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Abstract

Bruno, Hugo Bastos de Sá ; Martha, Luiz Fernando Campos
Ramos (Advisor); Menezes, Ivan Fábio Mota (Co-Advisor). Shape
Optimization with Symmetric Galerkin Boundary Element
Method. Rio de Janeiro, 2017. 75p. Tese de Dissertação – Depar-
tamento de Engenharia Civil e Ambiental, Pontifícia Universidade
Católica do Rio de Janeiro.

In this work a numerical implementation of shape optimization in
two-dimensional linear elasticity problems is proposed. The main goal is
to propose a robust and efficient methodology for the solution of shape
optimization problems regarding the minimization of stress concentration
effects. In the proposed implementation, the structural analysis is performed
by the Symmetric Galerkin Boundary Element Method (SGBEM), thus dis-
posing of the mesh generation burden. The boundary stress evaluation is
carried out by an accurate approach which is ideally suited for problems
with stress concentrations. Another relevant feature of the proposed im-
plementation is a suitable partition of the SGBEM equations which aims
at reducing the computational effort associated with the structural analy-
sis stage. The solution for the optimization problem is obtained by means
of a modern numerical optimization method, the so-called Second Order
Conic Programming (SOCP). Specifically, the solution for the non-linear
optimization is sought by solving a sequence of SOCP subproblems.

Keywords
Shape Optimization; Boundary Element Method; Second-order Conic

Programming; Stress concentrations.
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Resumo

Bruno, Hugo Bastos de Sá ; Martha, Luiz Fernando Campos
Ramos; Menezes, Ivan Fábio Mota.Otimização de Forma com o
Método de Elementos de Contorno Simétrico de Galerkin.
Rio de Janeiro, 2017. 75p. Dissertação de Mestrado – Departamento
de Engenharia Civil e Ambiental, Pontifícia Universidade Católica
do Rio de Janeiro.

Esse trabalho propõe uma implementação numérica para otimização
de forma em problemas bi-dimensionais de elasticidade. O objetivo princi-
pal é propor uma metodologia eficiente e robusta para solução de proble-
mas de otimização de forma considerando a minimização de concentração
de tensões. Na implementação proposta, a análise estrutural é realizada
pelo Método dos Elementos de Contorno Simétrico de Galerkin (MECSG),
evitando-se assim a dispendiosa etapa de geração da malha. A avaliação
das tensões no contorno é obtida por meio de um método preciso, ideal
para problemas com concentrações de tensões. Outro aspecto relevante na
implementação é a adequada partição das equações do MECSG de forma
a reduzir, consideravelmente, o esforço computacional associado à etapa
da análise estrutural. O problema de otimização é resolvido utilizando-se
um método de otimização moderno, conhecido como Programação Cônica
de Segunda Orderm (PCSO). Especificamente, busca-se a reposta do prob-
lema de otimização não linear por meio da solução de uma sequência de
subproblemas de PCSO.

Palavras-chave
Otimização de Forma; Método dos Elementos de Contorno; Progra-

mação Cônica Quadrática; Concentração de tensões.
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There is no way around hard work, embrace
it.
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1
Introduction

The structural design process, traditionally carried out by the so-called
trial-and-error method, is a methodical investigation in which the engineer
employs its own experience and intuition in order to obtain an affordable de-
sign which complies with certain criteria. However, there may exist a great
number of feasible designs, each of which with its own pros and cons. On the
other hand, modern engineering design has now turned its attention in finding
optimal solutions, which may be defined in terms of cost, weight, resistance
or a combination of these. Evidently, the trial-and-error method is no longer
a suitable approach to obtain such solutions. To overcome this limitation, the
design process is often formulated as a mathematical programming problem
for which the solution may be sought by robust and efficient methods. In order
to enable for solutions of real-life complex problems, numerical approaches are
generally employed. Such approaches usually rely on combining mathemati-
cal programming algorithms with structural analysis methods. This class of
formulations belongs to an area of study called structural optimization.

Structural optimization consists of finding the best structure, in terms
of some design variables, in the sense that a given performance measure is
optimized while still satisfying some design constraints. Depending on the
choice of the design parameters the problem may be classified according to
one of the following branches:

– sizing optimization: the parameters refers to some type of structural
thickness or a typical size (for example, optimization of the beams’ cross
sectional area of a truss structure)

– shape optimization: the shape of a structure is optimized without
changing its topology (for example, optimization of a perforated plate
by changing the geometry of the holes)

– topology optimization: the structure is optimized by changing its
topology (for example, creating holes in a continuum media )

Figure 1.1 depicts an example of each one of these branches.
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Chapter 1. Introduction 11

Figure 1.1: The three branches of structural optimization [1].

1.1
Literature Review

According to [2], the first two decades of numerical structural optimiza-
tion were almost exclusively focused on sizing optimization. Real-life appli-
cations of sizing optimization includes the optimization of aircraft wings [3],
truss structures [4], stiffeners in bending plates [5] and several others. Sizing
optimization problems are particularly simple since, usually, no change to the
geometric model is necessary. Despite its simplicity, sizing optimization is of-
ten regarded as the most limited approach, which is commonly associated with
the fact that it only allows for subtle changes in the structure design.

On the other hand, the topology optimization is often regarded as the
most sophisticated branch. Nowadays the study of topology optimization is
mainly focused on the optimization of continuum structures by the so-called
density-based formulation [6]. This formulation relies on defining the density
value of each element of the domain’s mesh as the design variables for the
optimization problem. This methodology can handle a wide set of constraints
while still providing high-performance and low-cost designs. However, as noted
in [7], density-based topology optimization solutions are often considered
as conceptual, given that a post-processing stage is needed to achieve a
manufacturable design.

From a theoretical point of view the shape optimization branch is re-
garded as a subclass of topology optimization. Nevertheless, since the practi-
cal implementations are based on different techniques, these two branches are
often treated separately. In general a structural shape optimization is formu-
lated as a mathematical programming problem in which the boundary of the
domain contains the design variables, the objective function is to minimize a
given performance measure (e.g. volume, cost), and it is subject to a set of me-
chanical constraints (e.g. limits on displacements, yielding criteria). Suitable
formulations allow for a straightforward integration between computer aided
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Chapter 1. Introduction 12

design (CAD) and the optimization procedure. This feature has significant
practical benefits in the sense that design geometric constraints are generally
easily enforced and that the final structure may be readily manufactured. In
addition, several works, e.g. [8, 9, 10, 11], propose the integration between the
topology and shape optimization in order to achieve an automated process
linking the structural optimization to the actual manufacturing. This obser-
vation indicates that shape optimization is an indispensable tool in a real-life
structural optimization process. In order to introduce such subject, the main
aspects concerning the formulation and implementation of shape optimization
methods are detailed in the following.

Boundary Parametrization

One of the key ingredients in structural shape optimization is how to
represent and control the structure’s boundary shape. The main approaches
towards the boundary parametrization in shape optimization are:

– Parameter free approach: This approach employs the model’s dis-
cretization nodes as the design variables to the optimization problem.
Although this approach leads to a simple representation of the bound-
ary, and a straightforward numerical implementation, it also faces several
drawbacks. Firstly, in order to obtain a manufacturable design, a post-
processing stage is necessary to communicate the discrete solution with
the CAD model, therefore deteriorating one of the main advantages of
shape over topology optimization. Also, this approach often leads to a
redundant number of design variables, which tends to compromise the
efficiency of the numerical optimization methods. Lastly, the excessive
number of design variable may also contribute to the undesired effect of
producing jagged geometries [2].

– Level-set: The level-set method accounts for an implicit representation
in which the boundary of the structure is defined as the iso-contour
of a given scalar function φ : R2 → R. Usually, the level-set function
is discretized in the domain nodes of a regular grid which in turn are
defined as the design variables of the problem. The main advantage
of such approach is its ability to represent smooth geometries with no
changes to the initial grid. On the other hand, just like the parameter
free approach, one of the main disadvantages of this approach is that a
post-processing stage is also needed to communicate with a CAD model
for manufacturing purposes. It is worth noting that this approach is
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Chapter 1. Introduction 13

particularly suitable for topology optimization problems, since the level-
set is able to handle changes in the topology in a straightforward manner.

– Polynomial representation: The polynomial representation is a rela-
tively old concept, introduced in [12], yet it constitutes the foundation
for modern approaches. In this approach the design variables are com-
prised of the coefficients of given polynomials which model the boundary
of the structure. One of the main advantages of this approach is related
to the reduced number of design variables needed in the optimization
modeling. In addition, the smoothness of the boundary is readily im-
posed by choosing the proper degree for the modeling polynomials. The
main stumbling block associated to this approach is due to the oscilla-
tory behavior of high degree polynomials which are usually necessary to
represent the boundary’s geometry.

– Spline representation: This approach may be regarded as an improve-
ment for the polynomial representation in the sense that high order poly-
nomials are no longer needed. In order to overcome such difficulty, this
approach employs splines curves for modeling the boundary. The con-
struction of splines by piecewise polynomials allows for the interpolation
of several points without resorting to high order polynomials. Another
advantage of this method is that the interpolation points may be de-
fined as the design variables, thus leading to an intuitive modeling of the
optimization problem.

– Free-form representation: The free-form representation is a natural
enhancement of the spline representation. This approach employs splines
curves which are usually present in modern computer-aided desing
(CAD) softwares, such as Bézier, B-splines and non uniform rational B-
splines (NURBS) curves. The main difference from the traditional splines
is that these curves are modeled by control points which lie outside the
curve. This feature allows for a more natural and intuitive design of
the geometry. The choice of the control points as the design variables
contributes to a straightforward communication of the optimization
procedure with the CAD technology. Therefore, this is the most suitable
approach for practical problems in the sense that the solution of the
optimization may be readily used for manufacturing purposes.

Structural Analysis

Another important subject in structural shape optimization is the choice
of the structural analysis method to be employed. This choice is strongly
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related to the total time consuming of the optimization process as well as in
the accuracy of the numerical results. Also, the dynamic geometry feature of
shape optimization methods brings up tricky obstacles to most of the available
analysis tools. The most common structural analysis methods employed in the
structural shape optimization literature are introduced in the following.

– Finite Element Method (FEM): FEM is by far the most widely used
method in computational solid mechanics nowadays. It has been proved
to be a robust and efficient numerical technique for obtaining the solu-
tion of boundary value problems of partial differential equations. Since
early works [13], until the present time [14], FEM has been one of the
most common techniques employed in the shape optimization literature.
However, this choice usually leads to serious drawbacks associated with
the mesh generation step. To begin with, shape optimization problems
are generally solved by an iterative procedure in which the geometry
changes at each step, thus requiring the burdensome remeshing for each
iteration. Furthermore, mesh generators are far from being completely
automated procedures and may even fail in the case of 3D complex ge-
ometries. At last, mesh generators are often based in ad hoc procedures,
thus lacking of a mathematical formulation. This aspect imposes a great
limitation in the sensitivity analysis stage given that the domain nodes’
sensitivities are not well defined and, therefore, are usually neglected
in practice [15]. In order to overcome such difficulties, several different
approaches, such as mesh smoothing methods [14], have been proposed.
Although these methods can alleviate much of the computational burden
associated with the remeshing, they also lack of a mathematical back-
ground and thus place limitations to the sensitivity analysis stage. For
a thorough review on field grid movement and mesh sensitivity analysis
the reader is referred to [16].

– Implicit Boundary methods: Implicit boundary methods were orig-
inally proposed with the goal of bypassing the mesh generation step
needed in FEM. In this class of methods only a non-conforming mesh,
usually a structured grid, and an implicit representation of the boundary
are needed. Therefore, in the context of a shape optimization procedure,
regardless the changes in the geometry from a step to another, the initial
grid may be left unaltered. Despite of looking as a promising alternative,
the unavoidable implicit representation of the boundary leads to the
same limitation as the level-set methods, namely a post-processing stage
is needed. An application of such methods is proposed in [17], where the
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extended finite element method (X-FEM) is employed with a level-set
method for the implicit boundary representation.

– Boundary Element Method (BEM):The main feature of BEM is
that it only requires the discretization of the boundary rather than
the domain. According to [18], this advantage is particularly important
for designing as the process usually involves a series of modifications
which are more difficult to carry out using finite elements. This simple
observation shows that BEM is a well-suited analysis tool to be integrated
within a shape optimization procedure. Furthermore, unlike topology
optimization problems, shape optimization does not require domain
discretization, which further backs up the compatibility between BEM
and shape optimization. The literature of shape optimization with BEM
is quite vast and, among many others, includes [19, 20, 21, 22, 23].

Optimization formulation

Several formulations for optimization of structural systems are available
in the literature. According to [24], these formulations may be classified into
three broad categories, i.e. the nested analysis and design, the simultaneous
analysis and design and the displacement two-phase approach. In particular,
for shape optimization problems, yet another formulation has been proposed,
namely the normal movement approach. A brief overview of these approaches
is introduced below.

– nested analysis and design (NAND): NAND is the most common
approach employed in the structural optimization literature. In this ap-
proach, only the structural design variables are treated as the opti-
mization variables. All other response quantities, such as displacements,
stresses and tractions, are kept outside the optimization procedure and
treated as implicit functions of the design variables. The application
of the NAND approach for shape optimization problems are found in
[13, 21, 22, 25, 26, 27, 28].

– simultaneous analysis and design (SAND): In this approach the
state variables are incorporated into the optimization problem as de-
sign variables, thus including the equilibrium equations as equality con-
straints. The main feature is that no explicit structural analysis is needed.
Actually, depending on the numerical optimization algorithm, the equi-
librium is not even enforced at each iteration, but rather only at the final
step. Therefore, this approach is particular suitable to handle non-linear
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problems in the sense that the cumbersome solution of non-linear systems
are no longer necessary. On the other hand, one of the drawbacks of this
approach concerns the increase in the number of design variables, which
may compromise the efficiency of the optimization solver. In [19] the au-
thors employ the SAND formulation for shape optimization of 2D linear
elasticity problems. In such work, the equality constraints are defined as
the boundary integral equations of BEM, thus incorporating both the
tractions and displacements as design variables, and an interior-point
algorithm [29] is employed in order to efficiently solve the large-scale
optimization problem.

– displacement two-phase approach: The displacement two-phase ap-
proach, introduced in [30], was originally developed for structural opti-
mization of composite structures. The main idea of the method is to split
the problem in a two-level optimization problem. In the inner loop, the
state variables are fixed while the structural design variables are treated
as the optimization variables. Conversely, in the outer loop, the state
variables are handled as the optimization variables and the structural
design variables remain fixed. The displacement two-phase approach has
been mainly employed for sizing optimization of truss structures and to
the knowledge of this author no work of shape optimization with this
approach is available in the literature.

– normal movement approach: This approach belongs to the family
of optimally criterion methods. In opposition to mathematical program-
ming methods, this approach is based on an ad hoc procedure in which
neither the objective function nor the constraints derivatives are required.
In order to bypass the sensitivity analysis stage, this approach relies on a
fixed search direction which, usually, is taken as the normal direction to
the points chosen as the design variables. Subsequently, the step size is
calculated by a normalized function which measures the performance of
the objective function in each of the design variables. The next iteration
is responsible for updating the search direction and the process is reini-
tialized. Although this method is extremely cheap, it only requires one
structural analysis solution for each design variable per each iteration,
global convergence is not guaranteed. Furthermore, there are cases in
which the control points lies on a sharp edge and the normal direction is
not well defined, leading to even more informal tricks in order to define
the search direction. Examples of applications are given in [31] and [32],
where the normal movement approach is employed in the shape optimiza-
tion for minimization of stress concentrations of 2D and 3D structures.
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1.2
Objective

In this work a numerical implementation of shape optimization in two-
dimensional linear elasticity problems is proposed. The main goal is to pro-
vide a robust and efficient methodology capable of handling shape optimiza-
tion problems for minimization of stress concentration effects. Such design
methodology increases the fatigue strength as well as avoids crack initiation
and propagation, thus enhancing both the life-span and safety of structures. In
opposition to the most traditional design methodology ( i.e. minimization of
volume subject to stress constraints), which aims at minimizing the material
construction cost, the minimization of stress concentrations provides savings
related to maintenance an repairing expenses.

In the proposed implementation the structural analysis is performed by
the Symmetric Galerkin Boundary Element Method (SGBEM), thus disposing
of the mesh generation burden. In addition, the boundary stress evaluation
is carried out by an accurate approach which is ideally suited for problems
with stress concentrations. As for the boundary parametrization, the free-
form approach is employed, thus allowing for a straightforward integration
between the geometric and optimization modeling. Furthermore, the NAND
approach is employed for formulating the optimization problem, thus requiring
the structural and sensitivity analysis for each step. In order to reduce the
computational effort of such analysis, a matrix partition approach which
exploits the features of the linear system associated with the SGBEM is
proposed. Finally, the solution for the optimization problem is carried out
by a powerful numerical optimization method, the so-called Second Order
Conic Programming (SOCP). Specifically, the solution for the non-linear
optimization is sought by solving a sequence of SOCP subproblems.

1.3
Outline

The remainder of the present work is organized as follows:
Chapter 2 discusses the main aspects concerning boundary representa-

tion and parametrization in the context of shape optimization problems. A
brief overview of polynomial interpolation, Bézier and B-splines curves is in-
troduced. Also, the design variable representation used for modeling the opti-
mization problem is specified. Finally, an efficient evaluation of the structure’s
volume is proposed.

Chapter 3 details the implementation of SGBEM. Initially, the boundary
integral equations and the limit to the boundary concept are introduced.
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Afterwards, the main steps towards the numerical implementation of the
method, such as discretization, weak formulation and system assembly, are
discussed. In addition, the analytical treatment of singular integrals boundary
conditions corners are reviewed. Finally, an accurate stress post-processing
technique is detailed.

Chapter 4 address the sensitivity analysis of SGBEM. A specialized
sensitivity analysis procedure is proposed in order to preserve the symmetry
of the SGBEM equations, thus alleviating some of the computation effort in
obtaining the derivatives. Furthermore, the sensitivity of stresses is carried out
by an adaptation of the aforementioned stress post-processing technique.

Chapter 5 investigates a new proposed methodology in which stress
constrained structural optimization problems are solved by means of modern
conic optimization methods. Initially, a brief introduction of SOCP is present.
Afterwards, it is shown how the most usual stress yield criteria can be cast
into second-order conic constraints. Finally, the proposed formulation for
stress constrained structural optimization by solving a sequence of SOCP
subproblems is presented.

Chapter 6 presents the general framework of the shape optimization for
minimization of stress concentrations. The optimization problem is formulated
by adapting the aforementioned sequential SOCP approach. Numerical results
are presented to demonstrate the robustness and efficiency of the proposed
formulation. Additionally, an innovative block matrix partition approach is
proposed in order to reduce the computation effort involved in structural
analysis step by the SGBEM.

Finally, concluding remarks as well as suggestions for future works are
addressed in Chapter 7.

DBD
PUC-Rio - Certificação Digital Nº 1512788/CA



2
Boundary Representation

One of the key ingredients in Structural Shape Optimization is how to
represent and control the structure’s boundary shape. A common approach in
the early works on Shape Optimization, e.g. [33], was to define the boundary
parametrization in terms of the analysis’ discretization nodes. Specifically,
the boundary discretization nodes were defined as the design variables of the
optimization problem. Although this approach leads to a natural boundary
representation, numerical experiments have shown that the accuracy of the
structural analysis often deteriorates as the optimization progresses. Another
drawback of this approach is related to the excessive number of design variables
which are required to represent the boundary. In the most recent literature on
the subject, two main approaches are commonly employed, namely the free-
form representation and the level-set method.

The level-set method accounts for an implicit representation in which
the boundary of the structure is defined as the iso-contour of a given implicit
function φ : R2 → R . Changes in the shape of the boundary are made by
letting the level-set function dynamically change in time as the movement is
described by a vector-valued function, usually called “velocity field”, obtained
as the solution of a Hamilton-Jacobi differential equation. The application of
the level-set method in Structural Optimization was introduced by [34] in the
context of a topology optimization procedure. In [17], the level-set method
is combined with the extended finite element method (X-FEM) in a shape
optimization for minimization of stress concentration effects.

The free-form approach is based on a parametric representation in which
the boundary is defined by a set of parametric curves connected to each other.
Each parametric curve is defined as the linear combination of given shape
functions with its control points. Based on this approach a natural way to
control the shape of the boundary is to choose the control points as the
design variables of the optimization problem. One of the main advantages
of this technique is that it enables for a straightforward integration between
the geometric modeling and optimization formulation.

In this work the boundary is parametrized by means of the free-form
approach using modern geometric modeling techniques in computer-aided
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Chapter 2. Boundary Representation 20

design (CAD), namely Bezier and B-Splines curves. In the following, a brief
overview of the formulation of such curves is introduced.

2.1
Parametric Curves

A parametric curve, in 2D, may be defined as a function f : [a, b]→ R2 of
the interval [a, b] into R2 which has continuous derivatives up to order m ≥ 1,
where m is defined as the degree of the curve. In general, parametric curves
may be defined as the linear combination of given shape functions with its
control points as

c (t) =
 x (t)
y (t)

 =
n∑
i=1

Ni (t)
 xi

yi

 =
n∑
i=1

Ni (t) pi (2-1)

where c (t) is the parametric curve, Ni (t) are the shape functions and pi are
the control points with components xi and yi.

The simplest example of a parametric curve is the straight line segment
connecting two points, which may be defined as

l (t,p1,p2) = t1 − t
t1 − t0

p1 + t− t0
t1 − t0

p2 , t ∈ [t0, t1] (2-2)

where p1 and p2 are the control points while t0 and t1 are the initial and end
parameters, respectively.

Polynomial Interpolation Curves

A nice interpretation of expression in Equation (2-2) is to understand it
as the convex combination between the two points, namely

l (t) = (1− λ (t)) p1 + λ (t) p2, 0 ≤ λ (t) ≤ 1 (2-3)
where

λ (t) = t− t0
t1 − t0

(2-4)

This idea can be further generalized to obtain curves with more control
points. A simple process consists in taking the convex combination of two
straight line segments which in turn connects three consecutive points, i.e.

c (t,p1,p2,p3) = t2 − t
t2 − t0

l1 (t,p1,p2)+ t− t0
t2 − t0

l2 (t,p2,p3) , t ∈ [t0, t2] (2-5)

where t0 < t1 < t2 are the control parameters.
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An important property of this process is that the generated curves
passes through the control points, thus giving a nice geometric interpretation.
Evaluation of Equation (2-5) for the control parameters leads to

c (t0) = p1 c (t1) = p2 c (t2) = p3 (2-6)
which shows that the curve actually interpolates the control points at the given
control parameters.

The generalization of this process to an arbitrary number of points is
given as

c (t) = λ0 (t) p0 + λ1 (t) p1 + · · ·+ λn (t) pn =
n∑
i=1

λi (t) pi (2-7)

where λi (t) are the Lagrange polynomials of degree n, i.e.

λi (t) =
∏

0 ≤ j ≤ n

j 6= i

t− tj
ti − tj

(2-8)

which are known to possess the following Kronecker Delta property

λi (tk) =

 1, if k = i

0, otherwise
(2-9)

One of the main drawbacks of this class of curves is the oscillatory
behavior associated with the Lagrange polynomials of high degree, also known
as the Runge’s phenomenon. This property leads to modeling difficulties given
that a great number of points are usually necessary to define a curve. This
oscillatory behavior is due to the fact that Equation (2-7) is not a true convex
combination of the control points. Actually, by observing the quadratic case of
equation (2-5), it can be seen that when t is in [t0, t1] the combination is not
convex because l2 (t,p2,p3) is only convex within [t1, t2]. Accordingly, when t
is in [t1, t2] then the combination is also not convex because l1 (t,p2,p3) is only
convex within [t0, t1].

Bézier curve

Another interesting curve construction results in the so-called Bézier
curves. This process follows the same previous idea except that, in order to
obtain true convex combinations, all parameters are defined over the same
interval, i.e. [0, 1]. For example, the linear case reduces to

l (t,p1,p2) = (1− t) p1 + tp2 , t ∈ [0, 1] (2-10)
while the quadratic case is given as
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c (t,p1,p2,p3) = (1− t) l1 (t,p1,p2) + t l2 (t,p2,p3) , t ∈ [0, 1] (2-11)

This simple modification ensures that the curve lies within the convex hull
of its control points, thus eliminating the oscillatory behavior of the polynomial
interpolation curves. Unfortunately, this process also disposes of the Kronecker
Delta property, i.e. these curves no longer pass through their control points.
Nevertheless, this feature does not interfere in the design of Bézier curves, but
rather makes the design of such curves even more intuitive.

The generalization of this construction for an arbitrary number of points
is given as

c (t) = b0 (t) p0 + b1 (t) p1 + · · ·+ bn (t) pn =
n∑
i=1

bi (t) pi (2-12)

where
bi (t) =

 d

i

 ti(1− t)d−i (2-13)

which are known as the Bernstein’s polynomials [35].
Despite of avoiding the oscillatory behavior of the polynomial curves,

the Bézier curves also suffers from the drawback of requiring high degree
polynomials in order to define curves with many control points. This deficiency
leads to a cumbersome modeling of such curves in the sense that moving one
of the control points propagates changes to the entire curve. In addition, the
processing time involved in the evaluation of the curve increases according to
the respective degree, thus influencing the computational efficiency. A simple
way to avoid this problem is to work with the so-called composite Bézier curves
[36].

These curves can be obtained by joining several low-order Bézier curves,
thus forming a piecewise polynomial. However, in order to enforce smoothness
of the curve, the control points’ location of adjacent Bézier curves must be cho-
sen appropriately, thus placing some limitations to the modeling. Nevertheless,
by slightly changing the aforementioned curve construction, it is possible to
obtain piecewise polynomials which automatically tie together smoothly, the
so-called splines.

B-splines curves

The simplest example of a spline is the polyline which, in other words,
is just a piecewise linear curve. The definition of a polyline may be given as
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s (t) =



l1 (t,p1,p2) t ∈ [t1, t2)
l2 (t,p2,p3) t ∈ [t2, t3)

... ...
ln (t,pn,pn+1) t ∈ [tn, tn+1]

(2-14)

where (pi)ni=1 are the control points, li (t,pi,pi+1) are straight line seg-
ments connecting points pi and pi+1, and (t)n+1

i=1 are referred to as the knots
of the curve.

Before presenting the general constructions of such splines, the following
definitions are introduced.

Definition 1 Let sd (t) be a spline curve of degree d. Then the sequence of
non-decreasing real numbers defined by

t = {t1, t2, · · · , tn+d+1} (2-15)
is called the knot vector of sd (t). Furthermore, if the first and last knots are
repeated d+ 1 times, i.e.

t1 = t2 = · · · = td+1

tn+1 = tn+2 = · · · = tn+d+1
(2-16)

then it is called an open knot vector.

The general construction of higher degree splines is achieved by combin-
ing the weighted average scheme of the polynomial interpolation with the con-
vex combination of the Bézier curves. To introduce such scheme the quadratic
case is firstly investigated.

Let (pi)4
i=1 be the four control points of a quadratic spline and (ti)7

i=1

be the associated knot vector. The first step is to define the following linear
segments as

l1 (t,p1,p2) = t4 − t
t4 − t2

p1 + t− t2
t4 − t2

p2 , t ∈ [t2, t4]

l2 (t,p2,p3) = t5 − t
t5 − t3

p2 + t− t3
t5 − t3

p3 , t ∈ [t3, t5]

l3 (t,p3,p4) = t6 − t
t6 − t4

p3 + t− t4
t6 − t4

p4 , t ∈ [t4, t6]

(2-17)

The reason for choosing such different knot intervals in defining the lin-
ear segments is to ensure that the quadratic segments remain as true convex
combinations. For example, if t ∈ [t3, t4] then it also belongs both to [t2, t4]
and [t3, t5]. Therefore, the following quadratic segment

q3 (t,p1,p2,p3) = t4 − t
t4 − t3

l1 (t,p1,p2) + t− t3
t4 − t3

l2 (t,p2,p3) (2-18)
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is a true convex combination of points p1, p2 and p3. Likewise, the following
quadratic segment

q4 (t,p2,p3,p4) = t5 − t
t5 − t4

l2 (t,p2,p3) + t− t4
t5 − t4

l3 (t,p3,p4) (2-19)

is a true convex combination of points p2, p3 and p4.
With these expressions in hand, the quadratic spline may be defined as

following piecewise polynomial

s (t) =

 q3 (t,p1,p2,p3) t ∈ [t3, t4)
q4 (t,p2,p3,p4) t ∈ [t4, t5]

(2-20)

According to this construction, a spline of degree d with n control
points is given by

s (t) =



fd+1 (t,p1, · · · ,p1+d) t ∈ [td+1, td+2)
fd+2 (t,p2, · · · ,p2+d) t ∈ [td+2, td+3)

... ...
fn (t,pn−d, · · · ,pn) t ∈ [tn, tn+1]

(2-21)

where the polynomials fi (t,pi, · · · ,pi+d) are given by the following recurrence
relation

fi,d−r+1 (t) = ti+r − t
ti+r − ti

fi−1,d−r (t) + t− ti
ti+r − ti

fi,d−r (t) (2-22)

for i = d−r+1, . . . , n and r = d, d−1, . . . , 1, while fi,0 (t) = pi for i = 1, . . . , n.
Alternatively, the spline may also be written in the following appropriate

form

s (t) =
n∑
i=1

Bi,d (t) pi (2-23)

where the so-called B-splines blending functions Bi,d (t) are given as

Bi,d (t) = t− ti
ti+d − ti

Bi,d−1 (t) + ti+1+d − t
ti+1+d − ti+1

Bi+1,d−1 (t) (2-24)

and

Bi,0 (t) =

 1, if t ∈ [ti, ti+1)
0, otherwise

(2-25)

The smoothness of the B-spline curves results from the following
theorem

Theorem 1 Suppose that the number ti+1 occurs m times among the knots
(tj)m+d

j=1−i1 with m some integer bounded by 1 ≤ m ≤ d+ 1, i.e.

ti < ti+1 = . . . = ti+m < ti+m+1 (2-26)
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then the spline s (t), as defined in eq. (2-21), has continuous derivatives up to
order d−m at the join ti + 1.

A detailed demonstration of this theorem is presented in [35].
This feature allows for a natural control over the smoothness of the B-

spline by appropriately choosing the multiplicity of the knots. Also, if all knots
are distinct, a global smoothness may be ensured by correctly choosing the
degree of the B-spline. Specifically, a cubic B-spline curve, with no repeated
knots, has continuous derivative up to order 2 everywhere along its parametric
space. Furthermore, one can also enforce the B-spline to interpolate a given
point by appropriately setting the multiplicity of a given knot to m = d + 1,
where d is the degree of the curve. Therefore, if an open knot vector is specified,
the B-spline interpolates its initial and end point, which is a common practice
in real-life modeling software.

2.2
Design variables representation

As aforementioned, in the context of the free-form representation, a
natural way to control the shape of the boundary is to define the control
points as the design variables of the optimization problem. The most common
approach (in 2D problems), is to define the x and/or y coordinates of the
control points as the design variables of the problem [25, 37, 38]. However,
this approach often leads to a redundant number of design variables and
also to difficulties in handling the design geometric constraints, inherent to
shape optimization problems. An alternative representation defines the design
variables as scalar values which control the movement of the control points
along straight lines, the so-called spans.

Given the end points of a span, smin
i = [xmin

i , ymin
i ] and smaxi = [xmax

i , ymax
i ],

the movement of the associated control point is given as

pi = smin
i + diαi (2-27)

where di is a direction vector defined as di = smaxi − smin
i and αi is a design

variable associated with the span.
This approach can account for the case that both x and y coordinates

are chosen as design variables. This case may be handled by simply defining
two spans for a given control point, one in the x direction and the other in the
y direction. Figure 2.1 depicts examples of this approach both for the regular
case, where the control point is limited to move along a single direction, and for
the particular case, where the control point is free to move in both directions.
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Figure 2.1: Design variables representation.

The sensitivity of the control points may be readily obtained by a simple
differentiation of (2-27), i.e.

ṗi := ∂pi
∂αi

= di (2-28)

where the superimposed dot represents the derivative with respect to the design
variable.

For the sake of the structure volume evaluation, which will be shown
later in this section, the movement of the control points may also be expressed
in terms of their coordinates as

xi = xmin
i + di,xαi

yi = ymin
i + di,yαi

(2-29)

where di,x and di,y are, respectively, the x and y components of the direction
vector.

Considering all control points simultaneously, the following matrix ex-
pressions may be used

x = xmin + Lxα

y = ymin + Lyα
(2-30)

where the Lx and Ly matrices are defined as

Lx = diag (d1,x, d2,x, . . . , dn,x)

Ly = diag (d1,y, d2,y, . . . , dn,y)
. (2-31)

2.3
Volume evaluation

The structure’s weight is a commonly employed performance measure in
shape optimization and it is of great interest in both real-life and academic
problems. In practical problems, the weight is directly related to the cost
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of the structure while in academic problems the weight is often enforced as
a constraint in order to obtain a well-posed problem. Generally, in shape
optimization problems, the material density, or thickness, is constant along
the structure and therefore the weight may be obtained from the volume. The
free-from representation allows for a very accurate and efficient technique,
based on Green’s Theorem, to calculate the structure’s volume. Based on this
technique, and making use of the design variable representation of Equation
(2-30), it is shown that the volume may be obtained as a quadratic function
of the design variables.

Let Γ be a positively oriented, piece-wise smooth, simple closed curve in
the plane, Ω be the region bounded by Γ and P and Q be two arbitrary
continuous functions. The Green’s Theorem states that if P and Q have
continuous partial derivatives on an open region that contains Ω, then∮

Γ

Pdx+
∮
Γ

Qdy =
∫∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dΩ (2-32)

Choosing P and Q as

P (x, y) = 0

Q (x, y) = x
(2-33)

then the Green’s Theorem results in∮
Γ

xdy =
∫∫
Ω

dΩ (2-34)

where the expression on the right-hand side of Equation (2-34) is the domain’s
volume (for an unitary thickness).

Since the boundary is defined as a set of connected smooth curves, the
line integral on the left-hand side of Equation (2-34) may be written as

Γ =
m⋃
i=1

Γi ⇒
∮
Γ

xdy =
m∑
i=1

∮
Γi

xdy (2-35)

Each curve Γi has a parametric representation, as given in Equation (2-1),
thus each of the line integrals on the right-hand side of Equation (2-35) may
be rewritten in the following form

∮
Γi

xdy =
t1∫
t0

n∑
i=1

Ni (t)xi
n∑
i=1

dNi (t)
dt

yidt (2-36)

Taking the constant values outside the integration leads to∮
Ci

xdy =
n∑
i=1

xi

[∫ n∑
i=1

Ni (t)
n∑
i=1

dNi (t)
dt

dt

]
yi (2-37)

which can also be written in following matrix form
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∮
Ci

xdy = (x′)TV′ (y′) (2-38)

where x′ and y′ are, respectively, vectors containing the x and y coordinates
of curve Γi and V is the matrix defined as

Vij :=
[∫

Ni (t)
dNj (t)
dt

dt

]
(2-39)

By assigning nodal identities to each of the control points it is then
possible to assembly these results in a global expression as

m∑
i=1

∮
Γi

xdy = xTVy (2-40)

where x and y are, respectively, vectors containing the global x and y

coordinates of the boundary and V is obtained by a global assemble of the
local matrices V′.

Splitting the boundary as

Γ = Γf ∪ Γo (2-41)
where Γf is the portion of the boundary which will remain fixed and Γo the
portion which will move during the optimization process, the volume of the
structure may be obtained as∮

Γf

xdy +
∮
Γo

xdy = xf TVfyf + xoTVoyo (2-42)

The first term in the right-hand side of Equation (2-42) may be evaluated
in a straightforward manner, thus resulting in a constant scalar value. The
second term can be further expanded by substituting the expressions from
Equation (2-30), i.e.

xoTVoyo = (xmin + Lxα)TVo (ymin + Lyα)
= αTQα + αTb + (xmin)T Vo (ymin)

(2-43)

where

Q = (Lx)TVo (Ly)

b =
[
(Lx)TVo

(
ymin

)
+ (Ly)TVo

(
xmin

)] (2-44)

Therefore, the volume of the structure can be define as the following
quadratic function

V (α) = αTQα + αTb + c (2-45)
where

c =
(
xmin

)T
Vo

(
ymin

)
+ xf TVfyf (2-46)

Differentiation of (2-45) yields the sensitivity of the volume as
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∇V (α) = 2Qα + b (2-47)
It is worth noting that the integrals over the parametric space, defined in

Equation (2-37), do not change during the optimization procedure, thus may
be evaluated only once throughout the optimization process, preferably in a
preprocessing stage.
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3
Symmetric Galerkin Boundary Element Method

The Boundary Element Method (BEM) is a numerical approach for
solving partial differential equations in which the governing equations are
stated as integrals identities which only take values on the boundary of the
problem. Thus, one of the main advantages of such method relies on the
reduction of the dimensionality order of the problem by one, i.e. the governing
equations may be stated as line integrals equations for 2D problems and surface
integrals equations for 3D problems. According to [39], another advantage of
BEM is the high resolution of stresses, which makes this method well-suited for
modeling problems of rapidly changing stresses, such as stress concentration
problems.

Traditional BEM formulations rely on the use of the so called Collocation
Method (CM). In this approach the discretized BEM integral equations are
enforced to satisfy the governing equations in a strong form in which, generally,
the discretization nodes are chosen as the collocation points. Applying the
integrals equations on each of the collocation points leads to a system of linear
equations which may be solved in order to recover the unknown boundary
values. One of the main disadvantages of this approach is that it leads to a
fully populated and non-symmetric system of linear equations, contributing to
a high computational cost for its solution.

The Symmetric Galerkin Boundary Element Method (SGBEM) is an
alternative approach in which the BEM integral equations are sought to satisfy
the governing equations in a weak form. In this approach the weak form is
obtained by enforcing the BEM integral equations in a Galerkin weighted-
residual sense. In order to obtain a symmetric system of equations, both the
single and double layer fundamental solutions are employed. Therefore, the
main stumbling block regarding the SGBEM approach is due to the treatment
of hypersingular integrals arising from the double layer fundamental solutions.
In order to overcome this difficulty several approaches have been proposed
in the literature such as the direct approach [40], indirect regularization
techniques [41], analytical solutions [42] and the limit to the boundary approach
[43]. Another great advantage of the SGBEM approach concerns the treatment
of corners which may be handled in a more elegant and simpler way than
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CM. Finally, the treatment of hypersingular integrals, in particular employing
the limit to the boundary approach, allows for a very accurate and efficient
technique [44] in order to obtain first order boundary derivatives, such as
boundary stresses in elasticity problems.

3.1
Boundary Integral Equations

Consider a domain Ω in R2, as shown in Figure 3.1, with boundary Γ
subjected to body forces bi, prescribed displacements ūi in Γu and tractions t̄i
in Γt (with i = 1, 2 or i = x, y). The equilibrium equations of elastostatics are
given by

σij,j = −bi in Ω (3-1)
subjected to

ui = ūi on Γu
ti = t̄i on Γt

(3-2)

where σij are the stresses components.

Figure 3.1: Elastostatic problem setting.

In the absence of body forces, i.e. bi = 0, the Somigliana Identity restates
the equilibrium Equations (3-1) by means of a boundary integral equation
(BIE) which relates a displacement on a source point P = (xP , yP ) /∈ Γ due to
displacements and tractions on field points Q = (xQ, yQ) ∈ Γ, i.e.

kui(P ) =
∫
Γ

Guu
ij (P,Q)ti(Q)dΓ−

∫
Γ

Gut
ij (P,Q)ui(Q)dΓ (3-3)

where

k =

 1 if P ∈ Ω
0 if P /∈ Ω ∪ Γ

(3-4)

and the displacement and traction kernel tensor functions Guu
ij and Gut

ij arises
from the Kelvin fundamental solutions which are employed in the formulation
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of Equation (3-3). For a plane strain state the fundamental solutions are given
as

Guu
ij (P,Q) = 1

8πµ(1− ν)

[
(3− 4ν) ln

(1
r

)
δij + r,ir,j

]
(3-5)

Gut
ij (P,Q) = −1

4π(1−ν)r

[
∂r
∂n

[(1− 2ν) δij + 2r,ir,j] + (1− 2ν) (nir,j − nkr,j)
]

(3-6)

where ν and µ are, respectively, the Poisson coefficient and the shear modulus,
nj are the normal components on the point Q and r is the distance between
source point P and field point Q.

For a plane stress state the fundamental solutions may be readily
obtained by a simply modification of the material properties as follows

Epstress = E(1+2ν)
(1+ν)2 ; νpstress = ν

1+ν ; (3-7)

Using the Hooke’s Law, it is straightforward to obtain another boundary
integral equation which relates the stresses on a source point P due to the
displacements and tractions on the boundary Γ as

kσi(P ) =
∫
Γ

D(P,Q)ti(Q)dΓ−
∫
Γ

S(P,Q)ui(Q)dΓ. (3-8)

Rewriting this equation in terms of tractions ti, according to ti = σijmj,
where mj are the normal components the source point P , gives

kti(P ) =
∫
Γ

Gtu
ij (P,Q)ti(Q)dΓ−

∫
Γ

Gtt
ij(P,Q)ui(Q)dΓ (3-9)

where

Gtu
ij (P,Q) = 1

4π(1−ν)r

[
∂r
∂m

[(1− 2ν) δij + 2r,ir,j]− (1− 2ν) (mir,j −mkr,j)
]

(3-10)
and

Gtt
ij(P,Q) = µ

2π(1−ν)r2 (δijδkw + δkiδjw − δjkδiw
+2δjkr,ir,w + 2δiwr,jr,k − 8r,ir,wr,jr,k)m,kn,w

.

(3-11)
It is important to note that, so far, Equations (3-3) and (3-9) are only

valid for points which do not lie on the boundary. This is due to the fact
that the kernels, defined in Equations (3-5), (3-6) and (3-11), become singular
when P approaches Q, thus resulting in boundary integrals which are not
immediately well defined. Usually, in the literature [39, 18], a limit process is
employed in order to move the source point to the boundary of the problem.
In this process a small portion around the singularity point is excluded from
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the boundary, typically a sphere of radius ε. Then, after a suitable analytical
treatment, the excluded region is reinserted back by taking the limit as ε→ 0.
Alternatively, in this work, this problem is overcome by employing the limit to
the boundary approach [45]. In this approach the source point is taken to the
boundary by means of a limit definition, given as

ui(P ) = lim
PI→P

∫
Γ

Guu
ij (PI , Q)ti(Q)dΓ−

∫
Γ

Gut
ij (PI , Q)ui(Q)dΓ

 (3-12)

ti(P ) = lim
PI→P

∫
Γ

Gtu
ij (PI , Q)ti(Q)dΓ−

∫
Γ

Gtt
ij(PI , Q)ui(Q)dΓ

 (3-13)

for points PI approaching the boundary from inside the domain, and

lim
PE→P

∫
Γ

Guu
ij (PE, Q)ti(Q)dΓ−

∫
Γ

Gut
ij (PE, Q)ui(Q)dΓ

 = 0 (3-14)

lim
PE→P

∫
Γ

Gtu
ij (PE, Q)ti(Q)dΓ−

∫
Γ

Gtt
ij(PE, Q)ui(Q)dΓ

 = 0 (3-15)

for points PE approaching the boundary from outside the domain.

3.2
Numerical Implementation

The numerical solution for the differential Equation (3-1), subject to
(3-2), by means of the BIEs (3-3) and (3-9) can be obtained by subdividing
the boundary into a set of elements. In each boundary element the geometry,
displacements and tractions are approximated through the interpolation of its
nodal values

x (ξ) =
ndof∑
i=1

Ni (ξ)xi; ux (ξ) =
ndof∑
i=1

Ni (ξ)uxi tx (ξ) =
ndof∑
i=1

Ni (ξ) txi

y (ξ) =
ndof∑
i=1

Ni (ξ) yi; uy (ξ) =
ndof∑
i=1

Ni (ξ)uyi ty (ξ) =
ndof∑
i=1

Ni (ξ) tyi
(3-16)

where Ni are the interpolation functions and xi, yi, uxi, uyi, txi and tyi are
nodal values of the degrees of freedom of a boundary element. These same
relations may be conveniently rewritten in a matrix form as

u (ξ) =
ux (ξ)
uy (ξ)

 = N (ξ) ue; t (ξ) =
tx (ξ)
ty (ξ)

 = N (ξ) te; (3-17)
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where ue and te are vectors containing the nodal values of displacements and
tractions and N (ξ) is a matrix containing the interpolation functions.

Substituting the discretizations defined in Equation (3-17) into Equations
(3-14) and (3-15) leads to

R1 (P ) =
ne∑
e=1



 lim
PE→P

1∫
0

Guu (PE, Q (ξ)) N (ξ) Jedξ
 te . . .

−

 lim
PE→P

1∫
0

Gut (PE, Q (ξ)) N (ξ) Jedξ
ue

 6= 0 (3-18)

R2 (P ) =
ne∑
e=1



 lim
PE→P

1∫
0

Gtu (PE, Q (ξ)) N (ξ) Jedξ
 te . . .

−

 lim
PE→P

1∫
0

Gtt (PE, Q (ξ)) N (ξ) Jedξ
ue

 6= 0 (3-19)

where R1 (P ) and R2 (P ) are the residual functions related to the interpolation
error, Je is the Jacobian of the coordinate transformation and ne is the number
of boundary elements.

Employing the Galerkin weighted-residual technique it is possible to
obtain a system of linear equations which allows the determination of the
boundary unknown values. The Galerkin method states∫

Γ

w (P )R1 (P )dΓ = 0 (3-20)∫
Γ

w (P )R2 (P )dΓ = 0 (3-21)

The weight function w (P ) is approximated by the same interpolation
functions used in approximating the variable fields, this is

w =
wx (η)
wy (η)

 = N (η) we (3-22)

where we is a vector containing the values of the weight function in the degrees
of freedom of a boundary element.

Rewriting Equations (3-20) and (3-21) in terms of the discretizations
defined in Equation (3-17) gives

wep

M∑
ep=1

M∑
eQ=1



 lim
pE→p

1∫
0

1∫
0

NT (η) Guu (PE (η) , Q (ξ)) N (ξ) JepJeQdξdη
 teQ . . .

−

 lim
pE→p

1∫
0

1∫
0

NT (η) Gut (PE (η) , Q (ξ)) N (ξ) JepJeQdξdη
ueQ

 = 0 (3-23)
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wep

M∑
ep=1

M∑
eQ=1



 lim
pE→p

1∫
0

1∫
0

NT (η) Gtu (PE (η) , Q (ξ)) N (ξ) JepJeQdξdη
 teQ . . .

−

 lim
pE→p

1∫
0

1∫
0

NT (η) Gtt (PE (η) , Q (ξ)) N (ξ) JepJeQdξdη
ueQ

 = 0 (3-24)

where ep and eQ are, respectively, a source element and a field element.
As the Galerkin method states that the weight function is non-zero

everywhere, then the nodal values of the weight function, on the left hand
side of Equation (3-23) and (3-24), may be canceled out, thus resulting in the
following equations

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Iuu (ξ, η) dξdη
)

teQ =
Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Iut (ξ, η) dξdη
)

ueQ (3-25)

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Itu (ξ, η) dξdη
)

teQ =
Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Itt (ξ, η) dξdη
)

ueQ (3-26)

where

Iuu (ξ, η) = NT (η) Guu (PE (η) , Q (ξ)) N (ξ) JepJeQ
Iut (ξ, η) = NT (η) Gut (PE (η) , Q (ξ)) N (ξ) JepJeQ
Itu (ξ, η) = NT (η) Gtu (PE (η) , Q (ξ)) N (ξ) JepJeQ
Itt (ξ, η) = NT (η) Gtt (PE (η) , Q (ξ)) N (ξ) JepJeQ

(3-27)

Rewriting Equations (3-25) and (3-26) in a matrix form givesRuu
uu Ruu

ut

Ruu
tu Ruu

tt

tu

t̄t

=
Rut

uu Rut
ut

Rut
tu Rut

tt

ūu

ut

 ∴
Ruu

uutu + Ruu
ut t̄t = Rut

uuūu + Rut
utut

Ruu
tu tu + Ruu

tt t̄t = Rut
tuūu + Rut

tt ut
(3-28)

Rtu
uu Rtu

ut

Rtu
tu Rtu

tt

tu

t̄t

=
Rtt

uu Rtt
ut

Rtt
tu Rtt

tt

ūu

ut

 ∴
Rtu

uutu + Rtu
utt̄t = Rtt

uuūu + Rtt
utut

Rtu
tutu + Rtu

tt t̄t = Rtt
tuūu + Rtt

ttut
(3-29)

where tu and ut are unknown nodal values of tractions and displacements, and
t̄t and ūu are prescribed values.

The submatrices R, defined in Equations (3-28) and (3-29), refers to the
evaluation of Equations (3-25) and (3-26). The subscripts of each submatrix
indicate the part of the boundary in which the integrals were evaluated. The
subscript u refers to the portion in which displacements are prescribed and
the subscript t refers to the portion in which the tractions are prescribed. The
first subscript indicates the portion with respect to the source element and
the second is related to the field element portion. The superscripts indicate
which of the kernels are involved in the integral evaluation. Thus, for example,
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Ruu
uu is obtained by evaluating the integrals involving the kernel defined in

Equation (3-5) where both the source and field elements belongs to the part
of the boundary in which displacements are prescribed.

It is worth noting that the system of equations defined in Equation (3-28)
is sufficient in determining the unknown nodal values. Rearranging the system
in order to move all the unknown values to the left-hand side and all the known
ones to the right-hand side givesRuu

uu −Rut
ut

Ruu
tu −Rut

tt

tu

ut

=
Rut

uu −Ruu
ut

Rut
tu −Ruu

tt

ūu

t̄t

 (3-30)

Solving the above system in order to obtain the unknown nodal values is
referred to as to solve the problem by the Galerkin Boundary Element Method
(GBEM). In this case, the evaluation of integrals only involves terms with
singularities of type log(r) (weak singularity) and r−1 (strong singularity).
The numerical treatment of such improper integrals can be carried out by
means of suitable coordinate transformations together with regularization
schemes [46]. However, the system defined in Equation (3-30) retains the same
undesired property of the CM, i.e. it is non-symmetric.

Alternatively, the SGBEM employs both (3-28) and (3-29) system of
equations, which together give the double as necessary equations to solve the
problem. Therefore, SGBEM relies on a strategy to choose equations from
both systems in order to obtain a symmetric linear system. This new system
is obtained by choosing the first row block of equations from the system (3-28)
and the second row block of system (3-29), resulting inRuu

uu Ruu
ut

Rtu
tu Rtu

tt

tu

t̄t

=
Rut

uu Rut
ut

Rtt
tu Rtt

tt

ūu

ut

 (3-31)

Rearranging the system (3-31), one can obtain Ruu
uu −Rut

ut

−Rtu
tu Rtt

tt

tu

ut

=
 Rut

uu −Ruu
ut

−Rtt
tu Rtu

tt

ūu

t̄t

 (3-32)

Considering the following symmetric properties of the kernels

Guu
ij (p,Q) = Guu

ji (Q,p)

Gtt
ij(p,Q) = Gtt

ji(Q,p)

Gut
ij (p,Q) = Gtu

ji (Q,p)

(3-33)

it is then straightforward to rewrite the system as Ruu
uu −Rut

ut

−(Rut
ut)

T Rtt
tt

tu

ut

=
 Rut

uu −Ruu
ut

−Rtt
tu Rtu

tt

ūu

t̄t

 (3-34)
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where the symmetry is now explicit.
It is worth mentioning that, according to [47], the Galerkin method

preserves the properties of the partial differential operators which means that
elliptic boundary value problems, such as linear elasticity, results in positive
definite system matrices. Although this property holds directly for the left-
hand side system of Equation (3-28) and for the right-hand side system of
Equation (3-29) (with opposite sign), the positive definiteness of the SGBEM
equations is only obtained if the system is rewritten in its block skew-symmetric
form, given as Ruu

uu −Rut
ut

(Rut
ut)

T −Rtt
tt

 tu

ut

=
 Rut

uu −Ruu
ut

Rtt
tu −Rtu

tt

 ūu

t̄t

 (3-35)

3.3
Singular Integrals

The main stumbling block towards the numerical implementation of the
SGBEM is the treatment of integrals involving the kernel with singularity of
type r−2 (hypersingularity). To carry out the evaluation of these integrals a
semi analytical method [43], which relies on the limit to the boundary approach,
is employed. In this method the source element is shifted outside the boundary,
in the normal direction, by a small distance ε. Then, given that no singularities
are present in this case, the integrals become amenable analytical evaluation.
Afterwards, with the analytical expressions in hand, the limit as ε → 0 is
taken. Figure 3.2 shows the setting of a shifted straight element in both the
adjacent and coincident cases.

3.2(a): Coincident case. 3.2(b): Adjacent case.

Figure 3.2: Shifted element setting.

It is worth noting that in the case of straight elements the expressions are
simple enough to be integrated analytically with respect to both variables ξ and
η. However, an additional step has to be taken in order to allow for analytical
treatment of the integrals involving curved elements. This step is handled by

DBD
PUC-Rio - Certificação Digital Nº 1512788/CA



Chapter 3. Symmetric Galerkin Boundary Element Method 38

an analytical regularization of the potentially singular terms by means of an
algebraic manipulation. This regularization procedure separates the curvature
contribution from a much more simplified expression, which looks essentially
like the linear element expression. The curvature contribution becomes regular
and therefore can be evaluated by means of a standard numerical quadrature.
As for the linear contribution, the expression becomes simple enough to be
integrated analytically with respect to one of the variables, ξ or η. After this
inner integration is obtained the outer integral becomes weakly singular and
hence may be integrated numerically by a suitable quadrature scheme. Another
interesting feature of this approach is that the limit as ε→ 0 is not immediately
finite, actually there remains a divergent term of the type log (ε). Luckily the
divergent term appears both in the coincident and adjacent cases, with opposite
signs, allowing for its exactly cancellation in the corner treatment stage.

3.4
Corner Treatment

A nice feature of the SGBEM approach concerns the corner treatment
stage. Unlike the CM approach, which handles the corners by an ad hoc
procedure, in SGBEM the treatment of corners is handled in a natural and
elegant way. This feature is a consequence of the use of the Galerkin method
which allows, in a first analysis, to consider the degrees of freedom of each
element independently of it neighbors, i.e. allows for discontinuous fields along
the boundary. Therefore, the corner treatment stage, in SGBEM, corresponds
to the enforcement of continuity of the fields of interest.

For elastostatics problems this stage corresponds to the enforcement of
continuity of the displacements field, as it is required by the theory of elasticity.
On the other hand, the tractions field may be left discontinuous, thus no further
treatment is needed. In order to comply with these requirements, the three
cases, as depicted in Figure 3.3, are considered.

The first case occurs when two adjacent elements are prescribed with
displacement values and, consequently, there are two unknown nodal values
of traction at the common node. Since the traction field is assumed to be
discontinuous, this situation does not demand any further treatment. The
second case arises in a situation where two adjacent elements are prescribed
with different types of boundary conditions, i.e. one belongs to Γt and the
other to Γu. In this case two different values of displacements will occur in
the node shared by the two elements, one being the prescribed displacement
value and the other the unknown one. In order to enforce the continuity of
the displacement field, the unknown value of displacement is imposed with the
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Гu Гu

3.3(a): Case I.

Гt Гu

3.3(b): Case II.

Гt Гt

3.3(c): Case III.

Figure 3.3: Corner treatment cases.

same value as the prescribed one. In terms of implementation, this procedure
may be carried out likewise the enforcement of prescribed displacements in
FEM, i.e. by static condensation of the final system. The third case occurs
when two adjacent elements are prescribed with traction values. In this case
the continuity of the displacement field is imposed by summing the equations
of both degrees of freedom of the common node. In terms of implementation
this procedure corresponds to the imposition of only one degree of freedom
which is shared by both elements.

3.5
Stress Post-processing

To obtain stresses inside the domain, the Equation (3-8) may be employed
in a straightforward manner, since no singularities are present in this case.
On the other hand, the evaluation of stresses on the boundary involves
hypersingular integrals, arising from the kernels of Equation (3-8), and cannot
be evaluated directly. To overcome this problem, several authors, e.g. [39, 22],
propose a simple differentiation of the displacement field in terms of the
shape functions. Although this approach is less time consuming, given that
no boundary integrals are needed, it leads to a discontinuous stress field and,
as in FEM, an ad hoc scheme must be employed in order to enforce continuity
of the stresses. On the other hand, despite its cumbersome implementation,
the first approach is considered very accurate and therefore is ideally suited for
problems with stress concentration. Since the Galerkin method has successfully
enabled the treatment of the hypersingular integrals involved in the SGBEM
approach, the same strategy may be employed in the evaluation of the
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boundary stresses.
Differentiating the interior displacement BIE (Equation (3-12)) with

respect to the coordinates of the source point, one obtains

∂ui(P )
∂xP

= lim
PI→P

∫
Γ

∂Guu
ij (PI , Q)
∂xP

ti(Q)dΓ−
∫
Γ

∂Gut
ij (PI , Q)
∂xP

ui(Q)dΓ
 (3-36)

∂ui(P )
∂yP

= lim
PI→P

∫
Γ

∂Guu
ij (PI , Q)
∂yP

ti(Q)dΓ−
∫
Γ

∂Gut
ij (PI , Q)
∂yP

ui(Q)dΓ
 (3-37)

Proceeding with the same numerical implementation as in the SGBEM,
and noting that the displacements and tractions are known a priori, these
boundary equations lead to the following systems of equations

Au,xP
= bx (3-38)

Au,yP
= by (3-39)

where A is a block diagonal matrix obtained by the product of shape functions,
u,xP

and u,yP
are the nodal values of the derivatives of displacements and bx,

by are obtained by evaluating the double integrals on the right hand side of
Equations (3-36) and (3-37).

It is worth noting that this approach leads to the evaluation of a double
integral over the boundary which consists in the most time consuming step of
the method. Hence, in order to drastically reduce this computation, a strategy
which uses both the interior and exterior limits to boundary is proposed in
[44].

Differentiating the exterior displacement BIE (Equation (3-14)) with
respect to the coordinates of the source point

0 = lim
PE→P

∫
Γ

∂Guu
ij (PE, Q)
∂xP

ti(Q)dΓ−
∫
Γ

∂Gut
ij (PE, Q)
∂xP

ui(Q)dΓ
 (3-40)

0 = lim
PE→P

∫
Γ

∂Guu
ij (PE, Q)
∂yP

ti(Q)dΓ−
∫
Γ

∂Gut
ij (PE, Q)
∂yP

ui(Q)dΓ
 (3-41)

and taking the difference between the interior and exterior limit gives

∂ui(P )
∂xP

=
(

lim
PI→P

− lim
PE→P

) [∫
Γ

∂Guu
ij (PI−E ,Q)
∂xP

ti(Q)dΓ−
∫
Γ

∂Gut
ij (PI−E ,Q)
∂xP

ui(Q)dΓ
]

(3-42)

DBD
PUC-Rio - Certificação Digital Nº 1512788/CA



Chapter 3. Symmetric Galerkin Boundary Element Method 41

∂ui(P )
∂yP

=
(

lim
PI→P

− lim
PE→P

) [∫
Γ

∂Guu
ij (PI−E ,Q)
∂yP

ti(Q)dΓ−
∫
Γ

∂Gut
ij (PI−E ,Q)
∂yP

ui(Q)dΓ
]

(3-43)

Given that the exterior and interior limits are the same for the cases
where no singularities are present, it is straightforward to observe that all
the regular integrals, which are by far the most time consuming, vanish. The
only integrals which remains after this process are the singular ones, for which
analytical solutions are available, leading to a much faster computation of the
right-hand side expression.

With the nodal displacement derivatives values in hand it is then straight-
forward to obtain the stresses on the boundary using the compatibility and
constitutive equations. In the case of plane strain, this relation is given as

σxx = 2µν
1−2ν

(
∂ux

∂x
+ ∂uy

∂y

)
+ 2µ

(
∂ux

∂x

)
σyy = 2µν

1−2ν

(
∂ux

∂x
+ ∂uy

∂y

)
+ 2µ

(
∂uy

∂y

)
σxy = µ

(
∂ux

∂y
+ ∂uy

∂x

) (3-44)

For a plane stress state this relation may be readily obtained by modifying
the material properties as shown in Equation 3-7.
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4
Sensitivity Analysis

In the context of structural optimization, the sensitivity analysis stage
consists in obtaining the derivatives of given performance measures with
respect to the design variables. In order to obtain such derivatives, three
methods are often employed, namely the finite difference method, the adjoint
method and the direct method. The finite difference method is the simplest one
in terms of implementation, however it also presents itself as the least accurate
and efficient among them. The adjoint method is indicated for problems in
which the number of design variables exceeds the number of constraints. Hence,
since in shape optimization problems the number of constraints is generally
greater than the number of design variables, the adjoint method is particularly
inappropriate. On the other hand, the direct method is indicated in the case
that the number of design variables exceeds the number of constraints and
therefore it is well-suited for shape optimization problems.

In the context of BEM, the direct method consists in the differentiation
of the boundary integral equations, in its strong form, leading to analytical
expressions for the displacements and tractions derivatives. On the other hand,
in the context of FEM, the direct method is based on the differentiation of the
equilibrium equations in its discrete weak form, leading to a semi-analyical
derivative of the displacements. From this observation it can be inferred that,
from a theoretical point of view, the sensitivity analysis with BEM is more
accurate than with FEM.

In the following the derivatives of the boundary integral equations are
introduced and later the SGBEM approach is employed to obtain the nodal
derivatives values of both displacement and traction fields.

4.1
SGBEM sensitivity equations

Differentiation of the boundary integral equations of the exterior, defined
in Equations (3-3) and (3-9) , with respect to the design variables, leads to

∫
Γ
Ġuu
ij (P,Q) tj (Q) dΓ +

∫
Γ
Guu

ij (P,Q) tj (Q) dΓ̇ +
∫
Γ
Guu

ij (P,Q) ṫj (Q) dΓ

−
∫
Γ
Ġut
ij (P,Q)uj (Q) dΓ−

∫
Γ
Gut

ij (P,Q)uj (Q) dΓ̇−
∫
Γ
Gut

ij (P,Q) u̇j (Q) dΓ = 0 (4-1)
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and∫
Γ
Ġtu
ij (P,Q) tj (Q) dΓ +

∫
Γ
Gtu

ij (P,Q) tj (Q) dΓ̇ +
∫
Γ
Gtu

ij (P,Q) ṫj (Q) dΓ

−
∫
Γ
Ġtt
ij (P,Q)uj (Q) dΓ−

∫
Γ
Gtt

ij (P,Q)uj (Q) dΓ̇−
∫
Γ
Gtt

ij (P,Q) u̇j (Q) dΓ = 0
(4-2)

where the superimposed dot denotes the derivative with respect to a design
variable.

The limit to the boundary approach leads to

lim
PE→P

[∫
Γ
Ġuu
ij (PE, Q) tj (Q) dΓ +

∫
Γ
Guu

ij (PE, Q) tj (Q) dΓ̇ +
∫
Γ
Guu

ij (PE, Q) ṫj (Q) dΓ

−
∫
Γ
Ġut
ij (PE, Q)uj (Q) dΓ−

∫
Γ
Gut

ij (PE, Q)uj (Q) dΓ̇−
∫
Γ
Gut

ij (PE, Q) u̇j (Q) dΓ
]

= 0 (4-3)

and

lim
PE→P

[∫
Γ
Ġtu
ij (PE, Q) tj (Q) dΓ +

∫
Γ
Gtu

ij (PE, Q) tj (Q) dΓ̇ +
∫
Γ
Gtu

ij (PE, Q) ṫj (Q) dΓ

−
∫
Γ
Ġtt
ij (PE, Q)uj (Q) dΓ−

∫
Γ
Gtt

ij (PE, Q)uj (Q) dΓ̇−
∫
Γ
Gtt

ij (PE, Q) u̇j (Q) dΓ
]

= 0
(4-4)

The interpolation of derivative nodal values may be carried out by using
the same shape functions employed in the discretization of the problem, i.e.

·u (ξ) =
 ·
ux (ξ)
·
uy (ξ)

 = N (ξ) ·ue;
·
t (ξ) =

 ·
tx (ξ)
·
ty (ξ)

 = N (ξ)
·
te; (4-5)

Employing the Galerkin method to equations (4-3) and (4-4) results in
Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

·
Itu (ξ, η) dξdη

)
teQ +

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Itu (ξ, η) dξdη
)
·

teQ =
Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

·
Itt (ξ, η) dξdη

)
ueQ +

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Itt (ξ, η) dξdη
)

·ueQ
(4-6)

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

·
Iuu (ξ, η) dξdη

)
teQ +

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Iuu (ξ, η) dξdη
)
·

teQ =
Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

·
Iut (ξ, η) dξdη

)
ueQ +

Ne∑
ep=1

Ne∑
eQ=1

(
lim
PE→P

1∫
0

1∫
0

Iut (ξ, η) dξdη
)

·ueQ
(4-7)

where

·
Iuu (ξ, η) = NT (η)

[ ·
Guu (PE (η) , Q (ξ)) JeQ + Guu (PE (η) , Q (ξ))

·
JeQ

]
N (ξ) Jep

·
Iut (ξ, η) = NT (η)

[ ·
Gut (PE (η) , Q (ξ)) JeQ + Gut (PE (η) , Q (ξ))

·
JeQ

]
N (ξ) Jep

·
Itu (ξ, η) = NT (η)

[ ·
Gtu (PE (η) , Q (ξ)) JeQ + Gtu (PE (η) , Q (ξ))

·
JeQ

]
N (ξ) Jep

·
Itt (ξ, η) = NT (η)

[ ·
Gtt (PE (η) , Q (ξ)) JeQ + Gtt (PE (η) , Q (ξ))

·
JeQ

]
N (ξ) Jep

(4-8)

Based on the same assembly strategy of the SGBEM the discrete equa-
tions are given as
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 Ruu
uu −Rut

ut

−(Rut
ut)

T Rtt
tt


·

tu
·ut

=
 Rut

uu −Ruu
ut

−Rtt
tu Rtu

tt




·
ūu
·
t̄t

+


·

Rut
uu

·
−Ruu

ut
·

−Rtt
tu

·
Rtu

tt


 ūu

t̄t

+


·

−Ruu
uu

·
Rut

ut
·

(Rut
ut)

T
·

−Rtt
tt


 tu

ut

 (4-9)

where
·

tu e ·ut are, respectively, unknown values of the displacements and trac-
tions derivatives,

·
t̄t e

·
ūu are the differentiated prescribed values of displace-

ments and tractions and submatrices
·

R are obtained by the integrals defined
in Equations (4-6) and (4-7)

4.2
Fundamental Solution Sensitivities

The derivatives of the fundamental solutions with respect to the design
variables are given as

·
Guu
ij (P,Q) = 1

8πµ(1− ν)

(3− 4ν)
·(

ln
(1
r

))
δij + ·

r,i r,j + r,i
·
r,j

 (4-10)

·
Gut
ij (P,Q) = −1

4π(1−ν)

{ ·(
1
r

) [
∂r
∂n

[(1− 2ν) δij + 2r,ir,j] + (1− 2ν) (nir,j − nkr,j)
]

+1
r

[ ·
∂r
∂n

[(1− 2ν) δij + 2r,ir,j] + ∂r
∂n

[
2
( ·
r,i r,j + r,i

·
r,j
)]]

+1
r

[
(1− 2ν)

( ·
ni r,j + ni

·
r,j −

·
nk r,j − nk

·
r,j
)]}

(4-11)

·
Gtt
ij(P,Q) = µ

2π(1−ν) =
{ ·(

1
r2

)
[(δijδkw + δkiδjw − δjkδiw)m,kn,w]

·(
1
r2

)
[(+2δjkr,ir,w + 2δiwr,jr,k − 8r,ir,wr,jr,k)m,kn,w]

+ 1
r2 (δijδkw + δkiδjw − δjkδiw + 2δjkr,ir,w)

( ·
m,k n,w +m,k

·
n,w

)
+ 1
r2 (+2δiwr,jr,k − 8r,ir,wr,jr,k)

( ·
m,k n,w +m,k

·
n,w

)
+ 1
r2

[
2δjk

( ·
r,i r,w + r,i

·
r,w
)

+ 2δiw
( ·
r,j r,k + r,j

·
r,k
)]
m,kn,w

− 1
r2

[
8
( ·
r,i r,wr,jr,k + r,i

·
r,w r,jr,k + r,ir,w

·
r,j r,k + r,ir,wr,j

·
r,k
)]
m,kn,w

}
(4-12)

where ·(
ln
(1
r

))
= −

·
r

r
(4-13)

·
(r,i) =

·
Ri r −Ri

·
r

r2 (4-14)

Ri = Qi − pi; (4-15)

·
Ri =

·
Qi−

·
pi; (4-16)

·
nx = 1

JeQ
2

[ ·(
∂Qy

∂ξ

)
JeQ − ∂Qy

∂ξ

·
JeQ

]
; ·
mx = 1

Jep
2

[ ·(
∂Py

∂ξ

)
Jep − ∂Py

∂ξ

·
Jep

]
; (4-17)

·
ny = − 1

JeQ
2

[ ·(
∂Qx

∂ξ

)
JeQ − ∂Qx

∂ξ

·
JeQ

]
; ·
my = − 1

Jep
2

[ ·(
∂Px

∂ξ

)
Jep − ∂Px

∂ξ

·
Jep

]
; (4-18)
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·
JeQ = 1

JeQ

[
∂Qx

∂ξ

·(
∂Qx

∂ξ

)
+∂Qy

∂ξ

·(
∂Qy

∂ξ

)]
;

·
Jep = 1

Jep

[
∂Px

∂ξ

·(
∂Px

∂ξ

)
+∂Py

∂ξ

·(
∂Py

∂ξ

)]
; (4-19)

It is worth noting that differentiating the fundamental solutions does not
alter its singularity, thus the same treatment of the singular integrals, previ-
ously introduced, may also be employed for the singular integrals involving
the derivatives of the fundamental solutions. However, given the great length
of these expressions, the analytical treatment of these integrals is often cum-
bersome. Fortunately, the following theorem allows for a very simple way of
obtaining such results.

Theorem 1 If f and ∂f
∂t

are continuous for (x, t) ∈ [a, b]× [α, β], and [a, b] is
finite, then the function

Φ (t) =
b∫
a

f (x, t) dx (4-20)

is differentiable and

dΦ (t)
dt

= d

dt

b∫
a

f (x, t) dx =
b∫
a

∂f (x, t)
∂t

dx (4-21)

For a proof see, for example, [48].
Therefore, a straightforward way to obtain the analytical expressions for

the singular integrals of Equations (4-6) and (4-7) is to simply differentiate the
analytical results previously obtained for the singular integrals.

4.3
Stress sensitivities post-processing

The evaluation of the stress derivatives on the boundary may be carried
out by a procedure similar to the technique applied in stress post-processing
stage.

Differentiation of the boundary integral equations, for the interior of the
domain, defined in Equations (3-36) and (3-37) , leads to

·
∂ui(P )
∂xP

= lim
PI→P

∫
Γ

·
∂Guu

ij (PI ,Q)
∂xP

ti(Q)dΓ +
∫
Γ

∂Guu
ij (PI ,Q)
∂xP

·
ti(Q) dΓ +

∫
Γ

∂Guu
ij (PI ,Q)
∂xP

ti(Q)
·
dΓ

−
∫
Γ

·
∂Gut

ij (PI ,Q)
∂xP

ui(Q)dΓ−
∫
Γ

∂Gut
ij (PI ,Q)
∂xP

·
ui(Q) dΓ−

∫
Γ

∂Gut
ij (PI ,Q)
∂xP

ui(Q)
·
dΓ
 (4-22)

·
∂ui(P )
∂yP

= lim
PI→P

∫
Γ

·
∂Guu

ij (PI ,Q)
∂yP

ti(Q)dΓ +
∫
Γ

∂Guu
ij (PI ,Q)
∂yP

·
ti(Q) dΓ +

∫
Γ

∂Guu
ij (PI ,Q)
∂yP

ti(Q)
·
dΓ

−
∫
Γ

·
∂Gut

ij (PI ,Q)
∂yP

ui(Q)dΓ−
∫
Γ

∂Gut
ij (PI ,Q)
∂yP

·
ui(Q) dΓ−

∫
Γ

∂Gut
ij (PI ,Q)
∂yP

ui(Q)
·
dΓ
 (4-23)
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Differentiation of the boundary integral equations, for the exterior,
defined in Equations (3-40) and (3-41), leads to

0 = lim
PE→P

∫
Γ

·
∂Guu

ij (PE ,Q)
∂yP

ti(Q)dΓ +
∫
Γ

∂Guu
ij (PE ,Q)
∂yP

·
ti(Q) dΓ +

∫
Γ

∂Guu
ij (PE ,Q)
∂yP

ti(Q)
·
dΓ

−
∫
Γ

·
∂Gut

ij (PE ,Q)
∂yP

ui(Q)dΓ−
∫
Γ

∂Gut
ij (PE ,Q)
∂yP

·
ui(Q) dΓ−

∫
Γ

∂Gut
ij (PE ,Q)
∂yP

ui(Q)
·
dΓ
 (4-24)

0 = lim
PE→P

∫
Γ

·
∂Guu

ij (PE ,Q)
∂yP

ti(Q)dΓ +
∫
Γ

∂Guu
ij (PE ,Q)
∂yP

·
ti(Q) dΓ +

∫
Γ

∂Guu
ij (PE ,Q)
∂yP

ti(Q)
·
dΓ

−
∫
Γ

·
∂Gut

ij (PE ,Q)
∂yP

ui(Q)dΓ−
∫
Γ

∂Gut
ij (PE ,Q)
∂yP

·
ui(Q) dΓ−

∫
Γ

∂Gut
ij (PE ,Q)
∂yP

ui(Q)
·
dΓ
 (4-25)

Taking the difference between the interior and exterior equations gives

·
∂ui(P )
∂yP

=
(

lim
PI→P

− lim
PE→P

)∫
Γ

·
∂Guu

ij (PI−E ,Q)
∂yP

ti(Q)dΓ +
∫
Γ

∂Guu
ij (PI−E ,Q)
∂yP

·
ti(Q) dΓ +

∫
Γ

∂Guu
ij (PI−E ,Q)
∂yP

ti(Q)
·
dΓ

−
∫
Γ

·
∂Gut

ij (PI−E ,Q)
∂yP

ui(Q)dΓ−
∫
Γ

∂Gut
ij (PI−E ,Q)
∂yP

·
ui(Q) dΓ−

∫
Γ

∂Gut
ij (PI−E ,Q)
∂yP

ui(Q)
·
dΓ
 (4-26)

·
∂ui(P )
∂xP

=
(

lim
PI→P

− lim
PE→P

)∫
Γ

·
∂Guu

ij (PI−E ,Q)
∂xP

ti(Q)dΓ +
∫
Γ

∂Guu
ij (PI−E ,Q)
∂xP

·
ti(Q) dΓ +

∫
Γ

∂Guu
ij (PI−E ,Q)
∂xP

ti(Q)
·
dΓ

−
∫
Γ

·
∂Gut

ij (PI−E ,Q)
∂xP

ui(Q)dΓ−
∫
Γ

∂Gut
ij (PI−E ,Q)
∂xP

·
ui(Q) dΓ−

∫
Γ

∂Gut
ij (PI−E ,Q)
∂xP

ui(Q)
·
dΓ
 (4-27)

Proceeding with the same numerical implementation as in SGBEM, and
noting that the displacements, tractions and their derivatives are known a
priori, these boundary integral equations lead to following linear systems

A u̇,xP
= cx (4-28)

A u̇,yP
= cy (4-29)

where A is the same block diagonal matrix obtained in the stress post
processing stage, u̇,xP

and u̇,yP
are the nodal values of the derivatives of the

differentiated displacements and cx and cy are obtained by evaluating the
double integrals on the right hand side of Equations (4-26) and (4-27).

It is worth mentioning that, by employing this approach, all the reg-
ular integrals vanish and only the singular integrals must be evaluated. In
addition, as aforementioned, the analytical expressions for these singular inte-
grals may be readily obtained by appropriately switching the order of integra-
tion/differentiation.

With the derivatives of differentiated displacements in hand it is then
straightforward to obtain the stresses derivatives on the boundary by simply
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differentiating the stress/displacements relations defined in Equation (3-44),
i.e.

·
σxx = 2µν

1−2ν

( ·
∂ux

∂x
+

·
∂uy

∂y

)
+ 2µ

( ·
∂ux

∂x

)
·
σyy = 2µν

1−2ν

( ·
∂ux

∂x
+

·
∂uy

∂y

)
+ 2µ

( ·
∂uy

∂y

)
·
σxy = µ

( ·
∂ux

∂y
+

·
∂uy

∂x

) (4-30)
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5
Structural Optimization with SOCP

The second-order cone programming (SOCP) [49] is a modern optimiza-
tion technique which belongs to the extensive field of conic programming (CP)
[50]. SOCP is capable of handling nonlinear convex problems including linear,
quadratic and second-order cone constraints. Hence, linear programming (LP),
convex quadratic programming (QP) and convex quadratically constrained
quadratic programming (QCQP) are all particular cases of SOCP. Further-
more, robust and efficient primal-dual interior points algorithms are available
for SOCP, thus allowing for fast solutions of large scale-optimization problems.
To expose the versatility of SOCP, in [51] the authors introduce a great va-
riety of problems which can be cast as SOCP problems, including sums and
maximum of norms, problems with hyperbolic constraints and robust linear
programming.

Despite its great features, the application of SOCP in engineering still
remains an open field. The limited literature on this subject includes works
like antenna array weight design [52], grasping force optimization [53] and
multi-load truss topology optimization [50]. Nevertheless, the most expressive
application of SOCP in civil engineering, specifically in geomechanics, is in the
field of limit analysis [54].

Limit analysis is a structural analysis field in which the main goal is to
estimate the collapse load of a given structural system in a efficient manner. In
general, the limit analysis is formulated as a nonlinear optimization problem in
which a given yield criterion is posed as a constraint. Particular yield criteria,
such as the von Mises and Drucker-Prager, are amenable to be cast into a
second-order cone constraint, thus allowing for the efficient and robust solution
of such problems by the SOCP. Based on this idea, this work proposes the
application of SOCP in the context of structural optimization with stress
constraints. The proposed procedure relies on the solution of a sequence of
SOCP subproblems in which the stress constrains are cast into second-order
cone constraints.

5.1
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Second-order cone programming

Conic programming is a class of mathematical programming problems
in which the objective function is convex and the constraint set is given as
the intersection of an affine subspace with a convex cone. A general conic
optimization problem may be stated as

min cTx

s.t.
Ax = b
x ∈ K

(5-1)

where x are the design variables, Ax = b is a set of linear constraints and K
is the convex cone associated to the problem.

Some examples of conic programming are linear programming (LP),
convex quadratic programming (Convex QP), second-order cone progamming
(SOCP) and the semidefinite programming (SDP). Figure 5.1 depicts the
different subfields belonging to the conic programming.

LPConvex
QPSOCPSDPCP

Figure 5.1: Conic programming subfields.

Each one of these subfields is distinguished by the type of cone associated
to the problem. For example, in LP problems the associated cone is the so-
called R+ cone, which is defined as

R+ = {x ∈ R|x ≥ 0} (5-2)


min cTx

s.t.
Ax = b
x ≥ 0

or


min cTx

s.t.
Ax = b
x ∈ R+

(5-3)

Analogously, in SOCP problems the associated cone is called the second-
order cone, also known as the ice-cream or the Lorentz cone, which is defined
as

Kq = {x ∈ Rn|x1 ≥ ‖x2:n‖ , x1 ≥ 0} (5-4)
Thus, a general SOCP problem may be written as
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min cTx

s.t.
Ax = b
x1 ≥ ‖x2:n‖
x1 ≥ 0

or


min cTx

s.t.
Ax = b
x ∈ Kq

(5-5)

It is worth to mention that the Kq cones belongs to a class of cones
called self-scaled (see [55] for a detailed definition). In [56] the extension of
the primal-dual interior point algorithms for convex programming problems
with self-scaled cones is presented. This formulation allows for a robust and
highly efficient numerical implementations for solving SOCP. According to [51],
regarding the interior-point algorithm, worst-case theoretical analysis shows
that the number of iterations required to solve a SOCP problem grows at
most as the square root of the number of design variables, while numerical
experiments indicate that the typical number of iterations ranges between 5
and 50, almost independently of the problem size. This feature allows for the
solution of large scale problems with minor computation expenses. A step by
step numerical implementation of the primal-dual interior-point algorithm for
conic quadratic optimization is introduced in [55].

5.2
Second-order cone representations of material yield criteria

One of the main steps involved in developing the proposed procedure is
to cast the yield criteria/stress constraints into second-oder cone constraints.
All the most common yield criteria used in practice are amenable to be cast
into semidefinite conic form, while in some particular cases the criteria may
be cast into second-order cone constraints. In [57] the conic representation
of the most common yield criterion are introduced. Specifically, in such
work, the Mohr-Coulomb, Rankine and Tresca criteria are all represented by
positive semidefinite cones, while the von Mises and Drucker Prager criteria
are rewritten as second-order conic constraints. To elucidate such process, the
casting of the von Mises yield criterion into a second order cone is demonstrated
next.

Second-order cone representation of the von Mises criterion

The von Mises criterion states that yielding begins when the octahedral
shearing stress reaches a critical value k. For a plane stress state the criterion
is given as

τoct =
√
σxx2 + σyy2 − σxxσyy + 3τxy2 ≤ k (5-6)
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where τoct is the octahedral shearing stress, σxx, σyy and τxy are the Cauchy
stress components and k is the yield stress in pure shear.

The expression of Equation (5-6) may be written in the following matrix
form

τoct =
√
σMσ ≤ k (5-7)

where

M :=


1 −0.5 0
−0.5 1 0

0 0 3

 ; σ :=


σxx

σyy

σxy

 ; (5-8)

Given the positive definiteness of matrix M, a Cholesky factorization
may be performed, resulting in

M := LTL (5-9)

The following change of variables

y = Lσ (5-10)

leads to
τoct =

√
σMσ =

√
yTy ≤ k ⇔ τoct = ‖y‖ ≤ k (5-11)

Defining z as
z :=

[
k y1 y2 y3

]
(5-12)

then the criterion is restated as

CVM =
{
z ∈ R4|z1 ≥ ‖z2:4‖ , z1 ≥ 0

}
(5-13)

where the second-order cone CVM is known as the von Mises cone.

5.3
Minimization of Stress Concentrations using SOCP

The minimization of stress concentrations plays a central role in the area
of structural shape optimization. The main objective is to reduce the stress
concentration effects which are usually caused by geometric discontinuities
such as cracks, sharp corners and holes. Since these discontinuities usually
occur on the boundary of the structure, the shape optimization framework is
particularly suitable for this problem.

In general, the problem of minimizing stress concentrations is formulated
as the minimization of the maximum stress measure subjected to a volume con-
straint. Typically the von Mises, e.g. [58] and [31], or the principal stresses, e.g.
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[59] and [13], are chosen as the stress measure. A great inconvenient regard-
ing this formulation is the lack of smoothness of the maximum function, thus
impairing the global convergence of mathematical programming methods. To
overcome this problem, in [58] the authors employ a differentiable approxima-
tion of the maximum function, often referred to as smooth maximum. However,
this approach is based on numerical parameters which have to be well-adjusted
in order to obtain a stable approximation. In [31], [13] and [60] the authors
proposed an objective function based on the square deviation between the ac-
tual stresses and a target value. Unfortunately, a target stress is rarely known
a priori, thus making this alternative not well-suited for practical applications.
In [25] a bound formulation is proposed in which the min-max formulation is
converted into a simple optimization problem in terms of an unknown bound
on the stresses. Such bound formulation then states the problem as a linear
objective function comprised of the unknown bound value and non-linear stress
constraints. Following this idea, and based on a linear approximation of the
stresses, both [25] and [59] propose the use of a sequential linear programming
algorithm.

In this present work the optimization problem is solved by means of
a sequential conic quadratic programming procedure. In this framework, the
stress constraints are approximated by second order cone constraints and each
subproblem is efficiently solved by a SOCP primal-dual interior point algorithm
[61].

5.4
A sequential SOCP framework for minimization of stress concentrations

Based on the min-max formulation, and choosing the von Mises criterion
as the stress measure, the problem of minimizing the stress concentrations may
be state as the following non-linear optimization problem

min
α

max
i=1...n

σVMi (α)

s.t.
A(α) <= Ao

αmin
j ≤ αj ≤ αmax

j ∀j = 1...m
(5-14)

where α is the vector of design variables, αmin
j and αmax

j are upper and lower
bounds the design variables, σVMi represents the von Mises stress value on i-th
discretization node, Ao is a prescribed volume fraction and A(α) is the volume
of the structure.

The bound formulation implies in converting the optimization problem
of Equation (5-14) into
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min
t,α

t

s.t.
σVMi (α) <= t

A(α) <= Ao

αmin
j ≤ αj ≤ αmax

j ∀j = 1...m

(5-15)

where the new variable t is the unknown bound on the stresses.
Substituting the quadratic form of Equation (2-45), for the volume, and

the matrix form of Equation (5-8), for the von Mises stresses, gives

min
t,α

t

s.t.

√
σi(ρ)TMσi (ρ) <= t

αTQα + αTb + c <= Ao

αmin
j ≤ αj ≤ αmax

j ∀j = 1...m

(5-16)

The first order Taylor’s series expansion of stresses with respect to the
design densities is given as

σi (ρ) ≈ σi (ρ0) +∇σi (ρ0) ∆ρ (5-17)

where ρ0 is the material distribution of the current iteration and

∆ρ =ρ−ρ0 (5-18)

Substituting the approximation of Equation (5-17) into the stress con-
straints of Equation (5-16) gives√

(σi (x0) +∇σi (x0) ∆x) LTL (σi (x0) +∇σi (x0) ∆xi)− σy ≤ 0 (5-19)

Casting of the von Mises criterion into second-order conic constraints,
the problem (5-16) may be approximated by the following SOCP subproblem.

min
t,α

t

s.t.

yi = L (σi (α0) +∇σi (α0) ∆α) ∀i = 1...n
‖yi‖ ≤ k ∀i = 1...n
V (α0) +∇V (α0) ∆α ≤ Vo

αmin
j ≤ αj ≤ αmax

j ∀j = 1...m

(5-20)

where the gradient of the volume function is defined in Equation (2-47) and
the gradient of the stresses is obtained by the sensitivity analysis with the
SGBEM.

The proposed procedure then seeks to solve the real problem by solving a
sequence of subproblems of the type of (5-20). From a practical point of view,
each subproblem seeks to approximate the real problem through a quadratic
conic model which in turn must be solved in order to determine a step of
the optimization. In general, this class of sequential optimization algorithms
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can be implemented using either line search or trust-region methods. The line
search method requires a great number of evaluations of both the objective
function and the constraints of the problem, thus, since each evaluation of the
topology optimization problem requires a complete structural analysis, this
method leads to an expensive computational alternative. On the other hand,
the trust-region approach only requires one step of the structural analysis for
each iteration, thus alleviating much of the computational effort involved in
each optimization step. In addition, the trust-region method can be naturally
coupled to subproblem (5-20) by simply introducing the following second-order
cone constraint

‖∆ρ‖ ≤ rk (5-21)
where r is the trust-region radius of the k-th iteration of the optimization.

The constraint (5-21) restrains the subproblem solution to the ball of
radius r, thus defining the trust-region for the current iteration of the problem.
Another key ingredient of the method is the choice of the radius for the trust-
region in each iteration of the problem. In general, this choice is based on the
agreement between the real problem and the quadratic conic model adopted
in the approximation of each subproblem. In the present work, the model is
based on the approximation of the von Mises stresses in each iteration of the
real problem, thus the agreement defined as the following rate

εk :=

∥∥∥∥∥∥
√
σj(ρ0 + ∆ρ)TMσj (ρ0 + ∆ρ)−

√
σj(ρ0)TMσj (ρ0)

‖yj‖ −
√
σj(ρ0)TMσj (ρ0)

∥∥∥∥∥∥
∞

(5-22)

which measures the error between the real stresses and the approximation
employed.

Based on this agreement the following simple algorithm, proposed in [62],
may be employed here in order to choose the trust-region radius and also to
accept or reject the step in each iteration of the optimization procedure.
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Algorithm 1 Trust-region
for k=0,1,2,. . . do

Obtain ∆ρk by solving subproblem (??)
Evaluate εk as in (5-22)
if εk+1 <0.25 then

rk+1 = 0.25rk
else

if εk > 0.75 and ‖∆ρk‖ = rk then
rk+1 = 2rk

else
rk+1 = rk

end if
ρk+1 = ρk + ∆ρk

end if
end for

5.5
Plate with a hole example

To explore the efficiency and robustness of the proposed approach, the
numerical solution of a well-known benchmark problem is investigated. Such
problem consists in minimizing the stress concentrations by optimizing the
shape around the hole of an infinite perforated plate. The initial hole is usually
assumed to be circular and the plate subjected to biaxial loading. Figure 5.2
depicts the problem with its initial shape and boundary conditions.

Figure 5.2: Infinite perforate plate under biaxial loading.
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According to [63] the analytical solution for this setting is comprised of
an ellipse shaped hole, for which the ratio between its major and minor axes is
defined by a

b
= σ1

σ2
, surrounded by an uniformly distributed stress of intensity

σf = 1.5σ1.
In order to verify the proposed implementation, the following numerical

example, illustrated in Figure 5.3, is investigated. Given the double symmetry
of the problem, only a quarter of the plate is modeled.

2

3

1

4

Figure 5.3: Numerical example of an infinite perforated plate.

In this initial setting, the circular hole is approximated by a cubic Bézier
curve with control points 1, 2, 3 and 4. As for the optimization modeling, points
2 and 3 are free to move in either directions and no bounds are specified for
the initial and end points of each span, i.e. points 2 and 3 are free to move
anywhere. In addition, to ensure C1 continuity of the Bézier curves on the line
of symmetry, points 1 and 4 are linked to the displacements of points 2 and 3
by suitable linear constraints.

Figure 5.5 shows stress distributions for the initial and final shapes, while
Figure 5.4 shows the von Mises stress around the optimized hole. Both results
are compared with the analytical solution provided in [63].

The ratio between the principal axis of the final Bézier curve was
approximately evaluated as 2.003, very close to the analytical one, i.e. 2. Also,
the von Mises stress around the hole is approximately uniform, with maximum
intensity of 15.5, sufficiently close to the analytical stress solution of 15. Figure
5.4 shows the initial and final von Mises stress along the optimized edge.

In order to assess the efficiency of the proposed approach, a comparison
with other available methods is carried out. The first comparative test consists
in solving the problem by means of the SQP algorithm according to the
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5.4(a): Initial shape stress distribution. 5.4(b): Final shape stress distribution.

Figure 5.4: von Mises stress along optimized edge.

bound formulation. Following this approach, the stress and area constraints
are handled as general non-linear constraints. The second alternative consists
in employing the smooth maximum approach in order to obtain a differentiable
objective function. This method is accomplished by taking the p-norm of
the von Mises stress values in the discretization nodes around the hole. In
addition, the area constraint is handled as a general non linear constraint and
the optimization problem is carried out by the SQP algorithm. Table 5.1 shows
the numerical comparative results related to the computational effort required
by each one of the methods.

These results highlight the assets of the proposed approach over the
alternative methods available in the literature. To begin with, the sequential
SOCP approach required less iterations than the other methods. Secondly, due
to the trust-region method, the number of structural analysis evaluations was
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Table 5.1: Comparison between the alternative optimization formulations.
Method Iterations Structural analysis

evaluations Total elapsed time

Sequential SOCP 6 6 21.04 s
Bound formulation with SQP 8 54 37,18 s
Smooth maximum with SQP 21 135 96.36 s

kept to a minimum, i.e. one per iteration. On the other hand, the other methods
were carried out by a SQP solver which employs the line search algorithm,
thus resulting in extra analysis evaluations for each step of the optimization.
Finally, the total elapsed time for the sequential SOCP was remarkably lower,
thus indicating that the proposed approach is particularly suitable for the
minimization of stress concentrations.
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6
SGBEM block partition approach

The implementation of the SOCP by the primal-dual interior points
algorithm allows for an extremely efficient solution of subproblems (5-20).
Furthermore, employing the procedure described in Chapter 2, the structure’s
volume and its gradient may be evaluated very efficiently, reducing to the
simple evaluation of quadratic and linear functions of the design variables.
On the other hand, the evaluation of stresses and their derivatives generally
represents the most time consuming step in shape optimization problems.
Although the SGBEM relieves the burden of the mesh generation step, the
solution of the boundary value problem, required at each iteration of the
optimization, is usually computationally expensive. Therefore, in order to
reduce the computational effort associated with this step, a block matrix
partition approach is proposed. This approach relies on the splitting of the
boundary in two parts, one which remain fixed and the other which moves
during the optimization procedure. The double integrals associated with the
fixed boundary remain constant and therefore may be evaluated only once
throughout the optimization. In addition, a suitable partition of the SGBEM
equations is proposed with the goal of reducing the dimension of the systems
which must be solved at each iteration of process.

6.1
The partition approach

The first step of this approach is to split the boundary as

Γ = Γu ∪ Γt ∪ Γf (6-1)

where Γu is the part of the boundary where the displacements are prescribed,
Γt is the part where the tractions are prescribed and Γf is the part to be
optimized.

In the present work, it is always assumed that both Γu and Γt are not
allowed to move during the optimization process. It is also assumed that the Γf
part of the boundary is prescribed with null tractions, i.e. t̄f = 0 in Γf , and that
the displacements in Γu are fixed, i.e. ūu = 0 in Γu. Given these assumptions
and the splitting of the boundary as in Equation (6-1), the SGBEM leads to
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the following linear system of equations.
Ruu
uu −Rut

ut −Rut
uf

(−Rut
ut)

T Rtt
tt Rtt

tf(
−Rut

uf

)T (
Rtt
tf

)T
Rtt
ff




tu
ut
uf

 =


Rut
uu −Ruu

ut −Ruu
uf

−Rtt
tu Rtu

tt Rtu
tf

−Rtt
fu Rtu

ft Rtu
ff




ūu
t̄t
t̄f

 (6-2)

which can be simplified to
Ruu
uu −Rut

ut −Rut
uf

(−Rut
ut)

T Rtt
tt Rtt

tf(
−Rut

uf

)T (
Rtt
tf

)T
Rtt
ff




tu
ut
uf

 =


bu
bt
bf

 (6-3)

where
bu = −Ruu

ut t̄t; bt = Rtu
tt t̄t; bf = Rtu

ftt̄t; (6-4)

Due to the assumption that both Γu and Γt are not allowed to move, the
double integrals involved in the case that both the source and the field element
belongs to Γu∪Γt remain constant throughout the optimization process. Then
it is straightforward to observe that matrices Ruu

uu, Rut
ut, Rtt

tt and vectors b̄u
and b̄t remain unaltered as the optimization progress.

Based on this simple observation, the following block partition of system
(6-3) is proposed  A11 A12

AT
12 A22

 x1

x2

 =

 b1

b2

 (6-5)

where

A11 =
 Ruu

uu −Rut
ut

(−Rut
ut)

T Rtt
tt

 ; A12 =
 −Rut

uf

Rtt
tf

 ; A22 = Rtt
ff ; (6-6)

and
x1 =

 tu
ut

 ; b1 =
 bu

bt

 ;

x2 = uf b2 = bf ;
(6-7)

Both the block matrix A11 and the b1 vector may be evaluated only once,
possibly in a preprocessing stage. The remaining quantities, i.e. A12, A22 and
b2 must be updated for each iteration of the optimization procedure.

Based on this partition the system (6-5) may be solved as

x2 =
(
A22 −A12

T (A11)−1A12
)−1 (

b2 −A12
T (A11)−1b1

)
x1 = (A11)−1 (b1 −A12x2)

(6-8)

where the matrix (
A22 −A12

T (A11)−1A12
)

is called the Schur’s complement of A11 in A.
Before presenting an efficient algorithm for solving (6-8) a thorough

analysis about the positive definiteness of the matrices involved in this system
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is presented. The following observations are based on the fact that the SGBEM
system matrix is always positive definite and results from the following
proposition

Proposition 1 Let A be a positive definite matrix of the form

A =
 A11 A12

AT
12 A22

 (6-9)

then (1) A11 and A22 are positive definite. (2)

(
A22 −A12

T (A11)−1A12
)

is positive definite.

Proof. (1) Given that A is positive definite then

zTA z ≥ 0∀z ∈ Rn ≡

 z1

z2

T  A11 A12

A12
T A22

 z1

z2

 ≥ 0∀z1 ∈ Rn1 ,∀z2 ∈ Rn2 (6-10)

thus z1

0

T  A11 A12

A12
T A22

 z1

0

 ≥ 0∀z1 ∈ Rn1 ⇒ z1
TA11 z1 ≥ 0∀z1 ∈ Rn1 (6-11)

which readily shows that A11 and A22 are positive definite. �

Proof. (2) Given that A is block symmetric then it may be decomposed as (see
[49])

A = NTDN (6-12)
where

N =
 I A11

−1A12

0 I

 ; D =
 A11 0

0 A22 −A12
TA11

−1A12

 ; (6-13)

Observing that N is always invertible with

N−1 =
 I −A11

−1A12

0 I

 (6-14)

then it readily follows that N is a full row rank matrix.
Therefore, it also follows from the positive definiteness of A that

zTA z > 0∀z ∈ Rn ⇒ zTNTDN z > 0 ∀z ∈ Rn

⇒ yTDy > 0 ∀y ∈ Rn, y = Nz
(6-15)

thus proving that D is positive definite.
Finally, using Proposition 1, it readily follows that

(
A22 −A12

T (A11)−1A12
)

is also positive definite. �

DBD
PUC-Rio - Certificação Digital Nº 1512788/CA



Chapter 6. SGBEM block partition approach 62

These results show that solving system (6-5) by means of the scheme
(6-8) is always possible. Furthermore, given that the matrices A11 and(
A22 −A12

T (A11)−1A12
)
are positive definite, specialized procedures may be

employed, thus leading to an efficient and numerically stable procedure. Based
on these facts the following algorithm is proposed.

Algorithm 2 Partitioned system solution algorithm
1. Perform the LU factorization of A11 = LU
2. Solve c1 := L−1b1 by back substitution
3. Solve B12 := A12

TU−1 and B21 := L−1A12 by multiple back substitution
4. Solve for x2 = (A22 −B12B21)−1 (b2 −B12c1)
5. Solve x1 = U−1 (c1 −B12x2) by back substitution

It is worth noting that A11 and b1 remain constant, thus steps 1 and 2
may be executed only once throughout the optimization process. In addition,
the back substitution in steps 2 3 and 5 requires less computational effort
than a standard matrix-vector multiplication and therefore may be carried out
extremely fast. At last, given that (A22 −B12B21)−1 is positive definite, the
system in step 4 may be solved by specialized solvers.

This block decomposition approach may also be applied in the sensitivity
analysis stage in a straightforward manner. Given the splitting of the boundary,
as defined in Equation (6-1), the discretized equations of the sensitivity analysis
stage with SGBEM are given as

Ruu
uu −Rut

ut −Rut
uf

(−Rut
ut)

T Rtt
tt Rtt

tf(
−Rut

uf

)T (
Rtt
tf

)T
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ff




ṫu
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u̇f
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uu −Ṙut

ut −Ṙut
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−Ṙtu
tu Ṙtt

tt Ṙtt
tf

−Ṙtu
fu Ṙtt

ft Ṙtt
ff




tu
ut
uf

 =

=


Rut
uu −Ruu

ut −Ruu
uf

−Rtt
tu Rtu

tt Rtu
tf

−Rtt
fu Rtu

ft Rtu
ff




˙̄uu
˙̄tt
˙̄tf

+


Ṙut
uu −Ṙuu

ut −Ṙuu
uf

−Ṙtt
tu Ṙtu

tt Ṙtu
tf

−Ṙtt
fu Ṙtu

ft Ṙtu
ff




ūu
t̄t
t̄f


(6-16)

Observing that the boundary conditions are not altered by the geometry
modifications, i.e. 

˙̄uu
˙̄tt
˙̄tf

 =


0
0
0

 (6-17)

and that the double integrals associated with the fixed boundary remain
constant Ṙuu

uu −Ṙut
ut(

−Ṙut
ut

)T
Ṙtt
tt

 =
 0 0

0 0

 ;
 Ṙut

uu −Ṙuu
ut

−Ṙtt
tu Ṙtu

tt

 =
 0 0

0 0

 ; (6-18)

the system (6-16) may be simplified as
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Ruu
uu −Rut

ut −Rut
uf

(−Rut
ut)

T Rtt
tt Rtt

tf(
−Rut

uf

)T (
Rtt
tf

)T
Rtt
ff




ṫu
u̇t
u̇f

 =


ḃu
ḃt
ḃf

 (6-19)

where ḃu = Ṙut
ufuf

ḃt = −Ṙtt
tfuf

ḃf = Ṙtu
ftt̄t +

(
Ṙut
uf

)T
tu −

(
Ṙtt
tf

)T
ut − Ṙtt

ffuf

(6-20)

Following the same idea, the block partition of the system (6-19) is given
as  A11 A12

AT
12 A22

  ·x1
·x2

 =
 ·

b1
·
b2

 (6-21)

where

A11 =
 Ruu

uu −Rut
ut

(−Rut
ut)

T Rtt
tt

 ; A12 =
 −Rut

uf

Rtt
tf

 ; A22 = Rtt
ff ; (6-22)

and

ẋ1 =
 ·

tu
·ut

 ;
·

b1 =
 Ṙut

ufuf
−Ṙtt

tfuf

 ;

·x2 = ·uf
·

b2 = Ṙtu
ftt̄t +

(
Ṙut
uf

)T
tu −

(
Ṙtt
tf

)T
ut − Ṙtt

ffuf ;
(6-23)

Therefore, the system may be solved as

ẋ2 =
(
A22 −A12

T (A11)−1A12
)−1 (

ḃ2 −A12
T (A11)−1ḃ1

)
ẋ1 = (A11)−1

(
ḃ1 −A12ẋ2

) (6-24)

Based on Algorithm 1, the following pseudo-code may be applied for the
solution of (6-24).

Algorithm 3 Partitioned system solution algorithm: sensitivity analysis
Perform the LU factorization of A11 = LU
for i=1,2,3. . . do

Solve B12 := A12
TU−1 and B21 := L−1A12 by multiple back substitution

Solve c1 := L−1b1 by back substitution
Perform the LU factorization of (A22 −B12B21) = LiUi

for k=1,2,3. . . do
Solve for x2 = (LiUi)−1 (b2 −B12c1) by double back substitution
Solve x1 = U−1 (c1 −B12x2) by back substitution

end for
end for
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6.2
Shouldered plate example

To show the performance gain due of the proposed approach, the shape
optimization of a shoulder fillet is investigated. The problem consists in
optimizing the fillet’s shape of a shouldered plate subjected to axial loading, as
depicted in Figure 6.1, in order to minimize the stress concentrations effects.

Figure 6.1: Shouldered plate under axial loading.

A numerical example of such problem, depicted in Figure 6 is investi-
gated. Given the double symmetry of the problem, only a quarter is modeled.

7

6

5

4

3

2

1

search domain

Figure 6.2: Shouldered plate under axial loading.

In order to seek for the optimal shape, the fillet edge is modeled by a
cubic B-spline with control points 1 to 7. The optimization model is defined
by letting points 2 to 6 to move inside the search domain box, depicted in
Figure 6.2, in either directions. The initial and optimized shapes are shown in
the stress plot of Figure 6.2, while Figure 6.3 depicts the von Mises stresses
along the optimized fillet.
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6.3(a): Initial shape stress distribution.

6.3(b): Final shape stress distribution.

Figure 6.3: von Mises stress along optimized fillet.

In order to assess the efficiency boost of such approach, the shoulder
fillet problem was initially carried out by using all the SGBEM equations for
every step of the optimization, namely the full approach and then, afterwards,
the proposed partition approach was employed. Figure 6.4 shows the time
comparison between these two methods.

As expected, the partition approach reduces the computational time
associated with the structural analysis of each step. In this particular example,
partition approach managed to reduce by almost half of the total time,
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Figure 6.4: Time comparison: full vs partition approach.

specifically 44,85%, thus presenting itself as a promising tool for reducing the
computation effort due to the strucural and sensitivity analysis with SGBEM.
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7
Conclusions and Future Work

This work has introduced the main aspects regarding the shape opti-
mization for the minimization of stress concentrations. This subject is of great
practical interest since the safety and life-span of structures may be signif-
icantly extended by avoiding such effects. Despite of the vast literature on
this subject, the problem is far from being completely resolved. Actually, the
minimization of stress concentrations is an on-going research field by both
academy and industry. Hopefully, given the innovative features, this research
may contribute to future works in this area.

7.1
Conclusion remarks

The innovative sequential SOCP approach has been proven to be an
extremely efficient alternative to the most commonly employed numerical
optimization methods. Besides requiring less iterations, the approach has
also been shown to be faster then the SQP approach, which, according to
[62], is considered one of the most effective methods for solving nonlinearly
constrained optimization problems. Furthermore, the trust-region method has
been naturally incorporated in the optimization procedure, thus alleviating
much of the burden of the structural analysis step.

Another main contribution of this research is due to the SGBEM block
partition approach. Such concept has been shown to reduce the computational
effort associated with the application of SGBEM as the analysis tool for the
optimization. Moreover, the positive definiteness of the matrices involved in
the approach, due to the SGBEM, resulted in a stable and efficient algorithm
for solving the required system of equations in each step.

Finally, the quadratic function for evaluating the volume in terms of the
design variables, besides providing economy in the computational aspect, is of
great interest regarding the optimization formulation. Although applying the
Green’s theorem is not an innovative idea, to the best of the author’s knowledge
there is no work in the literature which proposes such quadratic function.
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7.2
Future works

The following topics are suggested for further improving the proposed
numerical implementation.

– Isogeometric analysis [64] is a modern computational approach which
provides a direct integration between analysis and geometric modeling.
In opposition to the traditional approach, in which the CAD data must be
appropriately converted for analysis, the isogeometric formulation bypass
this cumbersome step by incorporating the NURBS basis functions into
the analysis. The application of such formulation within the framework
of shape optimization is particularly attractive and has been proposed
by several authors [65, 22, 21]. Isogeometric SGBEM has been recently
investigated by [66], in the context of 2D boundary value problems for
the Laplace equation, where the singular integrals are handled by means
of suitable numerical schemes. However, to the best of the author’s
knowledge, no work involving elasticity problems have been published.
The application of such formulation in the context of this work looks
very promising and it is suggested for future works.

– Although the sequential SOCP formulation has been proven to be a re-
liable and efficient procedure towards the minimization of concentration
effects, the approach is limited to second-order cone representable yield
criteria. In order to extend such formulation for other resistance criteria,
the investigation of a sequential semidefinite programming [67] procedure
is suggested for future works.
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