.3) and (A.4) for γu = 4, γl = 0 and c = 0.01.
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B
Hashin-Shtrikman bounds

Hashin-Shtrikman bounds (Hashin & Shtrikman, 1963) impose limits on

the possible isotropic material properties for composite two-phase materials as

a function of the volume fraction. In this case, the two materials would be E0

and ε = 0. Requiring that E satisfies these bounds provides some physical

consistency to the formulation, giving the intermediate density regions a

reasonable material behavior. For E0 = 1, ε = 0 and Poisson ratio ν = 1/3, the

bounds are reduced to Eq. (B.1). Figure B.1 shows that the final penalization

should be at least p = 3 in Eq. (B.2) for this value of ν.

Eupper =
ρ

3− 2ρ
Elower =

0 if ρ < 1

1 otherwise
(B.1)

E(ρ) = ε+ ρp(1− ε) (B.2)

Figure B.1: Hashin-Shtrikman bounds and the material interpolation function
(E) with different penalizations.
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C
Simplified Damage Approach

The Damage approach proposed by Verbart et al. (2016a) in his doctorate

thesis is yet another formulation to constrain the stress in the design. Although

it is based on a physical phenomenon, this technique is simply a mathematical

artifice and it is not intended to accurately reproduce the actual damage in

the structure. It can be considered a clever way to aggregate the stresses into

a global constraint.

The idea behind this approach is that high stresses will damage the

structure making it more flexible. A damaged model of the domain is generated

where the regions with stress above the limit have a lower stiffness when

compared to the undamaged model as is shown in Fig. C.1. The damaged

stiffness, Ẽ, must then satisfy the conditions in the Eq. (C.1).

Figure C.1: Damaged model of the domain.

{
Ẽ(z) < E(z), ∀z ∈ Ωσ :=

{
x | σ(x) > σlim

}
Ẽ(z) = E(z), ∀z ∈ Ω \ Ωσ

(C.1)

Verbart et al. (2016a) proposes the following relation for Ẽ in agreement

with Eq. (C.1):
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Ẽ(z, σ) = ε+ β(σ)(E(z)− ε) (C.2)

where ε is the Erzats stiffness and β is the piecewise function:

β(σ) =

1, if σ 6 σlim

e−α(σ/σlim−1)2 , otherwise
(C.3)

α is a numerical parameter that controls the steepness of β as it is seen in Fig.

C.2. A helpful interpretation is to think of α as a parameter that controls how

much damage is caused by high stresses and β(σ) as the damage factor.

Figure C.2: Influence of the numerical parameter α in the function β.

Ẽ is then used to compute the global stiffness matrix K̃ of the damaged

model from which it is possible obtain the displacements Ũ solving Eq. (C.4).

All variables marked with a tilde (˜) refer to the damage model.

K̃(Ẽ)Ũ = f (C.4)

Once Ũ is obtained, it is possible to calculate the compliance of this

model which is always going to be higher than or equal to the compliance

of the undamaged one because the damaged regions only make the structure

more flexible.

A constraint is then introduced to the problem, in the form of Eq. (C.5),

requiring that the two compliances have the same value. This only happens if
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the final structure has no damage, meaning that there is no stress above the

established limit.

The scheme below summarizes the procedure:

E(z) = ε+ ρ(z)p(1− ε) > Ẽ(z, σ) = ε+ β(σ)(E(z)− ε)

K(E)U = F K̃(Ẽ)Ũ = F

C = UTF = UTK(E)U 6 C̃ = ŨTF = ŨTK̃(Ẽ)Ũ

g(z) =
C̃

C
− 1 6 0 (C.5)

This constraint is, however, too strict for traditional optimization algo-

rithms and makes it hard to achieve convergence to a satisfactory result. In

order to mediate this, a numerical parameter δ > 0 is introduced and so a

relaxed version of the constraint is used:

g(z) =
C̃

C
− 1− δ 6 0 (C.6)

The equivalent version of the optimization problem using this formulation

is described in Eq. (C.7). In the same fashion as the other aggregation

techniques, the constraints in each element are replaced by a single constraint

which makes the problem substantially more manageable.

Though, there is the additional cost of solving one extra linear system for

the equilibrium equation of the damaged model in each iteration. Generally for

normal size meshes in 2D examples, the benefits outweigh the costs, because

this formulation tends to need fewer iterations to converge. However, one must

consider that this might not be the case for large meshes or 3D examples where

solving the equilibrium equations dominates the computational cost.
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minimize
z

M(z) =
nElem∑

i

ρi(z)vi

subject to g(z) =
C̃

C
− 1− δ 6 0

0 6 zi 6 1

with K(z)U = F

K̃(z)Ũ = F

(C.7)

C.1
Influence of α and δ

As with most formulations, the damage approach is dependent on the

adjustment of some numerical parameter, which is mostly done empirically. Its

values can greatly influence the final result, making the proper choice of this

parameters crucial to the application of this method.

The δ relaxation of the constraint has severe theoretical consequences, as

it allows for some extent of damage in the design. For instance, the stress can

be higher than the limit in some regions of the final structure. The amount of

damage allowed is also dependent of the value of α. The choice of α and δ is

then intertwined.

A high value of α and a low value of δ diminish the allowable damage

but it is important to emphasize that this decreases the well posedness of the

problem. The convergence is then impaired leading to unsatisfactory results. In

the end, one must make a reasonable balance between accuracy and efficiency.

C.2
Damage Approach

The Damage approach naturally handles the singular optima in a theo-

retically elegant fashion. Although the stresses in void regions are high, they

don’t influence the optimization because damage in regions without material is

irrelevant as they don’t contribute to the overall compliance of the structure.

The damage approach acts as a relaxation on its own and the singular

optimas are included as feasible points, however they can still be disconnected

from the main feasible region.

The numerical parameter α and δ control the level of relaxation as

displayed in the Figs. C.3 and C.4. For δ = 0 the constraint resembles the

original ones very closely and still includes the singular optima. Nonetheless

these optimum points cannot be reached through traditional optimization.
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Increasing the value of α has a similar effect. Lowering the value of α and

increasing the value of δ allows for those points to be reached. But this also

changes the global optimum of the problem, allowing solutions with a higher

stress than is admissible.

Figure C.3: Variation of the damage constraint with the value of α with a fixed
δ = 0.1.

Figure C.4: Variation of the damage constraint with the value of δ with a fixed
α = 0.5.

DBD
PUC-Rio - Certificação Digital Nº 1512532/CA



Bibliography

Amstutz, Samuel, & Novotny, Antonio A. 2010. Topological optimization

of structures subject to Von Mises stress constraints. Structural and

Multidisciplinary Optimization, 41(3), 407–420.

Bathe, Klaus-Jürgen. 1996. Finite element procedures. Englewood Cliffs,
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