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Abstract 

 

 

Celecia, Alimed; Vellasco, Marley Maria Bernardes Rebuzzi (Advisor). 

Multiple Classifier System for Motor Imagery Task Classification. Rio 

de Janeiro, 2017. 177p. Dissertação de Mestrado – Departamento de 

Engenharia Elétrica, Pontifícia Universidade Católica de Rio de Janeiro. 

 

Brain Computer Interfaces (BCIs) are artificial systems that allow the 

interaction between a person and their environment using the translated brain 

electrical signals to control any external device. An EEG neurorehabilitation 

system can combine portability and affordability with good temporal resolution 

and no health risks to the user. This system can stimulate the brain plasticity, 

provided that the system offers reliability on the recognition of the motor imagery 

(MI) tasks performed by the user. Therefore, the aim of this work is the design of 

a machine learning system that, based on the EEG signal from only C3 and C4 

electrodes, can classify MI tasks with high accuracy, robustness to trial and inter-

subject signal variations, and reasonable processing time. The proposed machine 

learning system has four main stages: preprocessing, feature extraction, feature 

selection, and classification. The preprocessing and feature extraction are 

implemented by the extraction of statistical, power and phase features of the 

frequency sub-bands obtained by the Wavelet Packet Decomposition. The feature 

selection process is effectuated by a Genetic Algorithm and the classifier model is 

constituted by a Multiple Classifier System composed by different classifiers and 

combined by a Multilayer Perceptron Neural Network as meta-classifier. The 

system is tested on six subjects from datasets offered by the BCIs Competitions 

and compared with benchmark works founded in the literature, outperforming the 

other methods. In addition, a real BCI system for neurorehabilitation is designed 

and tested, producing good results as well. 

 

Keywords 

Multiple Classifier System; Brain Computer Interface; Motor Imagery; 

EEG; Signal Processing; Fusion Techniques; MLP; Genetic Algorithms. 
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Resumo 

 

Celecia, Alimed; Vellasco, Marley Maria Bernardes Rebuzzi. Sistema de 

Múltiplos Classificadores para Classificação de Tarefas de 

Imaginação Motora. Rio de Janeiro, 2017. 177p. Dissertação de 

Mestrado – Departamento de Engenharia Elétrica, Pontifícia Universidade 

Católica de Rio de Janeiro. 

 

Interfaces Cérebro Computador (BCIs) são sistemas artificiais que permitem 

a interação entre a pessoa e seu ambiente empregando a tradução de sinais 

elétricos cerebrais como controle para qualquer dispositivo externo. Um Sistema 

de neuroreabilitação baseado em EEG pode combinar portabilidade e baixo custo 

com boa resolução temporal e nenhum risco para a vida do usuário. Este sistema 

pode estimular a plasticidade cerebral, desde que ofereça confiabilidade no 

reconhecimento das tarefas de imaginação motora realizadas pelo usuário. 

Portanto, o objetivo deste trabalho é o projeto de um sistema de aprendizado de 

máquinas que, baseado no sinal de EEG de somente dois eletrodos, C3 e C4, 

consiga classificar tarefas de imaginação motora com alta acurácia, robustez às 

variações do sinal entre experimentos e entre sujeitos, e tempo de processamento 

razoável. O sistema de aprendizado de máquina proposto é composto de quatro 

etapas principais: pré-processamento, extração de atributos, seleção de atributos, e 

classificação. O pré-processamento e extração de atributos são implementados 

mediante a extração de atributos estatísticos, de potência e de fase das sub-bandas 

de frequência obtidas utilizando a Wavelet Packet Decomposition. Já a seleção de 

atributos é efetuada por um Algoritmo Genético e o modelo de classificação é 

constituído por um Sistema de Múltiplos Classificadores, composto por diferentes 

classificadores, e combinados por uma rede neural Multi-Layer Perceptron. O 

sistema foi testado em seis sujeitos de bases de dados obtidas das Competições de 

BCIs e comparados com trabalhos benchmark da literatura, superando os 

resultados dos outros métodos. Adicionalmente, um sistema real de BCI para 

neurorehabilitação foi projetado, desenvolvido e testado, produzindo também 

bons resultados. 
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1. Introduction 

 

 

1.1 Motivation 

 

Ancient Egyptians were the first documented people interested in the 

cerebral cortex and the brain injuries [1]. Since that time, the study of the brain, its 

functions and diseases has been one of the focuses of philosophers, doctors, and 

scientist communities. The difficulty in perfectly understanding the relationship 

between the brain areas and the human behavior and neurological disorders led to 

some initiatives, such as the BRAIN initiative from the USA government [2] and 

the Human Brain Project from the European Union [3]. Their main objective is to 

offer the necessary contribution to the scientific community for the fulfillment of 

the brain mapping task and the understanding of the whole human brain. 

Those efforts were also extended toward the neurotechnology field and one 

of its most promising applications: Brain Computer Interfaces (or Brain Machine 

Interfaces, depending on the device that will be controlled). A Brain 

Computer/Machine Interface (BCI/BMI) is an artificial system that translates the 

brain electrical signals into control commands for any external device [4]. These 

systems have already been applied to a broad range of areas, such as robotics [5] 

[6], virtual reality environments [7], rehabilitation systems [8], assistive 

technologies [9], neuromarketing [10] and arts [11]. 

BCIs are classified into invasive and non-invasive [12], depending on how 

the brain electrical signal is acquired. The invasive methods employ electrical 

signals directly from ensembles of brain cells or multiple neurons, obtained by 

placing one or various grids of electrodes on the brain surface. The procedure 

entails a brain surgery, limiting its application to animals or patients during 

surgery procedures due to ethical principles. Some examples are 

electrocorticography (ECoGs) and single neuron recordings [13]. On the other 

hand, the non-invasive ones dispense a surgical approach, using signals obtained 

from electroencephalography (EEG), functional magnetic resonance imaging 

(fMRI), magnetoencephalography (MEG) or optical imaging [14]. Except for 

EEG, all the other techniques are limited to specific facilities or present low 
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temporal resolution (limiting their use for BCI systems with lower communication 

speed). 

The most used non-invasive signal acquisition method for BCI is the EEG. 

The main reasons are the relative affordability and portability of the EEG devices, 

the good temporal resolution that the signal provides, and the low health risks of 

its use. This technique employs electrodes situated over different areas of the 

scalp to measure the activity of the electric field of the human brain and the 

obtained signal is characterized by low amplitude (in the μV order). In BCI 

applications, EEG technique allows the identification of the changes occurred in 

the signal in response to a determined cognitive or imagined physical task. A 

recognized issue is the EEG susceptibility to noise and artifacts from different 

sources, their low spatial resolution, and the signal temporal variability [15] [16] 

[17]. 

The control of BCI systems is executed through tasks that, depending on 

their paradigm, lead to different patterns in the EEG signal. Paradigms usually for 

this tasks are: visual evoked potentials (VEPs), slow cortical potentials (SCPs), 

P300 evoked potentials and sensorimotor rhythms [18]. Those sensorimotor 

rhythms can be modulated by motor imagery tasks. Those tasks are based on the 

fact that the imagination and the realization of the movement of determined part 

of the body present a number of common features in the EEG [19]. Therefore, for 

BCI applications, the subject imagines the movement of predefined body parts 

(commonly hands, feets, and tongue) and the system translates this intent into 

commands to the external agent. 

Usually, due to the nature of the EEG and the motor imagery tasks, the 

datasets obtained are characterized by a high dimensionality, with a great number 

of features and a low number of instances [20]. This represents a problem for the 

majority of classification models used to recognize the desired action or command 

to be performed, which together with the great variability (within different trials 

of the same subject and inter-subjects) and the non-stationarity of the EEG, results 

in a difficult challenge for the classification of BCI systems [21] [22]. 

Neurorehabilitation is a new science field supported by the principles of 

brain plasticity and Hebbian learning [23]. Brain plasticity is the capacity of the 

brain and the nervous system to reorganize its structure, functions, and 

connections in response to determined training [24]. This training can be based on 
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the Hebbian learning principle, that asserts that two neurons or groups or neurons 

may reconnect if they are simultaneously activated, which can occur if they are 

connected to the same circuit of interconnected neurons [23]. Therefore, Hebbian 

learning defines a framework for recovery of disabled neural circuits and their 

function restoration. 

In a BCI neurorehabilitation application, the subject activates the neural 

circuits correspondent to the imagined movement and, by the feedback received 

from the external device (typically exoskeleton or orthosis), the Hebbian learning 

and brain plasticity are stimulated. The application of these systems has presented 

promising results [24]. Consequently, a functional BCI system for 

neurorehabilitation can be of primary importance to assist the recovery of the 

more than 9 million strokes survivors yearly in the world [25]. 

In particular, hand impairment is a common after-stroke consequence [26]. 

The rehabilitation strategies for this kind of motor deficiency are performed 

through active, repetitive, and task-oriented hand movement [27]. In a 

neurorehabilitation system for hand grasping rehabilitation, repetitive exercises of 

hand grasping motor imagery are performed by the subject, activating a robotic 

device (orthosis or exoskeleton) that performs the desired task. 

Motor Imagery (MI) tasks activate many brain areas, depending on the 

nature of the task [28], but fundamentally the areas are: the primary motor cortex, 

premotor and supplementary motor areas, the posterior parietal cortex, and the 

prefrontal areas. For the sensorimotor rhythms, the primary sensorimotor cortex is 

the principal source of EEG signals [29], using as main electrodes C3 and C4 of 

the 10-20 international system [30] [31] [32] with good classification results. One 

of the benefits of this reduced number of electrodes is that it can cut down the 

price of the acquisition device. 

The nature of the rehabilitation process and its influence on the patient 

indicates several conditions for the machine learning system to comply. Firstly, 

the system must offer high classification accuracy in order to not discourage the 

patient during the rehabilitation exercises caused by model induced 

misclassifications in the task. Another important characteristic is the robustness of 

the model to artifacts, time and subject variations of the EEG signals. Finally, the 

training and tuning time of the model should be as short as possible, since it has to 

be tuned separately for each patient due to the characteristics of the signals. 
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However, despite all the efforts in the search for a model that fulfills the 

previous conditions, it is still impossible to conclude that such a model is superior 

for this signal. Moreover, usually the conclusions of the effectuated comparisons 

are subject to the specific features and processing algorithms. 

The combination of classifiers is an approach not commonly employed for 

this kind of biological signal processing, despite the possibility of representing a 

model with improved robustness and accuracy [33]. The few works found in the 

literature that apply this model on motor imagery [32] [34] [35] [36] generally 

does not exploit the possibility of combining classifiers of different learning 

principles, which can boost the diversity of the model. The one that explores this 

approach [34] limit its analysis to only one subject, leaving aside the analysis of 

the response of the model to other subjects and the effect of different acquisition 

conditions as frequency variation and artifact presence. In addition, the fusion 

algorithms employed are of low complexity, which limits the response of the 

model in accuracy and robustness. Therefore, a multiple classifier system that 

offers robustness to artifacts, time and subject variations, and reasonable 

computing time, can be the first step towards a functional low-cost 

neurorehabilitation device based on a BCI system with MI classification. 

 

1.2 Objectives 

 

The main objective of this work is the design of a machine learning system 

that, based on the EEG signal from only C3 and C4 electrodes, can classify MI 

tasks with high accuracy, robustness to trial and inter-subject signal variations, 

and reasonable processing time, for application to a functional and low-cost BCI 

system for neurorehabilitation. 

The secondary objectives are: 

 

➢ To study the algorithms of each functional component in a BCI 

design in order to select the best alternatives to integrate a BCI 

system that combines high accuracy, robustness to trial and inter-

subject signal variations and reasonable processing time. 
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➢ To validate the proposed model on benchmark datasets, as well as on 

an original dataset obtained from a low-cost commercial headset. 

 

➢ To design and build an orthosis as a particular case of a 

neurorehabilitation device, with the purpose of integrating the 

proposed model to a functional BCI system. 

 

1.3 Work description and contributions 

 

To accomplish the proposed objective, five main stages were performed: 

 

➢ Bibliographic research of BCI functional blocks; 

 

➢ Study of signal processing and machine learning techniques applied 

to BCI; 

 

➢ Development of the BCI model; 

 

➢ Validation of the BCI model; 

 

➢ Testing of the complete BCI system; 

 

Firstly, a bibliographic research about the structure of a BCI model 

(covering every design step), its application to neurorehabilitation systems, and 

the neurophysiology of the brain electrical signal was conducted. 

In the second phase, the most common preprocessing methods applied to 

EEG data for signal analysis were studied, focusing on one of the most suitable 

for EEG: Wavelet Packet Decomposition (WPD). This was followed by the 

analysis of features from different nature (e.g. statistical, energy, phase features) 

that can be extracted from the data in order to offer diversity on our data 

description. Then a survey of the Machine Learning techniques for feature 

selection and classification was carried out. This study included Genetic 

Algorithms, Correlation based Feature Selection, ReliefF, Neural Networks, 

Support Vector Machines, Ensemble of Classifiers, and others. 
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Based on the previous bibliographic study, the main characteristics and 

algorithms for each functional block of the BCI system were defined. With the 

objective of designing a model that manages to provide good data representation 

and generalization performance, the EEG signal was preprocessed through the 

WPD, a Genetic Algorithm was chosen for feature selection and the classification 

was performed by an Ensemble of Classifiers. 

To validate the developed BCI model, benchmark datasets and a dataset 

obtained from a commercial EEG headset (Emotiv EPOC+) were employed as 

case studies. The performance analysis of the BCI system over the benchmark 

datasets was compared with other works in the literature. 

Finally, the BCI model was tested on an implemented neurorehabilitation 

BCI system composed by an active hand orthosis designed for hand grasping 

rehabilitation. 

Therefore, the main contributions of this Dissertation are: 

 

- The definition of a BCI structure based on the following stages: 

preprocessing, feature extraction, feature selection, and classification. 

 

- The comparison of state of the art feature selection methods (Correlation 

based Feature Selection, ReliefF, Minimum Redundancy Maximum Relevance, 

Consistency, C4.5 and Genetic Algorithms) employed with EEG data based on 

the accuracy obtained from five classifiers (Support Vector Machine, Linear 

Discriminant Analysis, K-Nearest Network, Radial Basis Network and 

Probabilistic Neural Network) on a benchmark dataset. 

 

- The proposal of an ensemble model composed of many different classifiers 

and state of the art fusion techniques, resulting in a model that provides high 

accuracy and reasonable computation time. 

 

- The design and construction of a functional neurorehabilitation device 

composed of a low-cost EEG acquisition headset, the proposed BCI system, and a 

hand orthosis. 
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1.4 Master Dissertation 

 

The reminder of this document is organized into 5 additional chapters. 

Chapter 2 presents the characteristics of the brain electrical signal and mental 

tasks used in BCI models, giving a more detailed description of the EEG, as the 

most common non-invasive BCI signal. Additionally, Chapter 2 explains the 

different functional blocks of a BCI model, detailing the theory behind the 

principal techniques and focusing on the ones that the characteristic of the signal 

indicates as the best option for our BCI system. Finally, the chapter introduces 

different models of MI based BCI found in the literature. 

In Chapter 3, the proposed BCI system is described. Firstly, the general 

structure of the proposed model (preprocessing, feature extraction, feature 

selection, and classification) is reported, followed by a detailed description of the 

algorithms employed for each component of the system. 

Chapter 4 is dedicated to the two case studies, focusing on the performance 

of the proposed model. The first part analyzes the characteristics of the benchmark 

datasets. Others sections are devoted to the analysis of the system performance 

during variations of the algorithms employed in the model. 

Chapter 5 describes firstly the dataset obtained as part of this work and has 

the purpose of applying the proposed model on a real application. In this chapter, 

the implementation of the neurorehabilitation device is addressed, firstly 

describing the design of the orthosis, passing to the description of the MI 

experiments and EEG acquisition and finally interpreting the results obtained. 

Finally, in Chapter 6 the conclusions of the work and the possible lines to 

follow on future works are discussed. 
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2. EEG based Brain Computer and Machine Interfaces 

System 

 

 

A BCI system can be divided into four main stages: preprocessing, feature 

extraction, feature selection, and classification, as shown in Figure 1. Each of 

these stages performs a critical task for the success of the system application and 

will be explained in details in the next sections, deepening in the theoretical basis 

of some of the most commonly employed methods found in the BCI and EEG 

signal processing literature. 

 

 

Figure 1. Block diagram of a BCI system 

 

2.1 Brain electrical signal 

 

The brain is composed of 1010 to 1011 neurons that connect with others by 

their axons and dendrites [37]. Dendrites represent the primary destination for 

synaptic inputs from other neurons and have the function of receiving and 

integrating the information [38]. The number of inputs could go from 1 to 105, 

corresponding to the complexity of the dendritic arbor. The synaptic contacts are 

made through the presynaptic terminal and the postsynaptic specialization. These 

components use the secretion of molecules from the presynaptic to the 

postsynaptic to communicate. The axon is the unit that conducts the signal from 

the synapses of the neuronal dendrites to the next site of synaptic integration [38]. 
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This unit can be as short as hundreds of μm, or as long as one meter. The action 

potential is the electrical event that carries the signal over those distances. It could 

be explained as a self-regenerating wave of electrical activity that goes from the 

initiation point, on the cell body, to the end of the axon, where the synaptic 

contacts occur. The process of passing the information coded as action potentials 

to the next cell is known as synaptic transmission. 

Neurons are organized in ensembles of neural circuits, which can process 

specific information that offers the foundation of behavior, perception, and 

sensation. These circuits represent the information as a pattern of action 

potentials, named neural code. When these neural circuits (or parts of them) are 

activated, local current flows are produced [39]. This constitutes the electrical 

activity of the brain and depending on their spatial and temporal behavior, 

different processes taking place in this organ are represented. 

 

2.1.1 Signal acquisition 

 

As stated in the introductory chapter, the signal acquisition is classified as 

either invasive or non-invasive, depending on the nature of the techniques 

employed. The most common non-invasive method for BCI applications is the 

EEG. This technique is of relatively low cost, when compared to other non-

invasive techniques, as well as portable, which permits its daily use [18]. 

EEG recording employs electrodes situated over the scalp, usually 

according to the international standard 10-20 system [40] in order to measure the 

combination of brain waves determined by the neuronal activity in each electrode 

position. The type of electrodes is defined by their different characteristics in: 

disposable electrodes, reusable disc electrodes, headbands and electrode caps, 

saline-based electrodes, needle electrodes and dry electrodes [39]. The measure is 

the difference of the variation over time of the signal acquired by the active 

electrode and a reference electrode [41]. Figure 2 illustrates the 10-20 electrode 

location.  

The acquired signals, obtained by the electrodes, are the passed through an 

amplification block. In this block, the signal is amplified from the μV values to 

ranges where the signal can be successfully digitalized. Those amplifiers need to 

provide amplification selective to the physiological signal, guaranteeing 
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protection from damages through voltage and current surges and reject noise and 

interference signals [39]. Also in this unit, analog filters are attached to reduce 

low frequency interferences and assure that the signal is band limited. Then the 

signal is digitized using Analog to Digital (A/D) Converters and transmitted to the 

recording device (usually a computer). 

 

 

Figure 2. 10-20 Electrodes Placement System 

 

For BCI applications, usually the signal is acquired from a multichannel 

electrode cap. The number of channels on these caps ranges from 16 to 256, 

allowing a better spatial resolution with the density increment but, on the other 

side, elevating the processing power required to process the signal. Figure 3 

shows a multichannel cap with the acquisition system commercially available 

offered by the ant neuro company known as eego mylab. 

 

 

Figure 3. EEG cap with recording system eego mylab 
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2.1.2 EEG characteristics 

 

EEG is a complex signal due to the complexity of its source. In general, 

EEG is described as a stochastic process that presents great similarities with noise 

[42]. Its properties can be listed as: 

 

➢ Noisy and pseudo-stochastic. The amplitude of 10-300 μV makes it 

affected by noises and artifacts. This reflects on an elevated grade of 

nonstationarity and randomness. 

 

➢ Time-varying and nonstationary. EEG varies depending on the 

physiological states. These variations include sinusoidal, spikes or 

polyspikes, and spindles or polyspindles. 

 

➢ High nonlinearity. EEG is a nonlinear process whose nonlinearity is 

also time, state and site dependent. 

 

2.1.3 Mental tasks paradigms 

 

The acquired brain electrical activity through the EEG recording can be 

interpreted as control commands as part of a BCI system. Such control commands 

are normally obtained from brain signals that, due to the source of the performed 

task, people can learn to modulate. The brain signals currently used are based on 

the following paradigms: VEPs, SCPs, P300 evoked potentials and sensorimotor 

rhythms [18]. 

VEPs are the variations in the brain activity taken place in the visual cortex 

when a sensory stimulation of the visual field is received [43]. In a VEPs based 

BCI, feature analysis allows identifying the target of the user gaze by analyzing 

the VEP pattern. This is possible since each target is coded as a unique stimulus 

sequence. The modulation of this response is not difficult, since the amplitude of 

the obtained pattern is larger when the stimulus is closer to the central visual field 

[44]. BCI systems that employ VEPs are classified, according to the stimulus 

sequence modulation, as: time modulated VEP BCIs, frequency modulated VEP 

BCIs, and pseudorandom code modulated VEP BCIs. 
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SCPs are low voltage shifts of the brain activity that can last from 300 ms to 

several seconds and can oscillate between negative and positive polarizations 

[45]. This activity is encountered in the EEG with frequencies below 1 Hz [46]. 

Negative SCPs reflect a decrease in the threshold for the excitation of underlying 

neuronal structures, leading to increasing neuronal activity. Positive SCPs, on the 

contrary, are related to a reduction of cortical excitation of the underlying 

neuronal structures, which indicates a decrease in the activity [47]. The voluntary 

production of this positive and negative shifts can be trained by employing a 

thought translation device [48]. This device makes use of visual and auditory 

marks so that the user produces negative or positive shifts relative to a baseline. 

P300 evoked potentials are positive peaks in the EEG that take place when a 

subject detects an informative task-relevant stimulus [49]. It owes the name to the 

characteristic that the peak occurs about 300 ms after attending the stimuli [50]. 

This stimulation is defined as an oddball stimulus among repetitive stimulus and it 

has been prove that the less probable the stimulus, the higher the peak amplitude 

of the response [51]. This paradigm does not need of user training, in change, the 

user performance can be reduced by his familiarization with the infrequent 

stimulus (which produces P300 amplitude reduction). For BCI applications, visual 

and auditory stimuli have been applied [52]. 

Sensorimotor rhythms are the neurophysiological rhythmic activities 

recorded over the sensorimotor cortex modulated by actual movement, motor 

intention or motor imagery [29]. The major components bands are usually defined 

as the mu band (8-13 Hz) and beta band (13-30 Hz) [53]. The amplitudes of these 

rhythms vary when brain activity is related to any motor task and similar behavior 

can be obtained by motor intention or motor imagery (without any real motor 

output). The two amplitude modulations manifested by this phenomenon are 

defined as a power suppression in the low-frequency components known, as 

event-related desynchronization (ERD) and an amplitude enhancement known as 

event-related synchronization (ERS). Through motor imagery (imagination of the 

movement of any motor part of the body) those changes in the cerebral activity 

can be successfully modulated [54]. 

Controlling of sensorimotor rhythms has demonstrated to be not an easy 

task, due to troubles with the motor imagery paradigm [18]. People tend to 

imagine visual images of related real movements, which produce patterns that are 
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different from motor imagery. As a solution, training is of great significance. For 

this kind of training, the subject is asked to perform a determined motor imagery 

task, followed by the extraction of the sensorimotor rhythms and their 

classification by a comparison with a determined reference. Depending on the 

results of the comparison, a visual or auditory feedback is provided to the subject. 

 

2.1.4 Neurophysiology of Motor Imagery tasks 

 

The MI tasks that can modulate the synchronization or desynchronization of 

the sensorimotor rhythms are correlated with the neural activity and cortical 

mechanism of the brain. The analysis of these physiological sources began with 

the neuroimaging studies conducted after the introduction of the MI concept by 

M. Jeannerod [55], which demonstrated that MI tasks activate several cortical and 

subcortical regions that are overlapped with those for movement execution [28]. 

Further studies confirmed that those kinesthetic imageries induce a 

somatotopically organized activity in the Primary Motor Cortex, the Premotor and 

Supplementary Motor Areas, the Posterior Parietal Cortex, and the Prefrontal 

Cortex [54] [28]. Specifically, the Premotor and Supplementary Motor Areas were 

defined as the fundamental structures during planning and preparation stages of 

motor control, with a better predictive value for the Supplementary Motor Areas 

for imagery tasks. The Primary Motor Cortex also provided a significant 

activation, but in a lower level than the actual movement. The representation of 

the main activated areas of the brain for MI tasks is shown in Figure 4. 

 

 

Figure 4. Main brain areas activated for MI tasks 
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Studies employing EEG confirmed that the most relevant changes of the 

signals during MI tasks are identified over the Primary Sensorimotor Cortex [29] 

[54]. This is the reason for the usual selection of the electrodes C3 and C4 

(located over the sensorimotor cortex) for the acquisition of the EEG signals for 

this tasks [56], even when in some cases the peak of the activity is not situated in 

the exact position of those electrodes, but in their surrounding [54]. 

 

2.2 Preprocessing 

 

The preprocessing stage has, as main purposes, the removal of artifacts and 

other undesired signals present in the EEG, as well as to improve the Signal to 

Noise Ratio (SNR), which results in a global optimization of the differentiation of 

the signal classes [4]. In addition, the signal is prepared for the analysis and 

feature extraction process, either in the time domain or by its transformation to the 

frequency domain. There is a large number of methods that are used to complete 

these tasks, the most commons are: frequency filtering (FIR filters) [57]; 

referencing (common reference, average reference and current source density) 

[58], which is the technique to select the reference brain voltage for the 

comparison with the measurement of the electrodes; spatial filters (common 

average referencing, Surface Laplacian, Principal Component Analysis, 

Independent Component Analysis, Common Spatial Patterns, and others) [57] 

[58] [59]; and time / frequency analysis (Autoregressive Modeling, Fast Fourier 

Transform and Wavelet Transform) [18] [57] [59]. 

In the next sub-sections, it will be explained firstly the artifacts that can be 

present in the EEG measurement and it will be mentioned techniques that can 

eliminate or reduce their effect. This will be followed by a detailed description of 

the time / frequency analysis used for the BCI model proposed in this work, the 

WPD as extension of the Wavelet Transform (WT) technique. 

 

2.2.1 Artifacts Elimination 

 

Artifacts are undesirable signals that produce alterations on the magnitude 

of the measurement, affecting the overall signal of interest. Those artifacts can be 
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avoided by preventing their inclusion during the signal recording, or by removing 

them after the signal is obtained [16]. These spurious components generally cause 

a decrement of the BCI system performance, affecting the signal class 

recognition. 

Artifacts can be classified according to their origin as physiological or 

technical artifacts [18]. The main sources of physiological artifacts are eye 

movement and blinks (ocular artifacts), the muscular artifacts (produced by 

swallowing, talking, walking or other muscular contractions), and cardiac activity. 

Ocular artifacts (EOG) are fundamentally received by the frontal electrodes, but 

can influence other ones [16]. These alterations have higher amplitude when 

produced by blinking, and lower magnitude for eye movement (related to higher 

frequency interference). For the muscular artifacts, the degree and type of muscle 

contraction determine the shape and intensity of the interference [16]. These 

artifacts generate perturbations on all classic frequency bands of the EEG and 

present less repetition than other artifacts, making it harder to detect and correct. 

Heart activity is the electrical activity of the heart and introduces a low amplitude 

rhythmic component to the EEG. Lastly, technical artifacts are related to power-

line noises and changes in the electrode impedances. 

To eliminate those artifacts, classical filtering techniques (low pass, band 

pass, and high pass) or shielding (for technical artifacts) are used. Filtering is only 

helpful when the signal and the undesired components do not share the same 

frequencies. For these cases, a number of diverse techniques have been developed, 

such as adaptive filtering, Wiener filtering, Bayes filtering, regression, EOG 

correction, blind source separation, wavelet transform method, empirical mode 

decomposition and non-linear mode decomposition [16]. 

 

2.2.2 Wavelet Transform 

 

Wavelet Transform is a method commonly employed for biological signal 

processing due to its ability to represent the signal information with an excellent 

time-frequency resolution [60]. The randomness, time varying, non-stationarity 

and transient components of the EEG signal indicate the WT as a better method 

than other traditional techniques, such as Fourier Transform or Autoregressive 

Model [61] [62] [63]. Wavelet Transforms allows the signal to be simultaneously 
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represented in time and frequency domains. Additionally, it separates the 

frequency bands that carry the information without losing temporal resolution. 

The WT is a technique that transforms a time signal using fixed building 

blocks named mother wavelet. The procedure produces scaled and shifted 

versions of this waveform of limited duration and zero average value over the 

temporal domain [64]. WT can be categorized into continuous wavelet transform 

(CWT) and discrete wavelet transform (DWT). The CWT applies the continuous 

variation of the scaling and translation factors, resulting in high processing effort 

at the calculation of wavelet coefficients for each possible factor. This fact makes 

the DWT more popular for BCI applications. 

DWT provides a non-redundant, highly efficient wavelet representation 

employing a simple recursive filtering scheme. Therefore, the signal can be 

reconstructed by an inverse filtering operation without losing any information. For 

a signal x(t), the wavelet decomposition can be represented as: 

𝑥(𝑡) =  ∑ 𝐶𝑁,𝑘

+∞

𝑘=−∞

𝜃(2−𝑁𝑡 − 𝑘) + ∑ ∑ 𝑑𝑗,𝑘

+∞

𝑘=−∞

2
−𝑗
2 𝜑(2−𝑗𝑡 − 𝑘)

𝑁

𝑗=1

 (1) 

Where 𝐶𝑁,𝑘 are the representation of the approximation coefficients at level 

N and 𝑑𝑗,𝑘 are the representation of the detail coefficients at level j, with j between 

1 and N. 𝜑(𝑡) is the wavelet function and 𝜃(𝑡) is a scaling function [65]. 

These functions are related to high and low pass filters, giving a 

multiresolution approach to the decomposition of the signal into frequency sub-

bands with the mentioned successive filtering steps, losing half of the samples in 

each step by the Nyquist theorem. The resultant implementation follows an 

octave-band tree structure, sequentially separating it in approximated version 

(low-frequency part) and residual details (high-frequency part) and iterating the 

process at each step only on the low-pass branch of the tree [66].  

 

2.2.2.1 Wavelet Packet Decomposition 

 

WPD is an extension of the DWT that maintains the same filtering scheme 

but allows the details functions to be further split into subsequent sub-bands [60]. 
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The result is a complete Wavelet Packet Tree (as can be observed in Figure 5), 

producing, for n levels of decomposition, 2n different sets of coefficients, as 

opposed to the n+1 sets from the DWT. However, the down sampling operation 

guarantees the same overall number of coefficients. As result, this method offers 

the possibility of adaptation to the frequency components of the signal. Wavelet 

analysis can employ a great number of families of mother wavelets, the most used 

ones being the Daubechies, Symlets, Morlet, Haar and Coiflets. In the Figure 5, S 

represents the signal, with A and D being the Approximation and Detail 

coefficients respectively. 

 

 

Figure 5. Third Level Wavelet Packet Decomposition 

 

2.3 Feature Extraction 

 

Feature Extraction is the process of converting the data into useful attributes 

or features that offer a good representation of the data. It can be defined as the key 

step in the data analysis process, greatly determining the success of the machine 

learning system [67]. The principal objectives are to reduce the dimensionality 

and to increase the discrimination capacity of the dataset. Those features are 

extracted based on different algorithms and principles, ranging from statistical 

measures and energy distributions to spatial parameters and fractal coefficients. 

As the WPD represent a suitable preprocessing technique for EEG, the focus of 

the next sections is on the typical features extracted from this transformation. 
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2.3.1 Statistical and Morphological Features 

 

Those types of features are statistical or parametrical measures of the values 

of a series that characterize its behavior. The following statistical features can be 

cited: average, maximum, minimum, standard deviation, median, variance, 

kurtosis, skewness and entropy of the values for each frequency sub-band [62] 

[68] [69] [70] [71]. In the group of the morphological parameters, the most 

common are: area, signal slope, range, peak to peak time window, the number of 

zero crossings, slope sign alterations, integrated EEG, root mean square and the 

simple square integral of the values of each frequency sub-band [70] [71] [72]. 

Finally, another commonly used attribute is the ratio between magnitudes of 

different sub-bands as the average of the absolute values [68] [69]. 

 

2.3.2 Energy Features 

 

Time and frequency representations of the energy distribution or power 

spectrum of the wavelet coefficients in each frequency sub-band have proved their 

relevance in the description of the behavior of the decomposed EEG signal, as 

well as in detecting the similarity between segments of the signal. Some of the 

application examples that can be found in the literature are [62] [68] [69] [73] 

[74]. 

 

2.3.3 Phase Features 

 

To evaluate the synchronization of two signals, two main approaches have 

demonstrated to be relevant for EEG analysis: coherence and phase locking value 

(PLV) [75] [76] [77]. The coherence is derived from the cross-spectrum of two 

time series signals, which can be calculated using the Fourier Transform. The 

PLV determines the synchrony between the phase of two signals and can be 

obtained employing the Hilbert transform, which allows the computation of the 

instantaneous phase of the signals [78]. These features do not consider the 

amplitude of the signals, therefore, constitutes a different approach in the signal 

description. 
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2.4 Feature Selection 

 

Feature Selection is one of the most relevant processes in a Machine 

Learning System [79]. It guarantees the reduction of the number of features, 

removing irrelevant, redundant and noisy ones, and improves the results for the 

specific application (it augments the velocity of the algorithm, enhances the 

learning performance and increases the model interpretability) [80]. This 

technique can be defined as a process that chooses the best subset of features 

according to a certain criterion. 

As mentioned in the Introduction, EEG data are correlated, noisy, and their 

quality is affected by subject’s degree of concentration during the recordings. In 

addition, the dimensionality of the data after the feature extraction is usually high 

(several features extracted from a number of channels) and the quantity of 

samples is small (due to the nature of the acquisition trials), which is known as the 

“curse of dimensionality” [81]. This two characteristics of the EEG data represent 

a challenge for any machine learning system, and the application of some feature 

selection technique is usually mandatory [82]. 

The feature selection algorithms can be grouped into three main categories: 

filter, wrapper and embedded models [80]. The filter approach (Figure 6) 

evaluates the individual features or subsets of features based on predefined 

parameters, independently of the learning algorithm. In the case of the feature 

subset evaluation, filters use a search algorithm to generate the subsets for their 

posterior evaluation. The wrapper approach (Figure 7), on the other hand, requires 

a learning algorithm, using its accuracy to evaluate the subsets of features selected 

by a search algorithm. Figures 6 and 7 show the block diagrams of these models. 

The last category is the embedded approach, whose algorithms incorporate the 

feature selection as part of the machine learning training process, evaluating its 

utility for optimizing the objective function of the learning algorithm. Examples 

of this last category are the C4.5 [83] and the sparse logistic regression [84]. For 

the filter approach, the Correlation based Feature Selection (CFS) [85], ReliefF 

[86], Minimum Redundancy Maximum Relevance (mRmR) [87], Consistency 

[88], and Koller’s [89] can be cited. Some of the algorithms that can be included 

as wrapper approach are Genetic Algorithm (GA) [90], Particle Swarm 
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Optimization (PSO) [91], and Ant Colony Optimization (ACO) [92], among 

others. 

 

Figure 6. Filter approach for subset of features 

 

 

Figure 7. Wrapper approach 

 

Concerning BCI applications, there is little information in the literature of 

which is the most adequate method. In [82], the author empirically compares five 

feature selection methods (Correlation based Feature Selection, Information Gain, 

ReliefF, Consistency and 1RR) on benchmark BCI data (MI tasks dataset) with 60 

channels and a sampling rate of 250 Hz. As a result, Consistency was the method 

that selected the smallest subset of features, however, Correlation based Feature 

Selection and Information Gain were defined as the best methods employing a 

pair-wise accuracy comparison (wins-draws-losses ranking). In [81], a general 

survey of feature selection methods and machine learning algorithms applied to 

BCI data is presented, without comparing their performance. In [93] two feature 

selection models are compared on a MI task dataset: Principal Component 

Analysis (PCA) and a wrapper approach with forward selection, concluding that 

the wrapper approach outperforms the PCA considering the accuracy of the 

model. Therefore, there is no consensus yet on the best feature selection approach 

for motor imagery tasks. 

The next sub-sections describe four state-of-the-art algorithms as examples 

of filter methods (CFS, ReliefF, mRmR and Consistency), one for embedded 
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methods (C4.5), and the application of biologically inspired optimization methods 

on a wrapper approach. 

 

2.4.1 Correlation based Feature Selection 

 

CFS [85] evaluates subsets of features based on the hypotheses that a good 

subset is the one that contains features highly correlated with the output classes 

and not correlated between them. The validation criterion is the utility of the 

features for the prediction of the class and their correlation with the others 

features. The merit of a subset is defined as: 

 

𝑀𝑒𝑟𝑖𝑡𝑆 =
𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 (2) 

 

Where 𝑀𝑒𝑟𝑖𝑡𝑆 is the heuristic merit of a subset 𝑆 that contains 𝑘 features, 

𝑟𝑐𝑓̅̅ ̅̅  is the mean of the correlation class-feature and 𝑟𝑓𝑓̅̅ ̅̅  is the mean of the 

correlation inter-feature. The numerator could be interpreted as how predictive is 

the feature subset and the denominator as how much redundancy exist in the 

features that compose the subset. Therefore, the method identifies irrelevant and 

redundant features. This algorithm depends on a search algorithm that generates 

the subset of features, as Best First Search [94], Forward Selection [95], 

Backward Elimination [96], among others. 

 

2.4.2 ReliefF 

 

Relief [97] is an algorithm inspired by instance-based learning with the 

objective of distinguishing the statistically relevant features through the validation 

of how good the values of a feature could differentiate between instances that are 

close to one another. This method selects an instance 𝑋 of the dataset and finds, 

using the Euclidean distance, the closest instances belonging to each class: Near 

Hit (NH) to the same class and Near Miss (NM) to the other. Then it compares the 

value of each feature in the instance 𝑋 with the correspondent feature in NH and 

NM, updating the relevance weight for each feature. This process is repeated for 
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every instance of a randomly selected group. The features chosen for the final 

subset are the ones with a relevance superior to a predefined threshold. 

ReliefF [86] is an improved version of Relief to allow handling multiclass 

problems and incomplete data. In this case, the algorithm searches more than an 

NM and NH using k-Nearest Neighbor (k-NN), extending the search of these 

values for multiple classes. 

 

2.4.3 Minimum Redundancy Maximum Relevance 

 

The minimum redundancy - maximum relevance algorithm [87] is based on 

a similar heuristic to the CFS algorithm. In this case, the mutual information is the 

measure employed to validate the relevance of the features, generating a ranking 

where the features are ordered by its mutual information with the class and with 

the other features. The most relevant feature is the one which has the maximum 

mutual information with the class and minimum mutual information with the 

others features. This is accomplished by the maximization of the following 

expression: 

 

max(𝑉𝐼 𝑊𝐼⁄ ) = max (

1
𝑛𝑓

∑ 𝐼(𝑐, 𝑓)

1
𝑛𝑓

2 ∑ 𝐼(𝑓1, 𝑓2)
) (3) 

 

Where 𝑉𝐼 and 𝑊𝐼 represent maximum relevance and the minimum 

redundancy conditions respectively, the 𝑛𝑓 is the number of features in the set, 

𝐼(𝑐, 𝑓) is the mutual information between a class and a feature and 𝐼(𝑓1, 𝑓2) is the 

mutual information between two features. 

After the ranking procedure, the heuristic followed in [87] suggest the 

formation of subsets conformed by different numbers of features ordered by the 

ranking. The learning algorithm will then validate these groups, giving the 

number of features in the ranking order that obtains the best classification 

accuracy. 
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2.4.4 Consistency 

 

Consistency [88] is a metric for evaluating feature subsets based on the 

inconsistency rate. The principles of the inconsistency rate are: two instances are 

inconsistent if their only difference is their class; for all equal instances the 

inconsistency count is the number of instances minus the biggest number of 

instances belonging to one class, and the inconsistency rate is the sum of all the 

inconsistency counts divided by the total number of instances. 

The algorithm randomly creates a feature subset S. If the number of features 

(C) is less than the number of the best subset, then the data with the attributes 

conforming the subset S is evaluated by the inconsistency criteria. If its 

inconsistency rate is less than that of the best subset, then S becomes the best 

subset. The algorithm stops when the inconsistency rate of the best subset is 

higher than a determined threshold. Therefore, the algorithm selects the subset 

whose inconsistency rate is not higher than the threshold and has the lower 

number of features. 

 

2.4.5 C4.5 

 

C4.5 [83] is an algorithm to construct decision trees based on the divide and 

conquer strategy. The development of the tree has two steps: construction and 

pruning of the tree. The construction begins with the root, using the feature that 

best differentiates the instances in their classes. Then, based on the number of 

values that the feature takes, the tree is divided into that number of branches. 

Based on the information gain ratio of each feature, the algorithm continues the 

process selecting features for the nodes. The pruning phase helps to avoid 

overfitting. In this phase, the node is eliminated only if the accuracy of the pruned 

tree is not worse than the one of the unpruned tree. 

This decision tree can be seen as a ranking of the features based on their 

information gain ratio. This metric is defined as the division of the information 

gain by the intrinsic information of each feature. In feature selection, the features 

that compose the final tree are the subset that will be validated by the learning 

algorithm. 
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2.4.6 Biologically inspired optimization algorithms 

 

The biologically inspired optimization algorithms are complex methods for 

problem-solving based on nature and biological activities. Their heuristic 

basically performs the iterative improvement of a population of possible solutions 

for a fitness function. 

For feature selection, these algorithms are applied on a wrapper approach 

with the fitness function defined as the accuracy of the learning model. The best 

solution determines the subset of features that offer a higher accuracy. Some 

commonly applied methods on this type of applications are: GA, PSO, ACO, 

among others. 

 

2.5 Classification Models 

 

Classification is the last step of the BCI model. In this stage, the dataset 

composed of the selected features by trials (instances of the dataset) is used to 

train and test the classification model. The most commonly employed 

classification models in BCI environments are discussed in the following sections. 

 

2.5.1 Support Vector Machine 

 

A Support Vector Machine (SVM) [98] is a classifier that employs a 

separating hyperplane that maximizes the margins between the data classes 

mapped into a space of higher dimension by the “kernel trick”. This maximization 

leads to an increase of the generalization capacity of the model, and the use of 

different kernels helps to create nonlinear decision boundaries. In addition, the 

SVM is known by its immunity to overfitting and the “curse of dimensionality”. 

 

2.5.2 Linear Discriminant Analysis 

 

Linear Discriminant Analysis (LDA) [99] is based on the assumption that 

each probability density functions of the class can be addressed as a normal 

density and have the same covariance. The objective of LDA is to determine a 
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hyperplane that separates the data into their classes. This hyperplane is obtained 

by the search of the projection that maximizes the distance between the mean 

vector of each class and minimize the interclass variance. A new data is classified 

determining the highest probability density function. 

 

2.5.3 K-Nearest Neighbor 

 

k-NN [100] is one of the simplest classification methods. This technique 

uses the k closest samples to the new data instance to decide, by a majority 

principle, its class. This method can produce nonlinear decision boundaries with a 

high value of k and enough training samples. The k nearest neighbors are 

determined employing a distance metric as Euclidean, or correlation coefficients 

as Pearson. 

 

2.5.4 Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) [101] are learning models inspired by 

the brain neurons and properties like their parallelism and redundancy. The ANNs 

are composed of simple processing units called neurons and their directed 

weighted connections. Those elements can be distributed in different topologies, 

as feedforward networks, recurrent networks, and completely linked networks 

[102]. The networks for a supervised learning, in dependence of the defined 

training algorithm, present the input patterns to the net and compare the response 

to a target output, and the difference determines how the weights will be updated. 

This is an iterative process that ends when the response of the networks converges 

to the desired output. In general, the ANNs commonly used for BCI models are 

the Multi-Layer Perceptrons (MLPs) [103], Radial Basis Function Networks 

(RBFs) [104], Probabilistic Neural Networks (PNNs) [105], Convolutional Neural 

Networks [106], among others. 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1513111/CA



44 

2.6 Ensemble of Classifiers 

 

An ensemble of classifiers can be defined as a group of classifiers that 

combine their individual outputs in some way that derive a consensus opinion in 

order to classify new examples [107]. This style of cooperation between 

classifiers has roots on the principle that different classifier designs offer 

complementary information about the patterns to classify, which can represent an 

improvement of the performance of the BCI model [108]. 

The design of a successful ensemble of classifiers depends in great measure 

on two parameters: the accuracy of the components of the ensemble and their 

diversity [109]. A classifier can be labeled as accurate if its accuracy value is 

above the random guessing for new examples. The diversity is assured if the 

errors of the members of the ensemble are uncorrelated. 

In general, building an ensemble of classifiers presents two main tasks: the 

creation of the individual classifiers composing the ensemble and the combination 

of their outputs. Those tasks can be addressed using multiple approaches [110]. 

The creation of the individuals classifiers present several aspects of interest. First 

is the definition of characteristics as the selection of the base classifier or to use 

different ones, the number of them, and the type of training (at the same time or 

incrementally). In addition, it is important for the training stage the processing of 

the training dataset, which can be manipulated either in the instances presentation 

and the feature space for its presentation to each classifier. After the creation of 

the classifiers, it is necessary to decide the mode of combination of their outputs. 

The different combinations that can be obtained from those parameters led to the 

creation of successful algorithms such as Random Forest [111], Bagging [112], 

Adaboost [113], Random Subspace Ensembles [114], Error Correcting Output 

Codes [107], and others. In the Figure 8 can be seen a general model of an 

ensemble of classifiers, where C1 to Cn denotes the classifiers members of the 

model. 
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Figure 8. General ensemble model 

 

Based on three aspects of the ensemble modelling, three main categories can 

be defined [110]. The first aspect relates to the type of combination, being divided 

into classifier fusion and classifier selection. In classifier fusion, each component 

of the ensemble is trained on the whole feature space. On the other hand, in 

classifier selection, each component is trained in parts of the feature space, with 

the objective of being an expert in the patterns of that simplified task. Therefore, 

for the fusion approach, a combination of the classifiers output is required, such as 

average, product or majority voting. On the contrary, for the selection approach a 

classifier is selected for the labelling of one input sample. 

Another aspect involves the decision whether the ensemble fusion method is 

trainable or non-trainable, depending on the necessity of additional training for the 

ensemble fusion after training each classifier. Usually, non-trainable methods 

employ statistics as mean, median, maximum, minimum or product as the fusion 

operator. In the trainable case, the algorithms apply combination rules as weighted 

average or stacked generalization, which establish their parameters through an 

additional learning process. 

The last category separates ensembles into static or dynamic, taking into 

consideration how the instances (input patterns) interact with the conformation of 

the ensemble [34]. The static ensembles are the ones that employ the complete set 

of classifiers for all instances. A dynamic ensemble, on the other hand, 

dynamically selects subsets of classifiers for each instance. 
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2.6.1 Fusion Methods 

 

In a scheme where the classifiers cooperate to decide the final label, the 

fusion method that unifies their decisions has a relevant role. The type of fusion 

method is directly related to the classifier’s output. There are four main categories 

of outputs [115]: class labels, ranked class labels, numerical support for the 

classes, and the one known as oracle. 

The class label offers a label without information about the certainty of the 

decision. The ranked class label is defined as a subset of class labels ordered by 

their probability [116]. In the numerical support category, the classifiers offer a 

vector containing output values that represent the support given to the hypothesis 

that the sample belongs to each class. The oracle defines the systems that employ 

the knowledge that a classifier is wrong or not, disregarding the class label that 

has been assigned [117]. 

Combination methods for the class label outputs possess an intuitive nature 

or are based on a probability framework, such as the Majority Vote [118], 

Weighted Majority Vote [119], Naïve-Bayes Combiner [110] and the multinomial 

methods or Behavior Knowledge Space (BKS) [120]. The continuous valued 

outputs employ mathematical operators and more complex trainable models, as 

average, maximum, minimum, median, product, fuzzy integrals [121] [122], or 

the use of a classifier as a combiner (meta-classifier) [123].  

 

2.7 BCI/BMI Applications 

 

Since the early years of BCI research, the focus of the applications was in 

medical assistance. However, in the last two decades the number of research 

groups in this subject grew exponentially (from eight groups to more than one 

hundred) [18] [124]. This growth, combined with a number of technological 

advances, allowed the expansion of BCI applications, reaching even the consumer 

market [29] [125] [126]. 

The medical assistive applications can be divided into two general groups, 

depending on their final purpose: the ones dedicated to communication and 

control and the ones dedicated to motor substitution or recovery. BCI offers the 

possibility to severely disabled individuals to communicate with other people and 
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their environment. One of the most successful mechanisms for this purpose is the 

BCI driven spelling devices [127] [128] [129] [130]. Their operation is based on a 

virtual keyboard shown on a screen that allows the subject, through the control 

signal, to select a letter and compose words. In this type of devices, the control 

signals are diverse, including SCPs, P300, detection of eye blinks, and MI 

combined with cognitive tasks. In this category, web browsers control is also 

included [131] [132], that employs a heuristic over SCPs or P300 to allow 

navigate the Internet. In addition, there are environmental control applications that 

facilitate the control of domestic devices as lights, TV, lights, room temperature, 

and others, offering independence to the patient. Those user designed interfaces 

were presented in [133], and the different control modalities were matched with 

the loss of motor abilities that each user presented. 

The other general application is for the substitution or recovery of motor 

functions. Motor functions, as grasping, can be restored in some grade by the 

application of functional electrical stimulation (FES) [134], also termed as 

neuroprostheses. BCI can be employed as control signal of a FES, as 

demonstrated in [135] using MI tasks (foot movements). These initial applications 

for the recovery of motor functions have been expanded to elbow and arm, adding 

other robotic devices as hand orthosis and even virtual reality for after stroke 

rehabilitation [136] [137] [138] [139]. Another paradigm used for restoration of 

grasp movement are the Steady State Visually Evoked Potentials (SSVEP) [140]. 

Another area where BCI represent motor substitution is in assistive mobility. This 

can be accomplished by BCI-controlled wheelchairs [141] or mentally driving 

robotic devices as telepresence mobile robots or quadcopters [142] [143]. These 

applications rely on the asynchronous identification of MI combined with 

cognitive tasks, or also the P300 recognition. 

Outside the medical purposes, BCI also presents relevant applications in the 

entertainment field, which opens the door to the BCI utilization for non-disabled 

people. The first of them is in the gaming area, where the number of BCI games 

[144] [145] [146] has grown exponentially. The paradigms included goes from MI 

and SSVEP to P300. In addition, BCIs can indicate the emotional status, boredom, 

and frustration of the user, which can be used in the game design, helping to 

maintain the user’s interest and affect him positively. Virtual Reality constitutes 

another application that is receiving attention due to its promising quality as a 
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feedback provider to BCI systems. MI, SSVEP, and P300 were used in systems 

that explore virtual spaces and interacts with the virtual environment [147] [148]. 

Finally, the employment of BCI for photo or music browsing, music composition, 

and painting [149] [150] [151] can also be mentioned. 

An important result of the advances in BCI research and its relevance in the 

entertainment field lead to the development of low-cost commercial BCI systems 

[152] [153]. Headsets developed by companies as Emotiv [154], Neurosky [155], 

Neuroelectronics [156], Cognionics [157], OpenBCI [158] and Macrotellect [159] 

offer to the general public the possibility of training their neural brain waves with 

different acquisition quality, electrodes quantity, and final applications. Those 

applications cover from PC games to relaxation or concentration focus, allowing 

their use for research purposes. 

Other fields that employ the neurofeedback offered by the BCIs are 

cognitive performance [160], speech skills, affection [161], biometrics [162] 

[163], detection of covert behavior [164], drowsiness detection [165], defense 

applications [166], and treatment of mental disorders (epilepsy, attention deficit, 

schizophrenia, depression, and others) [167] [168] [169] [170] [139]. 

Neuromarketing is a new field that applies neuroscience methods to marketing 

research [171] [172]. The applications go from tests of product concepts to 

advertising campaigns, making use of brain signals to learn the real preferences of 

the users. This opportunity is already offered by some companies as Neurofocus 

[173], Neuro-Insight [174] and Forebrain [175]. 
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3. A Robust Motor Intention Prediction Ensemble Model 

 

 

3.1 General Model 

 

As defined in Chapter 2, the main functional blocks of a BCI system are: 

preprocessing, feature extraction, feature selection, and classification. For each 

block, there is a great number of techniques and algorithms that can be applied, 

which makes the selection of the appropriate method for each stage a challenging 

task. This selection has to consider the fundamental characteristics of the desired 

system, such as, in this Dissertation, robustness to trial and inter-subject signal 

variations, high accuracy, and the lowest processing time possible. Those 

conditions usually lead to a subset of possible models for each stage, which are 

then assessed and the one that provides the best performance in the desired 

characteristics is selected. The following sections describe the models selected 

(and the reasons for their selection) from the vast BCI literature for each 

functional block of the proposed Robust Motor Intention Prediction Ensemble 

Model (RMIPE) illustrated in Figure 1 located in Chapter 2. 

 

3.2 Preprocessing and Feature Extraction 

 

The EEG is characterized by its randomness, abrupt variations in time, non-

stationarity and the presence of transient components. Those characteristics 

theoretically signalize the WT as more appropriate to represent the signal than 

other traditional techniques such as Fourier Transform or Autoregressive Model 

(each one applied to EEG with good results) [61] [62] [63]. Fourier Transform, 

besides not being very suitable for non-stationary signals [62] and transient 

signals [61], represents the signal in short time duration blocks, which can limit 

the spectral resolution of the representation [61]. In addition, Autoregressive 

Model is incapable of correctly capturing the transient components of the signal 

[63]. 

Of the three techniques that apply the WT (CWT, DWT, and WPD – see 

Section 2.2.2), WPD was the one selected for preprocessing the signal. This 
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selection is based on the high computational cost of the CWT (its functional 

principle produces an infinite number of coefficients, generating redundancy [18], 

[176], [177]), and on the capacity of the WPD to decompose both details and 

approximation coefficients depending on the decomposition level (the DWT only 

decomposes the approximation coefficients, which are the low-frequency 

components). As a result, the signal can be represented in frequency bands of 

equal width, which is very helpful for the EEG representation. 

There are two main attributes for the successful application of the WPD: the 

mother wavelet and the number of levels of the decomposition. The number of 

levels defines the amount of sequential filtering steps suffered by the signal, 

allowing the delimitation of the frequency bands width. 

The mother wavelet chosen was the Daubechies of order 4 (db4), which is 

usually employed on EEG signals [62] [178]. Moreover, in [179], after a 

comparison of seven different mother wavelets, Daubechies was defined as the 

most suitable wavelet family for extracting more discriminative features from the 

imaginary EEG signals. 

The definition of the number of levels depends on the major frequency 

bands components for the control task of the EEG system (motor imagery in this 

case). As explained in Chapter 2, the major components bands of the ERD and 

ERS are the mu band (8-13 Hz) and beta band (13-30 Hz). Although these 

frequencies present the majority of the signal information for motor imagery, the 

best discriminative components from the frequency bands vary significantly due 

to the non-stationary nature of the EEG [180]. Some works in the literature 

indicate better results using broader frequency bands, including delta (from 0.5 to 

4Hz), theta (4-7Hz), and gamma (30-40Hz) [181] [182]. Additionally, good 

results have been reported with only the delta band contribution [183] [184] [185] 

[186]. Therefore, the application of a broader frequency scope can contribute to a 

better response of the BCI system to the variations of the EEG signal. For a 

sampling frequency of 128Hz, a decomposition in four level was implemented. 

This procedure firstly divides the sampling frequency in half, starting the 

bandwidth of the analysis with 64Hz. Then, for each subsequent level, divides the 

correspondent frequency ranges in half, ending in the fourth level with sub-bands 

of 4Hz from 0 to 64Hz. For the proposed model the following eight sub-bands 
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were selected: 0-4Hz, 4-8Hz, 8-12Hz, 12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz and 

28-32Hz. 

Usually, after applying the WPD, the wavelet coefficients are used as 

features to represent the signal to be analyzed. However, for this BCI system, the 

signals of each frequency band were reconstructed and then used on a feature 

extraction process. This approach is based on previous unpublished works of the 

author that indicated a better performance with the reconstructed signals than the 

wavelet coefficients. An example of the obtained EEG signal waveforms in the 

time domain, for each frequency band, is presented in Figure 9. This sample was 

obtained from a trial of the subject S4 from the dataset IIIb of the BCI 

competition III. 

 

3.2.1 Feature extraction for the RMIPE model 

 

To improve the discrimination capacity of the BCI/BMI system, some 

features are extracted from the reconstructed signals. These features combine 

statistical, power and phase properties of the signals and have already been 

employed for EEG processing. There is no evidence in the literature of using the 

subset of features proposed as a group for this application before. The complete 

feature vector is composed of the parameters described in Table 1, where N is the 

number of samples, Si is the signal in the time domain of sub-band i, μ is the mean 

and Ci are the wavelet coefficients. Δθ represents the difference between the phase 

information of the signal of the channels C3 and C4. The instantaneous phase of 

the signals was obtained using the Hilbert transform, computing the phase angle 

of the decomposed values. 

The feature proposed for this work is based on other works in the literature 

that used the ratio of other metrics with good results [68] [187]. The calculation of 

those parameters for each frequency sub-band produces a final feature vector 

composed of 134 features: 
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Figure 9. Example of the reconstructed signals of electrodes C3 (left) and C4 (right) for 

each frequency sub-band 
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➢ 7 features for 8 frequency sub-bands for 2 channels (112 values) 

 

➢ 1 feature that calculates the difference between the phase of the two 

channels for 8 frequency bands (8 values) 

 

➢ 1 feature that calculates the ratio between adjacent sub-bands for 2 

channels (14 values) 

 

Table 1. Features for the RMIPE model 

Name Formula Reference 

Mean of the absolute values 

of each sub-band 
𝐹1 =

1

𝑁
∑|𝑆𝑖(𝑛)|

𝑁

𝑛=1

 [187] 

Average amplitude change of 

each sub-band 
𝐹2 =

1

𝑁
∑|𝑆𝑖(𝑛 + 1) − 𝑆𝑖(𝑛)|

𝑁

𝑛=1

 [70] 

Standard deviation of each 

sub-band 
𝐹3 = √

1

𝑁 − 1
∑|𝑆𝑖(𝑛) − 𝜇|2

𝑁

𝑛=1

 [69] 

Variance of each sub-band 𝐹4 =
1

𝑁 − 1
∑|𝑆𝑖(𝑛) − 𝜇|2

𝑁

𝑛=1

 [188] 

Energy of each sub-band 𝐹5 =
1

𝑁
∑(𝑆𝑖(𝑛))2

𝑁

𝑛=1

 [62] 

Entropy of the coefficients of 

each sub-band 

𝐹6 = − ∑ 𝐶𝑖
2 log(𝐶𝑖

2)

𝑖

 [69] 

Phase Locking Values of each 

sub-band 
𝐹7 =

1

𝑁
∑ exp (𝑗∆𝜃(𝑛))

𝑁

𝑛=1

 [189] 

Root mean square of each 

sub-band 
𝐹8 = √

1

𝑁
∑ 𝑆𝑖(𝑛)2

𝑁

𝑛=1

 [70] 

Ratio of the energy of 

adjacent sub-bands 
𝐹9 =

𝐹5(𝑆𝑖+1)

𝐹5(𝑆𝑖)
 

Proposed 

for this 

work 
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3.3 Feature Selection 

 

A great number of feature selection techniques has been applied on EEG 

data, including filter, wrapper and embedded approaches [81] [82] [190] [191] 

[192] [193] [194]. However, as discussed in Chapter 2, there is little information 

in the literature of which is the most adequate method or at least a comparison of 

their performance with different classifiers.  

Therefore, this work selected a set of six feature selection methods, 

separately used in previous EEG data [20] [82] [190] [195] [196] [197], in order 

to evaluate and compare their performance [194]. Those methods are: four filter 

approaches (CFS, ReliefF, mRmR and Consistency), one embedded approach 

(C4.5), and one wrapper approach (GA). The accuracy evaluation was 

accomplished over a subject of a benchmark dataset (subject S4 of the dataset IIIb 

-MI of the BCI Competition III [198]). Every trial consists of 7 seconds of EEG 

recording of the electrodes C3 and C4 of left or right hand imagery movement, 

sampled with 125Hz and filtered with a Notch Filter between 0.5 and 30 Hz. The 

number of instances of the balanced dataset is 540. 

Matlab 2013a and Weka 3.7.13 software tools have been used to develop 

the algorithms (ReliefF, mRmR and GA in Matlab and CFS, Consistency and 

C4.5 in Weka). The CFS and Consistency methods used Best First with forward 

selection and backward elimination as the search algorithms. For applying the 

ReliefF algorithm, the final heuristic of the method was altered. As stated in 

Section 2.4.2, the result of the ReliefF algorithm is a rank of all the features, and 

the feature selection is done defining a threshold that signalizes the lower value of 

relevance for the features of the final subset. This process is challenging, given 

that the search for the appropriate threshold may be difficult. The selection 

heuristic proposed in [87] for the mRmR algorithm presents a different approach. 

Based on the ranking procedure, subsets are generated composed of different 

features. For example, for a three features group, the first three features are 

selected, for a five features group, the first five features, and so on. Those 

predefined groups are then tested with the objective of selecting the subset with 

the best accuracy. This generates better results that the threshold limitation, being 

a more detailed analysis, the reason why it is the heuristic applied on the ReliefF 

approach proposed for this work. Additionally, the number of nearest neighbors 
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for the search of NHs and NMs has also been varied. The GA was configured with 

tournament selection, scattered crossover and Gaussian mutation; the population 

size and the number of generations were also varied in the experiments. 

To confirm the benefit of each feature selection algorithm for the MI data, 

all of them have been compared by the performance obtained with five different 

classifiers commonly used with EEG data: PNN [199], SVM [200], RBF [104], 

LDA [201] and k-NN [202]. These algorithms were selected due to their low 

computational cost and good performance, mixing linear and non-linear 

approaches. All the classifiers were implemented in Matlab 2013a. The next table 

shows the parameters for the configuration of each classifier. 

 

Table 2. Configuration of the parameters for each classifier 

Classifier Parameters Range of the Values Steps 

PNN spread of the activation function 0.1-100 0.01 

SVM 

kernel linear, quadratic, rbf  

solution method 

quadratic programming, 

least square, and sequential 

minimal optimization 

 

soft margin (C) 0.1-50 0.1 

sigma (for the rbf kernel) 0.1-50 0.1 

RBF spread of the activation function 0.1-50 0.1 

LDA discriminant function 
linear, mahalanobis 

distance 
 

k-NN 
distance metric 

Euclidean distance, cosine, 

correlation 
 

number of neighbors 0-200 1 

 

To evaluate and compare the classification algorithms, the following 

performance measure has been applied: 

 

𝑃 = 100 ∗
𝐶𝑐

𝐶𝑡
 (4) 

 

Where P is the performance given in percentage, Cc is the number of correct 

classifications and Ct the total number of patterns. For the classification process, 

the dataset was divided into a training set (70% of the dataset) and a test set (30%) 
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and normalized between 1 and 0. The best results obtained are seen on the 

following tables. Table 3 presents the performance in terms of classification 

accuracy and Table 4 describes the number of features selected by each algorithm 

(from a total number of 134 original features). The acronyms CFS-FS and CFS-

BE correspond to CFS with Best First with Forward Selection and Backward 

Elimination respectively. Also, the Con-FS and Con BE are the acronyms for 

Consistency with Best First with Forward Selection and Backward Elimination. 

 

Table 3. Performance (%) of every method for every classifier 

  
PNN SVM-l SVM-q SVM-rbf RBF LDA-l LDA-m 

kNN-

cor 

kNN-

cos 

kNN-

eucl 

CFS-FS 77.36 79.87 78.62 81.76 77.99 76.10 78.62 81.76 81.13 79.87 

CFS-BE 78.62 88.68 77.36 82.39 84.91 77.36 50.31 83.01 80.50 81.13 

ReliefF 81.13 88.05 84.28 86.16 87.42 86.16 83.65 86.16 84.91 84.28 

Con-FS 75.47 78.62 81.76 81.13 76.10 76.73 72.33 80.50 79.87 78.61 

Con-BE 79.25 81.13 83.02 83.02 79.25 80.50 70.44 80.50 81.76 81.76 

mRmR 82.39 88.05 84.91 86.16 81.13 84.91 77.99 86.16 84.28 83.65 

C4.5 81.13 86.79 85.54 85.54 80.50 87.42 77.36 85.55 84.91 84.28 

GA 88.05 91.82 91.20 90.57 89.31 93.71 93.71 93.08 91.20 92.45 

 

Table 4. Number of features selected by every method for every classifier 

  
PNN SVM-l SVM-q SVM-rbf RBF LDA-l LDA-m 

kNN-

cor 

kNN-

cos 

kNN-

eucl 

CFS-FS 11 11 11 11 11 11 11 11 11 11 

CFS-BE 99 99 99 99 99 99 99 99 99 99 

ReliefF 46 98 41 47 97 71 24 46 34 40 

Con-FS 18 18 18 18 18 18 18 18 18 18 

Con-BE 17 17 17 17 17 17 17 17 17 17 

mRmR 20 98 40 66 66 66 44 96 90 28 

C4.5 40 42 40 40 42 40 9 36 41 42 

GA 61 66 55 49 80 60 55 62 65 59 

 

The results indicate that all feature selection algorithms were able to reduce 

the number of features with a relatively good performance, being Consistency and 

CFS the ones with smaller subsets (not including CFS with backpropagation). 

However, due to their severe reduction in the number of features for the subsets, 

the resultant classification performance of these methods is poorer in comparison 

with the ones obtained by other algorithms. As it can be seen from Tables 3 and 4, 

good accuracy is obtained with a number of features between 40 and 60, which is 

less than half of the original number of extracted features. 
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The highest accuracy results were produced by the wrapper approach - GA, 

boosting the performance of every classifier with smaller subsets of features than 

the best results of CFS, Relief, and mRmR. Due to the nature of the wrapper 

approach, the results for GA are a logic outcome. As explained in Chapter 2, the 

wrappers optimize the performance of the classifier, while the filters optimize 

their ranking metrics, without considering the classifier performance. For MI data, 

if the objective is to obtain the best performance of the system, then GA 

guarantees a successful system, being remarkable that even with a classifier that is 

not suitable for this kind of data (in this case LDA with mahalanobis distance) the 

GA method obtained the best result. 

Due to the results provided by this performance analysis, the feature 

selection based on GA has been selected for the RMIPE model. 

 

3.4 Classification 

 

A great variety of classifiers has been applied to EEG data, including Naïve 

Bayes [203], k-NNs [202], SVMs [200], MLPs [103], RBFs [104], Extreme 

Learning Machines (ELM) [77] and Deep Neural Networks [204]. However, 

despite all the efforts in search of adequate methods and classifiers, it is still 

impossible to conclude that one algorithm is superior for this type of biological 

data, limiting the conclusions to only one dataset or another. Moreover, for a real 

BCI system, there is not a consensus about an algorithm that combines high 

performance, low processing time and robustness to the signals variations 

introduced in previous sections with superiority over the others. 

It is well known that the cooperation of classifiers from different designs 

can offer additional information about the data that has to be classified, leading to 

a better performance of the classification model and generating a better global 

model. As stated in [34], [104], [205], [206] and [207], fusion of classifiers has 

promising results applied to BCI data. In addition, ensembles can represent a good 

solution to the “curse of dimensionality” and be robust to the variance of EEG 

data both in the time domain and inter-subject (dataset), and even robust to the 

presence of artifacts. Those characteristics make them really interesting for their 

application in a BCI system. 
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In Chapter 2, the main parameters that provide a good ensemble design were 

presented, as defined in [109]: the accuracy of the individual components of the 

ensemble and their diversity. In this BCI system design, the diversity of the 

ensemble is assured by the different learning principles of its components. More 

specifically, the proposed ensemble is composed of different models of classifiers, 

which can improve the chance that the errors of the members are uncorrelated 

[123]. The accuracy is also provided, since the classifiers that form part of the 

ensemble have already been used with EEG data, with positive results. The 

selected classifiers are the following: PNN, SVM with linear kernel, SVM with 

quadratic kernel, LDA linear, RBF, k-NN with the Euclidean distance, k-NN with 

the Mahalanobis distance, k-NN with correlation, k-NN with cosine (even defined 

as an inconvenient metric because it does not satisfy the triangle accuracy, 

presented good accuracies in previous works), and MLP. The resultant ensemble 

can be seen in Figure 10. By assuring accuracy and diversity conditions, the 

proposed model should outperform the performance of each individual. Each 

classifier was tuned separately and independently through an exhaustive search, in 

order to both obtain the best classification performance and minimize the training 

time. The proposed ensemble model is a static one. Static ensembles present lower 

computational cost than dynamic ones, which is an important characteristic for 

BCI applications. 

 

 

Figure 10. Ensemble composition 

 

The last important aspect of the ensemble modeling is the definition of the 

fusion method. In this work, trainable and non-trainable approaches were 

assessed. The feature selection method is applied individually to each classifier, 
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with the objective of obtaining the representation of the signal that produces the 

best performance. So, each classifier is trained over the whole feature space. 

Four methods already applied in conjunction with BCI or EEG data were 

selected: one majority voting approach, four weighted majority voting 

approaches, Naïve Bayes combination, and an MLP as a meta-classifier [207] 

[208] [209] [210]. In the majority voting approach, the final class is decided 

simply by the number of votes received (each classifier gives only one vote). In 

case of a tie, the winning class is chosen randomly. 

The weighted majority voting approaches compute a weighted average 

based on the relevance of each classifier, as shown in the next expression: 

 

𝐶𝑓 = max
𝑗=1,...,𝑐

∑ 𝑤𝑖𝐷𝑖,𝑗

𝐿

𝑖=1

 (5) 

 

Where Cf is the final class, c is the number of classes, L is the number of 

classifiers that voted for the class j, wi is the weight of the classifier i, and Di,j is 

the classifier i that voted for the class j. 

As mentioned, four different weighted majority methods have been 

implemented: 

 

1) The weights are defined as the classifier’s performance; 

2) The weights are also defined as the classifier’s performance but a 

binary GA is integrated in order to select the classifiers that will take 

part in the final decision; 

3) The weights are defined by a GA with real representation; 

4) In this case, two GAs are applied: one that specifies the classifier’s 

relevance (weights) and another that selects the classifiers that will 

be considered in the fusion process. Three modes are implemented: 

weights between 0 and 1; weights between 0 and 1 but summing 1; 

and weights between -1 and 1. 

 

The implementation of the Naïve Bayes combiner method on a dataset Z of 

cardinality N is based on the formula: 
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𝐶𝑓 = max
𝑗=1,...,𝑐

[
1

𝑁𝑗
𝐿−1 ∏ 𝑐𝑚𝑖(𝑗, 𝑠𝑖)

𝐿

𝑖=1

] (15) 

 

Where Cf is the final class, c is the number of classes, L is the number of 

classifiers that compose the ensemble, Nj is the number of elements of the dataset 

from class j, cmi is the confusion matrix of the classifier i, and its entry (j,si) is the 

number of elements of the dataset belonging to class j and were classified by the 

classifier i as class s. This is, the support of the fusion method for a class A given 

the proposed classes that the individual classifiers predicted for an instance, 

depends on the multiplication of the number of instances that each classifier 

classified as the proposed class being of the class A, divided by the number of 

instances belonging to the class A. This calculation is performed for each class of 

the problem, and the maximum of the support values is the final class given to the 

instance. 

The meta-classifier approach is also known as stacking approach. In the 

proposed model, an MLP is trained using, as input vector, the outputs of each 

ensemble member, and the desired class as its output, for the complete dataset. 

The structure of the stacking model for N classifiers is illustrated in Figure 11. 

 

 

Figure 11. Model of a meta-classifier for fusion of Multiple Classifiers 

 

Based on all the chosen methods, for each component of the proposed 

system, the final model of RMIPE can be seen in Figure 12. 
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Figure 12. RMIPE Model 
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4. Case Study I: Classification Performance 

 

 

This first case study has as main objective the validation of the proposed 

model. The RMIPE is applied to different databases, freely available online, to 

assess the best fusion method for the ensemble of classifiers. The best fusion 

method is then compared to the results of other state-of-the-art methods. Finally, 

the influence of some of the functional blocks and their algorithms is evaluated. 

 

4.1 Databases 

 

The selected databases for this case study were all chosen from challenges 

of BCI competitions. Specifically, the databases are: dataset III from BCI 

competition 2003 (BCI competition II) [211], datasets IIIa [212] and IIIb [198] 

from the BCI competition III and dataset IIa from the BCI competition IV [213]. 

The dataset III from BCI competition 2003 was provided by the Department 

of Medical Informatics, Institute for Biomedical Engineering, Graz University of 

Technology. The subject was a 25 years old woman, and the recordings were 

performed during a feedback session to control a bar by the imagery movement of 

the left or right hand (two classes). The dataset is composed of 280 trials of 9 

seconds length (balanced between the two classes: left and right hand imagery 

movement). The experiment was designed with 2 seconds of relaxation, followed 

by an acoustic stimulus indicating the beginning of the trial and a cross displayed 

on the screen during one second. Then, an arrow in the screen indicating left or 

right signalizes which hand is necessary to move. A scheme of the acquisition 

experiment can be seen in Figure 13. The EEG signals over three bipolar channels 

over the C3, C4 and Cz positions were recorded using a G.tec amplifier and 

Ag/AgCl electrodes. The signals were sampled with 128Hz and filtered between 

0.5 and 30Hz. 

The dataset IIIa from the BCI competition III was a contribution of the 

Laboratory of Brain-Computer Interfaces of the Graz University of Technology. 

The dataset presented 360 trials of a multiclass motor imagery experiment (left 

hand, right hand, foot, and tongue), being balanced among the four classes. In the 
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recording procedure, a Neuroscan amplifier of 64 channels was employed. The 

sampling frequency of the signal was of 250Hz and it was used a filter between 1 

and 50Hz with a Notch filter. Each trial for each subject (three in total) started 

with an acoustic stimulus after two seconds of relaxation followed by a displayed 

fixation cross. After one second the cue appeared in the form of an arrow pointing 

left, right, up or down; and correspondently the subject performed the motor 

imagery task until the beginning of the seventh second.  

 

 

Figure 13. Acquisition experiment for the trials of the dataset III from BCI competition 

2003 

 

The database proposed as problem IIIb for the third BCI competition was 

composed by subjects S4, X11, and O3. The subjects S4 and X11 carried out 1080 

trials of a basket paradigm feedback and O3 performed 640 of a virtual reality 

feedback for a two class motor imagery task (right and left hand), resulting in a 

balanced dataset between the two classes. In both cases, the approach is similar to 

the previous ones and their time description can be seen in Figure 14 and Figure 

15. The recordings were acquired using the C3 and C4 channels with a bipolar 

amplifier from G.tec and the EEG signal was sampled with 125Hz and filtered 

between 0.5 and 30Hz with the Notch filter on. The paradigm for the feedback of 

the experiment of Figure 15 is described on [214]. In it, the green ball is displayed 

in a middle of two baskets (one red and one green) after 3 seconds. After one 

more second, the ball start to fall and the user have to maintain it in the desired 

region (right or left basket) through the imagination of left or right hand 

movement. 

The dataset IIa from the BCI competition IV is composed of 9 subjects 

doing 4 motor imagery tasks (left hand, right hand, feet, and tongue). The total 

0 1 2 3 4 5 6 7 8 9 sec

Trigger

Beep

Feedback period with Cue
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number of trials is 576, balanced among the four classes. The paradigm is the 

same of the dataset IIIa from the BCI competition III, but with a different time 

scheme, as is shown in Figure 16. The recording process used 20 Ag/AgCl 

electrodes (channels), the frequency sampling of the signal was 250Hz and a 

bandpass filter, between 0.5 and 100Hz, was applied. An additional 50Hz notch 

filter was enabled to suppress line noise. Intentionally, the data were left with 

EOG artifacts, and three EOG channels were provided for the application of 

artifact removal algorithms. 

 

 

Figure 14. Acquisition experiment for subject O3 from the dataset IIIb of the BCI 

competition III 

 

 

Figure 15. Acquisition experiment for subjects S4 and X11 from the dataset IIIb of the BCI 

competition III 

 

 

Figure 16. Time scheme for the dataset IIa from the BCI competition IV 
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4.1.1 Benchmark 

 

In order to validate the results of the proposed model on the datasets 

described in the previous section, a comparison with other BCI/BMI models 

found in the literature was performed. The selected publications included results 

obtained using the subject of the dataset III from BCI competition 2003 and the 

three subjects from the dataset IIIb of the third BCI competition. The comparison 

also includes the results of the teams involved in the problem of the third BCI 

competition. In the tests performed in this work, the data is maintained at the 

original rates of each competition, with the objective of realizing the comparison 

on the same terms described in each work. The number of trials for training and 

testing is shown in the next table. 

 

Table 5. Training and testing trials for the subjects of the datasets used for the Benchmark 

comparison 

 S4 X11 O3 A2 

Number of trials for training 540 540 160 140 

Number of trials for testing 540 540 160 140 

 

Twenty models were selected, among those that have also used these data, 

to realize a comparison with the obtained results. These models are described in 

Table 6: 

 

Table 6. Benchmark models 

Name Preprocessing and Features Classifier model 

Lemm, Schäfer and 

Curio [30] 
Complex Morlet Wavelets 

Probabilistic classification 

method based on the Gaussian 

distributions and the Bayes error 

of misclassifications 

Burmeister, Reichl, 

and Mikut [215] 

alpha and beta frequency bands 

selected using the multivariate 

analysis of variance (MANOVA) 

SVM 

Pei and Bin [216] FFT with Hanning window Fisher Discriminant Analysis 

Parini [217] PSD and AR parameters LDA 

Coyle, Prasad, and 

McGinnity [218] 

Prediction Neural Networks and Short 

Time Fourier transform (STFT) 
LDA 
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Yao, Yin, and Liao 

[30] 

Scales of Morlet-Wavelet and 

wavelet-based bandpower 
SVM 

Tavakolian and 

Rezaei [30] 
AAR parameters Bayesian Network Classifier 

(BNC) 

Lotte [219] Bandpower 

Fuzzy Inference System (FIS), 

MLP, SVM and a Linear 

Classifier 

Brodu, Lotte and 

Lécuyer [31] 

Multifractal cumulants, Predictive 

complexity, bandpower 
LDA 

Wu and Ge [220] Common Spatial Pattern 
Biomimetic Pattern Recognition 

(BPR), SVM and LDA 

Ahangi [34] 
Statistical information of the 

coefficients of a DWT 

AdaBoost, Bagging, Behavioral 

Knowledge Space, Decision 

Template, Majority Voting and 

Weighted Majority Voting, 

among others 

Omar, Wassim and 

Mohammed [221] 
Welch PSD 

LDA and Quadratic 

Discriminant Analysis (QDA) 

Djemili, Bouroba 

and Korb [222] 

Welch PSD, standard PSD and 

logarithm of bandpowers 
SVM and LDA 

Sampanna and 

Mitaim [35] 

Coefficients of a DWT combined 

with AR Model coefficients 
Ensemble of SVMs 

Chen, Fang and 

Zheng [223] 
Phase space features LDA 

Bashashati [32] 

Bandpower calculated by a filtering 

approach and the bandpower 

calculated by the Morlet wavelet 

approach 

Boosting and Random Forest, 

among others 

Lin, Guo and 

Huang [224] 
AR coefficients 

SVMC (controlled by the soft 

margin), SVM controlled by the 

number of support vectors, 

SVM with polynomial kernel 

function and SVM with radial 

basis function 

Tan, Sa and Yu 

[225] 
Bandpower ELM, LDA, and SVM 

Bashashati, Ward 

and Bashashati [36] 
Same as [32] 

Ensemble composed by Linear 

Regression classifiers with 

Majority Voting, Averaging, 

Stacking and Maximum 

Tan [226] 
Average and logarithm of the 

bandpower 

ELM probabilistic model, ELM, 

SVM and LDA 
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4.2 Performance Analysis without Feature Selection Algorithm 

 

The first performance analysis is about the individual results of each 

classifier that composes the Ensemble, without the application of the feature 

selection algorithm. This approach represents the baseline performance, allowing 

the evaluation of the impact of feature selection methods and the Ensemble model 

on the performance of the BCI system, when they are applied. As part of the 

preprocessing stage, for each trial of the EEG signals from channels C3 and C4, 

the time frame of the idle state was eliminated, conforming a block of the time of 

real motor imagery tasks. In addition, a process for removing noisy or erroneous 

trials was included. After this process, the number of trials of subjects S4, X11, 

O3 was reduced to 531, 538, 159 for training and 533, 540, 157 for testing, 

respectively, of the previously mentioned two classes of the datasets (left and 

right hand imagery movement). The parameters configuration for each classifier 

can be seen in Table 7. An exhaustive search was performed using all possible 

values in the range, for all parameters, to obtain a good relation between 

performance and processing time, concluding in the described ranges. All 

algorithms have been implemented using the Matlab software. 

It is worth to mention that due to the random initialization of the weights of 

the MLP, three neural networks are created. The best performance on the 

validation set is the one that is selected as the best classifier. The results obtained 

for the test sets are shown in the next table. Appendix 1 presents the 

correspondent Confusion Matrix for each classifier (class 0 represents the left 

hand and class 1 represent the right hand). 

The first important aspect that must be highlighted is that the MLP 

outperformed in a large margin all the other classifiers for each subject. Moreover, 

the mean of the results for each classifier shows that MLP is superior in a 9.03 

percentage points to the next best classifier, which is the linear SVM. The two 

SVM approaches presented relatively good classification performances. In 

general, other classifiers performance are over 70.00%, except the k-NN with 

Mahalanobis distance that performed very poorly with a mean of 60.78%. 
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Table 7. Configuration Parameters of each classifier 

Classifier Parameter 
Value 

Min Max Steps 

PNN Spread 0.1 1.2 0.1 

SVM linear kernel (SVM-l) 
Soft margin 0.1 1 0.1 

Solution method Least Square 

SVM quadratic kernel (SVM-q) 
Soft margin 0.1 

Solution method Quadratic Programming 

LDA (LDA-l) No parameter  

RBF Spread 
1.6 1.8 0.04 

2.1 2.3 0.04 

KNN euclidean (KNN-e) 

Number of neighbors 

20 50 1 

KNN mahalanobis (KNN-m) 27 31 1 

KNN cosine (KNN-cos) 95 105 1 

KNN correlation (KNN-cor) 80 100 1 

MLP 

Number of neurons in 

the hidden layer 
8 10 1 

Training function trainlm 

 

Table 8. Results for individual classifiers without feature selection 

 

S4 X11 O3 A2 Mean 

PNN 69.42±0.00 68.52±0.00 66.88±0.00 80.71±0.00 71.38±6.31 

SVM-l 77.49±0.00 73.70±0.00 75.80±0.00 79.29±0.00 76.57±2.39 

SVM-q 77.11±0.00 73.15±0.00 72.61±0.00 77.86±0.00 75.18±2.69 

LDA-l 74.11±0.00 71.11±0.00 67.52±0.00 65.00±0.00 69.44±4.00 

RBF 71.48±0.00 68.33±0.00 72.61±0.00 72.86±0.00 71.32±2.08 

KNN-e 70.92±0.00 70.00±0.00 64.97±0.00 81.43±0.00 71.83±6.91 

KNN-m 68.11±0.00 64.26±0.00 58.60±0.00 52.14±0.00 60.78±6.96 

KNN-cos 70.92±0.00 67.59±0.00 58.60±0.00 80.00±0.00 69.28±8.84 

KNN-cor 72.05±0.00 68.70±0.00 60.51±0.00 79.29±0.00 70.14±7.79 

MLP 85.55±0.55 78.70±1.62 85.99±1.88 92.14±1.48 85.60±5.49 

 

The observation of the Confusion Matrices for each classifier (see Appendix 

1) reveals that, for the subject X11, there is a tendency to misclassify the left 

hand, obtaining a balanced response only for the cases of PNN, k-NN with cosine 

and with Mahalanobis distance. On the contrary, the subject O3 presented 

difficulty to correctly predict the right hand class, with eight of the classifiers 
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showing this limitation. Subjects S4 and A2 did not present signs of a certain 

tendency. Particularly analyzing the classifiers, RBF presented a higher rate of 

misclassifications for the left hand and the k-NN with Mahalanobis distance for 

the right one. The two SVM approaches were the ones that demonstrated a 

tendency to obtain balanced results. 

 

4.3 Performance Analysis with Feature Selection and Single 

Classifiers 

 

The addition of the feature selection stage, based on a GA (see Section 3.3), 

to eliminate irrelevant features provides the results illustrated in Table 9. The 

number of generations and population size of the GA were tuned in order to 

reduce the training processing time without causing a significant negative effect 

on the performances. Appendix 2 provides a compilation of the obtained 

Confusion Matrices from the classification processes. 

 

Table 9. Performance of the individual classifiers with GA as feature selection algorithm 

 

S4 X11 O3 A2 Mean 

PNN 70.54±2.27 70.56±2.88 68.15±1.91 80.00±2.58 72.31±5.25 

SVM-l 78.42±2.07 74.26±2.51 73.89±2.87 81.43±2.51 77.00±3.60 

SVM-q 79.55±1.60 72.59±2.53 75.16±2.57 80.71±2.85 77.00±3.79 

LDA-l 75.24±1.60 71.48±2.78 69.43±3.84 66.43±2.14 70.65±3.70 

RBF 72.05±2.32 69.26±2.15 73.25±2.24 77.86±2.89 73.11±3.58 

KNN-e 72.42±1.89 70.37±2.43 66.88±1.94 82.14±2.18 72.95±6.54 

KNN-m 73.17±2.18 67.04±2.04 57.96±2.57 72.86±2.51 67.76±7.11 

KNN-cos 73.92±2.45 67.22±2.22 66.24±2.24 80.71±1.89 72.02±6.72 

KNN-cor 73.92±2.63 69.07±2.13 70.06±3.21 80.00±2.14 73.26±4.96 

MLP 86.30±1.04 81.85±1.11 90.45±1.27 94.29±1.09 88.22±5.36 

 

The results presented in Table 9 confirm that the feature selection stage 

improves the individual performances. In general, all classifiers had their 

performance enhanced by at least 1 percentage point. The most benefited 

classifier is the k-NN with Mahalanobis distance, increasing its poor average 

performance by almost 7 percentage points. Other classifiers that received a boost 

in their accuracies were the k-NN with correlation, k-NN with cosine, and MLP, 
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with a 3.1288, 2.7472, and 2.625 percentage points of increment in the mean 

performance, respectively. 

A comparison of the obtained results for the SVM with linear and quadratic 

kernel, with and without feature selection, illustrates that the improvements were 

not as significant as the values for other classifiers. This is an evidence of the 

robustness of the SVMs to the “curse of dimensionality” problem. 

The analysis of the Confusion Matrices from Appendix 2 shows that, in 

general, subjects X11 and O3 tended to misclassify the right hand class, with 6 

classifiers with this limitation. On the contrary, S4 presented difficulties with the 

classification of the left hand class, also 6 with classifiers. Subject A2 did not 

reveal any tendency. Focusing on the classifiers, more balanced results can be 

observed for the MLP, SVM with linear kernel and k-NN with correlation, while 

RBF was the only classifier with a tendency for misclassifications, in this case for 

the right hand. 

 

4.3.1 Features Analysis 

 

An interesting issue is to examine which features are the most relevant to 

the good discrimination by the classifiers of the MI tasks performed by the 

subject. In order to implement this analysis, the most selected features (more than 

three times for five runs of the GA), for each classifier, are presented for each 

subject in the correspondent tables of Appendix 3. 

The first case to analyze is the one for the features that can be defined as 

more relevant (selected by seven classifiers or more). Table 10 shows the number 

of classifiers that select the most relevant features for at least one subject and 

present a total of selections bigger than 20 (except the energy of C3 for sub-band 

24-28 Hz that is relevant for the analysis and obtained a total of 19). 

 

Table 10. Features defined as more relevant for at least one subject 

 

S4 X11 O3 A2 Total 

Avg abs C3 sb0-4 10 3 6 5 24 

Avg abs C3 sb8-12 8 7 4 1 20 

Avg abs C3 sb12-16 4 4 7 5 20 

Avg abs C3 sb16-20 2 6 4 8 20 
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Avg abs C3 sb28-32 8 3 4 5 20 

Avg abs C4 sb12-16 5 4 7 5 21 

Avg abs C4 sb28-32 2 7 7 4 20 

Avg ampl C3 sb0-4 9 6 2 3 20 

Avg ampl C3 sb12-16 5 6 6 7 24 

Avg ampl C3 sb28-32 6 5 7 6 24 

Avg ampl C4 sb0-4 7 5 4 5 21 

Avg ampl C4 sb12-16 6 5 9 5 25 

Avg ampl C4 sb16-20 6 7 4 8 25 

Avg ampl C4 sb28-32 4 6 7 6 23 

Std dev C3 sb8-12 4 4 8 6 22 

Std dev C3 sb20-24 6 5 5 7 23 

Std dev C4 sb0-4 9 4 4 4 21 

Std dev C4 sb4-8 5 8 6 3 22 

Std dev C4 sb16-20 5 7 6 6 24 

Energy C3 sb8-12 2 7 5 6 20 

Energy C3 sb16-20 8 5 5 3 21 

Energy C3 sb24-28 8 2 1 8 19 

Energy C3 sb28-32 9 2 3 7 21 

Energy C4 sb24-28 7 4 4 5 20 

Energy C4 sb28-32 1 8 3 8 20 

Rt En C3 sb4-8 and sb8-12 7 4 6 7 24 

Rt En C3 sb20-24 and sb24-28 4 9 4 5 22 

Rt En C3 sb24-28 and sb28-32 2 3 7 8 20 

Entropy C3 sb0-4 7 5 3 5 20 

Entropy C3 sb4-8 5 7 4 7 23 

Entropy C3 sb20-24 7 9 6 5 27 

Entropy C3 sb24-28 4 5 7 8 24 

Entropy C3 sb28-32 7 7 7 5 26 

Entropy C4 sb20-24 1 8 5 6 20 

Entropy C4 sb28-32 5 4 7 4 20 

PLV C3 and C4 sb20-24 5 8 4 4 21 

Root mean sq C3 sb8-12 7 5 5 4 21 

Root mean sq C3 sb12-16 8 5 6 5 24 

Root mean sq C3 sb28-32 4 7 6 7 24 

Root mean sq C4 sb4-8 7 4 4 6 21 

Root mean sq C4 sb16-20 5 8 4 3 20 

Variance C3 sb16-20 5 7 3 5 20 

Variance C3 sb20-24 5 3 6 7 21 

Variance C3 sb24-28 5 3 7 6 21 
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Variance C3 sb28-32 10 3 7 5 25 

Variance C4 sb8-12 5 6 7 5 23 

Variance C4 sb16-20 5 7 8 4 24 

 

In general, there are only fourteen features (from 134) that are repeatedly 

selected for more than seven classifiers for at least two of the subjects 

(highlighted in the table in gray). This is an evidence of the necessity of an 

independent feature selection process for each subject, since there is not a great 

number of common features that generates a good classification for the majority 

of the subjects. Particularly, the only feature selected as relevant for three of the 

subjects (S4, X11 and O3) is the entropy for the sub-band 28 to 32 Hz of C3 

channel. An overview of those fourteen features demonstrates the variability for 

each subject of the relevance of the features. As an example, the energy for 

channel C3 of sub-bands 24-28 Hz and 28-32 Hz was relevant for subjects S4 and 

A2, and irrelevant for subjects X11 and O3. 

Five of the features presented the highest number of selections when 

summed the results of all the classifiers (twenty-five or more). Those features 

(with red borders in the table) are: average amplitude change from C4 and sub-

bands 12-16 Hz and 16-20Hz, entropy for C3 and sub-bands 20-24 Hz and 28-32 

Hz, and variance for C3 and sub-band 28-32 Hz. In general, all the features were 

selected as relevant for at least one subject, with the feature named mean of the 

absolute values being represented in the table eleven times between combination 

of channel and sub-band as the highest value. The PLV was the one with the 

smallest value (3). The other important aspect is the evaluation of the proposed 

feature, which was selected as relevant for at least one of the subjects for five sub-

bands, all for the channel C3. 

Table 11 portrays the results for the features that were selected by a lower 

number of classifiers (three or less) for each subject, with a reduction to the 

features that presented a total of selection of less than 20 (in order to decrease the 

dimension of the table and narrow the analysis). In this case, there are 35 features 

(highlighted in the table) selected as less relevant at least for two of the subjects, 

with eight that were selected by 3 classifiers or less for three subjects. Those 

were: for channel C4 the average amplitude change for 4-8 Hz, the standard 

deviation for 12-16 Hz, the energy for 4-8 Hz and 8-12 Hz, the ratio of the energy 
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between sub-bands 0-4 Hz and 4-8Hz, and the variance for 0-4 Hz and 24-28 Hz; 

and the PLV between channels C3 and C4 for sub-band 24-28 Hz. In general, the 

majority of the features were selected at least one time for a subject (98 features). 

The feature that presented the lowest number of selections was the PLV between 

channels C3 and C4 for sub-band 16-20 Hz with only ten selections between all 

the subjects, followed by the variance of C4 for sub-bands 0-4 Hz and 24-28 Hz.  

 

Table 11. Features defined as less relevant for at least one subject 

 
S4 X11 O3 A2 Total 

Avg abs C3 sb4-8 2 5 2 8 17 

Avg abs C3 sb20-24 5 3 7 3 18 

Avg abs C3 sb24-28 5 3 4 3 15 

Avg abs C4 sb0-4 6 4 4 2 16 

Avg abs C4 sb4-8 6 3 2 5 16 

Avg abs C4 sb8-12 1 1 5 5 12 

Avg abs C4 sb16-20 3 7 2 6 18 

Avg abs C4 sb20-24 7 4 5 3 19 

Avg abs C4 sb24-28 1 4 5 2 12 

Avg ampl C3 sb4-8 5 1 4 5 15 

Avg ampl C3 sb8-12 5 4 3 5 17 

Avg ampl C3 sb20-24 6 2 5 6 19 

Avg ampl C4 sb4-8 3 2 3 4 12 

Avg ampl C4 sb8-12 3 4 7 5 19 

Avg ampl C4 sb24-28 2 6 4 4 16 

Std dev C3 sb0-4 4 2 2 4 12 

Std dev C3 sb12-16 7 3 4 5 19 

Std dev C3 sb16-20 5 4 7 1 17 

Std dev C3 sb24-28 6 4 5 2 17 

Std dev C3 sb28-32 5 2 7 4 18 

Std dev C4 sb8-12 2 2 7 2 13 

Std dev C4 sb12-16 2 3 3 5 13 

Std dev C4 sb20-24 5 6 5 2 18 

Std dev C4 sb24-28 1 5 3 4 13 

Std dev C4 sb28-32 0 7 4 4 15 

Energy C3 sb0-4 2 6 4 5 17 

Energy C3 sb4-8 2 6 6 5 19 

Energy C3 sb12-16 3 6 2 7 18 

Energy C3 sb24-28 8 2 1 8 19 

Energy C4 sb0-4 2 3 5 5 15 
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Energy C4 sb4-8 3 5 2 3 13 

Energy C4 sb8-12 2 2 8 3 15 

Energy C4 sb16-20 4 4 5 3 16 

Energy C4 sb20-24 5 5 6 2 18 

Rt En C3 sb0-4 and sb4-8 4 3 7 4 18 

Rt En C3 sb12-16 and sb16-20 2 7 4 4 17 

Rt En C3 sb16-20 and sb20-24 4 5 4 1 14 

Rt En C4 sb0-4 and sb4-8 2 6 2 3 13 

Rt En C4 sb4-8 and sb8-12 6 3 4 4 17 

Rt En C4 sb12-16 and sb16-20 3 3 5 5 16 

Rt En C4 sb16-20 and sb20-24 3 5 1 5 14 

Rt En C4 sb20-24 and sb24-28 4 4 2 4 14 

Rt En C4 sb24-28 and sb28-32 3 6 1 6 16 

Entropy C3 sb8-12 4 2 6 4 16 

Entropy C3 sb12-16 6 1 4 5 16 

Entropy C3 sb16-20 4 5 2 3 14 

Entropy C4 sb4-8 5 4 6 2 17 

Entropy C4 sb8-12 4 2 3 5 14 

Entropy C4 sb16-20 4 4 3 4 15 

Entropy C4 sb24-28 5 6 5 3 19 

PLV C3 and C4 sb0-4 8 2 1 6 17 

PLV C3 and C4 sb4-8 2 5 4 3 14 

PLV C3 and C4 sb12-16 4 3 4 3 14 

PLV C3 and C4 sb16-20 1 3 1 5 10 

PLV C3 and C4 sb24-28 6 2 3 3 14 

PLV C3 and C4 sb28-32 6 7 3 3 19 

Root mean sq C3 sb0-4 6 3 4 5 18 

Root mean sq C3 sb4-8 7 3 5 4 19 

Root mean sq C3 sb16-20 1 5 6 4 16 

Root mean sq C3 sb20-24 6 1 6 4 17 

Root mean sq C3 sb24-28 5 3 7 4 19 

Root mean sq C4 sb0-4 6 3 5 4 18 

Root mean sq C4 sb8-12 5 2 6 3 16 

Root mean sq C4 sb12-16 4 4 6 1 15 

Root mean sq C4 sb20-24 2 5 6 6 19 

Root mean sq C4 sb24-28 3 4 4 7 18 

Root mean sq C4 sb28-32 0 8 4 6 18 

Variance C3 sb0-4 3 3 5 4 15 

Variance C3 sb4-8 5 3 3 7 18 

Variance C3 sb8-12 0 6 5 3 14 

Variance C4 sb0-4 3 5 1 2 11 
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Variance C4 sb12-16 5 3 6 4 18 

Variance C4 sb20-24 2 6 4 4 16 

Variance C4 sb24-28 4 3 2 2 11 

Variance C4 sb28-32 1 5 2 5 13 

 

In order to analyze the relevance of the sub-bands selected for the proposed 

model, Table 12 reorganize the data from the features that can be defined as more 

relevant (selected by seven classifiers or more), displaying the number of relevant 

features defined for each sub-band. The results can be observed in Table 12. 

 

Table 12. Relevant features divided in frequency bands 

  
S4 X11 O3 A2 Total 

0-4 Hz 

Avg abs C3 10 3 6 5 24 

Avg ampl C3 9 6 2 3 20 

Avg ampl C4 7 5 4 5 21 

Std dev C4 9 4 4 4 21 

Rt En C3 4 3 7 4 18 

Entropy C3 7 5 3 5 20 

PLV C3 and C4 8 2 1 6 17 

4-8 Hz 

Avg abs C3 2 5 2 8 17 

Std dev C4 5 8 6 3 22 

Rt En C3 4 3 7 4 18 

Entropy C3 5 7 4 7 23 

Root mean sq C3 7 3 5 4 19 

Root mean sq C4 7 4 4 6 21 

Variance C3 5 3 3 7 18 

8-12 Hz 

Avg abs C3 8 7 4 1 20 

Avg ampl C4 3 4 7 5 19 

Std dev C3 4 4 8 6 22 

Std dev C4 2 2 7 2 13 

Energy C3 2 7 5 6 20 

Energy C4 2 2 8 3 15 

Rt En C3 7 4 6 7 24 

Root mean sq C3 7 5 5 4 21 

Variance C4 5 6 7 5 23 

12-16 Hz 

Avg abs C3 4 4 7 5 20 

Avg abs C4 5 4 7 5 21 

Avg ampl C3 5 6 6 7 24 

Avg ampl C4 6 5 9 5 25 
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Std dev C3 7 3 4 5 19 

Energy C3 3 6 2 7 18 

Rt En C3 2 7 4 4 17 

Root mean sq C3 8 5 6 5 24 

16-20 Hz 

Avg abs C3 2 6 4 8 20 

Avg abs C4 3 7 2 6 18 

Avg ampl C4 6 7 4 8 25 

Std dev C3 5 4 7 1 17 

Std dev C4 5 7 6 6 24 

Energy C3 8 5 5 3 21 

Rt En C3 2 7 4 4 17 

Root mean sq C4 5 8 4 3 20 

Variance C3 5 7 3 5 20 

Variance C4 5 7 8 4 24 

20-24 Hz 

Avg abs C3 5 3 7 3 18 

Avg abs C4 7 4 5 3 19 

Std dev C3 6 5 5 7 23 

Rt En C3 4 9 4 5 22 

Entropy C3 7 9 6 5 27 

Entropy C4 1 8 5 6 20 

PLV C3 and C4 5 8 4 4 21 

Variance C3 5 3 6 7 21 

24-28 Hz 

Energy C3 8 2 1 8 19 

Energy C4 7 4 4 5 20 

Rt En C3 4 9 4 5 22 

Entropy C3 4 5 7 8 24 

Root mean sq C3 5 3 7 4 19 

Root mean sq C4 3 4 4 7 18 

Variance C3 5 3 7 6 21 

28-32 Hz 

Avg abs C3 8 3 4 5 20 

Avg abs C4 2 7 7 4 20 

Avg ampl C3 6 5 7 6 24 

Avg ampl C4 4 6 7 6 23 

Std dev C3 5 2 7 4 18 

Std dev C4 0 7 4 4 15 

Energy C3 9 2 3 7 21 

Energy C4 1 8 3 8 20 

Rt En C3 2 3 7 8 20 

Entropy C3 7 7 7 5 26 

Entropy C4 5 4 7 4 20 
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PLV C3 and C4 6 7 3 3 19 

Root mean sq C3 4 7 6 7 24 

Root mean sq C4 0 8 4 6 18 

Variance C3 10 3 7 5 25 

 

In general, all the sub-bands possess several number of features among the 

most relevant for at least one of the subject, being the ones with a lower number 

of features the 0-4 Hz, 4-8 Hz and 24-28 Hz sub-bands (with 7 features) and the 

one with the higher number of features the 28-32 Hz sub-band (with 15 features). 

The obtained results are evidence that the frequency scope selected represent in a 

diverse and correct manner the EEG signal produced by the MI tasks, with any 

sub-band presenting a low number of selected features (including the ones that are 

not commonly employed for the representation of this MI tasks). In particular, the 

observation of the number of features for each channel demonstrates that channel 

C3 provides almost double the number of selected features than C4 (43 and 25, 

respectively). 

 

4.4 Performance Analysis with Feature Selection and Ensemble of 

Classifiers 

 

This next experiment is carried out with the Ensemble approach and 

different fusion techniques. The main objective is to verify the fusion technique 

that offers the best accuracy. Subjects K3 from the dataset IIIa of the BCI 

competition III and A01 from the dataset IIa from the BCI competition IV are 

added to the analysis. 

Subject K3 is added with the intention of assisting in the assessment of the 

response of the proposed model to EEG signals characterized by higher frequency 

sampling and lower number of trials. Being the main objective of this work the 

analysis of MI with the already tested two classes (left and right hand) and the 

electrodes C3 and C4, the other electrodes and classes mentioned in the 

description of the dataset (Section 4.1) were not included in the analysis. The 

resulting number of training samples is 90, as well as 90 for testing purposes. 

The A01 subject is added with the intent of analyzing the robustness of the 

system to artifacts in the signals (in this case EOG). The electrodes and classes are 
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the same as above. The number of training trials is 144, with 143 testing trials 

(after removal of noisy trials during the preprocessing stage). The resultant 

classification accuracies are shown in Table 13. Eleven different approaches 

combining the result of the classifiers with fusion methods were evaluated: 

 

➢ Naïve Bayes Combiner; 

 

➢ Majority Voting and Weighted Voting applied on the data without 

feature selection; 

 

➢ Majority Voting and Weighted Voting applied on the data with 

feature selection; 

 

➢ GA for classifier selection, in which the results of the selected 

classifiers are combined using the Weighted Voting technique; 

 

➢ Three approaches of GA for the definitions of the weights of each 

classifier in the Weighted Voting: one with the weights between 0 

and 1, other with the same condition but summing 1, and another 

with weights between 1 and -1 summing 1; 

 

➢ A combination of GA for classifier selection and another GA 

defining the weights for the Weighted Voting method that combines 

the results of the selected classifiers; 

 

➢ MLP as meta-classifier. 

 

Two combinations of a reduced set of classifiers chosen randomly and one 

with all the classifiers, were applied on the Majority Voting and Weighted Voting 

approaches, in order to observe the effect of reducing the number of classifiers on 

the classification performance. In the simple Weighted Majority Voting combiner, 

the weights were defined as the performances obtained for each individual 

classifier. The application of the MLP as a meta-classifier was accomplished 

testing 10 neural networks for each different configuration of 5 to 20 neurons in 
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the hidden layer. The obtained Confusion Matrices, for each method, are 

presented in Appendix 4. 

The best fusion method is the MLP as a meta-classifier, with a difference of 

9.9741% over the second best one (GA for classifier selection). The accuracy of 

this model is really high, reaching over the 90% for almost all subjects 

(underperforming just in X11). In addition, for the A01 subject that presented 

EOG artifacts, when almost all the other fusion methods presented accuracies 

below 80%, this method reached a value as high as 90.9091%. In comparison with 

the individual classifiers results, it can be seen that the MLP as fusion method 

outperforms the performances of each individual classifier for the tested subjects 

(S4, X11, O3, and A2), which validates our approach to the ensemble model 

application. 

 

Table 13. Performances of the Ensemble of Classifier in % for the different fusion 

algorithms 

 
Classifier S4 X11 O3 A2 K3 A01 Mean 

Naïve Bayes 
 

78.24±0.00 70.56±0.00 71.34±0.00 81.43±0.00 92.22±0.00 61.54±0.00 75.89±10.56 

Majority 

Voting  
77.67±0.82 74.07±0.71 72.61±1.10 81.43±0.00 92.22±0.00 63.64±0.00 76.94±9.57 

Weighted 

Voting  
78.80±0.00 74.07±0.00 77.71±0.00 81.43±0.00 91.11±0.00 63.64±0.00 77.79±9.01 

FS Majority 

Voting 

SVM,LDA, 

KNN,PNN, 

RBF,MLP 

79.93±0.71 74.26±0.28 75.16±1.10 81.43±0.42 92.22±0.64 65.73±1.06 78.12±8.83 

SVM,LDA, 

SVMQ,MLP 
78.99±0.68 74.44±0.39 80.26±0.97 82.86±1.09 92.22±0.64 65.04±1.46 78.97±9.02 

 
81.05±0.99 75.37±0.98 82.80±1.47 83.57±1.49 91.11±0.64 65.73±1.45 79.94±8.60 

FS Weighted 

Voting 

SVM,LDA, 

KNN,PNN, 

RBF,MLP 

80.11±0.00 75.00±0.00 75.16±0.00 81.43±0.00 93.33±0.00 65.04±0.00 78.35±9.33 

SVM,LDA, 

SVMQ,MLP 
81.24±0.00 76.67±0.00 80.89±0.00 82.86±0.00 92.22±0.00 65.73±0.00 79.94±8.66 

 
81.24±0.00 75.74±0.00 85.98±0.00 85.71±0.00 91.11±0.00 66.43±0.00 81.04±8.82 

GA sel clas 
 

80.68±0.32 76.30±0.56 79.62±1.91 87.86±2.51 94.44±1.11 80.42±3.16 83.22±6.67 

GA sel weights 
 

80.11±1.70 76.11±1.48 82.80±2.87 87.86±2.51 93.33±1.70 69.93±2.46 81.69±8.33 

GA sel weights 

sum 1 de 0 a 1  
81.43±0.61 83.52±0.93 80.89±1.91 58.57±1.8 94.44±1.11 81.82±1.76 80.11±11.72 

GA sel weights 

sum 1 de -1 a 1  
84.24±2.63 79.63±2.98 70.15±3.51 83.57±2.86 90.00±1.70 72.03±2.8 79.94±7.63 

GAs combined 
 

81.80±0.61 80.19±1.44 73.89±2.05 91.43±1.8 93.33±0.64 76.92±1.76 82.93±7.84 

MLP as expert 
 

90.43±0.78 87.59±1.16 94.91±0.97 96.43±1.09 98.89±0.64 90.91±1.07 93.19±4.25 

 

The worst combination methods were the Naïve Bayes combiner and the 

Majority Voting without feature selection, which presented a mean even lower 
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that some of the individual classifiers (SVM linear and SVM quadratic). All 

others techniques presented values above the single classifiers, except for the 

MLP classifier, which performed much better than other single classifiers. 

The GA applied as classifier selector was the second most successful 

method, with an average performance of 83.2184%. This result highlights the 

irrelevant contribution of some classifiers (see Table 14) since the weighted 

methods were not able to totally zero the contribution of some classifiers, 

generating lower mean classification accuracies. In general, for at least one 

subject all the classifiers were selected. The classifiers with a least relevant 

contribution (only one selection) were the PNN, SVM with linear kernel and 

SVM with quadratic kernel. On the contrary, there were classifiers with a great 

contribution to the final performance of the models. Those were the RBF and the 

MLP, both selected for the final ensemble in all subjects. 

A particular case is the weight definition by the GA that summed 1 in the 

[0,1] range. This method presented promising accuracies for subjects S4, X11 and 

O3. However, for the A2 subject, its accuracy drastically fell to 58.5714. If the 

contribution of this subject is eliminated from the average calculation, the results 

of the method become very promising, surpassing the ones of the GA as classifier 

selector. The two of them were the other methods that performed fairly well with 

the artifact dataset (subject A01). 

 

Table 14. Best solution for the GA employed as classifier selector 

Classifiers S4 X11 O3 A2 K3 A01 

PNN 0 0 1 0 0 0 

SVM-l 0 0 0 0 1 0 

SVM-q 0 0 0 1 0 0 

LDA-l 0 0 1 1 0 0 

RBF 1 1 1 1 1 1 

KNN-e 1 0 0 0 1 1 

KNN-m 0 1 0 1 0 1 

KNN-cos 1 0 1 0 0 1 

KNN-cor 0 0 1 1 0 1 

MLP 1 1 1 1 1 1 
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The GA combination approach demonstrated to be convenient for the 

classification of MI data, being the third highest performance. This is reasonable, 

giving that the purpose of the method is to eliminate the non-useful classifiers, 

while weighting the contribution of the useful ones. The performance of this 

method is not very different from the one of the GA for classifier selection. This 

can be explained by the weights definition, which can reduce the contribution of 

some of the selected classifiers to non-significant values, which can decrease the 

diversity of the ensemble in a sense of decrease the relevance of those classifiers 

in the final decision. 

The number of training examples seems to affect the performance of the 

model as well. Higher performances were obtained for subjects O3 and A2 that 

presented a much lower number of trials than S4 and X11. Those results are in 

accordance with the ones presented in the literature (see details in the next 

section). This can be an evidence of the variability of the EEG signals between 

sessions with the same subject. The recordings of subject A2 were conducted in 

just one session, differently from that the three sessions of O3, S4 and X11. The 

O3 subject, particularly, presented an error of duplication of trials in the published 

dataset, reason why the number of trials was reduced to half of the original trials, 

which probably reduced the number of sessions on the dataset. 

The results with the subject with an augmented sampling frequency (250Hz) 

indicate that a higher sampling frequency provides a better description of the 

features attaining good accuracies for each fusion method and peaking at 

98.8889% for the MLP as meta-classifier algorithm. As mentioned in the previous 

analyses for the subject A01 that presents EOG artifacts, the majority of methods 

did not reach even the 70% of performance. However, methods as GA for 

classifier selection, GA for weights definition with sum 1 and in [-1, 1] range, GA 

combined and the MLP as meta-classifier were robust to this problem, especially 

the MLP method with an accuracy as good as 90.9091%. 

Observing the results shown in Appendix 4, it can be seen that the models 

had difficulty in classifying the right hand imagery movement for subjects O3, K3 

and A01. In particular for O3, this problem was detected in all the previous 

analysis with the Confusion Matrices. The other subject that presented a tendency 

for misclassification a particular class was S4, in this case for the left hand. In the 

case of the fusion models, five of them (Naïve Bayes, Majority Voting with 
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Feature Selection for six and 4 classifiers, and Weighted Voting with Feature 

Selection for all and six classifiers) tended to misclassify the right hand class. 

Majority Voting and Weighted Voting with Feature Selection, and MLP as meta-

classifier, presented the most balanced results. 

Another approach to the analysis of the results is the statistical validation, 

which allows determining the significance of the results and whether the 

conclusions obtained are supported by the experimentation settings. The Friedman 

test [227] was selected, with the null hypothesis stating that all the algorithms 

present the same rank due to their equivalence [228]. Therefore, if the hypothesis 

is rejected, it means that there are significant differences between the tested 

algorithms. If this condition is fulfilled, then a post-hoc analysis can be conducted 

to found whether there is a relevant difference between the defined control 

algorithm and the others. For this post-hoc analysis the Holm method [229] was 

selected. This method implements a pairwise comparison between a defined 

control classifier and other classifiers. The Friedman’s ranking results are shown 

in the next table. 

 

Table 15. Ranks of the algorithms for the Friedman's test 

 
Classifier S4 X11 O3 A2 K3 A01 Mean 

Naïve Bayes 
 

14 15 14 12 9 15 13.17 

Majority 

Voting  
15 13.5 13 12 9 13.5 12.67 

Weighted 

Voting  
13 13.5 9 12 13 13.5 12.33 

FS Majority 

Voting 

SVM,LDA,KNN, 

PNN, RBF,MLP 
11 12 10.5 12 9 9 10.58 

SVM,LDA, 

SVMQ,MLP 
12 11 7 8.5 9 11.5 9.83 

 
7 9 3.5 6.5 13 9 8 

FS Weighted 

Voting 

SVM,LDA,KNN, 

PNN,RBF,MLP 
9.5 10 10.5 12 5 11.5 9.75 

SVM,LDA, 

SVMQ,MLP 
5.5 5 5.5 8.5 9 9 7.08 

 
5.5 8 2 5 13 7 6.75 

GA sel clas 
 

8 6 8 3.5 2.5 3 5.17 

GA sel weights 
 

9.5 7 3.5 3.5 5 6 5.75 

GA sel weights 

sum 1 de 0 a 1  
4 2 5.5 15 2.5 2 5.17 

GA sel weights 

sum 1 de -1 a 1  
2 4 15 6.5 15 5 7.92 

GAs combined 
 

3 3 12 2 5 4 4.83 

MLP as expert 
 

1 1 1 1 1 1 1 
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The observation of the mean rankings confirms that the best algorithm is the 

MLP as meta-classifier, followed by the combination of GAs, the GA as classifier 

selector and the weight definition by the GA that summed 1 with limits in the 

range of 0 to 1 (this last two sharing the spot for third better rank). Table 15 also 

confirms that the worst algorithms are Naïve Bayes, Majority Voting without 

feature selection and Weighted Voting. The two ensembles that did not apply 

feature selection methods were included among the worst results (Majority and 

Weighted Voting), which reiterate the importance of the feature selection stage for 

the model. 

The Friedman statistic is distributed then according to the approximation 

(𝜒𝐹
2) [227] with k-1 degrees of freedom (with k being the number of tested 

algorithms)1. In this analysis, the obtained value of 𝜒𝐹
2 is 48.8708. For a p<0.001, 

the critical value for values of k*N bigger than 30 [230] (with N being the number 

of subjects) or k and N bigger than 5 or 13 respectively [231] can be found in the 

Table of Chi-Square Distribution [227], which in this case is 36.12. As the value 

of the chi-square approximation of the Friedman statistic is greater than the 

critical value then the null hypothesis of equal ranks between all models can be 

rejected. 

The MLP as meta-classifier was selected as the control method of the Holm 

post-hoc technique. This analysis organizes the algorithms in decreasing order and 

calculates a z value for all non-control algorithms. With the obtained z values the 

corresponding p-values are found using the normal distribution table (Table A1 in 

[227]). Next, each p-value is compared to an adjusted critical value calculated by 

the Holms’s expression: (𝑝𝐻 =
𝛼

𝑘−𝑖
). Then, if the p-value is lower than the 

adjusted critical value, the null hypothesis is rejected. The level of significance (α) 

was defined as 0.1, one of the commonly selected value for this test [232] [233] 

[234]. The obtained results for α=0.1 are illustrated in Table 16 (with the adjusted 

critical value displayed as the Holm column). 

As it can be observed from Table 16, the MLP as meta-classifier 

significantly outperformed the first ten algorithms, being statistically similar to 

the GA as weighted selector, the GA as classifier selector, the weight definition 

                                                 

1 The calculated value of the chi squared approximation is compared to the value of the chi-

square distribution, and if it is greater, the null hypothesis is rejected. 
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by the GA that summed 1 with limits in the range of 0 to 1, and the GA 

combination. 

 

Table 16. Results of the Holm procedure for comparison with a control algorithm 

 
Classifiers Z = (Ri-Rj)/SE p-value Holm 

Naïve Bayes 
 

4.7121 < 0.0001 0.0071 

Majority Voting 
 

4.5185 < 0.0001 0.0077 

Weighted Voting 
 

4.3894 < 0.0001 0.0083 

FS Majority Voting 
SVM,LDA,KNN,PNN, 

RBF,MLP 
3.7116 0.0001 0.0091 

FS Majority Voting SVM,LDA,SVMQ,MLP 3.4211 0.0003 0.01 

FS Weighted Voting 
SVM,LDA,KNN,PNN, 

RBF,MLP 
3.3889 0.0004 0.0111 

FS Majority Voting 
 

2.7111 0.0034 0.0125 

GA sel weights sum 

1 de -1 a 1  
2.6788 0.0037 0.0143 

FS Weighted Voting SVM,LDA,SVMQ,MLP 2.3561 0.0092 0.0167 

FS Weighted Voting 
 

2.227 0.0130 0.02 

GA sel weights 
 

1.8397 0.0329 0.025 

GA sel clas 
 

1.6137 0.0533 0.0333 

GA sel weights sum 

1 de 0 a 1  
1.6137 0.0533 0.05 

GAs combined 
 

1.4846 0.0688 0.1 

 

4.5 Benchmark comparison 

 

With the purpose of validating the results obtained in this work, this section 

presents the comparison of the proposed model with the results of other teams that 

participated in the BCI competition III, as well as with recent works found in the 

literature. For this analysis, the subjects were limited to the ones with a lower 

sampling frequency (similar to the data that will be presented in the next chapter) 

and artifacts free (giving a better scope to the comparison). The comparison is 

presented in Table 17. 

 

Table 17. Benchmark performances 

 
A2 O3 S4 X11 Classifier 

Training 

(%) 

Test 

(%) 

Proposed 

method 
96.43 94.91 90.43 87.59 

Ensemble fused by 

MLP 
50 50 

Lemm et. al [30] 
 

89.31 88.52 83.33 Probabilistic Model 50 50 

Burmeister 

et. al [30]  
85.53 77.04 77.78 SVM 50 50 
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Pei et. al [30] 
 

86.79 82.41 83.52 
Fisher Discriminant 

Analysis 
50 50 

Parini et. al [30] 
 

76.10 75.56 75.93 LDA 50 50 

Coyle et. al [30] 
 

88.05 78.52 81.30 LDA 50 50 

Yao et. al [30] 
 

89.31 86.48 74.81 SVM 50 50 

Tavakolian et. al [30] 
 

65.72 61.48 71.30 BNS 50 50 

Lotte [219] 
 

86.70 74.70 75.70 FIS 50 50 

86.80 75.90 75.40 MLP 50 50 

86.60 75.50 74.60 SVM 50 50 

84.10 71.80 72.70 Linear Classifier 50 50 

Brodu et. al [31] 80.70 
 

81.70 80.90 LDA 50 50 

Wu et. al [220] 

 
 

78.70 

 

BPR 33.33 67.77 

 
87.30 Adaptative BPR 33.33 67.77 

85.70 

 

BPR 50 50 

80.70 SVM 50 50 

79.30 LDA 50 50 

Ahangi et. al [34] 

84.28 

 

KNN 50 50 

68.75 Naive Bayesian 50 50 

74.00 MLP 50 50 

87.86 LDA 50 50 

88.57 SVM 50 50 

73.64 Mean 50 50 

69.57 Max 50 50 

84.35 Median 50 50 

89.14 Adaboost 50 50 

89.56 BKS 50 50 

88.85 Bagging 50 50 

88.57 Decision Template 50 50 

87.35 Majority Voting 50 50 

90.00 
Weighting Majority 

Voting 
50 50 

Omar et. al [221] 
 

89.38 

 

LDA 50 50 

92.50 QDA 50 50 

Djemili et. al [222] 
69.30 79.10 75.50 78.90 LDA 50 50 

68.00 78.00 80.00 85.00 SVM 50 50 

Sampanna et. al [35] 92.93 
 

Ensemble of SVMs 50 50 

Chen et. al [223] 
90.71 84.78 70.16 72.25 LDA + AFA 50 50 

90.71 85.53 76.95 73.18 LDA + AFAPS 50 50 

Bashashati. et al [32] 
 

80.50 77.96 78.15 Boosting 50 50 

82.39 83.89 78.15 Logistic 50 50 

79.25 79.26 77.78 Random Forest 50 50 

81.76 83.52 77.78 SVM 50 50 

81.13 81.11 76.48 LDA 50 50 

79.25 72.41 74.81 QDA 50 50 

83.65 82.22 76.67 MLP 50 50 

Lin et. al [224] 

70.67 

 

79.31 82.89 C-SVM 50 50 

71.09 78.70 81.53 nu-SVM 50 50 

68.32 80.37 79.71 SVM-polynomial 50 50 

70.25 78.80 80.29 
SVM-radial basis 

function 
50 50 

Tan et. al [225] 

82.10 70.10 

 

LDA 50 50 

83.50 74.10 SVM 50 50 

85.00 79.10 ELM 50 50 
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Bashashati et. al [36] 
 

86.10 84.20 86.46 MLR 50 50 

83.77 83.30 83.89 Voting 50 50 

83.84 83.35 84.98 Averaging 50 50 

84.28 83.15 80.74 Max 50 50 

Tan. et al [226] 

84.20 77.10 

 

LDA 50 50 

85.30 82.25 SVM 50 50 

84.90 79.00 ELM 50 50 

79.30 85.90 Weight-PM 50 50 

86.40 85.75 ELM-PM 50 50 

 

The proposed model presented the best classification accuracy for all 

subjects. Table 17 also highlights, for each subject, the other two or three results 

that are closer to the performance of our method. It is worth emphasizing the 

inter-subject robustness of the proposed method, being the highest value of all 

previous works. The works that applied multiple classifier strategies were [32], 

[34], [35], and [36], and their results suggest that any form of application of 

ensemble of classifiers can offer good classification accuracies, being the highest 

results for two of the subjects: the Ensemble of SVMs proposed by [35] for A2 

and the multi-response linear regression (MLR) of [36] for X11. 

 

4.6 Ensemble optimization 

 

Although the proposed model (the ten classifiers fused by the MLP as meta-

classifier) offered the best classification performance, it presents a high 

computational cost in the training process. In order to reduce this cost a backward 

elimination of the classifiers that form the multiple classifier system was 

implemented, with the main measure defined as the mean of the performances 

obtained with subjects S4, X11, O3, and A2. Table 18 describes the best results 

for each ensemble configuration, after testing all the possibilities in a backward 

elimination way, depending on the number of classifiers. 

The first inference that can be realized from the results presented in Table 

18 is that the number of classifiers is important for the accuracy of the system. 

This highlights the importance of the diversity of the ensemble design. If a 

reduction of the computational cost is required, then, depending on the level of the 

accepted reduction in accuracy, 5 classifier ensembles can be selected, with a 

mean performance of 89.8309, or even a drastic reduction with 3 classifiers with 

89.7455% of correct classifications. 
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Table 18. Mean performances obtained for the best combinations of classifiers 

Ensemble of Classifiers Mean 

MLP, SVM, SVMQ, LDA, RBF, KNN, KNN-COS, KNN-M, PNN 91.23 

MLP, SVM, LDA, RBF, KNN, KNN-COS, KNN-M, PNN 90.89 

MLP, SVM, RBF, KNN, KNN-COS, KNN-M, PNN 90.37 

MLP, SVM, RBF, KNN-COS, KNN-M, PNN 90.13 

MLP, SVM, KNN-COS, KNN-M, PNN 89.83 

MLP, SVM, KNN-COS, PNN 89.45 

MLP, SVM, KNN-COS 89.75 

MLP, SVM, PNN 89.75 

 

Another way to reduce the computational cost of the model is to focus on 

the factor that represents the heaviest load on that cost: the GA as feature selector. 

Considering the importance of the diversity for the accuracy of the model, a 

modified version of the proposed model can be devised, in which the final 

ensemble is composed of classifiers with feature selection and others without it. 

The following analysis applies a Forward Selection technique (sequentially testing 

each possibility and selecting the one that obtained the best performance) to 

evaluate which combination of classifiers gives a better result depending on the 

number of classifiers with feature selection. The ensemble is always composed by 

the ten original classifiers. The analysis assumed that only half of the classifiers 

can use feature selection, since more than that will not provide a significant 

reduction on the final computational cost. The results can be observed in the Table 

19, with the classifiers with feature selection in the first column. 

 

Table 19. Best combination of classifiers with feature selection and classifiers without 

feature selection 

 

S4 O3 X11 A2 Mean 

Without FS 86.68 92.36 81.85 93.57 88.62 

MLP 88.37 97.45 84.26 97.14 91.81 

MLP+SVMQ 88.74 84.82 96.82 97.14 91.88 

MLP+SVMQ+KNNCOS 89.87 85.37 97.45 97.14 92.46 

MLP+SVMQ+KNNCOS+KNN 89.68 85.00 97.45 96.43 92.14 

MLP+SVMQ+KNNCOS+KNN+PNN 89.31 85.56 96.82 96.43 92.03 
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As it can be seen, the best result is obtained with only three classifiers with 

feature selection: the MLP, the SVM with quadratic kernel and the k-NN with 

cosine metric. This confirms that this approach can obtain a good mean 

performance, maintaining the diversity of the ensemble and reducing in a great 

scale the training time (see Table 20). Another important conclusion is the 

difference in the mean performance of the ensemble without any feature selection 

and the ensemble with one classifier with feature selection (the MLP), which is a 

little over 2 percentage points. This fact confirms that although the diversity 

presents great relevance, the feature selection stage is fundamental to improve the 

accuracy of the model. 

The gradual reduction of the number of generations and population size 

without a drastic change of the obtained performance can produce a significant 

variation on the computational cost. Therefore, the next analysis addresses the 

problem for each classifier individually, comparing the results of the GA for 

subjects S4, X11, O3, and A2 for each classifier. The purpose of the analysis is to 

decide until which number of solutions it is safe to reduce the computing of the 

algorithm without a significant reduction in the performance. 

In general, from the information of the next figures (Figures 17 to 26) it can 

be inferred that for every classifier a reduction on the number of evaluations can 

be obtained without significant decrease in accuracy. Significantly, for the PNN, 

SVM, SVM with quadratic kernel and k-NN the search for solutions can be 

reduced in more than a half, with convergences for each of the subjects for 

640,360, 600 and 750 respectively. For the group conformed by the LDA, k-NN 

with mahalanobis, correlation and cosine metrics, the reduction can be between 

39.65 percentage points (7000 for the LDA) and 43.86 percentage points (1000 

for the k-NN with cosine metric). A smaller proportion occurs with RBF and 

MLP, with 35 (480) and 33.34 (700) percentage points respectively. An 

interesting result is the one obtained by the SVM for subjects O3 and A2, with no 

evidence of evolution. This can be an evidence of the robustness of the system to 

the “curse of dimensionality”, given that for those subjects that have lower 

number of instances, a variation on the number of features does not produce a 

change in their accuracy. 

Finally, Table 20 presents the comparison of the training time for the main 

tested BCI models. It is important to notice that the duration of the training 
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depends on the number of instances (trials) being employed. Two quantities are 

illustrated: 538 from the X11 subject and 140 from the A2 subject (the highest and 

the lowest values). The results are described in the next table, where FS denotes 

Feature Selection and the Best Combination models correspond to the 

combination of only algorithms with feature selection (as illustrated in Table 18), 

with three variations of the number of classifiers (seven, five, and three). To have 

a reference of the classifiers present in each combination see Tables 18 and 19. 

The tests were conducted using Matlab 2016b, on a computer (PC) with a 

processor Intel Core i5-750 (2000MHz) and 8Gb of DDR3 RAM Memory. 

 

 

Figure 17. Accuracy of the GA for feature selection for the PNN classifier 
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Figure 18. Accuracy of the GA for feature selection for the SVM classifier 

 

 

Figure 19. Accuracy of the GA for feature selection for the SVM classifier with quadratic 

kernel 
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Figure 20. Accuracy of the GA for feature selection for the LDA classifier 

 

 

Figure 21. Accuracy of the GA for feature selection for the RBF classifier 
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Figure 22. Accuracy of the GA for feature selection for the k-NN classifier 

 

 

Figure 23. Accuracy of the GA for feature selection for the k-NN classifier with 

mahalanobis distance 
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Figure 24. Accuracy of the GA for feature selection for the k-NN classifier with correlation 

 

 

Figure 25. Accuracy of the GA for feature selection for the k-NN classifier with cosine 
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Figure 26. Accuracy of the GA for feature selection for the MLP classifier 

 

Table 20. Training time of different models 

  
Time (s) 

Model Instances 

Preprocessing 

and Feature 

Extraction 

Feature 

Selection 
Classification Total 

Full Model 
538 57,59 7305,23 71,82 7434,64 

140 15,71 2706,73 45,82 2768,26 

Without FS 
538 57,59 

 

92,38 149,97 

140 15,71 57,13 72,84 

Best Combination (7 

classifiers) 

538 57,59 6178,67 67,88 6304,14 

140 15,71 2435,71 49,32 2500,74 

Best combination (5 

classifiers) 

538 57,59 4213,76 62,0808 4333,43 

140 15,71 1647,45 45,8618 1709,02 

Best combination (3 

classifiers) 

538 57,59 2636,98 51,1385 2745,71 

140 15,71 981,87 44,0262 1041,61 
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classifiers with FS 

and without FS (5 

classifiers) 
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140 15,71 1634,98 54,028 1704,72 

Combination of 

classifiers with FS 

and without FS (3 

classifiers) 

538 57,59 2055,84 84,2317 2197,66 

140 15,71 721,99 54,4293 792,13 

Combination of 

classifiers with FS 

and without FS 

(MLP) 

538 57,59 1195,02 82,3357 1334,95 

140 15,71 557,6 53,4701 626,78 

Reduced GA 

Solutions 

538 57,59 3895,16 73,08 4025,83 

140 15,71 1624,66 44,97 1685,34 
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The full model, as expected, requires a lot of processing time, a little over 

two hours for the 538 trials case. On the other hand, the model without feature 

selection is the fastest, with very low values (around 2.5 minutes). Interestingly, 

the GA with reduced number of solutions reduced almost to a half the processing 

time, matching the training time of other approaches, such as the best combination 

with 7 and 5 classifiers, and the combination of classifiers (some with feature 

selection) for 5 classifiers. The most successful model in classification accuracy, 

the combination of classifiers (some with feature selection) for 3 classifiers, 

presented a good value for the processing cost, with only 1334,95 seconds for 538 

instances and 626,78 seconds for 140 instances (22,3 and 10.45 minutes, 

respectively). 
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5. Case Study II: Orthosis for hand grasping 
neurorehabilitation 

 

 

The second case study is a real application of the proposed RMIPE model 

on a BCI with neurorehabilitation purposes. The signal is acquired through the 

Emotiv EPOC+ headset [154] and the output device is an orthosis designed for 

hand grasping assistance. 

 

5.1 Orthosis design 

 

The conceptual design of the orthosis was developed considering the lack of 

actual commercial dynamic orthosis with low cost and a modern design and 

operation. Another important topic considered is the lightweight that the orthosis 

should have. Some of the commercial orthotic systems available today are shown 

in Table 21. Figure 27 shows the illustration of the orthotic systems of Table 21. 

 

Table 21. Commercial orthotic devices 

Device Price ($) Actuator 

Becker Talon [235] 354.92 No 

Bunnell Splint for MP and 

wrist extension [236] 
266.66 No 

Saebo Flex [237] 1240.99 No 

Saebo Glove [238] 312.78 No 

Jaeco PowerGrip [239] 1500 Linear Actuator 

Gloreha Pro 2 Professional 

System [240] 
17000 Hydraulic System 
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Figure 27. Example of commercial orthosis. Upper left corner: Becker talon, Upper center: 

Bunnell Splint, Upper right corner: Saebo Flex, Lower left corner: Saebo Glove, Lower center: 

Jaeco "PowerGrip", and Lower right corner: Gloreha Pro 2 

 

The final concept of the proposed device is described in Figure 28. This 

approach is based on a 3D printed device that combines the low weight 

characteristic with the mechanical components that can offer the necessary 

movement and a modern design, providing also a low fabrication cost. 

 

 

Figure 28. Concept of the hand grasping orthosis 

 

The design of the orthosis prototypes was accomplished on the SolidWorks 

software. The first prototype is only composed of a skeleton, which should be 

integrated with Velcro fabric to make it fit to the hand, but it is adjustable to any 

user. The orthosis has two superior pieces: one that assures the coupling of the 

motor and another that is linked to the motor and generates the movement of the 

attached fingers to close the hand. The resultant design is shown in Figure 29. 
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Figure 29. First Prototype of the hand orthosis 

 

This prototype presented some design misconceptions, including the connection to 

the thumb. This motivated the development of a second prototype, with independent and 

separated pieces for the fingers, as well as the redesign of the body of the hand. The 

thumb connection was also improved, offering the correct angle for the position of the 

finger. The arm piece was substituted by less bulky pieces situated on the sides of the 

arm, which give support to several motors that augmented the strength of the system. The 

resultant design can be seen in Figure 30 and the final product in Figure 31. 

 

 

Figure 30. Second orthosis prototype: ExoClaw 
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Figure 31. ExoClaw printed in 3D 

 

5.2 Emotiv EEG signal and mental tasks 

 

The Emotiv EPOC+ (see Figure 32) is a commercial headset for the 

acquisition of scientific contextual EEG with applications on BCIs. The wireless 

headset features 14 channels (See blue circles in Figure 33) through saline based 

wet sensors, which make the system easier to setup for the consumer use. The 

sampling rate is of 128Hz and the signal is bandwidth filtered between 0.2 and 

43Hz, with Notch filters at 50 and 60Hz. The device includes a software that 

provides access to the raw EEG, saved to files in binary EEGLAB format. The 

Emotiv was first introduced with a gaming purpose, but presented a fast 

expansion to other areas, reaching the research teams as a useful acquisition 

system with a good number of channels and a much lower cost that the 

professional ones. Real applications in research are described in [241], 

[242],[243], [244], [245] and [246]. 

 

 

Figure 32. Emotiv EPOC+ headset 
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Figure 33. Position of the electrodes of the Emotiv EPOC+ headset 

 

Due to the channel distribution of the headset, in this work the headset had 

to be moved backward, placing the frontal electrodes (the ones in the AF3, F3, 

AF4 and F4) in the C3, C4, FC3 and FC4 positions. The acquisition test procedure 

was designed as the one of the BCI competition IIa, with two seconds of idle 

status followed by a fixation cross. In time = 3s the audio stimuli is activated as 

the visual cue (in this case an arrow pointing left or right), indicating in which 

direction the hand should be moved imagery. The interval between each trial was 

defined randomly between 7 and 14s. The trials lasted for 6 seconds. Figure 34 

illustrate the trial time scheme. 

The experiments were conducted in a chair with armrest, with the subjects 

in a relaxed position in front of the display. The test program was developed in 

Matlab and features a trial time and number of trials defined by the test conductor. 

The program saves in a file the timestamps of each start trigger that will be used 

to delimitate the trial EEG signal read from the file produced by the Emotiv 

Xavier TestBench software. The only channels included in the research were C3 

and C4, the remaining 12 were obviated. For this presented research, a male 

subject of 27 years old was selected, without any historical of physiological or 

mental diseases. 
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Figure 34. Time scheme of the EEG signal acquisition 

 

5.3 Performance of the system 

 

The dataset was obtained from the selected user (subject X) in three 

sessions, recorded on the same day, with a temporal separation of several minutes. 

Each session was composed of 50 trials, resulting in a total of 150 trials. This 

number of trials was divided in 100 for training and 50 for testing. For this 

particular dataset, during the preprocessing stage, a different behavior was 

presented from the datasets employed in the previous Chapter. In this case, the 

energy distribution of the frequency bands evidenced that the energy levels of the 

frequency band from 0 to 4Hz surpassed the ones from the others, in a proportion 

of thousands. This can be caused by the absence on our acquisition and 

preprocessing system of any type of artifact or noise elimination. As a 

consequence, for the validation of the proposed model, that frequency band was 

eliminated of the analysis. 

The accuracies obtained in the tests conducted on the RMIPE system are 

shown in Table 22. The results demonstrate the challenge that represents the 

classification of the obtained data, with a performance for the second best fusion 

method tested on the previous chapter of only 65,625%. The low accuracy can be 

the result of the small number of trials (150 in this case), being insufficient for a 

good evolution of the GA algorithm. The obtained accuracies validate the 

importance of the RMIPE model, with a performance for the full model of MLP 

as meta-classifier of 93.75%, which is a great improvement compared to the result 
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of the GA for classifier selection. It can be also highlighted that the diversity 

demonstrated to be fundamental in this real case, presenting lower accuracy 

values for the models with a lower quantity of classifiers (GA for classifier 

selection and the best combination of only 3 classifiers). 

 

Table 22. Performances obtained using the Emotiv EPOC+ as acquisition device 

 
X 

GA for classifier selection 65.63 

Full Model 93.75 

Best Combination (7 classifiers) 84.38 

Best combination (5 classifiers) 81.25 

Best combination (3 classifiers) 71.88 

Combination of classifiers with FS and 

without FS (5 classifiers) 
87.50 

Combination of classifiers with FS and 

without FS (3 classifiers) 
87.50 

Combination of classifiers with FS and 

without FS (MLP) 
81.25 

 

The results also validate the capacity of the Emotiv headset to acquire with 

relatively good quality the modulations of the EEG signal through the MI tasks, 

presenting great possibilities for its future application on cheaper BCI system. 

Also, the proposed RMIPE model, even without application of additional 

muscular or ocular artifact removal algorithms, was capable of obtaining a high 

accuracy, which is an evidence of its robustness. 
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6. Conclusions and Future Work 

 

 

6.1 Conclusions 

 

This Master Dissertation presented, as main objective, the design of a 

machine learning system that, based on the EEG signal from only C3 and C4 

electrodes, can classify MI tasks with high performance, robustness to trial and 

inter-subject signal variations, and reasonable processing time, for application to a 

functional and low-cost BCI system for neurorehabilitation. 

To accomplish that objective, a Machine Learning system was developed, 

named RMIPE (Robust Motor Intention Prediction Ensemble). The signal was 

preprocessed by a Wavelet Packet Decomposition algorithm that provided a time-

frequency analysis, dividing the signal into eight principal frequency bands that 

carried the information. Those frequency sub-bands suffered a feature extraction 

process, where statistical, power and phase features were calculated in order to 

properly and diversely represent the EEG signal. The high dimensionality of the 

feature vector indicated the advantage of applying a feature selection algorithm to 

eliminate the redundant features. A validation of common feature selection 

methods was preformed, comparing its results obtained on ten classifiers. As a 

result, the Genetic Algorithm was selected as the feature selection algorithm for 

the proposed model. 

The classification stage was characterized by the employment of a multiple 

classifier system, which a priori is supposed to outperform the performance of the 

individual classifiers, to be immune to the problem of high dimensionality, and to 

present robustness to the variance of EEG data, both in the time domain and inter-

subject (dataset), even in the presence of artifacts. The diversity of the ensemble 

of classifiers is offered by the application of classifiers with different learning 

nature, being employed: PNN, SVM with linear kernel, SVM with quadratic 

kernel, LDA linear, RBF, k-NN with the Euclidean distance, k-NN with the 

Mahalanobis distance, k-NN with correlation, k-NN with cosine, and MLP. The 

fusion method then is selected after an assessment of the results of each method 

on several datasets. 
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The datasets employed to validate the RMIPE model were obtained from 

BCIs competitions held in 2003, 2005 and 2008. In total, 6 subjects were used, 

including two with higher frequency rate, one of them with EOG artifacts. The 

analysis of the performances resulted in the selection of an MLP as meta-

classifier, a method with great performance (mean accuracy of 93.1925% 

including subjects A2, S4, X11 and O3 from dataset III of BCI competition II and 

dataset IIIb from BCI competition III) and robustness to the previously explained 

variations and artifacts (90.9091% of accuracy without any method for artifact 

removal for subject A01 from dataset IIIa from the BCI competition IV). The 

superiority of the MLP as meta-classifier was confirmed by the Friedman 

statistical test, with post-hoc Holm method conducted with the objective to 

validate the statistical relevance of the obtained results. It was also concluded that 

a higher frequency sampling offered better results, representing the signal in a 

more descriptive form that assisted the model classification. In addition, the 

feature selection stage demonstrated to be of significant importance, providing the 

subset of features that offers a better classification accuracy. 

After the complete model definition, the classification accuracy of the 

proposed model was compared to some state-of-the-art researches in the literature. 

The proposed method culminated being more suited for the application, 

outperforming all others reported results. One of the main characteristics of the 

model for the obtainment of superior results is the employment of an Ensemble 

composed of different classifiers, which can diversify the errors of the individual 

components and in that way to improve the final classification. Other positive 

characteristic is the chosen fusion method: the MLP is an excellent non-linear 

method for defining the best relationships between the output of the individual 

classifiers, which facilitates the differentiation of the classes. Also, the 

combination of features from a diverse nature and an algorithm for selecting the 

ones that offered a better representation of the data for each classifier can be 

declared as of great importance for the improvement of the classification 

accuracy. A conclusion that can be obtained from the works in the literature is that 

the application of an ensemble of classifiers to EEG signal classification for BCI 

systems presented a high classification accuracy, which makes them superior to a 

single classifier method. 
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The proposed RMIPE model presented a high computational cost, which 

motivated the proposal of two approaches for the optimization of the ensemble. 

Firstly, the outcome of the reduction of the number of classifiers that composed 

the ensemble was assessed. The obtained results highlighted the importance of the 

diversity for the model, which led to the proposal of the other approach: maintain 

the number of classifiers but varying the ones that employed feature selection. As 

a result, the model with a higher accuracy was obtained for only three classifiers 

with feature selection: the MLP, the SVM with quadratic kernel and the k-NN 

with cosine metric. In addition, an analysis was performed of the optimal number 

of solutions for each individual classifier, in order to reduce its training time. 

Moreover, it was also illustrated the training time of some of the proposed 

models. 

Finally, a real application of the proposed model was proposed. The 

designed neurorehabilitation BCI system was developed based on 3D modeled 

orthosis for the rehabilitation of the hand grasping function. The RMIPE was 

applied to a EEG dataset obtained with a commercial EEG headset of the Emotiv 

Company, the EPOC+. The acquisition experiment was developed and the 

orthosis was designed, being printed on a 3D printer. The final application 

presented great results, demonstrating the usefulness and robustness of our 

approach to a BCI system. 

 

6.2 Future Works 

 

The following possibilities of future works can be mentioned: 

 

➢ Extension of the model for multiclass classification, including feet 

movement, which can be of assistance for other types of 

rehabilitation devices; 

 

➢ Optimization of the processing time mainly in the training phase, 

which can be done through the application of a Quantum-inspired 

GA instead of a standard GA; 
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➢ Final development of a fully functional orthosis glove more faithful 

to the required concepts, in order to generate a final product; 

 

➢ Extension of the experiments to other subjects and a higher number 

of trials; 

 

➢ Assessment of the effect of the training process with trials of various 

sessions dilated in time, and also trials from other subjects on the 

proposed model; 

 

➢ Analysis of the RMIPE model in online testing; 

 

➢ Definition and execution of trials in clinics with the proposed 

neurorehabilitation system with the objective of acknowledging its 

short and long term benefits. 
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Appendix 1. Confusion Matrix for each classifier 

without feature selection 

 

 

 

Figure 35. PNN 
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Figure 36. SVM with linear kernel 
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Figure 37. SVM with quadratic kernel 
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Figure 38. LDA 
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Figure 39. RBF 
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Figure 40. K-NN with Euclidean distance 
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Figure 41. K-NN with Mahalanobis distance 
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Figure 42. K-NN with cosine 
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Figure 43. K-NN with correlation 
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Figure 44. MLP 
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Appendix 2. Confusion Matrix for each classifier with 

feature selection 

 

 

 

Figure 45. PNN 
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Figure 46. SVM with linear kernel 
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Figure 47. SVM with quadratic kernel 
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Figure 48. LDA 
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Figure 49. RBF 
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Figure 50. K-NN with Euclidean distance 
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Figure 51. K-NN with Mahalanobis distance 
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Figure 52. K-NN with cosine 
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Figure 53. K-NN with correlation 
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Figure 54. MLP 
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Appendix 3. Tables of selected features for subjects 

S4, X11, O3 and A2 

 

Table 23. Subject S4 

 

PNN SVM 
SVM

Q 
LDA RBF KNN 

KNN

M 

KNN

COS 

KNN

COR 
MLP Total 

Avg abs C3 sb0-4 1 1 1 1 1 1 1 1 1 1 10 

Avg abs C3 sb4-8 0 0 1 0 0 0 0 0 1 0 2 

Avg abs C3 sb8-12 1 1 1 1 1 0 1 0 1 1 8 

Avg abs C3 sb12-16 1 0 0 1 0 0 0 0 1 1 4 

Avg abs C3 sb16-20 0 0 1 0 0 0 0 0 1 0 2 

Avg abs C3 sb20-24 1 0 0 0 1 1 0 1 1 0 5 

Avg abs C3 sb24-28 1 1 0 1 0 1 0 0 0 1 5 

Avg abs C3 sb28-32 1 1 0 0 1 1 1 1 1 1 8 

Avg abs C4 sb0-4 0 0 1 1 1 1 1 0 1 0 6 

Avg abs C4 sb4-8 1 1 1 1 1 0 0 0 0 1 6 

Avg abs C4 sb8-12 0 0 0 0 0 0 0 0 0 1 1 

Avg abs C4 sb12-16 1 1 0 1 0 0 1 1 0 0 5 

Avg abs C4 sb16-20 0 0 1 0 0 1 0 0 1 0 3 

Avg abs C4 sb20-24 1 1 1 1 0 1 0 1 1 0 7 

Avg abs C4 sb24-28 0 0 0 0 0 0 0 0 0 1 1 

Avg abs C4 sb28-32 0 0 0 0 0 0 1 0 0 1 2 

Avg ampl C3 sb0-4 1 1 1 1 0 1 1 1 1 1 9 

Avg ampl C3 sb4-8 1 0 1 1 1 0 0 0 0 1 5 

Avg ampl C3 sb8-12 0 1 1 0 1 1 0 0 1 0 5 

Avg ampl C3 sb12-16 0 0 1 1 1 1 0 1 0 0 5 

Avg ampl C3 sb16-20 1 1 0 0 1 0 0 0 1 1 5 

Avg ampl C3 sb20-24 1 1 1 0 1 0 0 1 0 1 6 

Avg ampl C3 sb24-28 1 0 0 1 0 1 0 0 0 1 4 

Avg ampl C3 sb28-32 1 1 1 0 0 1 1 1 0 0 6 

Avg ampl C4 sb0-4 1 1 1 1 0 1 1 0 0 1 7 

Avg ampl C4 sb4-8 1 0 0 1 0 0 0 0 1 0 3 

Avg ampl C4 sb8-12 1 1 0 0 0 0 0 0 1 0 3 

Avg ampl C4 sb12-16 0 1 1 1 1 1 1 0 0 0 6 

Avg ampl C4 sb16-20 0 1 0 0 1 1 1 1 0 1 6 

Avg ampl C4 sb20-24 1 0 1 0 1 0 1 0 1 1 6 

Avg ampl C4 sb24-28 1 0 0 0 1 0 0 0 0 0 2 

Avg ampl C4 sb28-32 0 0 0 1 1 0 1 0 0 1 4 

Std dev C3 sb0-4 0 0 1 1 0 0 0 1 0 1 4 
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Std dev C3 sb4-8 1 0 1 0 0 0 0 1 0 0 3 

Std dev C3 sb8-12 0 1 1 0 0 0 1 0 0 1 4 

Std dev C3 sb12-16 0 1 1 1 1 1 1 1 0 0 7 

Std dev C3 sb16-20 0 0 1 0 1 1 0 1 0 1 5 

Std dev C3 sb20-24 0 1 1 0 1 0 0 1 1 1 6 

Std dev C3 sb24-28 1 1 1 1 1 1 0 0 0 0 6 

Std dev C3 sb28-32 0 0 0 1 1 1 0 1 1 0 5 

Std dev C4 sb0-4 1 1 1 1 1 1 0 1 1 1 9 

Std dev C4 sb4-8 1 0 1 0 1 0 0 1 1 0 5 

Std dev C4 sb8-12 0 0 0 1 0 0 0 0 0 1 2 

Std dev C4 sb12-16 1 0 0 0 0 0 0 1 0 0 2 

Std dev C4 sb16-20 0 0 1 1 0 1 0 1 1 0 5 

Std dev C4 sb20-24 0 0 0 0 1 1 0 1 1 1 5 

Std dev C4 sb24-28 0 0 0 0 1 0 0 0 0 0 1 

Std dev C4 sb28-32 0 0 0 0 0 0 0 0 0 0 0 

Energy C3 sb0-4 0 0 0 0 1 0 0 0 0 1 2 

Energy C3 sb4-8 0 0 0 1 0 0 1 0 0 0 2 

Energy C3 sb8-12 1 0 0 0 0 0 0 0 0 1 2 

Energy C3 sb12-16 0 0 1 1 0 0 0 0 0 1 3 

Energy C3 sb16-20 1 1 0 1 1 1 1 1 0 1 8 

Energy C3 sb20-24 0 0 1 1 1 1 0 1 1 0 6 

Energy C3 sb24-28 1 1 1 0 1 1 1 1 1 0 8 

Energy C3 sb28-32 1 1 0 1 1 1 1 1 1 1 9 

Energy C4 sb0-4 0 0 1 0 0 0 0 0 0 1 2 

Energy C4 sb4-8 0 0 0 1 1 0 0 0 0 1 3 

Energy C4 sb8-12 0 0 0 0 0 1 0 0 1 0 2 

Energy C4 sb12-16 0 0 0 1 1 1 1 0 0 0 4 

Energy C4 sb16-20 0 0 0 1 0 1 1 0 1 0 4 

Energy C4 sb20-24 1 1 0 0 0 0 1 0 1 1 5 

Energy C4 sb24-28 0 1 1 1 0 1 1 1 0 1 7 

Energy C4 sb28-32 0 0 0 0 0 0 0 0 0 1 1 

Rt En C3 sb0-4 and sb4-8 1 1 0 0 0 0 0 0 1 1 4 

Rt En C3 sb4-8 and sb8-12 1 1 1 0 1 1 0 1 1 0 7 

Rt En C3 sb8-12 and sb12-16 1 1 1 0 0 1 0 1 1 0 6 

Rt En C3 sb12-16 and sb16-20 0 0 0 0 1 0 1 0 0 0 2 

Rt En C3 sb16-20 and sb20-24 1 0 0 0 0 0 0 1 1 1 4 

Rt En C3 sb20-24 and sb24-28 0 0 0 1 0 1 1 1 0 0 4 

Rt En C3 sb24-28 and sb28-32 1 0 0 0 0 0 0 0 0 1 2 

Rt En C4 sb0-4 and sb4-8 0 0 0 0 0 1 0 0 1 0 2 

Rt En C4 sb4-8 and sb8-12 1 1 0 0 0 0 1 1 1 1 6 

Rt En C4 sb8-12 and sb12-16 0 1 1 1 0 0 0 0 1 1 5 
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Rt En C4 sb12-16 and sb16-20 0 1 0 0 1 0 0 0 1 0 3 

Rt En C4 sb16-20 and sb20-24 0 0 1 0 0 0 1 1 0 0 3 

Rt En C4 sb20-24 and sb24-28 1 0 1 0 1 0 0 1 0 0 4 

Rt En C4 sb24-28 and sb28-32 0 0 0 0 0 1 0 1 0 1 3 

Entropy C3 sb0-4 1 1 1 1 1 0 1 0 0 1 7 

Entropy C3 sb4-8 0 0 1 0 0 1 1 1 1 0 5 

Entropy C3 sb8-12 0 1 0 1 1 1 0 0 0 0 4 

Entropy C3 sb12-16 0 1 0 1 1 1 0 1 0 1 6 

Entropy C3 sb16-20 1 0 0 0 1 0 0 1 1 0 4 

Entropy C3 sb20-24 1 1 1 0 1 1 0 1 1 0 7 

Entropy C3 sb24-28 1 1 1 1 0 0 0 0 0 0 4 

Entropy C3 sb28-32 0 0 1 1 1 1 1 1 1 0 7 

Entropy C4 sb0-4 0 1 0 1 0 0 1 1 1 0 5 

Entropy C4 sb4-8 1 0 0 1 0 1 0 1 0 1 5 

Entropy C4 sb8-12 0 1 0 0 1 1 0 0 0 1 4 

Entropy C4 sb12-16 0 1 1 0 1 1 0 1 0 0 5 

Entropy C4 sb16-20 1 

 

1 0 0 1 0 0 1 0 4 

Entropy C4 sb20-24 0 0 1 0 0 0 0 0 0 0 1 

Entropy C4 sb24-28 1 1 0 0 0 0 0 1 1 1 5 

Entropy C4 sb28-32 0 0 1 1 1 0 1 1 0 0 5 

PLV C3 and C4 sb0-4 1 1 1 0 0 1 1 1 1 1 8 

PLV C3 and C4 sb4-8 0 0 0 1 0 0 0 1 0 0 2 

PLV C3 and C4 sb8-12 1 0 1 1 0 1 0 0 1 1 6 

PLV C3 and C4 sb12-16 0 0 1 0 0 0 1 1 1 0 4 

PLV C3 and C4 sb16-20 0 0 0 0 0 0 0 0 0 1 1 

PLV C3 and C4 sb20-24 1 0 0 0 1 1 1 0 0 1 5 

PLV C3 and C4 sb24-28 0 1 1 0 0 1 1 1 1 0 6 

PLV C3 and C4 sb28-32 1 1 1 0 1 0 1 0 1 0 6 

Root mean sq C3 sb0-4 0 0 1 1 0 1 1 1 1 0 6 

Root mean sq C3 sb4-8 1 0 1 1 1 1 1 0 1 0 7 

Root mean sq C3 sb8-12 1 1 0 0 1 0 1 1 1 1 7 

Root mean sq C3 sb12-16 1 1 0 1 1 1 1 0 1 1 8 

Root mean sq C3 sb16-20 0 0 0 0 0 0 0 0 1 0 1 

Root mean sq C3 sb20-24 1 0 0 0 1 1 1 1 1 0 6 

Root mean sq C3 sb24-28 0 0 0 1 1 0 1 1 0 1 5 

Root mean sq C3 sb28-32 0 1 0 0 0 0 1 1 1 0 4 

Root mean sq C4 sb0-4 0 1 1 0 0 1 0 1 1 1 6 

Root mean sq C4 sb4-8 1 1 1 1 1 1 0 1 0 0 7 

Root mean sq C4 sb8-12 0 1 0 1 1 0 0 1 1 0 5 

Root mean sq C4 sb12-16 0 1 0 0 1 0 0 1 0 1 4 

Root mean sq C4 sb16-20 1 1 0 0 1 1 0 0 0 1 5 
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Root mean sq C4 sb20-24 0 1 0 0 0 1 0 0 0 0 2 

Root mean sq C4 sb24-28 0 0 0 1 1 0 0 1 0 0 3 

Root mean sq C4 sb28-32 0 0 0 0 0 0 0 0 0 0 0 

Variance C3 sb0-4 1 0 0 0 1 0 1 0 0 0 3 

Variance C3 sb4-8 0 0 0 1 0 0 1 1 1 1 5 

Variance C3 sb8-12 0 0 0 0 0 0 0 0 0 0 0 

Variance C3 sb12-16 0 1 0 1 0 0 1 0 1 0 4 

Variance C3 sb16-20 1 1 1 0 0 1 0 0 0 1 5 

Variance C3 sb20-24 1 1 0 1 0 0 0 1 1 0 5 

Variance C3 sb24-28 0 1 0 0 1 0 0 0 1 1 4 

Variance C3 sb28-32 1 1 1 1 1 1 1 1 1 1 10 

Variance C4 sb0-4 0 0 1 1 1 0 0 0 0 0 3 

Variance C4 sb4-8 1 1 1 1 0 1 0 1 0 0 6 

Variance C4 sb8-12 0 0 1 0 1 0 0 0 0 1 3 

Variance C4 sb12-16 0 1 0 0 0 1 1 1 1 0 5 

Variance C4 sb16-20 1 0 0 1 1 0 0 1 0 1 5 

Variance C4 sb20-24 0 0 0 0 0 0 0 1 1 0 2 

Variance C4 sb24-28 1 1 0 1 0 1 0 0 0 0 4 

Variance C4 sb28-32 0 0 0 0 1 0 0 0 0 0 1 

 

Table 24. Subject X11 

 
PNN SVM 

SVM 

Q 
LDA RBF KNN 

KNN 

M 

KNN 

COS 

KNN 

COR 
MLP Total 

Avg abs C3 sb0-4 1 0 0 1 1 0 0 0 0 0 3 

Avg abs C3 sb4-8 0 1 1 0 1 0 1 1 0 0 5 

Avg abs C3 sb8-12 0 1 1 0 1 1 1 0 1 1 7 

Avg abs C3 sb12-16 0 0 1 0 1 1 0 0 1 0 4 

Avg abs C3 sb16-20 1 0 0 1 1 0 1 1 0 1 6 

Avg abs C3 sb20-24 1 0 0 0 1 0 0 0 0 1 3 

Avg abs C3 sb24-28 0 1 0 0 1 0 0 0 1 0 3 

Avg abs C3 sb28-32 0 1 0 0 0 1 1 0 0 0 3 

Avg abs C4 sb0-4 1 0 0 1 1 0 0 1 0 0 4 

Avg abs C4 sb4-8 1 0 0 0 0 1 0 1 0 0 3 

Avg abs C4 sb8-12 0 0 0 1 0 0 0 0 0 0 1 

Avg abs C4 sb12-16 0 1 0 1 0 0 1 0 1 0 4 

Avg abs C4 sb16-20 1 1 1 0 1 1 0 1 1 0 7 

Avg abs C4 sb20-24 0 1 0 1 0 0 1 0 0 1 4 

Avg abs C4 sb24-28 0 0 0 1 0 0 1 0 1 1 4 

Avg abs C4 sb28-32 1 1 1 1 1 1 0 0 1 0 7 

Avg ampl C3 sb0-4 0 1 1 1 0 1 0 1 0 1 6 

Avg ampl C3 sb4-8 0 0 0 0 0 0 0 1 0 0 1 

Avg ampl C3 sb8-12 1 0 0 0 1 0 0 0 1 1 4 

Avg ampl C3 sb12-16 0 1 1 0 1 1 0 0 1 1 6 

Avg ampl C3 sb16-20 1 1 1 0 0 0 1 1 0 1 6 

Avg ampl C3 sb20-24 0 0 0 1 0 0 0 0 1 0 2 
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Avg ampl C3 sb24-28 1 1 1 1 1 0 0 0 1 0 6 

Avg ampl C3 sb28-32 0 0 0 1 1 1 0 1 0 1 5 

Avg ampl C4 sb0-4 1 0 0 0 1 1 1 0 1 0 5 

Avg ampl C4 sb4-8 0 0 1 0 0 0 0 0 1 0 2 

Avg ampl C4 sb8-12 1 1 0 0 0 0 0 1 0 1 4 

Avg ampl C4 sb12-16 0 1 1 1 0 0 0 0 1 1 5 

Avg ampl C4 sb16-20 1 1 0 0 1 1 1 1 1 0 7 

Avg ampl C4 sb20-24 0 1 1 0 0 1 0 0 1 1 5 

Avg ampl C4 sb24-28 1 1 0 0 1 1 0 0 1 1 6 

Avg ampl C4 sb28-32 0 0 1 1 1 1 0 1 1 0 6 

Std dev C3 sb0-4 0 0 1 0 0 0 0 1 0 0 2 

Std dev C3 sb4-8 1 0 0 0 1 0 1 0 1 1 5 

Std dev C3 sb8-12 0 1 0 0 0 1 1 0 0 1 4 

Std dev C3 sb12-16 0 0 1 1 1 0 0 0 0 0 3 

Std dev C3 sb16-20 0 1 0 0 0 1 1 1 0 0 4 

Std dev C3 sb20-24 1 0 1 0 0 1 0 0 1 1 5 

Std dev C3 sb24-28 0 1 0 1 0 0 1 0 1 0 4 

Std dev C3 sb28-32 0 0 0 0 0 0 1 0 0 1 2 

Std dev C4 sb0-4 0 0 1 0 0 0 1 1 0 1 4 

Std dev C4 sb4-8 1 1 1 0 1 0 1 1 1 1 8 

Std dev C4 sb8-12 0 0 0 1 0 0 0 0 0 1 2 

Std dev C4 sb12-16 0 0 0 0 0 0 0 1 1 1 3 

Std dev C4 sb16-20 1 0 1 0 1 1 0 1 1 1 7 

Std dev C4 sb20-24 0 1 1 1 0 1 0 0 1 1 6 

Std dev C4 sb24-28 0 1 0 1 0 1 1 0 0 1 5 

Std dev C4 sb28-32 1 0 1 0 0 1 1 1 1 1 7 

Energy C3 sb0-4 1 1 1 0 1 0 0 1 1 0 6 

Energy C3 sb4-8 1 0 0 1 1 0 1 1 0 1 6 

Energy C3 sb8-12 1 0 0 1 1 0 1 1 1 1 7 

Energy C3 sb12-16 1 1 0 0 0 1 0 1 1 1 6 

Energy C3 sb16-20 1 0 1 0 1 0 0 1 0 1 5 

Energy C3 sb20-24 1 0 1 0 0 1 1 1 1 0 6 

Energy C3 sb24-28 0 0 0 1 0 1 0 0 0 0 2 

Energy C3 sb28-32 0 0 1 0 0 0 0 0 0 1 2 

Energy C4 sb0-4 0 0 1 0 1 0 0 0 0 1 3 

Energy C4 sb4-8 1 1 0 1 1 0 1 0 0 0 5 

Energy C4 sb8-12 0 1 0 1 0 0 0 0 0 0 2 

Energy C4 sb12-16 0 0 0 0 1 1 1 0 1 0 4 

Energy C4 sb16-20 0 0 1 0 0 0 1 1 0 1 4 

Energy C4 sb20-24 1 0 1 1 0 0 1 0 1 0 5 

Energy C4 sb24-28 1 1 0 0 1 1 0 0 0 0 4 

Energy C4 sb28-32 1 0 1 1 0 1 1 1 1 1 8 

Rt En C3 sb0-4 and sb4-8 0 0 0 0 0 0 1 1 0 1 3 

Rt En C3 sb4-8 and sb8-12 1 0 0 1 1 0 0 0 1 0 4 

Rt En C3 sb8-12 and sb12-16 0 0 1 0 0 1 0 1 0 0 3 

Rt En C3 sb12-16 and sb16-20 1 1 0 1 1 1 1 0 0 1 7 

Rt En C3 sb16-20 and sb20-24 0 0 1 0 1 0 1 1 1 0 5 

Rt En C3 sb20-24 and sb24-28 1 1 1 1 1 1 1 1 1 0 9 

Rt En C3 sb24-28 and sb28-32 1 0 0 1 1 0 0 0 0 0 3 
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Rt En C4 sb0-4 and sb4-8 0 1 0 1 1 0 1 1 0 1 6 

Rt En C4 sb4-8 and sb8-12 1 1 1 0 0 0 0 0 0 0 3 

Rt En C4 sb8-12 and sb12-16 0 1 0 1 0 0 1 1 0 0 4 

Rt En C4 sb12-16 and sb16-20 0 0 1 0 0 0 0 0 1 1 3 

Rt En C4 sb16-20 and sb20-24 0 1 0 1 1 0 0 0 1 1 5 

Rt En C4 sb20-24 and sb24-28 0 1 0 1 0 0 1 0 0 1 4 

Rt En C4 sb24-28 and sb28-32 1 0 0 0 1 1 1 1 1 0 6 

Entropy C3 sb0-4 1 0 1 0 1 0 0 0 1 1 5 

Entropy C3 sb4-8 1 1 0 1 1 0 1 1 1 0 7 

Entropy C3 sb8-12 0 0 1 0 0 1 0 0 0 0 2 

Entropy C3 sb12-16 0 0 0 0 0 1 0 0 0 0 1 

Entropy C3 sb16-20 1 1 0 0 1 0 0 1 0 1 5 

Entropy C3 sb20-24 1 1 1 1 1 0 1 1 1 1 9 

Entropy C3 sb24-28 1 0 1 0 1 1 0 0 0 1 5 

Entropy C3 sb28-32 1 0 1 0 1 1 1 0 1 1 7 

Entropy C4 sb0-4 0 1 0 0 0 1 1 0 1 1 5 

Entropy C4 sb4-8 1 0 1 0 0 1 0 1 0 0 4 

Entropy C4 sb8-12 0 0 1 1 0 0 0 0 0 0 2 

Entropy C4 sb12-16 1 0 0 1 1 1 1 1 0 0 6 

Entropy C4 sb16-20 0 0 1 1 0 1 1 0 0 0 4 

Entropy C4 sb20-24 1 1 1 1 1 0 1 1 1 0 8 

Entropy C4 sb24-28 1 0 1 0 1 0 0 1 1 1 6 

Entropy C4 sb28-32 1 0 1 0 0 0 0 1 1 0 4 

PLV C3 and C4 sb0-4 0 1 0 0 0 0 0 0 1 0 2 

PLV C3 and C4 sb4-8 0 1 1 0 1 0 0 1 0 1 5 

PLV C3 and C4 sb8-12 0 0 0 0 1 1 0 0 1 0 3 

PLV C3 and C4 sb12-16 0 0 0 0 1 0 0 1 1 0 3 

PLV C3 and C4 sb16-20 0 0 1 0 0 0 0 0 1 1 3 

PLV C3 and C4 sb20-24 1 1 1 1 1 1 1 0 0 1 8 

PLV C3 and C4 sb24-28 0 0 0 0 0 0 0 0 1 1 2 

PLV C3 and C4 sb28-32 1 1 1 0 0 1 1 1 0 1 7 

Root mean sq C3 sb0-4 0 1 1 0 0 0 0 1 0 0 3 

Root mean sq C3 sb4-8 0 0 1 1 1 0 0 0 0 0 3 

Root mean sq C3 sb8-12 0 0 0 1 0 1 0 1 1 1 5 

Root mean sq C3 sb12-16 1 0 0 1 1 0 1 0 1 0 5 

Root mean sq C3 sb16-20 0 0 1 0 1 0 1 1 1 0 5 

Root mean sq C3 sb20-24 0 0 0 1 0 0 0 0 0 0 1 

Root mean sq C3 sb24-28 0 0 0 1 0 0 0 1 1 0 3 

Root mean sq C3 sb28-32 1 1 1 0 1 1 1 0 0 1 7 

Root mean sq C4 sb0-4 1 1 0 0 0 0 0 1 0 0 3 

Root mean sq C4 sb4-8 0 0 0 0 1 1 0 1 1 0 4 

Root mean sq C4 sb8-12 1 0 0 1 0 0 0 0 0 0 2 

Root mean sq C4 sb12-16 0 1 0 1 0 0 0 1 1 0 4 

Root mean sq C4 sb16-20 1 0 0 1 1 1 1 1 1 1 8 

Root mean sq C4 sb20-24 0 1 0 1 1 0 0 1 0 1 5 

Root mean sq C4 sb24-28 0 0 1 0 0 0 1 0 1 1 4 

Root mean sq C4 sb28-32 1 1 1 0 0 1 1 1 1 1 8 

Variance C3 sb0-4 1 0 0 0 0 1 0 1 0 0 3 

Variance C3 sb4-8 0 0 1 1 1 0 0 0 0 0 3 
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Variance C3 sb8-12 1 1 0 0 0 1 1 1 0 1 6 

Variance C3 sb12-16 0 1 1 0 0 1 1 0 1 1 6 

Variance C3 sb16-20 1 1 0 0 1 1 1 1 1 0 7 

Variance C3 sb20-24 0 1 0 1 1 0 0 0 0 0 3 

Variance C3 sb24-28 0 0 1 0 0 1 1 0 0 0 3 

Variance C3 sb28-32 0 1 0 0 0 1 1 0 0 0 3 

Variance C4 sb0-4 1 0 1 0 0 0 1 1 0 1 5 

Variance C4 sb4-8 0 1 0 1 1 0 1 0 1 0 5 

Variance C4 sb8-12 1 1 0 1 0 1 0 0 1 1 6 

Variance C4 sb12-16 1 0 0 1 1 0 0 0 0 0 3 

Variance C4 sb16-20 1 1 0 1 0 1 1 1 1 0 7 

Variance C4 sb20-24 1 0 0 0 1 0 1 1 1 1 6 

Variance C4 sb24-28 0 0 0 1 0 0 0 1 0 1 3 

Variance C4 sb28-32 0 0 0 1 1 0 1 1 1 0 5 

 

Table 25. Subject O3 

 

PNN SVM 
SVM

Q 
LDA RBF KNN 

KNN

M 

KNN

COS 

KNN

COR 
MLP Total 

Avg abs C3 sb0-4 0 1 1 1 0 0 1 1 0 1 6 

Avg abs C3 sb4-8 0 0 0 1 0 0 0 0 0 1 2 

Avg abs C3 sb8-12 1 0 0 1 1 0 0 0 1 0 4 

Avg abs C3 sb12-16 1 1 1 0 1 1 0 1 1 0 7 

Avg abs C3 sb16-20 0 0 1 1 0 0 1 0 0 1 4 

Avg abs C3 sb20-24 1 1 1 0 0 1 1 1 1 0 7 

Avg abs C3 sb24-28 1 0 0 0 0 0 1 1 0 1 4 

Avg abs C3 sb28-32 0 0 0 0 0 1 0 1 1 1 4 

Avg abs C4 sb0-4 1 1 0 1 0 1 0 0 0 0 4 

Avg abs C4 sb4-8 0 1 0 0 1 0 0 0 0 0 2 

Avg abs C4 sb8-12 1 1 0 0 1 0 0 0 1 1 5 

Avg abs C4 sb12-16 1 1 0 1 1 0 0 1 1 1 7 

Avg abs C4 sb16-20 0 0 1 0 0 0 1 0 0 0 2 

Avg abs C4 sb20-24 0 0 0 1 1 1 0 1 1 0 5 

Avg abs C4 sb24-28 1 1 0 1 0 0 0 0 1 1 5 

Avg abs C4 sb28-32 0 0 1 0 1 1 1 1 1 1 7 

Avg ampl C3 sb0-4 0 1 0 0 0 1 0 0 0 0 2 

Avg ampl C3 sb4-8 0 1 0 1 1 0 1 0 0 0 4 

Avg ampl C3 sb8-12 0 1 1 0 0 0 0 0 0 1 3 

Avg ampl C3 sb12-16 0 0 1 1 0 1 1 0 1 1 6 

Avg ampl C3 sb16-20 1 0 0 1 1 1 0 0 0 1 5 

Avg ampl C3 sb20-24 1 1 0 0 0 1 1 1 0 0 5 

Avg ampl C3 sb24-28 1 0 1 0 1 1 0 0 0 0 4 

Avg ampl C3 sb28-32 1 1 1 1 0 1 0 1 1 0 7 

Avg ampl C4 sb0-4 0 1 0 0 1 0 0 1 0 1 4 
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Avg ampl C4 sb4-8 1 0 0 0 0 1 0 0 0 1 3 

Avg ampl C4 sb8-12 1 0 1 1 1 0 0 1 1 1 7 

Avg ampl C4 sb12-16 1 1 1 0 1 1 1 1 1 1 9 

Avg ampl C4 sb16-20 0 0 0 1 0 0 0 1 1 1 4 

Avg ampl C4 sb20-24 0 1 1 0 0 0 1 0 1 0 4 

Avg ampl C4 sb24-28 0 0 0 1 1 0 0 1 1 0 4 

Avg ampl C4 sb28-32 1 1 1 1 0 1 0 0 1 1 7 

Std dev C3 sb0-4 0 0 0 0 0 1 0 1 0 0 2 

Std dev C3 sb4-8 0 0 1 1 1 0 1 1 1 0 6 

Std dev C3 sb8-12 0 1 1 1 0 1 1 1 1 1 8 

Std dev C3 sb12-16 0 1 1 0 1 1 0 0 0 0 4 

Std dev C3 sb16-20 0 1 0 1 1 1 1 0 1 1 7 

Std dev C3 sb20-24 0 0 1 1 1 0 1 0 1 0 5 

Std dev C3 sb24-28 0 1 1 0 1 1 1 0 0 0 5 

Std dev C3 sb28-32 0 1 1 1 1 1 1 1 0 0 7 

Std dev C4 sb0-4 0 1 0 0 1 0 1 1 0 0 4 

Std dev C4 sb4-8 1 1 1 1 0 1 0 0 0 1 6 

Std dev C4 sb8-12 1 1 0 0 0 1 1 1 1 1 7 

Std dev C4 sb12-16 1 1 0 0 0 0 1 0 0 0 3 

Std dev C4 sb16-20 0 1 1 1 0 1 1 0 1 0 6 

Std dev C4 sb20-24 1 1 0 1 1 0 0 0 0 1 5 

Std dev C4 sb24-28 0 0 0 1 0 0 0 1 0 1 3 

Std dev C4 sb28-32 0 1 1 0 0 0 0 0 1 1 4 

Energy C3 sb0-4 1 0 0 0 1 0 1 1 0 0 4 

Energy C3 sb4-8 0 0 0 1 1 1 1 1 1 0 6 

Energy C3 sb8-12 1 1 1 0 0 0 1 1 0 0 5 

Energy C3 sb12-16 0 1 0 0 1 0 0 0 0 0 2 

Energy C3 sb16-20 0 1 0 1 0 0 0 1 1 1 5 

Energy C3 sb20-24 0 1 1 1 1 0 0 1 0 1 6 

Energy C3 sb24-28 0 0 0 0 0 0 0 0 0 1 1 

Energy C3 sb28-32 1 1 0 0 0 0 0 1 0 0 3 

Energy C4 sb0-4 0 1 1 0 0 1 1 0 0 1 5 

Energy C4 sb4-8 1 0 0 0 0 0 0 0 1 0 2 

Energy C4 sb8-12 1 1 1 0 1 1 1 0 1 1 8 

Energy C4 sb12-16 0 0 0 0 1 0 0 1 1 1 4 

Energy C4 sb16-20 1 0 0 0 1 0 1 1 1 0 5 

Energy C4 sb20-24 1 0 1 0 0 1 1 1 0 1 6 

Energy C4 sb24-28 1 0 0 0 1 1 1 0 0 0 4 

Energy C4 sb28-32 0 0 1 0 1 1 0 0 0 0 3 

Rt En C3 sb0-4 and sb4-8 1 0 1 1 0 1 0 1 1 1 7 

Rt En C3 sb4-8 and sb8-12 0 1 1 0 0 0 1 1 1 1 6 
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Rt En C3 sb8-12 and sb12-16 1 0 1 1 1 1 0 0 0 0 5 

Rt En C3 sb12-16 and sb16-20 1 0 1 0 1 0 0 1 0 0 4 

Rt En C3 sb16-20 and sb20-24 0 1 0 0 0 1 0 0 1 1 4 

Rt En C3 sb20-24 and sb24-28 1 1 1 0 0 0 0 0 0 1 4 

Rt En C3 sb24-28 and sb28-32 1 0 1 0 1 1 0 1 1 1 7 

Rt En C4 sb0-4 and sb4-8 0 0 0 0 0 1 0 1 0 0 2 

Rt En C4 sb4-8 and sb8-12 0 1 0 0 0 0 0 1 1 1 4 

Rt En C4 sb8-12 and sb12-16 1 0 1 0 0 0 0 1 1 1 5 

Rt En C4 sb12-16 and sb16-20 1 0 1 0 1 1 0 0 1 0 5 

Rt En C4 sb16-20 and sb20-24 0 0 0 0 0 0 0 1 0 0 1 

Rt En C4 sb20-24 and sb24-28 0 0 0 1 0 0 0 0 1 0 2 

Rt En C4 sb24-28 and sb28-32 0 0 0 1 0 0 0 0 0 0 1 

Entropy C3 sb0-4 1 0 0 0 1 0 0 1 0 0 3 

Entropy C3 sb4-8 0 1 0 0 0 1 0 0 1 1 4 

Entropy C3 sb8-12 0 1 1 1 1 0 0 1 1 0 6 

Entropy C3 sb12-16 1 0 1 1 0 0 0 1 0 0 4 

Entropy C3 sb16-20 0 1 1 0 0 0 0 0 0 0 2 

Entropy C3 sb20-24 1 0 1 0 1 1 1 0 1 0 6 

Entropy C3 sb24-28 1 0 1 0 1 0 1 1 1 1 7 

Entropy C3 sb28-32 1 0 1 1 0 1 1 1 1 0 7 

Entropy C4 sb0-4 1 1 0 1 0 1 0 0 0 0 4 

Entropy C4 sb4-8 0 1 1 1 1 1 1 0 0 0 6 

Entropy C4 sb8-12 1 0 0 0 0 0 1 1 0 0 3 

Entropy C4 sb12-16 0 1 1 0 0 0 1 0 0 0 3 

Entropy C4 sb16-20 0 0 1 0 0 0 0 0 1 1 3 

Entropy C4 sb20-24 1 1 0 1 1 1 0 0 0 0 5 

Entropy C4 sb24-28 0 1 1 1 0 1 1 0 0 0 5 

Entropy C4 sb28-32 1 0 1 1 1 0 1 0 1 1 7 

PLV C3 and C4 sb0-4 1 0 0 0 0 0 0 0 0 0 1 

PLV C3 and C4 sb4-8 1 0 1 0 1 0 0 1 0 0 4 

PLV C3 and C4 sb8-12 0 1 1 0 0 0 0 1 1 1 5 

PLV C3 and C4 sb12-16 0 1 0 1 0 0 0 1 0 1 4 

PLV C3 and C4 sb16-20 0 1 0 0 0 0 0 0 0 0 1 

PLV C3 and C4 sb20-24 0 0 0 0 1 0 1 0 1 1 4 

PLV C3 and C4 sb24-28 1 0 0 0 0 1 1 0 0 0 3 

PLV C3 and C4 sb28-32 0 0 0 0 1 0 1 1 0 0 3 

Root mean sq C3 sb0-4 0 0 0 0 1 0 1 1 1 0 4 

Root mean sq C3 sb4-8 0 0 1 1 0 0 1 0 1 1 5 

Root mean sq C3 sb8-12 0 1 0 1 0 1 1 0 1 0 5 

Root mean sq C3 sb12-16 1 0 0 1 1 1 0 0 1 1 6 

Root mean sq C3 sb16-20 0 1 1 1 1 1 0 0 1 0 6 
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Root mean sq C3 sb20-24 1 0 1 0 1 1 0 1 1 0 6 

Root mean sq C3 sb24-28 1 0 0 0 1 1 1 1 1 1 7 

Root mean sq C3 sb28-32 1 0 0 0 1 1 0 1 1 1 6 

Root mean sq C4 sb0-4 1 1 0 0 1 0 1 0 0 1 5 

Root mean sq C4 sb4-8 1 1 0 1 0 0 1 0 0 0 4 

Root mean sq C4 sb8-12 0 0 1 1 1 1 0 1 1 0 6 

Root mean sq C4 sb12-16 0 0 0 1 1 1 1 1 0 1 6 

Root mean sq C4 sb16-20 0 0 1 0 1 1 0 0 0 1 4 

Root mean sq C4 sb20-24 1 0 1 0 1 0 1 1 0 1 6 

Root mean sq C4 sb24-28 1 0 0 1 1 0 0 1 0 0 4 

Root mean sq C4 sb28-32 1 1 0 0 0 1 0 0 0 1 4 

Variance C3 sb0-4 1 0 0 1 1 1 0 0 0 1 5 

Variance C3 sb4-8 0 0 0 1 0 0 0 0 1 1 3 

Variance C3 sb8-12 0 1 1 0 0 0 1 0 1 1 5 

Variance C3 sb12-16 1 1 1 0 0 0 1 1 0 0 5 

Variance C3 sb16-20 0 0 1 0 1 0 0 0 1 0 3 

Variance C3 sb20-24 1 1 1 1 1 0 1 0 0 0 6 

Variance C3 sb24-28 1 0 1 1 0 0 1 1 1 1 7 

Variance C3 sb28-32 0 0 1 1 1 1 1 1 1 0 7 

Variance C4 sb0-4 0 0 0 0 0 0 1 0 0 0 1 

Variance C4 sb4-8 1 0 0 1 0 0 1 1 0 1 5 

Variance C4 sb8-12 1 0 0 1 0 1 1 1 1 1 7 

Variance C4 sb12-16 1 1 1 1 1 1 0 0 0 0 6 

Variance C4 sb16-20 0 1 1 1 0 1 1 1 1 1 8 

Variance C4 sb20-24 1 0 0 1 1 1 0 0 0 0 4 

Variance C4 sb24-28 0 0 0 1 0 0 0 0 0 1 2 

Variance C4 sb28-32 0 0 1 0 0 0 0 0 0 1 2 

 

Table 26. Subject A2 

 

PNN SVM 
SVM

Q 
LDA RBF KNN 

KNN

M 

KNN

COS 

KNN

COR 
MLP Total 

Avg abs C3 sb0-4 0 0 1 0 1 0 1 1 1 0 5 

Avg abs C3 sb4-8 1 1 1 1 0 1 0 1 1 1 8 

Avg abs C3 sb8-12 0 1 0 0 0 0 0 0 0 0 1 

Avg abs C3 sb12-16 0 1 1 1 0 0 0 0 1 1 5 

Avg abs C3 sb16-20 1 1 1 1 1 0 1 1 1 0 8 

Avg abs C3 sb20-24 0 1 0 0 0 1 0 1 0 0 3 

Avg abs C3 sb24-28 0 1 1 0 0 0 1 0 0 0 3 

Avg abs C3 sb28-32 0 1 0 0 1 1 0 1 0 1 5 

Avg abs C4 sb0-4 1 0 0 0 0 0 1 0 0 0 2 
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Avg abs C4 sb4-8 0 0 0 0 1 1 0 1 1 1 5 

Avg abs C4 sb8-12 1 0 0 0 1 0 0 1 1 1 5 

Avg abs C4 sb12-16 1 1 1 0 1 0 0 0 0 1 5 

Avg abs C4 sb16-20 1 0 1 1 1 0 0 0 1 1 6 

Avg abs C4 sb20-24 0 1 0 0 1 0 0 0 0 1 3 

Avg abs C4 sb24-28 0 0 0 0 0 0 1 0 0 1 2 

Avg abs C4 sb28-32 1 0 0 1 0 0 0 0 1 1 4 

Avg ampl C3 sb0-4 0 0 0 1 0 1 0 1 0 0 3 

Avg ampl C3 sb4-8 1 1 1 0 0 1 0 1 0 0 5 

Avg ampl C3 sb8-12 0 0 1 0 1 1 1 1 0 0 5 

Avg ampl C3 sb12-16 1 1 1 0 0 1 0 1 1 1 7 

Avg ampl C3 sb16-20 0 1 1 1 0 1 0 1 1 0 6 

Avg ampl C3 sb20-24 0 1 1 0 0 1 0 1 1 1 6 

Avg ampl C3 sb24-28 0 1 0 0 0 0 1 1 0 1 4 

Avg ampl C3 sb28-32 0 0 1 0 1 1 0 1 1 1 6 

Avg ampl C4 sb0-4 0 1 0 1 1 0 1 0 1 0 5 

Avg ampl C4 sb4-8 0 1 0 0 1 1 0 0 0 1 4 

Avg ampl C4 sb8-12 1 0 1 0 1 0 1 0 0 1 5 

Avg ampl C4 sb12-16 0 0 1 1 1 0 0 0 1 1 5 

Avg ampl C4 sb16-20 1 0 1 1 1 0 1 1 1 1 8 

Avg ampl C4 sb20-24 1 1 0 0 1 1 0 1 0 1 6 

Avg ampl C4 sb24-28 1 1 0 0 0 1 1 0 0 0 4 

Avg ampl C4 sb28-32 1 0 1 1 1 0 1 1 0 0 6 

Std dev C3 sb0-4 1 1 0 1 0 0 0 1 0 0 4 

Std dev C3 sb4-8 0 0 0 1 1 1 1 1 0 1 6 

Std dev C3 sb8-12 1 0 1 0 0 1 1 1 0 1 6 

Std dev C3 sb12-16 1 0 0 1 0 1 0 1 1 0 5 

Std dev C3 sb16-20 0 1 0 0 0 0 0 0 0 0 1 

Std dev C3 sb20-24 1 0 1 0 1 1 1 1 0 1 7 

Std dev C3 sb24-28 0 1 0 0 0 0 1 0 0 0 2 

Std dev C3 sb28-32 0 1 0 1 0 1 0 1 0 0 4 

Std dev C4 sb0-4 1 0 0 0 1 1 0 1 0 0 4 

Std dev C4 sb4-8 0 0 0 1 0 0 0 0 1 1 3 

Std dev C4 sb8-12 0 0 1 0 0 0 0 0 1 0 2 

Std dev C4 sb12-16 1 1 0 0 1 0 1 0 1 0 5 

Std dev C4 sb16-20 1 1 1 1 1 0 1 0 0 0 6 

Std dev C4 sb20-24 0 0 0 0 0 1 0 0 1 0 2 

Std dev C4 sb24-28 0 1 0 0 0 0 1 0 1 1 4 

Std dev C4 sb28-32 0 0 0 0 1 0 1 0 1 1 4 

Energy C3 sb0-4 0 1 0 0 0 1 1 0 1 1 5 

Energy C3 sb4-8 1 0 1 1 0 1 0 0 0 1 5 
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Energy C3 sb8-12 0 1 1 0 1 1 0 1 0 1 6 

Energy C3 sb12-16 1 0 0 1 1 0 1 1 1 1 7 

Energy C3 sb16-20 1 0 0 0 0 0 1 0 0 1 3 

Energy C3 sb20-24 1 1 0 0 1 1 0 0 1 0 5 

Energy C3 sb24-28 1 1 0 1 1 1 1 1 0 1 8 

Energy C3 sb28-32 1 1 0 0 1 1 0 1 1 1 7 

Energy C4 sb0-4 1 0 0 1 0 0 0 1 1 1 5 

Energy C4 sb4-8 0 0 0 1 0 1 1 0 0 0 3 

Energy C4 sb8-12 0 0 0 0 0 1 1 0 0 1 3 

Energy C4 sb12-16 0 1 1 0 0 1 0 1 1 1 6 

Energy C4 sb16-20 0 0 0 0 1 1 1 0 0 0 3 

Energy C4 sb20-24 0 0 0 0 1 0 0 0 1 0 2 

Energy C4 sb24-28 1 1 0 1 0 0 0 0 1 1 5 

Energy C4 sb28-32 0 1 1 1 1 1 1 1 0 1 8 

Rt En C3 sb0-4 and sb4-8 1 0 0 1 0 1 0 1 0 0 4 

Rt En C3 sb4-8 and sb8-12 0 1 1 1 1 1 0 1 1 0 7 

Rt En C3 sb8-12 and sb12-16 1 0 1 0 0 0 1 1 1 1 6 

Rt En C3 sb12-16 and sb16-20 1 0 1 1 0 0 0 0 1 0 4 

Rt En C3 sb16-20 and sb20-24 0 1 0 0 0 0 0 0 0 0 1 

Rt En C3 sb20-24 and sb24-28 1 0 1 0 1 1 0 0 1 0 5 

Rt En C3 sb24-28 and sb28-32 1 1 1 1 0 0 1 1 1 1 8 

Rt En C4 sb0-4 and sb4-8 0 0 0 1 0 1 0 0 0 1 3 

Rt En C4 sb4-8 and sb8-12 0 1 0 1 0 0 0 1 0 1 4 

Rt En C4 sb8-12 and sb12-16 1 1 0 1 0 1 0 0 0 0 4 

Rt En C4 sb12-16 and sb16-20 1 1 1 0 0 0 0 1 0 1 5 

Rt En C4 sb16-20 and sb20-24 0 1 0 0 0 1 1 1 0 1 5 

Rt En C4 sb20-24 and sb24-28 0 0 0 1 1 1 0 0 1 0 4 

Rt En C4 sb24-28 and sb28-32 0 1 0 1 1 1 1 0 1 0 6 

Entropy C3 sb0-4 1 1 0 1 0 1 0 1 0 0 5 

Entropy C3 sb4-8 0 1 1 1 0 1 1 0 1 1 7 

Entropy C3 sb8-12 0 0 1 1 0 1 0 1 0 0 4 

Entropy C3 sb12-16 1 0 1 0 0 1 0 1 1 0 5 

Entropy C3 sb16-20 0 1 0 0 0 0 0 1 1 0 3 

Entropy C3 sb20-24 1 0 1 0 1 1 1 0 0 0 5 

Entropy C3 sb24-28 1 1 0 1 1 1 1 1 1 0 8 

Entropy C3 sb28-32 1 1 1 0 0 1 1 0 0 0 5 

Entropy C4 sb0-4 1 0 1 0 1 0 0 1 0 0 4 

Entropy C4 sb4-8 0 0 0 0 0 1 0 0 0 1 2 

Entropy C4 sb8-12 1 0 1 0 0 1 0 1 1 0 5 

Entropy C4 sb12-16 0 1 0 1 1 0 0 1 0 1 5 

Entropy C4 sb16-20 0 0 1 0 1 0 1 0 1 0 4 
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Entropy C4 sb20-24 1 0 1 0 1 1 1 0 1 0 6 

Entropy C4 sb24-28 0 0 0 1 0 1 1 0 0 0 3 

Entropy C4 sb28-32 1 0 0 0 1 0 1 1 0 0 4 

PLV C3 and C4 sb0-4 1 1 1 1 0 0 0 1 0 1 6 

PLV C3 and C4 sb4-8 1 1 0 0 0 0 0 0 0 1 3 

PLV C3 and C4 sb8-12 0 1 0 1 1 1 1 1 0 0 6 

PLV C3 and C4 sb12-16 0 0 0 1 0 0 1 0 1 0 3 

PLV C3 and C4 sb16-20 0 1 0 1 1 1 1 0 0 0 5 

PLV C3 and C4 sb20-24 0 0 1 1 0 0 0 1 0 1 4 

PLV C3 and C4 sb24-28 1 0 0 1 0 0 1 0 0 0 3 

PLV C3 and C4 sb28-32 0 0 0 0 1 0 0 1 0 1 3 

Root mean sq C3 sb0-4 0 0 0 0 1 1 0 1 1 1 5 

Root mean sq C3 sb4-8 0 0 1 0 1 1 0 1 0 0 4 

Root mean sq C3 sb8-12 0 1 0 1 0 0 0 1 0 1 4 

Root mean sq C3 sb12-16 1 1 0 0 0 0 1 1 1 0 5 

Root mean sq C3 sb16-20 0 0 1 0 0 1 1 1 0 0 4 

Root mean sq C3 sb20-24 1 0 1 0 1 0 1 0 0 0 4 

Root mean sq C3 sb24-28 1 1 0 0 0 1 0 0 0 1 4 

Root mean sq C3 sb28-32 1 1 0 0 1 1 0 1 1 1 7 

Root mean sq C4 sb0-4 1 1 0 0 0 1 0 0 0 1 4 

Root mean sq C4 sb4-8 1 1 0 0 1 0 1 1 1 0 6 

Root mean sq C4 sb8-12 0 0 0 0 1 0 0 0 1 1 3 

Root mean sq C4 sb12-16 0 0 0 0 0 0 0 1 0 0 1 

Root mean sq C4 sb16-20 0 1 0 1 0 0 0 0 1 0 3 

Root mean sq C4 sb20-24 1 1 1 0 0 1 0 0 1 1 6 

Root mean sq C4 sb24-28 1 0 1 1 1 0 1 0 1 1 7 

Root mean sq C4 sb28-32 1 1 1 0 0 1 0 0 1 1 6 

Variance C3 sb0-4 1 1 0 0 1 0 1 0 0 0 4 

Variance C3 sb4-8 0 1 1 1 1 0 0 1 1 1 7 

Variance C3 sb8-12 0 0 1 0 0 1 0 1 0 0 3 

Variance C3 sb12-16 1 1 0 1 0 0 0 0 1 0 4 

Variance C3 sb16-20 0 1 0 1 1 0 0 1 0 1 5 

Variance C3 sb20-24 1 1 1 0 0 0 1 1 1 1 7 

Variance C3 sb24-28 1 0 0 0 0 1 1 1 1 1 6 

Variance C3 sb28-32 0 0 1 1 0 0 1 1 0 1 5 

Variance C4 sb0-4 0 0 0 0 0 1 0 0 1 0 2 

Variance C4 sb4-8 1 0 0 0 1 0 1 0 1 1 5 

Variance C4 sb8-12 1 0 0 0 1 0 1 1 0 1 5 

Variance C4 sb12-16 1 0 0 1 1 1 0 0 0 0 4 

Variance C4 sb16-20 0 1 1 0 1 0 0 1 0 0 4 

Variance C4 sb20-24 1 0 0 0 1 0 1 0 1 0 4 
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Variance C4 sb24-28 0 0 0 1 0 0 0 0 0 1 2 

Variance C4 sb28-32 0 1 1 1 0 0 1 1 0 0 5 
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Appendix 4. Confusion Matrix for each Ensemble 

fusion method 

 

 

Figure 55. Naïve Bayes 
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Figure 56. Majority Voting without Feature Selection 
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Figure 57. Weighted Voting without Feature Selection 
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Figure 58. Majority Voting with Feature Selection for an ensemble composed of SVM with 

linear kernel, LDA, KNN, PNN, RBF and MLP 

DBD
PUC-Rio - Certificação Digital Nº 1513111/CA



167 

 

Figure 59. Majority Voting with Feature Selection for an ensemble composed of SVM, 

LDA, SVM with quadratic kernel, and MLP 
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Figure 60. Majority Voting with Feature Selection for an ensemble composed of all the 

classifiers 
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Figure 61. Weighted Voting with Feature Selection for an ensemble composed of SVM 

with linear kernel, LDA, KNN, PNN, RBF and MLP 
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Figure 62. Weighted Voting with Feature Selection for an ensemble composed of SVM, 

LDA, SVM with quadratic kernel, and MLP 

DBD
PUC-Rio - Certificação Digital Nº 1513111/CA



171 

 

Figure 63. Weighted Voting with Feature Selection for an ensemble composed of all the 

classifiers 
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Figure 64. GA for selection of classifiers 
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Figure 65. GA for weights definition between 0 and 1 
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Figure 66. GA for weights definition between 0 and 1summing 1 
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Figure 67. GA for weights definition between -1 and 1summing 1 

DBD
PUC-Rio - Certificação Digital Nº 1513111/CA



176 

 

Figure 68. GAs combined 
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Figure 69. MLP as meta-classifier 
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