
Hisham Hashem Muhammad

Dataflow Semantics for End-user
Programmable Applications

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação
em Informática da PUC–Rio in partial fulfillment of the
requirements for the degree of Doutor em Informática.

Advisor: Prof. Roberto Ierusalimschy

Rio de Janeiro
April 2017

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Hisham Hashem Muhammad

Dataflow Semantics for End-user
Programmable Applications

Thesis presented to the Programa de Pós–graduação
em Informática da PUC–Rio in partial fulfillment of the
requirements for the degree of Doutor em Informática. Ap-
proved by the undersigned Examination Committee.

Prof. Roberto Ierusalimschy
Advisor

Departamento de Informática – PUC–Rio

Prof. Renato Fontoura de Gusmão Cerqueira
IBM Research – Brazil

Profª. Raquel Oliveira Prates
Departamento de Ciência da Computação – UFMG

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Profª. Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies – PUC–Rio

Rio de Janeiro, April the 28th, 2017

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

All rights reserved.

Hisham Hashem Muhammad

The author graduated in Computer Science from Universidade
do Vale do Rio dos Sinos — Unisinos in 2002, and obtained
the degree of Mestre at Pontifícia Universidade Católica do
Rio de Janeiro — PUC-Rio in 2006. He obtained the degree
of Doutor at PUC-Rio in 2017, where he worked in the field
of programming languages.

Bibliographic data
Hashem Muhammad, Hisham

Dataflow Semantics for End-user Programmable Ap-
plications / Hisham Hashem Muhammad; advisor: Ro-
berto Ierusalimschy. – 2017.

v., 184 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Linguages de Programa-
ção. ; 3. Semântica. ; 4. Dataflow. ; 5. Programação por
Usuários Finais. . I. Ierusalimschy, Roberto. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento
de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

To my mother and father,
who never used computers.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Acknowledgments

I would like to thank my advisor, Roberto Ierusalimschy, for his patience as I
searched for my research topic, for his trust in my work, and for the revision
of the text. Working with Roberto gave me the assurance that my work was
held to high standards at all moments.

I thank the members of the Examination Committee, professors Renato
Cerqueira, Raquel Prates, Hermann Haeusler and Simone Barbosa for their
review and for their encouraging comments. I also thank Simone for giving me
early pointers that ended up influencing greatly the resulting work.

I am thankful to all my friends at LabLua, who made this lab a second
(or perhaps first) home for me during these five years. Especially, I would
like to thank Ana Lúcia, for running the lab, being a delight to work with
throughout our projects, but most of all for the support and advice in many
crucial moments. Thank you for not letting me give up on my vision.

I thank the friends I made in Rio (some of whom aren’t here anymore),
who made these years here so much better, and to the ones from the South
(some of whom aren’t there anymore), who always made me feel like the years
hadn’t passed whenever I went to visit. The bonds we make along the way are
the most precious thing in life, and I am fortunate to have made strong ones
that the distance did not and will not break, no matter where life takes us.

Finally, my deepest gratitude goes to my family, who always cheered me
on from the distance and who are always there for me, and in particular to my
lovely girlfriend Patrícia, for her support, encouragement, and for keeping me
moving forward. Your tenacity is inspiring; you are an example I try to follow.

This work was partly supported by CNPq and PUC-Rio, and for that I
am grateful.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Abstract

Hashem Muhammad, Hisham; Ierusalimschy, Roberto (Advi-
sor). Dataflow Semantics for End-user Programmable
Applications. Rio de Janeiro, 2017. 184p. Tese de doutorado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Many applications are made programmable for advanced end-users by
adding facilities such as scripting and macros. Other applications take a
programming language to the center stage of its UI. That is the case, for
example, of the spreadsheet formula language. While scripting has benefited
from the advances of programming language research, producing mature
and reusable languages, the state of UI-level languages lags behind. We
claim that a better understanding of such languages is necessary. In this
work, we model the semantics of existing end-user programming languages
in three different domains: multimedia, spreadsheets and engineering. Our
focus is on dataflow languages, a representative paradigm for end-user
programmable applications. Based on this analysis, we aim to provide
a better understanding of dataflow semantics as used in the context of
end-user programming and propose guidelines for the design of UI-level
languages for end-user programmable applications.

Keywords
Programming Languages; Semantics; Dataflow; End-User Programming.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Resumo

Hashem Muhammad, Hisham; Ierusalimschy, Roberto. Semânti-
cas de dataflow para aplicações programáveis por usuários
finais. Rio de Janeiro, 2017. 184p. Tese de Doutorado – Departa-
mento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Muitas aplicações são tornadas programáveis para usuários finais avançados
adicionando recursos como scripting e macros. Outras aplicações dão a
uma linguagem de programação um papel central na sua interface com o
usuário. Esse é o caso, por exemplo, da linguagem de fórmulas de planilhas
de cálculo. Enquanto a área de scripting se beneficiou dos avanços das
pesquisas em linguagens de programação, produzindo linguagens maduras
e reusáveis, o estado das linguagens em nível de interface não teve o mesmo
grau de desenvolvimento. Argumentamos que um melhor entendimento
desta classe de linguagens se faz necessário. Neste trabalho, modelamos
semânticas de linguagens de usuário final existentes, em três diferentes
domínios: multimídia, planilhas e engenharia. Nosso foco é em linguagens
de dataflow, um paradigma representativo em aplicações programáveis por
usuários finais. Com base nessa análise, temos como objetivo prover um
melhor entendimento do design de linguagens de dataflow no contexto
de programação de usuários finais e propor linhas-guia para o projeto de
linguagens de nível de interface baseadas neste paradigma para aplicações
programáveis.

Palavras-chave
Linguages de Programação; Semântica; Dataflow; Programação por

Usuários Finais.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Table of contents

1 Introduction 15
1.1 Motivation 15
1.2 Problem statement 17

2 Background 19
2.1 End-user programming 19
2.1.1 Roles of programming in end-user applications 19
2.1.2 The three-layer architecture in end-user programmable appli-

cations 20
2.1.3 Scripting languages 21
2.2 Dataflow programming 23
2.2.1 A brief history of dataflow 24
2.2.2 Static and dynamic dataflow models 24
2.2.3 Data-driven and demand-driven dataflow 25
2.2.4 Uni and bi-directional flow 26

3 Design alternatives for dataflow UI-level languages 28
3.1 Hils’s classification of design alternatives 28
3.2 An extension to Hils’s classification 31
3.2.1 Dataflow model 31
3.2.2 N-to-1 inputs 32
3.2.3 Time and rate-based evaluation 32
3.2.4 Separate programming and use views 33
3.2.5 Indirect connections 34
3.2.6 Textual sub-language 35
3.3 Non-dataflow UI-level languages 35
3.4 Case studies 36
3.5 Discussion: On the use of definitional interpreters 37

4 Case study: Pure Data 39
4.1 Overview of the language 39
4.1.1 Nodes and values 39
4.1.2 Graph evaluation 41
4.1.3 Messages and the textual sub-language 41
4.1.4 Node triggering 43
4.2 An interpreter modeling the semantics of Pure Data 43
4.2.1 Representation of programs 44
4.2.2 Representation of states 46
4.2.3 Execution 47
4.2.3.1 Main loop 47
4.2.3.2 Event processing 48
4.2.3.3 Audio processing 52
4.2.3.4 Initial state 54
4.2.4 Operations 54

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

4.2.4.1 Atom boxes 55
4.2.4.2 An object with side-effects: print 56
4.2.4.3 An object with hot and cold inlets: + 56
4.2.4.4 Objects producing timed events: delay and metro 57
4.2.4.5 Message handlers for audio objects: osc~ and line~ 58
4.2.4.6 Cold inlets 59
4.2.4.7 Data objects: float and list 59
4.2.4.8 Audio handling operations: osc~, line~ and *~ 60
4.2.5 Demonstration 61
4.3 Discussion: Syntax and semantics in visual languages 62

5 Case study: spreadsheets 64
5.1 The formula language 65
5.1.1 Syntax 66
5.1.2 Values and types 67
5.2 Evaluation model 68
5.2.1 Array formulas 70
5.3 An interpreter modeling spreadsheet semantics 72
5.3.1 Representation of programs 73
5.3.2 Representation of states 75
5.3.3 Execution 76
5.3.3.1 Main loop 76
5.3.3.2 Resolving addresses 78
5.3.4 Calculating cell values 79
5.3.4.1 Regular cell evaluation 82
5.3.4.2 Cell evaluation for array formulas 83
5.3.5 Operations 85
5.3.5.1 Literals, references and ranges 85
5.3.5.2 IF, AND, and OR 87
5.3.5.3 SUM 88
5.3.5.4 INDIRECT 89
5.3.5.5 String operations 90
5.3.5.6 Mathematical operations and equality 91
5.3.5.7 Type conversions 93
5.3.6 Demonstration 94
5.4 Discussion: Language specification and compatibility issues 94

6 Case study: LabVIEW 96
6.1 Overview of the language 96
6.1.1 Execution modes 97
6.1.2 Data types and wires 98
6.1.3 Looping and cycles 99
6.1.4 Timing 100
6.1.5 Tunnels 101
6.1.6 Other control structures 102
6.2 An interpreter modeling the semantics of LabVIEW 103
6.2.1 Representation of programs 104
6.2.2 Representation of state 108
6.2.3 Execution 110

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

6.2.3.1 Main loop 111
6.2.3.2 Initial state 111
6.2.3.3 Event processing 113
6.2.3.4 Firing data to objects 115
6.2.4 Nodes and structures 117
6.2.4.1 Constant nodes 118
6.2.4.2 Feedback nodes 118
6.2.4.3 Function nodes 118
6.2.4.4 Control structures 119
6.2.5 Operations 124
6.2.5.1 Numeric and relational operators 126
6.2.5.2 Array functions 127
6.2.5.3 Random Number 129
6.2.5.4 Wait Until Next Ms 130
6.2.6 Demonstration 130
6.3 Discussion: Is LabVIEW end-user programming? 131
6.3.1 LabVIEW and Pure Data compared 132

7 Some other languages 134
7.1 Reaktor 135
7.2 VEE 136
7.3 Blender 137
7.4 Discussion: Dataflow end-user programming, then and now 139

8 Design alternatives critiqued 141
8.1 Graph evaluation 143
8.1.1 Static and dynamic dataflow models 143
8.1.2 Data-driven and demand-driven dataflow 144
8.1.3 Uni and bi-directional dataflow 145
8.1.4 N-to-1 inputs 145
8.1.5 Timing considerations 146
8.1.6 Indirect and dynamic connections 147
8.2 Language features 148
8.2.1 Selector/distributor 148
8.2.2 Iteration 148
8.2.3 Sequence construct 149
8.2.4 Subprogram abstractions 150
8.2.5 Higher-order functions 153
8.3 Type checking 153
8.4 Other aspects 155
8.4.1 Liveness, representation and modes 155
8.4.2 Textual sub-language and scripting 156
8.5 Discussion: An architectural pattern for end-user programmable

applications 157

9 Conclusion 159

10 Bibliography 162

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

A Demonstration of the interpreter modeling Pure Data 171

B Demonstration of the spreadsheet interpreter 175
B.1 Formatting 176
B.2 A test driver 176
B.3 The example spreadsheet 178

C Demonstration of the interpreter modeling LabVIEW 180
C.1 Program construction 181
C.2 Demonstration of the VI 182

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

List of figures

2.1 Nardi’s three types of programmers and three-layer architec-
tures in end-user programmable systems 21

4.1 A patch demonstrating the oscillator node osc~, based on an
example from the Pure Data documentation. 40

4.2 Behavior of hot and cold inlets in Pure Data 43
4.3 A Pure Data patch equivalent to the example code in Ap-

pendix A 61
4.4 Impact of semantically significant layout in Max/MSP: Two

graphs with identical sets of nodes and edges producing
different results. Image adapted from (32). 62

5.1 The usual representation of a spreadsheet with a grid layout
and a textual formula language, and its conceptual dataflow
graph displaying data dependencies. 69

6.1 The main interface of LabVIEW. Each virtual instrument ap-
pears in two windows: the front panel (left) and the block dia-
gram (right). 97

6.2 Looping constructs in LabVIEW, a “for” and a “while” loop. 100
6.3 Interaction of loops and tunnels in LabVIEW. Loop A never

updates its output; Loop B updates only at the end; Loop C
updates every second. 101

6.4 Connection errors in LabVIEW. Connecting two data sources
(A1 and A2) directly to an input (A3) produces a helpful error
message. If one of the connections goes through a tunnel,
however (B2), this produces a tunnel direction inference error. 102

6.5 ”Case” structure in LabVIEW 103
6.6 ”Sequence” structure in LabVIEW 103
6.7 An animation frame produced by converting the output of the

interpreter. 131

7.1 A screenshot of Reaktor. Source: https://www.native-
instruments.com 134

7.2 Mix of data and control flows in VEE. 136
7.3 The node editor for creating materials in Blender. Source:

https://www.blender.org 138

8.1 Loop contexts in Naiad (64), featuring a very similar structure
to that of Show and Tell and LabVIEW 149

8.2 A graph containing two occurrences of a subgraph S 150
8.3 Different alternatives for the behavior of subprograms 151
8.4 Architectural patterns of programmable applications 157

https://www.native-instruments.com
https://www.native-instruments.com
https://www.blender.org
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

List of tables

3.1 Hils’s design dimensions for dataflow visual languages 29
3.2 Additional design dimensions for dataflow end-user languages 31

5.1 Syntactic changes in localized versions of Excel: all but the
last one can be automatically converted by the application. 66

5.2 Some syntactic incompatibilities between spreadsheets 67
5.3 Behavior of the TYPE function in spreadsheets 68
5.4 Formula evaluation incompatibilities between spreadsheets 70
5.5 Behavior upon circular references, after the following se-

quence: B1 to 100, A1 to =B1, B1 to =A1 95

8.1 A comparison of contemporary dataflow UI-level languages 142

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Every generation has to fight the same battles,
for there is no final victory
and there is no final defeat.

Tony Benn (1925 – 2014)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

1
Introduction

1.1
Motivation

End-user programming is a term that refers to programming activities
performed by end-users, who are not specialists in professional software devel-
opment but are specialists in other domains, in the context of software devel-
oped for their domain of interest (19). Early focus of end-user programming
was in scripting (73): embedding a programming language into an application
so that users can write programs that drive the application, or at least parts
of it. Some examples are Visual Basic for Applications in the Microsoft Of-
fice productivity suite and AutoLISP in AutoCAD. However, most end-user
programming happens using languages not regarded by their users as pro-
gramming languages proper, such as spreadsheets and graphical node editors
(65). For this reason, the latter term “end-user development” took over, which
avoids having to answer the question of what is and what isn’t programming.

Still, those languages are indeed domain-specific languages (DSLs), even
if they often have restricted expressivity and if their syntaxes (often a mix of
textual elements and graphics) do not make it clear that they are programming
languages. In particular, there are applications where the language becomes
indistinguishable from the user interface (UI), and using the software means
using the language. Examples of scenarios where this happens are spreadsheets
such as Excel (66), where using the spreadsheet means using the formula lan-
guage, and the node graph environment of Pure Data, a multimedia application
developed primarily for music (75). Here, we will call these languages UI-level
languages : programming languages that are apparent to the user as the main
UI of the application—not to be confused with languages for constructing GUIs
(Graphical User Interfaces).

There is, therefore, a spectrum of possibilities on how deeply to inte-
grate programmability into end-user applications. It can range from being an
optional feature for advanced users, as it is often the case with scripting, to
being at the core of the application experience, as is the case with UI-level
languages.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 1. Introduction 16

The programming language community has given much attention to
the scripting end of the spectrum of end-user programming. Scripting in
applications has evolved through three stages:

– The first stage was the use of so-called “little languages” of the 1970s
and 1980s (12)—examples are small single-purpose languages such as eqn

and pic in Unix (25), and SCUMM for scripting adventure-style games
1;

– Then, powerful domain-specific languages emerged, such as GraForth,
WordBasic in Microsoft Word and AutoLISP in AutoCAD—these lan-
guages often adapted the design of existing general-purpose programming
languages, producing application-specific dialects;

– Finally, once scripting was identified as a general style of programming
(73), we saw the introduction of general-purpose scripting languages such
as Tcl, Python and Lua—these languages have embeddable implementa-
tions, allowing them to be linked as libraries and reused in many appli-
cations. Some of these languages became popular in particular domains
in spite of not having been specifically designed for those fields: sev-
eral graphics programs use Python as a scripting language, and Lua is
particularly successful in the game industry.

The UI end of the spectrum, however, lags behind. The state of end-user
UI-level languages now is similar to that of scripting languages in the 1980s:
most applications develop their own custom “little languages” for end-user
programming, tightly coupled to their UIs. At best, ideas are reused from sim-
ilar efforts, as evidenced by several visual programming languages inspired by
Scratch (Stencyl, AppInventor, Snap, Pocket Code), the various node/graph
editors in multimedia applications (Nuke, Max/MSP, Blender, Rhino 3D, An-
timony, Unreal Engine), and the formula languages for different spreadsheets.

The semantics of these UI-level languages, in particular, are often ill-
specified. This has wide-ranging consequences, affecting both users and devel-
opers. Users are struck by subtle incompatibilities even when different appli-
cations share the same basic metaphors, as is the case of different spreadsheet
applications. Developers end up “reinventing the wheel”, producing designs
that are not informed by PL research, often subject to pitfalls that could have
been avoided had the language been designed based on established grounds.

1Originally created by Lucasfilm Games as “Script Creation Utility for Maniac Mansion”
to be used in a single game; later used in dozens of games, licensed to several companies and
even reimplemented as a free-software engine (http://www.scummvm.org). This illustrates
the “accidental” nature of scripting languages from that era.

http://www.scummvm.org
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 1. Introduction 17

1.2
Problem statement

While nowadays scripting is integrated into applications by reusing
proven embeddable languages which benefit from the advances of programming
language research, end-user UI-level languages are still developed ad hoc,
often by developers who are specialists in the domain of the application (e.g.
computer graphics, music, statistics, finance), but not in language design and
implementation. This distinction manifests itself in many ways, ranging from
unclear semantics and little possibility of knowledge reuse from the part of
users, down to lack of application interoperability and performance issues.
Programming language research is brought to the fold afterwards, when trying
to find ways to integrate missing functionality or trying to fix issues with the
design or implementation (46; 28).

By focusing on the presentation and direct manipulation of data, many
UI-level languages adopt to some extent the dataflow paradigm (44), as it
seems a natural fit for programmatic manipulation of data in user interfaces.
Thus, the problem domain we focus our attention on is that of dataflow UI-
level languages, as these are representative of a number of languages where
end-user programmability takes center stage (39), and the problem we address
in particular is that of ad hoc semantics in dataflow programmable UIs.

We identify the need for UI-level dataflow languages to go through a
similar movement that occurred with scripting languages. Scripting languages
evolved from ad hoc languages into standard reusable languages that integrate
properly: they can be embedded in an application and can be extended with
constructs for dealing with the application’s domain.

This research attempts to provide the first steps towards providing
designers of end-user programmable applications with a structured knowledge
base for reasoning about dataflow semantics for their UI-level languages.
Our research question, therefore, can be framed as such: when designing a
dataflow language for an end-user programmable application, which design
choices should be taken into consideration with regard to its semantics and
what are their effects?

We begin with a background review of the fields of end-user programming
and dataflow languages in Chapter 2. Then, in Chapter 3 we sharpen our focus
to define dataflow UI-level languages and present a list of design alternatives
for the construction of dataflow languages for end-user programming. With
this design space in mind, we analyze existing UI-level dataflow languages
and produce semantics for a number of them, understanding their features
and shortcomings. These are presented as case studies in Chapters 4, 5 and

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 1. Introduction 18

6, as well as a review of additional languages in 7. Informed by the design of
those existing application-specific languages, we revisit in Chapter 8 our list of
design alternatives, and present a discussion of the impacts of various design
choices. Finally, we conclude the work in Chapter 9, in which we review our
contributions.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

2
Background

2.1
End-user programming

End-user programming is a term that describes the involvement of users
in the addition of functionality to their applications via programming (19). For
this to be possible, applications have to be designed with programmability in
mind: they should allow new functionality to be built based on the combination
of existing ones, and there has to be linguistic support in the application so
that the user may express this new functionality.

2.1.1
Roles of programming in end-user applications

Depending on the application’s design, end-user programming may take
a peripheral or a central role in its use. We define them as such:

– Programming is peripheral to an end-user application if users can make
effective use of the application with variable degrees of complexity,
producing from simple to complex end-results (e.g. documents, queries,
etc.), without ever resorting explicitly to the programming capabilities
of the application.

– Programming is central to an end-user application if users must interact
explicitly with the programming capabilities of the application in order
to make any non-trivial use of it, even when producing simple end-
results. In other words, using the application is using the application’s
programming language.

Examples of peripheral support for end-user programming are macro recorders
and embedded scripting languages. Macro recording allows the user to auto-
mate sequences of steps, but offers little in the way of abstraction. Embedded
scripting languages offer a programmable view to the application, by extending
the application with the full power of what is usually a Turing-complete pro-
gramming language. Still, we categorize these features as peripheral to the user
of the application, because most users can produce content in the application
while ignoring its programmable aspects.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 20

The LibreOffice Writer word processor and the Gimp image editor are
examples of scriptable applications, where programming takes a peripheral
role. A user can produce a text document with a very complex layout in
LibreOffice Writer or an intricate multi-layered drawing in Gimp without
ever touching their scripting abilities. A Gimp user may benefit implicitly
from the scripting abilities of the application by using bundled filters and
effects available in the application toolset that are implemented as scripts,
but from the user’s perspective these tools could just as well be built into
the application’s core. One could conceive an application where all tools are
implemented as scripts; still, if the user could use these tools as black boxes
without ever touching the programming language, this means the role of
programming is not central from an end-user perspective. For this reason, we
state that the interaction with the programming facilities needs to be explicit
in order to characterize the activity as end-user programming.

A prominent example of an application where end-user programming
takes a central role is the spreadsheet. A spreadsheet is an application with
an unusually open-ended design, in which users can create new solutions for
their domains, expressed as calculations in a formula language. Programming
is central in the sense that the programmable aspect of the application, the
formula language, is unavoidable for any use beyond the trivial case of entering
constants into cells: using the formula language is equivalent to using the
spreadsheet.

2.1.2
The three-layer architecture in end-user programmable applications

When programming support is added in a peripheral role to an applica-
tion, it is usually to provide advanced flexibility beyond what the base feature
set of the application offers: composition of features to automate workflows,
iteration to avoid repetitive tasks, interaction with the operating system. Vi-
sual Basic for Applications (VBA), embedded in Microsoft Office programs, is
an example of this.

This kind of addition also makes sense in applications where this base
feature set is provided as a programming language in a central role. This means
an application may feature programming in both central and peripheral roles.
Modern spreadsheets such as Excel are an example of this. For advanced uses,
spreadsheets also offer scripting support: “macros”, in spreadsheet parlance,
are extension functions implemented as scripts (in Excel, these scripts are
implemented in VBA). These extended functions can then be used in the
formula language.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 21

End user formulas macro recorder node editor Unix shell level editor
Domain dev macros textual macros scripting shell script game scripting

Core app spreadsheet word processor 3D app C utilities video game

Figure 2.1: Nardi’s three types of programmers and three-layer architectures
in end-user programmable systems

A three-layer general architecture like this, with an end-user language
on top, a scripting language in the middle, and the core implementation of
the application at the bottom, is a common pattern we identify in several
successful examples of applications where end-user programming is the central
form of interaction.

In “A Small Matter of Programming” (66), Bonnie Nardi reports on
studies that identified three types of people who are engaged in programming
at different levels: the end-user, who may be a sophisticated user in their own
domain but who does not particularly care about programming and just wants
to use the computer as a tool to solve problems from their domain; the domain
developer (called a “local developer” in (67), “translator” in (55), “tinkerer”
in (56)), who started as an end-user but acquired an appreciation towards
programming and is therefore more predisposed to dive into the possibilities
offered by a programmable system; and finally, the software development
professional, who had formal training in programming. Figure 2.1 maps these
kinds of users to examples of three-language architectures used by end-user-
programmable applications.

The existence of different roles among a community of users continues to
be observed (26), and the alignment between these three different user profiles
and three architectural layers does not seem to be coincidental. We believe that
this three-tier architecture is necessary in end-user programmable applications
that feature programmability as a central feature in their design. The main
user-facing language should be closer to the domain abstractions than a full-
fledged general-purpose scripting language: while a language like Python is
appropriate for scripting a 3D editor like Blender, a Python command line
would never be appropriate as the editor’s primary interface. The scripting
language exists, thus, as a feature that provides support for when the user’s
goals outgrow the possibilities of the UI-level language.

2.1.3
Scripting languages

Scripting languages complement UI-level languages in end-user pro-
grammable applications. They allow advanced users (or even programming

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 22

professionals) to provide extensions to the UI-level language when needed.
Common examples of such extensions are adding custom functions to a spread-
sheet’s formula language, or designing richer game interactions than those
available out-of-the-box in a game level editor.

This is, in a sense, an alternative look at the role of scripting. Ever since
Ousterhout’s seminal paper (73), scripting languages are primarily regarded
in relation to the core applications that sit below them: they are regarded
as higher-level alternatives to system programming languages, and as “glue”
languages that connect lower-level components. Here, we focus on higher-level
programmability of applications. In this context, scripting exists to serve the
needs of the end-user language that sits above it, providing unconstrained,
Turing-complete extensibility to a UI-level language that remains focused on
domain-specific elements. For example, while a scripting language for a 3D
editor may deal in terms of typical programmer constructs such as records,
lists and associative arrays, its end-user UI-level language should deal in terms
of domain constructs such as 3D objects, textures and lighting sources.

The evolution of scripting languages points in the direction we indicate
here. When we look at the development history of successful scripting lan-
guages such as Python and Lua, we see that these languages started out with
clear goals of being easy to program, but over the years their development
focus tends to favor adding constructs for advanced programmers. Lua grew
from having a single numeric type to having distinct floating-point and integer
numbers with bitwise operators, and gained advanced features such as corou-
tines and lexically-scoped closures. Python gradually shifted its focus away
from adding libraries with ready-made components and into improving core
language constructs. In contrast, end-user programmable applications like Lab-
VIEW and Max/MSP advertise the number of new library functions added on
each new release.

This marks a culture shift in scripting languages. The forerunner of
modern scripting languages, Tcl, was seen as inseparable from its UI library to
the point that the language was often mistakenly called “Tcl/Tk”. Nowadays,
the Python community favors adding libraries through the PIP package
manager rather than merging them into the core language1. We see similar
trends in all scripting languages, with their fledgling package managers: Perl
and CPAN, Ruby and RubyGems, JavaScript and npm, Lua and LuaRocks.

Scripting languages today are seen less as a deliberately simplified tool
for “non-programmers” and more as as a class of languages focused on rapid

1Python developer Kenneth Reitz quipped that the “standard library is where modules
go to die”, as standardizing libraries tends to slow down their evolution for the sake of
backward compatibility (74).

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 23

development, sharing some features such as dynamic type systems, automatic
memory management and dynamic code loading. As these languages evolve
and these features prove useful for programming in general, they are gaining
ground in many fields beyond those originally identified with “scripting”. Still,
scripting—in the sense of embedding the power of a full programming language
to provide advanced control of applications—remains an essential aspect of
end-user programming.

2.2
Dataflow programming

“Dataflow” is an umbrella term that refers to computation evaluation
dictated by the flow of data, the relationship between inputs and outputs in the
program, rather than explicit programmer-dictated flow of control. The term
“dataflow language” has been used to refer to various families of languages
over time. We review some of these languages here to get an outlook of what
we mean by the term.

Dataflow programs correspond to directed graphs, where nodes represent
operations on data, and arcs represent connections through which data tokens
can be sent from node to node. Operations have inputs (incoming edges
receiving data) and outputs (outgoing edges sending data). An operation
executes when all its inputs receive data tokens. The operation computes its
function, and then “fires” the result through one or more outputs, making data
available to other nodes. The order of evaluation, thus, depends exclusively
on the flow of data, hence the name. In contrast, control-flow2 oriented
languages are those that feature explicit sequencing constructs written by the
programmer: all imperative languages fall in this group. In a pure dataflow
language, evaluation order is implicit and arbitrary, and there is full referential
transparency (24). Purely functional languages certainly fit this description.
What came to be known as the dataflow paradigm, however, is a particular
style of representing these data relationships, in particular the focus on the
flow of data, and how to represent it in the face of iteration or recursion. In
any case, just like not all functional languages are pure, neither are all dataflow
languages.

2We use “dataflow” spelled without a hyphen as this is an established term in the
literature to refer to a particular class of languages; “control-flow”, on ther other hand,
is hyphenated as it refers merely to the notion of a flow of control.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 24

2.2.1
A brief history of dataflow

Early history of dataflow languages is closely tied to that of dataflow
computers. In the 1970s, dataflow hardware architectures, with large number
of processing elements interconnected to form dataflow graphs, were consid-
ered as an alternative to the von Neumann model (89). Given that the dataflow
model would be inherently parallel in its design, it was hoped that this would
overcome the difficulties of writing concurrent software and the CPU-memory
bottleneck in Von Neumann machines. Programming dataflow computers re-
quired new languages, as it was particularly hard to map traditional imperative
languages to these architectures efficiently.

The motivations of the many dataflow languages created over the years,
both textual and graphical, varied widely. In 1973, Kosinski presented DFL
(51), a graphical language for operating systems programming, and he moti-
vated the dataflow approach by requirements of paralellism and modularity.
Lucid (6) is an early example of a textual dataflow language, with a stated
goal of making a language amenable to proof reasoning that remained friendly
to imperative programmers. Their approach was to make a functional-style
language that included iteration constructs. Programs are written in single-
assignment style; in iterations, variable updates are written as next var =

exp , where occurrences of variable var in expression exp represent its value
in in the previous iteration.

Since the 1990s, the focus of dataflow languages moved away from
performance and paralellism and into software engineering territory, with
a particular growth in the field of dataflow visual programming languages
(44), of which the most prominent example in the industry is LabVIEW
(68), a commercial application for industrial automation first released in 1986
and marketed to this day, where the graphical language is tightly integrated
with the development and execution environment. More recently, research on
dataflow shifted its focus once again towards parallelism (54; 35; 31; 9).

2.2.2
Static and dynamic dataflow models

It is often desirable for dataflow programming models to allow the
representation of iteration, in which a subgraph executes multiple times. If
we consider that the only rule for firing a node is that its all inputs have data
ready for consumption, it is conceivable that the early part of a new iteration
could begin executing before the previous iteration has finished to run, in a
pipeline style of execution. Further, if the iterations of a loop have no data

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 25

dependencies between them, it should be possible to run all iterations of a
loop in parallel. These possibilities, however, complicate both the processing
and memory models.

A simple restriction that causes a major simplification to the dataflow
model is to add another rule for firing nodes: a node is fired only if all its input
ports have data tokens ready for consumption and if its output ports have no
data tokens pending for consumption by further nodes. This model is called
the static dataflow model. In the static dataflow model, memory management
is simple, as each arc in the graph represents one storage unit for a data token
(24). Synchronous languages such as Lustre (36) and Lucid (6) implement
static dataflow models.

For exploiting the full possibilities of dataflow parallelism, dynamic
models were devised. In common, they all lift the restriction that the output
ports need to be empty for a node to execute. A straightforward interpretation
of this model is that arcs now represents buffers with multiple data tokens
between nodes. Management of memory and processing units becomes more
complicated, as it becomes necessary to tag tokens with bookkeping data,
for managing concurrent flows of different iterations. Tagged-token models
support parallel loops by associating to each input value a tag, indicating which
iteration that value is a part of. A node f with input ports p1, p2...pn will feature
n queues q1, q2...qn, containing tagged values of the form (v, i), indicating a
value v for iteration i. The graph will fire f(v1, v2...vn) only when it is able to
extract from the queues a complete set of tokens {(vx, i) ∈ qx|1 ≤ x ≤ n} with
the same tag i.

There is a number of architectural challenges for implementing dynamic
dataflow models efficiently: several models were proposed, and this continues
to be an area of active research (48). The choice of dataflow execution model is
not only an implementation issue. For one, it affects language design, as typical
tagged-token models use explicit looping constructs, which mark points where
loop iteration tags in tokens should be incremented or reset (24).

2.2.3
Data-driven and demand-driven dataflow

Another major design decision when choosing a dataflow model is
whether to use data-driven or demand-driven evaluation. These modes of eval-
uation correspond to what in programming languages is conventionally called,
respectively, eager (or strict) and lazy evaluation.

Data-driven evaluation maps to eager evaluation: the availability of input
data triggers the evaluation of nodes that are connected to them, producing

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 26

data for nodes connected further ahead in the graph.
Demand-driven evaluation maps to lazy evaluation: the request of an

output causes a node connected to it to be triggered. If that node’s input
ports have data, the node will execute, producing the output. If inputs are not
available, the nodes to which these inputs are connected are then triggered,
cascading the triggering backwards until inputs are available. Once inputs are
available, nodes are evaluated and their result values propagate forward via
their output ports. This way, only the parts of the graph which produce output
data execute.

These terms come from the field of computer architecture, when dataflow
machines were proposed as alternatives to the von Neumann model. In (85),
Treleaven classified architectures as “data-driven” or “demand-driven”, but
also called data-driven architectures “data-flow computers” and demand-
driven architectures “reduction computers”. Nowadays, both models are con-
sidered styles of dataflow (38; 7).

2.2.4
Uni and bi-directional flow

A field that is closely related to dataflow languages is that of constraint-
based systems, but as we will see, these concepts are not equivalent and it is
important to establish the distinction here. Constraints allow the specification
of relationships between values—for example, one may specify the equation 9*C

= 5*(F - 32) about variables C and F representing a temperature in Celsius
and Fahrenheit, and if either C or F is updated to a new value, the other one is
recomputed so that the equation of the constraint continues to hold. Constraint
systems can be classified as one-way or multi-way: one-way constraints are
systems where each value is defined by one equation, so that constraints can
be solved by propagation as performed by spreadsheet recalculation; multi-
way constraints are those where any variable of an equation can trigger an
update and where the constraints for a variable can be expressed via a system
of equations (78).

One-way constraints are a restricted case of multi-way constraints; tradi-
tionally, dataflow systems can be seen as an example of one-way constraint
systems (23). For this reason, the term “constraint system” is more often
understood to refer to systems based on multi-way constraints: in (1), for
example, it is stated that “nondirectionality of computation is the distinguish-
ing feature of constraint-based systems”. The power of a multi-way constraint
system depends on the power and efficiency of the solver used to satisfy its
systems of equations. For example, Cassowary (8) is a widely used constraint

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 2. Background 27

solver supporting linear equations and inequalities. Since we want to focus on
core language semantics rather than solver algorithms, our work will restrict
itself to traditional dataflow languages, or, in other words, those with one-
way constraints only. From a dataflow point of view, a constraint update is a
modification of the structure of the dataflow graph.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

3
Design alternatives for dataflow UI-level languages

Research on the dataflow paradigm has seen a decrease in activity
since the early 1990s. The revolution of visual languages inspired by GUI
systems that was expected by some never came to pass, as object-oriented
programming systems remained textual. Massively-parallel dataflow hardware
architectures proved difficult to implement efficiently and are now historical
artifacts—modern GPUs obtain massive parallelism via vector processing
based on imperative machine code.

Practical use of dataflow languages, however, has not gone away, and it
is arguably more widespread than ever. Dataflow is the paradigm of choice in
a large number of programmable end-user applications. Dataflow-based UIs,
especially visual ones based on box-line graph representations, make it easy
for the user to inspect intermediate results and therefore understand what is
going on in the application (39), making the relationships between data more
concrete to the user.

So, dataflow languages continue to be created and used successfully, but
mostly away from the sphere of research. A closer look at this class of languages,
especially from the perspective of end-user programming, is long overdue. In
this chapter, we begin to explore the design space of dataflow languages by
presenting a series of design alternatives that come up in their construction.

3.1
Hils’s classification of design alternatives

In (39), Daniel Hils presented an extensive survey of dataflow visual
languages (both domain-specific and general-purpose) and produced a list of
design alternatives through which those languages can be classified in various
axes. Here, we reuse and expand upon this list while shifting our focus from
dataflow visual languages to what we call dataflow UI-level languages. We felt
it was necessary to coin this term and to make a distinction from the more
common term “dataflow visual languages” for two reasons.

First, we include “UI-level” because we want to focus only on dataflow
languages which take center stage as the application interface; in other words,
those languages that are central to the UI, and not an optional component.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 29

Design dimension Design alternatives
Box-line representation no; yes
Iteration no; limited; yes (cycles); yes (construct)
Subprogram abstraction no; yes
Selector/distributor no; yes
Flow of data uni-directional; bi-directional
Sequence construct no; yes
Type checking no; yes (limited); yes (all types)
Higher-order functions no; yes
Execution mode data-driven; demand-driven
Liveness level 1 (informative); 2 (significant); 3 (responsive); 4 (live)

Table 3.1: Hils’s design dimensions for dataflow visual languages

Being languages that are integrated into an application of a specific domain,
this classification excludes general-purpose programming languages.

Second, we avoid the term “visual” because we want to cover the entire
spectrum of languages that fall within our focus, without having to worry
whether a language is visual or not. Notably missing from Hils’s work is
the most widely used application-specific dataflow language—the spreadsheet
formula language. Granted, the relationship between data cells in a spreadsheet
is presented symbolically rather than visually, but it is remarkable how, apart
from this fact, spreadsheets would fit every other aspect of that study. Our
work is concerned with semantics and not syntax; the visual presentation of a
language is a syntactic feature.

Apart from this distinction on the criteria for selecting languages, the
list of design alternatives can be directly reused in our work. Hils’s original list
of design alternatives, summarized in Table, 3.1, can be described as follows:

– box-line representation: whether the language is presented as a visual
graph depicting nodes as boxes and edges as connected by lines or as
some other visual approach, such as hierarchical frames (this is the only
syntactic aspect discussed, but we retain it in the table for completeness);

– iteration: whether the language supports iteration, either through graph
cycles or explicit constructs for iterated execution of subgraphs (here
we expand on the original yes-no classification to consider the kind
of iteration facility and also whether some limited form of iteration is
available in languages which do not allow iterating arbitrary subgraphs);

– subprogram abstraction: whether the language supports abstracting sub-
graphs as reusable subprograms1;

1In Hils’s original article this item was called “procedural abstraction”; we changed the
term to avoid confusion.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 30

– selector and/or distributor : whether the language includes classic
dataflow constructs for directing the routing of data through a control
input. A selector is a function σ(v1, ..., vn, k) = vk, i.e. the k-th input is
forwarded to the node’s only output; a distributor is a function π(k, v),
where value v is fired to the node’s k-th output;

– sequential execution construct : whether the language breaks away from
pure dataflow by providing an explicit construct for specifying the order
of evaluation of actions, independently of data dependencies;

– type checking : in Hils’s classification, this entry discussed whether the
arcs in the dataflow graph are typed—in other words, whether the graph
is statically typed. Statically-typed graphs provide checking when con-
structing the graph, disallowing incorrect connections. A dynamically-
typed graph may still have typed tokens, resulting in type errors at run-
time only. Note that this is different from static and dynamic dataflow
models (as discussed in 2.2.2);

– higher-order functions : whether the language supports nodes that take
functions as arguments. None of the languages studied in this work
support this, and in (39) this feature was only present in general-purpose
languages and in Hils’s own scientific visualization language DataVis
(38);

– execution mode: whether the language is data-driven or demand-driven,
as discussed in Section 2.2.3;

– liveness level : a classification developed by Tanimoto (83) with a four-
level scale of liveness for visual programming tools. In level 1, “informa-
tive”, the visual representation is a non-executable auxiliary represen-
tation (like flowchart documentation for textual programs). In level 2,
“informative and significant”, the visual representation is the executable
program, but program editing and execution are separate activities. In
level 3, “informative, significant and responsive”, editing the visual rep-
resentation triggers updates to the evaluation of the program; there are
no separate edit and execution modes. In level 4, “informative, signif-
icant, responsive and live”, the system updates continuously, updating
the visual representation in response to data updates, and not only to
user inputs. The liveness level affects the evaluation rules of the language,
since levels 3 and 4 allow changing the dataflow graph dynamically.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 31

Design dimension Design alternatives
Dataflow model static; dynamic
N-to-1 inputs no; yes (auto-merge); yes (queueing)

Time-dependent firing no; yes
Rate-based evaluation no; synchronous; cyclo-static; quasi-static; dynamic

Separate program and UI no; yes
Indirect connections no; yes (static); yes (runtime-evaluated)
Textual sub-language no; yes (functional); yes (imperative)

Table 3.2: Additional design dimensions for dataflow end-user languages

3.2
An extension to Hils’s classification

In addition to the axes of comparison proposed by Hils, we identified
a number of additional criteria to compare these languages. This new list of
design alternatives for dataflow languages both informed and was informed
by the study of existing end-user applications and their languages, which we
will present in the following chapters. We hereby present an extension to the
classification proposed by Hils, summarized in Table 3.2, which we believe
helps to compare end-user applications of different domains and shines a light
on the semantic aspects of their underlying programming languages.

3.2.1
Dataflow model

Apart from the classification between data-driven and domain-driven
dataflow, perhaps the most important distinction in terms of semantics for a
dataflow language is whether its dataflow model is static or dynamic, according
to definitions presented in Section 2.2.2.

The choice between static and dynamic dataflow models embodies typical
computing trade-offs. The static model, with a single data token present per
edge, is simpler, and thus easier to implement and also keeps memory use
under control. The dynamic model, while more complex, may produce a more
efficient execution, maximizing the opportunities for exploiting parallelism.

The question of which one is easier to understand, especially in the
context of end-user programming, is not at all obvious. On the one hand,
the static model is conceptually simpler and program execution may be easier
to introspect. On the other hand, from the user’s point of view the restrictions
may seem arbitrary: in a number of situations the user may justifiably want
to specify cycles (iterative financial calculations, audio-delay feedback, etc.);
the dynamic model may present a more free-form experience for the user. Still,
misusing cycles is an easy way for the user to make their program go haywire.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 32

3.2.2
N-to-1 inputs

A practical question that is closely related to the dataflow model is
whether the language allows what we will call “N-to-1 inputs” into a node. A
node in a dataflow graph represents a unit of functional execution and may have
multiple inputs, akin to a function f(a, b, c) with multiple input arguments.
The question here is whether the language allows multiple edges connecting
to a single input port in a node—in our analogy, that would mean having
multiple incoming values for argument a available at the time of executing f .

Traditional static dataflow models usually forbid N-to-1 inputs. When
two input signals are to be entered to a single input port, an explicit “merge”
node needs to be added, which applies some logic to decide which of the inputs
is forwarded to the node.

When N-to-1 inputs are allowed, the language needs a policy for dealing
with them. Languages employing a dynamic model featuring input queues
may naturally allow data from different sources into a single queue. In static
dataflow models, N-to-1 inputs may be allowed by making the merge operation
implicit.

It is interesting to note that depending on the representation of the
dataflow graph, N-to-1 inputs can be not only semantically disallowed, but
be made impossible to express syntactically. In a typical textual language, one
simply cannot pass two different variables at once to the first argument of a
function. That is the case, for example, in spreadsheet formula languages.

3.2.3
Time and rate-based evaluation

An aspect of program evaluation that is not so much a design decision as
it is a domain-dependent requirement is the need to take time into account. If
a programmable application needs to process events which happen in a time-
dependent manner or according to fixed rates, that needs to be reflected in
its language. Still, when this necessity arises there is still a design space to be
explored on how to handle it.

There are two ways to consider the issue of time. One is that of rate-
based execution, which refers to the need of consuming or producing data at
a certain frequency. The other is that of time-dependent nodes, that is, nodes
that behave differently depending on the time when they were fired (90).

The handling of rate-dependent data often brings performance concerns.
Outside of the world of end-user programming, the signal-processing commu-
nity has been using dataflow models for decades for handling data streams

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 33

efficiently, while taming the complexity of dynamic dataflow models. Static
dataflow models have not only bounded memory, but their scheduling can
also be determined ahead-of-time, allowing for efficient compilation. However,
handling one token at a time is a severe limitation for stream processing. Syn-
chronous dataflow (52) is an extension of the model in which the number
of data samples produced or consumed by each node on each invocation is
specified a priori. It still allows compile-time memory and scheduling analy-
sis. Cyclo-static dataflow (14) extends the expressiveness of the synchronous
model while retaining its analysis properties. In it, the consumption and pro-
duction rates for a node can vary over time, respecting a predetermined cycle.
A number of other models have also been proposed to further extend the model
of computation: quasi-static models such as boolean-controlled dataflow (17)
and parameterized dataflow (13) attempt to restrict dynamic scheduling to
data-dependent nodes while statically scheduling the rest of the graph, with
further enhancements continuing to be an area of research (27; 81).

Time-dependency is closely related to rate-dependency, since predictable
rates at a known clock speed results in predictable times, but rate-based
evaluation may also be motivated by concerns other than time, such as memory
efficiency as buffer sizes can be minimized with optimized schedules. Time-
dependent execution refers to all sorts of dependency on time, such as nodes
that return the current time, delay nodes that pause for a given number of
microseconds, and so on. Supporting this kind of nodes has its own set of
concerns as it can bring a level of indeterminacy to the evaluation, affecting
scheduling.

In the context of end-user programming, an application with rate-
dependent data processing may combine rate-based and non-rate-based events
(e.g. handling audio streams and button clicks). The interaction between these
two worlds in the evaluation engine of the language also needs to be taken into
account.

3.2.4
Separate programming and use views

Another design decision that is worth observing in an end-user pro-
grammable application is whether it presents separate interface views for edit-
ing the dataflow program and for using the resulting user-written program, or
whether use of the program happens in the same interface where it is edited. By
“separate interface views” we mean here completely distinct presentations: for
example, one “edit” view presenting a box-line diagram as the user constructs
their program and a “use” view presenting a form when they use it.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 34

Note that this is different from the question of having separate “edit”
and “use” modes in the first place, which is the distinction between Tanimoto’s
liveness levels 2 and 3 (83). These design aspects are orthogonal: an application
may present separate “edit” and “use” modes within a single UI paradigm,
characterizing liveness level 2; or it could feature distinct UIs for use and
editing and yet allow those to be used simultaneously and in a responsive,
non-modal manner matching liveness level 3 or 4.

While strictly speaking the existence of separate views for development
and use is a matter of presentation, and hence with immediate effects on
syntax, we claim that this design decision is most closely related to a language’s
pragmatics: having the “source program” always visible or not is a clear
indicator of the language’s intended mode of use. A language which conflates
the use and programming interfaces clearly intends the user and programmer
to be one and the same, while a language with separate interfaces for these
two scenarios may also steer people towards different roles. Most important to
our concerns, here, is whether this design choice for the application affects the
overall design of its programming language.

It is also important to note that having separate UIs for creating the
user-developed program and using it doesn’t mean that the language is at
a lower layer according to the architecture discussed in Section 2.1.2. The
language continues to be UI-level as long as the main interface for producing
documents in the application consists of the environment for interacting with
the language. This does not change if once the user is done composing the
document (that is, writing the program), they switch to another UI mode for
using it.

3.2.5
Indirect connections

Dataflow programs are constructed as graphs, and applications using
this model need to employ some representation to depict nodes and their
connections. The explicitness of relationships between units of computations
is arguably a big part of the appeal of dataflow for end-user programming.
However, as programs grow in size, graph representations can grow unwieldy.
Scalability in visual representations is a concern, embodied in the folk aphorism
known as the “Deutsch limit”, which states that visual languages cannot have
effectively more than 50 visual primitives on screen at the same time (58).
A way around this issue is to introduce indirect connections. This presents
a trade-off, however: while it reduces visual clutter, it does away with the
aforementioned explicitness of relationships.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 35

This is not only a matter of representation, and this becomes clearer
when we consider the most popular example of indirect connection in textual
languages: a pointer. Indirect connections whose targets are determined at
runtime, such as pointers and references, increase the expressive power of the
language. This can also have far-reaching impacts to its semantics. For one,
node scheduling can no longer be performed statically. In opposition, if the
target of an indirect connection is constant, this indirect connection is not
unlike a connector in old flowcharts, used to transfer flow from one page to the
next.

3.2.6
Textual sub-language

The final dimension of design we enumerated is the presence or absence
of a textual sub-language included within the UI-level language presented to
the user.

The presence of textual sub-languages is a common pattern, even in visual
languages. A typical use for them is representing mathematical expressions,
since textual syntax based on mathematics such as a - b + 5 is natural and
even some computer conventions such as * and / for multiplication and division
have become broadly understood.2

We are also interested in the paradigm of this textual sub-language, as
it is indicative of the level of integration with the dataflow language as a
whole. A functional sub-language is a natural match to the host dataflow
language, representing solely a syntactic shortcut. If the textual sub-language
includes imperative features, however, this necessarily means that it goes
beyond dataflow and extends the core language’s semantics.

3.3
Non-dataflow UI-level languages

To make the boundaries of our scope clearer, it is worth dedicating a few
words to UI-level languages that fall outside of the dataflow model.

Since end-user applications tend to be in general document-centric, with
the user interface dominated by the “current document” and the interaction
focusing on manipulating this document, it is natural that data-oriented
approaches become appealing choices when one wants to enable end-user

2One might argue that even in typical programming languages, the sub-grammar of
mathematical expressions (including relational and logical operators) is an embedded
domain-specific language of its own, as it usually contains a number of syntactic rules that
do not apply anywhere else in the language, such as infix operators and precedence rules,
and that are often similar even in languages which otherwise vary widely.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 36

programming. However, we do not claim that dataflow languages are the best
model of programmable interaction for all kinds of end-user applications.

For example, applications employing a storytelling paradigm (53; 62)
benefit from a control-oriented model. In these scenarios, the fundamental
building block for the user’s programming experience is the sequencing con-
struct: “this happens, then that happens”. Sequencing is notably absent in the
pure dataflow model. However, as we will see in Chapter 6, a dataflow language
may include it to simplify operations involving timing.

It is possible to combine data and control flow in graphs. That is the case
of Blueprints3, the graphical language used for gameplay scripting in the Unreal
game engine. There are different kinds of edges in the graph, representing
either data connections in dataflow style, or control-flow sequencing. Typical
Blueprints programs, however, are of an imperative nature, and the resulting
graph resembles a traditional flowchart. This kind of language, therefore, falls
beyond our intended scope in the discussion of dataflow semantics.

3.4
Case studies

In the following chapters, we will present in-depth case studies analyzing
the semantics of three end-user programmable applications:

– Pure Data, a multimedia application focused on audio synthesis widely
used by the computer music community;

– the spreadsheet formula language, as used in Excel, LibreOffice and
Google Sheets;

– LabVIEW, an engineering application focused on data acquisition.

Those languages were chosen because of their relevancy, their distinct domains,
and because they cover different points of the language design space in many
aspects. We modelled their semantics by implementing definitional interpreters
for them in Haskell, written in the style of structural operational semantics.
Each interpreter is written as a set of evaluation functions, one for each
language construct. As a whole, this set serves as a specification of the language
being interpreted. These functions take as inputs the current state of the
execution environment and a language construct to be evaluated, and return
the new state of the environment after evaluation of the construct.

The interpreters do not intend to be a complete specification of each
language, but aim to capture the notable features of their semantics. We will
discuss the languages in terms of the various design dimensions presented in

3https://docs.unrealengine.com/latest/INT/Engine/Blueprints/

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 37

this chapter. We will see to which extent these languages are purely declarative,
how time affects the flow graph, the semantics of iteration constructs, their
support for abstraction, and so on. In these studies, we identify the common
patterns that are present, assessing to which extent those languages are
“variations on a theme”. We also pinpoint aspects where their ad hoc designs
show.

The underlying goal is to understand the required functionality expected
by applications for dataflow-based interfaces and how different languages solve
similar problems. Also, having these interpreters side-by-side allows us to
reason on the designs of those languages under similar terms.

3.5
Discussion: On the use of definitional interpreters

Providing the definition of a language through the use of a definitional
interpreter written in another language is a classic technique for describing
semantics. In his 1972 paper, Reynolds (76) describes the process of writing
definitional interpreters, introducing the idea of defunctionalization and an
early description of continuations. Both techniques were put to use in our
interpreters.

Writing an interpreter for a language, at first glance, seems like a way
to unavoidably consider its entire semantics, since all constructs need to be
described in the precise language of computer code. However, as observed by
Reynolds, the primary concern when writing a definitional interpreter is being
aware of which aspects of the language used to implement the interpreter
(which Reynolds calls the defining language) leak into the semantics of the
language to be interpreted (called the defined language). Using a construct of
the defining language to implement the same construct in the defined language
gives us a working implementation, but fails to describe what the semantics of
the construct is.

In our interpreters, we made conscious decisions of which semantic
aspects to explicitly implement and which ones not to. Aspects which are not
related to the dataflow evaluation logic are orthogonal to our discussion and not
of particular interest, so they were simply reused from the defining language, in
our case, Haskell: the addition of numbers, for example, is simply the addition
as in Haskell, with the same overflow rules, etc. Aspects which are crucial to
the dataflow logic were carefully separated: Haskell’s lazy evaluation semantics
do not leak into our defined languages (interpreters are defunctionalized, so
both eager and lazy evaluation are explicitly implemented). We also avoided
the more sophisticated features of Haskell such as monads and type classes,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 3. Design alternatives 38

using the language as much as possible as a form of executable λ-calculus
(albeit one with a considerable amount of notational convenience). We hope
that this will also prove beneficial for the reader unfamiliar with Haskell. At
the same time, we consider a description written in a programming language
to be more in line with the interdisciplinary nature of this work, as opposed to
one written in the notation of operational semantics used by the programming
language community.

It is important to stress here that a definitional interpreter is not written
as a “prototype” interpreter. A prototype is typically a concise implementation
of a subset of a program, written to give an idea of how the final product
would work. Our concern in a definitional interpreter is with the precise
specification of the defined language, and while we are implementing subsets
of languages, we sacrifice concision whenever precision is important. The end
result is quite different from a typical prototype. In particular, no care is given
to performance: time, for example, is implemented by simulating the clock and
incrementing it manually, resulting in a deterministic and precise description
of events.

Finally, using an executable interpreter provides us with an easy way
to test our implementation (and hence our definition) with larger, somewhat
more practical examples.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

4
Case study: Pure Data

Pure Data (75) (also known as Pd) is a graphical language originally
designed for music and later expanded for multimedia in general via extension
packages. It is widely used in the computer music community (18), and is
the free software successor of the successful commercial product Max/MSP1,
created by the same author.

4.1
Overview of the language

In this section, we give a presentation of the application, which doubles
as an overview of its UI-level language. When a user opens Pure Data, they
are greeted with a main window which contains the main menu and a blank
log panel. The user’s first step is to create a new file or open an existing
one, which then opens a canvas window where the dataflow graph representing
audio synthesis operations is edited and used.

4.1.1
Nodes and values

In Pure Data, a program, called a patch in Pd jargon2, is represented as
a graph of nodes (operations) and edges (the flow of data between them). The
user creates nodes of different kinds in a canvas and connects them via wires.
Some of these nodes are interactive, triggering the output of audio waves or
changing the parameters that control the shape of these waves.

Data flowing between nodes may be either discrete messages (numbers,
strings, or lists of these base types) or audio data. Nodes in Pure Data
have creation arguments, input ports (inlets) and output ports (outlets). The
creation arguments are the initial contents of nodes, given by the programmer
via a simple textual language. A node is of one these types:

– atom box - represents a value which can be edited by the user while in
run mode; editing the value (typing a new number or via the mouse scroll
wheel) sends the updated value through its output port;

1https://cycling74.com/products/max/
2In this section, terms in Pd jargon are presented in italics.

https://cycling74.com/products/max/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 40

Figure 4.1: A patch demonstrating the oscillator node osc~, based on an
example from the Pure Data documentation.

– message box - can be clicked by the user while in run mode, producing
one or more messages;

– graphical objects - receive data and represent it visually, for example, as
a plot;

– plain objects - represent Pd functions. There are two kinds of Pd
functions: those that operate on discrete messages only, and those that
operate on audio streams (denoted with a “~” suffix in their names);
accordingly, inlets and outlets are also identified as handling messages,
audio or both. An object implementing an audio-processing function may
have both message and audio inlets and outlets. A non-audio object may
only send and receive messages.

Figure 4.1 gives an illustrative example of a Pure Data patch. Thin lines
are message connections, thicker lines are audio connections; their types are
determined by their outlets. Boxes with a slanted top-right corner are atom
boxes, editable in “run mode”; boxes with a recessed right side are clickable
message boxes.

This program produces a 880Hz sine wave (via the the [osc~] object),
which has its amplitude multiplied ([*~]) according to a linear function
([line~]) prior to being sent to the DSP3 output ([dac~], as in “Digital-to-
Analog Converter”). The sine wave is also sampled at a rate of 500Hz ([metro

500]) into a visual representation ([tabwrite~ view]). The user may interact
with the program by setting a new frequency to the oscillator (typing in new
values in the atom box that initially contains “880”), by clicking the message
boxes that reconfigure the linear function ([0 100], which will configure [line~]
to produce a slope from its current value to 0 over the course of 100ms, or
“0.1 1000”, which will cause the value to slide to 0.1 over 1s) or by toggling

3Digital Signal Processing

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 41

the update of the graph by sending the value [0] or [1] to [metro 500], done
here via an indirect connection for demonstration purposes, sending the value
through a receiver object declared as [receive toggle]. We will expand on
these concepts below.

4.1.2
Graph evaluation

Pure Data has two modes of execution: an edit mode in which the
graph structure can be edited, and a run mode in which input values can
be produced by interacting with the graph. The DSP engine can be toggled on
or off independently of the mode of execution. Most importantly, the dataflow
program is running at all times: the user can create nodes in the graph, switch
to run mode, trigger a loop that produces audio waves, return to edit mode
and modify the graph while the loop is still running.

Execution in Pure Data is synchronous. The tree of DSP nodes is
processed periodically, updating their buffers and propagating audio data.
A complete propagation of audio is called a DSP tick, during which only
audio nodes are processed. When an input or timing event happens, the entire
cascade of messages produced is processed in sequence, before the next DSP
tick (75). This means that excessive processing of messages may produce
noticeable audio drop-outs, but the audio buffer with a user-specified size
mitigates this.

It is possible to wire nodes in the Pd interface so that cycles in the graph
are created. If those graphs involve audio wires, the resulting loops in the
audio processing chain are detected and propagation is halted. When cycles
happen in the message flow, messages may also produce infinite loops, but
being dynamic they cannot be detected a priori: those are caught during run
mode, reporting a stack overflow.

4.1.3
Messages and the textual sub-language

Nodes in Pure Data are similar to spreadsheet cells, in the sense that
they are primarily containers for a textual language. Once the user selects
“Object” or “Message” in the “Put” menu, a new node with the corresponding
shape appears in the canvas and the keyboard focus switches to it immediately.
The user then types in the contents of the node, based on which Pure Data
determines its number of inlets and outlets, which appear as connectors at the
top and bottom of the node’s box. For example, in Figure 4.1 node [metro

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 42

500] has two inlets (with only the left one connected) and one outlet; node
[dac~ 1] has only one inlet and no outlets.

When editing the graph, apart from connecting outlets to inlets and
positioning nodes, everything else is done with the textual language. It is a
very basic imperative command language, more similar to the language of
primitive interactive shells than that of typical programming languages. When
a command is entered in an object box, the first token represents the internal
function to be executed (e.g. [osc~], [metro]) and the remaining tokens are
arguments to that function. In message boxes, multiple commands may be
entered, separated by a semicolon. The first command is always a message
to be sent through the outlet of the message box; in subsequent commands,
the first token is the receiver and the remaining tokens are messages. Values
received in inlets are available for token substitution using numbered variables
such as $1.

The system of messaging via named receivers allows the program to
send data between nodes that are not explicitly linked via connections. The
relationship between a message and a receiver can be thought of as an implicit
edge in the dataflow graph. Since the textual language of messages supports
variable arguments fed via input ports and the first argument of a command
can be set to a variable, receiver destinations can change during execution:
this makes the dataflow graph, in effect, mutable at runtime. This, however,
is limited to discrete messages, and only the destination of a message can be
changed at runtime, and not the identifier a receiver is “listening” to. The flow
of audio data cannot be re-routed while in run mode, but disconnections can
be simulated multiplying a signal by 0.

A precise definition of the language semantics will be given in Section 4.2,
but to give a feel of the language we will describe two examples from Figure 4.1.
The first example is the simplest use of message boxes: message box [0 100]
simply sends tokens 0 and 100 to [line~] when clicked. The second example
demonstrates variable substitution and indirect connections. When the user
clicks message boxes [0] or [1], this feeds the value to message box [;pd dsp

$1;toggle $1], which contains three commands. The first command is empty,
indicating there is nothing to be sent to the outlet port. The second command
is sent to receiver pd, which is Pure Data’s internal receiver—here it is used
to enable or disable the audio engine. The third command sends the value 0

or 1 to the user-defined receiver toggle.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 43

(a) (b) (c)

Figure 4.2: Behavior of hot and cold inlets in Pure Data

4.1.4
Node triggering

To avoid triggering functions with multiple arguments many times, as the
input arguments arrive through different paths of the graph, Pure Data has
the notion of hot and cold input ports. Only the hot inlet triggers the node;
data arriving to a cold inlet stays buffered there and is only consumed when a
hot input port is triggered. This allows, for example, to create a “float” node
that increments its value every time it is triggered, by sending its output to an
increment node (“+ 1”) and sending the result back via a secondary, cold inlet
(see Figure 4.2(a)). This will not create an infinite loop, because the result of
the increment will only be consumed next time the hot inlet of the node is
triggered.

Due to the way Pure Data handles messages, for some node types the
order in which connections are performed in its interface can change the
semantics of the resulting graph, so that two visually identical graphs can
produce different results, depending on the order in which the lines between
nodes were drawn in the UI. This behavior is documented as a possible user
pitfall in the documentation (75). The example in Figure 4.2(b) was taken
directly from the documentation, which says: “Here, I connected the left
inlet before connecting the right hand one (although this is not evident in
the appearance of the patch)”. In fact, disconnecting node [6] from [+] and
connecting the left inlet first makes it work as intended, updating the bottom
box with the double of the top box as we edit the value at the top. The
documentation suggests as a workaround disambiguating the graph by using
the object [t] (shorthand for [trigger]), which triggers its outlets from right
to left, as depicted in Figure 4.2(c).

4.2
An interpreter modeling the semantics of Pure Data

We produced an executable model of the core semantics of Pure Data
(75; 91) written in Haskell, which includes stateful nodes for multiple data
types, message and audio objects, identifier-based message passing and the
intra-node language for message objects.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 44

Our model implements a simulation of the run mode, in which the
graph is fixed and input events are fed into it. It replicates the synchronous
behavior of Pure Data, processing cascades of message events and DSP ticks
for propagating audio buffers. It does not implement “abstractions” (which
is Pure Data jargon for loading subprograms from separate files), and dollar-
expansion in object boxes, which is only used when loading abstractions. Still,
our model is complete and precise enough so that the numeric values produced
in audio buffers can be converted to a sound file format and played back.

This entire section describing the interpreter was written in Literate
Haskell (40), and is a description of the entire interpreter, including its
complete listings. The text was written so that it should be understandable
without a detailed reading of the source code, but the sources are nevertheless
included for completeness and as supporting material for the interested reader.
The source code in .lhs format (LATEX with embedded Haskell) is also available
at https://hisham.hm/thesis/.

This implementation uses only standard modules included in the Haskell
Platform:

import Data.Sequence (Seq , fromList , index , update, foldlWithIndex)

import qualified Data.Sequence as Seq (length)

import Data.Foldable (foldl ′, toList)

import Data.List (sort , intercalate, find)

import Text .Printf

import Data.Fixed

import Data.Binary .Put

import qualified Data.ByteString .Lazy as ByteString

import Control .Monad

import Debug .Trace

4.2.1
Representation of programs

A Pure Data program (called a “patch”) is represented with the PdPatch

data type in our model, which contains a sequence of nodes, a sequence of
connections between nodes, and the pre-computed topological sort of audio
connections (stored as a list of integer indices).

data PdPatch = PdPatch {
pNodes :: Seq PdNode,

pConns :: Seq (·B ·),

https://hisham.hm/thesis/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 45

pDspSort :: [Int]

}

The primitive values in Pure Data are called “atoms”: they can be
numbers, strings (called “symbols”) or opaque pointers. Opaque pointers are
used by graphical objects only, so those will be omitted here.

data PdAtom = PdFloat Double

| PdSymbol String

deriving (Eq ,Ord)

instance Show PdAtom where

show (PdFloat f) = show f

show (PdSymbol s) = s

Nodes may be objects, atom boxes or message boxes. In Pure Data,
objects are initialized via “creation arguments”: a string of arguments, repre-
sented here as a list of atoms. We also store in an object its number of inlets
and outlets. Atom boxes and message boxes always have one inlet and one
outlet each.

data PdNode = PdObj [PdAtom] Int Int

| PdAtomBox PdAtom

| PdMsgBox [PdCmd]

deriving Show

Message boxes contain commands written in the textual sub-language of
Pure Data. Here, we represent commands not as a string, but in parsed form,
consisting of a receiver and a list of tokens (which may be literal values or
numbered references to inlet data (written $n in the textual language). Note
that a single message box may contain a number of messages.

data PdCmd = PdCmd PdReceiver [PdToken]

deriving Show

data PdReceiver = PdToOutlet

| PdReceiver String

| PdRDollar Int

| PdReceiverErr

deriving Show

data PdToken = PdTDollar Int

| PdTAtom PdAtom

deriving Show

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 46

Finally, we represent the connections of the graph as a sequence of
adjacency pairs, where each pair is represented as a (·B·) value, itself composed
of two pairs: the node index and outlet index for the source, and the node index
and inlet index for the destination. Throughout the interpreter, we will often
use the names (src, outl) and (dst, inl) to refer to those indices.

data (·B ·) = ((Int , Int) B (Int , Int))

deriving Show

4.2.2
Representation of states

The representation of a state in our interpreter is a structure containing
the following values: the step count, which will double as our timestamp, since
Pure Data has time-based execution; the state for each node; the text contents
of the Pd logger window; and future events scheduled by the interpreter.

data PdState = PdState {
sTs :: Int ,

sNStates :: (Seq PdNodeState),

sLog :: [String],

sSched :: [PdEvent]

}
deriving Show

The state for each node, on its turn, contains a sequence of atom buffers,
one for each inlet, and an internal memory (represented as a list of atoms).
Memory consumption during execution is therefore variable, characterizing a
dynamic dataflow model.

data PdNodeState = PdNodeState (Seq [PdAtom]) [PdAtom]

deriving Show

We represent events with a timestamp, the node index indicating which
node was triggered, and a list of atoms representing the event data (such as
the number entered by the user in an atom box).

data PdEvent = PdEvent {
eTs :: Int ,

eNidx :: Int ,

eArg :: [PdAtom]

}
deriving (Show ,Eq ,Ord)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 47

4.2.3
Execution

The execution mode of Pure Data is data-driven. The user triggers events
via its interface, and those events cause a cascading series of firings. The user
may trigger events by clicking nodes or entering numbers (possibly using MIDI
devices, which are functionally equivalent to entering numbers).

4.2.3.1
Main loop

The execution of the interpreter, therefore, is a loop of evaluation steps.
The driver function takes a number of steps, the patch to run, a list of timed
events, accumulating a list of states. We are interested in all states, not only
the final one, because we want to be able to inspect the results of the execution
over time.

Note that the patch itself, p, remains unchanged over time. This is
typical of a language with liveness level 2: the patch cannot be modified during
execution.

runSteps :: Int → PdPatch → [PdEvent]→ [PdState]

runSteps nSteps p events =

reverse $ snd $ foldl ′ acc (events , [initialState p]) [0 . . (nSteps − 1)]

where

absTime :: [PdEvent]→ Int → [PdEvent]

absTime evs ts = map (λe → e {eTs = (eTs e) + ts }) evs

acc :: ([PdEvent], [PdState])→ Int → ([PdEvent], [PdState])

acc (events , states@(s : ss)) step =

(sort (evsnext ++ absTime (sSched s ′) step), s ′ : states)

where

(evscurr, evsnext) = span (λ(PdEvent ts)→ ts ≡ step) events

s ′ = runStep p (s {sSched = []}) evscurr

The loop above extracts the sublist of relevant events for the current
timestamp, and hands it over to the main evaluation function, runStep, which,
given a patch, the current state, and a list of events, produces a new state.

Processing a step may produce new future events to be scheduled. These
are sorted along with the existing events of the input. Runtime events are
produced by the interpreter using relative timestamps (where 0 means “now”),
so we adjust them to absolute time using auxiliary function adjTime.

The function runStep processes events and the DSP tree. Following the
specified semantics of Pure Data, this happens in an alternating fashion: all

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 48

pending messages for a given timestamp are handled, and then the entire DSP
tree is processed.

runStep :: PdPatch → PdState → [PdEvent]→ PdState

runStep p s events =

let

s ′ = runImmediateEvents p $ foldl ′ (runEvent p) s events

s ′′ = if (sTs s) ‘mod ‘ 2 ≡ 0

then runDspTree p s ′

else s ′

in

s ′′ {sTs = (sTs s) + 1}

In our model, the DSP tree is processed at half the rate of the message-
based events (hence, runDspTree is called at every other run of runStep).
Assuming that a step in our interpreter is 1 ms, this means the DSP engine
runs once every 2 ms (the default configuration of Pd runs the engine every
1.45 ms; with a 64-sample buffer, this amounts to an audio sample rate of
44,100 Hz — with this simplification in our interpreter, we get 36,000 Hz).

The Pure Data documentation specifies that "In the middle of a message
cascade you may schedule another one at a delay of zero. This delayed cascade
happens after the present cascade has finished, but at the same logical time".
So, events scheduled during the current step with a relative timestamp set to
zero are immediately executed before running the DSP tree:

runImmediateEvents :: PdPatch → PdState → PdState

runImmediateEvents p s =

let z = [ev | ev ← (sSched s), eTs ev ≡ 0]

in if z ≡ []

then s

else runStep p s z

4.2.3.2
Event processing

Two kinds of events can be triggered by the user. Message boxes may be
clicked, processing all commands stored inside them, or new numeric values
may be entered into atom boxes. We do it producing a synthetic firing of the
relevant node.

runEvent :: PdPatch → PdState → PdEvent → PdState

runEvent p s event@(PdEvent ts iN args) =

fire p (index (pNodes p) iN) args (iN , 0) s

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 49

The fire function invokes the appropriate action for a node, producing a
new state.

fire :: PdPatch → PdNode → [PdAtom]→ (Int , Int)→ PdState → PdState

Depending on the type of node, we perform different actions. For message
boxes, we feed the incoming atoms into the inlet, and then we fold over its
commands triggering them, like when they are clicked by the user. As we will
see below in the definition of runCommand , this may fire further nodes either
directly or indirectly.

fire p (PdMsgBox cmds) atoms (iN , inl) s =

let

(PdNodeState ins mem) = index (sNStates s) iN

ns ′ = PdNodeState (update inl atoms ins) mem

s ′ = s {sNStates = (update iN ns ′ (sNStates s))}
in

foldl ′ (runCommand p iN) s ′ cmds

For objects and atom boxes, we hand over the incoming data to the
sendMsg handler function, which implements the various behaviors supported
by different Pure Data objects. The function sendMsg returns a tuple with the
updated node state, log outputs produced (if any), data to be sent via outlets
and new events to be scheduled. We update the state with this data, adjusting
the node index of the returned events to point them to that of the current
node (iN): a node can only schedule events for itself. Finally, we propagate the
data through the outlets, processing them from right to left, as mandated by
the Pure Data specification.

fire p node atoms (iN , inl) s =

let

ns = index (sNStates s) iN

(ns ′, logw ′, outlets , evs) = sendMsg node atoms inl ns

s ′ = s {
sNStates = update iN ns ′ (sNStates s),

sLog = (sLog s) ++ logw ′,

sSched = (sSched s) ++ (map (λe → e {eNidx = iN }) evs)

}

propagate :: PdState → ([PdAtom], Int)→ PdState

propagate s (atoms , outl) =

if atoms ≡ []

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 50

then s

else forEachInOutlet p (iN , outl) atoms s

in

foldl ′ propagate s ′ (zip (reverse outlets) [length outlets − 1 . . 0])

When propagating data, we send it to every connected outlet of a node.
A node may have multiple outlets and multiple nodes can be connected to
a single outlet. This function takes the patch, a (node, outlet) pair of indices
indicating the source of the data, the data itself (a list of atoms), and the
current state. It folds over the list of connections of the patch, firing the data
to the appropriate inlets of all matching connections.

forEachInOutlet :: PdPatch → (Int , Int)→ [PdAtom]→ PdState → PdState

forEachInOutlet p srcPair atoms s =

foldl ′ handle s (pConns p)

where

handle :: PdState → (·B ·)→ PdState

handle s (from B (to@(dst , inl)))

| srcPair ≡ from = fire p (index (pNodes p) dst) atoms to s

| otherwise = s

Pure Data commands are written in its textual language. Commands
may include references to data obtained via inlets of the node using the $n

notation. For example, sending 10 20 to a message box containing pitch $2

velocity $1 connected to an object box print will print to the log window
the string pitch 20 velocity 10.

In function runCommand below, we run a given command cmd on a node
(with index iN) by first obtaining the inlet data currently stored in the node
state. Then we perform $-expansion on the command’s tokens. Then, based
on the receiver of the message, we route it through the graph (forwarding it
to every outlet, in a classic dataflow fashion) or symbolically, sending it to all
objects configured as a receivers for the given name.

runCommand :: PdPatch → Int → PdState → PdCmd → PdState

runCommand p iN (PdState ts nss logw evs) cmd =

let

(PdNodeState ins mem) = index nss iN

inletData = index ins 0

(recv , atoms) = dollarExpansion cmd inletData

ns ′ = PdNodeState (update 0 [] ins) mem

nss ′ = update iN ns ′ nss

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 51

s ′ = PdState ts nss ′ logw evs

in

case recv of

PdToOutlet →
forEachInOutlet p (iN , 0) atoms s ′

PdReceiver r →
forEachReceiver p r atoms s ′

PdReceiverErr →
printOut [PdSymbol "$1: symbol needed as msg destination"] s ′

The process of $-expansion is a simple substitution, where the receiver
must be a string. Invalid indices are converted to zero. (In Pure Data, they
also produce an error message to the log window, but here we omit this for
brevity.) We also handle here a few syntactic shortcuts: a message with a sole
number like 1.0 expands to float 1.0; lists starting with a number get the
prefix list.

ffor a f = fmap f a

dollarExpansion :: PdCmd → [PdAtom]→ (PdReceiver , [PdAtom])

dollarExpansion (PdCmd recv tokens) inlData =

(recv ′, atoms ′)

where

inlAt n = if n < length inlData then inlData !! n else PdFloat 0

recv ′ =

case recv of

PdRDollar n →
case inlAt n of

PdSymbol s → PdReceiver s

→ PdReceiverErr

→ recv

atoms ′ =

normalize $ ffor tokens (λtoken →
case token of

PdTDollar n → inlAt n

PdTAtom atom → atom

)

normalize atoms@[PdFloat f] = (PdSymbol "float" : atoms)

normalize atoms@(PdFloat f : xs) = (PdSymbol "list" : atoms)

normalize atoms = atoms

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 52

Indirect connections are handled similarly to outlet connections, but
instead of folding over the list of connections, we fold over the list of nodes,
looking for objects declared as receive name. Note that the search happens
over the statically-declared list of nodes of the patch. While it is possible
construct a message at runtime and determine the receiver dynamically, it is
not possible to change the identifier of a receive node at runtime.

forEachReceiver :: PdPatch → String

→ [PdAtom]

→ PdState → PdState

forEachReceiver p name atoms s =

foldlWithIndex handle s (pNodes p)

where

handle :: PdState → Int → PdNode → PdState

handle s dst (PdObj (PdSymbol "receive" : (PdSymbol rname :)))

| name ≡ rname = forEachInOutlet p (dst , 0) atoms s

handle s = s

4.2.3.3
Audio processing

The processing of audio nodes is very different from that of message
nodes. Before execution, the audio nodes are topologically sorted, producing
an order according to which they are evaluated on each DSP update. For
simplicity, we do not compute this order at the beginning of execution, and
merely assume it is given as an input (in the dspSort field of p).

As the list of nodes is traversed, each object is triggered (applying the
performDsp function) and then the new computed value of its audio buffer is
propagated to the inlets of the nodes to which it is connected.

runDspTree :: PdPatch → PdState → PdState

runDspTree p s =

s {sNStates = nss ′}
where

dspSort = pDspSort p

nss ′ = foldl ′ handle (zeroDspInlets (sNStates s) dspSort) dspSort

handle :: (Seq PdNodeState)→ Int → (Seq PdNodeState)

handle nss iN =

foldl ′ (propagate outputs) nss ′′ (pConns p)

where

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 53

obj = index (pNodes p) iN

ns@(PdNodeState ins mem) = index nss iN

(outputs ,mem ′) = performDsp obj ns

nss ′′ = update iN (PdNodeState ins mem ′) nss

propagate :: [[PdAtom]]→ (Seq PdNodeState)→ (·B ·)
→ (Seq PdNodeState)

propagate outputs nss ((src, outl) B (dst , inl))

| src ≡ iN = addToInlet (dst , inl) (outputs !! outl) nss

| otherwise = nss

Each audio node has a 64-sample buffer that needs to be cleared before
each traversal. Note that this is different from handling inlets in message
objects: for message objects, the inlets become empty once consumed. Here,
we need the inlet buffers to be filled with zeros.

zeroDspInlets :: (Seq PdNodeState)→ [Int]→ (Seq PdNodeState)

zeroDspInlets nss dspSort =

fromList $ clearNodes 0 (toList nss) (sort dspSort)

where

zeroInlets :: Int → (Seq [PdAtom])

zeroInlets n = fromList $ replicate n (replicate 64 (PdFloat 0.0))

zeroState :: PdNodeState → PdNodeState

zeroState (PdNodeState ins mem) =

PdNodeState (zeroInlets (Seq .length ins)) mem

clearNodes :: Int → [PdNodeState]→ [Int]→ [PdNodeState]

clearNodes iN (st : sts) indices@(i : is)

| iN ≡ i = zeroState st : clearNodes (iN + 1) sts is

| otherwise = st : clearNodes (iN + 1) sts indices

clearNodes iN nss [] = nss

clearNodes iN [] = []

The reason why we fill the inlets with zeros is because when multiple
nodes connect to the same inlet in a DSP object, additive synthesis is
performed: the values of the incoming buffer are added to the current contents
of the inlet buffer, subject to saturation (audio values are internally floats
between -1.0 and 1.0).

addToInlet :: (Int , Int)→ [PdAtom]→ (Seq PdNodeState)

→ (Seq PdNodeState)

addToInlet (dst , inl) atoms nss = update dst ns ′ nss

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 54

where

saturate (PdFloat f) = PdFloat (max (−1.0) (min 1.0 f))

satSum (PdFloat a,PdFloat b) = saturate $ PdFloat (a + b)

ns@(PdNodeState ins mem) = index nss dst

atomsold = index ins inl

atomsnew = fmap satSum (zip atomsold atoms)

ns ′ = PdNodeState (update inl atomsnew ins) mem

In Section 4.2.4.8 we will present performDsp, which implements the
various DSP objects supported by this interpreter.

4.2.3.4
Initial state

Finally, for completeness of the execution model, we present here the
functions that create the initial state.

emptyInlets :: Int → Seq [PdAtom]

emptyInlets n = fromList (replicate n [])

initialState :: PdPatch → PdState

initialState (PdPatch nodes) = PdState 0 (fmap emptyNode nodes) [] []

where

emptyNode node =

case node of

PdAtomBox atom → PdNodeState (emptyInlets 1) [atom]

PdObj inl → PdNodeState (emptyInlets inl) []

PdMsgBox → PdNodeState (emptyInlets 1) []

4.2.4
Operations

The graphical language of Pure Data is graph-based and contains only
nodes and edges. The contents of nodes (object boxes, message boxes and atom
boxes) are textual. Like there are two kinds of edges (message and audio),
there are also two kinds of objects. Audio-handling objects are identified by
a ~ suffix in their names (the Pure Data documentation calls them “tilde
objects”. In our interpreter, plain objects are implemented in the sendMsg

function (Section 4.2.4) and tilde objects are implemented in the performDsp

function (Section 4.2.4.8).
For printing to the log, we present a simple auxiliary function that adds

to the output log of the state value.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 55

printOut :: [PdAtom]→ PdState → PdState

printOut atoms s =

s {sLog = (sLog s) ++ [intercalate " " $ map show atoms]}

The implementation of all non-audio nodes is done in the sendMsg

function, which pattern-matches on the structure of the node (which includes
the parsed representation of its textual definition).

sendMsg :: PdNode → [PdAtom]→ Int → PdNodeState

→ (PdNodeState, [String], [[PdAtom]], [PdEvent])

Unlike the runCommand function used in the firing of message boxes,
which causes global effects on the graph evaluation (via indirect connections)
and therefore needs access to the whole state, sendMsg accesses only the node’s
private state, producing a triple containing the new private node state, any
text produced for the output log, a list of messages to be sent via the node’s
outlets and any new events to be scheduled.

Similarly to sendMsg , we define a single function that performs the
operations for all audio-processing objects:

performDsp :: PdNode → PdNodeState → ([[PdAtom]], [PdAtom])

The performDsp function takes the object, its node state and outputs the
audio buffer to be sent at the node’s outlets, and the updated internal data
for the node.

We did not implement the full range of objects supported by Pure Data
since our goal was not to produce a full-fledged computer music application,
but we included a few representative objects that allow us to demonstrate the
interpreter and the various behaviors of objects.

4.2.4.1
Atom boxes

When given a float, atom boxes update their internal memory and
propagate the value. When given a bang, they just propagate the value.

sendMsg (PdAtomBox) (PdSymbol "float" : fl) 0 =

(PdNodeState (fromList []) fl , [], [PdSymbol "float" : fl], [])

sendMsg (PdAtomBox) [PdSymbol "bang"] 0 ns@(PdNodeState mem) =

(ns , [], [PdSymbol "float" : mem], [])

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 56

4.2.4.2
An object with side-effects: print

The print object accepts data through its inlet and prints it to the log
console. It demonstrates the use of the log console as a global side-effect.

sendMsg (PdObj (PdSymbol "print" : xs)) (PdSymbol "float" : fs) 0 ns =

(ns , ["print: " ++ (intercalate " " $ map show (xs ++ fs))], [], [])

sendMsg (PdObj (PdSymbol "print" : xs)) (PdSymbol "list" : ls) 0 ns =

(ns , ["print: " ++ (intercalate " " $ map show (xs ++ ls))], [], [])

sendMsg (PdObj (PdSymbol "print" : xs)) atoms 0 ns =

(ns , ["print: " ++ (intercalate " " $ map show atoms)], [], [])

4.2.4.3
An object with hot and cold inlets: +

In Pure Data, the first inlet of a node is the “hot” inlet; when data is
received through it, the action of the node is performed. When data arrives
in “cold” inlets, it stays queued until the “hot” inlet causes the object to be
evaluated.

The + object demonstrates the behavior of hot and cold inlets. When a
number arrives in the hot inlet, it sums the values in inlets 0 and 1 and sends
it through its outlet. When a bang arrives in the hot outlet, the most recently
received values in the inlet buffers are used for the sum instead.

sendMsg (PdObj [PdSymbol "+", n]) [PdSymbol "float",fl] 0

(PdNodeState ins mem) =

let

(PdFloat val0) = fl

inlet1 = index ins 1

(PdFloat val1) = if inlet1 ≡ [] then n else head inlet1

mem ′ = [PdFloat (val0 + val1)]

ns ′ = PdNodeState (update 0 [fl] ins) mem ′

in

(ns ′, [], [PdSymbol "float" : mem ′], [])

sendMsg (PdObj [PdSymbol "+", n]) [PdSymbol "bang"] 0

(PdNodeState ins mem) =

let

inlet0 = index ins 0

(PdFloat val0) = if inlet0 ≡ [] then (PdFloat 0) else head inlet0

inlet1 = index ins 1

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 57

(PdFloat val1) = if inlet1 ≡ [] then n else head inlet1

mem ′ = [PdFloat (val0 + val1)]

ns ′ = PdNodeState ins mem ′

in

(ns ′, [], [PdSymbol "float" : mem ′], [])

4.2.4.4
Objects producing timed events: delay and metro

The delay object demonstrates how objects generate future events. We
handle four cases: receiving a bang message schedules a tick event. When
received, it outputs a bang to the node’s outlets.

sendMsg (PdObj [PdSymbol "delay",PdFloat time] inl)

[PdSymbol "bang"] 0 ns =

(ns , [], [], [PdEvent (floor time) 0 [PdSymbol "tick"]])

sendMsg (PdObj (PdSymbol "delay" : t) inl) [PdSymbol "tick"] 0 ns =

(ns , [], [[PdSymbol "bang"]], [])

The metro node, in its turn, expands on the delay functionality, im-
plementing a metronome: it sends a series of bang messages at regular time
intervals. It also has a second inlet which allows updating the interval.

We handle four cases: receiving a bang message to start the metronome,
receiving a stop message to stop it, and receiving the internally-scheduled
tick when the metronome is either on or off.

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "bang"] 0

(PdNodeState ins mem) =

let

inlet1 = index ins 1

(PdFloat time) = head (inlet1 ++ mem ++ xs ++ [PdFloat 1000])

ns ′ = PdNodeState (emptyInlets inl) [PdFloat time,PdSymbol "on"]

in

(ns ′, [], [[PdSymbol "bang"]],

[PdEvent (floor time) 0 [PdSymbol "tick"]])

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "stop"] 0

(PdNodeState ins [PdFloat time,PdSymbol "on"]) =

(PdNodeState ins [PdFloat time,PdSymbol "off"], [], [], [])

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "tick"] 0

ns@(PdNodeState ins [PdFloat time,PdSymbol "on"]) =

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 58

(ns , [], [[PdSymbol "bang"]], [PdEvent (floor time) 0 [PdSymbol "tick"]])

sendMsg (PdObj (PdSymbol "metro" : xs) inl) [PdSymbol "tick"] 0

ns@(PdNodeState ins [,PdSymbol "off"]) =

(ns , [], [], [])

4.2.4.5
Message handlers for audio objects: osc~ and line~

Some audio objects in Pure Data also accept messages. The osc~ object
implements a sinewave oscillator. Sending a float to it, we configure its
frequency, which is stored in the node’s internal memory. Note that the actual
oscillator is not implemented here, but in the DSP handler for this object type
in function performDsp, in Section 4.2.4.8.

sendMsg (PdObj (PdSymbol "osc~" :))

[PdSymbol "float",PdFloat freq] 0

(PdNodeState ins [, position]) =

(PdNodeState ins [PdFloat ((2 ∗ pi) / (32000 / freq)), position], [], [], [])

The line~ object implements a linear function over time. It can be used,
for example, to implement gradual changes of frequency or amplitude. Its
internal memory stores values current, target and delta. It accepts a message
with two floats, indicating the new target value and the time interval to take
ramping from the current value to the new target.

sendMsg (PdObj [PdSymbol "line~"])

[PdSymbol "list",PdFloat amp,PdFloat time] 0

(PdNodeState ins mem) =

let

[PdFloat current ,PdFloat target ,PdFloat delta] =

if mem 6≡ [] then mem else [PdFloat 0,PdFloat 0,PdFloat 0]

mem ′ =

[PdFloat current ,

PdFloat amp,

PdFloat ((amp − current) / (time ∗ 32))]

in

(PdNodeState ins mem ′, [], [], [])

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 59

4.2.4.6
Cold inlets

Since cold inlets are passive and only store the incoming data in the inlet
buffer without executing any node-specific operation, the implementation for
cold inlets can be shared by all types of node.

sendMsg node (PdSymbol "float" : fs) inl (PdNodeState ins mem) | inl > 0 =

(PdNodeState (update inl fs ins) mem, [], [], [])

sendMsg node atoms inl (PdNodeState ins mem) | inl > 0 =

(PdNodeState (update inl atoms ins) mem, [], [], [])

4.2.4.7
Data objects: float and list

The float and list objects store and forward data of their respective
types. They have two inlets for accepting new data. When given data through
its first inlet, the object stores it in its internal memory and outputs the value
through the outlet. When given data through its second inlet, it only stores
the value. When given a unit event (called bang in Pure Data), it outputs the
most recently received value (or the one given in its creation argument, or zero
as a fallback).

sendMsg cmd@(PdObj (PdSymbol "float" : xs) inl) atoms 0 ns =

dataObject cmd atoms ns

sendMsg cmd@(PdObj (PdSymbol "list" : xs) inl) atoms 0 ns =

dataObject cmd atoms ns

dataObject (PdObj (PdSymbol a : xs) inl) [PdSymbol "bang"]

(PdNodeState ins mem) =

let

inlet1 = index ins 1

Just mem ′ = find (6≡ []) [inlet1,mem, xs , [PdFloat 0]]

in

(PdNodeState (emptyInlets inl) mem ′, [], [PdSymbol a : mem ′], [])

dataObject (PdObj (PdSymbol a : xs) inl) (PdSymbol b : fl) | a ≡ b =

(PdNodeState (emptyInlets inl) fl , [], [PdSymbol a : fl], [])

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 60

4.2.4.8
Audio handling operations: osc~, line~ and *~

Audio handling is performed by function performDsp, which implements
cases for each type of audio object.

Object osc~ is the sinewave oscillator. It holds two values in its internal
memory, delta and position, through which a wave describing a sine function
is incrementally computed.

We handle two cases here: when the internal memory is empty, the
parameters are initialized according to the freq creation argument; when the
memory is initialized, we produce the new buffer calculating 64 new values,
determine the next position to start the wave in the next iteration, store this
value in the internal memory, and output the buffer through the node’s outlet.

performDsp obj@(PdObj [PdSymbol "osc~",PdFloat freq])

(PdNodeState ins []) =

let

values = [PdFloat ((2 ∗ pi) / (32000 / freq)),PdFloat 0]

in

performDsp obj (PdNodeState ins values)

performDsp (PdObj [PdSymbol "osc~",])

(PdNodeState ins [PdFloat delta,PdFloat position]) =

let

osc :: Double → Double → Double → Double

osc position delta idx = (position + (delta ∗ idx)) ‘mod ′‘ (2 ∗ pi)

output = map (PdFloat ◦ sin ◦ osc position delta) [0 . . 63]

nextPosition = osc position delta 64

mem ′ = [PdFloat delta,PdFloat nextPosition]

in

([output],mem ′)

As described in Section 4.2.4.5, the line~ object implements a linear
ramp over time. As in osc~ we handle two cases: when the internal memory
of the object is empty, in which case we initialize it; and when it is initialized
with current , target and delta values. The function varies linearly over time
from current to target , after which, it stays constant at target .

performDsp obj@(PdObj [PdSymbol "line~"]) (PdNodeState ins []) =

performDsp obj (PdNodeState ins [PdFloat 0,PdFloat 0,PdFloat 0])

performDsp (PdObj [PdSymbol "line~"])

(PdNodeState ins [PdFloat current ,PdFloat target ,PdFloat delta]) =

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 61

let

limiter = if delta > 0 then min else max

output = map PdFloat $ tail $ take 65

$ iterate (λv → limiter target (v + delta)) current

mem ′ = [last output ,PdFloat target ,PdFloat delta]

in

([output],mem ′)

The *~ object multiplies the data from inlets 0 and 1. It is used, for
example, to modify the amplitude of an audio wave.

performDsp (PdObj [PdSymbol "*~"]) (PdNodeState ins []) =

let

mult (PdFloat a) (PdFloat b) = PdFloat (a ∗ b)

output = zipWith mult (index ins 0) (index ins 1)

in

([output], [])

Finally, this is a default handler for performDsp that merely produces a
silent audio buffer.

performDsp obj ns =

([toList $ replicate 64 $ PdFloat 0.0], [])

4.2.5
Demonstration

In Appendix A, we present a practical demonstration of the interpreter
in use. We run the patch depicted in Figure 4.3. In includes atom boxes,

Figure 4.3: A Pure Data patch equivalent to the example code in Appendix A

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 62

(a) (b)

Figure 4.4: Impact of semantically significant layout in Max/MSP: Two graphs
with identical sets of nodes and edges producing different results. Image
adapted from (32).

objects and message boxes, and features message and audio processing, variable
expansion, indirect messages and delayed execution. Running the interpreter
emulates Pure Data’s “use” mode: the graph cannot be modified, but atom
boxes can receive new values and message boxes can be clicked, producing
events. The interpreter simulates this interactive experience by receiving as
input a list of interaction events with timestamps.

Appendix A also includes a main wrapper function that launches the
interpreter and converts its output to .WAV format. The resulting audio file
produced by the execution of the above graph by the interpreter when given
a specific series of inputs can be played at https://hisham.hm/thesis/.

4.3
Discussion: Syntax and semantics in visual languages

The design of end-user programmable applications is a field that spans
both the worlds of end-user application design and of programming language
design. These two areas are often distant from each other. The programming
language design community is most often concerned with professionals, and
most software written by end-user application developers nowadays is not
programmable. These different groups naturally tend to be biased towards
different aspects of design.

This separation happens to the detriment of end-user programming
language design. Research in visual languages, in particular, is almost by
definition focused primarily on syntax, given the area itself is defined by a
style of representation. But while the programming language community may

https://hisham.hm/thesis/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 4. Case study: Pure Data 63

be guilty of sometimes dismissing matters of syntax and perpetuating arguably
poor syntax in the name of familiarity (37; 84), the neglect of semantics in the
design of the syntax of end-user applications has much graver consequences.

As we saw in Section 4.1.4, Pure Data specifies the right-to-left order in
which outlets are processed, but the order in which messages are fired from
various connections of a single outlet depends on the order the connections were
made, making it possible to produce two visually identical graphs with different
behavior. This is a major flaw in the language’s syntax, and one that could
be easily fixed by exposing in the syntax the ordered nature of the outgoing
connections. Two possible solutions would be to draw the connector lines next
to each other (and not starting from the same point) making the outlet wider as
needed, or to make connection lines visually distinct (e.g. attaching a number
to the lines, or simply painting them with different colors according to their
sort order).

In Max/MSP, the commercial variant of Pure Data, it is not possible to
produce two identical graphs with two behaviors, but the solution chosen by its
developers may be even worse. Max/MSP establishes that the order of message
propagation follows that of the visual layout of a patch, that is, the coordinates
of nodes on the canvas (33). This means that moving nodes around, without
changing their connections, can alter the behavior of the graph, leading to
situations like the one depicted in Figure 4.4: two graphs with identical sets
of nodes and edges producing different results. It is fair to assume that this
counters any intuition a user may have about the interpretation of a diagram.

If syntax evolves at a slow pace in the world of textual languages, it may
well be because it has reached a “local maximum” in the design space, where
current syntaxes are “good enough”, solutions to typical design requirements
are well-known and it would take a major leap to move into something different.
In the world of visual languages, it seems clear that we have not yet reached
this point.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

5
Case study: spreadsheets

The spreadsheet is arguably the most successful end-user programmable
application (79). Microsoft Excel is the most successful product of this kind,
as part of Microsoft Office, a productivity suite with over 1.2 billion users,
with an estimated 750 million users of Excel (59). The spreadsheet formula
language is therefore the most popular programming language in the world.

The importance of this class of applications as well as concerns with
the reliability of spreadsheets produced by users1 have inspired academic
work in areas such as debugging (11), testing (20) and expressivity (46) of
spreadsheets. Often, these works involve modeling the spreadsheet application
in order to reason about it. Formal models of spreadsheets applied to research
work usually simplify considerably their semantics of execution, assuming a
model of computation with no specifications for error conditions and without
advanced features such as indirect references (2; 21).

Real-world spreadsheets, however, are nothing but simple. Their design
has evolved over the years, but to this day, spreadsheets follow the design
paradigm of VisiCalc, created in 1979 for the Apple II. The user interface
of a spreadsheet is dominated by a grid view, inspired by physical paper
spreadsheets. Each cell of this grid presents a value, which may be calculated
by a formula, which may reference values calculated by other cells. In the
1980s and 1990s several applications competed for this market, of which
VisiCalc failed to maintain dominance. Lotus 1-2-3, Quattro Pro, Multiplan
and Excel all introduced new features, such as instant recalculation, formula
auto-fill (where the user can produce new formulas by dragging the cursor
from one cell, producing formulas in new cells following a predictable pattern),
multiple worksheets, and so on. As they adopted each other’s features, the
design of spreadsheet applications coalesced to that of Excel today, and by the
2000s the competition among proprietary spreadsheets was essentially over.
The only popular alternatives to Excel that emerged since then did not gain
adoption due to their feature set, but due to non-functional characteristics:
LibreOffice Calc2 became the main free software spreadsheet; Google Sheets is

1Losses caused by spreadsheet errors are calculated in the scale of millions of dollars (77).
2Originally StarCalc, a proprietary spreadsheet that was part of StarOffice, a productivity

suite developed in the 1990s by German company StarDivision. This company was bought

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 65

the most popular web-based spreadsheet. For both products (and their users),
compatibility with Excel is a major concern. Reproducing the semantics of
Excel, therefore, ought to be considered a major goal for these projects.

For a long time, there was no specification whatsoever of the semantics
of Excel, or even of its file format. It was only in 2006, 21 years after the initial
release of Excel, that a specification was published detailing its file format (42),
due to political push towards open formats. Its semantics, however, remain
vague. Unsurprisingly, as we will see below, these major competitors fail to
implement full compatibility with Excel’s formula language. Interestingly, as
we will see later in this chapter, even Excel Online3, also produced by Microsoft
as a response to Google Sheets, fails to implement the semantics of the formula
language correctly.

5.1
The formula language

We studied the formula language as implemented by five spreadsheet
applications:

– Microsoft Excel 2010, the spreadsheet market leader, matching the
standardized document for the .xlsx format (42), which is still current at
the time of this writing;

– LibreOffice Calc 5, the leading free software spreadsheet, whose behavior
also matches the latest specification documents for its file format (72);

– Google Sheets, a prominent web-based spreadsheet4;

– Microsoft Excel Online, Microsoft’s own web-based version of Excel5;

– Microsoft Excel for Android version 16.0.7127.1010, Microsoft’s mobile
version of Excel6.

All five implementations have incompatibilities to various levels, but they are
similar enough so that they can be understood as dialects of the same language.
The exposition below presents this formula language as implemented by these
spreadsheets, discussing it from a programming language design perspective.
We focus primarily on Excel, since the other applications mostly follow its
design, but we highlight their variations whenever they appear. In particular,
Microsoft Excel for Android presents very close behavior to that of Excel

by Sun Microsystems, which open-sourced StarOffice as OpenOffice. LibreOffice emerged as
a fork of OpenOffice after Oracle’s acquisition of Sun.

3Available at https://office.live.com/start/Excel.aspx
4https://sheets.google.com
5https://office.live.com/start/Excel.aspx
6https://play.google.com/store/apps/details?id=com.microsoft.office.excel

https://office.live.com/start/Excel.aspx
https://sheets.google.com
https://office.live.com/start/Excel.aspx
https://play.google.com/store/apps/details?id=com.microsoft.office.excel
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 66

English Portuguese
Numbers 6.2831 6,2831

Function names SQRT(9) RAIZ(9)
Argument separators SUM(6,0.2831) SOMA(6;0,2831)

Literal matrices {1,2;3,4} {1;2\3;4}
Function arguments CELL("type",A1) CÉL("tipo",A1)

Table 5.1: Syntactic changes in localized versions of Excel: all but the last one
can be automatically converted by the application.

Online. Whenever mobile Excel is not explicitly mentioned, the reader can
assume that its behavior matches that of Excel Online.

Given both Google Sheets and Excel Online are server-based applications,
their behavior may change at any time, so all observations about them are
current at the time of writing.

5.1.1
Syntax

Nowadays, all spreadsheet products use roughly the same formula lan-
guage: the user of any spreadsheet user will be familiar with expressions such
as =A5+SUM(B10:B20). From a programming point of view, spreadheets have
been described as a “first-order functional languages” (2). The formula lan-
guage is a language of expressions, with a number of predefined operators,
such as + (addition), & (string concatenation), as well as a large number of
built-in functions, such as SQRT and SUM. At first glance, it is not unlike the
sub-language of expressions with infix operators and function calls contained
in a number of programming languages.

The syntax of the language changes across translated versions of Excel.
The names of functions are localized: for example, SUM() becomes SOMA()

in the Portuguese version. Also, in many languages the comma is used as a
decimal separator for numbers, forcing other uses of commas to be replaced
by semicolons, and semicolons to be replaced by backslashes. Table 5.1 lists
those differences. The application stores function names internally in English,
so these and other operator changes are automatically translated when a file by
opened in another version of Excel. This automatic conversion, unfortunately,
is not complete. Some functions use a set of predefined strings as a kind of
enumeration, such as CELL("type", A1). These arguments were translated in
localized versions of the functions, and these break when loaded in a different
language: a function written in a Portuguese version of Excel as CÉL("tipo",

A1) becomes CELL("tipo", A1) when loaded in an English version of Excel,
which produces an error.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 67

Microsoft LO Google Excel
Excel Calc Sheets Online

Refer to a sheet Sheet2!B1 Sheet2.B1 Sheet2!B1 Sheet2!B1
Array formulas {=fn} {=fn} =ARRAYFORMULA(fn) N/A
Nested arrays Error Error Flattened Error

Table 5.2: Some syntactic incompatibilities between spreadsheets

Even at a syntactic level, we found that while the studied applications
have similar formula languages, they were all incompatible to each other. The
surface similarity is certainly meant to lower the learning curve for users
who are moving from one application to the other, but beyond the basics,
incompatibilities show. Table 5.2 lists some of these incompatibilities. It is
notable that even though only a mere three features are listed, no two columns
in the table are alike.

5.1.2
Values and types

The formula language is typed and it features scalar and matrix values.
Scalar values may be of type boolean, error, string or number. Matrices
are bidimensional, with unidimensional arrays as a particular case, and may
contain scalar values of heterogenous types, but matrices cannot contain other
matrices. Google Sheets accepts nested matrix syntax, but matrices are in effect
flattened: {1,{2,3},4} is syntactically valid but it is equivalent to {1,2,3,4}.
In all other three spreadsheets, nested matrix literals produce a syntax error.

The matrix notation with curly brackets can be only used to represent
literals. It is not a general matrix constructor, and can only contain scalar
literals, and not subexpressions: while {1,2,3} is valid, both {1+1} and {A1}

are not.
Most contexts feature automatic coercions, but not all. The expression

="1"+"2" returns the number 3, as does =SQRT("9"). But functions taking
arrays of numbers, such as SUM, skip all string values. Therefore, given cells A1
to A3 containing 1, 2 and "100", we have that =A1+A2+A3 returns 103, and
=SUM(A1:A3) returns 3. Oddly, it does coerce boolean values, so, replacing
A1 with TRUE in the previous example still yields the same results for both
formulas.

Formula expressions may contain and manipulate scalars and matrices,
including matrix literals, but cells can only represent scalar values. Each cell in
the grid may be either empty or have contents entered by the user. Cell contents
may be either nothing, a formula or a scalar literal value entered (attempting
to enter a matrix literal causes it to be simply interpreted as a string). A cell

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 68

Microsoft LO Google Excel
Excel Calc Sheets Online

=TYPE({1}) 64 64 1 64
=TYPE({1,1}) 64 64 64 64
=TYPE(1+{1,2}) 64 64 1 64
=TYPE({1,2}/0) 64 64 16 64
=TYPE(Z99) (Empty) 1 Err:502 1 1
=TYPE(A1) (Self) 0 (Warning) Err:502 #REF! 0

Table 5.3: Behavior of the TYPE function in spreadsheets

also has a result value, based on its contents. Cell values may be either nothing
(coerced to either 0 or "" as necessary) or a scalar value produced from the
calculation of the formula. Cells may also have formatting metadata that are
only relevant to the UI presentation of values, but are not distinct types: for
example, percentages and dates are still values of type number; colors and
fonts are also formatting metadata of a cell.

Whenever a scalar value is expected and a matrix value is given, the value
at position (1, 1) of the matrix is returned. The UI of a spreadsheet displays
cell values by default. Some functions, however, operate on cell contents—that
is, there are functions f so that f (10) and f (A1) with A1=10 produce different
results. An example is the function TYPE, which returns the data type of the
cell contents as a number. Given a cell as an argument, TYPE returns 1 if the cell
contains a number literal, 2 for strings and 4 for booleans. If the cell contains a
formula, it returns 8 regardless of the data type of the formula’s result, unless
the formula results in an error, in which case it returns 16, or if it contains a
matrix literal, in which case it returns 64 whether the expression results in an
error or not. When given an expression as an argument, TYPE returns the type
of the value of the evaluated expression. This complicated behavior, which
is not implemented consistently among spreadsheets (Table 5.3 shows some
incompatibilities), illustrates how poorly data types are presented to users in
spreadsheets.

5.2
Evaluation model

The collection of cells and formulas in a spreadsheet forms a dataflow
graph, and evaluation of each cell follows a top-down evaluation of the abstract
syntax tree of its formula. Figure 5.1(a) depicts the typical visual representa-
tion of a spreadsheet (here, with all formulas exposed for clarity—normally
only one formula is visible at a time, and cells display their computed val-

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 69

A B
1 =B2 =IF(5<A1;A2;B1)+B2

2 9 10

(a) A simple spreadsheet. A1 evaluates to 10, B1 evaluates to 19

(b) The same spreadsheet represented as a dataflow graph

Figure 5.1: The usual representation of a spreadsheet with a grid layout and
a textual formula language, and its conceptual dataflow graph displaying data
dependencies.

ues). Figure 5.1(b) depicts the same data as a dataflow graph7. This top-down
evaluation corresponds to a typical demand-driven dataflow model.

The evaluation rules of individual nodes, however, are far from simple.
Built-in functions IF() and CHOOSE() are evaluated lazily (IF(1<2, 10, 0/0)

returns 10 and 0/0 is never evaluated), but functions AND() and OR() are not.
These two functions do not perform short-circuiting: OR(TRUE, 10) returns
TRUE but OR(TRUE, 0/0) returns #DIV/0!, an error value. To check that the
evaluation disciplines of IF and AND/OR are indeed different, we escaped the
purely functional formula language by writing a BASIC macro that produces
a side-effect, popping up a dialog box. In both Excel and LibreOffice, the
spreadsheets supporting BASIC macros, OR(TRUE, PopDialogBox()) pops
a dialog box but IF(1<2, 10, PopDialogBox()) does not. Google Sheets
supports JavaScript macros, and while its API explicitly blocks IO side-effects
such as dialog boxes in formula macros, we were able to reproduce this test by
writing a recursive function that causes a stack overflow, with similar results.
Excel Online does not support running macros of any kind.

Errors are propagated as the formula is evaluated from left to right. This
behavior is relevant to language compatibility since errors can be detected by
functions such as ISNA(), which returns TRUE for #N/A and FALSE for any other
error or non-error values. Given cells A1 containing =1/0 (evaluates to #DIV/0)

7A quick remark on syntax: while the representation in Figure 5.1(a) is definitely more
concise, 5.1(b) makes it a lot more evident that there is a cycle.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 70

Microsoft LO Google Excel
Excel Calc Sheets Online

=SUM(SQRT({10,20}))
F 7.6344 3.1622 3.1622 7.6344

AF 7.6344 7.6344 7.6344

=SUM(SQRT(A1:A2))
F #VALUE! #VALUE! #VALUE! #VALUE!

AF 7.6344 7.6344 7.6344

=SUM(SQRT(INDIRECT({"A1","A2"}))
F #VALUE! 3.1622 3.1622 #VALUE!

AF #VALUE! 7.6344 3.1622

=SUM(INDIRECT({"A1","A2"})
F 10 10 10 10

AF 10 30 10
=SUM(MINVERSE(A1:B2)) F 4.163E-17 27756E-17 0 #VALUE!

Table 5.4: Formula evaluation incompatibilities between spreadsheets

and A2 containing #N/A, ISNA(A1+A2) evaluates to FALSE and ISNA(A2+A1)

evaluates to TRUE.

5.2.1
Array formulas

An array formula is a formula that is marked to be evaluated in a special
array-oriented evaluation model. In Excel and LibreOffice a formula is marked
as an array formula by confirming its entry pressing Ctrl+Shift+Enter, and
the UI displays the formula enclosed in brackets, as in {=A1:B5+10}; Google
Sheets uses a function-style annotation, as in =ARRAYFORMULA(A1:B5+10). In
the array formula evaluation mode, when ranges are given as arguments to
scalar operations (such as + in the above example), the range is decomposed
and the operation is performed for each element. The results of an array
formula, therefore, may extend to several cells. Once the user enters an array
formula, the required number of cells is filled with the results, with the initial
cell being the top-left entry of the result matrix.

For the array formula above, {=A1:B5+10}, the result is a matrix with
two columns and five rows, in which each cell is filled as if the range was
substituted by a scalar corresponding to the given offset in the range, such
that, for each cell (x, y) of the resulting matrix, its value is equivalent to that
of =INDEX(A1:B5, x, y)+10 (where INDEX is the function that takes element
in row x, column y of the given range). This example belies the complexity in
the evaluation of array formulas, for a simple substitution of ranges for their
elements is not sufficient. When a function such as SUM() expects an array
argument, the full range is given to the function.

This showcases a behavior that is very different from that of most
programming languages: evaluation of sub-expressions is context-sensitive. The
way a sub-expression is evaluated may vary according to an enclosing function
call, perhaps several levels up in the syntax tree of the expression. The expected

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 71

types of arguments for built-in functions define whether expressions given to
them will have scalar or matrix evaluation. Within an array formula, for scalar
arguments, arrays are destructured so that a scalar element is given.

The UI presentation of the array formula also influences the resulting
values of cells: an array formula is always entered over a rectangular group of
one or more cells. This group has a user-defined size that may or may not match
the size of the matrix value of the array formula. The default size of the cell
group matches that of the matrix value, but the cell group may be resized by
the user by dragging the selection corner. Growing the group beyond the size
of the result matrix may result in cells filled with #N/A; conversely, shrinking
the cell group may hide parts of the result matrix.

We say it “may” result in #N/A because the precise semantics are a bit
more complicated: if any of the dimensions of the result matrix is 1, increasing
the size of the cell group in this dimension will produce repeated values in
that dimension. For example, if the array formula ={10,20} which produces
a single-row matrix is inserted in a 3 × 2-group A1:B3, then the row will be
duplicated, and cells A1:A3 and B1:B3 will present the same contents, namely:
10, 20 and #N/A. If the matrix representation of an array formula value is 1×1

(which is also the case if the result value is not a matrix), all values in its cell
group will be identical.

Array formulas are a niche feature: from the Enron corpus of 15935
industrial spreadsheets used in (5), we independently assessed that 185 of them
use array formulas (1.16%). However, arrays are pervasive in Excel: ranges
such as A1:A5 reference arrays of cells, and common functions such as SUM()

take arrays as arguments. Functions that expect arrays as arguments evaluate
these arguments in an array context, producing different values than arguments
evaluated in a scalar context. In Excel, an array context of evaluation can
produce iterated calculation of scalar functions, like in the context of array
formulas. This is not implemented in LibreOffice or Google Sheets. In these two
applications, iterated execution happens only in array formulas. Interestingly,
Excel Online, which does not support array formulas, does implement iterated
execution in array contexts of plain formulas. Table 5.4 illustrates these
incompatibilities (in the second column of this table, F denotes plain formula
mode, AF denotes array formula mode). In the first two examples, the enclosing
SUM function imposes an array context over scalar function SQRT, triggering its
iterated calculation in Excel and Excel Online plain formulas. In the last two
examples, assuming A1 and A2 contain 10 and 20 and B1 and B2 contain 30

and 40, INDIRECT({"A1","A2"}) produces an array {10,20} which is coerced
to scalar 10 in all modes except LibreOffice’s array formula mode; in the third

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 72

example, Excel and Excel Online fail to propagate the array context in a
doubly-nested function. In the last row, we see that the spreadsheets also have
inconsistencies in their evaluation order leading to observable differences in
their results due to floating point calculations.

Array formulas are a powerful feature: they implement a separate evalua-
tion model for formulas, and have been used to demonstrate that spreadsheets
can model relational algebra (86). Still, they are usually disregarded when dis-
cussing the semantics of spreadsheets, and do not feature on any of the works
cited in this chapter. The Excel documentation is vague when explaining their
evaluation logic, resorting to examples (60). In fact, in the standardization pro-
cess of spreadsheet file formats, the complete specification of formula evaluation
was a contention issue: the draft specification of the OASIS OpenFormula did
not specify formula evaluation, which led a Microsoft Office team member to
raise issues about it (45). However, Microsoft’s own specification did not fully
specify formula evaluation at the time either , and even the following draft of
OpenFormula did not specify array formulas (71). Eventually, specification of
array formulas were included in both OASIS ODF 1.2 (72) and Microsoft Of-
fice Open XML (42), but even then the specification was informal and mostly
driven by examples, in both documents.

5.3
An interpreter modeling spreadsheet semantics

In the previous sections we gave a general overview of the spreadsheet
language, taking into account the familiarity most readers probably have with
this kind of application and focusing only on its more peculiar aspects. Now,
we proceed with a more formal and complete presentation. In this section,
we present a definitional interpreter designed to model the core semantics of
spreadsheets, with a focus on the dataflow language at its core. Our intention
here is to illustrate the various design decisions that go into specifying precise
semantics for a spreadsheet containing a realistic set of features, showcasing
how complexity arises from what is usually seen as a conceptually simple
language. We believe that this helps to explain the number of incompatibilities
between different implementations that we found and described in our work.

We chose to model most closely the semantics of LibreOffice, which is the
spreadsheet for which the most detailed specification documents are available.

As in the interpreter for Pure Data, this section was also written in
Literate Haskell, including the complete listings of the intepreter, and its source
code in .lhs format is also available at https://hisham.hm/thesis/.

This implementation uses only standard modules included in the Haskell

https://hisham.hm/thesis/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 73

Platform:

module XlInterpreter where

import Data.Char (ord , chr , toUpper)

import Data.Fixed

import Data.List (foldl ′)

import Data.Map.Strict as Map (Map, foldlWithKey ,member , empty , lookup)

import Data.Set as Set (Set ,member , singleton)

import Data.Map.Strict (insert)

import qualified Data.Set as Set (insert)

5.3.1
Representation of programs

A spreadsheet program (called a “worksheet”) is represented with the
XlWorksheet data type in our model, which contains a map from row-column
coordinates to cells.

In modern spreadsheet applications, a complete document is a set of
worksheets (called a workbook). For simplicity, we did not implement support
for multiple worksheets since this does not affect evaluation significantly.

data XlWorksheet = XlWorksheet XlCells

deriving Show

type XlCells = Map.Map L·, ·M XlCell

We represent row-column pairs with the notation L·, ·M. It contains a pair
of addresses, representing row and column, and each of which may be absolute
(represented as 〈n〉) or relative (represented as 〈n〉R).

data L·, ·M = LXlAddr ,XlAddrM
deriving (Eq ,Ord)

data XlAddr = 〈Int〉 -- (absolute address)
| 〈Int〉R -- (relative address)

deriving (Eq ,Ord)

Cells contain formulas. As explained in Section 5.2.1, formulas can be
evaluated in a special mode called “array formula”. The indication if the
formula will be evaluated as an array formula is a property of the cell, not
the formula.

In the spreadsheet interface, a single array formula is presented as
covering a range of cells. In our interpreter, we replicate the formula in each

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 74

cell of the range, and annotate it with an (x, y) coordinate indicating which
element of the range matrix they represent, with the top-left cell being entry
(0, 0). We will call this pair the offset of a cell in an array formula.

data XlCell = XlCell XlFormula

| XlAFCell XlFormula (Int , Int)

deriving Show

A formula, in its turn, may be a literal value, a reference to another cell,
a reference to a range of cells, or a function, which has a name and a list of
arguments. Our interpreter, thus, manipulates expressions as trees of XlFun

nodes, assuming that the textual formula language has already been parsed
into this format.

data XlFormula = XlLit XlValue

| XlRef L·, ·M
| XlRng L·, ·M L·, ·M
| XlFun String [XlFormula]

deriving Show

Finally, values are numbers, strings, booleans, errors and matrices of
literals. We represent all matrices as 2-dimensional, stored as a list of lists,
which each inner list representing a row (a unidimensional array is a 2-
dimensional matrix with a single row). We also have a special value for an
empty cell, due to its special coercion rules (implemented in Section 5.3.5.7).

data XlValue = XlNumber Double

| XlString String

| XlBool Bool

| XlError String

| XlMatrix [[XlValue]]

| XlEmpty

deriving Eq

For convenience we define a few instances of the Show type class that
will prove useful later when running the interpreter. In particular, for display
purposes we convert absolute row-column coordinates to the familiar “A1”
notation.8

8We made a simplification here by presenting absolute coordinates using strings such as
B5. In spreadsheets, such an identifier actually represents a relative coordinate, with B5
being the absolute equivalent. The A1 notation hides the fact that coordinates in spreadsheets
are relative by default (which explains their behavior when copying and pasting cells). Note,
however, that this is a simplification in presentation only; the interpreter itself supports
both relative and absolute addresses.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 75

instance Show L·, ·M where

show (Lr , ·M@〈rn〉 c@〈cn〉) =

"<" ++ [chr (cn + 65)] ++ (show (rn + 1)) ++ ">"

show Lr , cM =

"R" ++ show r ++ "C" ++ show c

instance Show XlValue where

show (XlNumber d) = num2str d

show (XlString s) = show s

show (XlBool b) = show b

show (XlError e) = show e

show (XlMatrix m) = show m

show XlEmpty = ""

instance Show XlAddr where

show 〈n〉 = show n

show 〈n〉R = "[" ++ show n ++ "]"

5.3.2
Representation of states

The state of a spreadsheet consists of the map of cells, which stores
the cells and their contents (that is, the formulas), and the map of values,
which stores the computed value for each cell. Both are indexed by row-column
coordinates.

data XlState = XlState XlCells XlValues

type XlValues = Map.Map L·, ·M XlValue

From a programming language perspective, interaction with a spread-
sheet consists exclusively of replacing formulas in cells. We represent these as
events that contain the absolute coordinates and the formula to be entered
to a cell. In the case of array formulas, a rectangular range (denoted by the
top-left and bottom-right cells) covering one or more cells must be given. A
single formula will then apply to that range as a group.

data XlEvent = XlSetFormula L·, ·M XlFormula

| XlSetArrayFormula L·, ·M L·, ·M XlFormula

deriving Show

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 76

5.3.3
Execution

The execution of a spreadsheet is demand-driven. The user triggers the
evaluation by editing a cell, which causes its value to be recomputed. When
computing the value of a cell, other cells may be referenced, so they are
computed as well, and the process continues recursively. Conversely, other cells
may reference the newly-edited cell, so their values need to be recomputed as
well.

5.3.3.1
Main loop

Since we are interested in the dynamic semantics (that is, what happens
with the program state over time as it runs), we model our interpreter as a loop
of evaluation steps. The function runEvents implements this loop, taking as
inputs a worksheet (a spreadsheet document containing the initial contents of
cell formulas) and a list of events. For each event, it calls the main evaluation
function, runEvent , until it produces the final state, containing the resulting
cells and their values.

Unlike the interpreter modelling Pure Data in Chapter 4, we return only
the final state, since inspecting the final result of the spreadsheet is usually
sufficient for understanding its behavior (and cell evaluation has loop detection,
so a final state is guaranteed to be obtained). Tracing the intermediate results
is an easy modification if desired.

runEvents :: XlWorksheet → [XlEvent]→ XlState

runEvents sheet@(XlWorksheet cells) events =

foldl ′ runEvent (XlState cells Map.empty) events

When we process an event in runEvent , we need to update the cells that
were entered and then perform the necessary recalculations. Since we are not
concerned with performance and formulas are in principle purely functional
(which is not true in real-world spreadsheets due to functions such as TODAY

which reads the system clock, but is true in our interpreter), we simply discard
the previous map of values and recompute all cells in the worksheet. One way
to avoid this computational expense would be to maintain data structures that
keep track of reverse dependencies for each cell, but we avoid this optimization
here for simplicity. Real-world spreadsheets further restrict the recalculation
by limiting it to cells which are currently visible in their user interface.9

9We were able to empirically verify this when we produced a spreadsheet with a formula
that crashed LibreOffice. The application only crashed when the offending cell was scrolled
into view.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 77

Our interpreter does avoid recalculating a cell if it was already calculated
in the current pass as a dependency of a previous cell. Also, it keeps track of
which cells are currently being visited, for detecting circular references.

runEvent :: XlState → XlEvent → XlState

runEvent env@(XlState cells) event =

let

cells ′ = updateCells cells event

acc :: XlValues → L·, ·M→ XlCell → XlValues

acc vs rc cell =

if Map.member rc vs

then vs

else

let (v ′, vs ′) = calcCell (Set .singleton rc) cells ′ vs rc cell

in insert rc v ′ vs ′

in

XlState cells ′ (Map.foldlWithKey acc Map.empty cells ′)

An event may update a single cell in case of a regular formula, or many
cells at a time in case of an array formula applied over a range. Function
updateCells covers both cases:

updateCells cells event@(XlSetFormula rc fml) =

insert rc (XlCell fml) cells

updateCells cells event@(XlSetArrayFormula rcfrom rcto fml) =

fst $ foldRange rcfrom rcfrom rcto (cells , (0, 0)) id opcell oprow

where

opcell (cells , (x , y)) rc = (insert rc (XlAFCell fml (x , y)) cells , (x + 1, y))

oprow r (cells , (x , y)) = (cells , (0, y + 1))

To iterate over ranges, we define a folding function foldRange, which
loops over the 2-dimensional range applying two accumulator functions: one
which runs on each cell, and one that runs as each row is completed.

foldRange :: L·, ·M→ L·, ·M→ L·, ·M -- cell position and addresses for the range
→ r -- a zero-value for the fold as a whole
→ (r → c) -- an initializer function for each row
→ (c → L·, ·M→ c) -- function to run on each cell
→ (r → Int → c → r) -- function to run on each complete row
→ r

foldRange pos rcfrom rcto zero zerorow opcell oprow =

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 78

let

(rmin, cmin, rmax, cmax) = toAbsRange pos rcfrom rcto

handleRow accrow r = oprow accrow r vrow

where

handleCell acccell c = opcell acccell L〈r〉, 〈c〉M
vrow = foldl ′ handleCell (zerorow accrow) [cmin . . cmax]

in

foldl ′ handleRow zero [rmin . . rmax]

It is important to note that, when handling array formulas, updateCells

expands a single array formula spanning a range of cells into a number of
individual XlAFCell entries in the cells map, each of them containing the (x, y)

offset to indicate their relative position in the rectangular range to which the
array formula was applied.

This makes two important assumptions. First, that it is possible to
compute each position of an array formula individually. This assumption is
not critical. At worst, it would wasteful in cases such as matrix multiplication,
where each cell would cause the whole matrix to be calculated and then
converted down to the scalar corresponding to the cell’s position.

The second assumption is that the computation of a given cell from an
array formula’s range is independent of the total size of the range as specified
by the user when the array formula was created. In general, this assumption
holds in spreadsheet applications, but we were able to identify corner cases in
Excel where an array formula returns different results when entered in a single
cell versus being entered in a range. For example, assuming A1 contains the
string C1, B1 contains the string D1, C1 contains 9 and D1 contains 16, entering
=SQRT(INDIRECT(A1:B1)) in cell E2 results in the value 3; but entering the
same formula with the range E2:F2 selected causes the value of both cells to be
#VALUE!. In LibreOffice (and in our interpreter), they evaluate to 3 and 4. By
behaving differently according to the range size selected during initial entry,
Excel adds a dependency to the calculation of cells that is invisible in its UI.
This interpreter avoids this problem by using calculation strategies similar to
those in LibreOffice and Google Sheets.

5.3.3.2
Resolving addresses

Relative coordinates are used extensively in spreadsheets, but whenever
they are used they need to be resolved into absolute addresses. Also, whenever
the interpreter uses ranges, it needs to ensure that they are normalized as

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 79

absolute coordinates with the top-left cell first and the bottom-right cell
second.

When relative addresses are given, they are resolved relative to the
coordinate of the cell being evaluated, which we will refer throughout as the
cell’s position.

Functions toAbs and toAbsRange normalize coordinates and ranges,
respectively:

toAbs :: L·, ·M→ L·, ·M→ L·, ·M
toAbs pos@Lrp, cpM cell@Lr , cM = L(absAddr rp r), (absAddr cp c)M

where

absAddr :: XlAddr → XlAddr → XlAddr

absAddr c@〈 〉 = c

absAddr 〈b〉 〈c〉R = 〈(b + c)〉
absAddr b@〈 〉R = ⊥

toAbsRange :: L·, ·M→ L·, ·M→ L·, ·M→ (Int , Int , Int , Int)

toAbsRange pos rcfrom rcto =

let

L〈rmin〉, 〈cmin〉M = toAbs pos rcfrom

L〈rmax〉, 〈cmax〉M = toAbs pos rcto

rmin = min rmin rmax

rmax = max rmin rmax

cmin = min cmin cmax

cmax = max cmin cmax

in

(rmin, cmin, rmax, cmax)

5.3.4
Calculating cell values

To determine the value of a cell, the interpreter evaluates the cell’s for-
mula, potentially recursing to evaluate other cells referenced by that formula.
The calcCell function takes as arguments a set of cell addresses currently be-
ing recursively visited (to detect cycles), the table of cell formulas, the current
table of values, the cell position and the actual cell to compute. The function
produces the calculated value of the cell along with the map of all values, since
other calls may have been computed along the way.

calcCell :: Set L·, ·M→ XlCells → XlValues → L·, ·M→ XlCell

→ (XlValue,XlValues)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 80

A major complication in the semantics of a spreadsheet application is the
fact that there are two distinct modes of evaluation: one for regular formulas,
and one for array formulas. Further, different kinds of functions in formulas
evaluate their arguments in different ways: borrowing from the terminology of
the language Perl, some functions evaluate their arguments in a scalar context
(that is, they expect their arguments to produce a scalar value), and some
evaluate arguments in an array context. This gives us four evaluation rules in
total.

This is the core of the incompatibility between spreadsheet formula
languages. As our examples in Section 5.2.1 demonstrate, each application
uses a different set of rules as to when to switch to array evaluation, and to
what to do in each evaluation mode.

Note that the presence of different evaluation rules affects not only array
formulas. As illustrated in Figure 5.4, Excel performs array-style evaluation in
sub-formulas for certain functions even when not in array formula mode.

In our implementation, we modularized these decisions into a number of
functions implementing different ways of evaluating a formula, in array and
scalar contexts.

Then, to represent an evaluation mode, the interpreter features a data
type XlEvaluator which, besides carrying a few context values for convenience,
includes a coercion function eToScalar to obtain a scalar function according to
the context of a cell (as we will see in more detail below), and two evaluation
functions, one for each of the possible evaluation contexts: eArray and eScalar .

data XlEvaluator = XlEvaluator {
ePos :: L·, ·M,
eOffset :: (Int , Int),

eVisiting :: Set L·, ·M,
eCells :: XlCells ,

eToScalar :: L·, ·M→ (Int , Int)→ XlFormula → XlFormula,

eArray :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues),

eScalar :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)

}

We opted to implement evaluation functions that follow the OpenDocu-
ment specification. With this, we achieved a good (but deliberately not full)
degree of compatibility with LibreOffice in the subset of spreadsheet features
implemented in this interpreter.

For calculating the value of a regular cell, the interpreter employs an
evaluator that uses functions intersectScalar to convert non-scalar to scalars,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 81

evalScalarFormula for evaluating scalar arguments, and evalFormula for eval-
uating non-scalar arguments. We will see the definition of these functions in
Section 5.3.4.1. Once the evaluator is defined, calcCell triggers the scalar eval-
uation function on the formula.

calcCell visiting cells vs pos@L〈r〉, 〈c〉M (XlCell formula) =

evalScalarFormula ev vs formula

where

ev = XlEvaluator {
ePos = pos ,

eOffset = (0, 0),

eCells = cells ,

eVisiting = visiting ,

eToScalar = intersectScalar ,

eScalar = evalScalarFormula,

eArray = evalFormula

}

For calculating cells marked as array formulas, the interpreter uses a
different evaluator. For coercing non-scalars into scalars, it uses a different
function, matrixToScalar . For scalar evaluation of arguments, it uses the same
function evalScalarFunction as above, but for non-scalar evaluation, it uses
iterateFormula. Both matrixToScalar and iterateFormula will be defined in
Section 5.3.4.2.

The implementation of calcCell for array formulas also triggers the
calculation by applying this mode’s scalar evaluator, but here the result value
is further filtered through a coercion function (scalarize), to ensure that a
scalar value is ultimately displayed in the cell.

calcCell visiting cells vs pos (XlAFCell formula (x , y)) =

scalarize ev $ (eScalar ev) ev vs formula

where

ev = XlEvaluator {
ePos = pos ,

eOffset = (x , y),

eCells = cells ,

eVisiting = visiting ,

eToScalar = matrixToScalar ,

eScalar = evalScalarFormula,

eArray = iterateFormula

}

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 82

scalarize :: XlEvaluator → (XlValue,XlValues)→ (XlValue,XlValues)

scalarize ev (v , vs) = (v ′, vs)

where

(XlLit v ′) = matrixToScalar (ePos ev) (eOffset ev) (XlLit v)

5.3.4.1
Regular cell evaluation

When the interpreter evaluates a formula in a scalar context, it runs the
evaluator’s scalar conversion function on the formula prior to evaluating it
proper. If the formula is an array or a range, it will be converted to a scalar.
If it is a scalar or a function, it will be evaluated as-is.

evalScalarFormula ev vs formula =

evalFormula ev vs formula ′

where

formula ′ = (eToScalar ev) (ePos ev) (eOffset ev) formula

The conversion function for regular cells, intersectScalar , is defined as
follows.

For array literals, element (0, 0) is returned. Empty arrays have inconsis-
tent behavior across spreadsheets. When given an empty array, Excel rejects
the formula, pops a message box alerting the user and does not accept the
entry. Excel Online does not display a message, but marks the cell with a
red dashed border. LibreOffice exhibits a very inconsistent behavior: ={} dis-
plays as an empty cell; =10/{} evaluates to #VALUE! but both =ABS({}) and
=ABS(10/{}) evaluate to 0; however, =ABS(A1) where A1 is {} evaluates to
#VALUE!. In our interpreter, we simply return the #REF! error for all uses of
{}, replicating the behavior of Google Sheets.

For ranges, the resulting value depends on the shape of the range and
the position in the spreadsheet grid where the formula was entered. If the
range is a vertical (n× 1) or horizontal (1×n) array, the evaluation follows an
“intersection” rule: the value returned is that of the element of the range that
is perpendicularly aligned with the position of the formula. For example, for a
formula in cell G5 that references A1 in a scalar context, the value in A5 will be
returned. Likewise, if that same cell G5 references E1:K1, the value obtained
will be that in cell G1. If there is no intersection or if the range has any other
shape, #VALUE! is returned.

intersectScalar :: L·, ·M→ (Int , Int)→ XlFormula → XlFormula

intersectScalar pos@L〈r〉, 〈c〉M formula =

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 83

case formula of

XlLit (XlMatrix []) → XlLit (XlError "#REF!")

XlLit (XlMatrix [[]])→ XlLit (XlError "#REF!")

XlLit (XlMatrix m) → XlLit (head (head m))

XlRng rcfrom rcto →
case toAbsRange pos rcfrom rcto of

(rmin, cmin, rmax, cmax)

| (cmin ≡ cmax) ∧ (r > rmin) ∧ (r 6 rmax)→ XlRef L〈r〉, 〈cmin〉M
| (rmin ≡ rmax) ∧ (c > cmin) ∧ (c 6 cmax) → XlRef L〈rmin〉, 〈c〉M
→ XlLit (XlError "#VALUE!")

f → f

5.3.4.2
Cell evaluation for array formulas

When a cell is marked as an array formula, it follows a different evaluation
process. As we saw in the definition of the array formula evaluator in function
calcCell (Section 5.3.4), for scalar contexts we use the same evaluation function
as in regular cells, evalScalarFormula. However, in array formulas this function
uses a different conversion function: eToScalar is defined as matrixToScalar .

Function matrixToScalar extracts a scalar value from a non-scalar based
on the offset (x, y) relative to the range for which the array formula was
defined. This way, as runEvent calculates cell values for each position of an
array formula, the evaluation of each cell will extract a different value from
non-scalars produced during the calculation of the formula. For example, if we
enter =A1:B2 as an array formula in range D10:E11, cell D11 has offset (1, 0)

and will obtain the value of cell B1.
The area designated by the user for an array formula does not neces-

sarily have the same dimensions as the non-scalar being displayed in it. The
OpenDocument specification lists a series of rules for filling the exceeding cells,
which the displayRule function below implements. Excel and LibreOffice also
implement these rules; Google Sheets does not.

matrixToScalar :: L·, ·M→ (Int , Int)→ XlFormula → XlFormula

matrixToScalar pos (x , y) f =

case f of

XlLit (XlMatrix m)→
displayRule x y (foldl ′ max 0 (map length m)) (length m)

(λx y → XlLit $ m !! y !! x)

XlRng rcfrom rcto →

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 84

displayRule x y (1 + cmax − cmin) (1 + rmax − rmin)

(λx y → XlRef L〈(rmin + y)〉, 〈(cmin + x)〉M)
where

(rmin, cmin, rmax, cmax) = toAbsRange pos rcfrom rcto

f → f

where

displayRule :: Int → Int → Int → Int → (Int → Int → XlFormula)

→ XlFormula

displayRule x y xsize ysize getXY

| xsize > x ∧ ysize > y = getXY x y

| xsize ≡ 1 ∧ ysize ≡ 1 = getXY 0 0

| xsize ≡ 1 ∧ x > 0 = getXY 0 y

| ysize ≡ 1 ∧ y > 0 = getXY x 0

| otherwise = XlLit $ XlError "#N/A"

Function iterateFormula implements the special evaluation mode for
array formulas. When given a function where any argument is a range or a
matrix, it produces a matrix with results. It does this by first checking each
argument and determining the maximum dimensions used by an argument
(xmax and ymax). Then, it iterates from (0, 0) to (xmax, ymax), evaluating the
function in scalar context once for each entry. In each evaluation, it uses a
modified version of the list of arguments, in which each non-scalar argument
is converted to a scalar based on the current (x, y) offset.

If the given function has no non-scalar arguments, it is evaluated normally
by evalFormula.

iterateFormula :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)

iterateFormula ev vs (XlFun name args) =

if xmax > 1 ∨ ymax > 1

then (λ(m, vs ′)→ (XlMatrix m, vs ′)) $ foldl ′ doRow ([], vs) [0 . . ymax − 1]

else evalFormula ev vs (XlFun name args)

where

ymax = foldl ′ getY 1 args

where

getY a (XlLit (XlMatrix m)) = max a (length m)

getY a (XlRng rcfrom rcto) = max a (1 + rmax − rmin)

where

(rmin, , rmax,) = toAbsRange (ePos ev) rcfrom rcto

getY a = a

xmax = foldl ′ getX 1 args

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 85

where

getX a (XlLit (XlMatrix m)) = max a (maxRowLength m)

where

maxRowLength :: [[XlValue]]→ Int

maxRowLength m = foldl ′ (λa ′ row → max a ′ (length row)) 1 m

getX a (XlRng rcfrom rcto) = max a (1 + cmax − cmin)

where

(, cmin, , cmax) = toAbsRange (ePos ev) rcfrom rcto

getX a = a

doRow :: ([[XlValue]],XlValues)→ Int → ([[XlValue]],XlValues)

doRow (m, vs) y = appendTo m $ foldl ′ doCell ([], vs) [0 . . xmax − 1]

where

doCell :: ([XlValue],XlValues)→ Int → ([XlValue],XlValues)

doCell (row , vs) x = appendTo row $ evalFormula ev vs f ′

where

f ′ = XlFun name (map ((eToScalar ev) (ePos ev) (x , y)) args)

appendTo xs (v , vs) = (xs ++ [v], vs)

iterateFormula ev vs f = evalFormula ev vs f

5.3.5
Operations

The last part of the interpreter is function evalFormula, which imple-
ments the evaluation of the various operations available in the textual formula
language. Given an evaluator, the current map of values, and a formula, it
produces the calculated value of the formula and a new map of values (since
other cells may be calculated as part of the evaluation of this formula).

evalFormula :: XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)

The function evalFormula implements the various language constructs as
follows.

5.3.5.1
Literals, references and ranges

When a formula is just a literal, its value is returned and the map of cell
values remains unchanged.

evalFormula ev vs (XlLit v) = (v , vs)

When a formula is a reference to another cell, evalFormula first converts
the reference address to its absolute value relative to the cell’s position. Then,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 86

it detects circular references by checking the eVisiting set of the evaluator. If
the reference is valid, it checks in the map of values if the value was already
calculated. If the cell is unset, we return the special value XlEmpty . Finally, if
the cell contains a formula which needs to be calculated, we calculate it with
calcCell and store the resulting value in an updated map of values.

evalFormula ev vs (XlRef ref ′) =

let

ref = toAbs (ePos ev) ref ′

visiting = eVisiting ev

cells = eCells ev

in

if ref ∈ visiting

then (XlError "#LOOP!", vs)

else

case Map.lookup ref vs of

Just v → (v , vs)

Nothing →
case Map.lookup ref cells of

Nothing → (XlEmpty , vs)

Just cell →
(v ′, vs ′′)

where

(v ′, vs ′) = calcCell (Set .insert ref visiting) cells vs ref cell

vs ′′ = insert ref v ′ vs ′

For evaluating ranges, evalFormula uses foldRange to iterate over the
range, invoking the scalar evaluation function (eScalar) for each element,
producing a matrix of values.

evalFormula ev vs (XlRng from to) =

let

(m, vs ′) = foldRange (ePos ev) from to ([], vs) zerorow opcell oprow

where

zerorow :: ([[XlValue]],XlValues)→ ([XlValue],XlValues)

zerorow (, vs) = ([], vs)

opcell :: ([XlValue],XlValues)→ L·, ·M→ ([XlValue],XlValues)

opcell (row , vs) rc =

addToRow $ (eScalar ev) ev vs (XlRef rc)

where addToRow (v , vs ′) = (row ++ [v], vs ′)

oprow :: ([[XlValue]],XlValues)→ Int → ([XlValue],XlValues)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 87

→ ([[XlValue]],XlValues)

oprow (m,) r (row , vs) = (m ++ [row], vs)

in

(XlMatrix m, vs ′)

5.3.5.2
IF, AND, and OR

The IF function takes three arguments. It tests the first argument, and
if evaluates to XlBool True it evaluates the second argument and returns it;
otherwise, it evaluates and returns the third argument. Note that arguments
are evaluated lazily, as is typical in constructs of this type in programming
languages.

evalFormula ev vs (XlFun "IF" [i , t , e]) =

let

(vi, vsi) = toBool $ (eScalar ev) ev vs i

(vr, vsr) =

case vi of

(XlError) → (vi, vsi)

(XlBool True) → (eScalar ev) ev vsi e

(XlBool False)→ (eScalar ev) ev vsi t

→ ((XlError "#VALUE!"), vsi)

in

(vr, vsr)

The AND and OR functions in spreadsheets, however, are evaluated strictly,
not performing the usual short-circuit expected of them in programming
languages. They always evaluate both arguments, and return and error if either
argument fails.

evalFormula ev vs (XlFun "AND" [a, b]) =

let

(va, vs
′) = toBool $ (eScalar ev) ev vs a

(vb, vs
′′) = toBool $ (eScalar ev) ev vs ′ b

vr = case (va, vb) of

(XlError ,) → va

(,XlError) → vb

(XlBool True,XlBool True)→ va

→ XlBool False

in

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 88

(vr, vs
′′)

evalFormula ev vs (XlFun "OR" [a, b]) =

let

(va, vs
′) = toBool $ (eScalar ev) ev vs a

(vb, vs
′′) = toBool $ (eScalar ev) ev vs ′ b

vr = case (va, vb) of

(XlError ,) → va

(,XlError) → vb

(XlBool True,)→ va

(,XlBool True)→ vb

→ XlBool False

in

(vr, vs
′′)

5.3.5.3
SUM

The SUM function illustrates the use of array evaluation. Each argument
is evaluated using the eArray function of the evaluator ev , and their results
are added producing the final result vr. Thus, when used in an array formula,
the evaluation of its arguments is done using iterateFormula (Section 5.3.4.2),
producing a XlMatrix of results that is then iterated to perform the sum. This
allows, for example, to use =SUM(SQRT(A1:A10)) to obtain a sum of squares,
even though function SQRT is a scalar function that does not support ranges
on its own.

It is worth noting that the coercion rules used by SUM are different from
those used by + (Section 5.3.5.6). While SUM skips string values (which may
appear, for example, as part of a range), the + function attempts to coerce
them into numbers.

evalFormula ev vs (XlFun "SUM" args) =

let

doSum s@(XlString) v = v

doSum v s@(XlString) = v

doSum (XlBool b) (XlNumber n) = XlNumber (bool2num b + n)

doSum (XlNumber n) (XlBool b) = XlNumber (bool2num b + n)

doSum (XlNumber a) (XlNumber b) = XlNumber (a + b)

(vr, vsr) = foldl ′ handle (XlNumber 0, vs) args

where

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 89

handle (acc, vsacc) arg =

let

(va, vsb) = (eArray ev) ev vsacc arg

vsum =

case va of

XlError → va

XlMatrix m → foldl ′ (foldl ′ (checkErr doSum)) acc m

XlBool b → checkErr doSum acc va

XlNumber n → checkErr doSum acc va

→ XlError "#VALUE!"

in

(vsum, vsb)

in

(vr, vsr)

5.3.5.4
INDIRECT

The INDIRECT function converts a string describing a reference or range
written in “A1” notation to the actual reference or range. This feature adds
support for runtime-evaluated indirect connections to the dataflow graph of a
spreadsheet. A cell can effectively act as a pointer to another cell.

Different spreadsheets vary in their semantics when supporting non-scalar
indirect references. Here, we opted for implementing it in a straightforward
way: we evaluate the argument in a scalar context, coercing it to string, and
then evaluate the indirect reference in a scalar context as well. When used in
an array formula, INDIRECT can handle non-scalar arguments due to the scalar
conversion performed by matrixToScalar (Section 5.3.4.2).

Auxiliary function toRC converts addresses in “A1” alphanumeric format
to the internal row-column numeric format. For simplicity, this interpreter only
support columns A to Z, and we assume the string is well-formed and do not
perform error checking.

evalFormula ev vs (XlFun "INDIRECT" [addr]) =

let

toRC :: String → L·, ·M
toRC (l : num) = L〈((read num)− 1)〉, 〈((ord l)− 65)〉M

convert s =

case break (≡ ’:’) s of

(a1 , ’:’ : b2)→ (XlRng (toRC a1) (toRC b2))

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 90

→ (XlRef (toRC s))

(va, vsb) = toString $ (eScalar ev) ev vs addr

(vr, vsr) =

case va of

XlError e → (va, vsb)

XlString s → (eScalar ev) ev vsb (convert s)

→ ((XlError "#VALUE!"), vsb)

in

(vr, vsr)

5.3.5.5
String operations

For illustrative purposes, we define a function that operates on strings:
the substring function MID, and the concatenation operator &. These are useful
for demonstrating the coercion rules in examples. In particular, it is interesting
to observe how the empty cell coerces to different values: with A1 being empty,
="Hello"&A1 results in "Hello", and =1/A1 results in #DIV/0!.

evalFormula ev vs (XlFun "MID" [vstr, vsum, vlen]) =

let

(v′
str, vs ′) = toString $ (eScalar ev) ev vs vstr

(v′
sum, vs ′′) = toNumber $ (eScalar ev) ev vs ′ vsum

(v′
len, vs ′′′) = toNumber $ (eScalar ev) ev vs ′′ vlen

doMid (XlString str) (XlNumber start) (XlNumber len) =

XlString $ take (floor len) $ drop (floor start − 1) str

doMid = XlError "#VALUE!"

v = doMid v′
str v′

sum v′
len

in

(v , vs ′′′)

evalFormula ev vs (XlFun "&" [a, b]) =

let

(va, vs
′) = toString $ (eScalar ev) ev vs a

(vb, vs
′′) = toString $ (eScalar ev) ev vs ′ b

doConcat (XlString sa) (XlString sb) = XlString (sa ++ sb)

doConcat = XlError "#VALUE!"

v = checkErr doConcat va vb

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 91

in

(v , vs ′′)

5.3.5.6
Mathematical operations and equality

A few unary and binary mathematical operations are defined here. They
all follow the same pattern, encapsulated as functions unOp and binOp defined
further below. The division operator additionally checks for division-by-zero,
returning #DIV/0!.

evalFormula ev vs (XlFun "SQRT" [v]) = unOp sqrt ev vs v

evalFormula ev vs (XlFun "ABS" [v]) = unOp abs ev vs v

evalFormula ev vs (XlFun "+" [a, b]) = binOp (+) ev vs a b

evalFormula ev vs (XlFun "-" [a, b]) = binOp (−) ev vs a b

evalFormula ev vs (XlFun "*" [a, b]) = binOp (∗) ev vs a b

evalFormula ev vs (XlFun "/" [a, b]) =

let

(va, vs
′) = toNumber $ (eScalar ev) ev vs a

(vb, vs
′′) = toNumber $ (eScalar ev) ev vs ′ b

doDiv (XlNumber na) (XlNumber 0) = XlError "#DIV/0!"

doDiv (XlNumber na) (XlNumber nb) = XlNumber (na / nb)

doDiv = XlError "#VALUE!"

v = checkErr doDiv va vb

in

(v , vs ′′)

The equality operator is notable in which is does not perform number
and string coercions as the other functions (that is, =2="2" returns FALSE).
However, it does coerce booleans to numbers, probably as a compatibility
leftover from when spreadsheets did not have a separate boolean type. The
OpenDocument specification (72) states that a conforming implementation
may represent booleans as a subtype of numbers.

evalFormula ev vs (XlFun "=" [a, b]) =

let

(va, vs ′) = (eScalar ev) ev vs a

(vb, vs ′′) = (eScalar ev) ev vs ′ b

doEq (XlNumber na) (XlNumber nb) = XlBool (na ≡ nb)

doEq (XlString sa) (XlString sb) = XlBool (sa ≡ sb)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 92

doEq (XlBool ba) (XlBool bb) = XlBool (ba ≡ bb)

doEq (XlNumber na) (XlBool bb) = XlBool (na ≡ bool2num bb)

doEq (XlBool ba) (XlNumber nb) = XlBool (bool2num ba ≡ nb)

doEq = XlBool False

v = checkErr doEq va vb

in

(v , vs ′′)

evalFormula ev vs (XlFun) = (XlError "#NAME?", vs)

Functions unOp and binOp are convenience functions that encapsulate
the pattern for common unary and binary numeric functions. They evaluate
their arguments in a scalar context, check if any of the arguments evaluated
to an error, and perform the operation op.

unOp :: (Double → Double)

→ XlEvaluator → XlValues → XlFormula → (XlValue,XlValues)

unOp op ev vs v =

let

(v ′, vs ′) = toNumber $ (eScalar ev) ev vs v

v ′′ = case v ′ of

e@(XlError)→ e

(XlNumber n) → XlNumber $ op n

→ XlError "#VALUE!"

in

(v ′′, vs ′)

binOp :: (Double → Double → Double)→ XlEvaluator → XlValues

→ XlFormula → XlFormula → (XlValue,XlValues)

binOp op ev vs a b =

let

(va, vs
′) = toNumber $ (eScalar ev) ev vs a

(vb, vs
′′) = toNumber $ (eScalar ev) ev vs ′ b

doOp (XlNumber na) (XlNumber nb) = XlNumber (op na nb)

doOp = XlError "#VALUE!"

v = checkErr doOp va vb

in

(v , vs ′′)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 93

5.3.5.7
Type conversions

We conclude the presentation of the interpreter with the remaining utility
functions that perform various type conversions and checks.

Function num2str is a converter that presents rational and integer
values in their preferred notation (that is, with and without a decimal point,
respectively). Function bool2num converts booleans to 0 or 1.

num2str :: Double → String

num2str n = if fromIntegral (floor n) 6≡ n then show n else show (floor n)

bool2num :: Bool → Double

bool2num b = if b ≡ True then 1 else 0

Functions toNumber , toString and toBool attempt to convert a value to
the specified type, producing a XlError value if the input is not convertible.

toNumber :: (XlValue,XlValues)→ (XlValue,XlValues)

toNumber (v , vs) = (coerce v , vs)

where

coerce (XlString s) = case reads s :: [(Double, String)] of

[] → XlError "#VALUE!"

[(n,)]→ XlNumber n

coerce (XlBool b) = XlNumber (bool2num b)

coerce (XlEmpty) = XlNumber 0

coerce (XlMatrix) = XlError "#VALUE!"

coerce v = v

toString :: (XlValue,XlValues)→ (XlValue,XlValues)

toString (v , vs) = (coerce v , vs)

where

coerce (XlNumber n) = XlString (num2str n)

coerce (XlBool b) = XlString (if b ≡ True then "1" else "0")

coerce (XlEmpty) = XlString ""

coerce (XlMatrix) = XlError "#VALUE!"

coerce v = v

toBool :: (XlValue,XlValues)→ (XlValue,XlValues)

toBool (v , vs) = (coerce v , vs)

where

coerce (XlNumber 0) = XlBool False

coerce (XlNumber) = XlBool True

coerce (XlString s) = case map toUpper s of

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 94

"TRUE"→ XlBool True

"FALSE"→ XlBool False

→ XlError "#VALUE!"

coerce (XlEmpty) = XlBool False

coerce (XlMatrix) = XlError "#VALUE!"

coerce v = v

Function checkErr checks input values for errors before performing a
binary operation. The order errors are evaluated is relevant: if the first
argument contains an error, it takes precedence.

checkErr :: (XlValue → XlValue → XlValue)→ XlValue → XlValue → XlValue

checkErr op e@(XlError) = e

checkErr op e@(XlError) = e

checkErr op a b = op a b

5.3.6
Demonstration

In Appendix B we present a demonstration of use of this interpreter,
showcasing its features. We also produced a series of tests that correspond to
sections of the OpenDocument specification for the .ods format (72) and the
ISO Open Office XML specification for the .xlsx format (42), as well as our
own additional tests that cover some unspecified behavior. All examples and
tests are available in https://hisham.hm/thesis/.

5.4
Discussion: Language specification and compatibility issues

One might argue that the various language issues present in formula lan-
guages discussed in this chapter are due to specification blunders early in the
history of spreadsheets, forever preserved in the name of backwards compati-
bility. But the insufficient concern with precise semantics of spreadsheets is not
only historical, as it manifests itself in compatibility issues between modern
variants, even by the same vendor. Further, when evaluating the compatibility
of various spreadsheet implementations it is necessary to define what exactly
is meant by compatibility.

When looking at spreadsheets as documents, one tends to think about
“file format compatibility” as such: an application should be able to load a
file and render it correctly. This definition of compatibility is insufficient, as it
does not account the dynamic semantics of the language, that is, how the state

https://hisham.hm/thesis/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 5. Case study: spreadsheets 95

Microsoft LO Google Excel Excel
Excel Calc Sheets Online mobile

A1 Err:522 #REF! 100 100
B1 Err:522 #REF! 0 0

error dialog no no no yes

Table 5.5: Behavior upon circular references, after the following sequence: B1
to 100, A1 to =B1, B1 to =A1

of the program changes over time as the program executes. When one looks
at a spreadsheet as an interactive program, then the newly-loaded document
defines only the initial state of the program and further edits to cells are inputs
that cause state updates.

Compatible languages should have equivalent dynamic semantics. Under
this definition, Excel, Excel Online and mobile Excel, all three by Microsoft,
are not compatible: there are identical sequences of formula edits that one
can perform over the same spreadsheet which lead to different results in each
program. In other words, the dynamic semantics of their formula languages
differ. Case in point, all three variants of Excel have different behavior in face
of circular references, as illustrated in Figure 5.5. In desktop and mobile Excel,
the application pops a dialog warning the user about the circular references; in
the web-based version no such warning is present. More important, however,
is the difference in produced values: when a user produces a loop between
two cells in desktop Excel, both cells instantly produce error values; in Excel
Online and mobile Excel, the most recently updated cell produces the value
zero and the other one retains its previous value.

That such a striking difference in behavior has made it to production
seems to show that the UI was not treated as a well-defined language whose
behavior was meant to be duplicated. While care has certainly been taken
to ensure that Excel Online and mobile have good compatibility with Excel,
apparently this was taken to mean only that they should load Excel files and
produces identical initial results. The behavior of Excel Online is especially
worrying, as circular references produce invalid values silently.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

6
Case study: LabVIEW

LabVIEW1 is a tool for data acquisition, instrument control and indus-
trial automation, developed by National Instruments. It is a proprietary com-
mercial application, with extensive support for typical engineering domains
such as digital signal processing. The application consists of a graphical pro-
gramming environment, including a large amount of bundled functionality for
data acquisition, as well as support for hardware also produced by its vendor.
LabVIEW programs can be compiled and deployed stand-alone, depending
only on a runtime package. LabVIEW is noted as a major success story of
a visual programming language in the industry (44). In it, program code is
represented as a set of graphical diagrams.

The programming language of the LabVIEW environment is called G.
However, since there are no other implementations of G or any specification
other than the implementation of LabVIEW itself, it is customary to refer to
the language as LabVIEW or use both names interchangeably (47; 61); for
simplicity, we will call the both the application and its language LabVIEW
throughout the text.

6.1
Overview of the language

In LabVIEW, programs are called virtual instruments (VIs), as their
interfaces mimic laboratory instruments, with buttons, scopes and gauges. This
is a clear nod to its application domain, since the developer of the tool is also
a vendor of physical hardware instruments.

As depicted in Figure 6.1, each VI has always two parts:

– the front panel, which is the user program’s interface. It contains elements
that provide inputs and outputs to the program, presented as graphical
widgets for interaction or visualization.

– the block diagram, which is the dataflow graph. It contains all elements
that are present in the front panel (this time in iconic mode) as well as
any additional nodes which represent functions to be applied to data,
effectively constructing the program.

1http://ni.com/labview/

http://ni.com/labview/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 97

Figure 6.1: The main interface of LabVIEW. Each virtual instrument appears
in two windows: the front panel (left) and the block diagram (right).

All widgets included in the front panel are either input elements, called controls
in LabVIEW, or output elements, called indicators. This dichotomy leads
to a much simpler model for UI programming, as opposed to typical GUI
frameworks where one needs to implement handlers to various events that
read-write widgets may produce. Indicators appear as write-only nodes in the
block diagram and read-only widgets in the front panel; contrariwise, controls
appear as data-entry widgets in the front panel that are read-only nodes in
the block diagram.

When running a program inside the LabVIEW environment, the block
diagram is still visible when running, but it is read-only. At runtime, the
interaction with the block diagram is limited. It can only be decorated
with temporary probes for debugging purposes, attached to wires. When a
LabVIEW program is compiled and deployed, only the front panel is visible.

It is possible to update control values from the block diagram using
more advanced features of the language that are less evident in its UI, but the
environment is conducive to a simpler input/output discipline which presents
data flowing from controls, to the block diagram, and finally to indicators.

6.1.1
Execution modes

There are two modes of execution, which can be launched, respectively,
by the first two icons in the toolbars depicted in Figure 6.1. In the LabVIEW
UI they are simply called “Run” and “Run continuously”. We will therefore
call these modes single-shot and continuous.

In single-shot mode, all nodes and controls structures at the top-level
graph are fired at most once; control structures may loop, causing inner nodes
to fire multiple times. To begin the execution of this mode, LabVIEW fires
all controls and nodes that do not depend on other objects, and execution

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 98

continues until there are no more values to be propagated. When all values
propagate to the appropriate indicators, their values are updated in the UI
and the execution halts, bringing LabVIEW back to edit mode. However, if a
diagram contains an infinite loop, for example, the program will run forever.
Since controls are only fired at the beginning of execution, further inputs
entered by the user while a single-shot execution runs have no effect on that
execution. Controls and indicators retain their last values.

Continuous mode is equivalent to enclosing the entire program in an
infinite loop and firing controls on each iteration. Each iteration of this
continuous run is equivalent to one single-shot execution: all controls are fired,
and the graph evaluation essentially restarts on each step, except that two
kinds of objects, shift registers and feedback nodes, also retain their values
from iteration to iteration. These two objects, which we will describe in detail
in the next section, are the only nodes that can represent cyclic connections
in the graph. In effect, single-shot execution is acyclic, and cycles can only
propagate values from one iteration of a graph (or subgraph) to the next.

Two restrictions ensure that at most one value arrives at an input port
during an iteration: first, that cycles only happen across iterations; second,
that only one wire can be connected to an input port. This characterizes a
static dataflow model, for which no buffers are necessary in input ports. This
greatly simplifies scheduling and memory management: it is not possible to
produce a stack overflow through an execution cycle, or a buffer overflow in
nodes (for there are no buffers). As we will see below, however, the presence
of aggregate data types brings back concerns about memory management.

Each control is fired only once in single-shot mode and only at the
beginning of each iteration of the main graph in continuous mode. This
means that having a long-running main graph in continuous mode leads to
an unresponsive VI.

6.1.2
Data types and wires

The language features primitive and structured data types. It supports
a large number of primitive basic types: 8, 16, 32 and 64 bit integers; fixed-
point, floating-point and complex numbers of various sizes. For structured data,
LabVIEW includes single and multi-dimensional arrays, as well as record types
called clusters.

Controls, nodes and indicators are connected through wires, which is how
edges in the dataflow graph are called. Apart from a special “dynamic” wire
which sees limited use in LabVIEW as it demands special conversions, wires

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 99

are in general statically typed: each wire has a data type assigned to it. In
the UI, the color, thickness and stripe pattern of the wire indicates its type:
the color represents the base type (integer, floating point, array, cluster), the
thickness represents data dimensions (scalar, single or multidimensional array)
and additional styling such as stripe patterns are used for particular types, such
as waveforms and errors, which are just predefinitions for particular cluster
types. For example, a waveform is a cluster containing on array of data points,
a numeric timestamp and a numeric interval value between data samples. Error
data flows as a cluster of three values: a boolean indicator an error condition, a
32-bit integer with the error code, and a string containing source information.

Some types support automatic coercions. For example, it is possible to
connect an integer output port to a floating-point input port. The resulting
wire has integer type: coercion happens at the input edge of the wire.

Not all types can be visually distinguished in the interface. Apart from
the especially predefined clusters like waveform and error, all user-defined
cluster types look alike. For these wires, the contextual help window serves
as a useful aid, describing the complete type of the wire under the mouse
cursor.

Representing data structures is a well known difficulty in the area of
dataflow (44). LabVIEW takes a simple approach: structured data such as
arrays and clusters still flow as a single dataflow packet. The transfer of a
whole array between two nodes happens as a single firing through an array-
typed wire. To compensate for the low granularity of arrays in the flow of
data, LabVIEW offers a number of nodes with complex array operations. New
functionality to make it easier to manipulate arrays continues to be added. All
three of the new plug-ins introduced in LabVIEW 2015 that were suggested
by users of the vendor’s discussion forums deal with array types: “Change
to Array or Element”, “Size Array Constants to Contents”, “Transpose 2D
Array”. This indicates that users need high-level array operations.

6.1.3
Looping and cycles

From the end-user’s perspective, LabVIEW programs are graphs that can
contain cycles, but these are controlled via the use of explicit feedback nodes
and structured looping constructs.

The LabVIEW UI enforces that the only connections producing explicit
cycles in a graph are those connecting feedback nodes: wiring any two objects
in the graph producing a cycle automatically inserts a feedback node between
them. This feedback node exists solely to store the value in between executions

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 100

Figure 6.2: Looping constructs in LabVIEW, a “for” and a “while” loop.

of the graph. In Figure 6.1, feedback nodes appear as light orange nodes
containing a ← sign.

Structured looping constructs are available, mirroring those available in
traditional textual languages. The “for-loop” and “while-loop” constructs act
as their familiar equivalents. In both cases, the looping construct appears in
the UI as a frame inside the graph: they are both depicted in Figure 6.2. The
“while” structure, presented at the right, always runs at least once and the
condition can be negated by clicking on the green 	 symbol, so it is more
like either a “do-while” or a “repeat-until” construct. The frame of the loop
encloses a subgraph and controls its iteration. The subgraph may produce one
or more values that are sent out when the iteration completes.

Values may also be sent from one iteration of the loop to the next through
the use of shift registers. A shift register appears as a pair of small nodes at the
edges of the loop frame: one incoming connector at the right and one outgoing
connector at the left. The “for” loop at the left in Figure 6.2 showcases a
shift register. Shift registers are conceptually similar to how textual dataflow
languages like Lucid allow iteration, with x and next x holding distinct values.
The presence of a shift register denotes an implicit cycle in the graph.

In short, feedback nodes are constructs for sending data through iter-
ations of the main graph when in continuous mode, and shift registers are
constructs for sending data through iterations of a loop subgraph. It is notable
that while functionally very similar, they have very different representations
in the UI.

6.1.4
Timing

LabVIEW offers two wait functions: “Wait Until Next ms Multiple” and
“Wait”. The former monitors a millisecond counter and waits until it reaches
a multiple of a given number, controlling the loop execution rate by holding

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 101

Figure 6.3: Interaction of loops and tunnels in LabVIEW. Loop A never
updates its output; Loop B updates only at the end; Loop C updates every
second.

back the loop step. This is designed for the synchronization of loops, typically
when performing device reads and outputs to indicators in the interface. Note
that the multiple may happen right after the loop starts, so the delay for the
first iteration of the loop is indeterminate. The latter function, “Wait”, always
waits the specified amount of time, effectively adding a pause of constant size
between steps of the loop.

The firing of a wait node inside a loop construct holds back the next step
of the loop, effectively controlling the execution rate, assuming the rest of the
code in the loop takes less time to execute than the configured delay. When
multiple parallel loops exist in the graph, using “Wait Until Next ms Multiple”
allows one to synchronize them to millisecond precision, which is often good
enough for the domain of data acquisition hardware. It is amusing to note
that the icon for “Wait Until Next ms Multiple” (visible in Figure 6.2) is a
metronome, a device for counting tempo in music; in Pure Data, the function
for generating periodic messages is called metro, referencing the same device.
The image of the metronome reinforces the idea of “orchestration” between
parallel agents.

6.1.5
Tunnels

Tunnels are nodes that send or receive data into or out of a structure.
By connecting a wire from a node inside a structure to another node outside
it or vice versa, a tunnel is automatically created at the edge of the structure
frame.

When using tunnels to send values into or out of loop structures, the
values are transferred only at the beginning or at the end of the execution of the
loop. Figure 6.3 illustrates the behavior of input and output tunnels in loops.
We have three while-loops in which the termination condition is connected to
a boolean button, the iteration counter is connected to a numeric indicator,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 102

Figure 6.4: Connection errors in LabVIEW. Connecting two data sources (A1
and A2) directly to an input (A3) produces a helpful error message. If one of
the connections goes through a tunnel, however (B2), this produces a tunnel
direction inference error.

and the loop timing is controlled to execute one iteration per 1000 ms. In Loop
A, both the inputs and outputs are connected through tunnels. The end result
is that the termination value becomes fixed in the loop as the value of Boolean
A goes through the tunnel. If the value of Boolean A at the beginning of
execution is true, the loop runs for only one iteration and 0 is sent to Indicator
A. If Boolean A is false at the beginning of execution, the loop never stops,
and clicking the button has no effect. In Loop B, Boolean B is inside the loop,
so its value is sent to the conditional terminal on each iteration. The loop stops
once Boolean B is set to true, and only then the iteration value is sent via the
output tunnel to Indicator B. In Loop C, the interface displays Indicator C
being updated once a second, as long as Boolean C is false.

Because the direction of tunnels is inferred, incorrect connections involv-
ing tunnels produce less useful messages than similar connections not going
through a tunnel. Figure 6.4 illustrates how tunnel inference affects error mes-
sages. When one connects two controls (A1 and A2) to an indicator (A3), this
produces one error message that says “a wire can be connected to only one
data source”. When one attempts a similar connection (B1 and B2 to B3),
but one of these data sources (B2) goes through a tunnel, this produces three
identical error messages that say “wire connected to an undirected tunnel: a
tunnel on this wire cannot determine whether it is an input or an output”.
This is typical of error messages involving inference: the inference engine of
the language detects that a unification was not possible, but cannot tell which
one of the two mismatching elements is the incorrect one.

6.1.6
Other control structures

LabVIEW also supports other control structures, two of which will
be briefly discussed here: “case” and “sequence”. Both structures hold an
arbitrary number of subgraphs. The “case” structure is presented as a frame
that has a number of pages, each of them holding a subgraph for each case.
It accepts an enumeration value as input to select the active page. Figure 6.5

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 103

Figure 6.5: ”Case” structure in LabVIEW

Figure 6.6: ”Sequence” structure in LabVIEW

illustrates a “case” structure. The enumeration selects which operation is to
be applied to the two inputs A and B.

The “sequence” structure is presented in the UI as film roll with a series of
frames, each holding a subgraph to be executed one after the other. This is an
escape from the pure dataflow model, and provides a way to force a particular
control flow structure regardless of data dependencies. Figure 6.5 illustrates a
“sequence” structure. Note that inputs A and B arrive at the input tunnels
of both frames immediately, but the second frame will only execute after the
first frame finishes. The output tunnel for the first frame will only fire after
one second, so the “Numeric” indicator and the “Product” indicator will be
updated at the same time.

6.2
An interpreter modeling the semantics of LabVIEW

A difficulty in discussing the semantics of LabVIEW is that is has no
published specification. Its documentation often resorts to examples to explain
concepts, and does not serve an an exhaustive specification of the language.
Previous attempts on the formalization of LabVIEW have been restricted

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 104

to subsets of the language, and based themselves on its user manual and
experimenting with the tool itself. In (61), Mok and Stuart map a subset
of the language to RTL (real-time logic), a first-order logic used for describing
real-time and embedded systems; they note that design decisions had to be
made in points where the precise behavior was not clear. In (47), Kaufmann
et al. map a purely functional subset of LabVIEW into a dialect of Common
Lisp used by the ACL2 theorem prover.

Like previous work in the literature, we designed the model based on
LabVIEW’s documentation and experimentation with the tool itself. We lim-
ited ourselves to the core logic of graph evaluation, the main control structures,
and a few nodes that would allow us to run examples and model time-based
execution. Additional features of LabVIEW that were not implemented include
support for multiple non-reentrant VIs, global variables (which are not really
global variables in the traditional sense but actually references to external VIs);
object-oriented features, advanced event handling for controls and indicators,
and object references. Still, we believe this work to be a more detailed model
than the ones previously available in the literature. For instance, it models
sequences and nodes with side-effects.

This implementation uses only standard modules included in the Haskell
Platform:

module LvInterpreter where

import Data.Sequence (Seq , fromList , index , update, elemIndexL)

import qualified Data.Sequence as Seq (length, take)

import Data.Char

import Data.List

import Data.Maybe

import Data.Bits

import Data.Foldable (toList)

import Data.Generics .Aliases (orElse)

6.2.1
Representation of programs

As mentioned in Section 6.1, a program in LabVIEW is called a VI. It
is a graph connecting different kinds of objects. In LabVIEW terminology,
these objects are called controls, which are input-only, indicators, which
are output-only, and nodes, which are all other operations. Throughout the
implementation, we will use this nomenclature; in particular the name “node”
will be used only for graph objects which are not controls or indicators. Graph

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 105

objects are connected through wires. To avoid confusion with objects in the
interpreter implementation, we will refer to graph objects (controls, indicators
and nodes) as elements.

We represent a VI as a record containing a series of lists, enumerating
controls, indicators, nodes and wires. Controls, indicators and nodes are paired
with their names for display purposes only. The list of wires constitutes an
adjacency list for the graph connections.

data LvVI = LvVI {
vCtrls :: [(String ,LvControl)],

vIndics :: [(String ,LvIndicator)],

vNodes :: [(String ,LvNode)],

vWires :: [LvWire]

}
deriving Show

A control in LabVIEW is an input widget in the VI’s front panel, which
also gets a representation as an object in the block diagram. However, since
LabVIEW includes structured graphs composed of subgraphs representing
structures such as for- and while-loops, we build these graphs in the interpreter
recursively, declaring subgraphs as LvVI objects. For this reason, we use
controls and indicators not only to represent GUI objects of the front panel,
but also inputs and outputs of subgraphs. To do this, we declare a number
of types of controls: a plain control that corresponds to a GUI object; an
“auto” control that represents an automatically-generated input value, such
as the increment count in a for-loop; a “tunnel” control, which is an input that
connects data from the enclosing graph to the subgraph; and a “shift-register”
control, which is the input terminator for shift registers (a construct to send
data across iterations of a loop).

data LvControl = LvControl LvValue

| LvAutoControl

| LvTunControl

| LvSRControl LvValue

deriving Show

An indicator in LabVIEW is an output widget in the VI’s front panel.
Like controls, indicators are represented both in the front panel (as a GUI
widget) and in the block diagram (as a connectable object). For the same
reasons as explained above for controls, we have different kinds of indicators:
the plain indicator, which represents a GUI indicator proper; the “shift-
register” indicator, which sends data to its respective shift-register control

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 106

(represented by the numeric index of the control in its constructor) for the
next execution of a loop; and the “tunnel” indicator, which sends data out of
the subgraph back to the enclosing graph.

Tunnel indicators can be of different types: “last value”, which sends
out the value produced by the last iteration of the subgraph; “auto-indexing”,
which produces an array accumulating all values received by the tunnel across
all iterations of the subgraph; and “concatenating”, which concatenates all
values received. Here, we implement the “last value” and “auto-indexing”
modes, since the “concatenating” mode is a mere convenience that could
be achieved by concatenating the values of the array returned in the “auto-
indexing” mode.

The LabVIEW interface enables auto-indexing by default when sending
data out of for-loops, but this can be overridden by the user in the UI.

data LvIndicator = LvIndicator LvValue

| LvSRIndicator Int

| LvTunIndicator LvTunnelMode

deriving Show

data LvTunnelMode = LvAutoIndexing

| LvLastValue

deriving Show

There are several kinds of nodes in LabVIEW. The vast majority are
functions, but there are also control structures, constants and feedback nodes.

Functions are identified in our implementation by their their names. They
can have zero or more input ports, and zero or more output ports.

There are various kinds of control structures. Due to the fact that many
of them share code in our implementation, we grouped them in the LvStructure

type constructor: those are while-loops, for-loops, sequences, and sub-VIs.
The case-structure controls a list of sub-VIs, and for this reason is handled
separately with the LvCase constructor.

A constant is a node that holds a value. It has a single output port and
immediately fires its value.

A feedback node holds the value it receives through its input port and
fires it the next time the program is executed, when running in continuous
mode as explained in Section 6.1.1.

data LvNode = LvFunction String

| LvStructure LvStrucType LvVI

| LvCase [LvVI]

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 107

| LvConstant LvValue

| LvFeedbackNode LvValue

deriving Show

data LvStrucType = LvWhile

| LvFor

| LvSequence

| LvSubVI

deriving Show

LabVIEW supports a large number of primitive numeric types: single,
double and extended-precision floating-point numbers; fixed-point numbers;
signed and unsigned integers of 8, 16, 32 and 64 bits; single, double and
extended-precision complex numbers. We chose to implement only one floating-
point and one integer type.

Besides these, the interpreter also supports the following types: strings;
booleans; the clusters, which are a heterogeneous tuple of values (working like
a record or “struct”); and homogeneous arrays.

Unlike LabVIEW, our implementation allows arbitrarily recursive types
(e.g. we support a cluster of arrays of arrays of clusters).

Though LabVIEW supports arrays of clusters, and clusters of arrays, it
does not support arrays of arrays. The recommended alternative is to use an
“array of cluster of array”: an array where elements are single-element clusters
containing an array. This limitation is an explicit design decision, harking back
to the development of LabVIEW 2.0 in 19882.

Since we assume that input programs are properly type-checked, imple-
menting the same restrictions that LabVIEW enforces to aggregate data types
could be easily done in the type-checking step.

data LvValue = LvDBL Double

| LvI32 Int

| LvSTR String

| LvBool Bool

| LvCluster [LvValue]

| LvArr [LvValue]

deriving (Show ,Eq ,Ord)

A wire is a connection between two objects, represented as a source-
destination pair of port addresses. Each port address, denoted Lt , e, pM, is a

2https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Add-Support-for-Array-
of-Array/idi-p/1875123

https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Add-Support-for-Array-of-Array/idi-p/1875123
https://forums.ni.com/t5/LabVIEW-Idea-Exchange/Add-Support-for-Array-of-Array/idi-p/1875123
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 108

triple containing the element type (control, indicator or node), the element
index and the port index within the element. For the source tuple, the port
index denotes the element’s output port; for the destination tuple, it denotes
the input port.

data LvWire = LvWire {
wSrc :: L·, ·, ·M,
wDst :: L·, ·, ·M
}

deriving Show

data L·, ·, ·M = LLvElemType, Int , IntM
deriving Eq

instance Show L·, ·, ·M where

show Ltyp, eidx , pidx M =

"{" ++ show typ ++ " " ++ show eidx ++ ", " ++ show pidx ++ "}"

data LvElemType = LvC

| LvI

| LvN

deriving (Show ,Eq)

6.2.2
Representation of state

Now that the static representation of program code is defined, we move
on to defining the dynamic representation of program state during execution.
The representation of a state in our interpreter is a record containing the
following values: the timestamp, a scheduler queue listing the next elements
that need to be processed, and three sequences that store the internal states
of nodes, controls and indicators. For controls and indicators, the sequences
store their values. A VI always initializes controls and indicators with default
values. Elements in the scheduler queue are denoted as Lt , eM, where t is the
type of the element (control, indicator or node) and e is the numeric index of
the element in its appropriate list in the LvVI object.

data LvState = LvState {
sTs :: Int ,

sPrng :: Int ,

sSched :: [L·, ·M],
sNStates :: Seq LvNodeState,

sCtrlVals :: Seq LvValue,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 109

sIndicVals :: Seq LvValue

}
deriving Show

data L·, ·M = LLvElemType, IntM
deriving Eq

instance Show L·, ·M where

show Ltyp, eidx M =

"{" ++ show typ ++ " " ++ show eidx ++ "}"

For node states, the interpreter stores the contents of the input ports and
an optional continuation. Each input port may be either empty or contain a
single value, in accordance with the static dataflow model.

data LvNodeState = LvNodeState {
nsInputs :: Seq (Maybe LvValue),

nsCont :: Maybe LvCont

}
deriving Show

For functions, we use continuations to model computations that run
over time. An operation that needs to continue running beyond the current
timestamp implements the rest of the computation as a separate function,
which will be scheduled to run at the next time tick. In the LvKFunction

constructor we store the continuation function itself (kFn) and the values
that will be passed to it (kArgs). These values act as the operation’s internal
memory. A continuation function returns either LvReturn, which contains the
result values to be sent through the function’s output ports, or LvContinue,
which encapsulates the next continuation to be executed as the operation
resumes running.

For subgraph structures, such as loops, the continuation of its execution
is the state of the sub-VI. Note that, this way, the interpreter models a
hierarchical tree of scheduler queues, as each structure node keeps an LvState

with its own sSched queue. This way, multiple subgraphs can run concurrently.

data LvCont = LvKFunction {
kFn :: LvWorld → [LvValue]→ (LvWorld ,LvReturn),

kArgs :: [LvValue]

}
| LvKState LvState

instance Show LvCont where

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 110

show (LvKFunction args) = "KFunction(" ++ show args ++ ")"

show (LvKState s) = "KState[" ++ show s ++ "]"

data LvReturn = LvReturn [LvValue]

| LvContinue LvCont

In all functions implementing LabVIEW nodes, we include an additional
argument and an additional result representing access to side-effects that affect
the state of the external world.

These extra values allow us to model impure functions whose effects
depend not only on the inputs received through wires in the dataflow graph.
In particular, this allows us to model the relationship between graph evaluation
and time.

In our model, a simplified view of this “external world” is implemented
as the LvWorld type. It consists of a read-only timestamp, which we will use
as a model of a “system clock” for timer-based functions, and the read-write
pseudo-random number generator (PRNG) state, which can be consumed and
updated.

data LvWorld = LvWorld {
wTs :: Int ,

wPrng :: Int

}

Note that LvWorld is a subset of our LvState object, which represents
the memory of the VI being executed. In this sense, this is the part of the
outside world that is visible to the function.

6.2.3
Execution

The execution mode of LabVIEW is data-driven. The user enters data via
controls, which propagate their values through other nodes, eventually reaching
indicators, which provide feedback to the user via their representations in the
front panel.

This interpreter models a single-shot execution (as discussed in Sec-
tion 6.1.1). Continuous execution is semantically equivalent as enclosing the
entire VI in a while-loop.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 111

6.2.3.1
Main loop

The execution of the interpreter is a loop of evaluation steps, which starts
from an initial state defined for the VI and runs producing new states until a
final state with an empty scheduler queue is produced.

runVI :: LvVI → IO ()

runVI vi =

loop (initialState 0 42 vi)

where

loop s = do

print s

case sSched s of

[]→ return ()

→ loop (run s vi)

6.2.3.2
Initial state

The initial state consists of the input values entered for controls, the
initial values of indicators, and empty states for each node, containing the
appropriate number of empty slots corresponding to their input ports. It also
contains the initial schedule, which is the initial list of graph elements to be
executed.

initialState :: Int → Int → LvVI → LvState

initialState ts prng vi =

LvState {
sTs = ts + 1,

sPrng = prng ,

sCtrlVals = fromList $ map (makeCtrlVal ◦ snd) (vCtrls vi),

sIndicVals = fromList $ map (makeIndicVal ◦ snd) (vIndics vi),

sNStates = fromList $ mapIdx makeNState (vNodes vi),

sSched = initialSchedule vi

}
where

makeNState :: (Int , (String ,LvNode))→ LvNodeState

makeNState (i , (name, node)) =

LvNodeState {
nsInputs = emptyInputs $ nrInputs i node,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 112

nsCont = Nothing

}
nrInputs :: Int → LvNode → Int

nrInputs i (LvFunction) = nrWiredInputs i vi

nrInputs (LvConstant) = 0

nrInputs (LvStructure subvi) = length $ vCtrls subvi

nrInputs (LvCase subvis) = length $ vCtrls (head subvis)

nrInputs (LvFeedbackNode) = 1

makeCtrlVal :: LvControl → LvValue

makeCtrlVal (LvControl v) = v

makeCtrlVal (LvSRControl v) = v

makeCtrlVal = LvI32 0

makeIndicVal :: LvIndicator → LvValue

makeIndicVal (LvIndicator v) = v

makeIndicVal (LvTunIndicator LvAutoIndexing) = LvArr []

makeIndicVal = LvI32 0

mapIdx :: ((Int , a)→ b)→ [a]→ [b]

mapIdx fn l = zipWith (curry fn) (indices l) l

emptyInputs :: Int → Seq (Maybe LvValue)

emptyInputs n = fromList (replicate n Nothing)

The initial schedule is defined as follows. All controls, constants and
feedback nodes are queued. Then, all function and structure nodes which do
not depend on other inputs are queued as well. Here, we make a simplification
and assume that VIs do not have any functions with mandatory inputs missing.
This could be verified in a type-checking step prior to execution.

Note also that the code below implies the initial schedule follows the order
of nodes given in the description of the LvVI record, leading to a deterministic
execution of our intpreter. LabVIEW does not specify a particular order.

initialSchedule :: LvVI → [L·, ·M]
initialSchedule vi =

map LLvC , ·M (indices $ vCtrls vi)

++ map LLvN , ·M (filter (λi → isBootNode i (vNodes vi !! i)) (indices $ vNodes vi))

where

isBootNode (,LvConstant) = True

isBootNode (,LvFeedbackNode) = True

isBootNode i (,LvFunction) | nrWiredInputs i vi ≡ 0 = True

isBootNode i (,LvStructure LvWhile) | nrWiredInputs i vi ≡ 0 = True

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 113

isBootNode i (,LvStructure LvSubVI) | nrWiredInputs i vi ≡ 0 = True

isBootNode i (,LvStructure LvSequence) | nrWiredInputs i vi ≡ 0 = True

isBootNode = False

A node can only be fired when all its connected inputs have incoming
data. We specifically check for connected inputs because some LabVIEW nodes
have optional inputs. We assume here for simplicity that the type-checking step
prior to execution verified that the correct set of mandatory inputs has been
connected. Here, we derive the number of connections of a node from the list
of wires.

nrWiredInputs :: Int → LvVI → Int

nrWiredInputs idx vi =

1 + foldl ′ maxInput (−1) (vWires vi)

where

maxInput :: Int → LvWire → Int

maxInput mx (LvWire LLvN , i , nM) | i ≡ idx = max mx n

maxInput mx = mx

6.2.3.3
Event processing

The main operation of the interpreter consists of taking one entry off
the scheduler queue, incrementing the timestamp, and triggering the event
corresponding to that entry. Every time we produce a new state, we increment
the timestamp. The timestamp, therefore, is not a count of the number of
evaluation steps, but is a simulation of a system clock, to be used by timer
operations.

run :: LvState → LvVI → LvState

run s vi

| null (sSched s) = s

| otherwise =

case sSched s of

(q : qs)→ let s0 = s {sTs = (sTs s) + 1, sSched = qs }
in runEvent q s0 vi

An event in the queue indicates the graph element to be executed next.
Function runEvent takes a L·, ·M that identifies the element, a state and a VI,
and produces a new state, with the results of triggering that element:

runEvent :: L·, ·M→ LvState → LvVI → LvState

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 114

When triggering a control, its effect is to fire its value through its sole
output port.

runEvent LLvC , idx M s0 vi =

fire vi cv LLvC , idx , 0M s0

where

cv = index (sCtrlVals s0) idx

When triggering a node for execution, the event may be triggering either
an initial execution from data fired through its input ports, or a continuation
of a previous execution that has not finished running. In the former case, the
interpreter fetches the data from the node’s input ports and clears it from the
node state, ensuring incoming values are consumed only once. In the latter case,
the inputs come from the data previously stored in the continuation object and
the node state is kept as is. Once the inputs and state are determined, runEvent

calls runNode, which produces a new state and may produce data to be fired
through the node’s output ports.

runEvent LLvN , idx M s0 vi =

foldl ′ (λs (p, v)→ fire vi v LLvN , idx , pM s) s2 pvs

where

ns = index (sNStates s0) idx

(s1, inputs) =

case nsCont ns of

Nothing → startNode

Just k → continueNode k

(s2, pvs) = runNode (snd $ vNodes vi !! idx) s1 inputs idx

startNode = (s1, inputs)

where

s1 = updateNode idx s0 clearState []

inputs = toList (nsInputs ns)

clearState = ns {nsInputs = clear }
clear = emptyInputs (Seq .length (nsInputs ns))

continueNode k = (s1, inputs)

where

s1 = s0

inputs = case k of

LvKFunction kargs → map Just kargs

LvKState → ⊥

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 115

When updating the internal state of a node, we use the auxiliary function
updateNode, which increments the timestamp, optionally appends events to the
scheduler queue, and replaces the node state for the node at the given index.

updateNode :: Int → LvState → LvNodeState → [L·, ·M]→ LvState

updateNode idx s ns sched =

s {
sTs = sTs s + 1,

sSched = sSched s ++ sched ,

sNStates = update idx ns (sNStates s)

}

6.2.3.4
Firing data to objects

As shown in the previous section, when objects are triggered for exe-
cution, they may produce new values which are fired through their output
ports. The function fire iterates through the adjacency list of wires, identify-
ing all outward connections of an object and propagating the value to their
destination nodes.

fire :: LvVI → LvValue → L·, ·, ·M→ LvState → LvState

fire vi value addr s =

foldl ′ checkWire s (vWires vi)

where

checkWire s (LvWire src dst) =

if addr ≡ src

then propagate value vi dst s

else s

When a value is propagated to an indicator, its value is stored in the
state, with the appropriate handling for different kinds of tunnel indicators.

propagate :: LvValue → LvVI → L·, ·, ·M→ LvState → LvState

propagate value vi LLvI , dnode, M s =

let

(, indicator) = vIndics vi !! dnode

newValue =

case indicator of

LvIndicator → value

LvSRIndicator → value

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 116

LvTunIndicator LvLastValue → value

LvTunIndicator LvAutoIndexing → let arr = index (sIndicVals s) dnode

in insertIntoArray arr value []

in

s {
sTs = sTs s + 1,

sIndicVals = update dnode newValue (sIndicVals s)

}

When a value is propagated to a node, the interpreter stores the value
in the nsInputs sequence of the node state. Then, it needs to decide whether
the node needs to be scheduled for execution.

propagate value vi LLvN , dnode, dportM s =

s {
sTs = sTs s + 1,

sSched = sched ′,

sNStates = nss ′

}
where

nss = sNStates s

ns = index nss dnode

inputs ′ = update dport (Just value) (nsInputs ns)

nss ′ = update dnode (ns {nsInputs = inputs ′}) nss

sched ′ =

let

sched = sSched s

entry = LLvN , dnodeM
in

if shouldSchedule (snd $ vNodes vi !! dnode) inputs ′ ∧ entry /∈ sched

then sched ++ [entry]

else sched

To determine if a node needs to be scheduled, the interpreter checks if
all its required inputs contain values. For function nodes, this means that all
mandatory arguments must have incoming values. For structures, it means that
all tunnels going into the structure must have values available for consumption.

This interpreter implements a single node accepting optional inputs,
InsertIntoArray (Section 6.2.5.2); for all other nodes, all inputs are man-
datary.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 117

Feedback nodes are never triggered by another node: when they receive
a value through its input port, this value remains stored for the next single-
shot execution of the whole graph. Constants do not have input ports, so they
cannot receive values.

shouldSchedule :: LvNode → Seq (Maybe LvValue)→ Bool

shouldSchedule node inputs =

case node of

LvFunction name → shouldScheduleNode name

LvStructure vi → shouldScheduleSubVI vi inputs

LvCase vis → shouldScheduleSubVI (head vis) inputs

LvFeedbackNode → False

LvConstant → ⊥
where

shouldScheduleNode name =

isNothing $ elemIndexL Nothing mandatoryInputs

where

mandatoryInputs =

case nrMandatoryInputs name of

Nothing → inputs

Just n → Seq .take n inputs

shouldScheduleSubVI :: LvVI → Seq (Maybe LvValue)→ Bool

shouldScheduleSubVI vi inputs =

isNothing $ find unfilledTunnel (indices $ vCtrls vi)

where

unfilledTunnel cidx =

case vCtrls vi !! cidx of

(,LvTunControl)→ isNothing (index inputs cidx)

→ False

nrMandatoryInputs :: String → Maybe Int

nrMandatoryInputs "InsertIntoArray" = Just 2

nrMandatoryInputs = Nothing

indices :: [a]→ [Int]

indices l = [0 . . (length l − 1)]

6.2.4
Nodes and structures

The function runNode takes care of implementing the general logic for
each kind of node. For functions, it handles the management of continuations;

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 118

for structures, it triggers their subgraphs according to each structure’s rules of
iteration and conditions of termination.

The function runNode takes a node, an input state, a list of input values,
the integer index that identifies the node in the VI, and produces a new state
and a list of index-value pairs, listing values to be sent through output ports.

runNode :: LvNode → LvState → [Maybe LvValue]→ Int

→ (LvState, [(Int ,LvValue)])

6.2.4.1
Constant nodes

When executed, a constant node simply sends out its value through its
single output port.

runNode (LvConstant value) s1 =

(s1, [(0, value)])

6.2.4.2
Feedback nodes

A feedback node behaves like a constant node: it sends out the value it
stores through its output port. In spite of having an input port, a feedback node
is only triggered at the beginning of the execution of the graph, as determined
by the initial state (Section 6.2.3.2) and firing rules (Section 6.2.3.4).

In our model, an LvFeedbackNode always takes an initialization value. In
the LabVIEW UI, this value can be left out, in which case a default value for
the appropriate data type, such as zero or an empty string, is implied.

runNode (LvFeedbackNode initVal) s1 inputs =

(s1, [(0, fromMaybe initVal (head inputs))])

6.2.4.3
Function nodes

When running a function node, the interpreter first checks if it has
an existing continuation pending for the node. If there is one, it resumes
the continuation, applying the function stored in the continuation object k .
Otherwise, it triggers the function (identified by its name) using applyFunction.

The function may return either a LvReturn value, which contains the list
of result values be propagated through its output ports, or a LvContinue value,

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 119

which contains the next continuation k ′ to be executed. When a continuation
is returned, the node itself (identified by its address idx) is also scheduled back
in the queue, and no values are produced to be sent to the node’s output ports.

runNode (LvFunction name) s1 inputs idx =

let

nss = sNStates s1

ns = index nss idx

world s = LvWorld {wTs = sTs s ,wPrng = sPrng s }
ret =

case nsCont ns of

Nothing → applyFunction name (world s1) inputs

Just k → kFn k (world s1) (catMaybes inputs)

(w ,mk , q , pvs) =

case ret of

(w ,LvReturn outVals)→ (w ,Nothing , [], zip (indices outVals) outVals)

(w ,LvContinue k ′) → (w , Just k ′, [LLvN , idx M], [])
updateWorld w s = s {sPrng = wPrng w }

in

(updateWorld w $ updateNode idx s1 ns {nsCont = mk } q , pvs)

6.2.4.4
Control structures

The interpreter supports five kinds of control structures: for-loop, while-
loop, sequence, case and sub-VI. They are all implemented similarly, by
running a subgraph (itself represented as an instance of LvVI , like the main
graph), and storing a state object for this subgraph as a continuation object
of the node state for the enclosing graph (represented as LvState, like the
main state). Running this subgraph may take several evaluation steps, so the
enclosing graph will continuously queue it for execution until it decides it
should finish running. Each time the scheduler of the enclosing graph triggers
the structure node, it will run the subgraph consuming one event of the internal
state’s own scheduler queue. This will, in effect, produce a round-robin of all
structures that may be running concurrently.

This common behavior is implemented in the runStructure function that
will be presented below. The implementations of runNode for all structures
use runStructure, differing by the way they control triggering and termination
of subgraphs.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 120

The for-loop provides runStructure with a termination function
shouldStop which determines if the loop should stop comparing the value
of the counter control (at index 0) with the limit control (at index 1). Also,
it uses the helper function initCounter to force the initial value of control
0 when the structure is triggered for the first time (that is, when it is not
resuming a continuation).

runNode (LvStructure LvFor subvi) s1 inputs idx =

runStructure subvi shouldStop s1 idx (initCounter s1 idx inputs)

where

shouldStop s =

(i + 1 > n)

where

LvI32 i = index (sCtrlVals s) 0

LvI32 n = coerceToInt $ index (sCtrlVals s) 1

coerceToInt v@(LvI32) = v

coerceToInt (LvDBL d) = LvI32 (floor d)

The while-loop structure in LabVIEW always provides an iteration
counter, implemented in the interpreter as a counter control at index 0. As
in the for-loop, it is initialized using the helper function initCounter . The
termination function for the while-loop checks for the boolean value at the
indicator at index 0.

runNode (LvStructure LvWhile subvi) s1 inputs idx =

runStructure subvi shouldStop s1 idx (initCounter s1 idx inputs)

where

shouldStop s =

¬ test

where

LvBool test = index (sIndicVals s) 0

Sequence nodes in LabVIEW are a way to enforce order of execution
irrespective of data dependencies. In the LabVIEW UI, sequences are presented
as a series of frames presented like a film-strip. In our interpreter, we implement
each frame of the film-strip as a separate LvStructure object containing a
boolean control at input port 0 and a boolean indicator at output port 0.
Frames of a sequence are connected through a wire connecting the frame’s
indicator 0 to the next frame’s control 0. This way, we force a data dependency
between frames, and the implementation of runNode for sequences pushes a
boolean value to output port 0 to trigger the execution of the next frame in

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 121

the sequence. This connection is explicit in our model, but it could be easily
hidden in the application’s UI.

runNode (LvStructure LvSequence subvi) s1 inputs idx =

let

(s2, pvs) = runStructure subvi (const True) s1 idx inputs

ns2 = index (sNStates s2) idx

nextq = [(0,LvBool True) | isNothing (nsCont ns2)]

in

(s2, pvs ++ nextq)

Case structures are different from the other ones because they contain
a list of subgraphs. All subgraphs representing cases are assumed to have the
same set of controls and indicators, and they all have a numeric control at
index 0 which determines which case is active. LabVIEW denotes cases using
enumeration types, but in the interpreter we simply use an integer.

When a case node is triggered, runNode needs to choose which VI to use
with runStructure. In its first execution, it reads from the input data sent to
control 0; in subsequent executions, when those inputs are no longer available,
it reads directly from the control value, which is stored in the node state.
Note that since case VIs have the same set of controls and indicators, they are
structurally equivalent, and the initialization routine in Section 6.2.3.2 simply
uses the first case when constructing the initial empty state.

A case subgraph does not iterate: it may take several schedule events to
run through a full single-shot execution, but once the subgraph scheduler queue
is empty, it should not run again. For this reason, the termination function is
simply const True.

runNode (LvCase subvis) s1 inputs idx =

let

ns1 = index (sNStates s1) idx

n = case nsCont ns1 of

Nothing → case inputs of

Just (LvI32 i) : → i

→ 0

Just → (λ(LvI32 i)→ i) $

fromMaybe (error "no input 0") $ index (nsInputs ns1) 0

(s2, pvs) = runStructure (subvis !! n) (const True) s1 idx inputs

s3 =

case nsCont ns1 of

Nothing → let

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 122

ns2 = index (sNStates s2) idx

inputs = update 0 (Just (LvI32 n)) (nsInputs ns2)

ns3 = ns2 {nsInputs = inputs }
in

updateNode idx s2 ns3 []

Just → s2

in

(s3, pvs)

Finally, a sub-VI structure has a simple implementation, where we launch
the subgraph with runStructure, directing it to run once and performing no
additional operations to its state.

runNode (LvStructure LvSubVI subvi) s1 inputs idx =

runStructure subvi (const True) s1 idx inputs

The core to the execution of all structure nodes is the runStructure

function, which we present here. This function takes as arguments the subgraph
to execute, the termination function to apply, the enclosing graph’s state, and
the index of the structure in the enclosing VI; it returns a pair with the new
state and a list of port-value pairs to fire through output ports.

runStructure :: LvVI

→ (LvState → Bool)

→ LvState → Int → [Maybe LvValue]

→ (LvState, [(Int ,LvValue)])

Its execution works as follows. First, it determines sk1, which is the
state to use when running the subgraph. If there is no continuation, a new
state is constructed using initialState (Section 6.2.3.2), with the input values
received as arguments entered as values for the structure’s controls. If there
is a continuation, it means it is resuming execution of an existing state, so it
reuses the state stored in the LvKState object, merely updating its timestamp.

Then, it calls the main function run (Section 6.2.3.3) on the subgraph
subvi and state sk1. This produces a new state, sk2. If the scheduler queue
in this state is not empty, this means that the single-shot execution of the
graph did not finish. In this case, the interpreter stores this new state in a
continuation object nextk and enqueues the structure in the main state so it
runs again.

If the scheduler queue is empty, runStructure runs the termination check
shouldStop to determine if it should schedule a new iteration of the subgraph.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 123

If a new iteration is required, a new state is produced with nextStep, which
increments the iterator and processes shift registers.

At last, if the execution does not produce a continuation, this means the
structure terminated its single-shot execution: the values of the indicators are
sent out to the structure’s output ports.

runStructure subvi shouldStop s1 idx inputs =

let

nss = sNStates s1

ns = index nss idx

ts ′ = sTs s1 + 1

prng = sPrng s1

sk1 =

case nsCont ns of

Nothing → setCtrlVals inputs (initialState ts ′ prng subvi)

Just (LvKState st)→ st {sTs = ts ′}

setCtrlVals inputs s =

s {
sTs = sTs s + 1,

sCtrlVals = fromList (zipWith fromMaybe (toList $ sCtrlVals s) inputs)

}

sk2 = run sk1 subvi

nextk

| ¬ (null (sSched sk2)) = Just (LvKState sk2)

| shouldStop sk2 = Nothing

| otherwise = let LvI32 i = index (sCtrlVals sk2) 0

in Just (LvKState (nextStep subvi sk2 (i + 1)))

qMyself = [LLvN , idx M | isJust nextk]

s2 = s1 {
sTs = sTs sk2 + 1,

sPrng = sPrng sk2,

sSched = sSched s1 ++ qMyself ,

sNStates = update idx (ns {nsCont = nextk }) nss

}

pvs = zip (indices $ vIndics subvi) (toList $ sIndicVals sk2)

in

(s2, if isJust nextk then [] else pvs)

Structure nodes use the following auxiliary functions, already mentioned

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 124

above. Function initCounter checks whether the node state has a continuation,
and initializes the iteration counter if it doesn’t. Function nextStep resets the
scheduler for the state of the subgraph, and implements the shift register logic,
copying values from indicators marked as LvSRIndicator to their corresponding
controls in the new state.

initCounter :: LvState → Int → [Maybe LvValue]→ [Maybe LvValue]

initCounter s idx inputs =

case nsCont (index (sNStates s) idx) of

Nothing → Just (LvI32 0) : tail inputs

→ inputs

nextStep :: LvVI → LvState → Int → LvState

nextStep vi s i ′ =

s {
sTs = sTs s + 1,

sSched = initialSchedule vi ,

sCtrlVals = cvs ′′

}
where

cvs ′ = update 0 (LvI32 i ′) (sCtrlVals s)

cvs ′′ = foldl ′ shiftRegister cvs ′ $ zip (vIndics vi) (toList (sIndicVals s))

shiftRegister :: Seq LvValue → ((String ,LvIndicator),LvValue)→ Seq LvValue

shiftRegister cvs ((,LvSRIndicator cidx), ival) =

update cidx ival cvs

shiftRegister cvs = cvs

6.2.5
Operations

The final section of the interpreter is the implementation of the various
operations available in the language as function nodes, forming its “standard li-
brary”. These operations are implemented as cases for function applyFunction,
which takes a string with the name of the function, an instance of the outside
world, the list of input values, and produces a return value, which may be a
list of results or a continuation, along with the updated state of the world.

applyFunction :: String → LvWorld → [Maybe LvValue]→ (LvWorld ,LvReturn)

However, in the spirit of dataflow, most function nodes implement pure
functions (that is, they do not read or affect the outside world). We represent
them as such, removing the occurrences of LvWorld from the signature:

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 125

applyPureFunction :: String → [Maybe LvValue]→ LvReturn

To fit the interpreter’s execution model, these pure functions can then
be converted to match the expected signature using the following combinator,
which is able to convert the signature of applyPureFunction into that of
applyFunction, by simply forwarding the LvWorld object unchanged:

withWorld :: (a → r)→ (w → a → (w , r))

withWorld f = λw args → (w , f args)

Our goal in this interpreter is not to reproduce the functionality of
LabVIEW with respect to its domain in engineering, but to describe in detail
the semantics of the dataflow language at its core. For this reason, we include
below only a small selection of functions, which should be enough to illustrate
the behavior of the interpreter through examples.

The following pure functions are implemented: arithmetic and rela-
tional operators (Section 6.2.5.1), array functions Array Max & Min and
Insert Into Array (Section 6.2.5.2), and Bundle (a simple function which
packs values into a cluster).

To demonstrate impure functions, the interpreter includes the timer
function Wait Until Next Ms (Section 6.2.5.4) and the PRNG function
Random Number (Section 6.2.5.3).

applyPureFunction name =

case name of

"+" → numOp (+) (+)

"-" → numOp (−) (−)

"*" → numOp (∗) (∗)
"/" → numOp (/) div

"<" → boolOp (<) (<)

">" → boolOp (>) (>)

"ArrayMax&Min" → returnArrayMaxMin

"InsertIntoArray"→ returnInsertIntoArray

"Bundle" → returnBundle

otherwise → error ("No rule to apply " ++ name)

where

returnArrayMaxMin [Just (LvArr a)] =

LvReturn (arrayMaxMin a)

returnInsertIntoArray (Just arr : Just vs : idxs) =

LvReturn [insertIntoArray arr vs (map toNumber idxs)]

where toNumber i = if isNothing i

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 126

then (−1)

else (λ(Just (LvI32 n))→ n) i

returnBundle args =

LvReturn [LvCluster (catMaybes args)]

6.2.5.1
Numeric and relational operators

LobVIEW nodes automatically perform coercions between integers and
doubles. Since ports in our implementation do not carry type information
(it assumes the input VI has been type-checked prior to execution), we
pragmatically include the coercion logic directly in the implementation for
numeric and relational operator nodes, codified in the binOp function, to which
the numOp and boolOp functions below delegate.

It is worth noting that the LabVIEW UI gives visual feedback when a
coercion takes place, by adding a small circle attached to the input port. This
could be considered an automatically inserted coercion node, not unlike the
automatic insertion of feedback nodes. However, since these are not separate
nodes in LabVIEW (for instance, they cannot be probed as separate objects
by the LabVIEW debugging facilities, unlike feedback nodes), we chose to not
implement them as separate nodes, so keep node structure in input programs
for this interpreter more alike to that of actual LabVIEW programs.

numOp :: (Double → Double → Double)

→ (Int → Int → Int)→ [Maybe LvValue]→ LvReturn

numOp opd opi = LvReturn ◦ return ◦ binOp opd LvDBL opi LvI32

boolOp :: (Double → Double → Bool)

→ (Int → Int → Bool)→ [Maybe LvValue]→ LvReturn

boolOp opd opi = LvReturn ◦ return ◦ binOp opd LvBool opi LvBool

binOp :: (Double → Double → t)→ (t → LvValue)

→ (Int → Int → t1)→ (t1 → LvValue)

→ [Maybe LvValue]→ LvValue

binOp opd td [Just (LvDBL a), Just (LvDBL b)] = td (opd a b)

binOp opd td [Just (LvI32 a), Just (LvDBL b)] = td (opd (fromIntegral a) b)

binOp opd td [Just (LvDBL a), Just (LvI32 b)] = td (opd a (fromIntegral b))

binOp opi ti [Just (LvI32 a), Just (LvI32 b)] = ti (opi a b)

binOp = ⊥

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 127

6.2.5.2
Array functions

Representing aggregate data structures and processing them efficiently is
a recognized issue in dataflow languages (44). LabVIEW includes support for
arrays and clusters, and provides a large library of functions to support these
data types. We illustrate two such functions in the interpreter.

Array Max & Min is a function that takes an array and produces four
output values: the maximum value of the array, the index of this maximum
value, the minimum value of the array, and the index of this minimum value.
The design of this node reflects one concern which appears often in the
LabVIEW documentation and among their users: avoiding excessive array
copying. While languages providing similar functionality typically provide
separate functions for min and max, here the language provides all four values
at once, to dissuade the user from processing the array multiple times in case
more than one value is needed. LabVIEW also provides a control structure
called In Place Element Structure, not implemented in this interpreter,
where an array and one or more indices are entered as inputs, producing
input and output tunnels for each index, so that values can be replaced in
an aggregate data structure without producing copies. More recent versions of
LabVIEW avoid array copying through optimization, reducing the usefulness
of this control structure.

arrayMaxMin a =

if null a

then [LvDBL 0,LvI32 0, LvDBL 0,LvI32 0]

else [maxVal , LvI32 maxIdx ,minVal , LvI32 minIdx]

where

(maxVal ,maxIdx) = foldPair (>) a

(minVal ,minIdx) = foldPair (<) a

foldPair op l = foldl1 (λ(x , i) (y , j)→ if op x y

then (x , i)

else (y , j))

(zip l (indices l))

An example of a surprisingly large amount of functionality condensed into
one function node is LabVIEW’s Insert Into Array operation. To insert into
an array x a value y , this nodes features as input ports the target array (x),
the data to be inserted (y , which may also be an array) and one indexing
input port for each dimension of x . However, only one indexing port can be

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 128

connected; the other ones must remain disconnected, and this indicates on
which dimension the insertion should take place.

The behavior of the function changes depending on which of the inputs
are connected and what are the number of dimensions of array x and data y .

Given a n-dimensional array x , value y must be either an n or (n − 1)-
dimensional array (or in the case of inserting into a 1-D array, it must be either
a 1-D array or an element of the array’s base type).

For example, if x is a 2D array p × q and y is a 1D array of size n, if
the first indexing input is connected, it inserts a new row into the matrix,
producing an array p + 1× q; if the second index is connected, it inserts a new
column, and the resulting array size is p × q + 1. This also works in higher
dimensions: for example, one can insert a 2D matrix into a 3D array along one
of its three axes.

When the dimensions are the same, the results are different: inserting an
array of size m × n into an array of size p × q may produce an array of size
p + m × q or p × q + n. For all operations, the dimensions of y are cropped
or expanded with null values (such as zero or the empty string) to match the
dimensions of x .

insertIntoArray :: LvValue → LvValue → [Int]→ LvValue

insertIntoArray vx vy idxs =

case (vx , vy , idxs) of

(LvArr lx , , [])→ insertIntoArray vx vy [length lx]

(LvArr lx@(LvArr x : _),LvArr ly , − 1 : is)→ recurseTo is lx (next x lx ly)

(LvArr lx@(LvArr x : _),LvArr ly , i :) → insertAt i lx (curr x lx ly)

(LvArr lx , , i :) → insertAt i lx (base vy)

where

(next , curr , base) =

if ndims vx ≡ ndims vy

then (λ lx ly → resizeCurr id lx ly ,

λ lx ly → resizeLower lx ly ,

λ(LvArr ly)→ ly)

else (λx ly → resizeCurr id x ly ,

λx ly → [LvArr (resizeAll x ly)],

λ → [vy])

insertAt i lx ly = LvArr $ take i lx ++ ly ++ drop i lx

recurseTo is lx ly = LvArr $ zipWith (λa b → insertIntoArray a b is) lx ly

resizeCurr childOp xs@(x : _) ys =

map childOp $ take (length xs) $ ys ++ (repeat ◦ zero) x

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 129

where

zero (LvArr l@(x : _)) = LvArr (replicate (length l) (zero x))

zero (LvDBL) = LvDBL 0.0

zero (LvI32) = LvI32 0

zero (LvSTR) = LvSTR ""

zero (LvBool) = LvBool False

zero (LvCluster c) = LvCluster (map zero c)

zero (LvArr []) = LvArr []

resizeLower (x : _) ys = map (childResizer x) ys

resizeAll xs@(x : _) ys = resizeCurr (childResizer x) xs ys

childResizer (LvArr x) = λ(LvArr a)→ LvArr (resizeAll x a)

childResizer = id

ndims (LvArr (v : _)) = 1 + ndims v

ndims (LvArr []) = 1

ndims = 0

6.2.5.3
Random Number

Random Number is an example of an impure function which produces a
side-effect beyond the value sent through its output port. In our definition of
the “outside world”, which is part of the ongoing state computed in our model,
we have the state of the pseudo-random number generator, which needs to be
updated each time this node produces a value.

In this interpreter, we implement the PRNG using the 32-bit variant of
the Xorshift algorithm (57).

applyFunction "RandomNumber" w [] =

let

mask = foldl1 (λv b → v .|. bit b) (0 : [0 . . 31])

n0 = wPrng w

n1 = (n0 ‘xor ‘ (n0 ‘shiftL‘ 13)) .&. mask

n2 = (n1 ‘xor ‘ (n1 ‘shiftR‘ 17)) .&. mask

n3 = (n2 ‘xor ‘ (n2 ‘shiftL‘ 25)) .&. mask

f = abs $ (fromIntegral n3) / 2 ↑ 32

in (w {wPrng = n3 },LvReturn [LvDBL f])

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 130

6.2.5.4
Wait Until Next Ms

Node Wait Until Next Ms demonstrates both the use a value coming
from the outside world (the timestamp) and the use of a continuation. Its goal
is to wait until the timestamp matches or exceeds the next multiple of the given
argument. Using this object in loop structures that are running concurrently
causes them to iterate in lockstep, if the inserted delay is long enough. This is
a simple way to produce an acceptable level of synchronization for the typical
domain of instrument data acquisition which LabVIEW specializes on.

When the function is applied, it immediately returns a continuation,
containing the function waitUntil and the target timestamp nextMs as its
argument. As we saw in Section 6.2.4.3, this will cause the function to
be rescheduled. The implementation of waitUntil checks the current time
received in the LvWorld argument: if it has not reached the target time, the
function returns another continuation rescheduling itself; otherwise, it returns
producing no value, since the function node for this operation has no output
ports. This node relies on the fact that a (sub)graph as a whole keeps running
as long as some node is scheduled.

applyFunction "WaitUntilNextMs" w [Just (LvI32 ms)] =

(w ,LvContinue $ LvKFunction waitUntil [LvI32 nextMs])

where

ts = wTs w

nextMs = ts − (ts ‘mod ‘ ms) + ms

waitUntil w@(LvWorld now) arg@[LvI32 stop]

| now > stop = (w ,LvReturn [])

| otherwise = (w ,LvContinue $ LvKFunction waitUntil arg)

applyFunction "WaitUntilNextMs" vst [Just (LvDBL msd)] =

applyFunction "WaitUntilNextMs" vst [Just (LvI32 (floor msd))]

Finally, we finish the definition of applyFunction by delegating the
remaining functions to applyPureFunction.

applyFunction n w a = (withWorld ◦ applyPureFunction) n w a

6.2.6
Demonstration

In Appendix C, we demonstrate the execution of our interpreter through
a few example programs that showcase LabVIEW’s various control structures.
We developed a rendering pipeline to produce a visualization of the execution.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 131

Figure 6.7: An animation frame produced by converting the output of the
interpreter.

Running the interpreter prints in its output the LvV I data structure and a
series of LvState data structures, one for each execution step of the main
graph. We then parse this output using a Lua script to generate a series of
.dot files, one for each step, describing the graph alongside the state values.
We then convert each .dot file to an image file containing a diagram using
GraphViz3 and finally combine all frames into a video file using FFMPEG4.
The resulting video contains an animation of the evaluation of the graph
over time, with values moving across nodes. Figure 6.7 shows a sample
frame from one of the animations produced. All materials are available at
http://hisham.hm/thesis/.

6.3
Discussion: Is LabVIEW end-user programming?

When we discuss end-user programming, what defines the concept is not
a particular programming paradigm, set of constructs or UI style. End-user
programming is about the fact that the person doing the programming is the
one who will use the resulting program, and, as a secondary point, that they
are not programmers by profession. That is indeed not always the case in
LabVIEW, which is used by professional programmers who build, compile and
deploy programs for other end-users.

However, two aspects warrant its presence in the discussion on end-user
programming languages taking place in this work. First, although it is used
as a traditional programming language by software professionals, LabVIEW
is also heavily used by end-users in engineering and physics fields, and the
design of the language is heavily informed by this fact. One might even argue
that the language is better suited to small-scale rapid end-user programming
than to large-scale software development. Second, it is a particularly interesting
subject in the design space of end-user programming because it is developed as
a programming environment for writing data acquisition programs rather than

3http://graphviz.org
4http://ffmpeg.org

http://hisham.hm/thesis/
http://graphviz.org
http://ffmpeg.org
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 132

a programmable data acquisition application. This has effects in the design of
the resulting language. A good way to observe these effects is by contrasting
LabVIEW and Pure Data.

6.3.1
LabVIEW and Pure Data compared

While both LabVIEW and Pure Data are visual dataflow languages that
present programs as graph diagrams connecting node objects, the LabVIEW
environment is a lot more similar to that of a typical programming language
IDE. Beyond the visual presentation, a fundamental difference is that in
LabVIEW the block diagram with the graph and front panel with the UI
widgets are the “source code” of the program, which can then be executed,
presenting the UI windows which are the “program” to be used. In Pure Data,
there is no such distinction: the graph is the “document”, which is edited in
“edit mode” as the programming takes place, and which is later manipulated
in “run mode” as the music is produced. This means both applications have
two modes of operation—in LabVIEW, execution is toggled with the “play”
and “stop” buttons of the UI. However, in Pure Data there is no distinction
between what is being edited during creation and the end result; not only the
interface is the same: most importantly, the DSP engine remains running while
in “edit mode”, so a musician can transition between these two modes during
a performance. Recall that even while in “edit mode” the dataflow program is
still running.

In Pure Data’s “run mode”, interaction happens via manipulation of
values directly in the graph nodes or by clicking nodes to trigger messages:
the program structure is transparent. While it is possible to hide the graph
structure in Pure Data through the use of subprograms and indirect messages,
the environment does not lead the user in this direction; it is more natural to
present the graph, and it helps understanding the effect of editing values. This
visibility is common practice in the field: some hardware synthesizers even
include in their chassis drawings of their high-level audio flow diagrams, to
help the musician make sense of how the various buttons relate to each other
in the overall synthesis.

When running a LabVIEW program, there is no way to affect the
program itself by interacting with the graph during execution. The only form
of interaction allowed is via the front panel or other attached inputs (such as
hardware instruments). When a LabVIEW program is compiled and deployed,
the graph is not even visible, let alone editable by the user. A deployed
LabVIEW program, therefore, is not itself end-user programmable.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 6. Case study: LabVIEW 133

In Pure Data, the user of the program and the developer are often
the same: a computer musician programming audio synthesis and sequencing.
Even when that is not the case—and there are communities where Pure Data
programs are shared—the explicit nature of the graph structure invites users
to tweak the patches to their liking, producing their own sounds.

This would lead us to conclude that Pure Data has a stronger focus on
end-users, and by catering also to a professional audience, LabVIEW would
be more difficult for newcomers. However, by including features common to
typical professional programming environments, such as a clearer distinction
between types and error messages targeting at the specific points of failure,
LabVIEW makes it actually easier to understand problems in the dataflow
graph than Pure Data.

Language features such as (auto-generated) feedback nodes make it
easier to understand and debug cycle constructs; data coercion nodes (also
auto-generated) make explicit any precision loss—a problem that also affects
musicians using Pure Data, where it is perceived as degraded audio quality.

Both Pure Data and LabVIEW feature multiple types, including num-
bers, strings and table objects holding aggregated data. LabVIEW has a richer
set of types, and is statically typed; Pure Data has a simpler set and is dy-
namically typed. Both of them make a visual distinction among edge types
in the graph: Pure Data displays audio connections as thicker lines and mes-
sage connections as thinner lines; LabVIEW uses colors, thickness and stripe
patterns to indicate the various data types it supports. It is easy to make an
invalid connection in Pure Data, for example connecting a string outlet to a
float inlet, which will cause a runtime error being logged. In LabVIEW, the
mismatch is caught as the user tries to make the connection; if the data is
coercible, a conversion node is automatically inserted.

Through a combination of language and environment features, LabVIEW
happens to be an easier language to program for, even though engineers typi-
cally have more formal training in programming-related fields than musicians.
Still, a large community of musicians thrives using software such as Pure Data
(and its proprietary relative Max/MSP) even without the facilities that pro-
fessional programmers have grown used to. This shows us that the abilities of
end-users should not be underestimated, and invites us to consider how much
those end-users could benefit if the languages they work on incorporated more
from established programming language design practices.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

7
Some other languages

With our extensive discussion of Pure Data (Chapter 4), spreadsheets
(Chapter 5) and LabVIEW (Chapter 6), we covered a wide range of the space
of design alternatives discussed in Chapter 3. In this chapter, we extend our
panorama of dataflow languages through overviews of three more applications,
which can now be presented through the frame of reference of the languages
presented earlier:

– Reaktor (70) - a music application for constructing modular synthesizers;

– VEE (3) - an engineering application for data acquisition and test-and-
measurement;

– Blender (15) - a 3D computer graphics software.

Figure 7.1: A screenshot of Reaktor. Source: https://www.native-
instruments.com

https://www.native-instruments.com
https://www.native-instruments.com
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 7. Some other languages 135

7.1
Reaktor

Reaktor (depicted in Figure 7.1) is a commercial application by Native
Instruments for constructing synthesizers, which can be used either stand-
alone or as a plugin for different music applications. Its interface has distinct
Edit and Play modes. It features separate Panel Layouts with the input and
output widgets for interaction and a Structure View with the dataflow graph
for editing. Reaktor supports abstracting sub-graphs into units. A program is
presented as an “instrument”, which acts as a synthesizer or an effects unit,
often with a front-end interface that mimics equivalent hardware.

Reaktor has two dataflow environments with distinct languages, called
Primary and Core. Instruments are created using high-level operators called
“modules” which are combined into “macros” using a dataflow language in
Primary mode. The modules themselves are also written as graphs composed
of “core cells”, in a distinct environment called Core mode.

Like Pure Data, Reaktor’s Primary mode has two types of wires: au-
dio and event wires. Further, modules may be monophonic or polyphonic.
Connecting a polyphonic module to a monophonic module flags a type error,
marking the wire in red. A “voice combiner” module can be used to mix down
a polyphonic signal into a monophonic one. Only one wire can be connected
to a port, but some modules such as the Multiply operation are variadic, al-
lowing more input ports to be created as needed. The order through which
audio is processed is deterministic, and the UI has a “Module Sorting Debug
Tool” option for displaying the ordering explicitly, deemed in the manual as
“crucial” in case of structures with feedback (70).

When advanced users peek into the implementation of Primary modules,
they enter Core mode. While also a visual dataflow language, Core mode uses
lower-level data types, such as scalars of types float and int (including low-
level concerns such as undefined behavior in type conversions and denormals in
IEEE 754 floating-point), arrays and custom structured types called “bundles”
(akin to LabVIEW’s “clusters”). Memory storage in the style of shift registers
are represented as special wire types. While at first glance Core seems an
extension of Primary, they are fundamentally distinct languages. For instance,
their semantics for event propagation are different. In Primary, an event
propagated for more than one output is forwarded to each destination in turn.
In Core, replicated events arrive logically simultaneously, so if one output is
plugged into two inputs of the same cell, a single firing event is produced
(whereas in Primary, this would produce two events).

Reaktor notably lacks a textual scripting mode. This absence is noted

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 7. Some other languages 136

Figure 7.2: Mix of data and control flows in VEE.

even by the music practitioner community: a major music industry magazine,
Sound On Sound, states in its review of the latest version of Reaktor that “in-
tegration of a scripting language would help serious developers who sometimes
feel the restrictions of a purely visual-based approach”1. Still, it is interesting
to note that the application also uses a three-tier architecture, with a higher-
level language in a central role and a lower-level language in a peripheral role,
on top of the built-in application facilities.

7.2
VEE

VEE (Visual Engineering Environment) is a tool for development of en-
gineering test-and-measurement software, based around a visual programming
language. It was originally released by Hewlett-Packard in 1991, and is cur-
rently marketed by Keysight Technologies (3).

VEE supports integration with other languages for scripting. MATLAB
integration support is included. Additionally, VBA scripting and an Excel
integration library are also supported on Windows.

There are several data types, including integer, real, complex, waveform,
enum, text, record and multidimensional arrays. Connections, however, are not
typed. Most nodes perform automatic type conversions. VEE also supports
named variables, which can be used via Set Variable and Get Variable nodes,
allowing for indirect connections in the graph.

There are five kinds of ports for connecting wires (called pins in VEE):
data pins, which carry data; sequence pins, designed only for affecting the
firing sequence; execute pins, which force an immediate execution when fired;
control pins, which affect the internal state of a node but do not cause data
propagation; and error pins, for error handling. Sequence pins are prominent in
VEE and break the pure dataflow model. In a comparison between LabVIEW
and VEE in an engineering magazine, it is said that “LabVIEW follows the

1http://www.soundonsound.com/reviews/native-instruments-reaktor-6

http://www.soundonsound.com/reviews/native-instruments-reaktor-6
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 7. Some other languages 137

data-flow paradigm of programming rigorously. HP VEE is loosely based on
data-flow diagrams with a large measure of flow-charting sprinkled with a
little decision table.” (10). Connected subgraphs of a disjoint graph can be
launched separately, by connecting separate “Start” buttons to the sequence
pins of input nodes of each subgraph. Data pins can connect to sequence pins;
for example, an If-Then-Else node can be used either in the dataflow way,
outputting a value according to a condition, or in the flowchart way, triggering
a subgraph. The For Count iteration node is often used in conjunction with
sequence and execute pins. Figure 7.2 illustrates the mix of data and control
flows in VEE. Ports at the top and bottom of nodes are sequence pins; the
green port is an execute pin; other pins at the left and right are data pins.
This graph has two dataflow connections (black wires) and two control flow
connections (gray wires). The For Count output data pin triggers the sequence
input pin of RandomNumber ten times; at the end of the count, the sequence
output pin of For Count triggers the execute pin of Collector, which then
outputs the array to AlphaNumeric. The sequence output pin of a node fires
after the evaluation of all subgraphs connected to that node’s data outputs is
complete, which may include triggering sequence pins in nested subgraphs. A
description of the intricate evaluation semantics of sequence pins in VEE is
given in (34).

Through the use of various kinds of pins, VEE gives a fine grained control
of (and responsibility for) the execution flow to the user. The user needs to be
aware that different connectors of a node have different effects in the evaluation
logic. To an extent, this is similar to the situation in Pure Data, where hot
and cold inlets also have different triggering rules.

There are two kinds of subprogram abstractions: UserObjects and User-
Functions. A UserObject is merely a collapsable subgraph. To reuse it, the
object needs to be cloned, producing a new subgraph instance which can be
edited separately from the original copy. A UserFunction is a reusable sub-
graph, for which all uses are references to the same instance.

7.3
Blender

Blender is an open source 3D graphics software that is used for profes-
sional animation, video games, effects, modeling and art. It has a large number
of features, several of which are programmable. Blender includes a dataflow
language, called in its documentation simply “node language”, that is used in
different parts of the application. The documentation also mixes the presenta-
tion of the language, explaining concepts such as sockets and properties, with

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 7. Some other languages 138

Figure 7.3: The node editor for creating materials in Blender. Source: https:
//www.blender.org

the presentation of the UI, explaining menus and keyboard shortcuts.
The node editor is used as the UI for creating materials in the render

engine, for compositing and for texture editing. Figure 7.3 shows a screenshot
of the materials editor. Each of these activities has its own set of nodes available
to it. A restricted form of the node language called the "Logic Editor" is also
available for integrating 3D objects with game scripting code. The remainder
of this section will focus on the more general Node Editors available for the
other tasks.

Programs in the Blender node language are directed acyclic graphs. It has
four data types: color, number, vector and shader. Ports (called sockets) have
different colors according to their data types. Nodes have properties, which
are additional input arguments that are "inlined" in the node (that is, it is
not necessary to create numeric nodes with constants and connect them to a
node to parameterize these arguments). For example, in Figure 7.3 node Mix

has two color inputs (indicated by yellow sockets); Color1 is connected to the
previous node ColorRamp, and Color2 is set to black internally via a property.

Node Groups are collection of nodes that can be reused within a file and
throughout different files, and the documentation describes them as "similar
to functions in programming". Recursion is not allowed. Node groups can have
particular inputs and outputs from its internal nodes that are made available
to the outside, in a similar manner to how tunnels work in LabVIEW. These
tunnels are accessible when the node group is collapsed both as sockets and
as properties. Oddly, when Node Groups made accessible to a different file

https://www.blender.org
https://www.blender.org
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 7. Some other languages 139

(through the File . Append menu, which appends the content of one file to
another), node groups are called "Node Trees".

Blender is scriptable in Python, and the node editor is also available
to the Python scripting layer, so plug-ins can create additional node editors
for other activities. An example of the power of this combination is the
popular Animation Nodes add-on 2, which adds a new graph-based system for
controlling animations, allowing users to specify visually tasks that previously
required Python code. The scripting interface, however, is not without its
limitations. For instance, it allows manipulating a node tree in the material
editor, but not creating new node types. The Cycles Render Engine supports
creating new node types written in OSL (Open Shading Language), for
implementing texture shaders. A user then used this shader language to create
the equivalent of a Boolean if-then-else node, that was missing in the materials
editor. Another user in the same forum thread where this node was announced
mentioned this node was equivalent to the "Condition" node in competing
product Maya.3

7.4
Discussion: Dataflow end-user programming, then and now

Dataflow end-user programming has come a long way since the early days
of the paradigm. Twenty-five years ago, most user-centric languages based
on dataflow were developed in a research context (39). Now, we were able
to concentrate our research exclusively in production languages that are in
widespread use, and we were able to select representative examples from a
wider pool of options. When looking at the world of contemporary dataflow
end-user applications, it is clear that the paradigm has established itself in
certain fields:

– Spreadsheets: Excel, LibreOffice, Google Sheets

– Audio synthesis: Max/MSP, Pure Data, Reaktor, vvvv4, AudioMulch5

– Video compositing: Nuke6, Natron7

– 3D modeling: Maya8, Blender, Grasshopper9

2https://github.com/JacquesLucke/animation_nodes
3https://blenderartists.org/forum/showthread.php?354949-Cycles-Boolean-

Node-(Not-Shader)
4https://vvvv.org/
5http://www.audiomulch.com/
6https://www.thefoundry.co.uk/products/nuke/
7http://natron.fr/
8http://www.autodesk.com/products/maya/overview
9http://www.grasshopper3d.com/

https://github.com/JacquesLucke/animation_nodes
https://blenderartists.org/forum/showthread.php?354949-Cycles-Boolean-Node-(Not-Shader)
https://blenderartists.org/forum/showthread.php?354949-Cycles-Boolean-Node-(Not-Shader)
https://vvvv.org/
http://www.audiomulch.com/
https://www.thefoundry.co.uk/products/nuke/
http://natron.fr/
http://www.autodesk.com/products/maya/overview
http://www.grasshopper3d.com/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 7. Some other languages 140

– Engineering: LabVIEW, VEE, Expecco10, DASYLab11

One might speculate the reasons for the model’s success in particular areas.
In some cases, it seems that a trailblazing application paved the way for the
emergence of similar applications (VisiCalc for spreadsheets, LabVIEW for
engineering). In other cases, visual languages seem to be a natural fit for
professionals of certain areas, as is the case with multimedia (video, 3D, music).
It is also worth pointing out that, looking at historical dataflow applications,
their areas also tend to be similar: music, image processing, graphics.

It is worth considering whether the paradigm could have a wider range
of application. Given that spreadsheets are used by professionals of all sorts
of fields, it seems that the computational model is accessible to a wide range
of users. In a certain sense, a spreadsheet is a general-purpose programming
language for numeric applications. Domain-specific applications could explore
the familiarity of this model to provide functionality tailored to different areas
in a programmable environment.

10https://www.exept.de/en/products/expecco
11http://www.mccdaq.com/DASYLab-index.aspx

https://www.exept.de/en/products/expecco
http://www.mccdaq.com/DASYLab-index.aspx
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

8
Design alternatives critiqued

In this chapter, we revisit the classifications of design alternatives for
dataflow end-user programmable languages presented in Chapter 3, illumi-
nated by the study of contemporary languages of this kind presented through-
out this work, and in particular the in-depth case studies of Chapters 4 to
6. We present here a critique of these various design choices and the impact
of their inherent trade-offs. As we consider each of the design dimensions pro-
posed in the survey by Hils (39) and the additional ones proposed in this work,
our aim is to discuss which choices have shown to be especially appropriate or
inappropriate for different scenarios. We consider especially appropriate those
choices that contribute to the usefulness of the application within its domain.
We consider inappropriate design choices those that are related to the vari-
ous pitfalls and shortcomings that we identified in the design of the various
languages studied and presented in the previous chapters.

We begin by presenting in Table 8.1 an update to the table presented
in (39), applying the list of design alternatives from that work (discussed in
Section 3.1) to a different set of contemporary dataflow languages, while also
extending it with the additional design dimensions as presented in Section 3.2.
The only language from that survey that is also in our list is LabVIEW (68).
It is worth noting that in Hils’s larger set of 15 visual dataflow programming
languages the majority of them were academic projects, many of them short-
lived. In our shorter list, we restricted ourselves to successful languages (both
proprietary and open-source) with a proven track in terms of longevity and
user base.

The following sections discuss these design dimensions organized logically
into four groups. Being the focus of this work, the first three sections discuss
semantic aspects, namely graph evaluation, language features and type check-
ing; the fourth section groups the remaining aspects. Unless otherwise stated,
all remarks about Excel below apply to all spreadsheets discussed in Chapter
5.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 142

G
en

er
al

in
fo

rm
at

io
n

P
u

re
D

at
a

E
xc

el
L

ab
V

IE
W

R
ea

kt
or

V
E

E
B

le
n

d
er

M
ai

n
re

fe
re

n
ce

(7
5)

(6
8)

(7
0)

(3
)

(1
5)

L
ic

en
si

n
g

3-
cl

au
se

B
SD

P
ro

pr
ie

ta
ry

P
ro

pr
ie

ta
ry

P
ro

pr
ie

ta
ry

P
ro

pr
ie

ta
ry

G
N

U
G

P
L

v2
+

In
it

ia
l

re
le

as
e

19
96

19
85

19
86

19
99

19
91

19
95

L
at

es
t

re
le

as
e

20
16

20
16

20
16

20
15

20
13

20
17

A
p

p
li

ca
ti

on
d

om
ai

n
M

us
ic

O
ffi

ce
E

ng
in

ee
ri

ng
M

us
ic

E
ng

in
ee

ri
ng

3D
gr

ap
hi

cs

D
es

ig
n

al
te

rn
at

iv
es

(3
9)

P
u

re
D

at
a

E
xc

el
L

ab
V

IE
W

R
ea

kt
or

V
E

E
B

le
n

d
er

B
ox

-l
in

e
re

p
re

se
nt

at
io

n
Y

es
N

o
Y

es
Y

es
Y

es
Y

es
It

er
at

io
n

Y
es

(c
yc

le
s)

Li
m

it
ed

Y
es

(c
on

st
ru

ct
)

Li
m

it
ed

Y
es

N
o

S
u

b
p

ro
gr

am
ab

st
ra

ct
io

n
Y

es
N

o
Y

es
Y

es
Y

es
Y

es
S

el
ec

to
r/

d
is

tr
ib

u
to

r
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
F

lo
w

of
d

at
a

U
ni

U
ni

U
ni

U
ni

U
ni

U
ni

S
eq

u
en

ce
co

n
st

ru
ct

N
o

N
o

Y
es

N
o

Y
es

N
o

T
yp

e
ch

ec
ki

n
g

Li
m

it
ed

N
o

Y
es

Y
es

N
o

Y
es

H
ig

h
er

-o
rd

er
fu

n
ct

io
n

s
N

o
N

o
N

o
N

o
N

o
N

o
E

xe
cu

ti
on

m
od

e
D

at
a-

dr
iv

en
D

em
an

d-
dr

iv
en

D
at

a-
dr

iv
en

D
em

an
d-

dr
iv

en
D

at
a-

dr
iv

en
D

at
a-

dr
iv

en
L

iv
en

es
s

le
ve

l
(8

3)
2

3
2

2
2

3

A
dd

it
io

na
ld

es
ig

n
al

te
rn

at
iv

es
P

u
re

D
at

a
E

xc
el

L
ab

V
IE

W
R

ea
kt

or
V

E
E

B
le

n
d

er
D

at
afl

ow
m

od
el

D
yn

am
ic

St
at

ic
St

at
ic

St
at

ic
St

at
ic

St
at

ic
N

-t
o-

1
in

p
u

ts
Y

es
N

o
N

o
N

o
N

o
N

o
S

ep
ar

at
e

ed
it

/u
se

vi
ew

s
N

o
N

o
Y

es
Y

es
Y

es
N

o
T

im
e-

d
ep

en
d

en
t

fi
ri

n
g

Y
es

N
o

Y
es

Y
es

Y
es

N
o

R
at

e-
b

as
ed

ev
al

u
at

io
n

Sy
nc

hr
on

ou
s

N
o

N
o

Sy
nc

hr
on

ou
s

N
o

N
o

In
d

ir
ec

t
co

n
n

ec
ti

on
s

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

D
yn

am
ic

co
n

n
ec

ti
on

s
Y

es
Y

es
Y

es
N

o
N

o
N

o
T

ex
tu

al
su

b
-l

an
gu

ag
e

Im
pe

ra
ti

ve
Fu

nc
ti

on
al

Im
pe

ra
ti

ve
N

o
Im

pe
ra

ti
ve

N
o

S
cr

ip
ti

n
g

P
yt

ho
n,

Lu
a

V
B

A
M

A
T

LA
B

R
ea

kt
or

C
or

e
M

A
T

LA
B

O
SL

,P
yt

ho
n

T
ab

le
8.

1:
A

co
m

pa
ri

so
n

of
co

nt
em

po
ra

ry
da

ta
flo

w
U

I-
le

ve
ll

an
gu

ag
es

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 143

8.1
Graph evaluation

In this section, we discuss design aspects that refer to the evaluation of
the dataflow graph as a whole. In other words, we will discuss aspects which
affect the design of the graph evaluator’s main loop and not that of specific
nodes. This way, we present the discussion of semantic aspects in a top-down
fashion, the same way we presented the interpreters in previous chapters.

8.1.1
Static and dynamic dataflow models

When creating a dataflow-based system, the first design decision to
make with regard to the language is which dataflow model to use; in other
words, which criteria will be used for firing nodes. Given that the essence of
dataflow is purely functional, any order of evaluation (and thus any sequence of
firings) should produce identical results. However, since real-world programs
are usually not purely functional and include visible effects, the underlying
dataflow model can become apparent to the end-user: for example, in a static
model, a fast operation can be held back by a slow operation further ahead
in the pipeline, due to the lack of queueing. Dynamic dataflow models avoid
these bottlenecks, but their more complicated models present different trade-
offs (24; 48), some of which become apparent in the resulting language. Of the
languages compared in this work, only Pure Data employs a dynamic model.
A side-effect of this model is that ordering issues arise. As discussed in Section
4.3, we believe these issues were not addressed appropriately.

Another side of this trade-off which favors static and synchronous
dataflow models is that understanding and debugging a dataflow graph is eas-
ier when there is a single token per arc (or a fixed number of values, as in the
case of synchronous dataflow), and only one iteration of a loop is running at
a time. For end-user programming, understandability is more important than
parallel efficiency, so it is our view that end-user dataflow languages should
present a static dataflow view of program execution. When the language con-
tains explicit looping constructs, it should be possible to achieve a dynamic
flow of execution in certain loops as a user-transparent optimization, if the
contents of a loop are known to be purely functional, for example. Such an
optimization could then be automatically disabled when the user is probing
the flow of tokens for debugging purposes, restoring a one-token-per-wire view.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 144

8.1.2
Data-driven and demand-driven dataflow

In the classic literature on the dataflow paradigm, the data-driven and
demand-driven models are presented as equally proeminent, complementary
approaches (85). Yet in the context of end-user programming, we identify a
tendency towards data-driven execution, considering not only the six languages
selected here, but also the ones that were preliminarily studied to perform the
selection.

We believe this is understandable because the data-driven approach more
directly maps to the mental model one has about the evaluation of a graph,
with the order of execution matching the way the data flows from input nodes
toward output nodes.

Only two languages in this study employ demand-driven evaluation: Ex-
cel and Reaktor. Demand-driven evaluation is natural in a spreadsheet be-
cause cells are written as textual expressions, which translate to an expression
tree that is evaluated top-down, that is, starting from the output node. The
fact that Excel is demand-driven is mostly transparent, because of its static
dataflow model, its lack of time-dependent firing and purely functional nature
(with no imperative textual sub-language). Beyond the basic intuition about
expression trees, one way to verify that a spreadsheet is indeed demand-driven
is by forcing side-effects via the scripting layer of the application, and confirm-
ing that these only happen when cells are scrolled into view. We confirmed
this successfully in all spreadsheets analyzed1.

The case of Reaktor is a good illustration of how demand-driven exe-
cution can be a poor choice for end-user applications. Although not stated
explicitly in its documentation and indistinguishable in most cases, the evalu-
ation of Reaktor’s Primary mode is demand-driven. This can be inferred from
the fact that graphs that do not connect to an audio output need to have
their terminal nodes marked as “always active” in order to trigger continuous
evaluation. In one tutorial from the vendor, the documentation instructs to
add a dummy “lamp” output marked as always-on just to achieve this same
effect2. What should have been a transparent optimization ends up demanding
additional actions in the user workflow.

1The JavaScript-based scripting layer of Google Sheets tries to prevent side-effects (we
could not make it pop up a message box as we did in the other applications), but we still
verified the demand-driven execution by writing a computation-intensive script that caused
a noticeable delay.

2https://support.native-instruments.com/hc/en-us/articles/209588249-How-
to-Use-an-Event-Table-as-Copy-Buffer-in-REAKTOR-5

https://support.native-instruments.com/hc/en-us/articles/209588249-How-to-Use-an-Event-Table-as-Copy-Buffer-in-REAKTOR-5
https://support.native-instruments.com/hc/en-us/articles/209588249-How-to-Use-an-Event-Table-as-Copy-Buffer-in-REAKTOR-5
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 145

8.1.3
Uni and bi-directional dataflow

All languages studied in this work employ the traditional uni-directional
style of dataflow. In Hils’s work, only one language featured bi-directional flow
of data: Fabrik (41), a language for designing user interfaces.

Bi-directional constraint systems have been present in research for end-
user development systems since the early days of Sketchpad (82) and the
paradigm continues to be researched for this day (80), but what we observe
in industry practice is that the simpler uni-directional model has become
established as the norm in dataflow. GUI construction systems (notably the
same domain as Fabrik) have taken up bi-directional constraint systems (43),
with Cassowary (8) being integrated into Apple’s standard GUI libraries, but
those are used as an internal component and not as end-user programming
languages of their own.

8.1.4
N-to-1 inputs

Another decision in the design of the evaluation model for a dataflow
language is whether it will support multiple wires connecting to a single input
port in a node, or “N-to-1 inputs” for short, or if all input ports can only
take at most one wire (“1-to-1 inputs”). Supporting N-to-1 inputs involves
determining how to handle the arrival of multiple data tokens into a single
port.

Pure Data is the only language in our study that supports N-to-1 inputs.
The way it handles these inputs is deeply linked to its dataflow evaluation
model. For audio wires, which use a static and synchronous model, the
incoming data is merged using additive synthesis (that is, the input argument
for the port is a buffer where each sample value is the sum of the sample values
at the corresponding positions from the incoming wire buffers). For message
wires, which use a dynamic model, it queues inputs, causing multiple incoming
inputs arriving to a single port through different wires to fire the node multiple
times. Queueing also leads to concerns with ordering, as discussed in Section
4.3.

It seems clear that disallowing N-to-1 inputs leads to a simpler conceptual
model and less suprising behavior. Not all domains have an obvious choice on
what to do when merging inputs (and even in Pure Data’s domain of audio
processing, some synthesizers use subtractive synthesis, for example) so having
an explicit merge node is a clearer why of presenting what is happening with
the data. The convenience that N-to-1 inputs bring could be obtained by

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 146

automatically inserting those nodes when multiple wires are plugged to an
input port, similarly to how LabVIEW auto-inserts feedback nodes.

8.1.5
Timing considerations

When considering issues of timing, let us look at both time-dependent
firing and rate-based evaluation at once. We see in Table 8.1 three distinct
patterns. We have two languages that support time-dependent firing and use a
synchronous dataflow model for rate-based evaluation: Pure Data and Reaktor;
two languages that support time-dependent firing but do not feature rate-based
evaluation (that is, using a purely static model): LabVIEW and VEE; and two
languages that do not have either: Excel and Blender.

The approach of these languages with regard to timing is linked to
their domains and to the kind of data and activity they perform. Pure Data
and Reaktor, both of them music applications, operate on audio streams.
Processing digital audio in real-time requires rate-based evaluation, and music
creation demands the ability to specify transformations of data based on time.
LabVIEW and VEE, engineering applications, require supporting activities
such as periodic reading and writing of data, but since they don’t have a
single domain-specific target for these processing rates which can be made
fully implicit in the evaluation loop, as it happens, for example, with music
applications, processing buffers at standard rates such as “48000 Hz 24-bit
stereo” (48000 × 3 × 2 = 288000 bytes per second). Since sampling rates of
various data acquisition instruments supported by those engineering tools vary,
the user needs to essentially construct the rate-processing loop by hand, using
arrays and delay objects. Both LabVIEW and VEE define “waveform” types
as abstractions to help in this task, but those are no more than a “typedef” of
a record type, storing an array and a timestamp.

Languages whose domains do not deal with time avoid time-based
evaluation features entirely: Excel and Blender have no support for them
(except for the occasional Excel function like TODAY(), but that is clearly
not integrated with the language’s evaluation model—for one, the cell value
does not update automatically as time passes).

Another issue related to timing that is often a concern in language design
is synchronization. In end-user applications, timing constraints depend on
the domain. In the field of music, for example, timing precision matters up
to the scale of human-perceptible audio latency, which is in the order of a
few hundredths of a second. This means that synchronization can be often
satisfactorily approximated via real-time clock events. As we saw in the case

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 147

of LabVIEW, timing primitives with millisecond precision are used to cause
iterations of parallel loops to proceed in tandem. When a language combines
two evaluation models, as is the case of Pure Data, which uses dynamic
dataflow for messages and synchronous dataflow for audio, it is also important
to avoid synchronization issues. Pure Data solves this adequately by alternating
message and audio evaluation while using an audio buffer to give the evaluation
of the message cascades enough time to run. This can still lead to audio drop-
outs if message processing is excessive, but musicians nowadays are used to
the notion that heavy computations can make audio stutter, known in the
community jargon as “audio dropouts”, and adapt accordingly.

8.1.6
Indirect and dynamic connections

As discussed in Section 3.2.5, while the presence of indirect connections
is a syntactic feature, the occurrence of connections determined at runtime has
semantic consequences. Dynamic connections make it impossible to determine
a static schedule for node evaluation in advance (as is done for audio nodes in
Pure Data, for example), to optimize in-place replacement of buffers to avoid
array copying (since any intermediate node may be fired at any time) and to
reliably detect loops in advance.

Pure Data, Excel and LabVIEW support dynamic connections. As should
be no surprise by now, Pure Data supports dynamic connections only for
message data, not audio. An indirect connection, dynamic or not, consists
of two nodes, a sender and a receiver. In Pure Data, only the sender node can
have its target dynamically defined; the identifier of a receiver node cannot be
changed at runtime.

Of the three languages that support dynamic connections, Pure Data
presents them as a basic feature of the language; Excel and LabVIEW treat
them as advanced features, in the form of Excel’s INDIRECT function and
LabVIEW’s object reference system. This may be related to the fact that, given
that Pure Data already employs a dynamic dataflow model, these dynamic
connections behave like any other connection. In static dataflow systems like
Excel and LabVIEW, the use of dynamic connections can cause issues. It is easy
to find on the internet examples of user problems with dynamic connections
in both Excel3 and LabVIEW4.

3“No #REF! error, the cell just doesnt update with the new value (just stays exactly the
same), even though the reference is correct and the referenced cell is obviously updated” “I
actually tried rebooting, didnt help.” https://www.wallstreetoasis.com/forums/excel-
help-cells-do-not-update-when-they-reference-another-excel-file

4Typing “labview object reference” in Google auto-suggests “labview object reference is
invalid”. In one of the results, the LabVIEW knowledge base reports “This is a documented

https://www.wallstreetoasis.com/forums/excel-help-cells-do-not-update-when-they-reference-another-excel-file
https://www.wallstreetoasis.com/forums/excel-help-cells-do-not-update-when-they-reference-another-excel-file
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 148

8.2
Language features

We now move to the second part of the discussion on semantic aspects.
Here, we discuss the design of specific nodes and features that may or may not
be present in a dataflow language.

8.2.1
Selector/distributor

Selector and distributor nodes are the most basic features in a dataflow
language. Unsurprisingly, all languages studied here implement them and there
is not much design variation among them. For more complex data types, such
as images in Blender and audio in Pure Data and Reaktor, a selector σ(k, v1, v2)

can work like a “mixer” node, in which k is a blend value between 0 and 1
instead of a boolean.

8.2.2
Iteration

In stark contrast with selectors and distributors, iteration constructs are
the ones that show the greatest amount of variation in design among dataflow
languages, leading even to a survey specifically about it (63). And indeed, no
two languages among those presented in this work implement iteration the
same way. We consider here iteration in a broad sense of the word, defining it
as any language feature that allows evaluating a subgraph a number of times.

Pure Data, being a dynamic dataflow language, allows for cycles, and
this is a simple way of producing iteration. Evidently, cycles are only allowed
in the dynamic part of the language, that is, between message-handling nodes.
Cycles between audio nodes are detected and rejected as soon as the DSP
engine is activated.

In Excel, array formulas may be considered a limited form of iteration,
since they allow evaluating multiple times for a given range of values a single
expression tree. Some array formula patterns combining common functions
were turned into predefined functions which always evaluate their arguments
in an array context, like SUMPRODUCT and SUMIF5.

known issue that occurs in LabVIEW Real-Time versions 2014 and 2015. After making
a modification to the VI, Error 1055 is thrown from any property node attempting to
access the dynamic refnum. In order to resolve this error, close and re-open the VI.”
(http://digital.ni.com/public.nsf/allkb/2E848F065A18570986257F3800708328).

5Excel users invented an idiom to produce the equivalent of the miss-
ing function SUMPRODUCTIF without resorting to array formulas: the expression
SUMPRODUCT(--(C1:C10="flag"),A1:A10,B1:B10)) uses double negation to coerce
boolean values into 0 or 1, annulling elements of the product when the condition does not

http://digital.ni.com/public.nsf/allkb/2E848F065A18570986257F3800708328
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 149

Figure 8.1: Loop contexts in Naiad (64), featuring a very similar structure to
that of Show and Tell and LabVIEW

LabVIEW features structured constructs for looping, based on the idea
of a frame around a subgraph, with values flowing between iterations through
shift registers. The design of this construct is essentially the same as that of
Hierarchical Data Flow introduced in Show and Tell (49; 50). More recently,
this model of structured loops in static dataflow graphs has been reinvented
in Naiad (64), a modern distributed system for Big Data processing, which
advertises static dataflow with structured loops as one of its main features.
Figure 8.1, from (64), illustrates the similarities: nodes I and E work like
LabVIEW tunnels, and node F works like a shift register, with the difference
that Naiad employs a tagged-token system to allow for parallel iterations.

Reaktor has no iteration structure per se, but it features a node called
"Iteration" which acts as a counter, producing a series of values that can
be used for firing other subgraphs and indexing values. VEE has a similar
iteration node to Reaktor, but because of its support for sequence pins that
dictate control flow, it is a more powerful construct for triggering arbitrary
subgraphs. VEE also performs an implicit map operation when passing an
array to a function that expects a scalar, similarly to Excel’s array context.
Finally, Blender notably lacks an iteration construct.

8.2.3
Sequence construct

A sequence construct is a way to specify that one subgraph should
execute after another, without having a data dependency between them (akin
to sequencing two statements s1; s2 in textual programming languages). As
such, it is a fundamentally imperative construct.

The only languages from our survey to include explicit sequencing
constructs are LabVIEW and VEE. Given that they are both engineering
applications and are the only ones to feature constructs clearly named after
their textual-language counterparts such as “for” and “while”, we speculate

match.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 150

Figure 8.2: A graph containing two occurrences of a subgraph S

that explicit sequencing was added to ease the transition from users who had
some previous programming experience.

It is interesting to note that all the other applications do not have
sequencing constructs. This seems to indicate that for domain specialists
without preconceived notions about programming, imperative constructs are
not a necessity and declarative programming can be used successfully.

8.2.4
Subprogram abstractions

The ability to abstract away subprograms is a commonplace feature
in modern programming languages. In the dataflow model, a subprogram
abstraction means replacing a subgraph with a node that represents it. In
graphical languages, this feature becomes especially necessary to tame the
visual clutter of the graph representation.

In end-user programming languages, and especially visual ones, abstrac-
tions present semantic complications that are usually missing in languages for
professional programmers. A typical motivation for abstracting a subgraph is
to reuse it. In the example of Figure 8.2, subgraph S appears twice in the main
diagram. Expanding both occurences of S, one would find the same subgraph
with nodes X, Y and Z. When copying a node representing an abstracted sub-
graph for reuse, end-users have different intuitions whether these two nodes are
references to the same subgraph or if they are two separate copies that can be
modified without affecting the other one. Translating to the world of textual
languages, this is the question whether an abstraction behaves as a newly-
declarated function used in two places, or if it is merely a visual (syntactic)
abbreviation, akin to those achieved by code-folding text editors.

Moreover, when end-users perceive an abstraction as a single subgraph
referenced in two different places, then there is the question as to whether they
perceive the subgraph as reentrant: in other words, whether they see the two
invocations of the subgraph as fully independent executions (that is, like usual
function calls where each invocation has its own activation record), or if they

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 151

separate subgraph same subgraph
separate at runtime same at runtime

af
te

r
ed

it
in

g

(a1) (b1) (c1)

at
ru

nt
im

e

(a2) (b2) (c2)

Figure 8.3: Different alternatives for the behavior of subprograms

see the shared subgraph as a single entity in memory. In case of stateful nodes,
this is especially relevant, because that determines if multiple invocations of
the abstraction in the main graph affect each other or not (which would be
equivalent, for example, to declaring all local variables in a C function as being
static or not).

Note that these two issues of copying and reentrancy are related: copies
naturally have no reentrancy problems. We have therefore three possible
behaviors:

1. copying a subgraph produces a new, unrelated subgraph with identical
contents;

2. copying a subgraph produces a new reference to the same subgraph, but
each reference produces a new instance in memory at runtime;

3. copying a subgraph produces a new reference to the same subgraph,
which has a single instance in memory at runtime.

Figure 8.3 illustrates the effect of editing the graph from Figure 8.2 under these
different behaviors. Consider that the user expands the right-hand occurrence
of S and changes Z to W . In the first scenario, editing the second occurrence

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 152

of S does not affect the first (Figure 8.3(a1)), and their executions will also
be independent (Figure 8.3(a2)). In the second scenario, all references point
to the same subgraph (Figure 8.3(b1)), but the execution of each instance is
independent (Figure 8.3(b2)). In the third scenario, there is a single copy of S,
both in the diagram (note that Figure 8.3(c1) is identical to Figure 8.3(b1))
and in memory (Figure 8.3(b1)), meaning that the execution is not re-entrant.

Seasoned programmers used to textual languages will expect the behavior
of scenario 2, with a single representation of a function in the program and
separate instances in memory as it executes, which is the best one in terms
of code reuse and safe execution. Note, however, that of the three scenarios
depicted in Figure 8.3, this is the only one where the visual presentation when
editing the program does not represent the behavior in memory.

Different applications approach these issues in different ways. Pure
Data has two ways of representing subprograms: “subpatches”, which behave
according to scenario 1, and are stored as part of the same file as the main
graph, and “abstractions”, which are stored as separate graph files, and behave
according to scenario 2. A problem arises, though, when saving abstractions.
Pure Data persists the internal state of graphs when saving them, so when
a patch contains multiple instances of an abstraction, the internal state of
only one of them is saved. Users are advised to make the initialization of their
abstractions stateless through the use of creation arguments, but they still look
for workarounds to save their state.6

In LabVIEW, sub-VIs are not reentrant by default (69). There is a single
instance in memory, as in scenario 3 above. Note that this leads effectively to
a situation with N-to-1 wires leading to input ports, even though LabVIEW
does not allow it otherwise. This breaks LabVIEW’s static dataflow model and
introduces queueing. The user can enable reentrancy, producing one instance
in memory per reference, changing its behavior to scenario 2. Sub-VIs cannot
be recursive. Each instance remains in memory even when not running, to save
the state of shift registers and feedback nodes. There is also a third setting, in
which LabVIEW creates a pool of instances as a way to reduce memory usage,
but in this case sub-VIs become stateless.

A Node Group in Blender shows in its collapsed box a number that
represents the number of “linked” instances. When a Node Group is copied,
this number increments in all instances to denote that the same Node Group
is being used in multiple places. The user can turn an instance into an
independent copy by clicking this number.

6http://forum.pdpatchrepo.info/topic/8803/state-saving-abstractions/14

http://forum.pdpatchrepo.info/topic/8803/state-saving-abstractions/14
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 153

8.2.5
Higher-order functions

None of the languages presented here include support for defining higher-
order functions. In fact, the only languages with support for user-defined
higher-order functions in Hils’s original survey are all either general-purpose
programming languages (outside of the scope of this work) or Hils’s own
DataVis (38), a research language for scientific visualization. In (30), higher-
order functions for dataflow visual languages are again discussed only in the
context of general-purpose languages.

It is unsurprising that successful end-user programmable applications
lack higher-order functions: those applications feature languages tailored for
their specific domains, and a language is most effective when it is designed
to work in terms of objects of its intended domain (88). Domain specialists
think in terms of objects of their domain: numbers in a spreadsheet represent
monetary values, a matrix in a graphics editor represents an image. Func-
tions as first-class objects are a reification of programs. First-order functions
represent programs that are operations on objects of the domain: a function
transpose : Score×Key → Score represents the work of transposing a musi-
cal score into another key (e.g. from C] to B[), and as such it is an activity
within the specialist’s domain. Higher-order functions are one step removed
from the domain in terms of abstraction: they are programs that are opera-
tions on other programs. The addition of higher-order functions to the set of
first-class values, thus, makes the universe of discourse7 strictly larger, and the
added objects are familiar (and of interest) to computing professionals, not
to domain specialists. An argument of the same nature could be made in the
opposite direction of the abstraction ladder, to explain the absence of low-level
access to bits and bytes.

8.3
Type checking

This work has not focused much on type checking issues, since the type
systems of all languages studied are very simple. In at least one case, the type
system of a language was deliberately simplified by the language designers, with
the restriction on recursive data types in LabVIEW. Still, there are interesting
observations to be made about type checking in dataflow end-user applications.

We define type checking in the context of dataflow as a verification
provided by the environment, prior to execution, that the types of values
expected by an input port matches the types of values produced by an output

7in Boole’s original sense (16)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 154

port connected to it. In the case of an environment with liveness level 2, this
means that the system reports a type mismatch before entering the "use" mode.
In the case of a responsive environment (i.e. one with liveness level 3), we expect
the system to flag a type incompatibility immediately as the user attempts to
add an invalid connection, disallowing the creation of the wire in the first place.

LabVIEW performs type checking, and the various data types supported
are visually identified through colors in nodes and wires. When a user draws
incorrect wires those remain in the diagram marked as such and running the
program is not possible. As explained in Chapter 6, LabVIEW’s inference
system for tunnel directions can cause previously correct wires to become
flagged as incorrect, sometimes with wide-ranging and confusing results, and
unhelpful error messages. The well-intentioned convenience provided by the
inference system has proved to be, in our opinion, inappropriate for an end-
user programming system.

Pure Data offers limited type checking, in the sense that the interface
provides a clear separation between message and audio data, differentiating
both nodes and wires of these two kinds and disallowing mismatching con-
nections, but type mismatches between various message data types are not
checked. In various senses, Pure Data works almost like two languages in one,
with its single-typed synchronous model for audio flow on one side, and a
dynamically-typed dynamic dataflow model for message passing on the other.

Both Blender and Reaktor provide visual hints about the types of their
input and output ports, and only allow connecting wires between ports of
compatible types. Type errors are impossible.

Excel and VEE are dynamically typed: type errors are reported only at
runtime. Since Excel is a responsive application and connections between cells
are given by the user textually, there is no way for the language to prevent
type errors in the manner of Blender and Reaktor. However, one could conceive
of a statically-typed spreadsheet that, in the event of cell errors, instead of
merely producing an error value for the whole formula8, produced an error
message indicating which term of the expression caused the type error, as
modern compilers do.

There are other interesting issues related to types on which we did not
focus in this work. Efficient handling of data structures and strategies to
avoid excessive copying of data between nodes are matters of concern (28; 29),
especially in less restricted evaluation models.

8Not to mention that such errors in dynamically-typed spreadsheets are subject to often-
arbitrary error propagation semantics as we have seen in Chapter 5.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 155

8.4
Other aspects

Finally, we discuss other aspects with primarily syntactic or pragmatic
impact. Since these affect the design of the language as a whole, choices made
one way or another in these aspects may influence other choices in the semantic
aspects discussed above.

8.4.1
Liveness, representation and modes

All languages from this study score either 2 or 3 in Tanimoto’s liveness
scale (83). Recalling the meaning of each level, we have that in level 2 the
visual representation is the executable program, and that in level 3 the visual
representation is responsive: editing the visual representation triggers updates
to the evaluation of the program.

Level 2 is therefore a syntactic feature: all visual languages fit this
criterion. All languages presented in this work apart from the spreadsheets
use box-line graph representations, but the (semantically significant!) spatial
layout of a spreadsheet is also a visual representation of the program.

Level 3 refers to the lack of separate “edit” and “use” modes. Depending
on the the language, a responsive loop may have a semantic impact or not: if
a spreadsheet was made non-responsive, with explicit “edit” and “use” modes,
that would only mean that recalculations would have to be triggered explicitly
by a “Run” button (which would briefly send the program into “use” mode
and back). Effectively, our interpreter from Chapter 5 would be unchanged.
For a program with long-running loops, however, adding a responsive interface
would bring new questions about the language behavior: what would happen
in a responsive version of LabVIEW if graphs could gain or lose nodes and
wires as the program runs? Our interpreter from Chapter 6 would be very
different.

None of the programs we analyzed implements liveness at Tanimoto’s
level 4, in which the program is “responsive and live” in the sense that results
update continually as the program is edited beyond merely reacting to the
user’s edits. Pure Data does continue to produce audio if the user switches from
“use” back to “edit” mode, but the sets of actions allowed in each mode are
disjoint. So, in that sense, it does not qualify for level 3 in terms of inputs but
it reaches level 4 in terms of outputs. That may in fact indicate a shortcoming
in Tanimoto’s classification method.

A more useful observation may be that the applications that attain level
3 of liveness, Excel and Blender, share some important traits in their semantics

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 156

that make their responsiveness possible: they combine static dataflow with the
absence of time-dependent firings and no side-effecting nodes. This allows both
applications to re-evaluate subgraphs as needed and present the user an instant
update each time they make an edit.

8.4.2
Textual sub-language and scripting

There are two distinct aspects with regard to integration with textual
languages. The first aspect is what we call a textual sub-language, which is
a textual part of the UI-level language. As such, it is a uniquely syntactic
distinction: the interpreters in Chapters 4 and 5 implement their textual parts
as AST nodes that are intertwined with the program representation as a whole.
The second aspect is the integration of a scripting language in the application,
reflecting the architecture described in Chapter 2.

The textual sub-languages of Excel and Pure Data are at the forefront of
their respective applications, and they are central to their dataflow languages
as the dataflow languages are central to the UI as a whole. In line with the
three-layer architecture, both applications allow for more advanced scripting
as well. Excel, as part of the Microsoft Office family, integrates with Visual
Basic for Applications. The vanilla package of Pure Data does not ship with
a scripting engine by default, but it is extensible through plug-ins and there
are extensions available that add Python and Lua scripting, the latter being
available from the main Pure Data community site and included by default
in some distributions of the application. Max/MSP is also extensible with a
number of options of scripting language plugins, including Python, Lua, Ruby
and JavaScript.

Reaktor and Blender are the only two languages to lack a textual sub-
language. Blender integrates with textual languages at the scripting language
level, but Reaktor presents its scripting layer as a second graphical language.
It is notable how, in spite of avoiding textual languages, the design of
Reaktor evolved to the same three-layer structure described in 2.1.2: Reaktor
Core was introduced in 2005, adding more powerful, lower-level programming
capabilities to the application. In many aspects, the semantics of the higher-
level Reaktor Primary language resemble those of Pure Data, and the semantics
of the lower-level Reaktor Core resemble those of LabVIEW (further fueling
the discussion introduced in Section 6.3.1).

LabVIEW has a somewhat blurred boundary between its textual sub-
language and its scripting capabilities: it offers a gradient of options, starting
from a functional “expression node” in which a single-variable mathematical

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 157

(a) Scriptable application (b) Scriptable end-user
programmable application

(c) UI-level DSL provided by a
dataflow engine

(d) UI-level and scripting
languages with shared bindings

Figure 8.4: Architectural patterns of programmable applications

expression can be entered textually; a “formula node” in which small impera-
tive programs can be written in a safe subset of C, accessing data only via the
node’s input and output ports; a “script node” which accepts MathScript, a
subset of MATLAB; and a “MATLAB node”, which connects to an external
MATLAB instance for execution. The latter two nodes allow for side-effects.

8.5
Discussion: An architectural pattern for end-user programmable appli-
cations

The architecture of today’s end-user programmable applications is typ-
ically an extension of that of scriptable applications (Figure 8.4(a)), adding
an ad hoc end-user language accessible via the application’s interface (Figure
8.4(b)). To move past ad hoc end-user languages and get us closer to the sit-
uation we have in the scripting world, it is necessary to take into account the
fact that these languages need to be fully customized to their domain.

An approach that has been used successfully in the world of scripting is
to create a library of domain-specific components of top of a reusable language
such that this collection of components becomes effectively an “embedded

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 8. Design alternatives critiqued 158

DSL” over the scripting language core. A similar approach could be conceived
for end-user programming languages, allowing an application designer to
produce a DSL on top of a reusable component implementing the language
evaluation core (Figure 8.4(c)). For this to happen, the implementation of
dataflow languages needs to become reusable. One possibility in this direction
is the development of a dataflow engine, exposing to the application developer
building blocks based on well-understood design alternatives, such as those
discussed in this chapter. The development of the UI-level layer would become
then an integration process, similar to what currently happens with scripting
languages.

One concern when exposing the functionality of an application as two
different languages is a possible discontinuity in the abstractions provided
(termed the semiotic continuum principle in (22)), so that the scripting layer
contains functionality that is unrepresentable in the UI, or vice-versa. Note that
this kind of discontinuity can happen between any two layers of abstraction.
As a practical example, our previous work developing a translator of Lua 5.0
to C based on the Lua/C API9 uncovered some shortcomings in said API.
What that work did was to attempt to perform a projection of the language
into its API, producing a definition of the semantics of Lua 5.0 programs
in terms of its Lua/C API, using pure C exclusively for representing control
flow. The fact that the resulting translator had to produce strings of Lua code
for some operations meant that not all aspects of the language were readily
interoperable through the API. The Lua/C API was subsequently amended in
Lua 5.1, allowing for a full projection without string evaluation.

Making sure that the different layers of a programmable application
project correctly onto each other can be challenging, especially when the lan-
guages at each level and their binding APIs evolve in parallel. The possibility
for API discontinuities are greater when there are different paths towards the
application core (as in Figures 8.4(b) and 8.4(c)). A way to ensure this con-
sistency between the end-user UI-level language and the scripting language
would be to share the application bindings, thus providing a single path to
the application core (Figure 8.4(d)). There are interesting possibilities of how
to achieve this, such as compatible lower-level APIs or using the scripting
language to implement the dataflow engine.

9https://github.com/hishamhm/luatoc

https://github.com/hishamhm/luatoc
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

9
Conclusion

End-user languages for UI interaction are today in the state where
scripting languages were in the 1980s: they are custom ad hoc languages, with
their implementation often mixed with that of the application itself, and their
design reflecting an organic evolution. In the world of scripting, this has since
been replaced by out-of-the-box implementations of widely used languages,
reused among many applications, with their design reflecting an evolution
towards suitability for multiple domains. Most importantly, this notion of a
“scriptable application” composed by a low-level core and a scripting language
extended with bindings to this core has become a common architectural
pattern (73).

We aimed to bring a similar evolution to end-user UI-level languages one
step closer to reality. In earlier drafts of this work, our initial goal was to map
the design space of dataflow end-user languages, identify the various design
options, and from there construct a reusable language in which these various
options were provided as building blocks, so that an application developer
could construct the UI-level language for their application by combining
these blocks at will. However, providing application writers with a toolkit of
language building blocks could save them considerable development effort, but
the resulting languages could still be subject to the same feature interaction
problems we discussed throughout this work. As we developed our research,
we realized that we needed to step back and perform a deeper analysis of the
design space instead. Not only is it important to know what the choices are,
but it is fundamental to understand the effects of these choices.

Our work, thus, made the following primary contributions, each one
leading logically to the next:

Mapping the design space of dataflow end-user language semantics.
The apparent simplicity of visual diagrams embedded in application in-
terfaces is deceiving. A number of design decisions go into building a
dataflow UI-level language. Much of the earlier research work on this
class of languages went into studying its visual aspects. Here, we focused
on the semantic aspects of those languages, lifting the veil on their
underlying complexity.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 9. Conclusion 160

A critique of design alternatives for dataflow end-user languages.
This map of the design space proved to be appropriate as a conceptual
framework to compare languages of this kind efficiently. We applied this
classification into a group of successful end-user applications, allowing
us to discuss the effects of each of the mapped design dimensions based
on actual practice. This allowed us to verify which design choices worked
best and which ones caused problems.

Identifying interdependencies in dataflow design choices. Our study
concluded that many of the dimensions identified in the design space
for this class of languages are dependent on each other. The evaluation
provided in Chapter 8 showed that many languages were only able to
pick one choice over another in certain design aspects because of their
choices in other aspects. This stresses the importance of understanding
these design aspects as a whole, at the risk of having one choice bring-
ing unexpected consequences later in the design. It also confirms that a
sound design cannot be achieved by merely combining building blocks at
will.

In the course of this work, we also made the following secondary contributions:

A specification of realistic spreadsheet semantics. The existing litera-
ture on spreadsheets to this day has always restricted itself to simplified
models of their semantics (87; 2; 4; 5), ignoring the variations across
different implementations. The major omissions in official specification
documents (42; 72) and the incompatibilities between implementations
from the same vendor suggest that these languages are not understood
in detail at all. In this work we provide what we believe to be the most
comprehensive formal specification of a realistic spreadsheet semantics
so far.

Executable models of Pure Data and LabVIEW. In a similar vein,
both Pure Data and LabVIEW are relevant languages that have been
studied in academia, not only within their respective domains but also
by the programming language community (9; 18; 61; 47). None of these
languages had any kind of specification, and this work provides the first
realistic models of their core semantics, addressing their unique features.

Insights on multi-language application architecture. Throughout this
work, we made some observations on language and application archi-
tecture that we believe to be novel in the literature: the concept of roles
of end-user programming languages, with the distiction between central

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 9. Conclusion 161

and peripheral end-user languages (Section 2.1.1); identifying Nardi’s
three profiles of users with the presence of a three-layer architecture in
successful end-user programmable applications (Section 2.1.2); the effects
of API bindings and architectural alternatives to ensure proper language
projections in multi-language designs (Section 8.5).

All in all, this work provided a better understanding of the state of dataflow
languages in the context of end-user programming, with a view towards the
advancement of this field. We believe that the evolution of scripting languages
hints at a possible path for the evolution of UI-level languages. Scripting
languages evolved from initially ad hoc shell and configuration languages,
as these started to make use of the lessons learned by earlier high-level
programming languages. We believe UI-level languages will follow the same
path, adopting lessons from decades of research in dataflow. In our view,
reusable UI-level dataflow languages will eventually become a reality, provided
that the application architecture is considered as a whole and the design
constraints are well-understood. This in itself is an exciting avenue for future
work.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

10
Bibliography

[1] Abelson, H., Sussman, G. J., and Sussman, J. Structure and
Interpretation of Computer Programs, 2nd ed. MIT Press, Cambridge,
MA, USA, 1996.

[2] Abraham, R., and Erwig, M. Type inference for spreadsheets.
In Proceedings of the 8th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (New York, NY,
USA, 2006), PPDP ’06, ACM, pp. 73–84.

[3] Agilent Technologies. VEE 9.3 User’s Guide, 2011.

[4] Ahmad, Y., Antoniu, T., Goldwater, S., and Krishnamurthi,
S. A type system for statically detecting spreadsheet errors. 10 2003,
pp. 174–183.

[5] Aivaloglou, E., Hoepelman, D., and Hermans, F. A grammar
for spreadsheet formulas evaluated on two large datasets. In Source
Code Analysis and Manipulation (SCAM), 2015 IEEE 15th International
Working Conference on (Sept 2015), pp. 121–130.

[6] Ashcroft, E. A., and Wadge, W. W. Lucid, a nonprocedural
language with iteration. Commun. ACM 20, 7 (jul 1977), 519–526.

[7] Avron, A., and Sasson, N. Stability, sequentiality and demand driven
evaluation in dataflow. Formal Aspects of Computing 6, 6 (1994), 620–642.

[8] Badros, G. J., Borning, A., and Stuckey, P. J. The cassowary
linear arithmetic constraint solving algorithm. ACM Trans. Comput.-
Hum. Interact. 8, 4 (dec 2001), 267–306.

[9] Barkati, K., and Jouvelot, P. Synchronous programming in audio
processing: A lookup table oscillator case study. ACM Comput. Surv. 46,
2 (dec 2013), 24:1–24:35.

[10] Baroth, E., Hartsough, C., Holst, A., and Wells, G. Evaluation
of LabVIEW 5.0 and HP VEE 5.0 - Part 2. EE, Evaluation Engineering
38, 5 (may 1999), 5.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 163

[11] Barowy, D. W., Gochev, D., and Berger, E. D. Checkcell: Data
debugging for spreadsheets. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Ap-
plications (New York, NY, USA, 2014), OOPSLA ’14, ACM, pp. 507–523.

[12] Bentley, J. Programming pearls: Little languages. Commun. ACM 29,
8 (aug 1986), 711–721.

[13] Bhattacharya, B., and Bhattacharyya, S. Parameterized dataflow
modeling for dsp systems. Trans. Sig. Proc. 49, 10 (Oct. 2001), 2408–2421.

[14] Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete,
J. A. Cyclo-static data flow. In 1995 International Conference on
Acoustics, Speech, and Signal Processing (May 1995), vol. 5, pp. 3255–
3258 vol.5.

[15] Blender Foundation. Blender, 2017.

[16] Boole, G. An investigation of the laws of thought, on which are founded
the mathematical theories of logic and probabilities. Project Gutenberg
EBook #15114 (2005), 1854, ch. 3, p. 30.

[17] Buck, J. T. Scheduling Dynamic Dataflow Graphs with Bounded Mem-
ory Using the Token Flow Model. PhD thesis, 1993. AAI9431898.

[18] Burlet, G., and Hindle, A. An empirical study of end-user pro-
grammers in the computer music community. In Proceedings of the 12th
Working Conference on Mining Software Repositories (Piscataway, NJ,
USA, 2015), MSR ’15, IEEE Press, pp. 292–302.

[19] Burnett, M. M., and Scaffidi, C. The Encyclopedia of Human-
Computer Interaction, 2nd Ed. The Interaction Design Foundation,
Aarhus, Denmark, 2014, ch. End-User Development.

[20] Carver, J., Fisher, II, M., and Rothermel, G. An empirical eval-
uation of a testing and debugging methodology for excel. In Proceedings
of the 2006 ACM/IEEE International Symposium on Empirical Software
Engineering (New York, NY, USA, 2006), ISESE ’06, ACM, pp. 278–287.

[21] Cunha, J., Saraiva, J. a., and Visser, J. From spreadsheets to
relational databases and back. In Proceedings of the 2009 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (New York,
NY, USA, 2009), PEPM ’09, ACM, pp. 179–188.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 164

[22] de Souza, C., Barbosa, S., and da Silva, S. Semiotic engineering
principles for evaluating end-user programming environments. Interacting
with Computers 13, 4 (2001), 467 – 495.

[23] Demetrescu, C., Finocchi, I., and Ribichini, A. Reactive impera-
tive programming with dataflow constraints. ACM Trans. Program. Lang.
Syst. 37, 1 (nov 2014), 3:1–3:53.

[24] Dennis, J. B. Models of data flow computation. In Control Flow and
Data Flow - Concepts of Distributed Programming (Berlin Heidelberg,
1985), M. Broy, Ed., Springer.

[25] Dougherty, D., O’Reilly, T., Kochan, S., Wood, P., and Asso-
ciates, O. . UNIX Text Processing. Hayden Books UNIX library system.
Hayden Books, 1987.

[26] Draxler, S., Jung, A., and Stevens, G. Managing software port-
folios: a comparative study. In End-User Development. Springer, 2011,
pp. 337–342.

[27] Falk, J., Zebelein, C., Haubelt, C., and Teich, J. A rule-based
quasi-static scheduling approach for static islands in dynamic dataflow
graphs. ACM Trans. Embed. Comput. Syst. 12, 3 (Apr. 2013), 74:1–74:31.

[28] Ferreira, B., and Pereira, F. Q. The Dinamica virtual machine for
geosciences. In Brazilian Symposium on Programming Languages - SBLP
(2015).

[29] Foley-Bourgon, V., and Hendren, L. Efficiently implementing the
copy semantics of matlab’s arrays in javascript. In Proceedings of the 12th
Symposium on Dynamic Languages (New York, NY, USA, 2016), DLS
2016, ACM, pp. 72–83.

[30] Fukunaga, A., Pree, W., and Kimura, T. D. Functions as objects
in a data flow based visual language. In Proceedings of the 1993 ACM
Conference on Computer Science (New York, NY, USA, 1993), CSC ’93,
ACM, pp. 215–220.

[31] Gantel, L., Khiar, A., Miramond, B., Benkhelifa, A., Lemon-
nier, F., and Kessal, L. Dataflow programming model for recon-
figurable computing. In Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2011 6th International Workshop on (June 2011),
pp. 1–8.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 165

[32] Gold, N., Krinke, J., Harman, M., and Binkley, D. Clone
detection for max/msp patch libraries (poster abstract). In Digital Music
Research Network Workshop (2009).

[33] Gold, N., Krinke, J., Harman, M., and Binkley, D. Cloning
in Max/MSP patches. In Proceedings of International Computer Music
Conference 2011 (Huddersfield, UK, July 2011), International Computer
Music Association, pp. 159–162.

[34] Greenbaum, S., and Jefferson, S. A compiler for HP VEE. Hewlett-
Packard Journal 49, 2 (may 1998), 98–122.

[35] Gupta, G., and Sohi, G. S. Dataflow execution of sequential imper-
ative programs on multicore architectures. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture (New
York, NY, USA, 2011), MICRO-44, ACM, pp. 59–70.

[36] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The
synchronous data flow programming language lustre. Proceedings of the
IEEE 79, 9 (Sep 1991), 1305–1320.

[37] Haskell Wiki. Wadler’s Law. https://wiki.haskell.org/Wadler’

s_Law, 1996.

[38] Hils, D. D. DataVis: A visual programming language for scientific
visualization. In Proceedings of the 19th Annual Conference on Computer
Science (New York, NY, USA, 1991), CSC ’91, ACM, pp. 439–448.

[39] Hils, D. D. Visual languages and computing survey: Data flow visual
programming languages. Journal of Visual Languages & Computing 3
(1992), 69–101.

[40] Hinze, R., and Löh, A. Guide to lhs2 (for version 1.19). https://

hackage.haskell.org/package/lhs2tex-1.19/src/doc/Guide2.pdf,
apr 2015.

[41] Ingalls, D., Wallace, S., Chow, Y.-Y., Ludolph, F., and Doyle,
K. Fabrik: A visual programming environment. In Conference Proceedings
on Object-oriented Programming Systems, Languages and Applications
(New York, NY, USA, 1988), OOPSLA ’88, ACM, pp. 176–190.

[42] ISO. ISO/IEC 29500-1:2012 – Office Open XML File Formats, 2012.

[43] Jamil, N. Constraint solvers for user interface layout. arXiv preprint
arXiv:1401.1031, jan 2014.

https://wiki.haskell.org/Wadler's_Law
https://wiki.haskell.org/Wadler's_Law
https://hackage.haskell.org/package/lhs2tex-1.19/src/doc/Guide2.pdf
https://hackage.haskell.org/package/lhs2tex-1.19/src/doc/Guide2.pdf
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 166

[44] Johnston, W. M., Hanna, J. R. P., and Millar, R. J. Advances in
dataflow programming languages. ACM Comput. Surv. 36, 1 (mar 2004),
1–34.

[45] Jones, B. Comments from Tim Bray on OpenDocument. http://

blogs.msdn.com/b/brian_jones/archive/2005/10/04/477127.aspx,
oct 2005.

[46] Jones, S. P., Blackwell, A., and Burnett, M. A user-centred
approach to functions in Excel. In In ICFP ’03: Proceedings of the eighth
ACM SIGPLAN international conference on Functional programming
(2003), ACM Press, pp. 165–176.

[47] Kaufmann, M., Kornerup, J., and Reitblatt, M. Formal verifi-
cation of LabVIEW programs using the ACL2 theorem prover. In 8th
International Workshop on the ACL2 Theorem Prover and Its Applica-
tions (New York, NY, USA, 2009), ACL2 ’09, ACM, pp. 82–89.

[48] Kavi, K., Shelor, C., and Pace, D. Concurrency, synchronization,
and speculation–the dataflow way. Advances in Computers 96 (2015),
47–104.

[49] Kimura, T. D. Hierarchical dataflow model: A computation model
for small children. Tech. Rep. WUCS-85-05, Washington University, St.
Louis, may 1985.

[50] Kimura, T. D., Choi, J. W., and Mack, J. M. A visual language
for keyboardless programming. Tech. Rep. WUCS-86-06, Washington
University, St. Louis, jun 1986.

[51] Kosinski, P. R. A data flow language for operating systems program-
ming. SIGPLAN Not. 8, 9 (jan 1973), 89–94.

[52] Lee, E. A., and Messerschmitt, D. G. Synchronous data flow.
Proceedings of the IEEE 75, 9 (Sept 1987), 1235–1245.

[53] Leshed, G., Haber, E. M., Matthews, T., and Lau, T. Coscripter:
Automating & sharing how-to knowledge in the enterprise. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2008), CHI ’08, ACM, pp. 1719–1728.

[54] Lin, Y., Choi, Y., Mahlke, S., Mudge, T., and Chakrabarti,
C. A parameterized dataflow language extension for embedded streaming
systems. In Embedded Computer Systems: Architectures, Modeling, and

http://blogs.msdn.com/b/brian_jones/archive/2005/10/04/477127.aspx
http://blogs.msdn.com/b/brian_jones/archive/2005/10/04/477127.aspx
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 167

Simulation, 2008. SAMOS 2008. International Conference on (July 2008),
pp. 10–17.

[55] Mackay, W. E. Patterns of sharing customizable software. In Proceed-
ings of the 1990 ACM Conference on Computer-supported Cooperative
Work (New York, NY, USA, 1990), CSCW ’90, ACM, pp. 209–221.

[56] MacLean, A., Carter, K., Lövstrand, L., and Moran, T. User-
tailorable systems: Pressing the issues with buttons. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (New
York, NY, USA, 1990), CHI ’90, ACM, pp. 175–182.

[57] Marsaglia, G. Xorshift rngs. Journal of Statistical Software 8, 1 (2003),
1–6.

[58] McIntirye, D. Comp.lang.visual - frequently-asked questions list, mar
1998.

[59] Microsoft. Microsoft by the numbers. https://news.microsoft.com/

bythenumbers/ms_numbers.pdf, 2014.

[60] Microsoft. Guidelines and examples of array formulas. https:

//support.office.com/en-us/article/Guidelines-and-examples-

of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523, 2016.

[61] Mok, A., and Stuart, D. An rtl semantics for labview. In Aerospace
Conference, 1998 IEEE (Mar 1998), vol. 4, pp. 61–71 vol.4.

[62] Monteiro, I. T., Tolmasquim, E. T., and de Souza, C. S.
Going back and forth in metacommunication threads. In 12th Brazilian
Symposium on Human Factors in Computing Systems (Porto Alegre,
Brazil, Brazil, 2013), IHC ’13, SBC, pp. 102–111.

[63] Mosconi, M., and Porta, M. Iteration constructs in data-flow visual
programming languages. Comput. Lang. 26, 2-4 (July 2000), 67–104.

[64] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham,
P., and Abadi, M. Naiad: A timely dataflow system. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–455.

[65] Myers, B. A., Smith, D. C., and Horn, B. Report of the "End-
User Programming" working group. In Languages for developing user
interfaces, B. A. Myers, Ed. AK Peters, Ltd., 1992, ch. 19, pp. 343–366.

https://news.microsoft.com/bythenumbers/ms_numbers.pdf
https://news.microsoft.com/bythenumbers/ms_numbers.pdf
https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523
https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523
https://support.office.com/en-us/article/Guidelines-and-examples-of-array-formulas-3BE0C791-3F89-4644-A062-8E6E9ECEE523
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 168

[66] Nardi, B. A. A Small Matter of Programming: Perspectives on End
User Computing. MIT press, 1993.

[67] Nardi, B. A., and Miller, J. R. Computer-supported cooperative
work and groupware. Academic Press Ltd., London, UK, UK, 1991,
ch. Twinkling Lights and Nested Loops: Distributed Problem Solving and
Spreadsheet Development, pp. 29–54.

[68] National Instruments. Getting Started With LabVIEW, 321527e-
01 ed. National Instruments, Austin, Texas, nov 2001.

[69] National Instruments. Reentrancy: Allowing simultaneous calls to
the same SubVI. LabVIEW 2013 Help, jun 2013.

[70] Native Instruments. REAKTOR 6 - Building in Primary, 6.0.1 ed.
Berlin, Germany, nov 2015.

[71] OASIS. OpenFormula Format for Office Applications (OpenFormula)
- Rough Draft. https://www.oasis-open.org/committees/download.

php/16826/openformula-spec-20060221.html, 02 2006.

[72] OASIS. Open Document Format for Office Applications (OpenDocu-
ment) Version 1.2 - Part 2: Recalculated Formula (OpenFormula) For-
mat. http://docs.oasis-open.org/office/v1.2/os/OpenDocument-

v1.2-os-part2.html, 9 2011.

[73] Ousterhout, J. K. Scripting: Higher-level programming for the 21st
century. Computer 31, 3 (mar 1998), 23–30.

[74] Phillips, D. Dead batteries included. O’Reilly Radar, October 2013.

[75] Puckette, M., et al. Pd documentation. http://msp.ucsd.edu/Pd_

documentation/index.html, 2015.

[76] Reynolds, J. C. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM Annual Conference - Volume 2
(New York, NY, USA, 1972), ACM ’72, ACM, pp. 717–740.

[77] Sakal, M., and Rakovic, L. Errors in building and using electronic
tables: Financial consequences and minimisation techniques. Interna-
tional Journal on Strategic Management and Decision Support Systems
in Strategic Management 17, 3 (2012), 29–35.

[78] Sannella, M., Maloney, J., Freeman-Benson, B., and Borning,
A. Multi-way versus one-way constraints in user interfaces: Experience

https://www.oasis-open.org/committees/download.php/16826/openformula-spec-20060221.html
https://www.oasis-open.org/committees/download.php/16826/openformula-spec-20060221.html
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part2.html
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-part2.html
http://msp.ucsd.edu/Pd_documentation/index.html
http://msp.ucsd.edu/Pd_documentation/index.html
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 169

with the deltablue algorithm. Softw. Pract. Exper. 23, 5 (may 1993),
529–566.

[79] Scaffidi, C., Shaw, M., and Myers, B. Estimating the numbers
of end users and end user programmers. In Proceedings of the 2005
IEEE Symposium on Visual Languages and Human-Centric Computing
(Washington, DC, USA, 2005), VLHCC ’05, IEEE Computer Society,
pp. 207–214.

[80] Schachman, T. Apparatus: a hybrid graphics editor and programming
environment for creating interactive diagrams, 2017.

[81] Schwarzer, T., Falk, J., Glaß, M., Teich, J., Zebelein, C.,
and Haubelt, C. Throughput-optimizing compilation of dataflow ap-
plications for multi-cores using quasi-static scheduling. In Proceedings of
the 18th International Workshop on Software and Compilers for Embedded
Systems (New York, NY, USA, 2015), SCOPES ’15, ACM, pp. 68–75.

[82] Sutherland, I. E. Sketchpad, a man-machine graphical communication
system. PhD thesis, Massachusetts Institute of Technology, jan 1963.

[83] Tanimoto, S. L. VIVA: a visual language for image processing. Journal
of Visual Languages and Computing 1 (1990), 127–139.

[84] Tratt, L. The importance of syntax. http://tratt.net/laurie/blog/

entries/the_importance_of_syntax.html, may 2005.

[85] Treleaven, P. C., Brownbridge, D. R., and Hopkins, R. P.
Data-driven and demand-driven computer architecture. ACM Computing
Surveys 14, 1 (Mar. 1982), 93–143.

[86] Tyszkiewicz, J. Spreadsheet as a relational database engine. In
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2010), SIGMOD ’10, ACM,
pp. 195–206.

[87] Tyszkiewicz, J. The Power of Spreadsheet Computations. ArXiv e-
prints (jul 2013).

[88] West, D. M. The cuban software revolution: 2016-2025. In 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!) (New York, NY, USA, 2015),
Onward! 2015, ACM, pp. 267–281.

http://tratt.net/laurie/blog/entries/the_importance_of_syntax.html
http://tratt.net/laurie/blog/entries/the_importance_of_syntax.html
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Chapter 10. Bibliography 170

[89] Whiting, P. G., and Pascoe, R. S. V. A history of data-flow
languages. IEEE Ann. Hist. Comput. 16, 4 (dec 1994), 38–59.

[90] Wipliez, M. Compilation infrastructure for dataflow programs. PhD
thesis, INSA de Rennes, 2010.

[91] Zmölnig, I. M. How to write an external for Pure Data. http:

//iem.at/pd/externals-HOWTO/, March 2014.

http://iem.at/pd/externals-HOWTO/
http://iem.at/pd/externals-HOWTO/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

A
Demonstration of the interpreter modeling Pure Data

To wrap up the presentation of the interpreter modeling Pure Data, we
present a demonstration of its use. We build a simple synthesizer with both
frequency and amplitude controllable via events, and use it to play the motif
from the main theme of the film “Back To The Future”, composed by Alan
Silvestri.

First, we define a few constants corresponding to the frequency in Hertz
of some musical notes:

cSharp = 554.37

aSharp = 932.33

g = 783.99

gSharp = 830.61

f = 698.46

Then, we construct the patch that corresponds to the following graph:

example = PdPatch (fromList [

PdAtomBox (PdFloat 0), -- 0
PdObj [PdSymbol "osc~",PdFloat gSharp] 2 1, -- 1
PdMsgBox [PdCmd PdToOutlet (floatList [0.5, 1000])], -- 2
PdMsgBox [PdCmd PdToOutlet (floatList [0, 100])], -- 3
PdObj [PdSymbol "line~"] 2 1, -- 4
PdObj [PdSymbol "*~"] 2 1, -- 5

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix A. Pure Data interpreter 172

PdObj [PdSymbol "dac~"] 1 0, -- 6

PdObj [PdSymbol "receive",PdSymbol "MyMetro"] 0 1, -- 7
PdObj [PdSymbol "metro",PdFloat 500] 2 1, -- 8
PdObj [PdSymbol "delay",PdFloat 5] 2 1, -- 9
PdObj [PdSymbol "list",PdFloat 0.5,PdFloat 0.1] 2 1, -- 10
PdObj [PdSymbol "list",PdFloat 0,PdFloat 500] 2 1, -- 11
PdObj [PdSymbol "line~"] 1 1, -- 12
PdObj [PdSymbol "osc~",PdFloat (gSharp / 2)] 1 1, -- 13
PdObj [PdSymbol "*~"] 2 1, -- 14

PdMsgBox [PdCmd PdToOutlet

[PdTAtom (PdSymbol "list"),PdTAtom (PdSymbol "bang")]], -- 15
PdMsgBox [PdCmd PdToOutlet

[PdTAtom (PdSymbol "list"),PdTAtom (PdSymbol "stop")]], -- 16
PdMsgBox [PdCmd (PdReceiver "MyMetro") [PdTDollar 1]]] -- 17

)(fromList [

((0, 0) B (1, 0)), ((1, 0) B (5, 0)), ((2, 0) B (4, 0)),

((3, 0) B (4, 0)), ((4, 0) B (5, 1)), ((5, 0) B (6, 0)),

((7, 0) B (8, 0)), ((8, 0) B (9, 0)), ((8, 0) B (10, 0)),

((9, 0) B (11, 0)), ((10, 0) B (12, 0)), ((11, 0) B (12, 0)),

((12, 0) B (14, 0)), ((13, 0) B (14, 1)), ((14, 0) B (6, 0)),

((15, 0) B (17, 0)), ((16, 0) B (17, 0))]

)[1, 4, 5, 12, 13, 14, 6]

where

floatList = map (PdTAtom ◦ PdFloat)

This is the sequence of input events that corresponds to playing the tune:

main :: IO ()

main =

ByteString .putStr $ runPut (putWav output)

where

output = genOutput $ runSteps 10000 example [

(PdEvent 1000 15 [PdSymbol "bang"]), -- MyMetro bang
(PdEvent 1010 2 [PdSymbol "bang"]), -- 0.1 1000
(PdEvent 1900 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 2001 0 [PdSymbol "float",PdFloat cSharp]),

(PdEvent 2002 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 2900 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 3001 0 [PdSymbol "float",PdFloat g]),

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix A. Pure Data interpreter 173

(PdEvent 3002 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 4660 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 4749 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 4750 0 [PdSymbol "float",PdFloat gSharp]),

(PdEvent 4875 0 [PdSymbol "float",PdFloat aSharp]),

(PdEvent 5000 0 [PdSymbol "float",PdFloat gSharp]),

(PdEvent 5333 0 [PdSymbol "float",PdFloat f]),

(PdEvent 5666 0 [PdSymbol "float",PdFloat cSharp]),

(PdEvent 6000 0 [PdSymbol "float",PdFloat g]),

(PdEvent 6650 3 [PdSymbol "bang"]), -- 0 100
(PdEvent 6745 2 [PdSymbol "bang"]), -- 0.1 1000

(PdEvent 6750 0 [PdSymbol "float",PdFloat gSharp]),

(PdEvent 6875 0 [PdSymbol "float",PdFloat aSharp]),

(PdEvent 7000 0 [PdSymbol "float",PdFloat gSharp]),

(PdEvent 7000 16 [PdSymbol "bang"]), -- MyMetro stop

(PdEvent 8000 3 [PdSymbol "bang"])] -- 0 100

In Pure Data, the sound card is represented by the dac~ object. Our
interpreter does not handle actual audio output natively, but we can extract
the inlet data from that node from the list of states, and convert it to an audio
wav file format, which is then sent to standard output.

convertData :: PdNodeState → [Integer]

convertData (PdNodeState ins) =

let inlet = index ins 0

in map (λ(PdFloat f)→ floor (f ∗ 32768)) inlet

everyOther :: [a]→ [a]

everyOther (x : (y : xs)) = x : everyOther xs

everyOther x = x

genOutput x = concat $ everyOther

$ toList

$ fmap (λ(PdState nss)→ convertData $ index nss 6) x

putWav vs =

let

riff = 0 x46464952

wave = 0 x45564157

fmts = 0 x20746d66

datx = 0 x61746164

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix A. Pure Data interpreter 174

formatHeaderLen = 16

fileSize = (44 + (length vs) ∗ 2)

bitsPerSample = 16

format = 1

channels = 1

sampleRate = 32000

in do

putWord32le riff

putWord32le (fromIntegral fileSize)

putWord32le wave

putWord32le fmts

putWord32le formatHeaderLen

putWord16le format

putWord16le channels

putWord32le sampleRate

putWord32le (sampleRate ∗ bitsPerSample ∗ (fromIntegral channels) ‘div ‘ 8)

putWord16le (((fromIntegral bitsPerSample) ∗ channels) ‘div ‘ 8)

putWord16le (fromIntegral bitsPerSample)

putWord32le datx

putWord32le (fromIntegral ((length vs) ∗ 2))

mapM_ (putWord16le ◦ fromIntegral) vs

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

B
Demonstration of the spreadsheet interpreter

We present here a demonstration of the spreadsheet interpreter in use.
This appendix is a Literate Haskell program including the complete source
code of the demonstration.

This program imports the interpreter defined in Chapter 5 as a mod-
ule, as well as some standard modules from the Haskell Platform. We
also use one additional module for tabular pretty-printing of the output:
Text.PrettyPrint.Boxes, available from Hackage, the Haskell community’s
package repository1.

import XlInterpreter

import Data.Char (chr , ord)

import Data.Map.Strict as Map (foldlWithKey , empty , lookup, toList , (!))

import Text .PrettyPrint .Boxes as Box (render , hcat , vcat , text)

import Text .PrettyPrint .Boxes as Alignment (left , right)

Running the program produces the following output:

|A |B |C |D |E |F |G

1| 15| 15|"B" | 75| 30| 105| 1015

2| 30| 15| 1| | | |

3| | | | | | |

4| | | | | | |

5| | |"#VALUE!"| 115| | 15|

6| | | | 130| | 16|

7| | | | | | |

8| | | | | | |"#VALUE!"

9| | | | | | |

10| 10| | | 10| -20| 30|

11|"10" | | | | 20| |

12|False |"#DIV/0!"| | | | |

13|True |"#VALUE!"| | | | |

14|True |"#DIV/0!"| | | | |

1https://hackage.haskell.org/package/boxes

https://hackage.haskell.org/package/boxes
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix B. Spreadsheet interpreter 176

B.1
Formatting

In order to produce a more readable output, we define the instance Show

for our XlState type, using the Text .PrettyPrint package to produce tabular
outputs.

instance Show XlState where

show (XlState cells values) =

"\nCells:\n" ++ listCells ++

"\nValues:\n" ++ tableValues ++

"\n" ++ show values ++ "\n"

where

rmax = Map.foldlWithKey (λmx L〈r〉, M → max r mx) 0 values

cmax = Map.foldlWithKey (λmx L , 〈c〉M → max c mx) 0 values

listCells = Box .render

$ Box .vcat Alignment .left

$ map Box .text

$ map show (Map.toList cells)

tableValues = Box .render

$ Box .hcat Alignment .left

$ numsCol : map doCol [0 . . cmax]

numsCol = Box .vcat Alignment .right

$ map Box .text

$ " " : map show [1 . . (rmax + 1)]

doCol c = Box .vcat Alignment .left

$ Box .text [’|’, chr (c + 65)] :

map (λs → Box .text (’|’ : doRow s c)) [0 . . rmax]

lpad m xs = reverse $ take m $ reverse

$ (take m $ repeat ’ ’) ++ (take m xs)

doRow r c = case Map.lookup (L〈r〉, 〈c〉M) values of

Just (XlNumber n)→ lpad 9 (num2str n)

Just v → show v

Nothing → ""

B.2
A test driver

We construct below a test driver function that runs test cases and
compares their results to expected values.

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix B. Spreadsheet interpreter 177

runTest :: String → [(XlEvent ,XlValue)]→ IO ()

runTest name operations =

let

env@(XlState cells values) = runEvents (XlWorksheet Map.empty)

(map fst operations)

value :: String → XlValue

value a1 = values ! (toRC a1)

failures = filter (λv → v 6≡ Nothing) $ map doCheck operations

where

doCheck (op, value) =

case op of

XlSetFormula rc fml →
if values ! rc ≡ value

then Nothing

else Just (rc, value)

XlSetArrayFormula rcfrom rcto fml →
if values ! rcfrom ≡ value

then Nothing else

Just (rcfrom, value)

in do

putStrLn ""

print name

print env

if null failures

then putStrLn "OK! :-D"

else

do

putStrLn "Failed: "

print failures

We employ a few shortcuts to write down formulas more tersely:

str s = XlString s

num n = XlNumber n

err e = XlError e

boo b = XlBool b

lnum n = XlLit (XlNumber n)

lstr s = XlLit (XlString s)

lmtx mx = XlLit (XlMatrix (map (map XlNumber) mx))

lmtxs mx = XlLit (XlMatrix (map (map XlString) mx))

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix B. Spreadsheet interpreter 178

fun f args = XlFun f args

ref a1 = XlRef (toRC a1)

range a1 b2 = XlRng (toRC a1) (toRC b2)

toRC (l : num) = L〈((read num)− 1)〉, 〈((ord l)− 65)〉M
addF rc f v = (XlSetFormula (toRC rc) f , v)

addAF rcfrom rcto f v = (XlSetArrayFormula (toRC rcfrom) (toRC rcto) f , v)

sumSqrt l = num $ foldr (+) 0 (map sqrt l)

B.3
The example spreadsheet

We then run the main program, using runTest to create a spreadsheet,
taking a list of input events as a parameter. In this list, addF and addAF are
events adding formulas and array formulas to cells. The last argument is the
expected value. All tests here produce the indicated values.

main :: IO ()

main =

do

runTest "Example" [

addF "A1" (lnum 15) (num 15),

addF "B1" (lnum 0) (num 15),

addF "A2" (fun "+" [ref "A1", ref "B1"]) (num 30),

addF "B1" (ref "A1") (num 15),

addF "C1" (lstr "B") (str "B"),

addF "C2" (lnum 1) (num 1),

addF "B2" (fun "INDIRECT" [fun "&" [ref "C1", ref "C2"]]) (num 15),

addF "D1" (fun "SUM" [range "A1" "B2"]) (num 75),

addF "E1" (fun "SUM" [range "B1" "B2"]) (num 30),

addF "F1" (fun "SUM" [range "D1" "E1"]) (num 105),

addF "D10" (lnum 10) (num 10),

addF "E10" (lnum (−20)) (num (−20)),

addF "F10" (lnum 30) (num 30),

addF "E11" (fun "ABS" [range "D10" "F10"]) (num 20),

addF "G8" (fun "ABS" [range "D10" "F10"]) (err "#VALUE!"),

addF "A10" (lnum 10) (num 10),

addF "A11" (lstr "10") (str "10"),

addF "A12" (fun "=" [ref "A10", ref "A11"]) (boo False),

addF "A13" (fun "=" [ref "A10", lnum 10]) (boo True),

addF "A14" (fun "=" [ref "A13", lnum 1]) (boo True),

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix B. Spreadsheet interpreter 179

addF "B12" (fun "/" [lnum 1, lnum 0]) (err "#DIV/0!"),

addF "B13" (fun "=" [ref "G8", ref "B12"]) (err "#VALUE!"),

addF "B14" (fun "=" [ref "B12", ref "G8"]) (err "#DIV/0!"),

addF "G1" (fun "+" [lnum 1000, range "A1" "A2"]) (num 1015),

addF "C5" (range "A1" "A2") (err "#VALUE!"),

addAF "F5" "F6" (lmtx [[15], [16]]) (num 15),

addAF "D5" "D6" (fun "+" [range "A1" "A2", lnum 100]) (num 115)]

In http://hisham.hm/thesis one can find a number of tests using this
test driver. These tests document the specific behavior of the interpreter and
also serve as a list of corner cases which expose incompatibilities between real-
world spreadsheet applications.

http://hisham.hm/thesis
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

C
Demonstration of the interpreter modeling LabVIEW

We present here a demonstration of the interpreter modeling LabVIEW.
We produced several examples, which are available at https://hisham.hm/

thesis/, along with the resulting outputs of their execution. Here, we present
only one of them. This is the test for the “case” structure, represented in
LabVIEW this way:

Through the process explained in Section 6.2.6, our interpreter produces
a visualization of the execution. This is a frame of the resulting animation,
just before performing the division:

The test program for this example is the following.
Again, the implementation uses only standard modules included in the

Haskell Platform.

import LvInterpreter

import Data.Sequence (fromList , elemIndexL)

import Data.List

import Data.Maybe

import Data.List .Split

main =

do

print vi

https://hisham.hm/thesis/
https://hisham.hm/thesis/
DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix C. LabVIEW interpreter 181

runVI vi

where vi = testingCase

C.1
Program construction

To ease the writing of tests, we construct LvVI objects using a conve-
nience function which converts the definition of wires from textual names to
the numeric indices expected by the interpreter.

data LvStringWire = LvStringWire String String

deriving Show

wire :: String → String → LvStringWire

wire a b = LvStringWire a b

makeVI :: [(String ,LvControl)]→ [(String ,LvIndicator)]

→ [(String ,LvNode)]→ [LvStringWire]→ LvVI

makeVI ctrls indics nodes stringWires =

LvVI {
vCtrls = ctrls ,

vIndics = indics ,

vNodes = nodes ,

vWires = map convert stringWires

}
where

convert :: LvStringWire → LvWire

convert (LvStringWire src dst) =

let

(typesrc, srcElem, port′
src) = findElem ctrls LvC vIndics src

(typedst, dstElem, port′
dst) = findElem indics LvI vCtrls dst

in

LvWire Ltypesrc, srcElem, port′
srcM

Ltypedst, dstElem, port′
dstM

findIndex :: [(String , a)]→ String → Maybe Int

findIndex es name = elemIndex name $ map fst es

must :: (String → Maybe a)→ String → a

must fn name = fromMaybe (error ("No such entry " ++ name))

(fn name)

findElem :: [(String , a)]→ LvElemType → (LvVI → [(String , b)])

→ String → (LvElemType, Int , Int)

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix C. LabVIEW interpreter 182

findElem entries etype elems name

| isJust $ find (≡ ’:’) name =

let

[elemName, portName] = splitOn ":" name

elem = (must ◦ flip lookup) nodes elemName

in

(LvN , (must ◦ findIndex) nodes elemName, findPort elem portName)

| otherwise =

case findIndex entries name of

Just i → (etype, i , 0)

Nothing → findElem entries etype elems (name ++ ":0")

where

findPort (LvStructure sv) = must $ findIndex (elems sv)

findPort (LvCase svs) = must $ findIndex (elems (head svs))

findPort (LvFunction) = λs → if null s then 0 else read s

findPort = λs → 0

C.2
Demonstration of the VI

This is the example displayed in Figure 6.1.

testingCase =

makeVI

[-- controls
]

[-- indicators
("result",LvIndicator (LvArr []))

]

[-- nodes
("3",LvConstant (LvI32 3)),

("for",LvStructure LvFor (makeVI

[-- controls
("i",LvAutoControl),

("N",LvTunControl)

]

[-- indicators
("out",LvTunIndicator LvAutoIndexing)

]

[-- nodes

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix C. LabVIEW interpreter 183

("case",LvCase [

(makeVI

[-- controls
("case",LvControl (LvI32 0)),

("in",LvControl (LvI32 0))

]

[-- indicators
("out",LvIndicator (LvI32 0))

]

[-- nodes
("+",LvFunction "+"),

("10",LvConstant (LvI32 10))

]

[-- wires
wire "in" "+:0",

wire "10" "+:1",

wire "+" "out"

]

),

(makeVI

[-- controls
("case",LvControl (LvI32 0)),

("in",LvControl (LvI32 0))

]

[-- indicators
("out",LvIndicator (LvI32 0))

]

[-- nodes
("-",LvFunction "-"),

("10",LvConstant (LvI32 10))

]

[-- wires
wire "in" "-:0",

wire "10" "-:1",

wire "-" "out"

]

),

(makeVI

[

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

Appendix C. LabVIEW interpreter 184

("case",LvControl (LvI32 0)),

("in",LvControl (LvI32 0))

]

[-- indicators
("out",LvIndicator (LvI32 0))

]

[-- nodes
("*",LvFunction "*"),

("/",LvFunction "/"),

("10",LvConstant (LvI32 10)),

("2",LvConstant (LvI32 2))

]

[-- wires
wire "in" "*:0",

wire "10" "*:1",

wire "*" "/:0",

wire "2" "/:1",

wire "/" "out"

]

)

])

]

[-- wires
wire "i" "case:case",

wire "i" "case:in",

wire "case:out" "out"

]

))

]

[-- wires
wire "3" "for:N",

wire "for:out" "result"

]

DBD
PUC-Rio - Certificação Digital Nº 1221980/CA

	Dataflow Semantics for End-user Programmable Applications
	Resumo
	Table of contents
	Introduction
	Motivation
	Problem statement

	Background
	End-user programming
	Roles of programming in end-user applications
	The three-layer architecture in end-user programmable applications
	Scripting languages

	Dataflow programming
	A brief history of dataflow
	Static and dynamic dataflow models
	Data-driven and demand-driven dataflow
	Uni and bi-directional flow

	Design alternatives for dataflow UI-level languages
	Hils's classification of design alternatives
	An extension to Hils's classification
	Dataflow model
	N-to-1 inputs
	Time and rate-based evaluation
	Separate programming and use views
	Indirect connections
	Textual sub-language

	Non-dataflow UI-level languages
	Case studies
	Discussion: On the use of definitional interpreters

	Case study: Pure Data
	Overview of the language
	Nodes and values
	Graph evaluation
	Messages and the textual sub-language
	Node triggering

	An interpreter modeling the semantics of Pure Data
	Representation of programs
	Representation of states
	Execution
	Main loop
	Event processing
	Audio processing
	Initial state

	Operations
	Atom boxes
	An object with side-effects: print
	An object with hot and cold inlets: +
	Objects producing timed events: delay and metro
	Message handlers for audio objects: osc126 and line126
	Cold inlets
	Data objects: float and list
	Audio handling operations: osc126, line126 and 42126

	Demonstration

	Discussion: Syntax and semantics in visual languages

	Case study: spreadsheets
	The formula language
	Syntax
	Values and types

	Evaluation model
	Array formulas

	An interpreter modeling spreadsheet semantics
	Representation of programs
	Representation of states
	Execution
	Main loop
	Resolving addresses

	Calculating cell values
	Regular cell evaluation
	Cell evaluation for array formulas

	Operations
	Literals, references and ranges
	IF, AND, and OR
	SUM
	INDIRECT
	String operations
	Mathematical operations and equality
	Type conversions

	Demonstration

	Discussion: Language specification and compatibility issues

	Case study: LabVIEW
	Overview of the language
	Execution modes
	Data types and wires
	Looping and cycles
	Timing
	Tunnels
	Other control structures

	An interpreter modeling the semantics of LabVIEW
	Representation of programs
	Representation of state
	Execution
	Main loop
	Initial state
	Event processing
	Firing data to objects

	Nodes and structures
	Constant nodes
	Feedback nodes
	Function nodes
	Control structures

	Operations
	Numeric and relational operators
	Array functions
	Random Number
	Wait Until Next Ms

	Demonstration

	Discussion: Is LabVIEW end-user programming?
	LabVIEW and Pure Data compared

	Some other languages
	Reaktor
	VEE
	Blender
	Discussion: Dataflow end-user programming, then and now

	Design alternatives critiqued
	Graph evaluation
	Static and dynamic dataflow models
	Data-driven and demand-driven dataflow
	Uni and bi-directional dataflow
	N-to-1 inputs
	Timing considerations
	Indirect and dynamic connections

	Language features
	Selector/distributor
	Iteration
	Sequence construct
	Subprogram abstractions
	Higher-order functions

	Type checking
	Other aspects
	Liveness, representation and modes
	Textual sub-language and scripting

	Discussion: An architectural pattern for end-user programmable applications

	Conclusion
	Bibliography
	Demonstration of the interpreter modeling Pure Data
	Demonstration of the spreadsheet interpreter
	Formatting
	A test driver
	The example spreadsheet

	Demonstration of the interpreter modeling LabVIEW
	Program construction
	Demonstration of the VI

