
5

IBR on the GPU

In this chapter we describe our proposed implementation for IBR view

synthesis, adapting the methods highlighted in the previous chapters. We begin

by summarizing a basic conceptual algorithm and further develop it into a more

efficient version by exploring current GPUs programmability.

5.1

Conceptual algorithm

Techniques explained in Chapters 3 and 4 lead to a complete solution

for rendering novel views from depth images, whose conceptual algorithm is

depicted in Figure 5.1. The first step is to read input depth images from the

disk into main memory, along with cameras’ matrices: calibration (K) and

view (V ). Then, view-dependent geometry is built for each input camera using

provided depth maps, as described in sections 3.2 and 3.3.

Afterwards, virtual camera is configured using pair of adjacent cameras’

Figure 5.1: Conceptual algorithm for novel view synthesis.

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA



Interactive image-based rendering for virtual view synthesis from depth images 36

data, using an interpolation process such as the one mentioned in Section 4.1.

Later, meshes for adjacent cameras can be warped into the virtual camera

as highlighted in Section 3.3, and occlusion areas can be identified as shown

in Section 3.4. Finally, the partial results are composited to generate the final

rendered image as described in Section 4.2.

Following sections detail these steps and introduce modifications in the

process so as to improve performance.

5.2

Creation of view-dependent geometry

The basic algorithm in the previous section suggests that view-dependent

geometry be created for all cameras in a frame-basis. At every new frame, each

of n input cameras’ depth map with resolution WxH (assuming that all images

have the same resolution) needs to be processed to yield a 3D mesh with WxH

vertices, through method mentioned in Section 3.3. Later on the process, two

out of those n meshes are sent to the GPU to be warped.

A key observation that lead to a economy both in memory footprint

and in CPU-GPU transfer time follows. All generated meshes are regular and

share the same X,Y coordinates for corresponding vertices, provided images

resolution is the same for all input cameras. Only the Z coordinate, which

comes from the depth map, change from mesh to mesh.

So, a straightforward optimization is to generate a single vertex buffer

with a 2D mesh, with only Xi and Yi coordinates (following notation defined

in Section 3.3). Assuming images resolution is the same for every frame and

every input camera, the mesh can be created only once and stored in the GPU

memory.

At each new frame, color images and depth maps for pair of neighboring

cameras are sent as textures to GPU, and the mesh defined in the vertex buffer

is rendered once for each camera. A vertex shader is responsible for fetching

the depth map at texture coordinates Xi, Yi and determining the coordinate

Zw, through equations mentioned in sections 3.2 and 3.3.

In our implementation, we create a static OpenGL’s vertex buffer object

(VBO) [31] for storing the 2D mesh. With that simple modification, the

mesh is transferred only once to the GPU in an initialization phase, yielding

great improvement in rendering performance and transfer-time. Figure 5.2

summarizes the described process. In the initialization phase we also create a

pair of target render textures (FBOs in OpenGL), which are used as temporary

render targets for pair of input cameras warping results, which are blended

later.

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA



Interactive image-based rendering for virtual view synthesis from depth images 37

Figure 5.2: Vertex-buffer object used for improving performance during mesh
generation.

5.3

Warping to novel viewpoint and occlusions identification

In our implementation, we use the same vertex shader mentioned in the

previous section to also perform 3D warping and occlusion areas identification.

Inside the vertex shader, after the Zw coordinate determination, we re-

trieve vertice’s global coordinates (Xw, Yw, Zw) from (Xi, Yi, Zw) using expres-

sions 3-7.

Finally, the vertice is projected into the novel viewpoint using virtual

camera’s calibration and view matrices, through equation 3-3, carrying the

color information read from the color texture.

Besides, the same vertex shader is responsible for sampling the vertice

neighbors for determining whether it belongs to an occlusion region or not,

with the method defined in Section 3.4.

Therefore the input of the vertex shader is:

– Minimum and maximum depth values for Zw unpacking (Section 3.2)

– Input camera projection matrix (K * V)

– Texture with color image

– Texture with depth map

– Virtual camera calibration and view matrix

It unpacks depth Zw, unprojects vertice into global coordinate system,

warps it into the virtual view and labels vertice as belonging to an occlusion

area or not. In conclusion, the vertex shader output is:

– Occlusion label

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA



Interactive image-based rendering for virtual view synthesis from depth images 38

Figure 5.3: Reference view rendering into a FBO, using vertex and fragment
shaders.

– Depth Zw

– Texture coordinates for color texture, which will be interpolated by the

hardware rasterizer.

A fragment shader in our implementation is responsible for rendering the

final warped image inside a frame-buffer object, both color and depth data. It

fetches the color texture with the input texture coordinates, stores occlusion

label into color alpha channel and outputs depth Zw, in global coordinates.

Figure 5.3 summarizes the process of rendering a single reference view

into a temporary frame buffer.

5.4

Compositing on the GPU

After rendering reference views into separate buffers, we perform com-

positing: a full-screen quadrilateral is used to trigger a fragment shader, which

in turn performs the necessary blending computations mentioned in Chapter

4, and outputs the pixel values directly to the screen.

The input of this blending fragment shader is:

– Virtual and references cameras position: used for angular distances

computation (Section 4.2)

– Textures with color and depth data for warping results of reference

cameras

Compositing is done in a similar fashion to the one described in Section

4.2. To meet the characteristics mentioned in that Section, here we propose

and detail a penalty-based calculation of contribution weights for reference

cameras.

The first desired characteristic for the compositing weights, namely

angular distance influence on reference camera’s weight, can be achieved by

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA



Interactive image-based rendering for virtual view synthesis from depth images 39

Figure 5.4: Influence of angular distance in reference camera’s contribution
during compositing.

using Equation 4-4 (Section 4.2). The behavior of that equation is depicted in

Figure 5.4. The cosine-based equation guarantees a smooth variation of weights

when changing the viewpoint, and also gives greater weight as the viewpoint

gets closer to a reference camera.

Next we add a visibility test per-pixel, using a threshold τ to account

for errors in calibration and depth estimation (refer to Section 4.2 for more

details). By comparing depths for pixels pi and pi+1 from cameras Ci and Ci+1

(distance relative to the virtual camera), we can define visibility factors for

both reference cameras:

closer(pi) =







1, if Zi − Zi+1 < −τ

0, otherwise

closer(pi+1) =







1, if Zi+1 − Zi < −τ

0, otherwise

The interpretation to use those factors is: when pixel pi is much closer to

the virtual camera than pi+1, wi should be increased, or decreased when pi+1 is

much closer. Those observations yield the modified equation for weights (refer

to Equation 4-4 for wAngi derivation):

wi = clamp(wAngi + closer(pi)− closer(pi+1), 0.0, 1.0) (5-1)

The missing part is the treatment of pixels marked occluded. For that

we derive a penalty considering the following ideas:

– when pixel pi is marked occluded, weight wi should be penalized

– the penalty should not be applied when a reference camera almost

coincides with the virtual camera, otherwise it should strongly affect

that camera’s weight

We propose a method based on angular distances to build a penalty term

for pixels marked occluded. When the virtual camera is located very close to a

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA



Interactive image-based rendering for virtual view synthesis from depth images 40

Figure 5.5: Penalty for pixels marked occluded based on angular distance.

reference camera, this camera’s occlusion areas should not be heavily penalized,

since they barely reveal any occluded areas. On the other hand, when virtual

camera is far from a reference camera, areas marked as occluded certainly can

expose unsampled areas, and therefore should be penalized in favor of the use

of the other camera’s data.

Equation 5-2 shows how this penalty is calculated in our implementation,

using the same notation defined in Section 4.2:

φi = occi(a
θi

θi + θi+1

)4 (5-2)

Its behavior is depicted in Figure 5.5. Coefficient a controls the increase

due to angle distance (we used a = 30 in our implementation for the used

datasets). occi corresponds to the occlusion label defined in previous Sections.

We incorporate this penalty to the weight equation to get the final weight

value wi for camera Ci, and Equation 5-1 turns into:

wi = min(1.0, φi+1+(1−φi)clamp(wAngi+φicloser(pi)−φi+1closer(pi+1), 0.0, 1.0))

(5-3)
Basically the penalty for pixels marked occluded attenuates both the an-

gular distance weight and the visibility test results. That equation summarizes

the mentioned desired characteristics:

– when virtual camera is very close to a reference camera, the virtual image

is almost identical to the reference one

– transitions are smooth and based on angular distances

– pixels marked occluded are treated differently to avoid rubber sheets on

unsampled regions

– visibility ordering is enforced

Those weights are used to determine the final composited color as defined

in equation 4-5 from Section 4.2 (since wi is normalized, wi+1 = 1− wi).

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA



Interactive image-based rendering for virtual view synthesis from depth images 41

Finally, we can summarize our proposed technique after considering

all optimizations aforementioned in previous sections. Following algorithm

overviews the steps involved in rendering of a novel view.

Phase 1: Initialization

1.1 Create and transfer vertex buffer object for a 2D mesh with the

same resolution as input images

1.2 Create two frame buffer objects for temporary storage

1.3 Create textures, vertex shaders and fragment shaders

Phase 2: Rendering reference views separately

2.1 [CPU] Read input images and cameras’ data

2.2 [CPU] Update virtual camera’s position and orientation

2.3 [CPU] Determine neighbor cameras i and i + 1

2.4 [CPU] Activate FBO1 as render target

2.5 [GPU] Render camera i (3D warping and occlusion labeling)

2.6 [CPU] Activate FBO2 as render target

2.7 [GPU] Render camera i+1 (3D warping and occlusion labeling)

Phase 3: Compositing

3.1 [CPU] Use screen as render target

3.2 [CPU] Draw a full-screen quadrilateral to trigger compositing

fragment shader

3.3 [GPU] Compute angular distances, penalties and weights

3.4 [GPU] Composite color from reference views using final com-

puted contribution weights

DBD
PUC-Rio - Certificação Digital Nº 0711269/CA




