

### Raphael Belo da Silva Meloni

# Classificação de Imagens de Sensoriamento Remoto usando SVM

#### Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio.

Orientador: Ruy Luiz Milidiú



#### Raphael Belo da Silva Meloni

### Classificação de Imagens de Sensoriamento Remoto

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

**Prof. Ruy Luiz Milidiú**Orientador
Departamento de Informática — PUC-Rio

**Prof. Marco Antonio Casanova**Departamento de Informática — PUC-Rio

**Prof. Karin Koogan Breitman**Departamento de Informática — PUC-Rio

**Prof. José Eugênio Leal** Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

#### Raphael Belo da Silva Meloni

Graduou-se Bacharel em Ciência da Computação pela Universidade Federal Fluminense em 2004. Trabalha junto ao INPE no desenvolvimento de um aplicativo de sensoriamento remoto.

Ficha Catalográfica

Meloni, Raphael Belo da Silva

Classificação de Imagens de Sensoriamento Remoto usando SVM / Raphael Belo da Silva Meloni; orientador: Ruy Luiz Milidiú. — 2009.

64 f: II.(color); 29,7 cm

Dissertação (Mestrado em Informática) — Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Incluí bibliografia.

1. Informática — Teses. 2. Sensoriamento remoto. 3. Classificação de imagem. 4. Support Vector Machines. 5. Espaço de cores. 6. Valores altimétricos. 7. Canal infravermelho. I. Milidiú, Ruy Luiz. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

### **Agradecimentos**

Em primeiro lugar, quero agradecer a minha família que sempre me incentivou, apoiou e torceu incondicionalmente nessa batalha, mesmo distante de 90 quilômetros.

À minha namorada, Juliana, pelo carinho, hospitalidade e compreensão em todos os momentos tanto os fáceis quanto os difíceis.

Ao meu professor e orientador Ruy Luiz Milidiú pela orientação, apoio, críticas, correções e sugestões ao longo de meu aprendizado.

Agradeço à K2 Sistemas pelo financiamento desta etapa de minha vida.

Agradeço ao Departamento de Informática e à PUC-Rio pelo apoio.

Finalmente, agradeço a Deus!

#### Resumo

Meloni, Raphael Belo da Silva; Milidiú, Ruy Luiz. **Classificação de Imagens de Sensoriamento Remoto usando SVM.** Rio de Janeiro, 2009. 64 p. Dissertação de Mestrado - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Classificação de imagens é o processo de extração de informação em imagens digitais para reconhecimento de padrões e objetos homogêneos, que em sensoriamento remoto propõe-se a encontrar padrões entre os pixels pertencentes a uma imagem digital e áreas da superfície terrestre, para uma análise posterior por um especialista. Nesta dissertação, utilizamos a metodologia de aprendizado de máquina support vector machines para o problema de classificação de imagens, devido a possibilidade de trabalhar com grande quantidades de características. Construímos classificadores para o problema, utilizando imagens distintas que contém as informações de espaços de cores RGB e HSB, dos valores altimétricos e do canal infravermelho de uma região. Os valores de relevo ou altimétricos contribuíram de forma excelente nos resultados, uma vez que esses valores são características fundamentais de uma região e os mesmos não tinham sido analisados em classificação de imagens de sensoriamento remoto. Destacamos o resultado final, do problema de classificação de imagens, para o problema de identificação de piscinas com vizinhança dois. Os resultados obtidos são 99% de acurácia, 100% de precisão, 93,75% de recall, 96,77% de F-Score e 96,18% de índice Kappa.

#### Palavras-chave

Sensoriamento Remoto; Classificação de Imagem; Support Vector Machines; Espaços de Cores; Valores Altimétricos; Infravermelho

#### **Abstract**

Meloni, Raphael Belo da Silva; Milidiú, Ruy Luiz. **Remote sensing image classification using SVM.** Rio de Janeiro, 2009. 64 p. Msc. Dissertation - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Image Classification is an information extraction process in digital images for pattern and homogeneous objects recognition. In remote sensing it aims to find patterns from digital images pixels, covering an area of earth surface, for subsequent analysis by a specialist. In this dissertation, to this images classification problem we employ Support Vector Machines, a machine learning methodology, due the possibility of working with large quantities of features. We built classifiers to the problem using different image information, such as RGB and HSB color spaces, altimetric values and infrared channel of a region. The altimetric values contributed to excellent results, since these values are fundamental characteristics of a region and they were not previously considered in remote sensing images classification. We highlight the final result, for the identifying swimming pools problem, when neighborhood is two. The results have 99% accuracy, 100% precision, 93.75% of recall, 96.77% F-Score and 96.18% of Kappa index.

### Keywords

Remote Sensing; Image Classification; Support Vector Machines; Color Space; Altimetric Values; Infrared

# Sumário

| 1 Introdução                                       | 13 |
|----------------------------------------------------|----|
| 2 Classificação de Imagens de Sensoriamento Remoto | 16 |
| 2.1. Processamento Digital de Imagens              | 16 |
| 2.1.1. Conceitos Básicos                           | 16 |
| 2.1.2. Nomenclatura                                | 18 |
| 2.2. A Tarefa                                      | 20 |
| 3 Classificação Supervisionada                     | 23 |
| 3.1. Aprendizado de Máquina                        | 23 |
| 3.2. Máxima Verossimilhança                        | 23 |
| 3.3. Support Vector Machines                       | 24 |
| 3.3.1. Hiperplanos de Separação Ótima              | 26 |
| 3.3.2. Support Vector Machines Não Lineares        | 31 |
| 3.3.3. Support Vector Machines Multiclasses        | 34 |
| 4 Construção dos Classificadores                   | 36 |
| 4.1. Modelagem                                     | 36 |
| 4.2. Conjunto de Treinamento                       | 37 |
| 4.3. Treinamento                                   | 38 |
| 4.4. Os Classificadores                            | 39 |
| 4.5. Codificação                                   | 43 |
| 5 Experimentos                                     | 46 |
| 5.1. Corpus                                        | 46 |
| 5.2. Metodologia de Testes                         | 48 |
| 5.3. Descrição dos Experimentos                    | 51 |
| 5.4. Resultados                                    | 52 |
| 5.4.1. Numéricos                                   | 52 |
| 5.4.2. Visuais                                     | 54 |
| 5.4.3 Tempo de Execução                            | 57 |

| PUC-Rio - Certificação Digital № 0711323/CB |  |  |  |
|---------------------------------------------|--|--|--|

6 Conclusão e trabalhos futuros

7 Referência Bibliográfica

| $\sim$ | 4 |
|--------|---|
| n      |   |
| v      |   |
|        |   |

63

# Lista de figuras

| Figura 1 Apresenta o esquema dos passos fundamentais de                |    |
|------------------------------------------------------------------------|----|
| Processamento de Imagem Digital                                        | 17 |
| Figura 2 Apresenta a mistura de cores do modelo RGB                    | 18 |
| Figura 3 Apresenta as componentes do modelo de cor HSB                 | 19 |
| Figura 4 Apresentação de uma mesma imagem com resoluções diferentes    | 19 |
| Figura 5 Exemplo de uma imagem SRTM, na qual quanto mais escuro,       |    |
| menor a altitude                                                       | 20 |
| Figura 6 Imagem Classificada informando uma área desmatada,            |    |
| em que o verde simboliza a floresta e o rosa o desmatamento            | 21 |
| Figura 7 Espaço de características linearmente separável               | 25 |
| Figura 8 Espaço de características linearmente inseparável             | 25 |
| Figura 9 (a) Um hiperplano de separação com margem pequena.            |    |
| (b) Um Hiperplano de Margem Máxima                                     | 26 |
| Figura 10 Hiperplano de separação para o caso linearmente              |    |
| separável. Os vetores de suporte estão circulados.                     | 28 |
| Figura 11 Hiperplano de separação para o caso linearmente inseparável. | 32 |
| Figura 12 Ilustração da estratégia de Support Vector Machines          | 33 |
| Figura 13 Mapeamento do espaço de entrada via função de Kernel         | 33 |
| Figura 14 Exemplifica a técnica de decomposição                        |    |
| One-Against-All para três classes                                      | 35 |
| Figura 15 Exemplifica a técnica de decomposição                        |    |
| One-Against-One para três classes                                      | 35 |
| Figura 16 Exemplificação de um conjunto de exemplos                    | 36 |
| Figura 17 Região de Montego Bay, Jamaica,                              |    |
| etiquetada por um especialista                                         | 38 |
| Figura 18 Exemplificação do contexto de um pixel, com contexto         |    |
| de cores em nível dois e contexto de altimetria em nível cinco.        | 40 |
| Figura 19 Exemplo de como uma imagem pode ser classificada             |    |
| separadamente em quatro threads distintas.                             | 42 |
| Figura 20 Miniatura de uma região de Resende, Rio de Janeiro, Brasil.  | 46 |
| Figura 21 Miniatura de uma região de Arraial do Cabo, RJ, Brasil.      | 47 |
| Figura 22 Miniatura da imagem referente à região de Boulder.           |    |

| Colorado, EUA.                                                        | 48 |
|-----------------------------------------------------------------------|----|
| Figura 23 Apresenta o funcionamento do método de validação cruzada    |    |
| para 4 subconjuntos                                                   | 49 |
| Figura 24 Exibe um exemplo de uso do índice Kappa com                 |    |
| concordância Moderada                                                 | 50 |
| Figura 25 Imagem classificada de uma parte da região de Resende       | 54 |
| Figura 26 Parte da imagem classificada de Resende apresentando        |    |
| falsos positivos                                                      | 54 |
| Figura 27 Imagem de uma parte da região de Arraial do Cabo            | 55 |
| Figura 28 Parte da região de Arraial do Cabo, classificada            |    |
| oelo modelo RGB+HSB                                                   | 55 |
| Figura 29 Parte da região de Arraial do Cabo, classificada            |    |
| oelo modelo RGB+HSB + Altimetria                                      | 56 |
| Figura 30 Parte da imagem classificada pelo modelo, relativo à região |    |
| de Boulder                                                            | 57 |
| Figura 31 Gráfico do tempo de execução do classificador RGB + HSB     |    |
| para Resende                                                          | 58 |
| Figura 32 Gráfico do tempo de execução dos classificadores            |    |
| oara a região de Boulder                                              | 59 |
| Figura 33 Gráfico do tempo de execução dos classificadores            |    |
| oara a região de Arraial com vizinhança três                          | 60 |
| Figura 34 Gráfico do tempo de execução dos classificadores            |    |
| oara a região de Arraial com vizinhança cinco                         | 60 |

## Lista de tabelas

| Tabela 1 Dimensao dos experimentos realizados no prototipo            | 14 |
|-----------------------------------------------------------------------|----|
| Tabela 2 Informações RGB e HSB de alguns exemplos                     |    |
| do conjunto de treinamento                                            | 38 |
| Tabela 3 Interpretação dos valores do coeficiente Kappa               | 50 |
| Tabela 4 Informações dos conjuntos de treinamento dos experimentos    | 51 |
| Tabela 5 Resultados numéricos para o <i>corpus</i> de Resende         | 52 |
| Tabela 6 Resultados numéricos da região de Arraial do Cabo,           |    |
| com nível de vizinhança 3                                             | 53 |
| Tabela 7 Resultados numéricos da região de Arraial do Cabo,           |    |
| com nível de vizinhança 5                                             | 53 |
| Tabela 8 Resultados numéricos para a região de Boulder,               |    |
| com nível de vizinhança 3                                             | 53 |
| Tabela 9 Correspondência entre as classes e as cores da imagem        |    |
| de Arraial do Cabo                                                    | 56 |
| Tabela 10 Correspondência entre as classes e as cores da imagem       |    |
| de Boulder                                                            | 57 |
| Tabela 11 Apresentação dos tempos médios de execução do classificador |    |
| RGB + HSB em 10 execuções para a imagem de Resende                    | 58 |
| Tabela 12 Apresentação dos tempos médios de execução de cada          |    |
| classificador SVM, com nível de vizinhança 3, em 10 execuções         |    |
| para a imagem de Boulder                                              | 58 |
| Tabela 13 Apresentação dos tempos médios de execução de cada          |    |
| classificador SVM em 10 execuções para a imagem de Arraial do Cabo    | 59 |

# Lista de algoritmos

| Algoritmo 1 Pseudo algoritmo referente à iteração do usuário    |    |
|-----------------------------------------------------------------|----|
| com o protótipo                                                 | 43 |
| Algoritmo 2 Pseudo algoritmo referente à etapa de aprendizagem  |    |
| do conjunto de treinamento                                      | 44 |
| Algoritmo 3 Pseudo algoritmo referente à etapa de classificação | 44 |
| Algoritmo 4 Pseudo algoritmo referente à execução de uma thread |    |
| responsável em classificar uma parte da imagem de entrada       | 45 |