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Abstract

Nicolini, Julio de Lima; Bergmann, José Ricardo (Adviser). Inves-
tigation of Electromagnetic Propagation in Plasma Struc-
tures Through Eigenfunction Expansions and FDTD Tech-
niques. Rio de Janeiro, 2017. 125p. Dissertação de Mestrado –
Centro de Estudos em Telecomunicações, Pontifícia Universidade
Católica do Rio de Janeiro.

Plasma is one of the four fundamental states of matter, present on
Earth in natural form at the ionosphere, in lightning strikes and in the
flames resulting from combustion, as well as in artificial form in neon
signs, fluorescent light bulbs and industrial processes. Plasma behaviour
is extraordinarily complex and varied, e.g. the spontaneous formation of
interesting spatial features over a wide range of length scales. A plasma
antenna, on the other hand, is a radiating structure based in a plasma
element instead of a metallic conductor, which creates several technological
advantages and useful characteristics. In this present work, an investigation
of electromagnetic propagation inside of plasma structures is performed
through both theoretical and numerical means as a first step towards
constructing appropriate models for the study of plasma antennas.

Keywords
Computational Electromagnetics; Plasma Physics; Plasma Propagation;

Mode Matching; Eigenfunction Expansion; Finite-Differences Time-Domain
Method.
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Resumo

Nicolini, Julio de Lima; Bergmann, José Ricardo. Investigação
de Propagação Eletromagnética em Estruturas de Plasma
Através de Expansões em Autofunções e Técnicas FDTD.
Rio de Janeiro, 2017. 125p. Dissertação de Mestrado – Centro de
Estudos em Telecomunicações, Pontifícia Universidade Católica do
Rio de Janeiro.

Plasma é um dos quatro estados fundamentais da matéria, presente
em forma natural na Terra na ionosfera, em relâmpagos e nas chamas
resultantes de combustão, assim como em forma artificial em lâmpadas de
neônio, lâmpadas fluorescentes e processos industriais. O comportamento
de plasmas é extraordinariamente complexo e variado, como por exemplo a
formação espontânea de características espaciais interessantes em variadas
escalas diferentes de comprimento. Uma antena de plasma, por sua vez, é
uma estrutura radiante baseada em um elemento de plasma em vez de um
condutor metálico, o que gera diversas vantagens e características úteis de
um ponto de vista tecnológico. Nesse presente trabalho, uma investigação
da propagação eletromagnética dentro de estruturas de plasma é realizada
através de métodos teóricos e numéricos como um primeiro passo em direção
ao desenvolvimento de modelos apropriados para o estudo de antenas de
plasma.

Palavras-chave
Eletromagnetismo Computacional; Física de Plasmas; Propagação em

Plasmas; Casamento de Modos ; Expansão em Autofunções ; Método das
Diferenças Finitas no Domínio do Tempo.
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1
Introduction

A plasma dipole is an antenna with a radiating structure based on
a plasma element instead of a metallic conductor [1–4]. The plasma, kept
activated by an ionizing source, is the conducting material that acts as the
source for electromagnetic fields, which can then be modulated and used to
carry information in telecommunication links. This is achieved by applying a
secondary signal source to the plasma, which will then re-emit the signal as
electromagnetic radiation.

One possible set-up for a plasma antenna is shown in figure 1.1, which
is the same structure used in [3], to exemplify the operation of one such
device. A thin dielectric shell containing an inert gas is inserted in a grounded
metallic cage, with the ionizing and signal sources connected to the hidden
portion of the cylinder. The ionizing source is a copper collar that carries
the electromagnetic excitation necessary to ionize the gas within the dielectric
cylinder. The basic mechanism is that a strong-intensity electric field is created
between the collar and the grounded metallic shielding, allowing for a process
of ionization to begin in the plasma if the electric field intensity is higher than
the dielectric breakdown voltage of the gas. This ionization process is carried
throughout the whole column and then maintained by a surface wave travelling
through the dielectric cylinder [5, 6].

The metallic shielding also blocks electromagnetic interference from the
outside from affecting the sources, as well as preventing spurious radiation
from the collars from affecting measurements. The signal source is a copper
collar that transfers a desired transmitted signal into the plasma, or detects a
received signal from the plasma and into an analyser. The part of the plasma
column that is not shielded can act as a transmitting/receiving dipole antenna
when the reflective effect of the metallic box is taken into account.
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Ionizing Source

Signal Source

Metallic Shielding

Plasma
Column

Figure 1.1: Possible set-up for a plasma antenna configuration. The ionizing source
is a copper collar that carries the electromagnetic excitation necessary to ionize
the gas within the dielectric cylinder. The signal source is a copper collar that
transfers a desired transmitted signal into the plasma, or detects a received signal
from the plasma and into an analyser. The metallic shielding blocks electromagnetic
interference from the outside from affecting the sources, as well as prevents spurious
radiation from the collars from affecting measurements.
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Chapter 1. Introduction 16

One of the advantages of plasma antennas is that, differently from
their metallic counterparts, their physical characteristics (and therefore their
radiation characteristics) can be controlled through the parameters of the
ionizing source. This results in an antenna that is not restricted to its original
fabrication characteristics, and that can be reconfigured with simplicity and
in real time [7, 8]. Additionally, if the ionizing source is turned off, the
plasma antenna is deactivated, becoming an inert element that is invisible to
electromagnetic radiation, eliminating coupling problems with other antenna
elements.

One of the great challenges in the synthesis of antennas for telecommu-
nication links is the lack of flexibility in changing parameters, like for example
the radiation pattern, once the antenna is ready. This problem can be avoided
by application of antenna arrays, where control over the excitation of each
element allows the radiation pattern to be conformed. These antenna arrays
are particularly interesting for use in reconfigurable antennas in mobile com-
munications and satellite link applications [9–11], but the presence of metallic
elements creates additional complexity in the synthesis process due to para-
sitic interactions. Plasma antennas provide an alternative to metallic elements
in these arrays, as they remain inert when deactivated and therefore parasitic
interactions are minimized.

Despite the advantages in utilizing plasmas as conducting elements in
antennas, there are still several difficulties and obstacles for this technology.
Obtaining the real characteristics of a plasma antenna, in a generic situation,
requires the complete description of the plasma configuration [8], which creates
theoretical and numerical difficulties when trying to analyse such systems. In
particular, the behaviour of electromagnetic waves within a plasma structure
is not always trivial to be analysed.

In light of these difficulties, this work seeks to investigate electromagnetic
propagation inside of plasma structures through both theoretical and numerical
means as a first step towards constructing appropriate models for the study of
plasma antennas.

The rest of this work is organized as follows.
Chapter 2 presents some fundamental concepts of plasma physics, as

well as different ways to model the plasma structures of interest. Of note is
the dielectric description of plasmas, which can be readily incorporated into
the standard theory of computational electromagnetics.

Chapter 3 provides an analytical formulation to study electromagnetic
propagation through homogeneous and inhomogeneous dielectric cylinders in
which the fields are expanded in a basis of eigenfunctions. This method will
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Chapter 1. Introduction 17

be utilized to validate the numerical simulations presented in later chapters.
Chapter 4 presents the basic concepts of numerical simulations performed

with a Finite Differences Time Domain (FDTD) method, as well as the details
necessary to perform FDTD simulations of the problem under consideration.

Chapter 5 provides validating results for both the eigenfunction method
and the FDTD simulations presented in previous chapters, as well as re-
sults that explore the characteristics of electromagnetic propagation through
plasma.

Finally, chapter 6 presents the concluding remarks and future perspec-
tives for this work.
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2
Plasma Fundamentals

Plasma is one of the four fundamental states of matter, and the most
abundant ordinary matter in the universe, most of which is found in rarefied
intergalactic regions and in stars, including the Sun. It is also present on
Earth in natural form at the ionosphere, in lightning strikes and in the
flames resulting from combustion, as well as in artificial form in neon signs,
fluorescent light bulbs and industrial processes, to name a few examples.
Plasma behaviour is extraordinarily complex and varied, e.g. the spontaneous
formation of interesting spatial features over a wide range of length scales. This
complexity in observed phenomena motivates the usage of various models to
theoretically describe plasmas; some of these will be briefly presented in this
chapter.

2.1
Particle Description

One way to model a plasma is to treat each particle in the ionized gas
separately, applying Newton’s laws of motion to each individual electron, ion
and neutral charge, and using the Lorentz force

~F = q[ ~E + (~v × ~B)] (2-1)

as the coupling between the mechanical dynamics of the system and the
electromagnetic behaviour prescribed by Maxwell’s equations. This model is
perhaps the most direct of plasma models, as there are no simplifications or
assumptions being made.

Despite its apparent simplicity, the particle description has limitations
for either analytical or numerical treatment of most practical problems, as
the number of particles in an usual plasma device (say, a photonic crystal)
or an usual region (say, a part of the ionosphere or the region within a
gas discharge tube) is upwards of 1020 electrons and ions [12]. Analytical
treatment of so many particles becomes unwieldy, and despite advances in
computational hardware and simulation software, it doesn’t seem likely that
computers will have enough memory to store all the necessary information in
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Chapter 2. Plasma Fundamentals 19

the foreseeable future, preventing numerical treatment as well. Particle-in-Cell
(PIC) simulation methods use “macroparticles” that represent a large number
of actual particles to try and circumvent this limitation, but computational
restrictions still exist.

2.2
Kinetic Theory and Magnetohydrodynamics

Another avenue is to treat plasmas as dynamic systems in the context
of kinetic theory, ascribing a distribution function fs to represent particles
of type s (electrons, ions or neutral charges) and treating the plasma as
a thermodynamic system [13]. The time evolution of such a system obeys
the Boltzmann equation, which states that the total rate of change in the
distribution function of each species is given by a collision term,

dfs
dt =

(
∂fs
∂t

)
c

, (2-2)

where the subscript s stands for each species type (electrons, ions, neutral
charges). Since f = f(~x,~v, t) is a time-dependent function in six-dimensional
phase space1, the left hand side of the equation can be expanded,

∂fs
∂t

+ ~v · ∇xfs +
~F

ms

· ∇vfs =
(
∂fs
∂t

)
c

, (2-3)

where ms is the species’ mass, ~F is the total instantaneous force applied to
the particle, ~v is the instantaneous velocity of the particle, ∇x is the gradient
in position space and ∇v is the gradient in velocity space.

The distribution function fs can be seen as a time-varying functional
distribution in the six-dimensional phase space (x, y, z, vx, vy, vz) of a single
particle of type s in the plasma system, i.e. a point fs(x0, y0, z0, v0x, v0y, v0z, t0)
represents the probability of finding a particle of type s in a neighbourhood of
(x0, y0, z0) with approximate velocity (v0x, v0y, v0z) at time t0, or the number of
particles of type s in a neighbourhood of (x0, y0, z0) with approximate velocity
(v0x, v0y, v0z) at time t0, depending on chosen normalization for f . The use of
this one-particle distribution function to describe macroscopic quantities and
collective phenomena is well supported by the literature [13,14]. While the xyz
coordinate system and the vxvyvz velocity system have been used so far, the

1“Phase space” is the name given to a space which represents all the possible states of a
system under consideration, with each possible state corresponding to one unique point in
the phase space. For a plasma, the phase space comprises the set of possible positions and
velocities for its particles.
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more general approach is to take f as a function of generalized coordinates ~q
and generalized momenta ~p.

Choosing to normalize by density, the constitutive relation for the total
number of particles of type s in the plasma is given by

Ns(t) =
∫

dxdydzdvxdvydvzfs(x, y, z, vx, vy, vz, t) =
∫
fs(~x,~v, t)d3~xd3~v,

(2-4)

where d3~x is taken to mean “the volume element of three-dimensional coordi-
nate space” and d3~v is taken to mean “the volume element of three-dimensional
velocity space”. This is intuitive, as the sum of all possible particle velocities
values in all possible coordinate points must yield the total number of particles
up to a normalization constant, which was chosen to be unity. From equation
(2-4) a local particle density can be defined as

ns(~x, t) =
∫
fs(~x,~v, t)d3~v, (2-5)

which allows for the definition of a local expectation value for any operator
O(~x,~v, t) as

〈O(~x, t)〉 = 1
n(~x, t)

∫
f(~x,~v, t)O(~x,~v, t)d3~v. (2-6)

With (2-6), another useful quantity can be defined: the local flow velocity
~us, which represents the bulk movement of the species, as

~us(~x, t) = 〈~vs〉 = 1
ns(~x, t)

∫
~vsfs(~x,~v, t)d3~v. (2-7)

The electromagnetic description is given by the microscopic Maxwell’s
equations,

∇ · ~E = ρ

ε0
, (2-8a)

∇ · ~B = 0, (2-8b)

∇× ~E = −∂
~B

∂t
, (2-8c)

∇× ~B = µ0 ~J + µ0ε0
∂ ~E

∂t
. (2-8d)

The coupling between the mechanical and electromagnetic dynamics is
present both in the force term of the Boltzmann equation, which takes the
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form of the Lorentz force2, and in the constitutive relations given by

ρ =
∫ ∑

s

qsfsd3~v =
∑
s

qsns, (2-9a)

~J =
∫ ∑

s

qsfs~vsd3~v =
∑
s

qsns~us, (2-9b)

where the spatial and temporal dependences have been left implicit, qs is the
electrical charge of a single particle of species s, and the summations are done
over all different species present in the plasma.

The Boltzmann equation can be simplified as done first by Vlasov [15].
First, consider the rest mass of the species present in the plasma. Protons have
a rest mass that is 1836.15 times greater than that of an electron, and the ions
in a typical plasma are composed of several protons. Therefore, ions can be
approximated as stationary positive charges, and the only species that will act
as a fluid will be the electrons.

Second, consider the interactions these electrons will suffer as they flow
through the plasma. Considering the system isolated from any external forces,
interactions between particles will occur only through short-distance collisions
and long-range Coulomb interactions. Vlasov’s argument is that, for an electron
fluid under typical plasma conditions, Coulomb interactions will dominate, and
therefore the collision term on the right-hand side of the Boltzmann equation
can be neglected.

Thus the modified Boltzmann equation, commonly called the Vlasov
equation, is given by

∂fe
∂t

+ ~v · ∇xfe + qe
me

[ ~E + (~v × ~B)] · ∇vfe = 0, (2-10)

and the constitutive relations reduce to

ρ = qene, (2-11a)
~J = qene~ue. (2-11b)

The Vlasov equation is useful in describing the plasma situation for when
a steady-state discharge has been reached, and there are no further ionization
processes. To model ionization, a different equation should be used, such as
the Fokker-Planck equation [16].

The problem has been reduced to the microscopic distribution function
of a single particle, but it can still be a complicated function to evaluate

2Gravitational forces can be neglected as their intensity are orders of magnitude smaller
than the intensity of electromagnetic interactions.
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and work with. The coupling between the dynamics is made through the
macroscopic quantities ne and ~ue, so it is worthwhile to try and recast the
Vlasov equation using macroscopic variables, which gives rise to the theory of
magnetohydrodynamics, or the fluid description for plasmas. This can be done
by computing the moments of the Vlasov equation. Since only electrons will
be considered from here onwards, the species’ subscript for each quantity will
be dropped.

The first step is to integrate the Vlasov equation over the entire momen-
tum space,

∫ [
∂f

∂t
+ ~p

m
· ∇f + q[ ~E + (~v × ~B)] · ∂f

∂~p

]
d3~p = 0. (2-12)

The first term is given by
∫ ∂f

∂t
d3~p = ∂

∂t

∫
fd3~p = ∂n

∂t
. (2-13)

For the second term, ~p and ~q are independent variables in phase space,
so the operator ∇ does not affect the momentum and it can be written

∫ ~p

m
· ∇fd3~p =

∫
∇ ·

(
~p

m
f

)
d3~p = ∇ ·

∫ (
~p

m
f

)
d3~p. (2-14)

To evaluate the integral, the canonical momentum of a moving charged
particle is explicitly given by [17]

~p = m~v√
1− v2

c2

+ q

c
~A, (2-15)

where ~A is the vector potential, c is the speed of light and the first term
is the relativistic correction of the classical linear momentum. Taking the
classical limit v � c, the electron’s canonical momentum simplifies to the
usual expression at first order and it can be written

∇ ·
∫ (

~p

m
f

)
d3~p = ∇ ·

∫
~vfd3~p = ∇ · (n~u). (2-16)

For the electric force term,
∫
q ~E · ∂f

∂~p
d3~p =

∫ ∂

∂~p
· (q ~Ef)d3~p, (2-17)

since the electrical field is independent of the particle’s velocity. Applying the

DBD
PUC-Rio - Certificação Digital Nº 1512376/CA



Chapter 2. Plasma Fundamentals 23

divergence theorem in velocity space on equation (2-17),

∫ ∂

∂~p
· (q ~Ef)d3~p =

∮
(q ~Ef) · dS =

∫
(qf ~E · ~s)|~v|2dΩ, (2-18)

where the contour is closed at infinity and ~s is the outward unitary vector on
the surface. Thus, if |f | → 0 faster than 1

|~v|2 as |~v| → ∞, as required for f to
be a distribution with finite energy, this term’s contribution is zero.

For the magnetic force term, the vector identity∇·(f ~C) = f∇· ~C+ ~C ·∇f
can be used to write

∫
q(~v × ~B) · ∂f

∂~p
d3~p =

∫ [
∂

∂~p
· [fq(~v × ~B)]− f ∂

∂~p
· (q~v × ~B)

]
d3~p, (2-19)

where the second term vanishes because ~v × ~B is perpendicular to ~v, and
therefore perpendicular to the operator ∂

∂~p
. For the first term, the divergence

theorem can be applied as was done in equation (2-18). Now, however, because
of the ~v factor in the vectorial product, the distribution function must fall off
faster than 1

|~v|3 as |~v| → ∞. While this is not necessarily true for all possible
functions, it is true for Maxwellian distributions (which fall to zero faster than
any polynomial). Since the Maxwellian is the equilibrium distribution, this
condition’s validity can be safely assumed for stable plasma systems.

Collecting terms,

∂n

∂t
+∇ · (n~u) = 0, (2-20)

which is the continuity equation for the plasma system.
Now, to obtain the first moment of the Vlasov equation, eq. (2-10) is

multiplied by ~p and integrated over momentum space,

∫ [
~p
∂f

∂t
+ ~p

~p

m
· ∇f + ~pq[ ~E + (~v × ~B)] · ∂f

∂~p

]
d3~p = 0. (2-21)

For the first term,

∫ (
~p
∂f

∂t

)
d3~p = m

∂

∂t

∫
(~vf) d3~p,

= m
∂

∂t
(n~u),

= m~u
∂n

∂t
+mn

∂~u

∂t
, (2-22)

where the factor ~p could be taken inside the time derivative because ~p denotes
independent variables in phase space, and thus are unrelated to the variable
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t. This can be shown formally through Lagrangian mechanics [18] or through
probability theory [19], as the Vlasov equation is a statistical description of an
ensemble.

For the second term,

∫ (
~p
~p

m
· ∇f

)
d3~p = m∇ ·

∫
(~v~vf)d3~p, (2-23)

from which (2-6) can be applied to obtain

∫ (
~p
~p

m
· ∇f

)
d3~p = m∇ · 〈n~v~v〉 . (2-24)

Now the particle’s velocity ~v is separated into its fluid and thermal
components, ~v = ~u+ ~w. From the linearity of expected values,

m∇ · 〈n~v~v〉 = m∇ ·
(
n~u~u+ n~u 〈~w〉+ n 〈~w〉 ~u+ n 〈~w~w〉

)
,

= m∇ ·
(
n~u~u+ n 〈~w~w〉

)
,

= ∇ · (mn~u~u) +∇ · (mn 〈~w~w〉), (2-25)

where the fact that the average thermal velocity is zero was used. The first
term in (2-25) can be rewritten

∇ · (mn~u~u) = ∇ · (mnux~u+mnuy~u+mnuz~u) ,

= ∂

∂x
(mnux~u) + ∂

∂y
(mnuy~u) + ∂

∂z
(mnuz~u),

= ∂

∂x
(mnux)~u+mnux

∂

∂x
~u+ ∂

∂y
(mnuy)~u+

+mnuy
∂

∂y
~u+ ∂

∂z
(mnuz)~u+mnuz

∂

∂z
~u,

= ∇ · (mn~u)~u+mn(~u · ∇)~u. (2-26)

Using the continuity equation (2-20) for the divergence term,

∇ · (mn~u~u) = −m∂n

∂t
~u+mn(~u · ∇)~u. (2-27)

For the second term of (2-25), average of the product of the thermal
velocities is recognized as a tensor of type (0,2), commonly called the kinetic
pressure dyad [20], given by

P = mn 〈~w~w〉 , (2-28)
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so that the second term of the first moment of the Vlasov equation can be
written as

∫ (
~p
~p

me

· ∇fe
)

d3~p = −m∂n

∂t
~u+mn(~u · ∇)~u+∇ · P . (2-29)

For the electric force term,

∫ (
~pq ~E · ∂f

∂~p

)
d3~p =

∫ (
q ~E

∂

∂~p
· (~pf)− q ~Ef · ∂~p

∂~p

)
d3~p,

=
∫ (

∂

∂~p
· (q ~E~pf)

)
d3~p−

∫ (
q ~Ef

)
d3~p,

=
∮

(q ~E~pf) · dS − q ~En, (2-30)

where the surface integral vanishes for the same reasons as before.
For the magnetic force term,

∫ (
~pq(~v × ~B) · ∂f

∂~p

)
d3~p =

∫ (
q
∂

∂~p
·
[
~p(~v × ~B)f

]
− qf~p ∂

∂~p
· (~v × ~B)

− qf(~v × ~B) · ∂~p
∂~p

)
d3~p,

= −qn(~u× ~B), (2-31)

where the two first integrals vanished for the same reasons as in eq. (2-19).
Collecting terms,

mn

(
∂

∂t
+ ~u · ∇

)
~u+∇ · P = qn( ~E + ~u× ~B), (2-32)

which is the equation of motion for the plasma system, and the fundamental
equation of magnetohydrodynamics. The same process can be used to derive
similar equations of motion for other species, if they are being considered.

The next moment of the Vlasov equation can be obtained by multiplying
it by the kinetic energy term m~v~v

2 and integrating over the momentum space to
obtain the equation of energy transfer. However, a simplifying assumption that
can sometimes be made is that there is no heat transfer within the plasma.
Then, the energy transfer equation can be ignored, as its terms will all vanish.
This also means ignoring effects from the thermal motion of the particles and
the force generated by the diverging pressures within the plasma i.e. setting
the term ∇ · P to zero. This is called the cold plasma model.

The relevant equations that govern the cold plasma system are therefore
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given by

∇× ~E = −∂
~B

∂t
, (2-33a)

∇× ~B = µ0qen~u+ µ0ε0
∂ ~E

∂t
, (2-33b)

∂n

∂t
+∇ · (n~u) = 0, (2-33c)

me

(
∂

∂t
+ ~u · ∇

)
~u = qe( ~E + ~u× ~B). (2-33d)

Another important parameter that can be defined through kinetic theory
for collisional plasmas, and that will be important in the dielectric description
presented in the following section, is the electron collision frequency ν, i.e. the
frequency in which electrons collide with others electrons.

To define ν, consider a differential volume d3~x containing electrons at
density given by n, i.e. there are n electrons per unit volume. Consider also
that these electrons are opaque spheres with cross-sectional area given by σ(~v).
The effective area within the differential volume that is blocked by electrons
is then given by nσ(~v).

If the flux of incoming electrons travelling through a differential length
dl in the plasma is given by Γ and assuming that the plasma is isotropic, then
the flux of outgoing electrons is given by Γout = (1− nσ(~v)dl)Γ; this situation
is depicted in figure 2.1.

The change in flux is thus given by

dΓ = Γout − Γ = −nσ(~v)dlΓ, (2-34)

so that

dΓ
dl = −nσ(~v)Γ, (2-35)

and the flux after travelling some length l in the plasma is given by

Γ(l) = Γine−nσ(~v)l = Γine−
l
λ . (2-36)
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Γin Γout

dl

Figure 2.1: Electron flux Γ travelling through a differential length dl in isotropic
plasma. Electrons within the differential volume element shown are depicted as
opaque spheres and are characterized by a density n and cross-sectional area σ(~v).

The quantity λ = 1
nσ(~v) is the mean free path for a collision, which is

in other words the mean distance an electron travels before experiencing a
collision. For electrons with velocity ~v, the mean time τ(~v) between collisions
is then given by

τ(~v) = λ

~v
= 1
nσ(~v)~v . (2-37)

The collision frequency ν is given by averaging over all possible velocities
with the application of eq. (2-6), viz.

ν =
〈

1
τ(~v)

〉
= 1
n

∫
nσ(~v)~vd3~v =

∫
σ(~v)~vd3~v. (2-38)

A collision frequency can also be defined for species other than electrons,
if necessary, by repeating the analysis made here but utilizing density and
cross-sectional areas appropriate to the species being considered. In practice,
this parameter can be measured from experimental data instead of calculated,
and is responsible for a damping factor in electromagnetic waves propagating
through a collisional plasma.
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2.3
Dielectric Description

Study of electromagnetic propagation through plasma has also been
performed by treating the plasma as a dielectric medium with complex
permittivity dependent on the plasma parameters, which is especially useful
for applications in radio physics and technology. For the dielectric description,
the Appleton-Hartree or Appleton-Lassen equation, formulated initially by
German radio physicist H. K. Lassen gives the relative permittivity for
electromagnetic wave propagation in a cold, isotropic, magnetized plasma
as [21]

εr = 1− X

1− iZ −
1
2Y

2 sin2 θ

1−X−iZ ±
1

1−X−iZ

(
1
4Y

4 sin4 θ + Y 2 cos2 θ (1−X − iZ)2
)1/2 ,

(2-39)

where the terms are given by

X =
ω2
p

ω2 , (2-40a)

Y = ωH
ω
, (2-40b)

Z = ν

ω
, (2-40c)

ωp = 2πfp =
√
ne2

ε0m
, (2-40d)

ωH = 2πfH = B0|e|
m

, (2-40e)

and where ω is the wave radial frequency, ν is the electron collision frequency,
n is the electron density, B0 is the ambient magnetic field strength, e is the
electron charge, m is the electron mass, and θ is the angle between the ambient
magnetic field vector and the wave vector.

By making B0 = 0, the electromagnetic wave propagation in a cold
isotropic plasma with no background magnetic field can be characterized by
the relative permittivity

εr = 1−
ω2
p

ω2 − iων
. (2-41)

Equating the previous result with the relative permittivity of an arbitrary
lossy material,

εr = ε′r −
iσ

ωε0
, (2-42)
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allows an effective conductivity σef to be found as

σef =
ε0ω

2
p

ν + iω
, (2-43)

which gives rise to a plasma current density given by, in the frequency domain,

~̃Jp = σef
~̃E. (2-44)

The propagation of electromagnetic waves through the dielectric plasma
then must follow the following form of Maxwell’s equations, expressed in the
frequency domain,

∇ · ~̃E = 0, (2-45a)

∇ · ~̃B = 0, (2-45b)

∇× ~̃E = −iωµ0
~̃H, (2-45c)

∇× ~̃H = ~Jp + iωε0
~̃E. (2-45d)

Since the relative permittivity of the plasma depends on the plasma
frequency ωp and collision frequency ν, which in the most general case can
be functions of position, the plasma needs to be treated as a dispersive and
inhomogeneous dielectric.
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3
Analytical Eigenfunction Method

The dielectric description presented in the previous chapter provides a
simple way of studying the interaction between electromagnetic waves and
plasma structures by restricting all of the complexities related to plasma phe-
nomena into the dielectric constant and therefore allowing for usual techniques
of solving electromagnetic problems to be employed. To explore that possibil-
ity, an analytical model based on eigenfunctions expansion is described in this
chapter to study the expected field behaviour when an electromagnetic wave
impinges on a dielectric cylinder. This chapter is based primarily on the ideas
presented in [22–25].

Fields throughout this chapter are expressed in the frequency domain,
with an harmonic dependence of eiωt, but both the tilde notation and the
exponential factor are suppressed throughout.

3.1
Normal Plane Wave Incidence on an Homogeneous Infinite Cylinder

Consider a transverse magnetic to z (TMz) plane wave travelling in the
+x direction through free space impinging on an infinite dielectric cylinder
parallel to the z-axis and concentric with the origin of the xy-plane with radius
r, as shown on figure 3.1.
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y

x

Ez, Hy εrε0, µ0

ε0, µ0

r

Figure 3.1: Plane wave incidence on the dielectric cylinder.

The electric and magnetic vector potentials related to this incident wave
can be written as

~F = ~0 and ~A = ψinẑ, (3-1)

where ψin is the incident wave function given by

ψin = e−ik0x = e−ik0ρ cosφ, (3-2)

where k0 = ω
√
ε0µ0 is the wave number of free space.

Field components are obtained through

~E = −1
ε
∇× ~F + iω ~A+ i

ωµε
∇(∇ · ~A), (3-3a)

~H = 1
µ
∇× ~A+ iω ~F + i

ωµε
∇(∇ · ~F ). (3-3b)

This incident wave will impinge on the boundary with the infinite cylinder
and suffer both reflection from and transmission into the cylinder. The fields
outside the cylinder are now characterized by a new wave function ψ0, whereas
the fields within the cylinder are characterized by another wave function ψ1.
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All fields must satisfy the Helmholtz equation in cylindrical coordinates,
which has Bessel functions and complex exponentials as its eigenfunctions (see
Appendix A). The wave functions ψ0 and ψ1 can therefore be written as a
linear combination of Bessel and exponential functions, viz.

ψ0 =
∞∑

n=−∞

(
anJn(k0ρ) + bnH

(2)
n (k0ρ)

)
einφ, (3-4a)

ψ1 =
∞∑

n=−∞

(
cnJn(k1ρ) + dnH

(2)
n (k1ρ)

)
einφ, (3-4b)

where the unknown coefficients an, bn, cn and dn must be found by application
of boundary conditions. The choice of which Bessel functions to use in the
expansion is arbitrary as long as they are linearly independent, so the Hankel
function was chosen for its simple asymptotic form.

Since the origin of the coordinate system is within the domain of ψ1, it is
immediately found that dn = 0 for all n due to the pole at the origin present
in the Hankel function. By expanding the incident wave function ψin through
a Fourier series in φ, the incident wave function can be written

e−ik0ρ cosφ =
∞∑

n=−∞
Jn(k0ρ)einφ, (3-5)

so it is also immediately found that an = 1 for all n, justifying the previous
choice of wave function. The remaining coefficients may be found by application
of the continuity conditions for tangential fields at the boundary, i.e.

E0
z |ρ=r = E1

z |ρ=r and H0
φ|ρ=r = H1

φ|ρ=r, (3-6)

which leads to the solutioncn
bn

 =
 Jn(k1r) H(2)

n (k0r)
k1J

′
n(k1r) −k0H

′(2)
n (k0r)

−1  Jn(k0r)
k0J

′
n(k0r)

 , (3-7)

where J ′n and H ′(2)
n denote the derivatives of the Bessel and Hankel functions,

respectively, and εr is the relative permittivity of the dielectric cylinder. With
the set of coefficients found, the electromagnetic fields at all points in space
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are fully characterized, viz.

E0
z = iω

∞∑
n=−∞

i−n
(
Jn(k0ρ) + bnH

(2)
n (k0ρ)

)
einφ, (3-8a)

H0
φ = 1

µ0

∞∑
n=−∞

i−n
(
k0J

′
n(k0ρ) + bnk0H

′(2)
n (k0ρ)

)
einφ, (3-8b)

H0
ρ = 1

µ0

1
ρ

∞∑
n=−∞

ni−n
(
Jn(k0ρ) + bnH

(2)
n (k0ρ)

)
einφ, (3-8c)

outside the cylinder and

E1
z = iω

∞∑
n=−∞

i−ncnJn(k1ρ)einφ, (3-9a)

H1
φ = 1

µ0

∞∑
n=−∞

i−ncnk1J
′
n(k1ρ)einφ, (3-9b)

H1
ρ = 1

µ0

1
ρ

∞∑
n=−∞

ni−ncnJn(k1ρ)einφ, (3-9c)

inside the cylinder.
Due to the two-dimensional nature of the problem, the radiated (or

scattered) electric field far from the dielectric cylinder (k0ρ � r) propagates
as a cylindrical wave (see Appendix B),

Es
z = A(φ)e

−ik0ρ

√
ρ
, (3-10)

where A(φ) is the scattering amplitude. Taking the asymptotic expansion of the
field present in free-space and ignoring the Bessel term related to the incident
field,

Es
z =

∞∑
n=−∞

√
2

πk0ρ
bne
−i(k0ρ−nπ2 −

π
4 )einφ. (3-11)

By equating the two expressions, the scattering amplitude is found to be

A(φ) =
√

2
πk0

ei
π
4

∞∑
n=−∞

bne
in(φ+π

2 ). (3-12)

3.2
Normal Plane Wave Incidence on an Inhomogeneous Infinite Cylinder

Consider now an infinite dielectric similar to the one studied in the pre-
vious section, but with an inhomogeneous relative permittivity described by
a radial function εr(ρ). Directly solving the field equations for an inhomoge-
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neous medium is not a simple matter, so the strategy employed is to treat
the inhomogeneous cylinder as a series of homogeneous concentric cylindrical
shells with constant permittivity chosen so that the overall variation inside the
cylinder approximates the inhomogeneous profile.

Analysis of the homogeneous shells follows the same overall idea described
in the previous section, with fields within each shell being expanded into an
infinite series of Bessel and complex exponential functions with coefficients to
be determined by application of boundary conditions.

The method is illustrated by an arbitrary example on figure 3.2. It is clear
that the quality of this approximation depends on the number of homogeneous
shells used; the error in the staircase approximation of the inhomogeneous
permittivity must be small for the results to be valid.

Suppose that the inhomogeneous cylinder has been divided into p shells.
The wave function in free space ψ0 is given by equation (3-4a), repeated here
for convenience,

ψ0 =
∞∑

n=−∞

(
anJn(k0ρ) + bnH

(2)
n (k0ρ)

)
einφ, (3-4a)

and the wave-function within the mth shell can be written as

ψm =
∞∑

n=−∞

(
cnmJn(kmρ) + dnmH

(2)
n (kmρ)

)
einφ, (3-13)

where an, bn, cnm and dnm are coefficients to be determined by application of
boundary conditions.
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εr(ρ)ε0

r

3.2(a): Inhomogeneous cylinder with
radially-dependent permittivity.

ε1rε0

ε2rε0

ε3rε0

r1r2

r3

3.2(b): Approximation of the inhomoge-
neous cylinder as a series of homogeneous
shells. The outer radius is equal to the
original inhomogeneous cylinder’s radius,
r1 = r.

εr

ρ
r

1

3.2(c): Arbitrary linear permittivity pro-
file for the inhomogeneous cylinder.

εr

ρ
r1

ε1r

r2

ε2r

r3

ε3r

1

3.2(d): Permittivity profile for the homo-
geneus shell approximation. The outer ra-
dius is equal to the original inhomoge-
neous cylinder’s radius, r1 = r.

Figure 3.2: Illustrative example of the approximation of an arbitrary inhomo-
geneous cylinder with a linear permittivity profile by a series of homogeneous
shells.

Application of the continuity condition for tangential fields, eq. (3-6),
at the boundary between free space and the first layer yields the system of
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equations Jn(k1r1) H(2)
n (k1r1)

k1J
′
n(k1r1) k1H

′(2)
n (k1r1)

cn1

dn1

 =
 Jn(k0r1) H(2)

n (k0r1)
k0J

′
n(k0r1) k0H

′(2)
n (k0r1)

an
bn

 ,
(3-14)

which can be rearranged into cn1

dn1

 = T1

an
bn

 , (3-15)

where

T1 =
 Jn(k1r1) H(2)

n (k1r1)
k1J

′
n(k1r1) k1H

′(2)
n (k1r1)

−1  Jn(k0r1) H(2)
n (k0r1)

k0J
′
n(k0r1) k0H

′(2)
n (k0r1)

 (3-16)

is the transmission matrix for the first shell, and its dependency on each mode
n was left implicit.

Application of the continuity condition at the mth shell, 1 < m ≤ p,
yields cnm

dnm

 = Tm

cnm−1

dnm−1

 , (3-17)

where

Tm =
 Jn(kmrm) H(2)

n (kmrm)
kmJ

′
n(kmrm) kmH

′(2)
n (kmrm)

−1

×

×

 Jn(km−1rm) H(2)
n (km−1rm)

km−1J
′
n(km−1rm) km−1H

′(2)
n (km−1rm)

 (3-18)

is the transmission matrix for the mth shell.
Now the coefficients for the pth shell can be writtencnp

dnp

 = Tg

an
bn

 , (3-19)

where Tg = Tp × ... × T1 is the global transmission matrix from free space to
the innermost shell. Additionally, as before, an = 1 due to the incident wave
under consideration and dnp = 0 due to the Hankel’s function pole located at
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the origin. Equation (3-19) can be solved for bn, yielding

bn = −
Tg2,1

Tg2,2
, (3-20)

where Tgi,j denotes the matrix element of the global transmission matrix at
the ith row and jth column.

With bn known, the scattering amplitude due to the inhomogeneous
cylinder can be found. As before, by taking the asymptotic expression for the
Hankel function and equating it with a cylindrical propagating wave, equation
(3-12) is recovered, repeated here for convenience

A(φ) =
√

2
πk0

ei
π
4

∞∑
n=−∞

bne
in(φ+π

2 ). (3-12)

With both an and bn known, equation (3-15) can be applied to find cn1

and dn1. The process can then be repeated by means of equation (3-18), i.e.,
by applying the mth transmission matrix to the (m − 1)th known coefficients
until all field coefficients are found. The field components within the cylinder,
for each shell, are then given by

Em
z = iω

∞∑
n=−∞

i−n
(
cnmJn(kmρ) + dnmH

(2)
n (kmρ)

)
einφ, (3-21a)

Hm
φ = 1

µ0

∞∑
n=−∞

i−n
(
cnmkmJ

′
n(kmρ) + dnmkmH

′(2)
n (kmρ)

)
einφ, (3-21b)

Hm
ρ = 1

µ0

1
ρ

∞∑
n=−∞

ni−n
(
cnmJn(kmρ) + dnmH

(2)
n (kmρ)

)
einφ, (3-21c)

whereas the field components in free space are again given by equation (3-8),
repeated here for convenience.

E0
z = iω

∞∑
n=−∞

i−n
(
Jn(k0ρ) + bnH

(2)
n (k0ρ)

)
einφ, (3-8a)

H0
φ = 1

µ0

∞∑
n=−∞

i−n
(
k0J

′
n(k0ρ) + bnk0H

′(2)
n (k0ρ)

)
einφ, (3-8b)

H0
ρ = 1

µ0

1
ρ

∞∑
n=−∞

ni−n
(
Jn(k0ρ) + bnH

(2)
n (k0ρ)

)
einφ. (3-8c)
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4
FDTD Simulation

Numerical simulations are an important tool in understanding physical
phenomena as well as designing devices for use in technological applications.
Due to the complexity of the theory of plasmas for structures of interest,
simulations are particularly useful in understanding the characteristics and
the effects of plasma interactions on electromagnetic waves.

Much interest has been shown in the simulation of plasmas through
Particle-in-Cell (PIC) codes, where specific “macroparticles” are tracked
through the computational domain and their behaviour simulated, including
some recent breakthroughs [26,27], or through Eulerian solvers for the density
function, where it is discretized over grid points in the computational domain
and numerically solved [28,29]. For this work the finite-difference time-domain
(FDTD) method of simulation was chosen, with the plasma characteristics
being added to usual electromagnetic algorithms.

The FDTD method consists, at its most basic, of simulating the local
behaviour of fields at nodes present in a a discretized version of the region or
structure under consideration [30, 31]. To that end, Maxwell’s equations are
solved numerically for all field components at each node in a self-consistent
scheme that allows the electromagnetic solution for the problem at hand to be
explicitly calculated in the time domain.

4.1
The Finite-Differences Approximation

Consider a scalar one-dimensional differential equation of the form

∂

∂t
y(t, x) = f(x), with y(0, x) = y0(x). (4-1)

The finite-differences method consists of approximating derivatives by
finite differences as a means of discretizing the equation of interest [32]. Using
a forward difference around the point t, equation (4-1) can be written

y(t+ ∆t, x)− y(t, x)
∆t

= f(x) (4-2)
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or, rearranging terms,

y(t+ ∆t, x) = y(t, x) + ∆tf(x). (4-3)

By setting the initial condition y(0, x) = y0(x), where y0(x) is a known
function, and assuming the values of both y(t, x) and f(x) can be sampled at
points x = i∆x, i ∈ N without loss of information, equation (4-3) provides
an explicit time-marching procedure for calculating the numerical solution of
equation (4-1) at all points t = q∆t, q ∈ N that can be readily implemented
in a computer system.

To quantify the quality of this approximation, one must analyse the
magnitude of the error between the finite difference and the actual function
derivative. This can be performed through a Taylor expansion for y(t+ ∆t, x),

y(t+ ∆t, x) = y(t, x) + ∆t
∂

∂t
y(t, x) +O(∆2

t ), (4-4)

such that dividing through by ∆t and rearranging terms gives

y(t+ ∆t, x)− y(t, x)
∆t

− ∂

∂t
y(t, x) = O(∆t), (4-5)

thus the discretization time-step ∆t must be small in some sense to ensure a
good approximation.

Consider now the set of equations

∂

∂t
f(t, x) = ∂

∂x
g(t, x) and ∂

∂t
g(t, x) = ∂

∂x
f(t, x), (4-6)

with initial conditions

f(0, x) = f0(x) and g(0, x) = g0(x). (4-7)

Forward differences could be used again to discretize this set of equations as
done previously. However, an alternative is to use central differences instead,
i.e.

f(t+ ∆t

2 , x)− f(t− ∆t

2 , x)
∆t

=
g(t, x+ ∆t

2 )− g(t, x− ∆t

2 )
∆x

, (4-8a)

g(t+ ∆t

2 , x)− g(t− ∆t

2 , x)
∆t

=
f(t, x+ ∆t

2 )− f(t, x− ∆t

2 )
∆x

, (4-8b)
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or, rearranging terms,

f(t+ ∆t

2 , x) = f(t− ∆t

2 , x) + ∆t

∆x

(
g(t, x+ ∆t

2 )− g(t, x− ∆t

2 )
)
, (4-9a)

g(t+ ∆t

2 , x) = g(t− ∆t

2 , x) + ∆t

∆x

(
f(t, x+ ∆t

2 )− f(t, x− ∆t

2 )
)
. (4-9b)

Setting the initial conditions f0(x) and g0(x) at time t = 0 once more
allows for the algorithm to explicitly compute the numerical solution, provided
appropriate discretizations ∆t and ∆x are chosen. The advantage of using
central instead of forward differences is that the error for the derivative
approximation is now given by e.g. for the time derivative,

∣∣∣∣∣ ∂∂tf(t, x)−
f(t+ ∆t

2 , x)− f(t− ∆t

2 , x)
∆t

∣∣∣∣∣ = O(∆2
t ), (4-10)

which leads to a better approximation for the same step size. The apparent
cost is in the complexity of discretization, as functions must now be stored
for integer and half-integer values of the discretized variables. However, the
computational domain discussed in the next section resolves that complexity.

4.2
Computational Domain

The problem of interest is two-dimensional, and propagation of modes
transverse-magnetic to z (TMz) are considered, that is, magnetic fields are
restricted to ~H = Hxx̂+Hyŷ and electric fields are given by ~E = Ez ẑ.

The basic scheme laid out by Yee [33] in his seminal paper is used to
create the computational domain. Assuming the time step is given by ∆t and
the spatial steps are given by ∆s = ∆x = ∆y, a function f of space and time
evaluated at a discrete point in space-time (n∆t, i∆x, j∆y), where n, i, j are
integers or half-integers, is denoted as

f(n∆t, i∆x, j∆y) = fn(i, j). (4-11)

A necessary condition for the convergence of solutions obtained explicitly
by the FDTD method is the Courant–Friedrichs–Lewy condition [34], which
can be stated, for two-dimensional problems, as

∆t

∆s

≤ 1√
2c
, (4-12)

where c is the speed of light.
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Electromagnetic fields are spatially discretized over a finite Cartesian
grid as per figure 4.1. Of note is that electric and magnetic fields are shifted by
half-steps from each other both spatially and in time, that is, electric fields are
stored at integer times and positions, while magnetic fields are stored at half-
integer times and positions. This allows for Maxwell’s equations to be readily
discretized as per equation (4-9), becoming

H
n+ 1

2
x (i, j + 1

2) =Hn− 1
2

x (i, j + 1
2)− µ0∆t

∆s

(
En
z (i, j + 1)− En

z (i, j)
)
, (4-13a)

H
n+ 1

2
y (i+ 1

2 , j) =Hn− 1
2

y (i+ 1
2 , j)−

µ0∆t

∆s

(
En
z (i+ 1, j)− En

z (i, j)
)
, (4-13b)

En+1
z (i, j) =En

z (i, j) + ∆t

ε0∆s

(
H
n+ 1

2
y (i+ 1

2 , j)−H
n+ 1

2
y (i− 1

2 , j)−

H
n+ 1

2
x (i, j + 1

2)−Hn+ 1
2

x (i, j − 1
2)
)
, (4-13c)

which can be used to propagate electromagnetic waves through discretized free
space within the computational domain.
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y

x

En
z (i, j)

H
n+ 1

2
y (i + 1

2
, j)

H
n+ 1

2
x (i, j + 1

2
)

∆x

∆y

Figure 4.1: Generic cartesian spatial cell (i, j) and surrounding cells in the 2D
computational domain. Stored values for each cell are the z-component of the electric
field at time n and position (i, j), the x-component of the magnetic field at time
n+ 1

2 and position (i, j+ 1
2) and the y-component of the magnetic field at time n+ 1

2
and position (i+ 1

2 , j).

4.3
Plasma Propagation

The update equations for the electromagnetic wave propagating within
the plasma must be derived from equations (2-45c) and (2-45d) instead of the
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usual Maxwell’s equation, repeated here for convenience:

∇× ~E = −µ0
∂ ~H

∂t
, (2-45c)

∇× ~H = ~Jp + ε0
∂ ~E

∂t
. (2-45d)

The only difference from the usual Maxwell equations used in the previous
section is the appearance of the plasma current term given by, in the frequency
domain, ~̃Jp = σef

~̃E = ε0ω2
p

ν+iω
~̃E. This term can be efficiently handled by

means of an Auxiliary Differential Equation (ADE) formulation as follows.
Considering only the J̃z component due to the nature of the problem at hand
and multiplying throughout by ν + iω,

iωJ̃z = ε0ω
2
pẼz − νJ̃z. (4-15)

Taking the inverse Fourier transform, the time-domain version of equa-
tion (4-15) is given by

∂Jz
∂t

= ε0ω
2
pEz − νJz, (4-16)

which can be readily discretized using finite differences to yield(
Jn+1
z (i, j)− Jnz (i, j)

∆t

)
=ε0

(
ωp(i, j)

)2
(
En+1
z (i, j) + En

z (i, j)
2

)

− ν(i, j)
(
Jn+1
z (i, j) + Jnz (i, j)

2

)
, (4-17)

where the time-averages on the right-hand side were taken so that the discrete
time-step was in accordance with the central difference approximation used on
the left-hand side.

Equation (4-17) can be solved for Jn+1
z (i, j) to yield

Jn+1
z (i, j) = κp(i, j)Jnz (i, j) + βp(i, j)

(
En+1
z (i, j) + En

z (i, j)
)
, (4-18)

where

κp(i, j) =
1− ν(i, j)∆t

2
1 + ν(i, j)∆t

2
and βp(i, j) =

(
ωp(i, j)

)2
ε0

∆t

2

1 + ν(i, j)∆t

2
. (4-19)

The update equations for the magnetic field components remain un-
changed, but the update equation for the electric field requires knowledge of
the plasma current at time-step n+ 1

2 . This is again obtained by a simple time
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average such that the final update equation for the electric field is given by

En+1
z (i, j) =

(
2ε0 −∆tβp(i, j)
2ε0 + ∆tβp(i, j)

)
En
z (i, j) +

(
2∆t

2ε0 + ∆tβp(i, j)

)
×

×
(
∇× ~Hn+ 1

2 − 1 + κp(i, j)
2 Jnz (i, j)

)
, (4-20)

where

∇× ~Hn+ 1
2 =

(
H
n+ 1

2
y (i+ 1

2 , j)−H
n+ 1

2
y (i− 1

2 , j)−

H
n+ 1

2
x (i, j + 1

2)−Hn+ 1
2

x (i, j − 1
2)
)
. (4-21)

4.4
Grid Termination

The problem under investigation includes fields that must radiate to
infinity. The computational domain, however, is necessarily finite. Therefore,
some way of terminating the computational grid must be employed that
maintains the radiation condition at infinity for the fields, like absorbing
boundary conditions (ABCs) or perfectly-matched layers (PMLs). Due to their
ease of implementation and great efficiency in two dimensions, ABCs based on
one-way wave-equations were chosen.

Consider a node the edge of the computational domain, e.g. at the
rightmost boundary. Fields at this node must be allowed to propagate outwards
towards infinity, in the positive x direction, without back-reflections into the
computational domain. This can be illustrated through analysis of the one-
dimensional scalar wave equation, i.e.,(

∂2

∂t2
− c2 ∂

2

∂x2

)
ψ = 0, (4-22)

where the one-dimensional wave operator can be decomposed into(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
ψ = 0. (4-23)

The wave equation (4-22) admits solutions of the form

ψ = F (x− ct) +G(x+ ct), (4-24)

where F is an arbitrary wave propagating in the positive x direction and G

is an arbitrary wave propagating in the negative x direction. The advection
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equation (
∂

∂t
± c ∂

∂x

)
ψ = 0, (4-25)

on the other hand, admits solutions of the form ψ(x ± ct) of a single wave
propagating in either direction, depending on the sign used in the advection
equation, but not both. Engquist and Majda [35] formally showed that the
advection equation (or equivalent one-way wave equations) can be used as
analytical absorbing boundary conditions at the edge of the computational
domain.

Expanding a central-differences approximation at a node on the edge of
the computational domain yields an update equation that depends on the
values of the node being updated and two interior nodes for the current
and previous times-steps. For example, for the left edge of the computational
domain, x = 0, the update equation for the second-order ABC is given by

En+1
z (0, j) = −1

S + 2 + 1
S

[
S − 2 + 1

S

(
En+1
z (2, j) + En−1

z (0, j)
)

+

+ 2(S − 1
S

)
(
En
z (0, j) + En

z (2, j)− En+1
z (1, j)− En−1

z (1, j)
)

− 4(S + 1
S

)En
z (1, j)

]
− En−1

z (2, j) (4-26)

where

S = ∆t√
µ0ε0∆s

. (4-27)

The ABC update equations for the other edges are similar, but with the
appropriate positions (for the right edge, e.g., Nx, Nx − 1 and Nx − 2 instead
of 0, 1 and 2, respectively).

It is worth noting that this second-order ABC update equation was
derived from the one-dimensional advection equation and applied to a two-
dimensional problem, but the results observed for the magnitude of numerical
reflections are well bellow 1% of the fields incident on the computational
boundary.

4.5
Steady-State Fields

For a given electromagnetic problem, it is useful to know the steady-
state field solution, in the frequency domain, due to plane wave excitation.
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That information can be used to construct solutions to arbitrary excitations
and is also at times easier to analyse. The FDTD method provides a time-
domain solution, however a Fourier Transform can be employed to find any
field component f in the frequency domain,

f̃(ω) =
∞∫
−∞

f(t)e−iωtdt =
Nt∆t∫
0

f(t)e−iωtdt, (4-28)

which can be readily implemented concurrently to the leap-frogging algorithm
at all grid points by means of

f̃(i, j, ω) ≈ 1
3

(
f 0(i, j) + 2

∑
n even

fn(i, j)e−iωn∆t+

+ 4
∑
n odd

fn(i, j)e−iωn∆t + fNt(i, j)e−iωNt∆t

)
, (4-29)

where Simpson’s rule was employed to numerically evaluate the Fourier integral
[36] (see Appendix C). Of note is that, in practice, the method implemented
to calculate f̃(i, j, ω) consists simply of creating an accumulating variable and,
at each time-step, adding the appropriate value prescribed by Simpson’s rule
to the accumulator.

Due to the linearity of the problem at hand, each frequency-domain field
component calculated by means of equation (4-29) can be written as

Y (ω) = H(ω)X(ω), (4-30)

where H(ω) is the transfer function that relates an arbitrary frequency-domain
excitation X(ω) to its associated frequency response Y (ω) [37]. In other words,
H(ω) is the frequency response of the structure to an incident harmonic wave
of frequency ω up to a phase factor (see Appendix D). It can be obtained by
dividing the resulting frequency-domain fields by the incident pulse utilized
in the FDTD, transformed to the frequency domain also by application of
equation (4-29), i.e.,

H(i, j, ω) = Y (i, j, ω)
X(i, j, ω) = Ẽ(i, j, ω)

Ẽin(i, j, ω)
. (4-31)

This process is illustrated with a block diagram in figure 4.2.
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FDTD Time-Stepping Fourier Transform

Fourier Transform ÷

Ein(i, j, t) E(i, j, t)

Ẽ(i, j, ω)

Ẽin(i, j, ω) H(i, j, ω)

Figure 4.2: Block diagram showing the process for obtaining the frequency response
of the structure from the time-domain result given by the FDTD algorithm. The
Fourier Transforms are performed according to equation (4-29).

4.6
Total-Field Scattered-Field Technique

To obtain the fields scattered by the structure of interest, a Total-
Field Scattered-Field (TFSF) boundary is implemented. The TFSF technique
consists of taking advantage of the linearity of Maxwell’s equations to write

~Etot = ~Einc + ~Escat and ~Htot = ~Hinc + ~Hscat, (4-32)

where ~Einc and ~Hinc are the incident fields assumed to be known at all points of
the computational grid at all time steps, and ~Escat and ~Hscat are the scattered
fields due to the presence of the scattering structure.

The TFSF technique consists of separating the computational domain
in two distinct regions, as shown on figure 4.3(a). In region 1, total field
components are stored and operated upon by the update equations. In region
2, only the scattered field components are stored and updated, and an ABC
is implemented as described on section 4.4. The update equations for field
components near the boundary, shown in more detail in figure 4.3(b), are
responsible for subtracting the incident known fields and allowing only the
scattered field components to propagate into region 2.
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y

x

Region 1

Region 2

Plasma Cylinder

4.3(a): Region separation for the TFSF
technique. Region 1 consists of total fields
while region 2 consists only of scattered
fields.
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4.3(b): Detailed view of the field compo-
nents adjacent to the TFSF boundary. A
computational cell at the corner of the
TFSF boundary is shown.

Figure 4.3: Total-Field Scattered-Field technique.

The strategy for implementing the TFSF boundary consists of concur-
rently running an auxiliary one-dimensional FDTD simulation to account for
the propagation of the incident field, which can then be subtracted appropri-
ately across the TSFS boundary to let only the scattered fields propagate into
region 2. It is worth noting that this solution is only possible if the incident
wave propagates along one of the coordinate axes; for the problem under con-
sideration, however, that requirement is irrelevant because the structure can
always be rotated so that the incident wave propagates along e.g. the x-axis.

The algorithm for updating the fields and applying the TFSF boundary
at each time step is thus given by the following procedure:

1. Update the magnetic field components in the 2D grid;

2. Correct the magnetic field components adjacent to the TFSF boundary
utilizing the electric field value from the same position in the 1D grid;

3. Update the field components in the 1D grid;

4. Correct the electric field component adjacent to the TFSF boundary
utilizing the magnetic field value from the same position in the 1D grid;

5. Update the electric field component in the 2D grid.

This implementation has the added benefit of simplifying the initializa-
tion of the impinging plane wave. By directly setting a node at the edge of
the 1D grid to the desired incident wave form, this perturbation will naturally
propagate onto the two-dimensional simulation.
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4.7
Near-to-Far-Field Transformation

With the steady-state fields calculated as described in section 4.5 from the
nodes in region 2 of the TFSF technique, a Near-to-Far-Field transformation
can be employed to numerically obtain the scattering amplitude A(φ) of the
structure of interest. The strategy consists of constructing a fictitious boundary
within region 2 and taking advantage of the equivalence principle as shown in
figure 4.4.

( ~Ein, ~Hin)

( ~Eout, ~Hout)

n̂

Plasma Cylinder

4.4(a): Fictitious boundary for the prob-
lem at hand. Fields inside and outside the
boundary are continuous across it.

(0, 0)

( ~Eout, ~Hout)

n̂

µ0, ε0

~Js = n̂× ~Eout

~Ms = −n̂× ~Hout

4.4(b): Equivalent problem with fields in-
side the fictitious boundary set to zero
and material properties set to that of free-
space.

Figure 4.4: Equivalence principle.

With the equivalent electric and magnetic currents at the fictitious
boundary, the electromagnetic potentials for a two-dimensional problem can
be written in terms of Green’s functions (see Appendix B) as

~A(~ρ) = −iµ4

∮
L

~Js(~ρ′)H(2)
0 (k|~ρ− ~ρ′|)dl′, (4-33a)

~F (~ρ) = −i ε4

∮
L

~Ms(~ρ′)H(2)
0 (k|~ρ− ~ρ′|)dl′, (4-33b)

where primed coordinates denote points upon the fictitious boundary and the
closed path integral is calculated over the boundary.

With the electromagnetic potentials, the scattered fields can be found by
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means of equation (3-3), repeated here for convenience,

~E = −1
ε
∇× ~F + iω ~A+ i

ωµε
∇(∇ · ~A), (3-3a)

~H = 1
µ
∇× ~A+ iω ~F + i

ωµε
∇(∇ · ~F ). (3-3b)

Additionally, by considering an observation point in the far field, the
asymptotic expression for the Hankel function can be used, resulting in, for
the z-component of the electric field,

Es
z(~ρ) = −

√
i

8πk
e−ikρ
√
ρ

∮
L

(
ωµ0 ~Js(~ρ′) · ẑ − k ~Ms(~ρ′) · φ̂

)
eikρ

′ cosψdl′, (4-34)

where the angle ψ is given by cosψ = ρ̂·ρ̂′. The numerical scattering amplitude
is then given by

A(φ) = −
√

i

8πk

∮
L

(
ωµ0 ~Js(~ρ′) · ẑ − k ~Ms(~ρ′) · φ̂

)
eikρ

′ cosψdl′, (4-35)

which can be readily calculated with the application of Simpson’s rule, as all
necessary quantities are known at the end of the FDTD run.
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5
Results

5.1
Validating Results for the Eigenfunction Method

To validate the methods described in the previous chapters and ensure
their correct implementation, they are first applied to simpler problems with
known solutions.

The eigenfunction method described in Chapter 3 is applied to the
dielectric shell depicted in figure 5.1. By making r1 = 0.3λ, r2 = 0.25λ and
εr = 4, this dielectric shell is identical to the one studied by Richmond [38]. The
dielectric shell is separated into two regions for application of the eigenfunction
method, obeying the shell’s natural boundaries.

ε0

εrε0

Ez, Hy

r1

r2

Figure 5.1: Dielectric shell used for the validation of the eigenfunction method.
With r1 = 0.3λ, r2 = 0.25λ and εr = 4, this is the same shell studied by Richmond.
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Figure 5.2 shows a comparison of the results for the scattering cross-
sections of a TMz field incident on the dielectric shell described in figure 5.1
obtained by the application of the eigenfunction method described in Chapter
3 and Richmond’s results.

30 60 90 120 150 180

0.8

1.6

2.4

3.2

4

4.8

φ

σ
λ

Eigenfunction
Literature

Figure 5.2: Comparison of scattering cross-sections obtained by the eigenfunction
method with those from the literature for a TMz field incident on the dielectric shell
described in figure 5.1.

Figure 5.3 shows a comparison of the results for the absolute field values
within the dielectric shell, at ρ = (r1+r2)

2 , the middle of the dielectric shell, for
the same problem.
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φ

|E|

Eigenfunction
Literature

Figure 5.3: Comparison of internal electric fields, in volts/meter, at ρ = (r1 +r2)/2,
the middle of the dielectric shell, obtained by the eigenfunction method with those
from the literature for a TMz field incident on the dielectric shell described in figure
5.1.

A second test consists of solving the same problem, but treating the
dielectric shell as an inhomogeneous cylinder and separating it into 18 equally
spaced regions. The number 18 was chosen so that the arbitrary region
separation coincides with the natural shell boundaries at ρ = r2. The results
are identical to the previous case, as expected.

A third test consists of applying the eigenfunction method to the lossy
multi-layered cylinder depicted in figure 5.4. With k0r1 = 0.4π, k0r2 = 0.3π,
ε1 = 6 − i0.5 and ε2 = 67 − i43, this is the same structure studied by Bussey
and Richmond [39], and their results are used as reference values.
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Ez, Hy

ε2ε0

ε1ε0

r1

r2

Figure 5.4: Multi-layered lossy dielectric used for the validation of the eigenfunction
method. With k0r1 = 0.4π, k0r2 = 0.3π, ε1 = 6− i0.5 and ε2 = 67− i43, this is the
same structure studied by Bussey and Richmond.

Table 5.1 presents a comparison between the scattering coefficients bn
obtained by the eigenfunction method with those from Bussey and Richmond.
The results match up to the precision provided in the reference work.

Eigenfunction Reference
n Real Part Imaginary Part Real Part Imaginary Part
0 -0.825219 0.011070 -0.82522 0.01107
1 -0.248603 0.266700 -0.24860 0.26670
2 -0.036658 0.033705 -0.03666 0.03371
3 -0.002219 0.000467 -0.00222 0.00047
4 -0.000048 -0.000012 -0.00005 -0.00001
5 0.× 10−7 0.× 10−7 -0.00000 -0.00000

Table 5.1: Comparison of scattering coefficients bn obtained by the eigenfunction
method with those from the literature for a TMz field incident on the lossy multi-
layered dielectric described in figure 5.4.
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5.2
Homogeneous Plasma Cylinder

An homogeneous plasma cylinder is now investigated by means of the
eigenfunction expansion method and of the FDTD simulations described in
chapter 4. A baseline case for comparison purposes is chosen with parameters
shown in Table 5.2; these plasma parameters correspond approximately to
argon gas maintained at a constant pressure of 133 Pa (1 Torr), a common
experimental set-up for contained plasmas used as antennas [4].

Parameter Value
Time Discretization ∆t 2.35702× 10−12 s
Spatial Discretization ∆s 1× 10−3 m

Maximum Temporal Step Nt 1200
Maximum Spatial Step Ns 251

Incident Wave Frequency fin 10× 109 Hz
Plasma Radius r 0.09 m

Homogeneous Plasma Density n0 5× 1017 m−3

Plasma Collision Frequency ν 500× 106 Hz

Table 5.2: Parameters for the baseline case of the homogeneous plasma cylinder.

The incident wave is a sinusoidal TMz pulse given by the discretized wave
function

ψ(n) = e−(n−3τ
τ )2

sin(ωinn∆t), (5-1)

with τ = 100, shown in figure 5.5. The maximum temporal time step was
chosen so that the fields excited by this incident wave function within the
computational domain have sufficient time to dissipate, thus ensuring the
accuracy of the Fourier Transforms applied in the numerical algorithm.
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300 600 900 1,200

−1

−0.5

0

0.5

1

n

ψin

Figure 5.5: Incident wave function versus numerical time-step for the baseline
homogeneous plasma cylinder problem given by the parameters in table 5.2.

Figure 5.6 shows the time evolution of the electric field within the
homogeneous plasma cylinder for a few chosen time-steps. At the time-step
n = 1000 there are still non-zero field perturbations within the computational
domain, but they have almost vanished; by the maximum time-step Nt = 1200
they have completely dissipated.
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5.6(a): n = 0.
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5.6(b): n = 200.
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5.6(c): n = 400.
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5.6(d): n = 600.
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5.6(e): n = 800.
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5.6(f): n = 1000.

Figure 5.6: Time evolution of the numerical solution, in volts/meter, for the baseline
homogeneous plasma cylinder problem given by the parameters in table 5.2.

Figure 5.7 shows the comparison between the resulting scattering am-
plitude for the electric field obtained by the eigenfunction expansion method
and the FDTD simulation. Excellent agreement is found between the two ap-
proaches.
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Figure 5.7: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for the baseline homogeneous plasma
cylinder problem given by the parameters in table 5.2.

Figure 5.8 shows the comparison between the magnitude of the electric
field within the plasma cylinder obtained by the eigenfunction expansion
method and the FDTD simulation.
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5.8(a): Eigenfunction method.
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5.8(b): FDTD simulation.

Figure 5.8: Comparison between the magnitude of the electric field, in volts/meter,
within the cylinder obtained through the eigenfunction method and the FDTD
simulation for the baseline homogeneous plasma cylinder problem given by the
parameters in table 5.2.
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The electric fields inside the cylinder obtained by the eigenfunction
method and by the FDTD simulation seem to be in good agreement, but
colour-coded two-dimensional plots are difficult to be precisely analysed. For
that reason, figures 5.9 and 5.10 provide linear plots of the magnitude of the
electric field for y = 0 and x = 0 cuts, respectively.
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Figure 5.9: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0, obtained by the eigenfunction
method and the FDTD simulation for the baseline homogeneous plasma cylinder
problem given by the parameters in table 5.2.
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Figure 5.10: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0, obtained by the eigenfunction
method and the FDTD simulation for the baseline homogeneous plasma cylinder
problem given by the parameters in table 5.2.

5.2.1
Incident Wave Frequency Effects

The influence of the incident wave’s frequency is now investigated. The
incident wave function retains its form, but now the parameter τ needs to be
adjusted such that at least one full period of the sine wave is completed within
the Gaussian window; failing to ensure this condition results in numerical
errors in the Fourier Transforms employed in the algorithm. This increase in
the Gaussian window must be accompanied by an increase in the maximum
temporal step so that all fields excited within the computational domain have
time to die down to zero, as before, but the simulation and plasma parameters
are otherwise unchanged.
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Figure 5.11 shows a comparison between the scattering amplitudes
obtained by the eigenfunction method and the FDTD simulation for different
incident frequencies while maintaining the rest of the parameters fixed to those
given by table 5.2. Excellent agreement between the analytical method and the
simulations is found for all frequencies.
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Eigenfunction (fin = 15 GHz)

FDTD (fin = 15 GHz)

Figure 5.11: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for different incident frequencies; pa-
rameters are otherwise given by table 5.2.

Figure 5.12 shows a side-by-side comparison of colour-coded two-
dimensional plots for the magnitude of the electric field inside the cylinder
for both the eigenfunction method and the FDTD simulations, for incident
frequencies below the baseline frequency of 10 GHz, while Figure 5.13 shows
the same, but for incidence frequencies above the baseline frequency of 10 GHz.
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5.12(a): Eigenfunction method, fin = 5
GHz.
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5.12(b): FDTD simulation, fin = 5 GHz.
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5.12(c): Eigenfunction method, fin = 7.5
GHz.
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5.12(d): FDTD simulation, fin = 7.5
GHz.
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5.12(e): Eigenfunction method, fin = 10
GHz.
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5.12(f): FDTD simulation, fin = 10 GHz.

Figure 5.12: Comparison between the magnitude of the electric field, in volts/meter,
within the cylinder obtained by the eigenfunction method and the FDTD simulation
for different incident frequencies below the baseline frequency of 10 GHz; parameters
are otherwise given by table 5.2.
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5.13(a): Eigenfunction method, fin = 10
GHz.
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5.13(b): FDTD simulation, fin = 10 GHz.
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5.13(c): Eigenfunction method, fin =
12.5 GHz.
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5.13(d): FDTD simulation, fin = 12.5
GHz.
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5.13(e): Eigenfunction method, fin = 15
GHz.
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5.13(f): FDTD simulation, fin = 15 GHz.

Figure 5.13: Comparison between the magnitude of the electric field, in volts/meter,
within the cylinder obtained by the eigenfunction method and the FDTD simulation
for different incident frequencies above the baseline frequency of 10 GHz; parameters
are otherwise given by table 5.2.

Again due to the difficulties of precisely comparing colour-coded two-
dimensional plots, figures 5.14 and 5.15 show linear plots of the magnitude of
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the electric field inside the cylinder for y = 0 and x = 0 cuts, respectively, for
the different frequencies under consideration. Since the differences in behaviour
between the fields with fin = 12.5 GHz and fin = 15 GHz are not very large,
the results for the former have been suppressed in the linear plots for the sake
of not cluttering the graph.
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Figure 5.14: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0 obtained by the eigenfunction
method and the FDTD simulation for different incident frequencies; parameters are
otherwise given by table 5.2.
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Figure 5.15: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0 obtained by the eigenfunction
method and the FDTD simulation for different incident frequencies; parameters are
otherwise given by table 5.2.

5.2.2
Plasma Density Effects

The influence of the plasma’s homogeneous electron density is now
investigated. Like before, other parameters are kept equal to those in table
5.2, but plasma density and maximum temporal step are changed.

Figure 5.16 shows a comparison between the scattering amplitudes
obtained by the eigenfunction method and the FDTD simulation for different
plasma densities. Good agreement between the analytical method and the
simulations is found for all densities.
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Figure 5.16: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for different plasma densities; parameters
are otherwise given by table 5.2.

Figure 5.17 shows a side-by-side comparison of colour-coded two-
dimensional plots for the magnitude of the electric field inside the cylinder
for both the eigenfunction method and the FDTD simulations, for plasma
densities equal to and higher than the baseline case of n0 = 5× 1017.
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5.17(a): Eigenfunction method, n0 = 5×
1017 m−3.
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5.17(b): FDTD simulation, n0 = 5× 1017

m−3.
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5.17(c): Eigenfunction method, n0 = 1 ×
1018 m−3.

40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

160

180

200

i

j

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

|Ez|

5.17(d): FDTD simulation, n0 = 1× 1018

m−3.
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5.17(e): Eigenfunction method, n0 = 5 ×
1018 m−3.
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5.17(f): FDTD simulation, n0 = 5× 1018

m−3.

Figure 5.17: Comparison between the magnitude of the electric field, in volts/meter,
within the cylinder obtained by the eigenfunction method and the FDTD simulation
for different plasma densities; parameters are otherwise given by table 5.2.

Again due to the difficulties of precisely comparing colour-coded two-
dimensional plots, figures 5.18 and 5.19 show linear plots of the magnitude of
the electric field inside the cylinder for y = 0 and x = 0 cuts, respectively,
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for the different plasma densities under consideration. The results for n0 =
1 × 1017 m−3 were not shown on the two-dimensional plots due to them
being uninteresting (the plasma is almost completely transparent to the
electromagnetic wave at these configurations), but they are shown here for
the sake of comparison.
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Figure 5.18: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0 obtained by the eigenfunction
method and the FDTD simulation for different plasma densities; parameters are
otherwise given by table 5.2.
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Figure 5.19: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0 obtained by the eigenfunction
method and the FDTD simulation for different plasma densities; parameters are
otherwise given by table 5.2.

5.2.3
Plasma Collision Frequency Effects

The influence of the plasma’s collision frequency is now investigated.
Like before, other parameters are kept equal to those in table 5.2, but collision
frequency and maximum temporal step are changed.

Figure 5.20 shows a comparison between the scattering amplitudes
obtained by the eigenfunction method and the FDTD simulation for different
collision frequencies. Good agreement between the analytical method and the
simulations is found for all frequencies.
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Figure 5.20: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for different collision frequencies; pa-
rameters are otherwise given by table 5.2. For ν = 500×105 Hz, in green, the results
are almost identical to the baseline case, in blue, so the curves lie on top of each
other.

Figure 5.21 shows a side-by-side comparison of colour-coded two-
dimensional plots for the magnitude of the electric field inside the cylinder
for both the eigenfunction method and the FDTD simulations, for collision
frequencies equal to and higher than the baseline case of ν = 500× 106 Hz.
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5.21(a): Eigenfunction method, ν = 500×
106 Hz.
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5.21(b): FDTD simulation, ν = 500× 106

Hz.
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5.21(c): Eigenfunction method, ν = 500×
107 Hz.
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5.21(d): FDTD simulation, ν = 500× 107

Hz.
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5.21(e): Eigenfunction method, ν = 500×
108 Hz.

40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

160

180

200

i

j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|Ez|

5.21(f): FDTD simulation, ν = 500× 108

Hz.

Figure 5.21: Comparison between the magnitude of the electric field, in volts/meter,
within the cylinder obtained by the eigenfunction method and the FDTD simulation
for different collision frequencies; parameters are otherwise given by table 5.2.

Again due to the difficulties of precisely comparing colour-coded two-
dimensional plots, figures 5.18 and 5.19 show linear plots of the magnitude of
the electric field inside the cylinder for y = 0 and x = 0 cuts, respectively,
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for the different collision frequencies under consideration. The results for
ν = 500 × 105 Hz were not shown on the two-dimensional plots due to them
being almost identical to the baseline case, but they are shown here for the
sake of comparison.
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Figure 5.22: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0 obtained by the eigenfunction
method and the FDTD simulation for different collision frequencies; parameters are
otherwise given by table 5.2.
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Figure 5.23: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0 obtained by the eigenfunction
method and the FDTD simulation for different collision frequencies; parameters are
otherwise given by table 5.2.

5.3
Inhomogeneous Plasma Cylinder

Now, an inhomogeneous plasma cylinder is investigated. The plasma
density parameter is characterized by a central density n0, and the profile
follows the quadratic function

n(ρ) = n0

(
1−

(
ρ

r

)2
)
, (5-2)

where r is the plasma cylinder radius, shown in figure 5.24. This density profile
is more realistic for confined plasmas arising from gas discharges [40].
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r

n0

ρ

n

Figure 5.24: Quadradic inhomogeneous density profile under consideration.

The case described by table 5.2 is again used as a baseline case, but with
the inhomogeneous profile shown in figure 5.24 instead of an homogeneous
density.

The method described in chapter 3 is used to divide the inhomogeneous
cylinder into p different concentric shells. Figure 5.25 shows a comparison
between the results for the scattering amplitude obtained by the analytical
method for different values of p. As expected, as p increases the results of the
multi-layer approximation converge to a function which can be assumed to be
the exact inhomogeneous solution.
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Figure 5.25: Comparison between the results for the scattering amplitude obtained
by the analytical eigenfunction method, with different values of the number of
concentric shells p used in the algorithm, for the baseline inhomogeneous plasma
cylinder problem.

Figure 5.26 shows a comparison between the magnitude of the electric
field within the inhomogeneous plasma cylinder under investigation obtained
by the analytical method for different values of the number of layers p. It can
also be seen that as the number of concentric shells used in the algorithm
increases, the result converges to a pattern that can be assumed to be the
exact inhomogeneous solution. However, the computational cost of running
the full algorithm for the internal fields is too prohibitive at such high values
of p; values as low as 10 already lead to several hours being required for the
entire process to finish.
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5.26(a): p = 3.
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5.26(b): p = 5.
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5.26(c): p = 7.
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5.26(d): p = 10.

Figure 5.26: Comparison between the magnitude of the electric field, in volts/meter,
within the inhomogeneous plasma cylinder obtained by the analytical method for
different values of p.

Figure 5.27 shows the time evolution of the electric field within the inho-
mogeneous plasma cylinder for a few chosen time-steps. Compared to the base-
line homogeneous case, there are less internal reflections within the inhomoge-
neous cylinder, so the simulation does not actually need as many time-steps
as before. Conversely, a field-deflecting characteristic of the inhomogeneous
cylinder can already be perceived.
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5.27(a): n = 0.
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5.27(b): n = 200.
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5.27(c): n = 400.
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5.27(d): n = 600.
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5.27(e): n = 800.

40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

160

180

200

i

j

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ez

5.27(f): n = 1000.

Figure 5.27: Time evolution of the numerical solution, in volts/meter, for the
baseline inhomogeneous plasma cylinder problem.

The FDTD simulations are now tested against the aforementioned an-
alytical solutions. Whenever not explicitly stated otherwise, following results
for the eigenfunction method applied to inhomogeneous plasma cylinders were
obtained using p = 500. Figure 5.28 shows the comparison between results for
the scattering amplitude obtained by the eigenfunction method and the FDTD
simulation for the baseline inhomogeneous plasma cylinder problem; excellent
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agreement is found.
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Figure 5.28: Comparison between the results for the scattering amplitude obtained
by the eigenfunction method and the FDTD simulation for the baseline inhomoge-
neous plasma cylinder problem.

Figure 5.29 shows a comparison between the magnitude of the electric
field within the inhomogeneous plasma cylinder obtained by the eigenfunction
method, with p = 10, and the FDTD simulation. Due to the previously-
mentioned computational cost of running the full algorithm, the analytical
solution for the internal fields is of limited usefulness in the inhomogeneous
case, but nevertheless it can be observed that the behaviour of the two solutions
is similar, thus validating the numerical method.
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5.29(a): Eigenfunction method, p = 10.
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5.29(b): FDTD simulation.

Figure 5.29: Comparison between the magnitude of the electric field, in volts/meter,
within the inhomogeneous plasma cylinder obtained by the eigenfunction method
and the FDTD simulation for the baseline problem under consideration.
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5.3.1
Incident Wave Frequency Effects

The influence of the incident wave frequency is now investigated. Again,
the incident wave function retains its form, but the parameter τ is adjusted so
that at least one full period of the sine wave is completed within the Gaussian
window to avoid numerical errors in the Fourier Transforms employed in the
algorithm.

Figure 5.30 shows a comparison between the scattering amplitudes ob-
tained by the eigenfunction method and the FDTD simulation for different in-
cident frequencies for the inhomogeneous plasma cylinder. Excellent agreement
between the analytical method and the simulations is found for all frequencies.
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Figure 5.30: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for different incident frequencies for the
inhomogeneous plasma problem.
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Figure 5.31 shows a side-by-side comparison of colour-coded two-
dimensional plots for the magnitude of the electric field inside the cylinder
obtained by FDTD simulations for different values of incident frequencies. It
can be observed that for an incident frequency of 15 GHz, the inhomogeneous
plasma cylinder is virtually transparent to the electromagnetic wave, even more
so than in the homogeneous case.
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5.31(a): fin = 5 GHz.
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5.31(b): fin = 7.5 GHz.
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5.31(c): fin = 10 GHz.
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5.31(d): fin = 15 GHz.

Figure 5.31: Comparison between the magnitude of the electric field, in volts/meter,
within the inhomogeneous plasma cylinder obtained by the FDTD simulation for
different incident frequencies.

To analyse in more detail the behaviour within the inhomogeneous
cylinder, figures 5.32 and 5.33 show linear plots of the magnitude of the
electric field inside the cylinder for y = 0 and x = 0 cuts, respectively, for
the different incident wave frequencies under consideration. Analytical results
from the eigenfunction method are not shown due to the previously-mentioned
computational cost difficulties in running the full algorithm and obtaining a
result that has converged to the exact solution.
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Figure 5.32: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0 obtained by FDTD simulation
for different collision frequencies.
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Figure 5.33: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0 obtained by FDTD simulation
for different collision frequencies.

5.3.2
Central Plasma Density Effects

The influence of the central value for the plasma’s inhomogeneous elec-
tron density is now investigated. Like before, other parameters are kept equal
to those in table 5.2, but the central plasma density and maximum temporal
step are changed.

Figure 5.34 shows a comparison between the scattering amplitudes
obtained by the eigenfunction method and the FDTD simulation for different
central plasma densities. Excelent agreement between the analytical method
and the simulations is found for all central densities.
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Figure 5.34: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for different central inhomogeneous
plasma densities.

Figure 5.35 shows a side-by-side comparison of colour-coded two-
dimensional plots for the magnitude of the electric field inside the cylinder
obtained by FDTD simulations for different values of the central plasma den-
sity. It can be observed that, for the central density of 1 × 1017 m−3, the in-
homogeneous plasma cylinder is virtually transparent to the electromagnetic
wave, and for n0 = 5 × 1018 m−3, the electromagnetic wave has difficulties
penetrating the cylinder.
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5.35(a): n0 = 1× 1017 m−3.
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5.35(b): n0 = 5× 1017 m−3.
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5.35(c): n0 = 1× 1018 m−3.
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5.35(d): n0 = 1.5× 1018 m−3.
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5.35(e): n0 = 2× 1018 m−3.
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5.35(f): n0 = 5× 1018 m−3.

Figure 5.35: Comparison between the magnitude of the electric field, in volts/meter,
within the inhomogeneous plasma cylinder obtained by the FDTD simulation for
different central plasma densities.

To analyse in more detail the behaviour within the inhomogeneous
cylinder, figures 5.36 and 5.37 show linear plots of the magnitude of the
electric field inside the cylinder for y = 0 and x = 0 cuts, respectively, for
the different central densities under consideration. As before, analytical results
from the eigenfunction method are not shown due to the previously-mentioned
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computational cost difficulties in running the full algorithm and obtaining a
result that has converged to the exact solution. The results for the n0 = 5×1018

m−3 case are not shown to avoid cluttering the graphs.
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Figure 5.36: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0 obtained by FDTD simulation
for different central plasma densities.
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Figure 5.37: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0 obtained by FDTD simulation
for different central plasma densities.

5.3.3
Plasma Collision Frequency Effects

The influence of the plasma’s collision frequency is now investigated.
Like before, other parameters are kept equal to those in table 5.2, but collision
frequency and maximum temporal step are changed.

Figure 5.38 shows a comparison between the scattering amplitudes
obtained by the eigenfunction method and the FDTD simulation for different
collision frequencies. Good agreement between the analytical method and the
simulations is found for all collision frequencies.
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Figure 5.38: Comparison between the scattering amplitudes obtained by the eigen-
function method and the FDTD simulation for different collision frequencies. For
ν = 500× 105 Hz, in green, the results are almost identical to the baseline case, in
blue, so the curves lie on top of each other.

Figure 5.39 shows a side-by-side comparison of colour-coded two-
dimensional plots for the magnitude of the electric field inside the cylinder
obtained by FDTD simulations for different values of the electron collision fre-
quency. It can be observed that for the collision frequency of 500× 105 Hz the
results are virtually identical to the baseline case.
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5.39(a): ν = 500× 105 Hz.
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5.39(b): ν = 500× 106 Hz.
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5.39(c): ν = 500× 107 Hz.
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5.39(d): ν = 500× 108 Hz.

Figure 5.39: Comparison between the magnitude of the electric field, in volts/meter,
within the inhomogeneous plasma cylinder obtained by the FDTD simulation for
different electron collision frequencies.

To analyse in more detail the behaviour within the inhomogeneous
cylinder, figures 5.40 and 5.41 show linear plots of the magnitude of the
electric field inside the cylinder for y = 0 and x = 0 cuts, respectively, for
the different collision frequencies under consideration. As before, analytical
results from the eigenfunction method are not shown due to the previously-
mentioned computational cost difficulties in running the full algorithm and
obtaining a result that has converged to the exact solution.
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Figure 5.40: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of x and for y = 0 obtained by FDTD simulation
for different electron collision frequencies.
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Figure 5.41: Comparison between the absolute electric field, in volts/meter, inside
the cylinder for different values of y and for x = 0 obtained by FDTD simulation
for different electron collision frequencies.

5.4
Discussion

The results shown in the previous sections can be analysed according to
the expression of the dielectric permittivity for the plasma given by eq. (2-41),
repeated here for convenience,

εr = 1−
ω2
p

ω2 − iων
. (2-41)

For the homogeneous results, or locally for the inhomogeneous case, one
qualitative analysis is straightforward: as expected from inspecting eq. (2-41),
variations in the plasma frequency ωp (which depends on the plasma density)
change the behaviour of electromagnetic propagation inversely to variations
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in both wave frequency ω and electron collision frequency ν. This effect can
be seen e.g. by comparing the homogeneous results for fin = 5 GHz, figures
5.12(a) and 5.12(b), with the homogeneous results for n0 = 5 × 1018 m−3,
figures 5.17(e) and 5.17(f).

Additionally, for the inhomogeneous cases only, another qualitative anal-
ysis of the results shows a phenomenon of wave path deflection that was not
present in the homogeneous case. This is due to the spatial variation in the
electron density, which in turn causes a spatial variation in the refraction index
of the plasma medium. Continuous spatial variations in refraction indexes, in
turn, are well-known to cause ray deflection.

In broad terms, two different behaviours can be observed from the pre-
sented results: 1) electromagnetic waves penetrating the plasma and propagat-
ing while being conditioned by the plasma, i.e., suffering dispersion, attenua-
tion and deflection, when appropriate to each situation’s characteristics, and
2) electromagnetic waves being reflected from the plasma and exhibiting very
low penetration (or, for the inhomogeneous cases, very low penetration after
a certain point in the inhomogeneous cylinder).

These two different types of behaviour are related to the real part of the
plasma’s dielectric permittivity, with penetration possible for Re(εr) > 0 and
reflection occurring for Re(εr) < 0. The same kind of behaviour is exhibited
by e.g. noble metals, which are reflective at infra-red and optical frequencies
but transparent to higher-frequency waves [22]. This effect can be seen e.g. by
comparing the inhomogeneous solutions for different central plasma densities,
figure 5.35; visually, there seems to be a shift in behaviour between n0 = 1×1018

m−3 and n0 = 1.5× 1018 m−3. Figure 5.42 shows the real part of the dielectric
permittivity as a function of the local electron density n for this range of
densities, and the turning point from positive to negative permittivity can be
clearly seen. Equating the permittivity to zero, the approximate value for the
density in which the turning point happens is given by nturn ≈ 1.24254× 1018

m−3.
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Figure 5.42: Real part of the plasma dielectric permittivity εr as a function of the
local electron density n, for the parameters studied in the FDTD results.

It is worth noting, however, that for the cases where the variation of
the electron collision frequency ν was investigated, the values of the other
parameters created the restriction Re(εr) > 0 ∀ ν > 0, so the field extinction
was solely a result of the dissipative term introduced by the collision frequency
ν. The real part of the plasma dielectric permittivity as a function of the
electron collision frequency, for the parameters used in the numerical results,
is shown in figure 5.43.
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Figure 5.43: Real part of the plasma dielectric permittivity εr as a function of the
electron collision frequency ν, for the parameters studied in the FDTD results.

To better visualize the behaviour shift in the plasma dielectric permittiv-
ity as a function of the variations in the parameters, figures 5.44, 5.45 and 5.46
provide two-dimensional colour plots in which red regions represent values of
Re(εr) > 0 and blue regions represent values of Re(εr) < 0.
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Figure 5.44: Behaviour shift for the plasma dielectric permittivity as a function
of the local electron density n and the electron collision frequency ν. Red region
represents Re(εr) > 0 and blue region represents Re(εr) < 0.
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Figure 5.45: Behaviour shift for the plasma dielectric permittivity as a function
of the local electron density n and the incident wave frequency fin. Red region
represents Re(εr) > 0 and blue region represents Re(εr) < 0.
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Figure 5.46: Behaviour shift for the plasma dielectric permittivity as a function of
the electron collision frequency ν and the incident wave frequency fin. Red region
represents Re(εr) > 0 and blue region represents Re(εr) < 0.
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6
Conclusions

A study on the fundamentals of plasma theory was made; the most
commonly used results and models were presented along with their derivations
as a basis for further study into plasma phenomena related to electromagnetic
propagation in radio frequencies and to application for antenna design.

For the study of electromagnetic wave propagation within plasma struc-
tures, both analytical and FDTD-based methods were presented. The analyt-
ical method consists of a simple expansion of fields into eigenfunctions appro-
priate to the structure of interest whose coefficients are subsequently found
by matching modes across boundaries within the structure. The FDTD-based
method expands Yee’s seminal algorithm for computational electromagnetics
to also account for propagation within the plasma, but otherwise inherits char-
acteristics and methods of usual FDTD simulations.

Validating results were provided for the analytical method via compari-
son with known results from the literature, ensuring theoretical validity and its
correct implementation, thus allowing for the method to be used as a validation
tool for the FDTD simulations.

Baseline cases for homogeneous and inhomogeneous plasmas were pre-
sented, as well as a number of case studies exploring variations in the pa-
rameters of the plasma structure. Excellent agreement was found between the
analytical and FDTD methods.

The FDTD simulations were of great value in identifying different be-
haviours within the plasma structure and exploring the effects of the plasma
parameters on the electromagnetic propagation. In particular, for inhomoge-
neous cases, or any case with other kinds of spatial complexity (e.g. complicated
geometries for the structure) the computational cost of running the analyti-
cal method was prohibitively high. For simplistic cases, application of either
method was equivalent in terms of computational costs, but for complex spatial
conditions (e.g. inhomogeneities), the FDTD method showed to be superior in
the processing time it took for the solution to be obtained.

Future perspectives for this work include extending the numerical algo-
rithm for a TEz-polarized incident wave. Due to the nature of TMz-polarized
waves, the electric field was restricted to having only a z-component, which
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caused the electron flux in the plasma to be solely in the non-simulated axis
and therefore ignored. Extending the algorithm to TEz-polarized waves creates
the additional complexity of modelling the electron density variation caused by
electron fluxes within the computational domain, as well as enforcing boundary
conditions for the plasma currents excited within the structure.

Another perspective is including ionization processes in the algorithm,
which would allow the simulation of start-up and turn-off of a device; so far,
the plasma has been considered to be in a steady state of ionization, i.e. the
source responsible for ionization is considered to be active for a long time and
recombination processes are ignored.

With these extensions the algorithm would be able to simulate fully self-
consistent plasma systems in three spatial dimensions, thus allowing for the
full simulation of an entire device like a plasma antenna, or even the interaction
between multiple devices operating simultaneously.
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A
Helmholtz Equation in Cylindrical Coordinates

Starting from the wave equation(
∂2

∂t2
− c2∇2

)
ψ(~x, t) = 0, (A-1)

separation of variables is assumed so that the wave function can be separated
into spatial and temporal functions,

ψ(~x, t) = S(~x)T (t), (A-2)

which allows equation (A-1) to be rearranged as

∇2S(~x)
S(~x) = 1

T (t)c2
∂2

∂t2
T (t). (A-3)

Equation (A-3) only has non-trivial solutions in the general case if and
only if both sides are equal to a constant value, chosen without loss of generality
to be −k2 so that

(
∇2 + k2

)
S(~x) = 0, (A-4a)(

∂2

∂t2
+ (kc)2

)
T (t) = 0. (A-4b)

By defining ω = kc, equation (A-4b) has the solution

T (t) = Aeiωt +Be−iωt, (A-5)

where A and B are real constants to be determined by application of boundary
conditions.

Equation (A-4a) is the Helmholtz equation, and requires a bit more care.
By dropping the explicit spatial dependence and using subscripts to denote
derivatives, it can be written in cylindrical coordinates as

Sρρ + 1
ρ
Sρ + 1

ρ2Sφφ + Szz + k2S = 0. (A-6)

The problem is restricted to two dimension by allowing no variations in
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the z-axis, that is, by making ∂
∂z
f = 0 for all functions f . The Helmholtz

equation is then simplified to

Sρρ + 1
ρ
Sρ + 1

ρ2Sφφ + k2S = 0. (A-7)

Separation of variables is once again used to separate the spatial function
S(ρ, φ) into functions depending on radial and angular coordinates separately,
viz.

S(ρ, φ) = R(ρ)Θ(φ), (A-8)

which allows equation (A-7) to be rearranged as

ρ2

R
Rρρ + ρ

R
Rρ + k2ρ2 = − 1

ΘΘφφ. (A-9)

By the same argument as before, non-trivial solutions for the general case
exist if and only if both sides are equal to a constant value, chosen without
loss of generality to be n2 so that

ρ2Rρρ + ρRρ + k2ρ2R = n2, (A-10a)

Θφφ = −n2Θ. (A-10b)

The periodicity condition for the angular function Θ creates the restric-
tion that n ∈ Z. The solution of equation (A-10b) is given by

Θ(φ) = Cn cos(nφ) +Dn sin(nφ), (A-11)

where Cn and Dn are real constants to be determined by application of
boundary conditions. Alternatively, the angular function can be written

Θ(φ) = Ene
inφ, (A-12)

where En = Cn − iDn is a complex-valued constant.
Equation (A-10a) is a rescaled form of Bessel’s differential equation for

the variable r = kρ, which has the solution

R(ρ) = FnJn(kρ) +GnYn(kρ), (A-13)

where Fn and Gn are constants to be determined by application of boundary
conditions.

The solution of the Helmholtz equation in cylindrical coordinates, for no
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variations along the z-axis, is then given by

S(ρ, φ) =
(
AnJn(kρ) +BnYn(kρ)

)
einφ, (A-14)

where the new complex constants An and Bn are determined by boundary
conditions.

By using the definition for the Hankel function of the second kind,

H(2)
n (x) = Jn(x)− iYn(x), (A-15)

the Bessel function of the second kind Yn(kρ) can be substituted as

Yn(kρ) = Jn(kρ)−H(2)
n (kρ)

i
, (A-16)

so the solution for the Helmholtz equation can be rewritten

S(ρ, φ) =
(
anJn(kρ) + bnH

(2)
n (kρ)

)
einφ, (A-17)

where an and bn are new constants, n ∈ Z and no restrictions have been made
on the values of k.
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B
Green’s Function for the 2D Helmholtz Equation

Consider the inhomogeneous Helmholtz equation in an unbounded two-
dimensional domain,

(∇2 + k2)ψ = −f. (B-1)

subjected to the Sommerfeld radiation condition

lim
|ρ|→∞

√
|ρ|
(

∂

∂|ρ|
− ik

)
ψ(ρ) = 0, (B-2)

where ρ =
√
x2 + y2 is the radial polar coordinate.

The Green’s function G(~x|~x0) is defined as the solution for a given
equation when the source term is given by the impulsive term f(~x) = δ(~x−~x0)
[41], where δ(~x− ~x0) is the Dirac delta function denoting a unit point source
at point ~x0. In the context of systems theory, it can be viewed as the
spatial impulse response h(~x) for the system described by the inhomogeneous
Helmholtz equation (see Appendix D).

The Green’s function for the present problem can thus be found by
solving

(∇2 + k2
0)G(~x|~x0) = −δ(~x− ~x0), (B-3)

where k0 was used instead of k to represent the fixed wave-number for reasons
that will become apparent shortly.

Taking the spatial two-dimensional Fourier transform of eq. (B-3),

−k2G̃(~k|~x0) + k2
0G̃(~x|~x0) = −ei~k·~x0 , (B-4)

where ~k = kxk̂x + kyk̂y and kx is the Fourier variable related to the x spatial
coordinate and ky is the Fourier variable related to the y spatial coordinate.

The Green’s function in the spatial Fourier domain is therefore given by

G̃(~k|~x0) = ei
~k·~x0

k2 − k2
0
, (B-5)

DBD
PUC-Rio - Certificação Digital Nº 1512376/CA



Appendix B. Green’s Function for the 2D Helmholtz Equation 105

and the Green’s function in the spatial domain is obtained by taking the inverse
Fourier transform,

G(~x|~x0) = 1
(2π)2

∫ e−i
~k·(~x−~x0)

k2 − k2
0

dkxdky. (B-6)

Let ~r = ~x−~x0 to simplify notation in the calculation that follows. Further,
let the kx and ky axes be defined such that the position vector ~r lies along the
negative kx axis as in figure B.1.

ky

kx
~r = ~x− ~x0

~k

Figure B.1: Cartesian axes in the Fourier-transformed k-space.

Defining

I(kx) =
∫ 1
k2
x + k2

y − k2
0
dky, (B-7)

the function being sought is given by

G(~r) = 1
(2π)2

∫
eikxrI(kx)dkx. (B-8)

To calculate I(kx), the denominator can be expanded

I(kx) =
∫ 1

(ky + i
√
k2
x − k2

0)(ky − i
√
k2
x − k2

0)
dky, (B-9)

at which point the integral can be carried out in the complex ky plane. Two
situations must be taken into account: the cases where 1) |kx| > k0 and 2)
|kx| < k0.

For the first case, |kx| > k0, the integration contour can be closed in the
upper or lower half-plane, as shown in figure B.2.
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B.2(a): Closing at the upper half-plane.
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B.2(b): Closing at the lower half-plane.

Figure B.2: Possible closed contours used for the evaluation of I(kx) when |kx| > k0.

The residue theorem allows a function f(z) to be evaluated on either of
these integration contours as

∮
f(z)dz = lim

R→∞

(∫
C1
f(z)dz +

∫
C2
f(z)dz

)
= 2πi

∑
p

Res(p), (B-10)
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where the closed path integration is evaluated in the anti-clockwise direction,
the summation on the right-hand side is done over all the poles of f and Res(p)
denotes the residue of f(z) at the pole p.

For the present case,

lim
R→∞

∫
C1
f(z)dz =

∫ 1
(ky + i

√
k2
x − k2

0)(ky − i
√
k2
x − k2

0)
dky (B-11)

is the integral being sought. Furthermore, due to the appearance of a k2
y term

at the denominator of the integrand, the second integral vanishes when R→∞
regardless of choice of contour.

If the contour is closed at the upper half-plane, the integral evaluates to
the residue at the pole ky = i

√
k2
x − k2

0,

I(kx) = 2πiRes(i
√
k2
x − k2

0) = π√
k2
x − k2

0

, for |kx| > k0. (B-12)

If the contour is closed at the lower half-plane, the integral evaluates to
the negative value of the residue at the pole ky = −i

√
k2
x − k2

0,1

I(kx) = −2πiRes(−i
√
k2
x − k2

0) = π√
k2
x − k2

0

, for |kx| > k0, (B-13)

which yields the same answer.
For the second case, |kx| < k0, the denominator can be rewritten again

so that

I(kx) =
∫ 1

(ky +
√
k2

0 − k2
x)(ky −

√
k2

0 − k2
x)

dky, (B-14)

so that there are now two real poles to be dealt with. There are several
possibilities for the integration contour to be utilized when evaluating the
integral: each pole can be bypassed with an arc extending into the upper or
lower half-plane, and the contour can be closed at infinity at the upper or lower
half-plane, for a total of 8 possibilities.

The first of those possibilities is shown in figure B.3, in which the residue
theorem can be written as

lim
R→∞

lim
ε→0

(∫
C1

+
∫
C2

+
∫
C3

+
∫
C4

+
∫
C5

+
∫
C6

)
f(z)dz = 0, (B-15)

since there are no poles within the integration contour.
1The residue theorem requires the contour to be traversed anti-clock-wise, so closing it

on the lower half-plane implies a negative sign to compensate for direction in the C1 path.
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Im(ky)

Re(ky)

R−R

iR

−p

−p− ε −p+ ε

p

p− ε p+ ε

C1

C2

C3

C4

C5

C6

Figure B.3: First possibility for the integration contour used for the evaluation of
I(kx) when |kx| < k0. The poles are given by p =

√
k2

0 − k2
x, omitted from the figure

to avoid cluttering.

The integral over path C6 vanishes in the limit R → ∞ because of the
k2
y factor in the denominator. The integral being sought is given by

I1(kx) = lim
R→∞

lim
ε→0

(∫
C1

+
∫
C3

+
∫
C5

)
f(z)dz, (B-16)

where the subscript denotes the integration path being taken into account. It
remains to calculate the integrals over paths C2 and C4. Performing the change
of variables ky = εeiθ, dky = iεeiθdθ allows the integral over C2 to be written
as

lim
ε→0

∫
C2
f(z)dz = lim

ε→0

0∫
−π

iε

(−p+ εeiθ)2 − p2 dθ = 0, (B-17)

where the last step follows from taking the limit before integrating. Likewise,
for the C4 path,

lim
ε→0

∫
C4
f(z)dz = lim

ε→0

0∫
−π

iε

(p+ εeiθ)2 − p2 dθ = 0, (B-18)
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so that for this integration contour the integral is given to be

I1(kx) = 0, for |kx| < k0. (B-19)

Im(ky)

Re(ky)

R−R

iR

−p

−p− ε −p+ ε
p

p− ε p+ ε

C1

C2

C3

C4

C5

C6

Figure B.4: Second possibility for the integration contour used for the evaluation of
I(kx) when |kx| < k0. The poles are given by p =

√
k2

0 − k2
x, omitted from the figure

to avoid cluttering.

For the second possibility, shown in figure B.4, the integration over paths
C2, C4 and C6 vanish for the same reasons as in the first possibility. The integral
being sought is then straightforwardly calculated

I2(kx) = lim
R→∞

lim
ε→0

(∫
C1

+
∫
C3

+
∫
C5

)
f(z)dz = 2πiRes(−p), (B-20)

so that

I2(kx) = πi

2
√
k2

0 − k2
x

, for |kx| < k0. (B-21)
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Im(ky)

Re(ky)

R−R

iR

−p

−p− ε −p+ ε
p

p− ε p+ ε
C1

C2

C3

C4

C5

C6

Figure B.5: Third possibility for the integration contour used for the evaluation of
I(kx) when |kx| < k0. The poles are given by p =

√
k2

0 − k2
x, omitted from the figure

to avoid cluttering.

The third possibility, shown in figure B.5, is the same case as possibility
two except that now

I3(kx) = lim
R→∞

lim
ε→0

(∫
C1

+
∫
C3

+
∫
C5

)
f(z)dz = 2πiRes(p), (B-22)

so that

I3(kx) = − πi

2
√
k2

0 − k2
x

, for |kx| < k0. (B-23)
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Im(ky)

Re(ky)

R−R

iR

−p

−p− ε −p+ ε

p

p− ε p+ ε
C1

C2

C3

C4

C5

C6

Figure B.6: Fourth possibility for the integration contour used for the evaluation of
I(kx) when |kx| < k0. The poles are given by p =

√
k2

0 − k2
x, omitted from the figure

to avoid cluttering.

The fourth possibility, shown in figure B.6, is likewise similar, except that
now

I4(kx) = lim
R→∞

lim
ε→0

(∫
C1

+
∫
C3

+
∫
C5

)
f(z)dz = 2πi

(
Res(−p) + Res(p)

)
,

(B-24)

so that

I4(kx) = 0, for |kx| < k0. (B-25)

The remaining possibilities are given by taking path C6 at the lower
half-plane instead of the upper half-plane. This leads to the same results being
obtained, but with a change in sign because of the direction the path must be
traversed. Therefore there are three possibilities for the integral,

I(kx) =



0
πi

2
√
k2

0−k2
x

− πi

2
√
k2

0−k2
x

, for |kx| < k0. (B-26)
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The Green’s function for the problem at hand is then given by

G(~r) = 1
(2π)2

∫
|kx|>k0

πeikxr√
k2
x − k2

0

dkx + 1
(2π)2

∫
|kx|<k0

eikxrI(kx)dkx, (B-27)

where I(kx) in the second term can be given by

I(kx) =



0
πi

2
√
k2

0−k2
x

− πi

2
√
k2

0−k2
x

, (B-28)

and each possibility will be explored. The first possibility, with I(kx) = 0,
results in a Green’s function given by

G1(~r) = 1
(2π)2

∫
|kx|>k0

πeikxr√
k2
x − k2

0

dkx. (B-29)

By using Euler’s formula, it can be written as

G1(~r) = 1
(2π)2

∫
|kx|>k0

π cos(kxr)√
k2
x − k2

0

dkx + i

(2π)2

∫
|kx|>k0

π sin(kxr)√
k2
x − k2

0

dkx,

= 1
(2π)2

( −k0∫
−∞

π cos(kxr)√
k2
x − k2

0

dkx +
∞∫
k0

π cos(kxr)√
k2
x − k2

0

dkx +
−k0∫
−∞

iπ sin(kxr)√
k2
x − k2

0

dkx +
∞∫
k0

iπ sin(kxr)√
k2
x − k2

0

dkx
)
,

= 1
(2π)2

(
2
∞∫
k0

π cos(kxr)√
k2
x − k2

0

dkx
)
, (B-30)

where the last step comes from the sine function being an odd function, so
that sin(kxr) = − sin(−kxr) and the integrals cancel each other, and the
cosine function being and even function, so that cos(kxr) = cos(−kxr) and
the integrals have the same value.

The change of variables kx = k0u, dkx = k0du allows the Green’s function
to be rewritten as

G1(~r) = 1
2π

∞∫
1

cos(k0ru)√
u2 − 1

du. (B-31)

By using the integral representation of the Bessel function of the second
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kind given by

Yν(x) = −
2(1

2x)−ν
√
πΓ(1

2 − ν)

∞∫
1

cos(xt)
(t2 − 1)ν+ 1

2
dt, (B-32)

the Green’s function can be written as

G1(~r) = −1
4Y0(k0r). (B-33)

The function G1(~r) does not vanish at infinity, so it does not fulfil
Sommerfeld’s radiation condition given by eq. (B-2), and therefore G1(~r) is
not a valid solution for the problem at hand; it can be interpreted, however,
as the Green’s function for a class of bounded problems.

For the second and third cases, I(kx) = ± πi

2
√
k2

0−k2
x

, the Green’s function
can be written as

G2,3(~r) = −1
4Y0(k0r)±

1
(2π)2

∫
|kx|<k0

πieikxr

2
√
k2

0 − k2
x

dkx. (B-34)

By using Euler’s formula on the second integral and using the even/odd
functions argument, it can be written as

∫
|kx|<k0

πieikxr

2
√
k2

0 − k2
x

dkx = 2
k0∫
0

πi cos(kxr)
2
√
k2

0 − k2
x

dkx. (B-35)

The change of variables kx = k0 sin θ, dkx = k0 cos θdθ allows the integral
to be written as

k0∫
0

cos(kxr)√
k2

0 − k2
x

dkx =

π
2∫

0

cos(k0r sin θ)√
k2

0 − k2
0 sin2 θ

k0 cos θdθ =

π
2∫

0

cos(k0r sin θ)dθ. (B-36)

By using Bessel’s integral

Jn(x) = 1
π

π∫
0

cos(x sin θ − nθ)dθ, (B-37)

the Green’s function can be written as

G2,3(~r) = −1
4Y0(k0r)±

i

4J0(k0r) = ± i4

(
J0(k0r)± iY0(k0r)

)
, (B-38)
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so that

G2(~r) = i

4H
(1)
0 (k0r) and G3(~r) = − i4H

(2)
0 (k0r). (B-39)

Assuming a time-harmonic dependence of eiωt, the function G2(~r) does
not fulfil Sommerfeld’s radiation condition; it can be interpreted as a wave
propagating from infinity and sinking energy at the source point ~x0. Function
G3(~r), however, fulfils the radiation condition, thus it is uniquely the Green’s
function for a two-dimensional unbounded problem,

G(~x|~x0) = − i4H
(2)
0 (k|~x− ~x0|). (B-40)

An important characteristic of this Green’s function is its asymptotic
behaviour. For observation points far from the source, k|~x − ~x0| � 1, the
Hankel function can be expanded so that the far-field Green’s function is given
by

Gf (~x|~x0) ≈ − i4

√
2

πk|~x− ~x0|
e−ik|~x−~x0|ei

π
4 = C

e−ik|~x−~x0|√
k|~x− ~x0|

, (B-41)

which represents a cylindrical wave propagating towards infinity.
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C
Simpson’s Rule

Sympson’s rule consists of approximating a function to be integrated by
a quadratic polynomial. It provides an improvement in accuracy over linear
interpolations used in numerical integration methods (e.g. trapezoidal rule).

Let f : [a, b] → R be a function to be integrated over the interval [a, b].
Let m = a+b

2 . The Lagrange form of the interpolating polynomial of degree 2
for f that passes through the nodes a, b and m is given by

P (x) = f(a)(x−m)(x− b)
(a−m)(a− b) + f(m) (x− a)(x− b)

(m− a)(m− b) + f(b)(x− a)(x−m)
(b− a)(b−m) .

(C-1)

The integral being sought can then be approximated as

b∫
a

f(x)dx ≈
b∫
a

P (x)dx. (C-2)

The first term of the integral can be calculated as

b∫
a

f(a)(x−m)(x− b)
(a−m)(a− b) dx = f(a)

(a−m)(a− b)

b∫
a

(x−m)(x− b)dx,

= f(a)
(a−m)(a− b)

b∫
a

(
x2 − (m+ b)x+mb

)
dx,

= f(a)
(a−m)(a− b)

(
x3

3

∣∣∣∣∣
b

a

− (m+ b)x
2

2

∣∣∣∣∣
b

a

+mbx

∣∣∣∣∣
b

a

)
,

= f(a)
(a−m)(a− b)

(
b3 − a3

3 − (m+ b)b
2 − a2

2 +mb(b− a)
)
,

= f(a)(b− a)
(a−m)(a− b)

(
a2 + ab+ b2

3 − (m+ b)a+ b

2 +mb

)
,

= −f(a)
(a−m)

(
a2 + ab+ b2

3 − (m+ b)a+ b

2 +mb

)
,

= −f(a)
(a−m)

(
a2 + ab+ b2

3 − a2 + 4ab+ 3b2

4 + ab+ b2

2

)
,

= −f(a)
(a−m)

(
1
12a

2 + 1
12b

2 − 1
6ab

)
,
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= −f(a)
12(a−m)

(
a2 − 2ab+ b2

)
,

= −f(a)
12(a−m)

(
a− b

)2

,

= −f(a)
6(a− b)

(
a− b

)2

,

= b− a
6 f(a). (C-3)

For the second term,

b∫
a

f(m) (x− a)(x− b)
(m− a)(m− b)dx = f(m)

(m− a)(m− b)

b∫
a

(x− a)(x− b)dx,

= f(m)
(m− a)(m− b)

b∫
a

(
x2 − (a+ b)x+ ab

)
dx,

= f(m)
(m− a)(m− b)

(
x3

3

∣∣∣∣∣
b

a

− (a+ b)x
2

2

∣∣∣∣∣
b

a

+ abx

∣∣∣∣∣
b

a

)
,

= f(m)
(m− a)(m− b)

(
b3 − a3

3 − (a+ b)b
2 − a2

2 + ab(b− a)
)
,

= f(m)(b− a)
(m− a)(m− b)

(
a2 + ab+ b2

3 − (a+ b)a+ b

2 + ab

)
,

= f(m)(b− a)
(m− a)(m− b)

(
a2 + ab+ b2

3 − a2 + 2ab+ b2

2 + ab

)
,

= f(m)(b− a)
(m− a)(m− b)

(
− 1

6a
2 + 1

3ab−
1
6b

2
)
,

= −f(m)(b− a)
6(m− a)(m− b)

(
a2 − 2ab+ b2

)
,

= −f(m)(b− a)
6(m− a)(m− b)

(
a− b

)2

,

= −f(m)(b− a)
6(−a

2 + b
2)(a2 −

b
2)

(
a− b

)2

,

= −f(m)(b− a)
−6

4(a− b)2

(
a− b

)2

,

= b− a
6 4f(m). (C-4)

For the third term, by recognizing that (b−m) = −(a−m), the integrand
has the same form as the first term, and so its contribution is given by

b∫
a

f(b)(x− a)(x−m)
(b− a)(b−m) dx = b− a

6 f(b). (C-5)
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Collecting terms,

b∫
a

f(x)dx ≈ b− a
6

(
f(a) + 4f(a+ b

2 ) + f(b)
)
, (C-6)

which is Simpson’s rule.
The error of the approximation obtained by Simpson’s rule is given by

E =
b∫
a

f(x)dx−
b∫
a

P (x)dx, (C-7)

which can be expanded as

E =
b∫
a

(
f(x)− P (x)

)
dx,

=
b∫
a

(
(x− a)(x−m)(x− b)f [a,m, b, x]

)
dx, (C-8)

where f [a,m, b, x] is the 3rd order Newton divided difference of f . In general,
the nth order Newton divided difference of f can be written as

f [x0, x1, ..., xn, x] = fn+1(ξ)
(n+ 1)! , for some ξ ∈ [x0, xn] (C-9)

or alternatively as

f [x0, x1, ..., xn] = f [x1, ..., xn]− f [x0, x1, ..., xn−1]
xn − x0

. (C-10)

Before returning to equation (C-8), let g(x) be an auxiliary function
defined by

g(x) =
x∫
a

(
(y − a)(y −m)(y − b)

)
dy, (C-11)

so that the error can be written as

E =
b∫
a

(
g′(x)f [a,m, b, x]

)
dx. (C-12)

Integrating by parts,

E = g(x)f [a,m, b, x]
∣∣∣∣∣
b

a

−
b∫
a

(
g(x)f ′[a,m, b, x]

)
dx. (C-13)
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The first term is zero because g(a) = g(b) = 0, from the definition of the
auxiliary function g. For the second term, the relationship f ′[x0, ..., xn, x] =
f [x0, ..., xn, x, x] can be used so that

E = −
b∫
a

(
g(x)f [a,m, b, x, x]

)
dx. (C-14)

Using definition (C-9), for some ξ ∈ [a, b],

E = −f
4(ξ)
4!

b∫
a

(
g(x)

)
dx,

= −f
4(ξ)
4!

b∫
a

( x∫
a

(
(y − a)(y −m)(y − b)

)
dy
)

dx,

= −f
4(ξ)
24

b∫
a

(
− abm+ abx+ amx− ax2 + bmx− bx2 −mx2 + x3

)
dx,

= −f
4(ξ)
24

b∫
a

(
− a2b

2 + a2x

2 −
ab2

2 + 2abx− 3ax2

2 + b2x

2 −
3bx2

2 + x3
)

dx,

= −f
4(ξ)
24

(
− 1

120(a− b)5
)
,

= −f
4(ξ)
24

(
15
4

(
b− a

2

)5)
,

= −f
4(ξ)
90

(
b− a

2

)5

, (C-15)

which confirms the superior accuracy of Simpson’s rule.
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D
Linear Time-Invariant Systems

The Dirac delta function can be defined e.g. as the limit

δ(t) = lim
∆→0

δ∆(t), (D-1)

where δ∆(t) is the scaled normal distribution given by

δ∆(t) = 1
∆
√
π
e−

t2
∆2 . (D-2)

−2 −1 0 1 2

1

2

3

4

5

6

t

δ∆(t)

∆ = 1
∆ = 0.5
∆ = 0.2
∆ = 0.1

Figure D.1: Possible construction of the Dirac delta function.
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Without getting into too many mathematical details, an important
property of the Dirac delta function is that it forms an orthonormal basis
in an appropriate space of functions, that is, a function f can be written as

f(t) =
∫
f(τ)δ(τ − t)dτ. (D-3)

This property allows for the study of linear time-invariant (LTI) systems,
depicted in figure D.2, in a simple way: by knowing the response of a system to
the Dirac delta function δ(t), denoted by h(t) and called the impulse response,
the response of an LTI system to an arbitrary input x(t) can be constructed
as a superposition of impulse responses, viz.

y(t) =
∫
h(t)x(τ)dτ. (D-4)

By using property (D-3) to expand the input, the response can be written

y(t) =
∫
h(τ)x(t− τ)dτ = h(t) ∗ x(t), (D-5)

which is the convolution representation for an arbitrary output of an LTI
system.

LTI System
x(t) y(t)

Figure D.2: Block diagram showing a Linear Time-Invariant (LTI) system.

Further analysis of LTI system can be made by employing the Fourier
transform defined by

f̃(ω) = Ff(t) =
∫
f(t)e−iωtdt (D-6)

An LTI system described in the time domain can be characterized by
its impulse response h(t); likewise, for analysis in the frequency domain, the
system can be characterized by H(ω) = Fh(t), called the transfer function
of the system. By applying the Fourier transform to equation (D-5), and
exploiting the convolution property of the Fourier transform,

Y (ω) = H(ω)X(ω). (D-7)
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Now let the input to a given LTI system be given by the harmonic
function x(t) = eiω0t, where ω0 is some fixed frequency. The output will be
given by application of the convolution integral,

y(t) =
∫
h(τ)x(t− τ)dτ,

=
∫
h(τ)eiω0(t−τ)dτ,

= eiω0t
∫
h(τ)e−iω0τdτ. (D-8)

The integral on the right-hand side of (D-8) can be recognized as the
transfer function of the system at the point ω = ω0, that is,

y(t) = H(ω0)eiω0t = H(ω0)x(t), (D-9)

which shows that exponentials are the eigenfunctions of LTI systems, with
eigenvalue given by the system’s transfer function at the corresponding point
to the frequency of the exponential.

This result also shows that, for electromagnetic problems, the response
of a particular system to an harmonic excitation given by eiω0t is equal in
magnitude to the impulse response of that system for that particular frequency,
that is,

|y(t)| = |H(ω0)eiω0t| = |H(ω0)|, (D-10)

which allows results from time-domain simulation methods and electromag-
netic techniques in the frequency domain to be readily compared.
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