
2
Evolution of Ray Tracing

In this chapter we review several research results using either the

CPU or the GPU to perform ray-tracing computations. Different acceleration

structures have been developed on the CPU in order to render dynamic

scenes. On the other hand, the graphics hardware has always impaired an

efficient ray-tracing implementation that also supports object movements and

deformations. Only a single ray-tracing technique uses state-of-the-art GPUs

to support dynamic scenes. Its results prove that the graphics hardware is

capable of outperforming even the fastest CPU implementations.

2.1
Dynamic Scenes on the CPU

Over the last few years, different spatial structures have been proposed

to accelerate ray tracing. Amongst others, the kd-tree has usually shown best

performance in the general case [Havran 2000, Wald 2004]. Its main advantage

is a simple ray-traversal procedure that requires only one multiplication

and one addition per node visited. Indeed, one of the fastest ray-tracing

implementations have combined a technique called inverse frustum culling with

a kd-tree to achieve impressive results [Reshetov et al. 2005].

The process of building a high-quality kd-tree is fairly complicated. The

best known strategy involves minimizing a cost function, known as Surface

Area Heuristic (SAH) [Wald and Havran 2006]. Even with an asymptotically

optimal implementation, a modern CPU still spends several seconds to build a

kd-tree for a non-trivial scene (a hundred thousand triangles, for instance).

This elevated cost has limited kd-tree usage to static scenes, where the

acceleration structure can be built in a pre-processing step.

In order to support dynamic scenes, compromises must be made. One

can use an acceleration structure that is not so efficient but that can be

quickly modified or rebuilt during the rendering process. Some authors have

proposed a new structure, called the Bounding Interval Hierarchy (BIH) to

achieve this goal [Wächter and Keller 2006]. It is similar to a kd-tree, but it

uses two bounding planes instead of one split plane per node. The result is
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a hierarchy that can be quickly rebuilt each new animation frame. The BIH

performed slightly worse than a kd-tree for static scenes but significantly better

for dynamic ones.

Another technique is directed towards structured movement. In this

case, all animation key-frames are known prior to rendering. This enables the

construction of a Bounding Volume Hierarchy (BVH) that can be adapted

(deformed) while objects move in the scene [Wald et al. 2007]. The main idea

is to keep the hierarchy topology while only deforming the node bounding

volumes. Results show interactive frame rates for the entire animation.

However, object movement is restricted. In the event of unpredicted motion,

there is a risk that the hierarchy topology becomes invalid and must be entirely

reconstructed. When this happens, rendering performance is impacted severely.

There are two other ideas that aim to support the general case of dynamic

scenes. Both propose the reconstruction of the entire acceleration structure

each frame. The first technique uses a Uniform Grid [Wald et al. 2006].

Although not so efficient for ray traversal, its simplicity equates to a fast

rebuild scheme. The second proposal implements a kd-tree construction

procedure in parallel, tapping into the processing power of modern multi-

core CPUs [Shevtsov et al. 2006]. The two approaches are able to achieve

interactive rendering rates even for non-structured animations.

2.2
Research on the GPU

With the increasing programmability of commodity graphics processing

units, it is possible to perform more than the specific graphics computations for

which they were designed. GPUs are now capable coprocessors, and their high

speed makes them useful for a variety of applications that can be implemented

in parallel. Today, general purpose computing on the GPU (GPGPU) is an

active research field with several applications including signal processing,

pattern matching, physics simulations and advanced rendering techniques such

as ray tracing.

In spite of that, the GPU hardware still presents several challenges for

implementing efficient algorithms and data structures for ray tracing. For

instance, hardware resources are limited: there is a maximum number of

registers that can be assigned per thread, memory accesses must be rationalized

to avoid saturation of memory bandwidth, and programming features such

as function recursion are not available. These and other factors limit GPU

occupancy and parallelism.

One of the first successful ray tracing performed on the GPU used a
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Uniform Grid [Purcell et al. 2002]. Due to hardware restrictions at the time,

the authors were forced to design a streaming ray tracing algorithm. Each step,

such as generating primary rays, was done by a different fragment shader. This

computational model, although effective, proved to be seriously bandwidth

limited. Each successive draw call incurred a great overhead in setup and

memory transfers. The performance achieved was of a couple hundred thousand

rays per second, while existing CPU implementations were already at millions

of rays per second.

Since then, kd-trees have become very popular on the CPU for its great

performance in several different scenes. Thus, succeeding GPU implementa-

tions attempted to harness the power of this structure. The main difficulty

with traversing a kd-tree is the need of a per-ray traversal stack, in order to

ascend and descend the tree.

Due to hardware restrictions in memory allocation and scatter opera-

tions, the first successful kd-tree implementation on the GPU present two

algorithms for ray traversal that run without a stack, named kd-restart

and kd-backtrack [Foley and Sugerman 2005]. Although both algorithms are

asymptotically optimal, they both present a significant overhead. Rendering

performance was of only a few hundred thousand rays per second, still lagging

behind the CPU.

Later on, advances in graphics hardware programmability made it

possible to write the entire ray tracing algorithm in one single program, thus

avoiding several limitations of previous work. It was not until the most recent

years that ray tracing on the GPU began achieving better performance than

state of the art CPU implementations.

Further improvements on kd-tree based traversal were pro-

posed [Horn et al. 2007]. The authors accelerate the kd-restart and kd-

backtrack algorithms by modifying it with packetization, push-down and

short-stack techniques. For the first time, a GPU ray-tracing technique was

able to rival similar CPU implementations.

Another concurrent work presents a new stackless traversal

algorithm [Popov et al. 2007]. It combines packet traversal with ropes between

neighboring leaf nodes to avoid a stack. This new traversal scheme shows

similar performance than the previously mentioned kd-tree implementations.

At a later time, the same authors present another ray tracing implementation

on the GPU, but for the first time using a BVH [Günther et al. 2007]. The

acceleration structure is built on the CPU, while ray tracing is done on the

graphics card using a stackless algorithm. Although BVHs are usually slower

than kd-trees for ray tracing, the results show comparable performance. One
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advantage of a BVH implementation is a lower memory footprint, which

allowed for the visualization of large models (more than ten million triangles)

on the GPU for the first time.

To our knowledge, only one related research has demonstrated ray-

tracing dynamic scenes on the GPU. This work was based on an efficient

kd-tree reconstruction algorithm, fully implemented inside the graphics hard-

ware [Zhou et al. 2008]. The entire tree structure was rebuilt each frame, if nec-

essary. The tree traversal procedure used a small per-ray stack, implemented

inside the GPU using the CUDA programming model [Nvidia 2008]. When

ray tracing dynamic scenes, performance obtained surpassed the best CPU

implementations. For the first time it was possible to obtain interactive frame

rates for dynamic scenes together with illumination effects such as reflections

and refractions.

In this work we propose a technique with a similar goal. Our proce-

dure fully rebuilds the entire acceleration structure inside the GPU, while

performing ray-traversal and shading computations. However, we have taken

a fundamentally different approach. This latest state-of-the-art result uses a

kd-tree, which is a spatial structure that is highly efficient for ray-traversal

but also requires a highly complex construction procedure. Our strategy

consists in using an acceleration structure that is simpler to be rebuilt

inside the graphics hardware. It may not be able to achieve optimal ray-

traversal performance, but its effectiveness has already been proven in other

related research [Purcell et al. 2002, Wald et al. 2006]. The work presented

here investigates whether it is more effective to trade ray-traversal performance

for a faster structure rebuild.
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