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Abstract

Simon da Rosa, Guilherme; Bergmann, José Ricardo (Advisor);
Lisboa Teixeira, Fernando (Co-Advisor). Pseudo-Analytical
Modeling for Electromagnetic Well-Logging Tools in
Complex Geophysical Formations. Rio de Janeiro, 2017.
299p. Tese de Doutorado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

This research presents a study on numerical techniques to model
the electromagnetic propagation in geophysical formations commonly
encountered in oil well drilling. The employment of electromagnetic sensors
surrounding the drill bit allows inferring the constitutive parameters of the
soil around the well. In recent years, advances in electromagnetic logging
technology have enabled the real-time modeling of this problem. In this way,
the drilling direction can be guided in order to maximize the exploitation of
oil, gas, and other fossil hydrocarbons. The complex geophysical formations
that are prevalent in this type of problem can be effectively handled using
brute-force numerical techniques such as finite-differences, finite-elements
and finite-volumes. However, these techniques suffer from relatively high
cost in terms of both computer memory and CPU time. The advancement
of real-time logging technology demands approaches that are more efficient
than purely numerical methods. In this work, we employ the mode-matching
technique combining attractive features of the well-known pseudo-analytical
approaches to obtain a new technique for analyzing directional well-logging
tools in anisotropic formations with both radial and axial stratifications.
The proposed technique allows to model problems not yet explored, but
with a strong technological motivation, such as electromagnetic propagation
along curved wells and drilling along inclined layers. We present a series of
validation results showing that the novel technique introduced in this study
can model accurately and efficiently electromagnetic logging sensors used in
oil and gas exploration.

Keywords
Well-logging sensors; Mode matching methods; Anisotropic media;

Multilayered media.
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Resumo

Simon da Rosa, Guilherme; Bergmann, José Ricardo; Lisboa
Teixeira, Fernando. Modelagem Pseudoanalítica para
Ferramentas de Perfilagem Eletromagnética em Formações
Geofísicas Complexas. Rio de Janeiro, 2017. 299p. Tese de
Doutorado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Esta tese apresenta um estudo sobre técnicas de modelagem numérica
utilizadas na análise da propagação eletromagnética em formações geofísicas
comumente encontradas na perfuração de poços de petróleo. O emprego
de sensores eletromagnéticos adjacentes à broca de perfuração permite a
inferência dos parâmetros constitutivos do solo ao redor do poço. Nos
últimos anos, os avanços da tecnologia de perfilagem eletromagnética
permitiram a modelagem em tempo real do problema, possibilitando
direcionar a perfuração do poço a fim de maximizar a exploração de petróleo,
gás, e outros hidrocarbonetos fósseis. Formações geofísicas complexas são
predominantes neste tipo de problema, e geralmente são modeladas usando
técnicas numéricas de força bruta como os métodos de diferenças finitas, dos
elementos finitos ou dos volumes finitos. No entanto, estas técnicas têm um
custo computacional relativamente alto em termos de memória e tempo de
processamento. O avanço da tecnologia de perfilagem em tempo real requer
abordagens mais eficientes. Neste trabalho nós empregamos o método do
casamento de modos combinado com uma série de características positivas
dos métodos pseudoanalíticos conhecidos na literatura para obter uma
técnica inédita que permite analisar poços direcionais com estratificações
radiais e longitudinais em formações geofísicas anisotrópicas. A técnica
proposta permite modelar problemas ainda não explorados, mas com
motivação tecnológica iminente, como a propagação eletromagnética ao
longo de poços curvados e a perfuração em camadas inclinadas em relação ao
eixo axial do poço. Nós apresentamos uma série de resultados de validação
que demonstram que a técnica introduzida neste trabalho pode modelar de
forma acurada e eficiente sensores de perfilagem eletromagnética usados na
exploração de petróleo e gás.

Palavras-chave
Sensores de prospecção de petróleo; Métodos de casamento de modos;

Meios anisotrópicos; Meios estratificados.
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The following is a list of the principal symbols and the notation used
throughout the dissertation. Other symbols are also defined within the text.

2D and 3D The two- and three-dimensional spaces,
respectively.

A-NMM and R-NMM Axial and radial versions of the Numerical Mode-
Matching technique, respectively.

AR and PD Amplitude ratio and phase difference of the voltages
received by a pair of antennas, respectively.

α̂ A unit vector pointing to direction α.

exp(−iωt) Time-harmonic dependence for the electromagnetic
vector phasors. The time and angular frequency are
depicted by t and ω, respectively.

FDs , FEs and FVs Brute-force numerical techniques: finite differences,
finite elements and finite volumes, respectively.

FDTD Finite-difference time-domain technique.
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1
Introduction

1.1
General Introduction

Various numerical techniques have been used over the years for modeling
logging-while-drilling (LWD) and measurement-while-drilling (MWD) tools
used in hydrocarbon exploration. Analytical techniques were used in [14–16] to
solve the problem of LWD sensors in layered formations. These techniques are
numerically efficient, but appear restrict to the modeling of two-dimensional
(2D) geophysical formations.

The complex formations that are prevalent in this type of problem can be
handled using brute-force three-dimensional (3D) numerical techniques based
on the spatial discretization such as finite-differences (FDs), finite-elements
(FEs) and finite-volumes (FVs) [6, 7, 17–20].

The finite-difference time-domain (FDTD) or Yee’s method [21] is a very
popular technique for modeling the electromagnetic propagation in complex
environments. Modern FDTD implementations use very effective absorbing
boundary conditions to simulate an infinite unbounded computational domain,
and this technique have been receiving a lot of attention for the modeling of
electromagnetic LWD sensors. However, as all others brute-force approaches,
FDTD suffer from relatively high cost in terms of both computer memory and
CPU time.

An alternative way to solve 3D problems are the numerical mode-
matching-based techniques, which can provide a middle-ground in terms of
computational costs between brute-force and pseudo-analytical techniques [6,
8, 10, 15, 22–32]. Typically, these methods combine a 1D-FE solution in one
coordinate direction with an analytical field expansion in the others transversal
directions.

In typical computational electromagnetics (CEM) applications, we know
the sources and the propagation media, such the direct problem can be
promptly solved by means of Maxwell’s equations. As the soil formation
surrounding the sensor is unknown, the modeling of a LWD tool requires the
solution of the inverse problem: we know the sources and by measurements of
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radiated fields, we can estimate the constitutive parameters of the media. In
this process, the key point to success are fast and accurate CEM methods.

Since the frequency of operation and physical parameters (e.g. the
resistivity of the Earth formation) in many well logging problems can vary
by several orders of magnitude, it is important to ensure that the method of
analysis is sufficiently robust to yield accurate solutions under a wide range
of input parameters. In some circumstances, the computational cost required
by brute-force techniques can become prohibitive. To handle this problem, we
need to explore new semi-analytical approaches that are more efficient than
purely numerical ones. With that in mind, the objectives of this research are:
the development of new CEM techniques to accurately model typical scenarios
of oil and gas exploration, including the modeling of complex directional wells.
In addition, we want a robust algorithm to address the problem based on
geometrical and physical interpretations in order to reveal directions for the
inverse problem.

In this dissertation, we explore novel concepts of the axial mode-matching
combining attractive features of the pseudo-analytical techniques, to obtain a
new flexible and computationally efficient technique for analyzing directional
well-logging tools in anisotropic formations which can be easily extended to
modeling wells with curvature.

1.2
Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we present a brief
description of well-logging sensors and the typical electromagnetic environment
encountered in practical drilling prospecting. We present the state-of-art of
electromagnetic LWD technologies provided by the top two world’s largest
oilfield service companies. The engineering solution of these sensors; such as
the antennas geometry, operating frequencies, among others; will be explored
in details. We also present several features and specifications of commercial
resistivity LWD sensors employed in modern directional drilling. At the end
of this chapter, we present the solution strategy we proposed to model the
problem at hand.

In Chapter 3, we present an efficient mode-matching technique to analyze
tilted-coil antennas (TCAs) in anisotropic geophysical formations. In this
problem, a number of coil antennas with arbitrary relative tilt angle with
respect to the symmetry axis are used to radiate electromagnetic fields in
a cylindrically layered medium comprised of a metallic mandrel, a borehole,
and a surrounding layered Earth formation. This configuration corresponds
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to that of directional well-logging tools used in oil and gas exploration.
Our technique combines closed-form solutions for the Maxwell’s equations in
uniaxially anisotropic and radially-stratified cylindrical coordinates with the
generalized scattering matrix (GSM) at each axial discontinuity based on the
mode-matching technique. The field radiated by a transmitter TCA source is
represented by a set of modal coefficients which, after computation using GSM
matrices, are used to compute the transimpedances. We present validation
results which show that our technique can efficiently model directional well-
logging tools used for oil and gas exploration.

In Chapter 4, we study the well-logging tools response along directional
wells. We present a novel pseudo-analytical formulation to handle complex 3D
oriented wells. The problem is approximated by using junctions of segments
of toroidal-sector radially-stratified waveguides. We present a procedure to
decouple the axial fields in local toroidal coordinates, as well as a perturbation
series solution in terms of the torus curvature. We present numerical results
which demonstrate that the presented method can accurately model the
electromagnetic propagation inside curved boreholes. The computational cost
of the novel technique is just a fraction of that required by an FDTD
simulation.

In Chapter 5, we explore the mode-matching technique as an alternative
to modeling dipping-bed boundaries. A preliminary mathematical description
of the problem is presented.

Finally, Chapter 6 summarizes the most important results showed in
this dissertation. Proposed activities for future works based on the generalized
directional mode-matching technique are also pointed out.
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2
Well-Logging Tools and its Environment

2.1
Introduction

The process of prospecting of hydrocarbons reservoirs in the Earth’s
formation is a topic of great interest to engineers and scientists involved in
oilfield exploration. Well-logging evaluation is a process in which sensors are
placed inside a drilled borehole in order to acquire information of the soil
formation properties as the porosity and the electrical resistivity.

Over the last decades, the conventional wireline logging technology was
a dominant procedure, where electrical cables carry the sensor tool down to
the borehole after the drilling completion. More recently, measurement-while-
drilling (MWD) or logging-while-drilling (LWD) sensor tools have allowed the
execution of the logging and drilling processes at same time of the borehole
placement. This type of well-logging sensor will referred as real-time LWD
tool along this dissertation. The focus of the dissertation is on the study and
development of mathematical techniques to modeling electromagnetic LWD
sensors due the economical importance of this technology for the oil and gas
industry.

Typical formation scenario present in oilfield prospecting includes a series
of fractured soil formations whose the electromagnetic constitutive parameters
(permittivity and permeability) can be often assumed uniform within a given
layer. These formation layers are often anisotropic and may display a high
electrical conductivity.

In most drilling systems, the drill collar rotates and transmits weight to
the drill bit, which grinds and crushes rocks into small particles; the drilling
cuttings. To help the drilling process, the borehole is filled with mud to cooling
and lubricating the bit. The mud is pumped down through the drill pipe
and wash away the cuttings at the bit and then flows back to the surface
of the well. The drilling mud can either presents high conductivity (water-
based mud) or low conductivity (oil-based mud), and depending on the soil
porosity along the well, the mud can infiltrate into the formation. This invasion
zone is formed by a transition media between the mud and the soil formation,
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whose electrical properties are intermediate to the inner-borehole mud and the
outside-surrounding formation.

In this chapter we will describe some aspects of LWD sensors, as
their geometries and electromagnetic characteristics. Additionally, we present
typical specifications for directional wells placement. After a brief review on
usual computational electromagnetics (CEM) algorithms, we finally present
a novel solution strategy to modeling LWD tools in complex geophysical
formations.

2.2
Electromagnetic Well-Logging Sensors

The ability of a portion of the soil to conduct electricity is directly related
to the amount of water present in the geophysical formation. By understanding
bed resistivity, it is possible to determine the hydrocarbon saturation in a
formation and its relation with the porosity of the soil [33, Ch. 2]. LWD tools
are typically comprised of an array of coil antennas wrapped around a metallic
mandrel, which is located inside a borehole, and placed close to the drill bit,
as illustrated in Fig. 2.1. The operating frequency for this tools range from
100 kHz to about 1 GHz; in which 2-MHz sensors are the most common.
As the operating wavelength is very large (150 m at 2 MHz) compared to
the borehole diameter (about 6 to 30 in, where 1 in = 2.54× 10−2 m), and as
typically the media is non-magnetic and lossy, the conduction currents are very
large compared to the displacement currents. In real-world applications, precise
measurements of only the electromagnetic conductivity (or its corresponding
inverse, the resistivity) are allowed1. By this reason, electromagnetic LWD
tools are known as resistivity sensors.

Several drilling contractors provide today electromagnetic tools for LWD
solutions, among them we highlight the sensors: PeriScope 15 (provide by
Schlumberger) and Azimuthal Deep Resistivity Sensor (ADR) (provided by
Halliburton). In each of these sensors different engineering solutions are
employed to explore the formation resistivity of the soil around the borehole.
A common feature presence in all of these LWD tools is an antenna array
wrapped around the metallic mandrel, as illustrated in Fig. 2.2 and Fig. 2.3.
Some solutions employ various transmitters and receivers antennas, disposed at
various spacing, and operating at a variety of frequencies. Typically, horizontal-
coil antennas are employed, but some LWD tools use tilted-coil antennas in
order to achieve azimuthal sensibility.

1Empirical relationships between relative dielectric constant and resistivity can be found
in [34,35].
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In geophysical prospecting using LWD tools, the parameters of interest
are the amplitude ratio (AR) and phase difference (PD) between the voltages
received by the sensor antennas. The relation of the measured voltages and
the resistivity of the Earth formation can be established by means of inversion
algorithms based on the electromagnetic simulations of several drilling scenar-
ios. Real-time logging technology demands accurate and numerically efficient

Figure 2.1: Geometry of a triaxial TCA well-logging tool (antennas TX, RX1
and RX2) within a stratified geophysical formation.

Figure 2.2: PeriScope 15 from Schlumberger. This sensor operates at 2 MHz
and is comprised by 6 horizontal-coil transmitter antennas and 4 receiver
antennas (2 horizontal-coils and 2 tilted-coils) that provide the azimuthal
sensibility. Image obtained in [1, Fig. 3].
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Figure 2.3: ADR sensor from Halliburton. This is a multi-frequency sensor that
operates at 125 kHz, 500 kHz and 2 MHz, and is comprised by 6 horizontal-
coil transmitter antennas and 3 tilted-coil receiver antennas that provide the
azimuthal sensibility. Image obtained in [2, Fig. 3].

simulation algorithms in order to proper estimate the formation outside the
borehole at the same time that it is drilled.

2.3
Directional Wells

Recently, the directional drilling has become increasingly prevalent in
new oilfields exploration in order to minimize the operational cost. Compared
to convention (i.e. strictly vertical) drilling, directional drilling yield several
advantages for oil and gas exploration as oilfield productivity can be increased
by deploying multiple wells drilled from a single platform, as depicted in
Fig. 2.4. Additional benefits of directional drilling include [33, Ch. 7]: (1)
drilling of a new well to intersect and recover an uncontrolled well, (2) sidetrack
an old well to prospect new reservoirs, (3) horizontal wells placement, among
others.

The main geometrical parameter that characterize a directional well is
the deviation angle, viz. θd, (in relation to the vertical axis) of the planed
borehole trajectory. The change in inclination over a normalized length of the
well is known in technical literature as built rate (and often termed as dogleg
severity); denoted here as q and usually expressed in degrees per feet (ft),
where 1 ft = 12 in. With help of the directional well depicted in Fig. 2.5, we
can easily find trigonometric relations between the desired deviated angle θd
and the equipment built rate q with other geometrical quantities. The radius
of curvature of the bent stretch is given by R = 180/(π q), and consequently,
the length of this stretch is L = π R θd/180 = θd/q, both expressed in feet.

Directional wells are normally classified into three groups according the
rate in which its inclination changes in the vertical plane [3], [36, pp. 111–
120], [37], [38]: short-, medium- and long-radius wells (see the comparison of
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horizontal well radii depicted in Fig. 2.6, where feasible horizontal stretches
are also presented). The drilling profile needed to a horizontal well placement
dictates the build rate and the drilling technology required. Drill contractors
typically classify horizontal wells according the specification parameters shown
in Table 2.1.

Long-radius wells have a relatively low curvature and it make use of
conventional completion techniques [37]. Medium-radius lateral was developed
to allow conventional directional drilling equipment and logging techniques
to drive horizontal drainage wells [3, 37]. Many manufacturers offer drilling
assemblies that are capable of drilling medium-radius wells by means of a
near-bit bent motor used to adjust the degree of bending [36]. Short-radius
horizontal wells have build rates of 1.5◦ to 3◦ per ft, which equates to radii
greater than 20 ft. These wells are drilled with very small diameter boreholes

Figure 2.4: Several wells drilled from the same platform.

Figure 2.5: Simple directional well with its main geometrical parameters.
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Table 2.1: Horizontal-well classifications (data from [3, p. 24])
Well type Built rate Radius of curvature

Long 2◦ to 6◦ per 100 ft 3000 to 1000 ft
Medium 8◦ to 50◦ per 100 ft 700 to 125 ft
Short 150◦ to 300◦ per 100 ft 40 to 20 ft

Figure 2.6: Long-, medium- and short-radius directional wells classified ac-
cording its drilling build rates. This image is based on an illustration shown
in [3, p. 24].

and are most commonly employed as a re-entry from an old well, which of
course requires specialized drilling tools and techniques [37].

Although the modern drilling techniques handle short-radius directional
wells, commercial resistivity LWD sensor such as the ADR sensor [39] and
the PeriScope 15 [40] only allow real-time logging with built rates lower than
30◦ per 100 ft, with a radius of curvature greater than 191 ft.

To increase the oil recovery, the reservoir can be exposed by lateral
wellbores coming from an initial horizontal well, as depicted in Fig. 2.7. In
this case, the production well can now presets bending in both horizontal and
vertical directions, by using a three-dimensional (3D) geosteering.

2.4
On the Problem Statement and the Proposed Solution

The electromagnetic modeling of LWD tools inside complex geophysical
formations is a challenging task to CEM. Several complications arrive due the
non-conformal boundaries involved in the problem. Looking for computatio-
nally efficient CEM, in this work we combined several analytical solutions for
well-known problems with new techniques developed herein.
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Figure 2.7: A typical planed well hole profile with directional drilling bending
in both horizontal and vertical directions. This image is based on an illustration
shown in [4, Fig. 7].

The formulation we proposed herein is based on a vector modal eigenfield
expansion of Maxwell’s equations in cylindrical coordinates. This result will
be employed to find eigenfields in toroidal coordinates. The choice of this
coordinate system was motivated because we can approximate a directional
well path using sections of toroidal structures, each one with a constant bending
curvature2 as illustrated in Fig. 2.8(a). Next, to satisfy the boundary conditions
at each junction, we have employed the Lorentz reciprocity theorem, which
allow us to derive a new generalization to the mode-matching approach based
on the conservation of the reaction [41], [42, pp. 399–400].

Logging-while-drilling (LWD) tools, as that illustrated in Fig. 2.1, are
commonly modeled using a mode-matching-based formulation [10, 31, 43],
whereby a finite-element (FE) discretization is used along each horizontal layer
of a cylindrical stratified medium. In the vertical direction, an analytical mode-
matching procedure is then used to match the fields between each horizontal
layer. This approach is known as numerical mode-matching (NMM), but will be
denoted here in a more descriptive form: axial NMM (A-NMM). This approach
is computationally much more efficient than 3D brute-force CEM techniques
such as finite-differences (FDs), FEs and finite-volumes (FVs) [5,17,20,44,45],
and, as such, it is more suited for integration into reconstruction (inversion)
algorithms.

A typical LWD tool moves with the downhole drilling so that, at each
new tool position along the well, it is necessary to recalculate several matrices

2The assumption of a constant curvature will, of course, greatly simplify the mathema-
tical analysis for the problem at hand. Regardless of this analytical convenience, the current
directional drilling technology also bore wells with constant bending angles along a stretch
of the well, as described above in Fig. 2.6 and in Table 2.1.
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(a) Straight to bent junction

(b) R-NMM approach (c) A-NMM approach

Figure 2.8: Junction between a straight and a bent structure (a), and the
attempts to define a R-NMM in (b) and an A-NMM in (c).
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incorporating the reflections from the horizontal layers above and below the
source and the receiving antennas. This is a drawback of the A-NMM, as
pointed out in [46]. In [8, 27, 28, 46], an alternative NMM approach was
proposed to circumvent this issue in LWD applications. As both transmitting
and receiving LWD antennas are placed around a metallic mandrel inside the
borehole and typically have the same radius, they are located in the same
radial layer regardless of the axial position of the tool in the logging well.
Therefore, it becomes more efficient to first perform a mode expansion of the
fields along vertical direction and then a mode-matching along each radial
layer. This approach will be denoted here as R-NMM. Some antennas of the
LWD sensor have a non-zero span along the axial direction, such the vertical
mode expansion could be seen as more appropriate to this type of problem in
the case of straight wells.

Although suitable to model TCA tools in straight wells, the approach
used in [8] cannot be easily generalized to curved wells, where axial bending
is present. In order to clarify possible issues, consider a radially-stratified and
axially-layered structure as those shown in Fig. 2.9(a) and Fig. 2.9(c). Both
the A-NMM and R-NMM approaches can be used in this case. Consider now
that this structure becomes axially bent, with a constant curvature, R−1, as
illustrated in Fig. 2.9(b) and Fig. 2.9(d). Notably, we can continue to using
both A-NMM and R-NMM to proper model the structure: the R-NMM will
be enforced at each radial interface and the A-NMM will be used to match
fields along axial boundaries. However, in case of the junction of a straight to
bent well, as shown in Fig. 2.8, our attempts to model this problem using the
R-NMM have failed because we will always need a A-NMM as highlighted in
Fig. 2.8(b). In this case, the A-NMM (depicted in Fig. 2.8(c)) becomes a more
natural choice.

In next chapters, novel concepts for electromagnetic field simulations are
introduced via pseudo-analytical enforcements to provide a flexible technique
to analyzing LWD tools in complex geophysical formations. The presented
technique does not rely on spatial discretization as former well-known CEM
methods, resulting in a robust and numerical efficient algorithm and a more
practical forward engine for integration into inversion algorithms designed to
estimate the Earth formation properties given the LWD tool response.
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(a) Straight structure for R-NMM (b) Bent structure for R-NMM

(c) Straight structure for A-NMM (d) Bent structure for A-NMM

Figure 2.9: Radially-stratified and axially-layered structures with constant
axial curvature.
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3
Analysis of Well-Logging Tools in Vertical Wells

3.1
Introduction

Over the years, various techniques have been used to properly model
logging-while-drilling (LWD) tools used in hydrocarbon exploration [8,14,15,
26,47,48]. The complex geophysical formations that are prevalent in this type of
problem can be handled using brute-force numerical techniques such as finite-
differences (FDs), finite-elements (FEs) and finite-volumes (FVs) [6, 7, 17–20].
However, these techniques suffer from relatively high cost in terms of both
computer memory and CPU time. LWD tools are typically comprised of
coil antennas wrapped around a metallic mandrel which is located inside a
borehole, as illustrated in Fig. 3.1. This geometry can be well approximated
as a cylindrically stratified medium [10, 14]. In this case, pseudo-analytical
methods [10, 14, 29, 47–50] are a good alternative to brute-force methods as
the former provide more efficient algorithms and a more practical forward
engine for integration into inversion algorithms designed to estimate the Earth
formation properties given the tool response [26,48,49].

In [14] and [15, Ch. 3] a pseudo-analytical technique was used to model
small dipoles and coil antennas in a radially-layered structure using closed-form
2 × 2 reflection and transmission matrices. This technique was generalized
to model tilted-coil antennas (TCAs) in a recent work presented in [47].
Another pseudo-analytical technique was used in [15, Ch. 2], [16], but now
to model point sources in an axially-layered structure. In all these approaches,
to solve radial or axial stratifications, the pseudo-analytical methods shown
the field solutions represented by an inverse Fourier transform in z-direction
over a sum of azimuthal harmonics. It is well-known that the inverse Fourier
transform present numerical convergence issues when radial position of the
observation point is the same, or very near, the radial position of the source.
In order to model typical logging-while-drilling (LWD) tools, generally we
consider that both transmitter and receiver antennas share the same radius,
and to correctly solve the inverse transform we need to extract the direct field
from the integration and then combine its contribution to calculate the final
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Figure 3.1: Geometry of a triaxial TCA well-logging tool within a stratified
geophysical formation.

solution [6, 14,47,49].
To the best of our knowledge, the pseudo-analytical modeling of LWD

tools appear restrict to two-dimensional (2D) structures with only axial
stratifications, or with only radial stratifications. An alternative way to solve
three-dimensional (3D) problems is to employ the numerical mode-matching
(NMM) techniques, which provides a middle-ground in terms of computational
costs between brute-force and pseudo-analytical techniques [6,8,10,15,22–32].
Typically, the NMM combines the FD or FE method in one coordinate
direction with an analytical (modal) expansion in the others transversal
directions. The NMM is very accurate and still flexible enough to account for
inhomogeneities in the Earth formation along both radial and axial directions.

Tilted-coil antennas (TCAs) are routinely utilized in well-logging
tools [18, 47–49] to provide directional response (azimuthal sensitivity). Well-
logging tools employing TCAs are also often called triaxial tools. In [8], the
NMM was extended to model triaxial tools in vertical wells with both radial
and axial stratifications using a vertical mode expansion in conjunction with a
mode-matching along the radial discontinuities. This approach will be denoted
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here as R-NMM. The NMM can be also formulated in an alternate fashion, i.e.,
with a horizontal mode expansion [15,26,29] combined with a mode-matching
across the stratifications in the axial direction. This approach will be denoted
here as A-NMM.

Most prior A-NMM formulations approximate the TCAs used in triaxial
tools as (infinitesimal) magnetic dipoles. This is done to facilitate the source
expansion and subsequent analysis. Here, we do not make this approximation
and instead incorporate the actual TCA source geometry into the mode-
matching formulation. Since a TCA has a non-zero span along the axial
direction, the vertical mode expansion could be seen as more appropriate
to this type of problem in the case of straight wells. Although suitable to
model TCA tools in straight wells, the approach used in [8] cannot be easily
generalized to curved wells, where axial bending is present. This type of well
geometry occurs in deviated drilling. In this case, the A-NMM becomes a more
natural choice to be combined with the perturbation theory used to model bent
waveguides presented in [51]. Regardless of the choice for the modal expansion,
since the frequency of operation and physical parameters (in particular the
resistivity of the mud fluid and the surrounding Earth formation) in typical
well-logging problems can vary by several orders of magnitude, it is important
to ensure that the method of analysis is sufficiently robust to yield accurate
solutions under a wide range of input parameters [5,50,52,53]. In this chapter,
we introduce a new axial mode-matching formulation to provide a flexible
technique for analyzing directional well-logging tools in anisotropic formations.
The proposed formulation is based on an analytical eigenmode expansion that
does not rely on spatial discretization. The advantage of this kind of approach
is that the fields can be represented by a sum of a relatively small number of
eigenmodes compared to the number of grid points or discrete mesh required
in another techniques.

The remaining of this chapter is organized as follows. Section 3.2–
Section 3.6 discuss the main ingredients adopted to increase the robustness of
the proposed algorithm, among them: (1) a radial perfectly matched layer to
mimic the open boundary problem based on a bounded domain with a discrete
set of modes and obviating the need to account for radiation modes, (2) an
efficient deflationary process to remove the poles of the characteristic equation
enabling a robust computation of the eigensolutions of the characteristic equa-
tion, (3) the use of Lorentz reciprocity theorem to expand the source in terms
of modal fields propagating in the axial direction, thus facilitating the mode-
matching at axial discontinuities, (4) a stationary formula based on conserva-
tion of reaction to obtain the generalized scattering matrices at regions with
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axial stratification, and (5) a Jacobi-Anger expansion to obtain fast-converging
expressions for the transimpedances (receiver voltages due to a unit current
excitation) when the TCAs traverse an axial discontinuity. Section 3.7 presents
numerical results to validate the technique and demonstrate its usefulness in
predicting the response of triaxial tools in complex anisotropic geophysical
formations. Section 3.8 presents a comparison between the proposed techni-
que versus an improved R-NMM approach recently reported in the literature.
Section 3.9 presents a comprehensive analysis of well-logging sensors housed
inside grooves within the metallic mandrel. Section 3.10 presents some conside-
rations for the modeling of wireless telemetry systems for oilfield applications.
Finally, Section 3.11 provides some concluding remarks.

3.2
Electromagnetic Fields in Cylindrical Structures

The geometry shown in Fig. 3.1 is used to model the geophysical for-
mation around a typical well-logging tool. We assume the sensor is placed
sufficiently far from the drill bit, so that we can approximate the vertical for-
mation as an unbounded, axially-stratified media. In the radial direction, each
region is modeled as a bounded, radially-stratified waveguide. Field solutions
for Maxwell’s equations in uniaxially anisotropic multilayered cylindrical struc-
tures are well-known, and to avoid repetition, we adopt here a notation similar
to that in [6, 8, 15, 47, 48, 50] by assuming a time-harmonic dependence in the
form exp(−iωt). It should be observed that the notation adopted here despite
being very similar to that in [48] and [15], differs slightly in a few places. A
list of principal symbols employed in this dissertation is presented in page 21.

The Maxwell’s equations in a homogeneous anisotropic medium are

∇× E = iω ¯̄µ ·H, (3-1a)

∇×H = −iω¯̄ε · E + J, (3-1b)

∇ · (¯̄ε · E) = %, (3-1c)

∇ · (¯̄µ ·H) = 0, (3-1d)
where E and H are the electric and the magnetic fields, respectively, due to
the impressed electric current and charge densities J and %.

Our media is characterized by the complex permeability

¯̄µ = diag(µs, µs, µz), with µ{s,z} = µ0µ{s,z} (3-2)

and permittivity
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¯̄ε = diag(εs, εs, εz), with ε{s,z} = ε0εr{s,z} + iσ{s,z}/ω (3-3)

tensors, represented in cylindrical coordinates. We have decomposed the ten-
sors into axial (along z) and transverse components, with subscripts z and s,
respectively. We have also expressed the constitutive parameters in terms of
the usual vacuum constants ε0 and µ0.

We next consider the fields in a source-free region and decompose the
problem into axial and transversal components as

G = Gs + ẑGz, (3-4)

in which G = E or H, Gz = Ez or Hz, and

∇ =∇s + ẑ
∂

∂z
, (3-5)

where ∇s denotes the transverse two-dimensional nabla operator given by

∇s = ρ̂
∂

∂ρ
+ φ̂

1
ρ

∂

∂ρ
. (3-6)

Taking the curl of the equation (3-1a) and projecting the resulting vector
onto ẑ, we can find

ẑ · [∇× (∇× E)] = iωẑ · [∇× (¯̄µ ·H)]. (3-7)

We will show that the above scalar wave equation can be represented in a more
familiar form.

As the problem at hand deal with homogeneous media, the right-hand
side (RHS) of (3-7) can be simplified by using

ẑ · [∇× (¯̄µ ·H)] = µsẑ · (∇×H). (3-8)

Noting that ẑ · (∇×H) = −iωεzEz , we can derive

ẑ · [∇× (¯̄µ ·H)] = −iωµsεzEz. (3-9)

Consequently, (3-7) becomes

ẑ · [∇× (∇× E)] = ω2µsεzEz. (3-10)

The left-hand side (LHS) of (3-10) can be simplified after using the vector
identity

∇×∇× E =∇(∇ · E)− (∇ ·∇)E. (3-11)
The divergence of the electric and magnetic fields do not vanish anymore

as in the isotropic media [15, 54]. The Gauss’s law for magnetism (3-1d) can
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be decomposed as

∇ · (¯̄µ ·H) =
(
∇+ ẑ

∂

∂z

)
· (µsHs + ẑHz)

= µs∇s ·Hs + µz
∂Hz

∂z

= µs∇ ·H− µs
(

1− µz
µs

)
∂Hz

∂z
= 0, (3-12)

and a dual equation can be easily established for the electric field, such we can
derive

∇ · E =
(

1− εz
εs

)
∂Ez
∂z

, and (3-13)

∇ ·H =
(

1− µz
µs

)
∂Hz

∂z
. (3-14)

As expected,∇·E and∇·H vanish for the isotropic limits εs = εz and µs = µz.
Combining the above results when we take the projection of equation

(3-11) onto ẑ allow us to find the LHS of (3-10):

ẑ · [∇× (∇× E)] = ẑ ·∇(∇ · E)− ẑ · (∇ ·∇)E (3-15)

=
(

1− εz
εs

)
∂2Ez
∂z2 −∇

2Ez, (3-16)

where ∇2 is the scalar Laplacian in cylindrical coordinates given by

∇2 = 1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂φ2 + ∂2

∂z2 . (3-17)

Finally, after substituting (3-15) into (3-10), one obtains

∇2
sEz + εz

εs

∂2Ez
∂z2 + ω2µsεzEz = 0, (3-18)

in which the two-dimensional Laplacian operator is defined by

∇2
s = ∇2 − ∂2

∂z2 . (3-19)

A wave equation dual to (3-18) can be derived for the axial magnetic
field using a procedure analogous to that shown above. It follows that

∇2
sHz + µz

µs

∂2Hz

∂z2 + ω2µzεsHz = 0. (3-20)

It is clear that (3-18) and (3-20) are homogeneous Helmholtz wave
equations for Ez and Hz whose solutions can be constructed by the method
of separation of variables [55, Ch. 5]. The Helmholtz equation in cylindrical
coordinates
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1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1
ρ2
∂2ψ

∂φ2 + pz
ps

∂2ψ

∂z2 + ω2pzp̃sψ = 0, (3-21)

where ψ = {Ez, Hz}, p = {ε, µ} and p̃ = {µ, ε}, can be solved by the elementary
wave functions of the form

Rn

(√
pz
ps
kρρ

)
Φ(nφ)Z(kzz), (3-22)

where Φ(nφ) and Z(kzz) are harmonic functions and Rn(·) is a general solution
for the Bessel equation of integer order n. The detailed solution for (3-21) is
presented in Appendix A.

Linear combination of the elementary wave functions are also a solution
to (3-21) [55, p. 200], such that the general solution is in the shape of

ψ =
∑
n

∑
kz

Cn,kzRn

(√
pz
ps
kρρ

)
Φ(nφ)Z(kzz), (3-23)

where the double summation is over all possible values of n and kz, with
appropriated constants Cn,kz given by a source boundary condition. The
inclusion of a source implies in a non-homogeneous Helmholtz equation. The
Lorentz reciprocity theorem will be employed in Section 3.5 to find the modal
source amplitudes by using the source-free fields derived here.

3.2.1
Axial Fields

The forward-propagating axial fields can be written in a compact fashion
as Ez

Hz

 =
∞∑

n=−∞

∞∑
p=1

ez,np(ρ)
hz,np(ρ)

 einφ+ikz,npz. (3-24)

Notice that the sum over the azimuthal indices is taken through the positive
and negative integer values of n due to the choice of the exponential form
exp(inφ). Another commonly used form is a linear combination of sine and
cosine functions as stated in Appendix A, but in this case, the sum could
be restricted over the positive integer values of n due the parity of the
harmonic sinusoidal functions in relation to its arguments. Also, as we intend to
express the sources contribution into the axial direction, the form exp(ikz,npz)
appears appropriated indeed. Thus, we prefer the form shown in (3-24) because
the fields can be represented in a compacted shape, and, as will shown
in Section 3.3.5, a series of symmetric relations applies when we use this
representation.

The modal propagation constant in the z-direction is kz,np, and the radial
propagation constant kρ,np satisfies
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k2
ρ,np = k2

s − k2
z,np, k2

s = ω2µsεs. (3-25)

The azimuthal dependence of the fields is associated to index n, while p

refers to its radial dependency. Due to phase matching, the fields assume the
exp(ikz,npz) dependence throughout all layers over the transverse cross-section.

In order to simplify the notation, we will temporarily drop the modal
subscript np and also the argument of ez,np and hz,np, restoring them later
as needed. The radially-dependent coefficients in (3-24) are given by a linear
combination of first-kind Hankel and Bessel function of integer order n. In a
compact notation, we can write them asez,np

hz,np

 = ¯̄Hzn(kρρ)ā+ ¯̄Jzn(kρρ)b̄, (3-26)

where
¯̄Gzn(kρρ) =

Gn(keρρ) 0
0 Gn(khρρ)

 , (3-27)

with Gn representing H(1)
n or Jn. The field amplitudes ā and b̄ are vectors 2×1

to be determined from the boundary conditions, and are given by

ā =
aenp
ahnp

 , b̄ =
benp
bhnp

 . (3-28)

For simplicity, we have introduced ke,hρ = αe,hkρ in which the anisotropic
coefficients αe,h are given by

αe =
√
εz
εs
, αh =

√
µz
µs
. (3-29)

Under some conditions, the formulas in (3-26) suffer from the numerical
overflow of the Bessel and Hankel functions due extreme arguments and/or
orders. Recent studies have shown that this problem can be circumvented
through suitable rescaling of various expressions involved in the computational
chain [50, 52], as well as expressing (3-26) by the ratios of Bessel or Hankel
functions [53]. The LWD tools modeled in this dissertation do not required high
orders cylindrical functions, but for extreme conductivity media the techniques
reported in [50,52,53] need to be used.

3.2.2
Transversal Fields

The transversal fields components can be expressed as a combinations of
the axial ones, as will be shown in the following. The Maxwell’s curl equations
(3-1a) and (3-1b) in a source-free region can now be rewritten as
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∇s × (ẑEz)± ikz ẑ × Es = iωµsHs (3-30a)

∇s × (ẑHz)± ikz ẑ ×Hs = −iωεsEs (3-30b)

∇s × Es = iωµz ẑHz (3-31a)

∇s ×Hs = −iωεz ẑEz, (3-31b)
where we have assumed that the axial dependence of all field vectors match
with those in (3-24), i.e., exp(ikzz). In the above derivation we have replaced
∂/∂z by ikz.

Initially, by the vector multiplication of ẑ on both sides of the equations
in (3-30a) and (3-30b), and using the identities [54, p. 165]

ẑ × (∇s × ẑGz) =∇sGz, and (3-32)

ẑ × (ẑ ×Gs) = −Gs, (3-33)
and after a few manipulations, we can express the transversal fields as a
combinations of the axial ones as

Es = 1
k2
s

[ikz∇sEz + iωµ∇s × (ẑHz)] , (3-34)

Hs = 1
k2
s

[ikz∇sHz − iωε∇s × (ẑEz)] . (3-35)

In a compact shape, the ρ-dependent transversal fields can be written aseφ,np
hφ,np

 = ¯̄Hφn(kρρ)ā+ ¯̄Jφn(kρρ)b̄, (3-36)

eρ,np
hρ,np

 = ¯̄Hρn(kρρ)ā+ ¯̄Jρn(kρρ)b̄, (3-37)

where

¯̄Gφn(kρρ) = 1
k2
ρρ

 −nkzGn(keρρ) −iωµskhρρG′n(khρρ)
iωεsk

e
ρρG

′
n(keρρ) −nkzGn(khρρ)

 , (3-38)

¯̄Gρn(kρρ) = 1
k2
ρρ

ikzkeρρG′n(keρρ) −nωµsGn(khρρ)
nωεsGn(keρρ) ikzk

h
ρρG

′
n(khρρ)

 , (3-39)

where the ′ represents the first derivative with respect to argument of the
cylindrical functions. Similarly to previous definitions, Gn stands for H(1)

n in
the matrices associated to ā. In addition, Gn stands for Jn in the matrices
associated to b̄. The field components in (3-26) and (3-36) reduces to ones
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found in [48] and [29]1 for αh = 1, and reduces to the usual isotropic solution
found in [15, ch. 3] for isotropic media (αe,h = 1). Note that in the above
expressions for the transverse fields, the φ and z dependent exponential factor
has been omitted for simplicity. Also, the full expression involves the sums over
n and p indices, as expressed in (3-24).

3.3
Fields Along Radial Stratifications

Consider the radially-stratified waveguide shown in Fig. 3.2, composed
by N layers. Each layer is formed by an uniaxially anisotropic medium over
rj−1 < ρ < rj, j = 1, 2, . . . , N , and for 0 < φ < 2π.

Due to the linearly independence of the modal fields with exp(inφ)
dependence, we can enforce our boundary conditions for each nth harmonic
one at a time. The fields at each layer j can be written, in a shorthand notation
introduced in [15, Ch. 3], as

ḡjα =
[

¯̄Hαn(kjρρ) + ¯̄Jαn(kjρρ) ˜̄̄
R

(ρ)
j,j+1

]
āj, or (3-40)

ḡjα =
[

¯̄Hαn(kjρρ) ˜̄̄
R

(ρ)
j,j−1 + ¯̄Jαn(kjρρ)

]
b̄j, (3-41)

where ḡjα = [ejα hjα]t is a 2× 1 column vector with the electric and magnetic
field components in direction α = {ρ, φ, z}. In order to enforce the appropriated
boundary conditions at ρ = rj, we employ 2×2 generalized reflection matrices
˜̄̄
R

(ρ)
j,j±1 given by [15, Ch. 3]

Figure 3.2: Longitudinal and cross-sectional views of a radially-stratified
waveguide. Hard walls are depicted by the diagonal stripes.

1We found a misprint in the equation for the azimuthal electric field in [29, eq. 3]: the
contribution of the axial electric field should be multiplied by ikz.
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˜̄̄
R

(ρ)
j,j±1 = ¯̄R(ρ)

j,j±1 + ¯̄T (ρ)
j±1,j

˜̄̄
R

(ρ)
j±1,j±2

(
¯̄I − ¯̄R(ρ)

j±1,j
˜̄̄
R

(ρ)
j±1,j±2

)−1 ¯̄T (ρ)
j,j±1. (3-42)

where the local reflection and transmission matrices can be succinctly written
as

¯̄R(ρ)
j,j+1 = ¯̄D−1

ja

[ ¯̄Hφj+1,j
¯̄Hzj,j − ¯̄Hφj+1,j

¯̄Hzj+1,j
¯̄H−1
φj+1,j

¯̄Hφj,j

]
, (3-43a)

¯̄R(ρ)
j+1,j = ¯̄D−1

jb

[ ¯̄Jφj,j ¯̄Jzj,j ¯̄J−1
φj,j

¯̄Jφj+1,j − ¯̄Jφj,j ¯̄Jzj+1,j
]
, (3-43b)

¯̄T (ρ)
j,j+1 = ¯̄D−1

jb

[ ¯̄Jφj,j ¯̄Hzj,j − ¯̄Jφj,j ¯̄Jzj,j ¯̄J−1
φj,j

¯̄Hφj,j

]
, (3-43c)

¯̄T (ρ)
j+1,j = ¯̄D−1

ja

[ ¯̄Hφj+1,j
¯̄Hzj+1,j

¯̄H−1
φj+1,j

¯̄Jφj+1,j − ¯̄Hφj+1,j
¯̄Jzj+1,j

]
, (3-43d)

where j = 1, 2, . . . , N − 1 and

¯̄Dja = ¯̄Hφj+1,j
¯̄Hzj+1,j

¯̄H−1
φj+1,j

¯̄Jφj,j − ¯̄Hφj+1,j
¯̄Jzj,j, (3-44a)

¯̄Djb = ¯̄Jφj,j ¯̄Hzj+1,j − ¯̄Jφj,j ¯̄Jzj,j ¯̄J−1
φj,j

¯̄Hφj+1,j. (3-44b)

In the above we have employed a shorthand notation similar to that suggested
in [56], such that ¯̄Bαi,j = ¯̄Bαn(kiρrj), (3-45)
where ¯̄Bαn = ¯̄Hαn or ¯̄Jαn and α = {φ, z}.

The notation employed here is very similar to that introduced in [15].
However, we employ the extra superscript (ρ) in all scattering matrices relating
the radial discontinuities. This is because in Section 3.4.1 we use the superscript
(z) in the GSM matrices that associate fields across axial discontinuities. In
this manner, we have a clear identification of the distinct R and T matrices
used to incorporate the radial and the axial discontinuities.

The matrices ¯̄R(ρ) and ¯̄T (ρ) in (3-43) can be reduced exactly to those
shown in [56, eq. 31]. Despite the fact that the latter expressions are more
compact, we adopt the forms shown above because, as it will be shown later,
poles stemming from matrix inversions can be more easily addressed based
on ¯̄Dja and ¯̄Djb. Also note that for isotropic media ¯̄Hzi,j and ¯̄Jzi,j become
diagonal matrices, and (3-43) reduces to the well-know expressions for isotropic
media [15, Ch. 3], as expected.

3.3.1
Guidance Condition

On comparing (3-40) with (3-41), we can see that

āj = ˜̄̄
R

(ρ)
j,j−1b̄j, and b̄j = ˜̄̄

R
(ρ)
j,j+1āj, (3-46)

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 3. Analysis of Well-Logging Tools in Vertical Wells 47

or, alternatively we can write

( ¯̄I − ˜̄̄
R

(ρ)
j,j+1

˜̄̄
R

(ρ)
j,j−1)b̄j = (¯̄I − ˜̄̄

R
(ρ)
j,j−1

˜̄̄
R

(ρ)
j,j+1)āj = 0̄, (3-47)

which allow us to find a general guidance condition for the modes as

det( ¯̄I − ˜̄̄
R

(ρ)
j,j+1

˜̄̄
R

(ρ)
j,j−1) = 0. (3-48)

This condition holds for all j = 1, 2, . . . , N , but the corresponding dispersion
relations share the same set of eigenmode solutions. If we select j = N in
(3-48), since ˜̄̄

R
(ρ)
N,N+1 = ¯̄R(ρ)

N,N+1 [15], the solutions of characteristic equation

f(kz) = det
(

¯̄I − ¯̄R(ρ)
N,N+1

˜̄̄
R

(ρ)
N,N−1

)
= 0 (3-49)

are the discrete values of kz that contribute to our modal solution. We can
track solutions for (3-49) into the complex plane by means of the technique
presented in [57], but there is no guarantee that all desired eigenmodes will be
found. We first need to know the number of solutions to be found.

We can find all desired eigensolutions of (3-49) in a given region of the
complex plane kz (or kjρ) using the Argument Principle [58], [59, pp. 281–288]
and the technique shown in [60], but we first need a dispersion relation free of
singularities.

3.3.2
Radial Perfectly Matched Layer

The radial direction of the problem at hand is truncated by a perfectly
matched layer (PML) [61–63] to mimic an unbounded medium. The PML
extends over rPML < ρ < rN , as illustrated in Fig. 3.2. We use the complex
coordinate stretching formulation of the PML because it allow us to reuse all
close-form eigenmode formulas shown above. To this end, we first define a
one-to-one mapping of the radial coordinate ρ to a stretched ρ̃ [62, 64] as

ρ→ ρ̃ =
ˆ ρ

0
sρ(ρ′) dρ′. (3-50)

The use of an integral in the above ensures that ρ̃ varies smoothly, even if
sρ as discontinuities. Typically, the complex stretching variable sρ employ a
polynomial profile defined by

sρ(ρ) =


1, for ρ < rPML

1 + iαPML

(
ρ− rPML

rN − rPML

)q
, for rPML ≤ ρ ≤ rN

(3-51)

which result in the mapping
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ρ̃ =


ρ, for ρ < rPML

ρ+ iαPML
(ρ− rPML)q+1

(q + 1)(rN − rPML)q , for rPML ≤ ρ ≤ rN
(3-52)

The coordinate stretching does not formally change the appearance of
Maxwell’s equations [62, 64]. As a result, we can reuse the well-known closed-
form solutions by mapping the original (real) radial space into a complex
coordinate system. Note that in our approach the analytical expressions for
the field solutions are independent of the PML profile, and we just need
to assume an appropriated complex-value for the outermost radius of the
waveguide [57,62–64], i.e.,

rN → r̃N = r′N + ir′′N . (3-53)

We now need to proper set the values r′N and r′′N . The real value of
the domain truncation r′N must be large enough to allow the attenuation of
evanescent fields. In contrast, the complex domain of the radial direction r′′N
must be truncated using an appropriated value in order to absorbs the outgoing
waves (propagating modes) before they reach the boundaries of the simulated
domain.

Formations typically encountered in well drilling environment present
conductivity losses, such as the eigenmodes are complex and naturally suffer
attenuation before being reflected by an truncation hard-wall. In this case,
even a real-valued domain truncation can properly simulate the problem of
interest. To reduce the reflection by the truncating boundary, typical, we can
truncate radial domain as larger as few skin depths [6,61,63,65–68]. Thus, we
can define r′N as

r′N = δNαsd, (3-54)
where δN is the skin depth in the outermost layer and αsd is a constant.

A desired attenuation for the propagating waves dictates the value of
the imaginary radial boundary r′′N . For abs(r̃N)� 1, we can approximate the
cylindrical wave at the boundary truncation by a local plane wave. In this case,
the amplitude of the reflected wave due to a hard-wall placed at r̃N can be
approximated by

R ∼ ei2kNρr̃N . (3-55)
Further, it is convenient to write the modal radial wavenumber as kNρ =
kN cos θi, where θi can be interpreted as the local plane wave incident angle
with respect to n̂ = −ρ̂. For a normal incidence, viz., θi = 0, we can estimate
the value of r′′N using the desired reflection R(0) at the radial domain boundary
using

r′′N = − 1
k′N

[
log(R(0))

2 + k′′Nr
′
N

]
(3-56)
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Notice that for a loss-less media, k′′N = 0, the real part of the complex radius
r̃N has no effect to attenuate an outgoing wave. In this case, the complex
stretching dictates the fields attenuation. In contrast, for lossy media, the real
space attenuates a propagating wave even without the complex stretching in
radial direction. In other words, a large real domain r′N sometimes can provide
a reflection smaller than R(0). In the typical well-logging environment, at low
frequency, the medium are lossy, and a severe attenuation can be anticipated.

For the problem of interest, in which σ/ω � ε0εr, non-magnetic media
(µr = 1) presents wavenumber given by kN ≈ (1 + i)/δN . This means that
both k′N and k′′N are proportional to ω1/2. In this way, using the definition in
(3-54), and assuming R(0) < 1, we can derive

r′′N = δN

[
| log(R(0))|

2 − αsd
]
. (3-57)

Case the value of r′′N given by the above is negative, we do not need to employ
the complex stretching to bound the radial domain because the real domain
thickness provide a large attenuation and a corresponding back-reflection
smaller then R(0).

As an alternative, the PML could be interpreted as radially dependent
biaxial anisotropic layer [69, 70]. This approach is very popular and can
easily implemented in FD and FE codes. Nevertheless, to the best of our
knowledge, the proper solution for the electromagnetic fields requires radial
eigenfunctions that satisfy the Bessel equation with complex orders in addition
the azimuthal and axial harmonics einφ and e±ikz,npz [71–73]. Besides the
difficulty to dealing with Bessel functions of complex orders, case we had
used this approach, the PML region should be discretized in a series of sub-
layers to account the radial dependence of the media inside the absorbing
space. Then, to avoid this staircase approximation to the PML profile (and
the associated reflections), our algorithm employ the aforementioned complex
stretched coordinate interpretation of the PML.

3.3.3
Matching the Radial Boundary Conditions

3.3.3.1
Surface Impedance Boundary Condition for Truncate an Open Radial
Domain

The second order (in terms of the wavenumber k) approximated im-
pedance boundary condition for a medium described by Z = (µ/ε)1/2 and
covering ρ ≤ r0, n̂ = +ρ̂, can be written as [74,75]
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Eφ = −Z
{[

1 + 1
2ikρ + 1

2(2kρ)2 −
1

2k2

(
n2

ρ2 − k
2
z

)]
Hz + nkz

k2ρ
Hφ

}
, (3-58)

Ez = Z

{[
1− 1

2ikρ −
3

2(2kρ)2 + 1
2k2

(
n2

ρ2 − k
2
z

)]
Hφ + nkz

k2ρ
Hz.

}
(3-59)

For an impedance wall placed at ρ = rN , covering ρ ≥ rN , n̂ = −ρ̂, the
boundary conditions to be imposed are similar to the above, but we need to
change the sign of Eφ and Ez.

We can combine (3-58) and (3-59) into a matrix form as 0 Zφz
1
Zzφ

−Zzz
Zzφ

 Ez
Hz

+
0 Zφφ

0 0

Eφ
Hφ

 =
Eφ
Hφ

 , (3-60)

or in a more compact form:

¯̄MḠz =
( ¯̄I − ¯̄N

)
Ḡφ. (3-61)

By using (3-41), the condition (3-61) for an impedance wall at ρ = r0

can be written as

¯̄M0
[ ¯̄Hzn(k1ρr0) ¯̄R(ρ)

1,0 + ¯̄Jzn(k1ρr0)
]
b̄1 =( ¯̄I − ¯̄N0
) [ ¯̄Hφn(k1ρr0) ¯̄R(ρ)

1,0 + ¯̄Jφn(k1ρr0)
]
b̄1, (3-62)

Therefore, the local reflection matrix ¯̄R(ρ)
1,0 is given by

¯̄R(ρ)
1,0 =

[( ¯̄I − ¯̄N0
) ¯̄Hφn(k1ρr0)− ¯̄M0

¯̄Hzn(k1ρr0)
]−1

×
[ ¯̄M0

¯̄Jzn(k1ρr0)−
( ¯̄I − ¯̄N0

) ¯̄Jφn(k1ρr0)
]
. (3-63)

For an impedance wall placed ar ρ = rN , we can proper combine (3-40) and
(3-61) such as the local reflection matrix ¯̄R(ρ)

N,N+1 assumes the form

¯̄R(ρ)
N,N+1 = −

[( ¯̄I + ¯̄NN+1
) ¯̄Jφn(kNρrN) + ¯̄MN+1

¯̄Jzn(kNρrN)
]−1

×
[ ¯̄MN+1

¯̄Hzn(kNρrN)−
( ¯̄I + ¯̄NN+1

) ¯̄Hφn(kNρrN)
]
. (3-64)

The matrices ¯̄Mj and ¯̄Nj employed above in (3-63) and (3-64) are defined
as

¯̄Mj

 0 Zj,φz
1

Zj,zφ
−Zj,zz
Zj,zφ

 , and (3-65)

¯̄Nj

0 Zj,φφ

0 0

 , (3-66)

where
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Zj,φz = −
√
µj
εj

[
1 + 1

2ikjrj
+ 1

2(2kjrj)2 −
1

2k2
j

(
n2

r2
j

− k2
z

)]
, (3-67)

Zj,zφ =
√
µj
εj

[
1− 1

2ikjrj
− 3

2(2kjrj)2 + 1
2k2

j

(
n2

r2
j

− k2
z

)]
, (3-68)

Zj,φφ = −Zj,zz = −
√
µj
εj

nkz
k2
j rj

. (3-69)

Case the electrical conductivity of the impedance wall goes to infinity,
after same simplifications, we can reduce (3-63) and (3-64) to

¯̄R(ρ)
1,0 =

−
Jn(ke1ρr0)
Hn(ke1ρr0) 0

0 − J ′n(kh1ρr0)
H′n(kh1ρr0)

 , and (3-70)

¯̄R(ρ)
N,N+1 =

−
Hn(keNρrN )
Jn(keNρrN ) 0

0 −H′n(khNρrN )
J ′n(khNρrN )

 , (3-71)

which are the well-know [15, p. 352], [48, eq. 27] reflection matrices for a perfect
electric conductor (PEC).

Case the magnetic permeability of the impedance wall goes to infinity,
after same simplifications, we can reduce (3-63) and (3-64) to

¯̄R(ρ)
1,0 =

−
J ′n(ke1ρr0)
H′n(ke1ρr0) 0

0 − Jn(kh1ρr0)
Hn(kh1ρr0)

 , and (3-72)

¯̄R(ρ)
N,N+1 =

−
H′n(keNρrN )
J ′n(keNρrN ) 0

0 −Hn(khNρrN )
Jn(khNρrN )

 , (3-73)

which can be recognized as the reflection matrices for a perfect magnetic
conductor (PMC).

3.3.3.2
Solving the Characteristic Equation

Various zero-finding techniques have been proposed over the years to
solve the roots of a nonlinear characteristic equation f(γ) = 0. The problem
of finding complex propagation constants requires a two-dimensional zero
search, and several works employ quasi-static approximations to solve a
simplified transcendental equation [11,12,57,66,76–79]. As a second step, these
initial approximations (γn) can be refined by means of some Newton-Raphson
iterations, i.e.,

γn+1 = γn −
f(γn)
f ′(γn) , (3-74)

where f ′ is the derivative of f in respect to γ.
A proper choice of an initial guess γ0 is critical for the convergence of

(3-74). By this reason, the solution of the guided modes in lossy structures
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require special care. In [11,12], the eigenvalues of a circular waveguide embed-
ded in lossy surroundings were determined from the initial guess given by the
high-frequency asymptotic analysis of the problem. The root-finding strategy
employed in [57, 80] starts out from the lossless eigenvalues of the structure.
These eigenvalues lie on the coordinate axis and can be calculated with re-
latively little numerical effort [57] by using a root search along real (for pro-
pagating modes) and the imaginary axis (for evanescent modes). In a second
step, we need to gradually increase the losses in the structure and track the
modes as they move from the coordinate axis into the complex plane [57, 80].
The techniques used in these works proved to be numerically efficient in many
cases. However, these approaches fail when two eigenvalues are very close or
the structure supports complex modes [81–83].

The Newton-Raphson is a very popular technique, however, should be
observed that if f ′(γn) is too small, the nth correction term may diverge. This
weak point is particularly serious when the value of the initial guess (γ0) is
far from root γ [84]. The restriction placed on γ0 to lie in a region sufficiently
small around the solution can be relaxed of we reduce the size of the correction
∆γn = γn+1− γn by introducing a small positive factor ε (0 ≤ ε ≤ 1) in (3-74)
such as

∆γn = − f(γn)
f ′(γn)ε. (3-75)

The essential feature of the above equation is avoid the failure to convergence:
note that even when f ′(γn) becomes small, the amount ε weighs the RHS of
the above equation so that the correction term ∆γn does not diverge.

By taking limit of both sides of (3-75) when ε → 0, the nth correction
term ∆γn and the factor ε change into dγ and ds, respectively. Thus, (3-75)
can be rearranged as

dγ

ds
= − f(γn)

f ′(γn) = − dγ

d(log(f)) . (3-76)

The above is known as the scalar Davidenko differential equation [85, p. 162],
[84, 86–88], whose solution can be written as

f(γ) = Ce−s, (3-77)

where C is an integration constant. Now, it is clear that for s → ∞, we
recover our initial characteristic equation f(γ) = 0. We can further simplify
equation (3-76) as follows. Decomposing the γ into its real and imaginary parts
as γ = γ′ + iγ′′ and using the Cauchy-Riemann relations, the Davidenko’s
expressions of a two-coupled first-order ordinary differential equation with an
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independent scalar dummy variable s are obtained as [84,88]


γ′

ds
= − 1
|f ′|2

[<e(f)<e(f ′) + =m(f)=m(f ′)]
γ′′

ds
= + 1
|f ′|2

[<e(f)=m(f ′)−=m(f)<e(f ′)]
(3-78)

We can solve γ′ and γ′′ with the help of the Runge-Kutta algorithm [84], by
observing the convergence of both real and imaginary parts of γ as s becomes
large [84,86,88–90].

The advantage of Davidenko’s method is that it relaxes the restriction
on the choice of the initial guess for the complex root [89] and it can be
used when other methods like Newton-Raphson fail to converge. However, one
disadvantage of the Davidenko equation is that the error in solving it inevitably
accumulate as one marches in s [85], Also, the Davidenko equation, as well
as the Newton’s method, is singular at limit points or bifurcation points or
wherever f ′(γ) = 0 [85].

Sometimes the analytical derivative of the characteristic equation is very
complicated and requires a large computational effort. In these cases, a linear
interpolation of f(γ) allows to approximate f ′ by means of a finite-difference
version of the Newton’s method known the secant method [87]. Starting with
initial guesses γ0 and γ1, the secant method is defined by the recurrence
relation [87]

γn+1 = γn −
γn − γn−1

f(γn)− f(γn−1)f(γn), (3-79)

which is an approximation for (3-74).
Another widely used root-finding technique is the Muller’s method. This

method uses parabolic interpolation to approximate f(γ) and converges faster
than the secant method and is specially preferable to find complex roots [87].
In Muller’s method, we start with three points, viz., γ0, γ1 and γ2, and then we
can approximate the zeros of f(γ) by the recurrence relation [87], [91, p. 466]

γn+1 = γn − (γn − γn−1) 2c
b±
√
b2 − 4ac

, (3-80)

where

a = qf(γn)− q(1 + q)f(γn−1) + q2f(γn−2), (3-81)

b = (2q + 1)f(γn)− (1 + q)2f(γn−1) + q2f(γn−2), (3-82)

c = (1 + q)f(γn), (3-83)

and
q = γn − γn−1

γn−1 − γn−2
. (3-84)
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In (3-80) we must choose one of the two roots. The sign in the denominator
is chosen to make its absolute value as large as possible [91, p. 466]. Notice
that the square root in the denominator can give complex roots even when
the starting values are all real. This feature makes the method very useful
for solving dispersions equation for the guided modes in lossless structures
supporting complex backwards waves. In this situation, f(γ) is a real valued
function, but some of their solutions can assume complex values. If a purely
real or a purely imaginary initial guess is used in Newton’s or in the secant
method, the iterations will never converge to complex values. By contrast, in
Muller’s approach, the same guess will converge to the complex-valued solution,
as illustrated in the works on corrugated as well as dielectric loaded waveguides
shown in [92]. The Muller’s method also was successful to find a few low-order
complex eigenvalues in lossy stratified cylindrical waveguides [11,12,93–96].

By using the above described root-finding methods there is no guarantee
that all zeros are found. Thus, a critical point in the complex root finding is to
establish how many zeros lie within a given region of a complex plane. A widely
used procedure [58, 60, 97–110] to ascertain the number of roots to be found
in a given search region is the argument principle2. According to [59, pp. 281–
288], the winding number of a complex function f(γ), which is analytic and
nonzero on a closed contour C, is given by

N0 −Np = 1
2πi

‰
C

f ′(γ)
f(γ) dγ, (3-85)

where N0 is the number of zeros and Np is the number of poles of f that
lie inside C, and the partial derivative of f in respect to γ is given by f ′.
The integral over the contour is taken in counterclockwise sense. According
to the previous definition, the winding number for one zero is +1 and for one
singularity is −1. Case the characteristic equation f(γ) = 0 does not presents
poles; i.e., Np = 0; the value given by (3-85) is an integer equal to the total
number of zeros of f inside C.

The technique proposed in [58] interpolates the function f(γ) by a monic
polynomial of degree N0, whose zeros coincide with the zeros of f(γ) in C.
In this way, we can reduce our initial problem into the easier computation of
the zeros of a polynomial. Recently, a new view on this technique as presented
in [100]. The approach shown in [100] has generalized the former formulation
from [58] into the simple eigenvalue problem given by

¯̄H<x̄ = λ ¯̄Hx̄, (3-86)

2Also known as winding number [59, pp. 281–288], method of contour integration [105],
Cauchy integration method [102] or Delves-Lyness method (due the pioneering work shown
in [58]).
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where ¯̄H and ¯̄H< are Hankel matrices defined by

¯̄H =



s0 s1 . . . sk−1

s1
. . .

...
...

. . .
...

sk−1 sk . . . s2k−2

 , and ¯̄H< =



s1 s2 . . . sk

s2
. . .

...
...

. . .
...

sk sk+1 . . . s2k−1

 , (3-87)

for k = N0. The entries of the above matrices are the Newton sums of the
unknown zeros, given by3

sp = 1
2πi

‰
C

γp
f ′(γ)
f(γ) dγ. (3-88)

The solution for the characteristic equation f(γ) inside C are the N0 eigenva-
lues λ that satisfies (3-86).

Note that the Hankel matrices ¯̄H and ¯̄H< require 2N0 Newton sums to
be constructed. If f has many zeros inside C, then the associated polynomial
is of high degree and could be very ill-conditioned [58,100], and thus we need
to calculate the integrals sp very accurately. In order to avoid the use of high
precision arithmetic, the work in [58] suggests the choice of contours C with
no more than 5 zeros inside. In algorithms reported in [99, 102, 105] a more
conservative criteria was employed: the region of search is divided into sub-
contours, containing not more than four roots.

Appears clear that a large number of roots inside the contour strongly
affect the accuracy of the numerical evaluation of the roots, and for this reason,
in several applications [104,107] the complete computational domain of interest
is partitioned into small sub-domains in such a way that only one root (with
multiplicity equal to one) is enclosed by time. Well-isolated simple zeros are
determined fast and with high accuracy by just using the integrals s0 and s1. In
this case, we first compute s0 in a given contours. Next, if s0 = 0 this domain
is discarded. Otherwise, case s0 > 1 we must continue subdividing the domain
until s0 = 1. Finally, for each sub-domain Cj in which s0 = 1 we can find our
required root by means of4

γj = 1
2πi

‰
Cj

γ
f ′(γ)
f(γ) dγ. (3-90)

3In a similar formulation shown in [101], a derivative-free algorithm was presented for
computing zeros of analytic function. In this approach, f ′(γ) is replaced by 1 into (3-88).
As a consequence, in this new approach the multiplicities of the zeros cannot be computed
explicitly.

4An alternative to (3-90) is the derivative-free form given by [101,111]

γj =
(‰

Cj

1
f(γ)dγ

)−1 ‰
Cj

γ

f(γ)dγ. (3-89)
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It should be observed that the above equation is equivalent to γj = s1/s0,
satisfying (3-86). This is a very interesting technique because we have the
guaranty that inside Cj there only one zero to be found. In this case, we can
even employ the Newton-Raphson iterations (3-74) using a guess inside Cj
instead of (3-90). As said before, the polynomial approximation must be of
low degree to avoid high magnitude coefficients sp, p > 0. However, since the
exact result s0 is known to be an integer, the accuracy required in the numerical
integration is low [58,100]. Nevertheless, this approach appear restrict to find
roots with multiplicity one (or we need the knowledge of multiplicity for
each root) and requires a lot of time-consuming two-dimensional bisections,
as observed in [104,107].

To our experience, the argument principle can be used to find all roots
of a transcendental equation in a given region of the complex plane without
requiring initial guesses. However, the numerical difficulty in the calculation of
parameters sp makes the method computationally demanding. Also, multiple
zeros and very close zeros leads to severe ill-conditioning. Besides that, the
choice of the contour C is critical to the calculation of sp: even when just only
one zero is inside C, sp can diverge if the contour pass too close the zero inside
or close to the zeros outside C. This problem is particularly worrying when
we partitioned our region of search in several sub-contours. Another equally
serious problem is the presence of singularities in our characteristic equation.
As mentioned before, each pole cancel out the contribution of a proper zero.
In [99, 102, 103, 108] the location of the poles in characteristic equations are
estimated and then a (assumed) safe contour is generated to avoid the poles.
However, sometimes the contour needs to pass very close to zeros e poles.

The problem of a circular waveguide structure embedded in lossy sur-
roundings as analyzed in [103]. In order to not embed the singularities of the
characteristic equation, the integration path suggested in [103] requires to pass
close to singularities, demanding special numerical techniques to avoid poor
numerical results for s0. To minimize the effects of the poles, the work in [108]
modifies the winding number approach by working with a contour in the com-
plex plane γ2, where the positions of the poles and zeros are not too close.
However, the trouble with identification and removal of singularities still per-
sists. It is important to remind that the presence of non-recognized singularities
(poles) leads to a mistake in the counting of propagation constants, and by this
reason, in [110] we proposed a solution for the issues reported in the problem
analyzed in [103,108] by redefining the modal characteristic equation in order
to be free of singularities. A modified version of the characteristic equation of
a lossy circular waveguide was introduced in order to simplify the calculation
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of s0. In [110], we have described modifications in classical formulation to find
the propagation constants of the guided modes that exclude the singularities
of the traditional characteristic equation, making unnecessary the task of loca-
ting the poles of this equation and avoid the trial-and-error procedure involved
in the definition of the winding number contour.

By combining some of the interesting features of the early described
techniques to solve the roots of characteristic equation, in next sections we
will generalize the formulation shown in [60, 109, 110] to proper remove the
singularities of the dispersion relation for the radially-stratified cylindrical
waveguide in (3-49) and derive guidelines to efficiently application of the
argument principle in order to find all desired eigensolutions.

3.3.3.3
Pole-Free Characteristic Equation

As said before, the discrete eigenvalues kz that contributes to our modal
solution satisfy

f(kz) = det
(

¯̄I − ¯̄R(ρ)
N,N+1

˜̄̄
R

(ρ)
N,N−1

)
= 0. (3-91)

Unfortunately, the above characteristic equation has a set of poles that impair
the correct location of the eigenvalues in a desired region of complex plane. The
poles of this equation can be removed using a deflationary process in which a
new characteristic equation is defined as fpf (kz) = f(kz)fp(kz). The function
fp inserts zeros in the positions of the poles of f , so that fpf preserves the
same zeros of f , but is free of singularities.

Noting that all required matrices in (3-91) involve 2×2 matrix operations,
we can rewrite the determinant as

det( ¯̄I − ¯̄A) = 1 + det( ¯̄A)− tr( ¯̄A) (3-92)

where tr( ¯̄A) is the trace of the matrix ¯̄A = ¯̄R(ρ)
N,N+1

˜̄̄
R

(ρ)
N,N−1.

From last equation, we can see that the poles arise due the matrix inver-
sion operations of ¯̄Dja and ¯̄Djb in (3-43) and also due to ( ¯̄I− ¯̄R(ρ)

j−1,j
˜̄̄
R

(ρ)
j−1,j−2) in

(3-42). For further analysis, it is appropriate to write the inverse of a matrix
¯̄B as

¯̄B−1 = adj( ¯̄B)
det( ¯̄B)

, (3-93)

where adj( ¯̄B) is the transposed of the matrix of cofactors of ¯̄B.
Besides the matrix inversions, the singularities of Hankel functions in the

numerator of the matrices ¯̄R(ρ) and ¯̄T (ρ) that occur when kjρ = 0 or kz = ±kj
also insert poles in the characteristic equation. The points at which kz = ±kj
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will be called here as critical points because the ramifications of Hankel
functions emanating from these points can lead to further issues. However,
multicylindrical bounded medium are absence of branch-points singularities at
kz = ±kj [112]. Despite the equation (3-91) be free from branch-points, it may
have poles (or zeros) at these critical points. Thus, to facilitate obtaining fp,
we can define

fp(kz) = fi(kz)fbp(kz), (3-94)
where fi is a function that removes the poles due matrix inversion and fbp

remove the poles due to the critical points.
Noting the denominators of (3-63) and (3-64), it is appropriate to define

¯̄D0b =
[( ¯̄I − ¯̄N0

) ¯̄Hφn(k1ρr0)− ¯̄M0
¯̄Hzn(k1ρr0)

]
, (3-95)

¯̄DNa =
[( ¯̄I + ¯̄NN+1

) ¯̄Jφn(kNρrN) + ¯̄MN+1
¯̄Jzn(kNρrN)

]
. (3-96)

The following specializations apply to perfect electric or perfect magnetic walls:

¯̄D0b =
Hn(ke1ρr0) 0

0 H ′n(kh1ρr0)

 for a PEC wall at ρ = r0, (3-97)

¯̄DNa =
Jn(keNρrN) 0

0 J ′n(khNρrN)

 for a PEC wall at ρ = rN , (3-98)

¯̄D0b =
H ′n(ke1ρr0) 0

0 Hn(kh1ρr0)

 for a PMC wall at ρ = r0, (3-99)

¯̄DNa =
J ′n(keNρrN) 0

0 Jn(khNρrN)

 for a PMC wall at ρ = rN . (3-100)

It should be noted that we have ¯̄R(ρ)
1,0 = ¯̄0 and ¯̄D0b = ¯̄I if there is no hard wall

placed at ρ = r0.
Using the above definitions, after some manipulations, we can show that

the zeros of

fi(kz) = det
( ¯̄DNa

)
det

( ¯̄D0b
)N−1∏
j=1

[
det

( ¯̄Djb

)
det

(
¯̄I − ¯̄R(ρ)

j,j+1
˜̄̄
R

(ρ)
j,j−1

)]
(3-101)

are poles of f(kz).
In order to determine fbp(kz), we must evaluate f(kz)fi(kz) for kjρ → 0.

We can verify that
fbp(kz) =

N∏
j=1

(k2
j − k2

z)m(j), (3-102)

where the multiplicity m(j) of the critical point kz = ±kj is given by
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m(j) =



3
2 − δ1,N

[
1
2 + δ0,n −

u(0)
2

]

−δ0,r0

[1
2 + n+ δ0,n(1− δ1,N)

]
+ u(0)

2 , if j = 1,

3
2 + u(N)

2 , if j = N and N > 1,

0, if j = N + 1,

2, otherwise.
(3-103)

In the above, the Kronecker delta δi,j is equal to 1 if i = j and is equal to 0
otherwise. The presence of a hard wall placed at ρ = r0 is indicated by r0 > 0.
In contrast, r0 = 0 means that there is no truncation in the inner radial domain.
The function u(j) is an indicator for finite and non-zero impedance boundary
condition truncating the layer j such as

u(0) = (1− δ0,r0)(1− δ∞,|Z0|)(1− δ0,Z0), and (3-104)

u(N) = (1− δ∞,|ZN |)(1− δ0,ZN ). (3-105)
For a PEC or PMC we have, of course, u(j) = 0.

By combining (3-91), (3-101) and (3-102), we can write a pole free
characteristic equation as

fpf (kz) = det
(

¯̄I − ¯̄R(ρ)
N,N+1

˜̄̄
R

(ρ)
N,N−1

)
(k2
j − k2

z)m(N) det
( ¯̄D0b

)
det

( ¯̄DNa

)
×

N−1∏
j=1

[
(k2
j − k2

z)m(j) det
( ¯̄Djb

)
det

(
¯̄I − ¯̄R(ρ)

j,j+1
˜̄̄
R

(ρ)
j,j−1

)]
. (3-106)

Introducing
¯̄Dj =


¯̄Dja, if j = N,

¯̄Djb, if j < N,
(3-107)

and assuming that ˜̄̄
R

(ρ)
0,−1 = ¯̄0, we can derive a compact shape for fpf (kz) as

fpf (kz) =
N+1∏
j=1

det
[
(k2
j − k2

z)m(j)/2 ¯̄Dj−1

(
¯̄I − ¯̄R(ρ)

j−1,j
˜̄̄
R

(ρ)
j−1,j−2

)]
, (3-108)

or, alternatively:

fpf (kz) = det
N+1∏
j=1

[
(k2
j − k2

z)m(j)/2 ¯̄Dj−1

(
¯̄I − ¯̄R(ρ)

j−1,j
˜̄̄
R

(ρ)
j−1,j−2

)]
. (3-109)

Notice that we do not need to proper define kN+1 because m(N + 1) = 0.
Now that we have a pole-free characteristic equation, we can determine

the number of eigensolutions that lie inside a given contour C by mean of
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N0 = 1
i2π

ˆ
C

[
f ′pf (kz)
fpf (kz)

]
dkz. (3-110)

According to our experience, an efficient numerical algorithm can be con-
structed calculating N0 just one time, avoiding the time-consuming bisection
sub-partitioning early reported. We can proper define a region of search in
complex plane kz that lead to field solutions with attenuation less than a desi-
red attenuation at a given axial distance. In this way, it is quite prudent assess
the asymptotic behavior of fpf before define C.

3.3.3.4
Eigensolution Approximations and Zero Finding

The complex coordinate stretching described in (3-53) maps the outer-
most radius into the complex-valued quantity r̃N . A typical well-posed and
highly absorbing PML has abs(r̃N) � rN−1. This condition allow us to es-
tablish an approximation for the axial wavenumber corresponding to modal
fields concentrated inside the PML as

kez ∼ ±

√√√√k2
N −

[
pπ

αeN(r̃N − rN−1)

]2

, (3-111)

khz ∼ ±

√√√√k2
N −

[
pπ

αhN(r̃N − rN−1)

]2

, (3-112)

for p = 1, 2, 3, . . . . In the above, the square root sign is chosen so that
=m(ke,hz ) ≥ 0. The above estimates for kez and khz correspond to asympto-
tic approximations for large kz and kjρ for quasi-TM and quasi-TE fields,
respectively, and are independent of the azimuthal index. By using the above
approximate eigenvalues, we can accelerate finding the location of most eigen-
values; however, for typical LWD applications, the arguments of the cylindrical
functions kjρrj, j = 1, . . . , N−1, are small and asymptotic approximations are
inappropriate to find the eigenvalues corresponding to modal fields concentra-
ted outside the PML layer. These remaining eigenvalues can be found using
random-generated guesses for the Muller’s method [91, p. 466].

3.3.3.5
Region of Search

Usually, the region of search for forward traveling waves is defined to
cover the first quadrant of the complex kz(= k′z + ik′′z ) plane [78, 103], i.e.,
k′z, k

′′
z > 0 as shown in Fig. 3.3(a). However, cylindrically layered waveguides

can support solutions with k′z < 0. These so-called backward-waves can appears
in closed inhomogeneous waveguides [81,82], [42, pp. 684–685]. Thus, a region
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of search covering =m(kz) > 0 is adopted. The bounding contour C∗ is defined
as shown in Fig. 3.3(b), consisting of sub-paths C∗i , i = 1, . . . , 4. The value
k′′z,max leading to field solutions with attenuation less than AdB (in decibels) at
an axial distance ∆z is given by

k′′z,max = − log(10)
20

AdB
∆z . (3-113)

The value of k′z,max can be estimated based on the maximum expected variation
of the axial wavenumber kz.

Typically, the critical points kjρ, j = 1, 2, 3, . . . , lead to the large value
that <e(kz) can assumes. Thus, a conservative estimation for k′z,max is the
largest value of the real part of the wavenumber kj. If the critical point associate
with kz = kj presents an imaginary part larger than k′′z,max, the contribution of
eigensolutions to the fields is negligible, and this critical point is not relevant
to determine k′z,max. Consequently, we can define k′z,max by means of

ξmax [<e(kj,rel)] , (3-114)

where kj,rel is a relevant wavenumber of the layer j whose =m(kj) < k′′z,max.
As mentioned in [50], it is desirable to include a multiplicative factor ξ to
avoid numerical issues for modal solutions near critical points where kz = kj.
Numerical simulation and experimental verifications show that ξ = 1.1 gives
good results.

To our experience, the expression in (3-114) is not adequate to proper
estimate k′z,max when the waveguide outermost layer is bounded by a PML. A
more accurate estimative can be derived by the intersection of ke,hz (in (3-111)
and (3-112)) with the line ik′′z,max, i.e.,

<e(ke,hz ) = <e(ke,hz )
=m(ke,hz )

k′′z,max. (3-115)

(a) Slow convergence (b) Fast convergence (avoiding C∗1)

Figure 3.3: Integration paths on the complex plane kz.
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The complex stretching of the PML in (3-53) will modify the spectral
distribution of the eigensolution as estimated in (3-111) and (3-112): the
eigenvalues will be deflected towards the real axis according the values of αe,hN ,
r̃N and rN .

For LWD applications wherein the anisotropic parameters αe,hN have small
imaginary parts, the quasi-static approximation for the high order modes
results in

<e(ke,hz ) = αPML

rN − rN−1
k′′z,max. (3-116)

Now, we can combine the above with (3-114) in order to properly determine
k′z,max using

k′z,max = max
[
1.1×<e(kj,rel),

αPML

rN − rN−1
k′′z,max

]
. (3-117)

If the contour passes very close to roots, a slow-down in the convergence
of the numerical line integral in (3-110) results. In particular, the integral
over C∗1 has poor convergence if ωσ � 1 or ωσ � 1 [108, 110]. Based on
the symmetric behavior of the characteristic (3-108), fpf (−kz) = fpf (kz), and
using the results from [60], we can show that the sub-contour C∗1 does not
contribute to the winding number integral, and we can thus express the total
number of eigensolutions to be found inside the region in C∗ as

N0 = 1
i2π

{ˆ
C∗2

[·] dkz +
ˆ
C∗3

[·] dkz +
ˆ
C∗4

[·] dkz
}
, (3-118)

where [·] refers to the expression within brackets in (3-110).

3.3.3.6
Deflation

The winding number determined by (3-110) takes into account the
number of roots of a function including its multiplicity, e.g., function f(γ) = γ2

has two roots at the origin. Although degenerated modes are not expected in
radially-stratified cylindrical structures, the location of complex eigenvalues
may be very close to each other, causing convergence issues. To prevent this
problem, once one of the roots is determined, we can remove it by performing
deflation. In this way, we eliminate the eigenvalues already found and perform
a new zero-search on the updated characteristic equation given by

fupd(kz) = fpf (kz)
Nin∏
j=1

(
k2
z − γ2

j,in

)−1 Nout∏
j=1

(
k2
z − γ2

j,out

)−1
. (3-119)

In the above, we consider two sets of already known solutions: a set of Nin zeros
inside C∗ and given by γj,in, and a set of Nout zeros outside C∗ and defined as
γj,out.The square function allow us to deflate the eigensolution associated to
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the mirror mode, in which k′′z < 0. It is important to note that an initial guess
inside C∗ can sometimes lead to a root outside C∗. Even though eigensolutions
external to C∗ are not of interest, we should properly deflated our updated
characteristic equation using γj,out in order to avoid convergence problems for
roots near the boundaries of C∗. We update (3-119) for each new solution
found until the number of roots found in C∗ is equal to N0. This allows
the determining the location of roots very close to each other and also solves
problems involving high-order roots.

3.3.4
Modal Eigenfield Amplitudes

A common procedure for finding modal amplitudes is to match the source
jump [113, p. 62] condition using (3-40) and (3-41) for propagation in forward
and backward radial directions [6,8,14,47–49]. If the source is placed at layer
j, we can find the amplitudes of adjacent layers using

āj+1 = ¯̄Sj,j+1āj, and b̄j−1 = ¯̄Sj,j−1b̄j, (3-120)

where ¯̄Sj,j±1 is defined in [15, Ch. 3] as

¯̄Sj,j±1 =
(

¯̄I − ¯̄R(ρ)
j±1,j

˜̄̄
R

(ρ)
j±1,j±2

)−1 ¯̄T (ρ)
j,j±1. (3-121)

This method appear restrict to model sources with discrete radial thickness,
such point sources. The modeling of more complex excitation geometries is not
a straightforward task.

As an alternative, we can employ the Lorentz reciprocity theorem to
expand the source in terms of the modal fields propagating to axial direction.
This choice allow us to handle arbitrary sources and culminates in a series of
simplification which will be shown in Section 3.5. For this purpose, we can
define ¯̄MN =

(
¯̄I − ¯̄R(ρ)

N,N+1
˜̄̄
R

(ρ)
N,N−1

)
. (3-122)

From (3-47), the solutions to the homogeneous linear system ¯̄MN b̄N = 0̄
correspond to the null space of ¯̄MN , i.e., b̄N = null( ¯̄MN).

Noting that ¯̄MN is a 2× 2 matrix, we can write

¯̄MN =
m11 m12

m21 m22

 . (3-123)

For abs(m11) > abs(m22) we find

b̄N = null( ¯̄MN) = c

−m12

m11

 , (3-124)
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and for abs(m22) > abs(m11) we find

b̄N = null( ¯̄MN) = c

 m22

−m21

 , (3-125)

where c is an arbitrary constant5. Finally, the fields in all layers can be derived
using (3-120) and (3-41).

3.3.5
Mirror Modes and Fields Symmetry

If the fields associated with (kz,Es, Ez,Hs, Hz) are a solution for (3-30),
the mirror mode [42, p. 861] (−kz,Es,−Ez,−Hs, Hz) is also a solution of
Maxwell’s equations. In this manner, we can decompose the (np)th modal
fields as

E±np = (e±s,np + ẑe±z,np)einφ±ikz,npz

= (e+
s,np ± ẑe+

z,np)einφ±ikz,npz, and (3-126)

H±np = (h±s,np + ẑh±z,np)einφ±ikz,npz

= (±h+
s,np + ẑh+

z,np)einφ±ikz,npz. (3-127)

In the above, e±s , h±s , e±z and h±z are the non-harmonic portion of the fields
propagating to ±z.

By employing (3-126) and (3-127) we can find the backward propagating
fields just by changing the sign of kz,np and correcting the axial and transversal
fields as indicated. The sign of the square root of kρ,np in (3-25) must remains
the same.

We could further simplify our analysis using a series of symmetric
relations derived from (3-37), (3-36) and (3-26), as follows. First, we pick
the radial and axial wavenumbers to be symmetric over n: kρ,−np = kρ,np

kz,−np = kz,np.
In relation to z-axis (or kz,np) , we can write:

e−ρ,np = e+
ρ,np h−ρ,np = −h+

ρ,np (3-128a)

e−φ,np = e+
φ,np h−φ,np = −h+

φ,np (3-128b)

e−z,np = −e+
z,np h−z,np = h+

z,np (3-128c)

5Note that if b̄N is a solution, any constant multiplied by b̄N is also a solution. As we
expand the source in terms of the modal fields, the appropriated amplitude of each mode is
selected, and this arbitrary constant is removed, as will be clear in (3-228).
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In relation to φ-axis (or n, for n ≥ 1), we can write:

e+
ρ,−np = −(−1)ne+

ρ,np h+
ρ,−np = (−1)nh+

ρ,np (3-129a)

e+
φ,−np = (−1)ne+

φ,np h+
φ,−np = −(−1)nh+

φ,np (3-129b)

e+
z,−np = −(−1)ne+

z,np h+
z,−np = (−1)nh+

z,np (3-129c)

Combining both (3-128) and (3-129), we can derive the fields symmetry
in relation to φz-plane (or nkz,np, for n ≥ 1):

e−ρ,−np = −(−1)ne+
ρ,np h−ρ,−np = −(−1)nh+

ρ,np (3-130a)

e−φ,−np = (−1)ne+
φ,np h−φ,−np = (−1)nh+

φ,np (3-130b)

e−z,−np = (−1)ne+
z,np h−z,−np = (−1)nh+

z,np (3-130c)

The symmetric field relations above are useful to derive our solution as
will show in next sections. We anticipate that only the forward propagation
fields associated with positive azimuthal index n need to be calculated such
that the remaining term shall be a linear combination of the first ones.

3.4
Fields Along Axial Stratifications

3.4.1
Axial Mode-Matching

Consider the waveguide discontinuity problem illustrated in Fig. 3.4. Two
semi-infinity-long guides are connected at z = z1 by the common aperture over
Sa. In our analysis the cross-sections of the guides 1 and 2 (in regions 1 and
2) are denoted by S1 and S2, respectively. We assume that the S1 = Sa and
S2 = Sa + Sw, as shown in Fig. 3.4. Notice we have assumed that region 2
is larger than region 1 and also S1 ∈ S2. The fields transversal to z can be
written as

Ejs =
∞∑

n=−∞

∞∑
p=1

(a+
j,npe

ikz,npz + a−j,npe
−ikz,npz)ejs,np(ρ)einφ, and (3-131)

Hjs =
∞∑

n′=−∞

∞∑
p′=1

(a+
j,n′p′e

ikz,n′p′z − a−j,n′p′e−ikz,n′p′z)hjs,n′p′(ρ)ein′φ, (3-132)

where j = 1 or 2. The fields above consider proper boundary conditions
bounding the domain of regions 1 and 2, and that there no fields outside the
cross-sections S1 and S2. The wall Sw is characterized by the surface impedance
Z2w.
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Figure 3.4: Junction between two semi-infinitely-long waveguides.

The continuity of the transversal fields at the junction (z = z1) must
satisfy [114]

ẑ × E2s =

 ẑ × E1s, inside Sa,
Z2wẑ × (ẑ ×H2s), inside Sw,

(3-133)

ẑ ×H2s = ẑ ×H1s inside Sa. (3-134)
In order to simplify the notation, we will rewrite the double sum in our

transversal fields in (3-131) and (3-131) through a single sum as

Ejs =
∞∑
m

(A+
j,m + A−j,m)Ejs,m, (3-135)

Hjs =
∞∑
m′

(A+
j,m′ − A−j,m′)Hjs,m′ , (3-136)

where A±j,m = a±j,m exp(±ikz,mz1) are the forward/backward modal amplitudes
at z = z1, and the mth transversal field is Gjs,m = Gjs,m(ρ, φ), G = E or H.

Considering M modes in the region 1 and N modes in the region 2, from
the continuity of the transversal electric fields at the junction we can obtain

N∑
n=1

(A+
2,n + A−2,n)ẑ × E2s,n =

M∑
m=1

(A+
1,m + A−1,m)ẑ × E1s,m, inside Sa, (3-137)

N∑
n=1

(A+
2,n + A−2,n)ẑ × E2s,n = −Z2w

N∑
n=1

(A+
2,n − A−2,n)H2s,n, inside Sw, (3-138)

where we have used the vectorial identity H2s = −ẑ × (ẑ ×H2s).
Taking the dot product with H2s,n′ (n′ = 1, 2, . . . , N) in equations (3-137)

and (3-138) and integrating over the cross-section S2, we can obtain a set of
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N equations given by

N∑
n=1

(A+
2,n + A−2,n)

¨
S2

(E2s,n ×H2s,n′) · ẑ dS =

M∑
m=1

(A+
1,m + A−1,m)

¨
S1

(E1s,m ×H2s,n′) · ẑ dS

− Z2w

N∑
n=1

(A+
2,n − A−2,n)

¨
Sw

(H2s,n ·H2s,n′) dS, for n′ = 1, 2, . . . , N, (3-139)

where we have employed the vector identity (ẑ × E) ·H = (E ×H) · ẑ. The
above set of equations can be written in a matrix form as

¯̄Q2(Ā+
2 + Ā−2 ) = ¯̄X12(Ā+

1 + Ā−1 ) + ¯̄L2(Ā+
2 − Ā−2 ), (3-140)

where the entries of the matrices ¯̄X12, ¯̄Q2 and ¯̄L2 are given by

¯̄X12|n,m = X1m,2n, (3-141)

¯̄Q2|n,m = X2m,2n, (3-142)

¯̄L2|n,m = L2m,2n. (3-143)
The reaction [41,115] of mth mode in region i to the nth mode in region

j is defined by the integral

Xim,jn = 〈Eis,m,Hjs,n〉 =
¨
Si

(Eis,m ×Hjs,n) · ẑ ρ dρ dφ, (3-144)

and Ljm,jn is such as

Ljm,jn = −Zjw
¨
Sjw

(Hjs,m ·Hjs,n) ρ dρ dφ. (3-145)

Similarly, following the above steps for the continuity of the magnetic
field at z = z1, we can write

N∑
n=1

(A+
2,n − A−2,n)ẑ ×H2s,n =

M∑
m=1

(A+
1,m − A−1,m)ẑ ×H1s,m, inside Sa. (3-146)

Taking the dot product with E1s,m′ (m′ = 1, 2, . . . ,M) in equations (3-146)
and integrating over the cross-section S1, we can obtain a set of M equations
given by

N∑
n=1

(A+
2,n − A−2,n)

¨
S1

(E1s,m′ ×H2s,n) · ẑ dS =

M∑
m=1

(A+
1,m − A−1,m)

¨
S1

(E1s,m′ ×H2s,m) · ẑ dS, for m′ = 1, 2, . . . ,M, (3-147)

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 3. Analysis of Well-Logging Tools in Vertical Wells 68

which can be written in a matrix form as

¯̄X t
12(Ā+

2 − Ā−2 ) = ¯̄Q1(Ā+
1 − Ā−1 ), (3-148)

where ¯̄Q1 is given by ¯̄Q1|n,m = X1m,1n. (3-149)
Combining (3-140) and (3-148), we can relate the forward and backward

modal amplitudes at the junction z = z1 asĀ−1
Ā+

2

 =
 ¯̄R(z)

12
¯̄T (z)

21
¯̄T (z)

12
¯̄R(z)

21

Ā+
1

Ā−2

 , (3-150)

where scattering sub-matrices are given by

¯̄R(z)
12 =

[
¯̄Q1 + ¯̄X t

12

( ¯̄Q2 − ¯̄L2
)−1 ¯̄X12

]−1 [ ¯̄Q1 − ¯̄X t
12

( ¯̄Q2 − ¯̄L2
)−1 ¯̄X12

]
, (3-151)

¯̄T (z)
21 = 2

[
¯̄Q1 + ¯̄X t

12

( ¯̄Q2 − ¯̄L2
)−1 ¯̄X12

]−1 ¯̄X t
12

[
¯̄I +

( ¯̄Q2 − ¯̄L2
)−1 ¯̄L2

]
, (3-152)

¯̄T (z)
12 = 2

( ¯̄Q2 − ¯̄L2 + ¯̄X12
¯̄Q−1

1
¯̄X t

12

)−1 ¯̄X12, and (3-153)
¯̄R(z)

21 = −
( ¯̄Q2 − ¯̄L2 + ¯̄X12

¯̄Q−1
1

¯̄X t
12

)−1 ( ¯̄Q2 + ¯̄L2 − ¯̄X12
¯̄Q−1

1
¯̄X t

12

)
. (3-154)

3.4.1.1
Reaction Integrals

The modal fields in the above formulation where expressed as a single
index mode as in (3-135) and (3-136). Now, it is convenient to recover the
double index summation as in (3-131) and (3-132). Then, the reaction of the
(np)th modal fields in region i to the (n′p′)th modal fields in region j can be
defined as

Xi(np),j(n′p′) =
¨
Si

(Eis,np ×Hjs,n′p′) · ẑ ρ dρ dφ, (3-155)
or

Xi(np),j(n′p′) =
¨
Si

[eis,np(ρ)× hjs,n′p′(ρ)] · ẑ ei(n+n′)φ ρ dρ dφ. (3-156)

Taking into account the azimuthal orthogonality of the fields, and using
the relations in (3-129), the above becomes

Xi(np),j(n′p′) = δn,−n′

¨
Si

[eis,np(ρ)× hjs,n′p′(ρ)] · ẑ ei(n+n′)φ ρ dρ dφ (3-157)

= −δn,−n′2π(−1)n
ˆ
ρi

(sneiρ,nphjφ,np′ + eiφ,nphjρ,np′) ρ dρ, (3-158)

where sn = 1 − 2δ0,n and the Kronecker delta is such as δn,n′ = 1 for n = n′,
and is zero otherwise. Notice that our initial surface integral reduces to a line
integral along the radial domain of region i. Note that in the above definition
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all the fields propagate to the positive z-direction, and the superscript + of
the non-harmonic portion of the fields and its radial dependence have been
omitted to simplify the notation.

For the special case in which i = j, we can take into account the
orthogonality of cylindrical function [116, p. 485] and express the self-reaction
of the mode np to mode n′p′ as

Xj(np),j(n′p′) = −δn,−n′δp,p′2π(−1)n
ˆ
ρj

(sneiρ,nphjφ,np + eiφ,nphjρ,np) ρ dρ.

(3-159)
From the above, it is clear that ¯̄Qj is a diagonal matrix, and we can properly
define the self-reaction associated with the mode np as

Qj,np = Xj(np),j(−np) (3-160)

= −2π(−1)n
ˆ
ρj

(snejρ,nphjφ,np + ejφ,nphjρ,np) ρ dρ. (3-161)

A consequence of the azimuthal orthogonality of the fields is that we can
solve the GSM matrix for each azimuthal index individuality.

From (3-36) and (3-37), the transversal fields of the regions 1 and 2 can
be written as

e1ρ = 1
k2

1ρρ
(ik1zα

e
1k1ρρB

′e1
n − nωµ1sB

h1
n ), (3-162a)

h2φ = 1
k2

2ρρ
(iωε2sα

e
2k2ρρB

′e2
n − nk2zB

h2
n ), (3-162b)

e1φ = 1
k2

1ρρ
(−nk1zB

e1
n − iωµ1sα

h
1k1ρρB

′h1
n ), (3-162c)

h2ρ = 1
k2

2ρρ
(nωε2sB

e2
n + ik2zα

h
2k2ρρB

′h2
n ), (3-162d)

where we drop the modal index np to shorten notation. In above, Be,hj
n are

combinations of cylinder functions, which represent the axial fields such as

Bej
n = Bej

n (αekjρρ) = ejz(ρ), and (3-163)

Bhj
n = Bhj

n (αhkjρρ) = hjz(ρ). (3-164)
As said before, the prime (′) in the cylinder functions means the derivative in
respect to the argument.

Substituting the fields in (3-162) into (3-158), we can write the reaction
integral

X1(np),2(−np′) = −2π(−1)n
ˆ
ρ1

(sne1ρ,nph2φ,np′ + e1φ,nph2ρ,np′) ρ dρ (3-165)
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using a shorthand notation:

X1,2 = −2π(−1)n
ˆ
ρ1

1
k2

1ρk
2
2ρρ

2

×
{
− ωε2sk1z

(
snα

e
1k1ρρB

′e1
n αe2k2ρρB

′e2
n + n2Be1

n B
e2
n

)
+ ωµ1sk2z

(
αh1k1ρρB

′h1
n αh2k2ρρB

′h2
n + n2Bh1

n B
h2
n

)
− ik1zk2zn

(
αe1k1ρρB

′e1
n Bh2

n +Be1
n α

h
2k2ρρB

′h2
n

)
− iω2µ1sε2sn

(
Bh1
n α

e
2k2ρρB

′e2
n + αh1k1ρρB

′h1
n Be2

n

)}
ρ dρ, (3-166)

where the modal subscript np and −np′ was properly dropped.
We can simplify (3-166) using the following relations involving the

product of cylinder functions Cn(x) and Dn(y):

xC ′n(x)yD′n(y) + n2Cn(x)Dn(y) = xy

2 [Cn−1(x)Dn−1(y) + Cn+1(x)Dn+1(y)] ,
(3-167)

xC ′n(x)Dn + Cn(x)yD′n(y) = xy

2n [Cn−1(x)Dn−1(y)− Cn+1(x)Dn+1(y)] .
(3-168)

Using the relations above in (3-166), after a few simplifications we can
obtain

X1,2 = −(−1)nπ
k1ρk2ρ

{
−snωε2sk1zα

e
1α

e
2L

+
n (Be1

n , B
e2
n )+ωµ1sk2zα

h
1α

h
2L

+
n (Bh1

n , B
h2
n )

− ik1zk2zα
e
1α

h
2L
−
n (Be1

n , B
h2
n )− iω2ε2sµ1sα

e
2α

h
1L
−
n (Bh1

n , B
e2
n )
}
, (3-169)

which is valid for n ≥ 0. The coupling integrals L±n (Cn, Dn) are defined by

L±n (Cn, Dn) = Ln−1(Cn−1, Dn−1)± Ln+1(Cn+1, Dn+1), (3-170)

where the Lommel integral is given by

Lm(B1
m, B

2
m) =

ˆ ρmax

ρmin

B1
m(α1k1ρρ)B2

m(α2k2ρρ)ρdρ, (3-171)

which is a well-know analytical integral [116, p. 484]. It is interesting to note
that reaction X1,2 in (3-169) can be broken down into four contribution parts:

X1,2 = Xee
1,2 +Xhh

1,2 +Xeh
1,2 +Xhe

1,2, (3-172)
which allow us to make a clear distinction of the coupling between the fields
arising from Ez and Hz.
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Case α1k1ρ 6= α2k2ρ, we know that [116, p. 484]

ˆ ρmax

ρmin

B1
m(α1k1ρρ)B2

m(α2k2ρρ)ρdρ =
{

ρ

(α1k1ρ)2 − (α2k2ρ)2

×
(
α1k1ρB

1
m+1B

2
m − α2k2ρB

1
mB

2
m+1

)}ρmax
ρmin

. (3-173)

Thus, we can obtain

L±m(B1
m, B

2
m) =

{
ρ

(α1k1ρ)2 − (α2k2ρ)2

{
α1k1ρB

1
mB

2
m−1 − α2k2ρB

1
m−1B

2
m

±
[
α1k1ρB

1
m+2B

2
m+1 − α2k2ρB

1
m+1B

2
m+2

] }}ρmax
ρmin

, (3-174)

that can be simplified to

L±n (B1
n, B

2
n) =

[
∓ 2n
α1kρ1α2kρ2

B1
nB

2
n

+ (1± 1)ρ
(α1k1ρ)2 − (α2k2ρ)2

(
α1k1ρB

1
nB

2
n−1 − α2k2ρB

1
n−1B

2
n

) ]ρmax
ρmin

. (3-175)

Case α1k1ρ ≈ α2k2ρ, the above expression for L+
n becomes nearly singular,

and further specializations are needed to improve the numerical computations.
The application of L’Hospital’s rule into (3-173), for α1k1ρ → α2k2ρ, leads
to [117, p. 134]

ˆ ρmax

ρmin

B1
m(α1k1ρρ)B2

m(α1k1ρρ) ρ dρ =
{
ρ2

4
[
2B1

m(α1k1ρρ)B2
m(α1k1ρρ)

−B1
m−1(α1k1ρρ)B2

m+1(α1k1ρρ)−B1
m+1(α1k1ρρ)B2

m−1(α1k1ρρ)
]}ρmax

ρmin

, (3-176)

which allow us to derive

L±n (B1
n, B

2
n) =

{
ρ2

4

[
2B1

n−1B
2
n−1 ± 2B1

n+1B
2
n+1

−B1
n

(
B2
n−2 ±B2

n+2

)
−B2

n

(
B1
n−2 ±B1

n+2

) ]}ρmax
ρmin

, (3-177)

which in turn can be used to further simplify L−n as

L−n (B1
n, B

2
n) = 2n

(α1k1ρ)2

[
ρ2B1

nB
2
n

]ρmax
ρmin

. (3-178)

Notice that the above is valid for α1k1ρ → α2k2ρ and it is precisely the same
result as that of the non-singular parcel of the equation (3-175).
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Another useful special case, that can simplify the self-reaction integrals,
comes up when B1

m = B2
m and α1k1ρ = α2k2ρ. In this case, we can simplify

(3-176) show that [117, p. 135]
ˆ ρmax

ρmin

[
B1
m(α1k1ρρ)

]2
ρdρ =

{
ρ2

2

{[
B1
m(α1k1ρρ)

]2
−B1

m−1B
1
m+1

}}ρmax
ρmin

,

(3-179)
and then

L±n (B1
n, B

1
n) =

{
ρ2

2
[
(B1

n−1)2 ± (B1
n+1)2 − (B1

n−2B
1
n ±B1

nB
1
n+2)

]}ρmax
ρmin

.

(3-180)
As in the previous simplifications, we can further reduce L−n to

L−n (B1
n, B

1
n) = 2n

(α1k1ρ)2

[(
ρB1

n

)2
]ρmax
ρmin

, (3-181)

which is a special result of (3-178).

3.4.1.2
Multiple Radial Layers

Consider the waveguide junction illustrated in Fig. 3.5. We can write set
of radius that define the layers in regions 1 and 2 as

r1 = {r1,0, r1,1, r1,2, . . . , r1,N1}, and (3-182)

r2 = {r2,0, r2,1, r2,2, . . . , r2,N2}, (3-183)
respectively, and also the set of radius in region 2 that intercept the coupling
aperture Sa as

r12 = {r2,d+1, r2,d+2, r2,d+3, . . . , r2,N2−u−1}. (3-184)

Consider now the set ra, defined by the union of the sets r1 and r12, and sorted
in ascending order, i.e.,

ra = sort(r1 ∪ r12). (3-185)
The reaction integral between two generic radially-stratified waveguides in
regions 1 and 2 can be written as

X1(np),2(−np′) = −2π(−1)n

×
dim(ra)∑
j=0

ˆ ra,j+1

ra,j

[sne1ρ,np(ρ)h2φ,np′(ρ) + e1φ,np(ρ)h2ρ,np′(ρ)] ρ dρ, (3-186)

and the self-reaction of the region i = 1, 2 can be written as
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Figure 3.5: Longitudinal view of the junction between two semi-infinitely-long
and radially-stratified waveguides.

Qi,np = −2π(−1)n
dim(ri)∑
j=0

ˆ ri,j+1

ri,j

[sneiρ,np(ρ)hiφ,np(ρ) + eiφ,np(ρ)hiρ,np(ρ)] ρ dρ.

(3-187)
Notice the above solutions are expresses as a sum of coupling integrals
over cross-section segments associated with constant constitutive parameters.
Accordingly, all these integrals can be solved analytically using (3-169) by
select the proper values of the constitutive parameters, wave numbers, etc.,
based on the radial position ρ.

The axial mode-matching described above allow us to model the junctions
between waveguides with an arbitrary number of radial layers in each region.
Also, the radial position of the layers can be independent defined in each wa-
veguide. In contrast others formulations, the radial mode-matching approach
presented in [6, 8, 27, 46] requires the number of layer and its radial positions
shall be equal for all axial regions.

3.4.1.3
PML Implications for Mode-Matching

In Section 3.3.2 we verify that the analytical continuation of the radial
variable into the complex plane does not change the well-known solutions for
a radially-stratified waveguide. By the same reasons, we can assert that the
PML’s stretching profile is completely irrelevant in our axial mode-matching
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formulation. Under the mapping ρ → ρ̃, we can use all above closed-form
coupling integrals, just allowing the outermost radius to assume a complex
value, i.e., rN → r̃N . In this way, we just need to replace the integration end-
point into the analytical integrals.

If we want to calculate these integrals numerically, it is more appropriated
to employ a parametrization into a complex-valued path L such asˆ

L(ρ̃)
f(ρ̃) dρ̃ =

ˆ rN

r0

f(ρ̃(ρ)) sρ(ρ) dρ, (3-188)

where sρ(ρ) = dρ̃/dρ. Then, the line integral of the complex-valued function f
along the path L can be written asˆ

L

(ρ̃)f(ρ̃) dρ̃ =
ˆ rN

r0

<e [f(ρ̃(ρ)) sρ(ρ)] dρ+ i

ˆ rN

r0

=m [f(ρ̃(ρ)) sρ(ρ)] dρ.

(3-189)
The above form is suitable to be solved by means of the most common
algorithms for numerical integration, i.e., integration of real-valued functions
over the real line6.

3.4.2
Fields at an Observation Point

By using the GSM in (3-150) we can find the scattering matrices between
each pair of waveguide junction. In a waveguide composed by N axial layers,
we can use the above formulation to derive the local GSMs for all the
waveguide junctions. In Appendix B, we show how to proper transfer the
modal amplitudes generated by a source placed at z = zT , in region m, to
an observation point at z = zR, in region n (see Fig. 3.6), by means of the
equations (B-51) and (B-52). The field components at an arbitrary observation
point (ρ, φ, z = zR) can then be expressed as

Es(ρ, φ, zR) =
∑
n

∑
p

(A+
R,np + A−R,np)es,np(ρ)einφ, (3-190)

Ez(ρ, φ, zR) =
∑
n

∑
p

(A+
R,np − A−R,np)ez,np(ρ)einφ, (3-191)

Hs(ρ, φ, zR) =
∑
n

∑
p

(A+
R,np − A−R,np)hs,np(ρ)einφ, (3-192)

Hz(ρ, φ, zR) =
∑
n

∑
p

(A+
R,np + A−R,np)hz,np(ρ)einφ. (3-193)

More details are presented in Appendix B.

6We have employed the form shown in (3-189) in our numerical algorithm to verify the
correct implementation of the analytical integrals derived in Section 3.4.1.1.
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Figure 3.6: Geometry of a stratified cylindrical structure. The cross-section of
each region is formed by an arbitrary number of layers. A transmitting TCA
is placed at z = zT , in region m, and the desired receiver antenna is located
at z = zR, in region n.

3.5
Mode Excitation from Sources Inside a Cylindrical Waveguide

We now consider the excitation of the waveguide modes by a generic
source, located between two planes at z = z±T = zT±δ as shown in Fig. 3.7. This
source generates the fields E+ and H+ traveling in the positive z-direction, and
the fields E− and H− traveling to the opposite direction. The electromagnetic
fields generated by this source can be expressed in terms of the waveguide
modes as

E± =
∞∑

n=−∞

∞∑
p=1

A±np[e±s,np(ρ) + ẑe±z,np(ρ)]e±ikz,np(z−zT )+inφ, and (3-194)

H± =
∞∑

n=−∞

∞∑
p=1

A±np[h±s,np(ρ) + ẑh±z,np(ρ)]e±ikz,np(z−zT )+inφ, (3-195)

or, in the view of the symmetry relation in (3-128):

E± =
∞∑

n=−∞

∞∑
p=1

A±np[es,np(ρ)± ẑez,np(ρ)]e±ikz,np(z−zT )+inφ, and (3-196)

H± =
∞∑

n=−∞

∞∑
p=1

A±np[±hs,np(ρ) + ẑhz,np(ρ)]e±ikz,np(z−zT )+inφ, (3-197)
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z

½

±

±
zT

A+

A

J

M

Figure 3.7: Sources in an axially-infinitely-long and radially-stratified waveg-
uide.

for z ≷ z±T .
We can determine the unknown amplitude A±np by using the Lorentz

reciprocity theorem. Considering the two sets of sources J1, M1 and J2, M2,
which generate the fields E1, H1 and E1, H1, respectively, in the volume V
enclosed by the closed surface S, we can derive [118, p. 41]ˆ
V

∇ · (E1×H2−E2×H1)dv =
ˆ
V

(E2 · J1−E1 · J2 + H1 ·M2−H2 ·M1)dv,
(3-198)

and applying the divergence theorem, we can obtain˛
S

(E1×H2−E2×H1)·ds =
ˆ
V

(E2 ·J1−E1 ·J2+H1 ·M2−H2 ·M1)dv, (3-199)

where ds is an outward pointing vector, normal to the boundary S.
For a radially bounded waveguide terminated by a perfectly conductive

wall (electric or magnetic), the portion of the surface integral over the waveg-
uide walls vanishes because the tangential fields is zero there; i.e. E×H · ẑ =
H · (ẑ × E) = 0 for a PEC or E×H · ẑ = E · (H× ẑ) = 0 for a PMC on the
walls. This reduces the integration to be just over the guide cross-section S±0
at the planes z = z±T , i.e.,ˆ

S±0

(E1×H2−E2×H1)·ds =
ˆ
V

(E2·J1−E1·J2+H1·M2−H2·M1)dv, (3-200)

Since the modes are orthogonal over the guide cross-section, we can derive
a further simplification:ˆ

S

E±np×H±n′p′ ·ẑds =
ˆ
S

E±np×H∓n′p′ ·ẑds = 0, for n 6= −n′ and p 6= p′. (3-201)
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Under theses conditions, we can find A+
np selecting E1 and H1 as the fields

radiated by the sources. In other words, E1 = E± and H1 = H±, depending
on whether z ≷ z±T . Also, let E2 and H2 be the (−n, p)th waveguide mode
traveling in the negative z-direction:

E2 = E−−np, (3-202)

H2 = H−−np. (3-203)

Substituting the above into (3-200) and using J1 = J, M1 = M, and
J2 = M2 = 0, we can obtain

A+
np

ˆ
S+

0

(E+
np ×H−−np − E−−np ×H+

np) · ẑds

− A−np
ˆ
S−0

(E−np ×H−−np − E−−np ×H−np) · ẑds =
ˆ
V

(E−−np · J−H−−np ·M)dv, (3-204)

where we have used the orthogonality relations in (3-201). We should observed
that ds associated to the fields at z = z−T point to the negative z-direction,
justifying the negative sign in the second integral on LHS of the above equation.

For n = 0, we can verify that the second surface integral in (3-204)
vanish. For n 6= 0, we can obtain

ˆ
S−0

(E−np ×H−−np − E−−np ×H−np) · ẑds =
¨

[e−ρ,nph−φ,−np − e−φ,nph−ρ,−np − (e−ρ,−nph−φ,np − e−φ,−nph−ρ,np)]e−2ikz,npz−T ρdφdρ.

(3-205)

Using the field relations in (3-128) and (3-130), we can easily verify that the
above integral vanish. Then, for any n, we can simplify (3-204) in order to get
A+
np as

A+
np =

S+
np

N+
np

, (3-206)

where
N+
np =

ˆ
S0

(E+
np ×H−−np − E−−np ×H+

np) · ẑds, (3-207)

S+
np =

ˆ
V

(E−−np · J−H−−np ·M)dv. (3-208)

For n = 0, we can obtain

N+
0p = −4π

ˆ
(eρ,0phφ,0p − eφ,0phρ,0p)ρdρ, (3-209)
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S+
0p =

ˆ
V

[
(eρ,0pρ̂+ eφ,0pφ̂− ez,0pẑ) · J + (hρ,0pρ̂+ hφ,0pφ̂− hz,0pẑ) ·M

]
× e−ikz,0pzdv. (3-210)

In order to simplify the notation, the superscript + as omitted in the trans-
versal fields; i.e., gα,np = g+

α,np, where g = e or h and α = ρ or φ.
For n 6= 0, we can obtain

N+
np = 4π(−1)n

ˆ
(eρ,nphφ,np + eφ,nphρ,np)ρdρ, (3-211)

S+
np = (−1)n

ˆ
V

[
(−eρ,npρ̂+ eφ,npφ̂+ ez,npẑ) · J

− (−hρ,npρ̂+ hφ,npφ̂+ hz,npẑ) ·M
]
e−inφe−ikz,npzdv. (3-212)

By repeating the above procedure with E2 = E+
−np and H2 = H+

−np, we
can find an expression similar to (3-204) given by

A+
np

ˆ
S+

0

(E+
np ×H+

−np − E+
−np ×H+

np) · ẑds

− A−np
ˆ
S−0

(E−np ×H+
−np − E+

−np ×H−np) · ẑds =
ˆ
V

(E+
−np · J−H+

−np ·M)dv. (3-213)

For n = 0, we clear see that the first surface integral in (3-213) vanish. Using
the field relations in (3-129), we can easily verify that the above integral vanish
for n 6= 0. Then, for any n, we can simplify (3-213) in order to get A−np as

A−np =
S−np
N−np

, (3-214)

where
N−np = −

ˆ
S0

(E−np ×H+
−np − E+

−np ×H−np) · ẑds (3-215)

S−np =
ˆ
V

(E+
−np · J−H+

−np ·M)dv. (3-216)

For n = 0, we can obtain

N−0p = −4π
ˆ

(eρ,0phφ,0p − eφ,0phρ,0p)ρdρ, (3-217)

S−0p =
ˆ
V

[
(eρ,0pρ̂+ eφ,0pφ̂+ ez,0pẑ) · J− (hρ,0pρ̂+ hφ,0pφ̂+ hz,0pẑ) ·M

]
× eikz,0pzdv. (3-218)
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For n 6= 0, we can obtain

N−np = 4π(−1)n
ˆ

(eρ,nphφ,np + eφ,nphρ,np)ρdρ, (3-219)

S−np = (−1)n
ˆ
V

[
(−eρ,npρ̂+ eφ,npφ̂− ez,npẑ) · J

− (+hρ,npρ̂− hφ,npφ̂+ hz,npẑ) ·M
]
e−inφeikz,npzdv. (3-220)

Then, for n = 0 we can write

S±0p =
ˆ
V

[
(eρ,0pρ̂+ eφ,0pφ̂∓ ez,0pẑ) · J− (∓hρ,0pρ̂∓ hφ,0pφ̂+ hz,0pẑ) ·M

]
× e∓ikz,0pzdv, (3-221)

or

S±0p =
ˆ
V

[
(eρ,0pρ̂+ eφ,0pφ̂∓ ez,0pẑ) · J± (hρ,0pρ̂+ hφ,0pφ̂∓ hz,0pẑ) ·M

]
× e∓ikz,0pzdv. (3-222)

Then, for n 6= 0 we can write

S±np = (−1)n
ˆ
V

[
(−eρ,npρ̂+ eφ,npφ̂± ez,npẑ) · J

− (∓hρ,npρ̂± hφ,npφ̂+ hz,npẑ) ·M
]
e−inφe∓ikz,npzdv, (3-223)

or

S±np = (−1)n
ˆ
V

[
(−eρ,npρ̂+ eφ,npφ̂± ez,npẑ) · J

∓ (−hρ,npρ̂+ hφ,npφ̂± hz,npẑ) ·M
]
e−inφe∓ikz,npzdv. (3-224)

Note that N−np = N+
np for all n. Furthermore, using the symmetry relations in

(3-129), we can also verify that N±−np = N±np. For this reason, from this point,
the modal normalization will be denoted merely by Nnp.

Introducing sn = 1 − 2δ0,n, we can obtain expressions for n =
0,±1,±2, . . . given by

S±np = (−1)n
ˆ
V

[
(−sneρ,npρ̂+ eφ,npφ̂± snez,npẑ) · J

± (hρ,npρ̂− snhφ,npφ̂∓ hz,npẑ) ·M
]
e−inφe∓ikz,npzdv, (3-225)
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Nnp = 4π(−1)n
ˆ

(sneρ,nphφ,np + eφ,nphρ,np)ρdρ (3-226)

= −2Qnp, (3-227)

where Qnp is the self-reaction of the (np)th mode, and can be determined by
using (3-187).

The definition of A±np is the ratio of S±np by Nnp. Noting that both S±np

and Nnp have the common term (−1)n, we can redefine A±np so that

A±np =
Ŝ±np

N̂np

, (3-228)

where it is clear that Ŝ±np = (−1)nS±np and N̂np = (−1)nNnp.
The wavelength typically employed in geophysical sensing is very large

than the wire antenna thickness of the LWD tools. Hence, we can model
the sensor tool antennas as filament-like source densities carrying constant
currents.

3.5.1
Hertzian Electric Dipole

Consider a Hertzian electric dipole source that points at an angle θT from
the axial z-direction, defined by the current density

J = jTδT , (3-229)

where jT = IT lT is the current dipole moment for a current-carrying IT over
an infinitesimal length lT , and

δT = δ(ρ− ρT )δ(φ− φT )
ρ

δ(z − zT )(sin θT ρ̂+ cos θT ẑ), (3-230)

= 1
2πρ

∞∑
n=−∞

ein(φ−φT )δ(ρ− ρT )δ(z − zT )(sin θT ρ̂+ cos θT ẑ). (3-231)

The modal amplitude due to J is given by (3-228), such we can obtain

S±np = (−1)njT
1

2πe
∓ikz,npzT

×
ˆ π

−π


∞∑

n′=−∞
ein
′(φ−φT ) [−sneρ,np(ρT ) sin θT ± snez,np(ρT ) cos θT ]

 e−inφdφ.
(3-232)

Using the orthogonality relationˆ π

−π
ein
′(φ−φT )e−inφdφ = δn′n2πe−inφT , (3-233)
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we obtain

S±np = (−1)n sn jT e−inφT e∓ikz,npzT [−eρ,np(ρT ) sin θT ± ez,np(ρT ) cos θT ] .
(3-234)

3.5.2
Hertzian Magnetic Dipole

Consider now a Hertzian magnetic dipole source that points at an angle
θT from the axial z-direction, defined by the current density

M = mTδT , (3-235)

where mT = ImT lT is the magnetic dipole moment for a magnetic current ImT
over the infinitesimal length lT , and δT is defined in (3-231). This magnetic
dipole can model a small current loop with radius aT by means of the principle
of duality [55, p. 100], [15, p. 74], [54, p. 234]. We can verify that a coil with
NT turns carrying a current IT radiates the same fields as mT = −iωµITπa2

T .
The modal amplitude due to M is given by (3-228), where we can obtain

S±np = (−1)nmT
1

2πe
∓ikz,npzT

×
ˆ π

−π


∞∑

n′=−∞
ein
′(φ−φT ) [±hρ,np(ρT ) sin θT − hz,np(ρT ) cos θT ]

 e−inφdφ.
(3-236)

Using the orthogonality relation (3-233), we obtain

S±np = (−1)nmT e
−inφT e∓ikz,npzT [±hρ,np(ρT ) sin θT − hz,np(ρT ) cos θT ] .

(3-237)

3.5.3
Magnetic Coil Antenna Source

Consider the excitation of a magnetic loop placed at z = zT and defined
by the surface current density

M = mTδT , (3-238)

where mT = m0ρT is the magnetic moment for a coil with radius ρT , and

δT = δ(ρ− ρT )
ρ

δ(z − zT )φ̂, (3-239)

The modal amplitude due to M is given by (3-228), such we can obtain

S±np = ±δ0,n 2πmT hφ,np(ρT ) e∓ikz,npzT . (3-240)
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Note that the fields in a radially stratified waveguide in general are hybrid
modes, but the source defined in (3-238) excites only TMz

0p modes with
azimuthal dependence n = 0.

3.5.4
Tilted-Coil Antenna Source

Consider a coil antenna source with the coordinates

rT = ρ̂ρT + ẑ[zT − ρT tan θT cos(φ− φT )], (3-241)

where ρT and zT are the radial and the axial position of the center of the coil,
and φT and θT are the azimuthal and elevation tilt angles [47] as shown in
Fig. 3.8.

The electrical current density of the coil is given by

J = ITδT , (3-242)

where

δT = δ(ρ− ρT )δ(z − zT + ρT tan θT cos (φ− φT ))(φ̂+ ẑ tan θT sin (φ− φT )).
(3-243)

The modal amplitude due to J is given by (3-228), where

S±np = (−1)nITρT e∓ikz,npzT
ˆ π

−π

[
eφ,np(ρT )± snez,np(ρT ) tan θT sin (φ− φT )

]
× e−inφe±ikz,npρT tan θT cos(φ−φT )dφ. (3-244)

JT

y

z

µT
n̂T

ÁT

x

Figure 3.8: Transmitting tilted-coil antenna with current density JT .
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Here is expedite to define

κT = kz,npρT tan θT , (3-245)

and also perform the change of variable φ̃ = φ− φT , dφ/dφ̃ = 1, such we can
now write

S±np = (−1)nITρT e−inφT e∓ikz,npzT
ˆ π−φT

−π−φT

[
eφ,np(ρT )± snez,np(ρT ) tan θT sin φ̃

]
× e−inφ̃e±iκT cos φ̃dφ̃. (3-246)

Noting that the integrand is periodic in terms of φ and the integration is over a
period interval (2π), we can perform the integration over the symmetric interval
−π to π. Thus, unless the multiplicative constants, we need to determine the
following integrals:

I#1 =
ˆ π

−π
e−inφ±iκT cosφdφ, and (3-247)

I#2 =
ˆ π

−π
sinφe−inφ±iκT cosφdφ. (3-248)

The integrand exponential exp(±iκT cosφ) is an even function in terms
of φ. Therefore, using the identity exp(−inφ) = cosnφ− i sinnφ, we can verify
that only the function in terms of cosnφ contributes for the integration in I#1.
Accordingly, we can write

I#1 = 2
ˆ π

0
cosnφe±iκT cosφ dφ. (3-249)

Using the identity [116, p. 360]

Jn(r) = i−n

π

ˆ π

0
cosnφeir cosφ dφ, (3-250)

we can find
I#1 = 2πinJn(±κT ). (3-251)

By an analogous procedure, the integral I#2 can write as

I#2 = −2i
ˆ π

0
sinφ sinnφe±iκT cosφ dφ. (3-252)

Noting that sinφ sinnφ = 1
2 [cos(n− 1)φ− cos(n+ 1)φ], we can find

I#2 = −i
{ˆ π

0
cos(n−1)φe±iκT cosφ dφ−

ˆ π

0
cos(n+1)φe±iκT cosφ dφ

}
, (3-253)
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which can be simplified by using (3-250), resulting in

I#2 = −i
[
πin−1Jn−1(±κT )− πin+1Jn+1(±κT )

]
(3-254)

= −iπin(−i) [Jn−1(±κT ) + Jn+1(±κT )] (3-255)

= −πin2nJn(±κT )
±κT

(3-256)

= −2πin n

±kz,npρT tan θT
Jn(±κT ). (3-257)

By combining the previous results we can obtain

S±np = (−1)nITρT2πinJn(±κT )
[
eφ,np(ρT )− n

kz,npρT
ez,np(ρT )

]
e−inφT e∓ikz,npzT .

(3-258)
Note we have used snn = n. Furthermore, note that S±−np exp(−inφT ) =
S±np exp(inφT ), which allow us to write the sums in terms of the azimuthal
index n in (3-196) and (3-197) as a cosine series of n(φ− φT ), for n = 0 to ∞.

By combining the previous results we can obtain the modal amplitudes
for the transmitting tilted-coil antenna as

A±t,np = A±np =
S±np
Nnp

. (3-259)

From the equations above, it is clear that the transformation

A±t,np(φT , zT )→ A±t,np(φ0, z0)e−inφT∓ikz,np(zT−z0) (3-260)

translates the source from z = z0 to z = zT and azimuthally rotate the source
by the angle φT . A similar result was obtained in [47].

3.5.5
Received Voltage

The voltage induced on a tilted-coil antenna is given by

VR = −
ˆ
V

(E+ + E−) · δR dv, (3-261)

where δR is defined similarly to (3-243), but using the subscript substitution
T → R.

Based on the shape of the received fields shown in Section 3.4.2, we can
decouple the forward and the backward contributions for the received voltage
as

VR =
∞∑

n=−∞

∞∑
p=1

(V +
R,np + V −R,np). (3-262)

We can express the forward and backward voltages as a function of the
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modal field amplitudes at the receiver position, A±r,np, such as

V ±R,np = −A±r,npρRe±ikz,npzR
ˆ π

−π

[
eφ,np(ρR)± ez,np(ρR) tan θR sin (φ− φR)

]
× einφe∓ikz,npρR tan θR cos(φ−φR)dφ. (3-263)

Defining
κR = kz,npρR tan θR, (3-264)

and also performing the change of variable φ̃ = φ − φR, dφ/dφ̃ = 1, we can
write

V ±R,np = −A±r,npρReinφRe±ikz,npzR
ˆ π−φR

−π−φR

[
eφ,np(ρR)± ez,np(ρR) tan θR sin φ̃

]
× einφ̃e∓iκR cos φ̃dφ̃. (3-265)

Thus, unless the multiplicative constants, we need to determine the following
integrals:

I#3 =
ˆ π

−π
einφ∓iκT cosφdφ, and (3-266)

I#4 =
ˆ π

−π
sinφeinφ∓iκT cosφdφ. (3-267)

The procedure to solve the above integrals is analogous to one used in I#1 and
I#2, and after few manipulations, we can obtain

I#3 = 2πinJn(∓κR), and (3-268)

I#4 = 2πin n

∓kz,npρR tan θR
Jn(∓κR). (3-269)

By using the above results, we can then write the voltages in (3-265) as

V ±R,np = −A±r,npρR2πinJn(∓κR)
[
eφ,np(ρR)− n

kz,npρR
ez,np(ρR)

]
einφRe±ikz,npzR .

(3-270)
In general, the transmitting and the receiving antennas are not in the

same axial region. Then, consider that these antennas are at the regions t and
r. After finding the source amplitudes at the region t, we need to transfer
the corresponding modal amplitudes to the observation region r. Accordingly,
we can redefine the modal amplitudes for both transmitting and receiving
antennas at zT,R = 0, and at φT,R = 0 such as

A±T,np → A±t,np(zT ) = A±t,npe
∓ikz,npzT , (3-271)

A±R,np → A±r,np(zR) = A±r,npe
±ikz,npzR , (3-272)

and using the following rotating function
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Rn(φ′, φ) = ein(φ−φ′), (3-273)

we can obtain

V ±R,np = −A±R,npρR2πinJn(∓κR)
[
eφ,np(ρR)− n

kz,npρR
ez,np(ρR)

]
Rn(φT , φR).

(3-274)
Notice that the axial positions of transmitter and receiver are embedded into
A±R,np. The procedure required to transfer the modal amplitudes A±T,np at z = zT

to A±R,np at z = zR are presented in Appendix B.
A special case is of interest: consider that both receiver and transmitter

antennas are at the same axial region, and there no axial discontinuities. This
case consider just radial stratifications in an axial-uniform waveguide. Then,
for zR > zT we must calculate the received voltage as VR = ∑

n,p V
+
R,np. For

zR < zT , the received voltage is VR = ∑
n,p V

−
R,np. Noting that V ±R,np is even in

terms of n, we can obtain

V ±R =
∞∑
n=0

∞∑
p=1

εnF
±
np(ρT , ρR) cosn(φR − φT )e±ikz,np(zR−zT ). (3-275)

where εn = 2− δ0,n, and

F±np(ρT , ρR) = − IT

N̂np

4π2ρRρTJn(κR)Jn(κT )
[
eφ,np(ρR)− n

kz,npρR
ez,np(ρR)

]

×
[
eφ,np(ρT )− n

kz,npρT
ez,np(ρT )

]
. (3-276)

Note that F+
np(ρT , ρR) = F−np(ρT , ρR), which allow us to concluded that

V +
R = V −R .

A further specialization (of special interest for LWD applications) consi-
ders that the radius of the antennas are the same; i.e., ρR = ρT = ρ0; allowing
us to simplify the F±np(ρT , ρR) as

F±np(ρ0, ρ0) = − IT

N̂np

4π2ρ2
0Jn(κR)Jn(κT )

[
eφ,np(ρ0)− n

kz,npρ0
ez,np(ρ0)

]2

.

(3-277)

3.5.6
TCA Antenna Along two Axial Regions

If the transmitter TCA traverses two distinct axial regions, we need to
split the coil antenna region in two segments (‘sub-antennas’), as illustrated
in Fig. 3.9. In this case, instead of (3-247) and (3-248), we should use new
integrals over φ. In Fig. 3.9 we consider a TCA located at zT , between the
regions 1 and 2, and the two resulting sub-antennas are delineated in terms of
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Sub-antenna 1

y
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Figure 3.9: Orthogonal views of a transmitting tilted-coil antenna crossing the
junction at z = z1. In order to simplify the graphical representation, we use
zT = 0 and φT = 0.

the angle φi, given by

φi = arccos
(
zT − z1

ρT tan θT

)
+ φT , . (3-278)

Here is expedite to define the integral

I1(n, φini, φend, κ) = 2
ˆ φend

φini

cosnφeiκ cosφ dφ, (3-279)

where, in accordance with the previous expressions for I#1 and I#2, we must
employ φ ∈ [φs, φe] with φs = 0 and φe = φi for sub-antenna 1, and φs = φi

and φe = π for sub-antenna 2. Note that the modal excitations (3-244)
corresponding to each sub-antenna should use the appropriated value of κT
associated to that region.

To the best of our knowledge, the integral in (3-279) does not admit
a closed-form expression, but we found a suitable fast convergent series
representation as will be described bellow.
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The Jacobi-Anger expansion [116, p. 361]

eiκ cosφ =
∞∑
n′=0

εn′i
n′Jn′(κ) cosn′φ (3-280)

allow us to rewrite (3-279) as

I1(n, φini, φend, κ) = 2
∞∑
n′=0

εn′i
n′Jn′(κ)

ˆ φend

φini

cosnφ cosn′φ dφ. (3-281)

At this point, the following manipulations are pertinent:

I1(n, φini, φend, κ) = 2
∞∑
n′=0

εn′i
n′Jn′(κ)

ˆ φend

φini

cosnφ cosn′φ dφ

= 2
∞∑
n′=0

εn′i
n′Jn′(κ)1

2

[
sin (n+ n′)φ

n+ n′
+ sin (n− n′)φ

n− n′

]∣∣∣∣∣
φend

φ=φini

=
∞∑
n′=0

εn′φ i
n′Jn′(κ){sinc[(n+ n′)φ] + sinc[(n− n′)φ]}|φendφ=φini ,

(3-282)

where the function sinc(x) = sin(x)/x. We can now express I1 as

I1(n, φini, φend, κ) =φ
∞∑
n′=0

εn′ i
n′Jn′(κ) [sinc ((n+ n′)φ) + sinc ((n− n′)φ)]


φend

φ=φini

. (3-283)

Another useful integral is

I2(n, φini, φend, κ) = −2i
ˆ φend

φini

sinφ sinnφeiκ cosφ dφ, (3-284)

which reduces to the form of I#2 in (3-252) for φini = 0 and φend = π.
As far as we know, there is no analytical solution for I2, so that we

proceed in the same way as for I1. The derivative of (3-280) in respect to φ
results in

eiκ cosφ = 1
iκ sinφ

∞∑
n′=0

εn′i
n′Jn′(κ)n′ sinn′φ, (3-285)

which after a few simplifications allow to write I2 as

I2(n, φini, φend, κ) =φκ
∞∑
n′=0

n′εn′ i
n′Jn′(κ) [sinc ((n+ n′)φ)− sinc ((n− n′)φ)]


φend

φ=φini

. (3-286)

Using the above definitions for I1 and I2, the modal amplitude of the
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sub-antennas 1 and 2 should be obtained using

I#1 = I1(n, φini, φend,±κT ), and (3-287)

I#2 = I2(n, φini, φend,±κT ), (3-288)

for each sub-antenna. Note that for a configuration similar to that shown in
Fig. 3.9, we must employ φini = 0 and φend = φi for sub-antenna 1, and
φini = φi and φend = π for sub-antenna 2. For each segment, we should also
select the appropriated value of κT in view of the region of the sub-source.

Case the receiver antenna is between two axial regions, we must proceed
like shown above splinting the antennas and considering the contribution of
both receiving sub-antennas. Instead of the integrals in (3-266) and (3-267),
in this case we must employ

I#3 = I1(n, φini, φend,∓κR), (3-289)

I#4 = −I2(n, φini, φend,∓κR). (3-290)

In a compact shape, we can write

I1(n, φs, φe, κ) =
[
φ
∞∑
n′=0

εn′ i
n′Jn′(κ)F+

nn′(φ)
]φe
φ=φs

, (3-291)

I2(n, φs, φe, κ) =
[
φ

κ

∞∑
n′=0

n′εn′ i
n′Jn′(κ)F−nn′(φ)

]φe
φ=φs

, (3-292)

F±nn′(φ) = sinc ((n+ n′)φ)± sinc ((n− n′)φ) . (3-293)
If the receiver TCA traverses two axial regions, we can likewise proceed

as above, i.e., by splitting the TCA into two segments and computing the e.m.f.
on each segment separately, before adding them up. If necessary, we can also
employ the above strategy to model antennas spanning three or more regions
by segmenting the TCA according to each region and selecting proper values
for φs and φe in (3-291) and (3-292) for each sub-antenna.

3.6
Flowchart for the Proposed Technique

Based on the above formulation, we now present a complete description
of the algorithm employed for numerical calculations as the flowchart depicted
in Fig. 3.10. We consider that the series in (3-274) is truncated up to Nφ

azimuthal harmonics, and the geophysical formation under analysis is formed
by Nz axial regions with Nρ radial layers.
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Read input parameters

Medium, LWD tool and convergence
criteria:

Nρ, Nz, rj , zj , ¯̄εj , ¯̄µj , αPML,
ω, ρR,T , φR,T , zR,T , θR,T ,

Nφ, AdB , ∆z.Initialize calculations

n = 0

Region = 1

Calculate eigenfields

Calculate the region of search using
(3-117) and (3-113), and then N0 using
(3-118). For each value of kz,np found,
calculate R(ρ) and T (ρ) matrices using
(3-43) and (3-42). The value of b̄N is
calculated using the formulas shown in
Section 3.3.4. The values of āj and b̄j for
remaining layer are then calculated re-
cursively by means of (3-46) and (3-120).

Region > 1 ?

Calculate the GSM Calculate matrices ¯̄Xj,j+1 and ¯̄Qj at z =
zj , by using formulas in Section 3.4.1.1 for
j =Region−1, and then the scattering
matrices in (3-151), viz., R(z) and T (z)

matrices.

Region = Region+1

Region = Nz ?

Find received voltages VR1,2

Calculate A±T,np using (3-271), and
by mean of the formulas in

Appendix B, obtain A±R,np. The sum
over p in (3-274) provide the
received voltage for the nth

azimuthal harmonic.
Store voltages
for the nth
harmonic

n = n+ 1

n = Nφ ?

Calculate total received voltages

The sum over all Nφ azimuthal
harmonics in (3-274) is used to
calculate the total received

voltages at the TCA receivers
RX1 and RX2.Store received voltages

End

True

False

True

False

True

False

Figure 3.10: Flowchart for the algorithm of the proposed technique.

3.7
Numerical Results and Validation

The proposed technique was successful to reproduces a series of results
for the electromagnetic propagation along cylindrically-layered structures as we
reported in [60, 109, 110, 119, 120]. Then, we assume here that our eigenvalue
solver algorithm was proper implemented; now we only need to check the axial
mode-matching and the complex source enforcements.

To illustrate the application of the proposed method, we present simula-
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tions of a triaxial logging tool consisting of one transmitter and two receivers
TCAs in a vertical-well borehole traversing different Earth formation. In all
cases, the axial positions of the transmitter, and receivers RX2 and RX1 are zT ,
zT + 24 in and zT + 30 in, respectively, where 1 in = 2.54× 10−2 m. The TCAs
have ρT,R = 4.5 in and are wrapped around a 4-in-radius metallic mandrel and
inside a 5-in-radius borehole. We assume a homogeneous Dirichlet boundary
condition for the tangential electric field at the surface of the metallic mandrel.
This geometry was considered before in [5–8] and is used here to validate our
formulation. In all simulations below, we consider only non-magnetic media.
Also, as typical for modeling of low-frequency tools in geophysical formati-
ons, the real part of the complex permittivity everywhere is assumed equal
to the vacuum permittivity. The radial domain is truncated at rN by using
homogeneous Dirichlet boundary condition. The results are obtained using a
double-precision Fortran code running on a PC with a 2.93-GHz Intel Xeon
W3540 processor.

3.7.1
Horizontal-Coil Antennas LWD Tools

3.7.1.1
Three-Layer Formation

First, we consider an isotropic formation with three horizontal layers,
whose conductivity σ of layers 1, 2 and 3 are 1 S/m, 0.01 S/m and 1 S/m,
respectively, as illustrated in Fig. 3.11. The LWD tools is moving inside a
borehole filled with a lossy mud having σ = 2 S/m, and employ horizontal coil
antennas. We truncate the radial domain using a PEC at rN = rN−1 +αδN,max,
which means that the outermost radial layer thickness is α times the skin depth
on the lowest conductive formation (0.01 S/m). We assume the same truncation
for the remaining axial regions. We do not employed the complex stretching
in the PML layer because the frequency is low such that the spectrum of
evanescent modes become dominant. In our simulations, we consider all modes
that satisfy the criteria of axial attenuation AdB ≥ −30 dB at ∆z = 5 in. As
the coil source do not present tilt in relation to its axial axis (i.e., θT = 0),
from (3-258), only modal fields with azimuthal index n = 0 will be excited.

The received voltages at antennas RX1 and RX2 due to a unit current
excitation (IT = 1 A at 2 MHz) are depicted in Fig. 3.12 and Fig. 3.13 in
respect to 5 values of α: from 0.25 to 0.75, with steps of 0.125. The ratio of
the received voltages amplitude and phase as a function of the axial position
zT is shown in Fig. 3.14 and 3.15, respectively.
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Fig. 3.16 shows the ratio of the RX2 and RX1 voltages as a function of the
axial position zT , for two excitation frequencies: 500 kHz and 2 MHz, both for
IT = 1 A. We truncated the radial domain using the same criteria described
above, in which rN = rN−1 + 0.75δN,max. Notice that δN,max is a frequency
dependent parameter: equal to 280.6113-in for 500 kHz and equal to 140.8920-
in for 2 MHz. Very good agreement is observed versus the finite-difference
time-domain (FDTD) results from [5,6]. The total CPU time required by our
algorithm was 25 seconds and 6 seconds to simulate 300 observation points at
500 kHz and 2 MHz, respectively.

In results shown above we have considered all modes that satisfy the
criteria of axial attenuation AdB = −30 dB at ∆z = 5 in. However this criteria
is very conservative. In Fig. 3.17 we shown the convergence of the voltages for
five values of AdB (from −10 dB to −30 dB, with steps of 5 dB). We employed
the same radial truncation as used before: a PEC at rN = rN−1 + 0.75δN,max.
We can see that a criteria no more strong than AdB = −20 dB at ∆z = 5 in
needs be used for practical proposals. Using this criteria, we need just employ
31 modal fields in the mode-matching approach for a coil source operating at
2 MHz, as shown in Table 3.1.

Figure 3.11: Geometry of a triaxial well-logging tool within a stratified geop-
hysical formation.
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Figure 3.12: Voltage amplitude and phase received by antenna RX1. The
response for rN = rN−1 + αδN,max, α = 0.25 (dashed-line) to 0.75 in, with
steps of 0.125 in. Vertical arrows indicate the convergence sense.

Table 3.1: Number of modes for AdB at 5 in
500 kHz 2 MHz

AdB (dB) Region 1 Region 2 Region 3 Region 1 Region 2 Region 3
−10 31 31 31 15 15 15
−15 47 47 47 23 23 23
−20 61 61 61 31 31 31
−25 77 77 77 39 39 39
−30 93 93 93 47 47 47
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Figure 3.13: Voltage amplitude and phase received by antenna RX2. The
responses for rN = rN−1 + αδN,max, α = 0.25 (dashed-line) to 0.75, with steps
of 0.125 are shown. Vertical arrows indicate the convergence sense.
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Figure 3.14: Relative amplitude voltage received by two antennas moving with
one transmitter antenna across a bed layer (z = 0 to z = 60 in). The responses
for rN = rN−1 + αδN,max, α = 0.25 (dashed-line) to 0.75, with steps of 0.125
are shown. Vertical arrows indicate the convergence sense.
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Figure 3.15: Relative phase voltage received by two antennas moving with one
transmitter antenna across a bed layer (z = 0 to z = 60 in). The responses for
rN = rN−1 + αδN,max, α = 0.25 (dashed-line) to 0.75, with steps of 0.125 are
shown. Vertical arrows indicate the convergence sense.
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Figure 3.16: Voltage ratio for a triaxial LWD logging tool operating at 500 kHz
and 2 MHz. The results from the present method are shown by solid lines. The
small circles are FDTD results from [5,6].

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 3. Analysis of Well-Logging Tools in Vertical Wells 97

−80 −60 −40 −20 0 20 40 60 80 100

1.8

1.85

1.9

1.95

2

Axial position zT (in)

a
b
s(
V
R
2
/
V
R
1
)

AdB = {−20,−25,−30} dB

AdB = −10 dB

AdB = −15 dB

(a) 500 kHz

−80 −60 −40 −20 0 20 40 60 80 100

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Axial position zT (in)

a
b
s(
V
R
2
/
V
R
1
)

AdB = −10 dB

AdB = −15 dB

AdB = {−20,−25,−30} dB

(b) 2 MHz

Figure 3.17: Convergence of the voltage amplitude ratio for AdB at ∆z = 5 in.
The response for five values of AdB (from −10 dB to −30 dB, with steps of
5 dB) are presented. Vertical arrows indicate the convergence sense.
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3.7.1.2
Borehole With Invasion Zone

As a second example, we consider a LWD tool operating at 2 MHz, again
using horizontal coil antennas. The borehole is filled with salt water having
σ = 10 S/m and the tool is now traversing a 60-in bed layer with conductivity
equal to 5 × 10−4 S/m. The formations bellow and above the bed layer have
high-contrast conductivities: 5 S/m and 1 S/m, respectively. Only fields with
azimuthal harmonic index n = 0 will be excited, and we have considered all
modes that satisfy the axial attenuation criteria of −50 dB at 5 in, resulting
in 41 modal fields. Fig. 3.18 shows the voltage ratio and the phase difference
measured by the triaxial LWD tool as a function of the axial position zT .
Also, we show results for a 10-in-deep invasion zone with conductivity equal
to 5 S/m at intermediary formation, as depicted in Fig. 3.19. Good agreement
is observed versus the results from the finite volumes method used in [7]. The
total CPU time required by our algorithm was 16 seconds to simulate 300
observation points for the non-invaded problem. About the same CPU time
has been taken by the invaded problem.
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Figure 3.18: Voltage ratio and phase difference for a triaxial LWD logging tool
traversing a bed layer with and without invasion. The results from the present
algorithm are indicated by solid lines. The small circles and crosses are FV
results from [7].
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Figure 3.19: Geometry of a triaxial well-logging tool within a stratified geop-
hysical formation. A 10-in-invasion zone is present in formation 2.

3.7.2
Tilted-Coil Antennas LWD Tools

3.7.2.1
Isotropic Formations

As a first problem involving TCAs, we consider the case of a triaxial
TCA LWD tool in a vertical-well borehole filled with oil-based mud having
σ = 0.0005 S/m traversing an isotropic Earth formation with two horizontal
layers, as illustrated in Fig. 3.20. Surrounding the borehole, the conductivity of
top formation (z < 0) is 5 S/m. The bottom formation (z > 0) is characterized
by 1 S/m.

We truncate the radial domain at rN = 60 in, which means that the
outermost radial layer thickness are about 4 times the skin depth on the less
conductivity formation (1 S/m). We do not employed the complex stretching
in the PML layer, as suggested in [17], because the frequency is low, and the
formations losses are very hight. The back-PML layer is assumed as a PEC.

We have considered all modes attenuated up to 60 dB at 5 in for all
simulations shown above, which results in 49 modes at each region. Also, we
have considered azimuthal index up to |n| = 4. Fig. 3.21 to Fig. 3.28 plot
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Figure 3.20: Geometry of a triaxial TCA well-logging tool within a stratified
geophysical formation.

the voltage due to a unit current excitation (IT = 1 A at 2 MHz) at the
receiver antennas RX1 and RX2 as a function of the axial position zT of the
tool (abscissa in the plots), considering a transmitter TCA with fixed tilt angle
of 45◦, and four different receiver TCA tilt angles: θR = 10◦, 20◦, 30◦ and 40◦.
We compare the FDTD (circles) and R-NMM (dots) results in a two-layer
isotropic formation obtained (from graphical reading) in [6, pp. 106–107], with
the results of our formulations (solid lines). Very good agreement is observed
versus the results from [6]. The CPU time required by our algorithm was less
than 15 seconds to simulate the contribution of each azimuthal harmonic for
300 observation points.

We can see a small difference between the FDTD results compared with
those from the mode-matching approaches (both the radial and axial). These
differences are more pronounced when the antennas are crossing the junction
at z = 0, which leads us to believe that the deviations are related to the fact
that the antennas geometry are not conformal with the finite-difference grid
employed in [6].
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Figure 3.21: Voltage at TCA receiver RX1 with θR = 10◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.22: Voltage at TCA receiver RX2 with θR = 10◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.23: Voltage at TCA receiver RX1 with θR = 20◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.24: Voltage at TCA receiver RX2 with θR = 20◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.25: Voltage at TCA receiver RX1 with θR = 30◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.26: Voltage at TCA receiver RX2 with θR = 30◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.27: Voltage at TCA receiver RX1 with θR = 40◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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Figure 3.28: Voltage at TCA receiver RX2 with θR = 40◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 106–107].
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As said before, we have employed the fields contribution of the azimuthal
index n = 0,±1,±2,±3,±4. However, we have verified that the main contri-
bution comes from fields associated with n = 0 and n = ±1.

Fig. 3.29 to 3.32 show the absolute values of the received voltages for
each orthogonal azimuthal index. We clearly see that the main contribution
comes from n = 0 as θR is small, but for larger θR, the contribution of
n = ±1 becomes dominant. For practical purposes, we do not need to include
high order azimuthal index such as |n| > 1 in order to proper analyze TCA
antennas in logging well environments. Also, the criteria used above to include
a modal solution in the mode-matching is very conservative (AdB = −60 dB
at ∆z = 5 in).

In Fig. 3.33 and Fig. 3.34 we show the convergence behavior of the
received fields in relation to the axial convergence criteria. We select the voltage
received by antenna RX2 using θR = 40◦, and the number of modes used in
each simulations is depicted in Table 3.2. Notice that using fields with axial
attenuation lower than −20 dB at 5 in, the received voltages are virtually
indistinguishable. By using all fields with axial attenuation up to −20 dB at
5 in and the n = 0, 1 azimuthal harmonics, the total CPU time required by
our algorithm was 6 seconds to simulate 300 observation points. However, AdB
higher than −20 dB is not enough to correctly capture the fields behavior
at the vicinity of the interface between formations 1 and 2, as depicted in
Fig. 3.34.

From the above, we conclude that only a few number of modes excited
by the source have significant fields after propagate the distance between the
source and a receiving antenna. However, the presence of the interface between
the axial formations scatters the incident fields, acting as a new equivalent
source at the junction. Thus, we need to include a number of modal fields in
order to accurately account the fields when the antennas (both TX as RX1

and RX2) are crossing or near the junction.
The results shown above confirm that the analytical approach introduced

in Section 3.5.6 can efficiently model TCA antennas crossing different axial
regions. In this way, we have verified that the axial mode-matching can be
employed in combination with excitation sources with non-zero span along
the axial direction. As far as we know, until now only radial mode-matching
formulations are reported in the literature as able to model this kind of
problem.
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Figure 3.29: Amplitude of the received voltages VR1 and VR2 for θR = 10◦ in
terms of its azimuthal contributions. The total voltages are shown in dashed
lines.
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Figure 3.30: Amplitude of the received voltages VR1 and VR2 for θR = 20◦ in
terms of its azimuthal contributions. The total voltages are shown in dashed
lines.
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Figure 3.31: Amplitude of the received voltages VR1 and VR2 for θR = 30◦ in
terms of its azimuthal contributions. The total voltages are shown in dashed
lines.
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Figure 3.32: Amplitude of the received voltages VR1 and VR2 for θR = 40◦ in
terms of its azimuthal contributions. The total voltages are shown in dashed
lines.
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Figure 3.33: Convergence of the voltage amplitude and phase received by
antenna RX2 (θR = 40◦) for AdB at ∆z = 5 in. The response from six values
of AdB (from −10 dB to −60 dB, with steps of 10 dB) are presented.
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Figure 3.34: Convergence of the voltage amplitude and phase received by
antenna RX2 (θR = 40◦) for AdB at ∆z = 5 in. The response for five values of
AdB (from −10 dB to −20 dB, with steps of 2.5 dB) are presented. Vertical
arrows indicate the convergence sense.
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Table 3.2: Number of modes for AdB at 5 in
n = 0 n = ±1

AdB (dB) Region 1 Region 2 Region 1 Region 2
−10 7 8 7 8
−12.5 10 11 10 10
−15 12 13 12 12
−17.5 15 15 14 15
−20 17 17 16 17
−30 25 25 25 25
−40 33 33 33 33
−50 41 41 41 41
−60 49 49 49 49

3.7.2.2
Anisotropic Formations

We now consider a formation similar to the latter problem, but with
anisotropic formations. Surrounding the borehole, the horizontal and vertical
components of the conductivity of the formation 1 (z < 0) are 5 S/m and
1 S/m. Formation 2 (z > 0) is characterized by 1 S/m and 5 S/m, respectively,
as shown in Fig. 3.35.

Fig. 3.36 to Fig. 3.43 plot the voltage due to a unit current excitation
(IT = 1 A at 2 MHz) at the receiver antennas RX1 and RX2 as a function of
the axial position of the tool, considering a transmitter TCA with fixed tilt
angle of 45◦, and four different receiver TCA tilt angles: θR = 15◦, 25◦, 35◦ and
45◦. The results obtained shown good agreement with those from [6, 8]. The
CPU time required by our algorithm is less than 19 seconds to simulate the
contribution of each azimuthal harmonic for 300 observation points.

As noted before, the orthogonality of the azimuthal harmonics allow us
to analyze the contribution of each n to the total received voltage in (3-274).
In Fig. 3.44 we shown the voltage amplitude (in decibels) at TCA antenna
RX2 considered in the last example, as in Fig. 3.43(a), but now for different
tilt angles θR. Only the first 4 harmonics, n = 0, 1, 2 and 3, are depicted
because higher order ones show negligible amplitudes. In the case θR = 0, the
receiver TCA becomes an ordinary coil antenna and, as predicted before, only
transversal electric modes associated with n = 0 are present. It is observed
that the amplitudes of the harmonics increase with the antenna tilt, which
is expected from the behavior of the Bessel function with the complex-valued
argument ρR tan θRkz,np. As expected, the relevant contribution to the received
voltages comes from the azimuthal harmonics n = 0, 1. For small θR, the main
contribution comes from n = 0, but for larger θR, the contribution of n = 1
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becomes dominant.
We believe that the above observations based on the analytical form of

the fields can provide some guidance for the inverse problem associated to
LWD tools, i.e., where the measured voltages can be used to estimate the soil
formation conductivity.

Figure 3.35: Geometry of a triaxial TCA well-logging tool within an anisotropic
stratified geophysical formation.
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Figure 3.36: Voltage at TCA receiver RX1 with θR = 15◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.37: Voltage at TCA receiver RX2 with θR = 15◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.38: Voltage at TCA receiver RX1 with θR = 25◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.39: Voltage at TCA receiver RX2 with θR = 25◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.40: Voltage at TCA receiver RX1 with θR = 35◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.41: Voltage at TCA receiver RX2 with θR = 35◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.42: Voltage at TCA receiver RX1 with θR = 45◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.43: Voltage at TCA receiver RX2 with θR = 45◦ due to a unit current
excitation transmitting TCA with θT = 45◦. The results from the present
algorithm are indicated by solid lines. The small circles and dots are FDTD
and R-NMM results, respectively, from [6, pp. 108–109], [8].
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Figure 3.44: Voltage amplitude in decibel, 20 log10(abs(VR2)), at TCA receiver
RX2 due a transmitter TCA with tilt angle of 45◦. The contribution of the
azimuthal harmonics n = 0, 1, 2 and 3 are depicted.
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3.8
Comparison of the Proposed Method Versus the R-NMM

For many years, LWD problems where efficiently solved using a 1D-FE
discretization along each horizontal layer of a cylindrical stratified medium
[10,24,26,31], and then, in the vertical direction, a mode-matching procedure
is used to match the fields between each horizontal layer. As said before, this
approach is denoted as axial-NMM (A-NMM).

A typical LWD tool moves with the downhole drilling so that, at each
new tool position along the well, it is necessary to recalculate several matrices
incorporating the reflections from the horizontal layers above and below the
source and the receiving antennas (these recursive calculations are presented
in Appendix B). This is a drawback of the A-NMM-based, as pointed out
in [46]. In [6, 8, 27, 28, 46], an alternative NMM approach was proposed to
circumvent this issue in LWD applications. As both transmitting and receiving
LWD antennas are placed around a metallic mandrel inside the borehole and
typically have the same radius, they are located in the same radial layer
regardless of the the axial position of the tool in the logging well. Therefore,
it becomes more efficient to first perform a mode expansion of the fields along
vertical direction and then a mode-matching along each radial layer. According
to previous statements, this approach is denoted as radial-NMM (R-NMM).

Recently, an improved R-NMM technique was proposed in [9]. In former
R-NMM formulations, the vertical dependence of electromagnetic fields where
expanded by using sinusoidal [27] and quadratic B-splines [8] basis functions to
represent vertical eigenmodes. The accuracy of second order B-splines versus
others not curl-conforming basis where proved in [6, pp. 88–90]. Motivated
by this, the authors of [9] have investigated the use of cubic B-splines local
basis functions because its high order nature as well as its ability to handle
with multiple knots. The novelties introduced in [9] have allowed a R-NMM
approach that can improve the numerical efficiency of the traditional NMM
algorithms reported so far. In this section, numerical simulations for LWD
sensors in typical geophysical environments are presented to compare some
aspects of the improved R-NMM versus the proposed method. The R-NMM
results and simulation details were obtained by personal communication with
the authors of [9].

We consider a triaxial well-logging tool consisting of one transmitter
and two receivers coil antennas in a vertical-well borehole traversing different
Earth formations. In all cases, the axial positions of the transmitter TX, and
receivers RX2 and RX1 are zT , zT + 24 in and zT + 30 in, respectively, where
1 in = 2.54 × 10−2 m. The antennas are 4.5-in-radius coils and are wrapped
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Figure 3.45: Geometry of a triaxial LWD tool (antennas TX, RX1 and RX2)
within a stratified geophysical formation.

around a 4-in-radius metallic mandrel and inside a 5-in-radius borehole, as
depicted in Fig. 3.45. We assume a perfect electric conductor (PEC) media on
the metallic mandrel. A perfectly matched layer (PML) was used to truncate
the axial and radial domain for the R-NMM [9] and the proposed formulations,
respectively, where the back-PML media is also assumed as a PEC.

We consider in all cases that the borehole is filled with an oil-based
mud having conductivity (σ) equal to 0.0005 S/m, and to explore the ability
of the basis functions proposed in [9] to correctly represent fields along the
stratifications, we consider a high contrast of σ between borehole and the
soil formations. In addition, only non-magnetic media are considered, and the
real part of the complex permittivity is assumed equal to 8.85 × 10−12 F/m,
i.e., the vacuum permittivity. These assumptions are typical for modeling low-
frequency LWD tools.

3.8.1
Case 1: Radial Invasion Zone

We first consider the particular 2D configuration described in Fig. 3.46,
where the soil formation (with σ = 5 S/m) is assumed axially invariant, but
the low porosity of the media surrounding the borehole creates an invasion
zone with thickness d. For geophysical prospection applications, the output
parameters of interest are not directly the voltages at RX2 and RX1, but
instead the amplitude ratio (AR) and phase difference (PD) between these
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Figure 3.46: Geometry of a triaxial well-logging tool within the geophysical
formation for the case 1.

voltages. Fig. 3.47 shows AR and PD results as a function of the invasion
thickness d, due to an excitation antenna TX operating at 2 MHz. The R-
NMM results are in good agreement with those from the presented method,
with a relative error no larger than 0.5% over the range of investigation. The R-
NMM’s CPU time required for each configuration of d was about 517 seconds
to account 180 modes using a double-precision Fortran code running on an
ordinary laptop. For comparison, our algorithm required about 31 seconds
using 74 modes.

3.8.2
Case 2: Vertical Bed Layer

As a second case, we consider now the particular 3D configuration
described in Fig. 3.48, where the LWD tool is traversing a three-layer formation
with conductivities 5 S/m, 0.01 S/m and 5 S/m. Notice that the conductivity
profile can vary by a factor of 104 times between the borehole and formations 1
and 3. Fig. 3.49 shows AR and PD results for several thicknesses h in formation
2 as a function of the axial position of the transmitting zT ; that is again
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Figure 3.47: Voltage amplitude ratio and phase difference for the triaxial LWD
tool depicted in case 1 (see Fig. 3.46) as a function of the invasion thickness
d. The results from our (A-NMM-based) algorithm and from the R-NMM [9]
are indicated by solid lines and small circles, respectively.

operating at 2 MHz. The R-NMM and A-NMM results are in agreement, with
a relative error no larger than 1% over the range of investigation. The R-
NMM’s CPU time required for each configuration of h was about 28 minutes
to account 230 modes. The A-NMM algorithm, on other hand, required no
more than 49 seconds using 73 modes.

3.8.3
Case 3: Complex Soil Formation

Finally, we now consider a more complex soil formation composed by
four vertical layers and an intricate invasion zone, whose 3D configuration is
depicted in Fig. 3.50. Fig. 3.51 shows AR and PD results for a triaxial LWD tool
traversing the bed layers as a function of the axial position of the transmitting
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Figure 3.48: Geometry of a triaxial well-logging tool within the geophysical
formation for the case 2.

antenna (viz. zT ) for three typical operating frequencies: 100 kHz, 500 kHz
and 2 MHz. The R-NMM and A-NMM results are in very good conformity,
with a relative error no larger than 0.3%. The R-NMM’s CPU time required
for each frequency simulations was about 17 minutes to account 212 modes.
The A-NMM algorithm required no more than 114 seconds using 60 modes.

From results in Fig. 3.51 become clear that the resolution of the LWD
tool operating at 2 MHz is improved compared to the others analyzed low
frequency configurations.

3.8.4
Comparison Summary

In this section, we showed numerical results for LWD tools responses with
a restricted computational effort via NMM-based formulations. Typically, an
ordinary R-NMM simulation required about 1/4 of the CPU time of an FDTD
simulation [8]. In [9], it was verified that the multiplicity of knots in cubic B-
splines basis functions can reduces the domain discretization in about 30%
compared to the ordinary R-NMM for typical LWD applications. In addition,
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Figure 3.49: Voltage amplitude ratio and phase difference for a triaxial LWD
tool traversing the bed layers depicted in case 2 (see Fig. 3.48) for several bed
layer thickness h. The results from our (A-NMM-based) algorithm and from
the R-NMM [9] are indicated by solid lines and small circles, respectively.

the A-NMM-based formulation described in the chapter required just a fraction
of that simulation time.

It is important to observe that the problem scenarios we have consider
here present high conductivity contrasts such the problem was modeled as a
layered cylindrical structure. For others scenarios in which the soil formation
profile changes smoothly in vertical direction, the fields can be more natu-
rally represented by using the R-NMM associated with cubic B-splines basis
functions.
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Figure 3.50: Geometry of a triaxial well-logging tool within the geophysical
formation for the case 3.
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Figure 3.51: Voltage amplitude ratio and phase difference for a triaxial LWD
tool traversing the bed layers depicted in case 3 (see Fig. 3.50). The results
from our (A-NMM-based) algorithm and from the R-NMM [9] are indicated
by solid lines and small circles, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 3. Analysis of Well-Logging Tools in Vertical Wells 135

3.9
Modeling of LWD Sensors Inside Mandrel Grooves

As previously mentioned in Chapter 2, to grantee the drill bit lubrication,
we need to wash out the drilling cuttings. To maximize the flow of the mud and
cuttings back to the surface, some LWD tools employ wire loop antennas placed
inside grooves around the metallic mandrel. The numerical simulation of this
kind of structure are not commonly encountered in the literature due the some
complications in its modeling. Both R-NMM and A-NMM approach can not
be easily generalized to modeling sources inside such indentations due some
enforcements of the NMM. In practice, however, we can use a tool calibration
as a reference to proper approximate the real-world LWD tool response, as
described in [34]. To be more clear, in geophysical prospecting using LWD tools
the parameters of interest are the amplitude ratio (AR) and phase difference
(PD) between the voltages at two antennas [6, 34]:

AR = 20 log10(VR2/VR1), (3-294)

PD = arg(VR2)− arg(vR1). (3-295)
The individual value of the antenna voltages are not of (direct) interest, but
instead its values compared to a reference; i.e., the voltage VR2 in relation to
VR1. Experimental analysis of resistivity logging-sensors have showed that we
can consider numerical simulations of LWD tools with antennas placed around
the mandrel (as in the examples showed in Section 3.7, where coil antennas are
placed in the middle between the mandrel and the borehole border) to generate
AR and PD data and then we can perform measurements of a real LWD
tool (using mandrel-embedded antennas) to calibrate the simulated tool [34].
This approach is very practical, however, we believe realistic simulations for
LWD tools can render important information to the design of novel resistivity
logging-sensors more accurate than the conventional technology. For this
reason, in this section we explore the influence of LWD sensors housed inside
grooves around the mandrel.

3.9.1
Horizontal-Coil Antennas

According to the mode-matching formulation presented in Section 3.4.1,
the inclusion of indentations on the mandrel can be easily simulated just
assuming that the innermost radial-layer (the PEC mandrel) now presents two
distinct radius, as illustrated in Fig. 3.52. By assuming the grooves present the
radial-width d and axial-height h, we can model one groove by as the ordinary
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Figure 3.52: Side view of a coil antenna (depicted by ⊗) placed within a groove
on the metallic mandrel.

junction between an intermediate waveguide (region 2, in which innermost
radius is located at ρ = r0 − d) with the two adjacent waveguides (in regions
1 and 3, whose innermost radial domain start at ρ = r0).

We consider the case of a 5-in borehole filled with an oil-based mud having
σ = 5× 10−4 and now the triaxial logging tool consist of one transmitter and
two receivers horizontal-coil antennas inside a formation with conductivity
1 S/m. The transmitter (TX) operates at 2 MHz, and will induces voltages at
receivers RX1 and RX2 placed 30-in and 24-in axially away from the source.
The antennas are wrapped within grooves with d = h = 1 in on a 4-in metallic
mandrel, as illustrated in Fig. 3.52 and Fig. 3.53(a).

Fig. 3.54 and Fig. 3.55 show the voltage amplitude ratio (AR) and phase
difference (PD) received by the triaxial LWD tool for several pertinent values
for axial attenuation (AdB at 0.5 in) and the radial truncation in function of
the thickness of outermost radial layer (2, 3, 4 and 5 times the skin depth of
soil formation). We can verify a convergence of both AR and PD as the radial
domain is as large as 4δN .

Now using the truncating the radial space at 60 in (about 4 times the skin
depth of the formation) and using all fields with axial attenuation less than
AdB = 30 dB at 0.5 in, we explored the LWD tool response for a parametric
variation of the groove widths and heights. Fig. 3.56 shows results for AR and
PD for 1-in ≤ d ≤ 2-in and 1-in ≤ h ≤ 30-in.

For small groove heights, in the range of h < 6-in, AR ans PD vary
subtly for the analyzed widths d: AR changes about 1 dB and are mainly
influenced by values of h, and the PD variation is almost negligible; less than
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(a) h < 6 in (b) 6 ≤ h < 24 in (c) h ≥ 24 in

Figure 3.53: LWD tool for different groove heights.

one degree.
Despite the small variations in AR and PD described above, recall that

these are relative parameters, since we well know that the induced voltages
goes to zero as d → 0; this is due the azimuthal currents along the antennas
becoming close to the PEC layer of mandrel.

However, we verify that when the groove heights are in the range 6-
in ≤ h < 24-in (see Fig. 3.53(b)), a significantly variation as observed in AR
results, and in this case the groove width is a relevant parameter.

In the last case, when the groove heights is bigger than 24-in (see
Fig. 3.53(c)), the responses of AR and PD again recover its groove-width
independence. As far as h increases, the tool response resembles that expected
for an infinitely-long mandrel without indentation.
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Figure 3.54: Convergence of the voltage amplitude ratio received by a LWD
tool whose antennas are placed inside grooves (d = h = 1 in) on the
conductor mandrel for AdB at ∆z = 0.5 in. The radial domain is truncated at
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Figure 3.55: Convergence of the voltage phase difference received by a LWD
tool whose antennas are placed inside grooves (d = h = 1 in) on the
conductor mandrel for AdB at ∆z = 0.5 in. The radial domain is truncated at
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Figure 3.56: Voltage amplitude ratio and phase difference received by a LWD
tool whose antennas are placed inside grooves on the conductor mandrel.
Horizontal dashed lines indicate two relevant groove height: h = 6 in and
24 in.

3.9.2
Tilted-Coil Antennas

To further explore some aspects of realistic LWD logging-sensors, we now
will analyze TCA within mandrel indentations. Instead of install the TCAs
around the mandrel, we consider the antennas are wounded inside grooves on
the mandrel pipe, as illustrated in Fig. 3.57. The mandrel presents a radius
of 4 in, and the indentations are 2-in-depth in radial direction. The TCA
antennas are placed at ρ = 3 in. The axial position of the antenna TX is on
middle of a 8-in-groove, as shown in Fig. 3.57. The receivers TCA antennas
RX1 and RX2 are placed inside a 14-in-groove, such these receivers are 30-
in and 24-in far from the transmitter, respectively. We consider a borehole
filled with oil-based mud having the isotropic conductivity σ = 5× 10−4 S/m.
The surrounding soil formation is an anisotropic media, and its horizontal and
vertical component of the conductivity are 5 S/m and 1 S/m, respectively. Also,
we consider that all antennas are azimuthally aligned, i.e., φT = φR1 = φR2.
Assuming a unit current excitation at 2 MHz, the tilt angle of each TCA
antenna will be investigated in the following. We truncate the radial domain
at 60 in, and have include all modes whose axial attenuation is less than 30 dB
at 1 in; a very conservative criteria. Again, only azimuthal indices n = 0, 1 are
included in our simulations.

Fig. 3.58 shows results for the voltage at TCA receiver RX1 for various
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values of θT and θR1, in which the tilt angles vary from 0 to 45◦. Similarly,
Fig. 3.59 presents the voltage at RX2 for several tilt angles associated to this
receiver antenna. We can see that as the tilt angle of TCAs increases, the
received voltage becomes higher as well.

Figure 3.57: Model employed to simulate the mandrel indentations. The details
of the antennas positions and the dimensions of grooves on mandrel are shown
on the right, in which the TCAs have ρT = ρR1 = ρR2 = 3 in.
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Figure 3.58: Voltage at TCA receiver RX1 for various values of θT and θR1.
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Figure 3.59: Voltage at TCA receiver RX2 for various values of θT and θR2.

Proper combination of the results showed above in Fig. 3.58 and Fig. 3.59
allow us to describe AR and PD responses for a desired LWD tool under
investigation. Considering fixed transmitter TCA tilt angles θT = 0, 15◦, 30◦

and 45◦, we can derive the results shown in Fig. 3.60 to Fig. 3.63.
For θT = 0, only fields associated to azimuthal order n = 0 are excited,

such AR and PD due tilts in receivers observed in Fig. 3.60 cover the range
of 8.4 dB to 9.8 dB and 37◦ to 46◦, respectively. As said before, for θT > 0,
the n = 0 and n = 1 harmonics are the main contribution to received voltage.
In Fig. 3.61 we can clearly see the effects of fields with azimuthal index n = 1
when θT = 15◦: now the variations of AR and PD are over 1.5 dB to 17 dB and
23◦ to 55◦. This range of variation increase with θT , as illustrated in Fig. 3.62
(for θT = 30◦) and in Fig. 3.63 (for θT = 45◦). Notably, in these last two cases
we can observe negative values for AR; i.e., for some combinations of θR1 and
θR2 the voltage received at RX1 is larger than that in RX2 (which is closer to
TX).
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Figure 3.60: Amplitude ratio and phase difference response for a transmitter
TCA with θT = 0 in respect to the tilt angle of receivers.

AR (in dB) for θT = 15◦

θR1 (deg.)

θ
R
2
(d
eg
.)

0 15 30 45

0

10

20

30

40

45

1.5 5 9 13 17

PD (in deg.) for θT = 15◦

θR1 (deg.)

θ
R
2
(d
eg
.)

0 15 30 45

0

10

20

30

40

45

23 31 39 47 55

Figure 3.61: Amplitude ratio and phase difference response for a transmitter
TCA with θT = 15◦ in respect to the tilt angle of receivers.
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Figure 3.62: Amplitude ratio and phase difference response for a transmitter
TCA with θT = 30◦ in respect to the tilt angle of receivers.
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Figure 3.63: Amplitude ratio and phase difference response for a transmitter
TCA with θT = 45◦ in respect to the tilt angle of receivers.
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3.10
Some Investigations on Wireless Telemetry for Oilfield Applications

Real-time LWD tools acquire information about the soil surrounding the
drill bit. The data are then sent to the surface equipment in order to be
processed. In several situations where wired telemetry is impossible, the data is
sent by mud-pulse telemetry at bit rate of few bits per second. In the following
we will explore the wireless telemetry as an alternative communications channel
between the downhole sensors and the oilfield surface infrastructure.

3.10.1
Low-Frequency Wireless Telemetry in Deep Oil Fields

Transmission of logging signals along an oil well can be achieved using
electrical cables or optical fibers connecting the Earth’s surface to the down-
hole instrumentation. However, the prohibitive cost of the cabling, and the
possibility of the cable tangling, breaking, and/or poor electrical contact ren-
ders this technique less than ideal for deep oil wells [121]. Wireless telemetry
systems can overcome these challenges, but to date it has been restricted to
very low frequencies and is strongly affected by losses on the annulus region.

Wireless telemetry systems and methods designed for application to wells
are described in [121,122] for cased boreholes having a tubing string. This sy-
stem is mounted inside the casing pipe, in the region called the annulus, as
illustrated in Fig. 3.64. This region is bounded by the center tubing of the
production column (internal pipe) and the conductor casing (external pipe).
According to [121], this system requires a substantially non-conductive fluid
in the annulus (such crude oil or air) to acts as a wireless telemetry commu-
nication channel. The high conductivity of typical oil-based mud or problems
with brine leakage into the casing result in severe attenuation for deep wells
even at low frequencies. The remarks in [121, 122] are reasonable when the
well is modeled as a coaxial cavity. However, a more careful analysis, conside-
ring the finite conductivity of the (metallic) pipes reveals that electromagnetic
fields can be concentrated outside the casing, enabling the propagation over
long axial distances with relatively low attenuation. In this section, a rigorous
analysis is performed to quantify this statement.

Fig. 3.64 illustrates a well for petroleum production using wireless
telemetry. In this system, transmitter and receiver antennas are mounted inside
the annulus region. In LWD problems, the electromagnetic excitation is usually
a current loop [8, 48, 123], which primarily excites TEz modes. We performed
preliminary simulations that showed a high attenuation of TEz modes in a
cased borehole. In contrast, the attenuation of TMz modes is substantially
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Figure 3.64: Sectional view of an oil well using wireless telemetry.

lower. In order to excite only TMz fields, it is assumed that the transmitter
antenna is a toroidal coil, mounted around the inner tubing of the well. The
receiving antenna is identical to the transmitting one. For the problem at hand,
the wavelength is very long compared to the size of the borehole and we can
simplify the transmitter antenna model using the equivalence principle [55,
p. 106], and modeling it as a magnetic source as described in Section 3.5.3. A
radially stratified waveguide is used to model the oil well cross-section, where
each layer is described as an isotropic and homogeneous media.

We consider an oil well described by the parameters listed in Table 3.3.
All simulations consider antennas placed at ρ = 3.81 cm, operating at 1 Hz.
We truncate the radial domain at rN = 100 m and the PML extends over
50 m using sρ = 1 + i0.01. We used 10 TMz

0p modes to obtain convergence. In
Fig. 3.65, we shown results of the attenuation along a 500-m-long oil well for
several mud conductivities. The attenuation is determined by examining the
quantity 20 log10(VR1/VR2), where VR1,2 are the received voltages by a fixed
antenna at zR1 = zT and by a moving antenna at zR2 = zR, in the range
zR − zT = 0 to 500 m.

For a low-loss mud (σ = 10−2 S/m) the attenuation is mainly determined
by the guided TEM-like mode. However, for high-loss mud, we observe an
interesting phenomena that can be illustrated by examining the case σ =
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Table 3.3: Dimensions and parameters of the cased oil well.
Inner diameter (cm) Thickness (cm) σ (S/m) µr εr

Internal pipe 7.3025 0.635 4.5× 106 500 1
External pipe 13.97 0.9525 4.5× 106 500 1
Oil 2.985 1 14
Mud 10−2 to 10 1 14
Soil formation 3.5× 10−2 1 1
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Figure 3.65: Influence of the oil-based mud conductivities (σ, given in S/m) in
the attenuation of the received signal along the axial distance from the source.
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Figure 3.66: Transversal magnetic field Hφ of the modes A and B. The axial
attenuation constant α = =m(kz) of each mode is presented. Metallic pipe
layers are shaded.

10 S/m. For modes with less attenuation, identified as A and B in Fig. 3.66,
we note that the TEM-like mode A has a larger amplitude compared with the
mode B at the source radial position ρ = 3.81 cm. Thus, near the source
(zR ≈ zT ), the magnetic field Hφ is mainly determined by the mode A.
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However, the field of the mode A is dominant only along the first 50 m
(see Fig. 3.65 for σ = 10 S/m), after this, the mode B, which has smaller
attenuation constant (α = 0.0013, as shown in Fig. 3.66), becomes dominant.
By analyzing the other curves in Fig. 3.65, for σ = 10−1 and σ = 1 S/m, we can
observe a similar behavior: near the source, a TEM-like mode is dominant, but
sufficiently far away from the source the mode B becomes the main contributor
for the field. Therefore, for long distances, the fields become confined near
to the external casing (according to mode B profile), enabling the wireless
telemetry despite the presence of high lossy medium in the annular region. We
used ten TMz

0p modes to ensure convergence of the received fields. A simplified
model based on the two principal modes can be used for deep wells, i.e. large
|zR−zT |, with high-loss mud. For low-loss mud and small |zR−zT |, one TEM-
like mode may suffice (see the curve for σ = 10−2 S/m in Fig. 3.65 and the
dot-dashed line in Fig. 3.67).

As a second example, we consider a oil well using high-loss mud filling the
annulus region (σ = 10 S/m), and a layer boundary between soil formations
#1 and #2 (see Fig. 3.64) at 250 m away from the source. We show the results
of the axial attenuation along a 500-m-long oil well in Fig. 3.67. It is important
to note the attenuation is overestimated when we consider the first mode only
(similar to mode A in Fig. 3.66).

In this section, we have present a computationally efficient method
to analyze wireless telemetry in ultra-deep oil wells when high-loss drilling
fluids (mud) are present in the oil well annulus region. For wells with these
characteristics, we observed a gradual evolution on the radial profile of the
field propagating along the well. For long distances, the field becomes mostly
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Figure 3.67: Influence of the soil formations conductivities (σ#1, σ#2) in the
attenuation of the received signal along the axial distance from the source.
The annulus has high losses (σ = 10 S/m).
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confined around the external well casing, which enables wireless telemetry links
from the Earth’s surface to the downhole antenna despite the presence of a high
loss medium in the annular region.

3.10.2
High-Frequency Wireless Communications in Tunnels

The electromagnetic propagation along circular tunnels and boreho-
les has important applications to wireless communication at LWD at low-
frequency geophysics problems [10] as well as in high-frequency [11,12] commu-
nications. In some applications where the borehole diameter is small compared
to the wavelength, at the interest region of geophysics (near the source), the
fields are dominated by the continuum mode (or its equivalent PML modes
as described in Section 3.3.2). In contrast, case the borehole diameter is large
compared to the wavelength [11,12], the contribution of the continuum mode is
negligible, and far from the source at high-frequency only a few guided modes
need to be considered.

In order to explore the technique introduced in this chapter for the mo-
deling of high-frequency electromagnetic propagation in the Earth’s formati-
ons, we initially consider the problem shown in [10], where a circular cross-
section borehole with a center conducting pipe is excited by an electric loop
antenna (mounted around the pipe) that operates at 25 MHz. At this frequency,
the influence of the conducting currents can be more significant compared to
that of the low-frequency LWD tools we have analyzed before in this chapter.
In some low-conductive environments, the electromagnetic modeling requires
the proper selection of the real part for the permittivity; this is because the
(possible) negligible imaginary part proportional to σ/ω (in isotropic media).

We consider one transmitting (at zT ) and two receiving antennas (at zR1

and at zR2) that are moving through the discontinuity between the regions 1
and 2. The axial position of the antennas are given by zT = z − 95.25 cm,
zR1 = zT +63.5 cm and zR2 = zT +127 cm (for more details, see [10,109]). The
antennas are identical 3.81-cm-radius circular electric loops. The waveguide of
the region 1 is characterized by: r0 = 1.27 cm, r1 = 10.16 cm, ε1 = 80ε0 + i/ω,
ε2 = ε0 +i0.05/ω. The region 2 is characterized by the same parameters, except
for the soil formation: ε2 = 20ε0+i0.2/ω. Notice the media is isotropic and non-
magnetic, but unlike to other sensors presented in Section 3.7 and Section 3.9,
here the values for the relative permittivity constants εr are greater than 1.

In Fig. 3.68, we show the results of the relative voltage amplitudes and
phases received by the two antennas moving (together the transmitter) across
the axial discontinuity at z = 0. The results obtained using the presented
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Figure 3.68: Relative voltage received by two antennas moving with one
transmitter antenna across a bed boundary. The results of our approach are
depicted by the solid (for amplitude) and dashed (for phase) lines. The small
dots (• for amplitude and ◦ for phase) are the results from [10] (from graphical
reading).

Figure 3.69: Relative voltage received by two antennas moving with one
transmitter antenna across a bed boundary. The results of our approach are
depicted by the solid lines. The small dots are the results from [10].

formulation are in agreement with those shown in [10]. We have considered all
the eigenvalues that meet AdB = −30 dB at ∆z = 5 cm.

Additionally, in order to verify the rise of guided modes, we perform
the series of simulations on the same structure show in [10] by varying the
operating frequency up to 200 MHz, with steps of 25 MHz, as shown in
Fig. 3.69. Note that with the frequency increase the received voltages become
perturbed near the junction. To analyze this effect, in Fig. 3.70, we show
the normalized electric fields Eφ for the two principal modes of the region
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Figure 3.70: Normalized modal Eφ fields for 25 MHz (dashed line) and for
200 MHz (solid line). The value of =m(kz,0p) is shown for each field.

1, for both 25 MHz and 200 MHz. The axial attenuation constants are also
shown. Note that we have used rN = 2 m for 25 MHz, and rN = 1 m for
200 MHz. At high-frequency, we can verify that the guided mode is dominant
only near the axial discontinuity, after this, the mode with small attenuation
constant overcomes the initial amplitude differences and becomes dominant.
These modes have high attenuation compared to the PML modes outside the
borehole, and thereby, these modes are only relevant near the discontinuity at
z = 0.

In contrast to the problems in [10], we consider now the example
shown in [108], where a system operates at 1 GHz, in a 2-m-radius tunnel
(r0 = 0, r1 = 2 m, rN → ∞), with ε1{s,z} = ε0 and ε2{s,z} = (10 − j)ε0. For
this problem, we have calculated the hybrid modes eigenvalues with azimuthal
dependence n = 1 for the unbounded waveguide. This problem was solved
employing a PML to bound the radial space. We consider two cases: PML 1
using r̃N = 3+ i0.03 m, and PML 2 using r̃N = 3+ i0.3 m. For both cases, the
PML extends over 2.5 m < ρ < 3 m. The eigenvalues for these cases are shown
in Fig. 3.71, and are in agreement with the guided modes of the unbounded
waveguide. The axial electric field of the mode identified by A in Fig. 3.71
is shown in Fig. 3.72. Note the continuity of the field across the interface in
ρ = 2 m, and also note the significantly field damping inside the PML for
ρ > 2.5 m.

We consider now an example shown in [11], where a tunnel with circular
cross-section is excited by an electric loop antenna. This system operates at
1 GHz, in a 2-m-radius tunnel (r0 = 0, r1 = 2 m, rN → ∞), with ε1{s,z} = ε0,
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Figure 3.72: Axial electric field of the mode A (k1ρ = −1.1968 + i0.0523)
for the unbounded (rN → ∞) waveguide, and for the bounded PML 1
(r̃N = 3 + i0.03 m) and PML 2 (r̃N = 3 + i0.3 m).

ε2r{s,z} = 12 and σ2{s,z} = 0.02 S/m. The electric loop has the electric moment
jT = ITρT , with ρT = 0.1 m, and due the electric current IT . According the
formalism shown in Section 3.5.4, this source is a particular case of a TCA
with θT = 0.

It is important to observer that the complete solution of the fields of
an unbounded waveguide must into account both the discrete (guided) plus
the continuum modes [103], [15, 333-334]. For the presented formulation, the
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solution is approximated by a set of discrete modes (guided plus PML modes).
In [11], only the guided modes are included in the solution because in the high-
frequency, for fields far from the source, the continuum modes is negligible. In
the same way as the formulation in [11], we considered 16 TEz guided modes
to ensure the convergence.

In Fig. 3.73, we shown the results of the axial variation of the field Eφ.
The results obtained using the presented formulation show good agreement
with those in [11]. As expected, the solutions including or not a PML show
negligible differences. For this reason, our results shown in Fig. 3.73 employed
only the guided modes of the unbounded waveguide (sρ = 1).

Next, we consider an example shown in [12], where a tunnel with circular
cross-section is excited by a x̂-oriented elementary electric current source with
moment of 2 A·m at origin. This system operates at 1 GHz, in a 2 m radius
tunnel, with ε1 = ε0, ε2 = 12ε0 + i0.02/ω. Note that the fields in a radially
stratified waveguide in general are hybrid modes, but, from Section 3.5.1,
we can show that this source excites only hybrid modes with azimuthal
dependence n = ±1. In Fig. 3.74, we shown the results of the axial variation
of the field Ex at ρ = 0.5 m and φ = 90◦.

The results obtained by using the presented formulation show good
agreement with those in [12], where only the guided modes are included in
far-field solution because the contribution of the continuum mode is negligible
at high-frequency. Our solution showed negligible differences with and without
the PML (rPML = 2.5 m, rN = 3 m, αPML = 0.2). We consider 13 hybrid
modes to ensure the convergence of the fields; the same number of modes used
in [12].
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Figure 3.73: Comparison of the electric field along the axial distance. The
results of our approach are depicted by the solid line. The small dots are the
results from [11]. The free-space impedance is Z0.
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3.11
Preliminary Conclusion

We have introduced a new pseudo-analytical formulation to model tilted-
coil antenna LWD tools in anisotropic formations. The combination of well-
known closed-form solutions of Maxwell’s equations in cylindrical coordinates
with an efficient PML allow us to express the fields in radially-layered Earth
formations as a sum of discrete modes. The TCA source is expanded in terms
of modal fields, and then the radiated fields along vertical formations are
found using an analytical axial mode-matching. We showed numerical results to
validate the method and illustrate its ability to analyze directional well-logging
tools. We also presented numerical simulations of TCA housed inside grooves
into a metallic mandrel, revealing some features that can be incorporated into
the design of novel LWD sensors.
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4
Analysis of Well-Logging Tools in Directional Wells

4.1
Introduction

The introduction of tilted-coil antennas (TCAs) have provided the azi-
muthal sensitivity to logging-while-drilling (LWD) tools. This technology ena-
bles the anticipation of lithological variations in the soil formation surrounding
the oil well so that the proactive geosteering allows the exploration of deviated
and horizontal wells by means of real-time adjustments in the drilling direction
to steer the well towards a target region.

Compared to convention (i.e., strictly vertical) drilling, directional dril-
ling yield several advantages for oil and gas exploration as oilfield productivity
can be increased by deploying multiple wells drilled from a single platform.
Additional benefits of directional drilling include: (1) drilling of a new well to
intersect and recover an uncontrolled well, (2) sidetrack an old well to prospect
new reservoirs, (3) horizontal wells placement, among others.

Electromagnetic simulations of complex directional wells can be done by
brute-force techniques such as finite-differences (FDs) [124,125], finite-elements
(FEs) [20,126], finite-volumes (FVs) [45] or method of moments (MoM) [127];
however, their computational cost can become prohibitive for large problems.
As the borehole orientation is not conformal with typical discretization grids
employed in those brute-force algorithms, a very fine space discretization is
necessary for the sake of accurately capture the well curvature effects. In
order to avoid large errors introduced in these staircase approximation, the
transformation optics (TO) [51, Sec. 7.8], [128–130] approach can be used to
maps the space of complex-shaped boreholes into others more feasible to be
handled in usual algorithms. As a consequence of the TO mapping, however,
the equivalent problem will be comprised by highly non-homogeneous media.

As an alternative, pseudo-analytical methods based on the Fourier-Bessel
transform [14] or numerical mode-matching (NMM) [8, 15] can be used to
model geophysical formations comprised of both radial and axial stratifications,
as shown in Chapter 3. However, the modeling of more complex geophysical
formations as those of directional wells remains a challenging task to such
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pseudo-analytical methods.
In this chapter, we describe a new pseudo-analytical technique to analyze

the electromagnetic propagation along directional wells, where axial bending is
present. First, we further simplify the complex three-dimensional (3D) oriented
well (shown in Fig. 4.1) to be modeled as sections of toroidal structures (shown
in Fig. 4.2). Generally speaking, now we need to express the field solutions for
Maxwell’s equations in toroidal coordinates.

The Helmholtz equation in toroidal coordinates is not separable as
the product of three functions, each one with an exclusive dependence with
one spacial coordinate [13, p. 112–115], such the exact eigenmode solutions
involve complicated hypergeometric functions [131]. A more feasible approach
to decouple and solve the fields in toroidal structure was presented in [51]
using a perturbation solution in terms of the torus curvature, viz., R−1, such
the zeroth-order solution recover the well-known shape of the eigenfields in
cylindrical coordinates. This perturbation method was used to model several
toroidal cavities and waveguides solving Maxwell’s equations by coupled mode
theory (CMT) [132,133] or as a direct solution in the perturbation theory for

Reservoir

Vertical
well

Directional
well

Figure 4.1: Geometry of vertical and directional wells.
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Figure 4.2: Geometry of a well-logging sensor within a directional well. An
auxiliary coordinate system is presented.

differential equations (PTDE)1 [51, Ch. 6], [135–142].
In CMT, the solutions are often expressed in terms of first-order (coupled)

differential equations. In this problem, the coupling coefficients are expressed
as surface integrals; analytical solutions are rare and sometimes a numerical
integration is required. In a final step, the coupled system of differential
equations must be numerically solved using an iterative Runge-Kutta method.

In PTDE, we can in general enforce a zeroth-order solution in the shape
of a well-know differential equation; such as the scalar Helmholtz equation
in cylindrical coordinates. In the next step, we seek recursively high-order
perturbation corrections for the original problem: for each perturbation order,
we need to solve a new non-homogeneous second-order linear differential
equation, that depends on all the lower-order solutions. This approach does not
rely on numerical solutions for coupling integrals or iterative methods, but the
complications to solve new (and not tabulated) differential equations restrict
its application to the modeling of simple hollow cavities excited by the main
modal fields.

In this chapter, we extend the range of applicability classical PTDE
methods by considering the modeling of finite-curvature sectors of radially-
stratified toroidal waveguides. Each toroidal waveguide sector considered here
has a constant torus curvature radius and are filled with radially-stratified

1Also known as Rayleigh-Schrödinger Perturbation Theory [134, Ch. 15].
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and isotropic media. New formulas are derived to describe the finite-curvature
problem, such Maxwell’s equations are expressed as a series of the torus
curvature (R−1) (see Fig. 4.2 for a more clear illustration), which naturally
recover the previously presented solution derived in Chapter 3. Next, using a
generalization of the axial mode-matching we can proper satisfy the boundary
conditions between each waveguide junction. The excitations are represented
by a set of modal amplitudes, which are then combined with the new straight-
to-bend (or bend-to-bend) generalized scattering matrices (GSMs), similarly
to the procedure used in Chapter 3.

The remaining of this chapter is organized as follows. Section 4.2 presents
a detailed description of the electromagnetic fields into our particular toroidal
coordinate system. We employ a local toroidal coordinate system that preserves
the polar cross-section along the bend direction, and presents concentric
radial surfaces which suitably match with our desired boundary conditions. In
contrast to straight cylindrical guides, the axial fields are no longer decoupled
in toroidal structures. We have employed new bi-complex fields to decouple the
original problem. Also, we present a new alternative way to derive decoupled
wave equations in toroidal coordinates without bi-complex numbers. We
present the first-order perturbation corrections for the electromagnetic fields
in toroidal structures. The field solutions are expressed in terms of a series of
the torus curvature, whose zeroth-order solution reduces exactly to the well-
known fields in cylindrical coordinates. Section 4.3 and Section 4.4 present
formulas to match the boundary conditions of a radially-stratified and axially-
layered toroidal waveguide, respectively. The modeling of LWD sensors as
coil transmitters and receivers antennas is considered in Section 4.5. An
analytical study predicts that the axial finite-curvature of directional boreholes
only support azimuthally non-symmetric hybrid modal fields (with all field-
components present). In Section 4.6, preliminary results demonstrate the
ability of our method to accurately modeling LWD tools in deviated drilling
conditions. Finally, Section 4.7 provides preliminary concluding remarks.

4.2
Electromagnetic Fields in Toroidal Coordinates

Consider a circular-cross-section structure aligned with the axial di-
rection z, as shown in Fig. 4.3. The electromagnetic fields for problems having
boundaries coincident with cylindrical coordinates (ρ, φ, z) are well-know [55,
Ch. 6], [15, Ch. 3], and the method of separation of variables can be used to
find the field solutions. Note that the axis z in this structure presents an infi-
nite radius of curvature. Now consider that the axial axis was perturbed, and
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Figure 4.4: Toroidal coordinates (η, θ, ψ) [13, p. 113, Fig. 4.04]. The coordinate
surfaces are toroids (η = const.), spherical bowls (θ = const.) and half-planes
(ψ = const.).

presents a constant radius of curvature R.
The choice of a coordinate system conformal with the positions of our

boundary conditions is quite appropriate to simplify the problem at hand. At
first glance, a standard toroidal coordinate system (η, θ, ψ) [13, pp. 112–115]
appear a good choice. Our interest is to model curved waveguides with several
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radial stratifications, such that the transversal cross-section fits nicely with the
polar coordinates. However, the surfaces of constant η are not concentric as
we can see in Fig. 4.4. Furthermore, we have another severe complication: the
Helmholtz differential equation is not separable in toroidal coordinates.

Our efforts are to represent the fields into the bend structure in a
way that they resemble the straight waveguide modes. Thus, to analyze this
structure, we employ our local toroidal coordinates (ρ, φ, ζ) defined in details
in Appendix C, which employ a polar cross-section coordinates along the bend
direction ζ as shown in Fig. 4.3. This coordinate system presents concentric
radial surfaces which match neatly with the boundaries of our problem, as
shown in Fig. C.1. The metric coefficients are given by

hρ = 1, hφ = ρ, hζ = h = 1−R−1ρ cosφ. (4-1)

We assume that the center of curvature points to φ = 0. This direction could
be placed at a general angle φ = ψ, such that the axial metric coefficient turns
into hζ = 1−R−1ρ cos (φ+ ψ).

Assuming time harmonic fields in the form exp(−iωt), the Maxwell’s curls
equations in an isotropic and source-free medium in a curvilinear coordinate
system are given by [51, p. 21], [143, p. 50]

∂(h3E3)
∂u2

− ∂(h2E2)
∂u3

= iωµh2h3H1, (4-2a)

∂(h1E1)
∂u3

− ∂(h3E3)
∂u1

= iωµh3h1H2, (4-2b)

∂(h2E2)
∂u1

− ∂(h1E1)
∂u2

= iωµh1h2H3, (4-2c)

∂(h3H3)
∂u2

− ∂(h2H2)
∂u3

= −iωεh2h3E1, (4-2d)

∂(h1H1)
∂u3

− ∂(h3H3)
∂u1

= −iωεh3h1E2, (4-2e)

∂(h2H2)
∂u1

− ∂(h1H1)
∂u2

= −iωεh1h2E3. (4-2f)

By using the metric coefficients in (4-1), defining the new axial fields

E = hE3, H = hH3, (4-3)

and Z = (µ/ε)1/2 and Y = (ε/µ)1/2, for the toroidal coordinate system
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(u1, u2, u3) = (ρ, φ, ζ), we can derive

1
ρh

(
∂E

∂φ
− ρ∂Eφ

∂ζ

)
= ikZHρ, (4-4a)

1
h

(
∂Eρ
∂ζ
− ∂E

∂ρ

)
= ikZHφ, (4-4b)

h

ρ

(
∂(ρEφ)
∂ρ

− ∂Eρ
∂φ

)
= ikZH, (4-4c)

1
ρh

(
∂H

∂φ
− ρ∂Hφ

∂ζ

)
= −ikY Eρ, (4-4d)

1
h

(
∂Hρ

∂ζ
− ∂H

∂ρ

)
= −ikY Eφ, (4-4e)

h

ρ

(
∂(ρHφ)
∂ρ

− ∂Hρ

∂φ

)
= −ikY E. (4-4f)

Noting that h = hζ is independent of ζ, we can seek field solutions with uniform
propagation in the form exp (ikζζ) = exp (γζ), where ∂/∂ζ can be replaced by
γ.

4.2.1
Decoupling Axial Fields using Bi-Complex Systems

In order to solve the Maxwell’s equations (4-4a) to (4-4f) we need first
decouple the individual field components. To proceed, we will use a procedure
introduced in [51,144], in which new transversal fields are defined by

Et = Eρ + jEφ, Ht = Hρ + jHφ, (4-5)

where a new complex variable j was introduced, such as j2 = −1, but
ij = ji 6= −1. We can also define the differential operators D and D∗ as

D,D∗ ≡ ∂

∂ρ
± j 1

ρ

∂

∂φ
, (4-6)

so that the pairs of equations (4-4a) and (4-4b), and (4-4d) and (4-4e) can be
combined and written in the short forms

D(E)− γEt = jikhZHt, and (4-7a)

D(H)− γHt = −jikhY Et. (4-7b)
By isolating Ht in (4-7b) and replacing in (4-7a), and performing a similar
procedure in (4-7b), after some manipulations we can write (4-7) as
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k2
tEt = γD(E)− jikhZD(H), and (4-8a)

k2
tHt = γD(H) + jikhY D(E), (4-8b)

where we introduced the parameter

k2
t = k2h2 + γ2. (4-9)

It is important to observer that kt is not the transversal propagation constant,
since h is function of ρ and φ.

To further analysis, we use the following properties of the operator D∗

in cylindrical coordinates:

−<ej [jD∗(ρEt)] = ∂

∂ρ
(ρEφ)− ∂Eρ

∂φ
, (4-10)

and also a similar relation to Ht:

−<ej [jD∗(ρHt)] = ∂

∂ρ
(ρHφ)− ∂Hρ

∂φ
. (4-11)

In the above system of bi-complex2 equations, the operator <ej take the real
part of the quantities in the complex variable j. For simplifying the notation,
the subscript j in <ej will be omitted in what follows, and <e and =m shall
be understood as operators that only act over j.

By noting that (4-10)×hρ−1 is equal to (4-4c), we can write

−h
ρ
<e [jD∗(ρEt)] = ikZH, (4-12)

and as (4-11)×hρ−1 is equal to (4-4f), we can verify that

−h
ρ
<e [jD∗(ρHt)] = −ikY E. (4-13)

The results in (4-12) and (4-13) can be used into the equations in (4-8)
to get a new pair of differential equations using only the axial fields E and H.
Applying the operator −hρ−1<e(jD∗) over (4-8)×ρk−2

t , and using the results
of the last two equations above, we can find

ikρZH = −h<e
{
D∗

{
ρk−2

t [jγD(E) + ikhZD(H)]
}}

, and (4-14)

−ikρY E = −h<e
{
D∗

{
ρk−2

t [jγD(H)− ikhY D(E)]
}}

. (4-15)

The relationships in (4-14) and (4-15) form a pair of coupled equations
for E and H, and before trying to solve it, seems convenient to perform some
pertinent observations.

2Note that there are two complex variables (i and j) in the pair of coupled equation
(4-10) and (4-11).
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We can verify that [51, p. 61]

D∗[ρD(f)] = ρ∇2
tf, (4-16)

where f is any differentiable function and ∇2
t is the transversal Laplacian

operator
∇2
t = 1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ2

∂2

∂φ2 . (4-17)

Note that both the cylindrical and the toroidal coordinate systems used here
share the same transversal coordinates ρ and φ. Then, the ∇2

t is equal to
the well-know transversal Laplacian in cylindrical coordinates shown in [55,
p. 449], [15, p. 162]. However, the Laplacian operator in toroidal coordinates
assumes the form ∇2 = ∇2

t + 1/h2
ζ ∂

2/∂ζ2.

4.2.1.1
The Curvature Vanishing Special Case

For the particular case when R→∞, the toroidal structure recover the
cylindrical form. For this case, the axial metric coefficient becomes h → 1,
and hence kt indeed becomes the radial propagation constant. Moreover, the
axial coordinate ζ → z. By using (4-16) in both (4-14) and (4-15), we can
clearly see that the first term in the right-hand side (RHS) of these equations
become purely imaginary in term of j. As we are interested just in the real
(in j) parcels of the RHS, the first term in the RHS of (4-14) and (4-15)
become zero. Now, we can verify that the equations (4-14) and (4-15) become
decoupled, simplifying to

(∇2
t + k2

ρ)Hz = 0, and (4-18)

(∇2
t + k2

ρ)Ez = 0, (4-19)

that are the well-know Helmholtz equations for cylindrical structures [54,
p. 165]. Note that kρ = kt|R→∞ is the radial propagation constant.

4.2.1.2
Solving Coupled Differential Equations

In last section, we have obtained the coupled differential equations (4-7a)
and (4-7b). Also, we have expressed these equations in an equivalent form,
given by (4-14) and (4-15) . To decouple these equations, we follow the process
shown in [51, Ch. 2] and [144]. To take the decouple process we need to combine
these equations in such a way that the axial (E and H) and transversal (Et
and Ht) fields come together in a form involving a single combinations. In the
first step, we combine (4-7a) and (4-7b) using an unspecified multiplier N .
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Note that, at this point, there is no restrictions to N , but we now that this
parameter may be complex in term of both i and/or j. Hence, (4-7a) multiplied
by N and added to (4-7b) results in

D(E +NH)− γ(Et +NHt) = −jikh(NY Et − ZHt). (4-20)

Note that we need to choose N so that the combination of Et and NHt in left
and in the right sides of the above equation is the same. As in the right-hand
side of the equation there is a negative sign along with Ht, we can easily verify
that N must include a complex variable (i or j). Also, note that we have both
i and j multiplying the combination of Et and Ht in the right-hand side of
(4-20). Accordingly, if we rewrite (4-20) as

D(E +NH)− γ(Et +NHt) = jkh(−iNY Et + iZHt), (4-21)

we can see that N = iZ allow us to combine the fields in a single form.
Furthermore, note that N = Z/i also allow us to combine (4-7a) and (4-7b).
Then, we can verify that

N = ±N0 = ±iZ (4-22)
satisfies (4-20)3.

Now, if we define a new field F , which is a linear combination of E and
H in the form

F± = E ±N0H, (4-23)
and by analogy defining Ft,± as

Ft,± = Et ±N0Ht, (4-24)

we can rewrite (4-20) as

D(F±)− γFt,± = ±jkhFt,±. (4-25)

To proceed, we need to eliminate the transversal fields in (4-25). The
combination of the equations (4-14) and (4-15) as −(4-15)×Z±N0×(4-14)×Y
leads to

ikρ(E ±N0H) =

− h<e
{
D∗

{
ρk−2

t [jγD(−ZH ±N0Y E) + ikhD(E ±N0H)]
}}

. (4-26)

Using the previous definitions for F± and noting that −ZH ±N0Y E = ±iF±,

3It is important to be noted that N0 = iZ is just one of the possible ways of combining
fields in (4-20). This equation is also satisfied by N0 = jZ. But, as we expect fields that are
real in terms of j, we must select the form N0 = iZ.
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we can find

ikρ(F±) = −h<e
{
D∗

{
ρk−2

t [±ijγD(F±) + ikhD(F±)]
}}

(4-27)

= −ih<e
{
D∗

[
ρk−2

t (±jγ + kh)D(F±)
]}
. (4-28)

Multiplying i in both sides of the above equation, and noting that
kh± jγ
k2
t

= kh± jγ
k2h2 + γ2 = kh± jγ

(kh± jγ)(kh∓ jγ) = 1
kh∓ jγ

, (4-29)

we can find
−kρF± = h<e

{
D∗

[
ρ

kh∓ jγ
D(F±)

]}
, (4-30)

which is one pair (F− and F+) of uncoupled equations. After we found the
solution for F±, the axial fields E and H can be easily recovered by using

E = F+ + F−
2 , and (4-31)

H = F+ − F−
2N0

. (4-32)

Remembering that E = hζEζ and H = hζHζ , at this point is more
practical to work with the axial fields Eζ and Hζ instead of using E and H.
We can do this by using the new field G, defined by

G± = Eζ ±N0Hζ = F±
h
. (4-33)

Replacing (4-33) in (4-30)×h−1 we can write

−kρG± = <e
{
D∗

[
ρ

kh∓ jγ
D(hG±)

]}
. (4-34)

To continue toward the solution, consider f1 and f2, both functions of ρ and
φ. We can show that

D(f1f2) = f1Df2 + f2Df1. (4-35)

Taking the conjugate with respect to j in (4-35) we can derive a similar
equation for D∗.

Using the result in (4-35) into (4-34), we can write

−kρG± = <e
{
D∗

[
h

kh∓ jγ
ρD(G±) + ρ

kh∓ jγ
G±D(h)

]}
. (4-36)

By using the conjugate version of (4-35) in terms of j, the above equation
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takes the shape of

− kρG±
<e= h

kh∓ jγ
D∗ (ρDG±) + ρD(G±)D∗

(
h

kh∓ jγ

)

+ ρ

kh∓ jγ
D∗ [G±D(h)] +G±D(h)D∗

(
ρ

kh∓ jγ

)
, (4-37)

where the symbol <e= shall be understood as the real part in respect to j from
the expression on the right-hand side of equality; i.e., LHS <e= RHS is equivalent
to LHS = <ej (RHS).

Using

D(h) =
(
∂

∂ρ
+ j

1
ρ

∂

∂φ

)
(1−R−1ρ cosφ)

= R−1(− cosφ+ j sinφ), (4-38)

we can write

− kρG±
<e= h

kh∓ jγ
D∗(ρDG±) + ρD(G±)D∗

(
h

kh∓ jγ

)

+R−1
{

ρ

kh∓ jγ
D∗[G±(− cosφ+ j sinφ)]

+G±(− cosφ+ j sinφ)D∗
(

ρ

kh∓ jγ

)}
. (4-39)

From (4-16), we found D∗[ρD(G±)] = ρ∇G±, and by using

D∗
(

h

kh∓ jγ

)
= ±R−1 jγ(cosφ+ j sinφ)

(kh∓ jγ)2 , (4-40)

D∗
(

ρ

kh∓ jγ

)
= kh∓ jγ +R−1kρ(cosφ+ j sinφ)

(kh∓ jγ)2 , (4-41)

D∗ [G±(− cosφ+ j sinφ)] = − j
ρ

(sinφ+ j cosφ)G± + (− cosφ+ j sinφ)D∗G±,
(4-42)

we can derive

− kρG±
<e= h

kh∓ jγ
ρ∇2

tG± ±R−1ρD(G±)jγ(cosφ+ j sinφ)
(kh∓ jγ)2

+R−1 ρ

kh∓ jγ

[
− j
ρ

(sinφ+ j cosφ) + (− cosφ+ j sinφ)D∗(G±)
]

+R−1kh∓ jγ +R−1kρ(cosφ+ j sinφ)ρ
(kh∓ jγ)2 (− cosφ+ j sinφ)G±. (4-43)
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In order to find the real part of the right side of the equality in the above
equation, the following identities are helpful [116, p. 16]:

<ej
(
a+ jb

c∓ jd

)
= ac∓ bd
c2 + d2 , and (4-44)

<ej
[
a+ jb

(c∓ jd)2

]
= a(c2 − d2)∓ 2bcd

(c2 + d2)2 , (4-45)

where the parameters a, b, c and d are real in terms of j. By using the identities
(4-44) and (4-45) in (4-43), after a series of laborious but straightforward
simplifications, we can express (4-43) as4

(
∇2
t + k2

t

h2

)
G± = R−1

k2
t

[
R−1(k2 − γ2/h2)G±

+h(k2+3γ2/h2)
(

cosφ∂G±
∂ρ
− sinφ

ρ

∂G±
∂φ

)
±2γk

(
sinφ∂G±

∂ρ
+ cosφ

ρ

∂G±
∂φ

)]
.

(4-46)

The wave equation for G± given in (4-46) seems to have no exact solution.
To proceed with the solution, it is important to note that on the LHS of (4-46)
the term k2

t /h
2 is proportional to γ2/h2. On the RHS of (4-46) we can see that

the first term is of the order of R−2, and the remainder as R−1, apart from
the variation of h and G± itself with R−1. As observed before, for R→∞ the
field G± has analytical solution in terms of cylindrical functions. In this way,
a perturbation solution can be sought as a power series in R−1, assuming

G± = (G0,± +R−1G1,± +R−2G2,± + · · · ) exp(γζ), (4-47)

γ2 = γ2
0(1 +R−1α1 +R−2α2 + · · · ), (4-48)

where the terms with subscript 0 refer to the solutions of an axially straight
structure. To be precise, G0 and γ0 are the well-know fields and propagation
constants that satisfies the Maxwell equations in cylindrical coordinates.

Before replacing the series (4-47) into the differential equation (4-46), we
verify that is more appropriate first multiply the both sides of (4-46) by k2

t h
2,

4The wave equation in (4-46) was derived for a bent structure with radius of curvature
R. In this equation the direction of the center of curvature is at φ = 0. Case the curvature
is not aligned with the local x-axis (see Fig. 4.3), but instead it is rotated at an angle ψ,
the axial metric coefficient becomes hζ = 1 − R−1ρ cos(φ + ψ) [145]. In this case, we need
to replace the argument of the trigonometric functions in (4-46) such that φ→ φ+ ψ.
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resulting in

(
h2k2

t∇2
t + k4

t

)
G± = R−2(k2h2 − γ2)G±

+R−1h(k2h2 + 3γ2)
[
cosφ∂G±

∂ρ
− sinφ

ρ

∂G±
∂φ

]

± 2R−1h2γk

[
sinφ∂G±

∂ρ
+ cosφ

ρ

∂G±
∂φ

]
. (4-49)

Note that the axial dependence exp(γζ) was omitted.
As said before, we assume that the zeroth-order solution G0,± is well-

know, and at this moment we are looking for the first-order solution G1,±.
Considering only the terms of order up to R−1, it is apparent that the RHS
of (4-49) can be simplified. The term proportional to R−2 can be overlooked.
Also, the other two remaining term are proportional to R−1, so we just need
to use the series up R0 for γ, h and G±:

(
h2k2

t∇2
t + k4

t

)
G± = R−1(k2 + 3γ2

0)
[
cosφ∂G0,±

∂ρ
− sinφ

ρ

∂G0,±

∂φ

]

± 2R−1γ0k

[
sinφ∂G0,±

∂ρ
+ cosφ

ρ

∂G0,±

∂φ

]
. (4-50)

The left-hand side (LHS) of the above equation contains terms with orders
beyond R−1, but we can replace

h2k2
t = (1− 2R−1ρ cosφ)

[
k2

0,t +R−1
(
γ2

0α1 − 2k2ρ cosφ
)]

+O(R−2)

= k2
0,t +R−1

(
γ2

0α1 − 2ρ cosφ(k2 + k2
0,t)
)

+O(R−2), (4-51)

and

k4
t =

[
k2(1− 2R−1ρ cosφ) + γ2

0(1 + α1R
−1) +O(R−2)

]2
= k4

0,t + 2k2
0,tR

−1
(
γ2

0α1 − 2k2ρ cosφ
)

+O(R−2), (4-52)

into the LHS of (4-50) and retaining only the terms of order up to R−1:

(
h2k2

t∇2
t + k4

t

)
G± =

{{
k2
ρ +R−1

[
γ2

0α1 − 2ρ cosφ(k2 + k2
ρ)
]}
∇2
t

+ k4
ρ + 2k2

ρR
−1
(
γ2

0α1 − 2k2ρ cosφ
)}

G0,± +R−1(k2
ρ∇2

t + k4
ρ)G1,±, (4-53)

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 168

or, in a more suitable form:

(
h2k2

t∇2
t + k4

t

)
G± =

{
k2
ρ +R−1

[
γ2

0α1 − 2ρ cosφ(k2 + k2
ρ)
]}

(∇2
t + k2

ρ)G0,±

+ k2
ρR
−1
[
γ2

0α1 + 2ρ cosφ(k2
ρ − k2)

]
G0,± + k2

ρR
−1(∇2

t + k2
ρ)G1,±. (4-54)

With a view to simplifying the notation in the equations above, we have define
the parcel of kt of order R0, i.e., is the radial propagations constant of the
straight structure (R−1 = 0), such as

k2
ρ = k2

0,t = k2 + γ2
0 . (4-55)

Replacing the above simplifications back in (4-50) we can write

{
k2
ρ +R−1

[
γ2

0α1 − 2ρ cosφ(k2 + k2
ρ)
]}

(∇2
t + k2

ρ)G0,±

+ k2
ρR
−1γ2

0(α1 + 2ρ cosφ)G0,± + k2
ρR
−1(∇2

t + k2
ρ)G1,± =

R−1(k2 + 3γ2
0)
[
cosφ∂G0,±

∂ρ
− sinφ

ρ

∂G0,±

∂φ

]

± 2R−1γ0k

[
sinφ∂G0,±

∂ρ
+ cosφ

ρ

∂G0,±

∂φ

]
. (4-56)

Taking into account that the linear combination of (4-19) and (4-18) can
be written in the form (∇2

t + k2
ρ)G0,± = 0, the first term in (4-56) should

be zero. Eliminating the first term and multiplying the resulting equation by
k−2
ρ R, we obtain a differential equation independent of R given by

(∇2
t + k2

ρ)G1,± = −γ2
0(α1 + 2ρ cosφ)G0,±

+ k−2
ρ

{
(k2 + 3γ2

0)
[
cosφ∂G0,±

∂ρ
− sinφ

ρ

∂G0,±

∂φ

]

±2γ0k

[
sinφ∂G0,±

∂ρ
+ cosφ

ρ

∂G0,±

∂φ

]}
. (4-57)

4.2.1.3
Verification of the First Order Differential Equation

In [51] the effects of the curvature in a circular waveguide was analyzed.
The coupling between the degenerated modes TEz01 and TMz

11 can be formu-
lated from their zeroth-order axial fields

Hz = J0(kρρ) exp(γ0ζ), and (4-58)

Ez = J1(kρρ) sinφ exp(γ0ζ), (4-59)
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where kρ is the first root of J1(kρrN) = 0 for a hollow circular waveguide
truncated at ρ = rN with an PEC wall. Using the above axial fields, the
zeroth-order solution can be defined by

G0,± = J1(kρρ) sinφ±MJ0(kρρ), (4-60)

where M is an arbitrary constant. It should be observed that the zeroth-order
field in (4-58) and (4-59) does not share the same azimuthal dependence such
we can anticipate that M 6= iZ.

Plugging G0,± into (4-57), and using

∂G0,±

∂ρ
=
(
kρJ0(kρρ)− J1(kρρ)

ρ

)
sinφ∓MkρJ1(kρρ), and (4-61)

∂G0,±

∂φ
= J1(kρρ) cosφ, (4-62)

we can derive

(∇2
t + k2

ρ)G1,± = −γ2
0(α1 + 2ρ cosφ)(J1 sinφ±MJ0)

+ k−2
ρ

{
(k2 + 3γ2

0)
{

cosφ
[(
kρJ0 −

J1

ρ

)
sinφ∓MkρJ1

]
− sinφ

ρ
J1 cosφ

}

±2γ0k

{
sinφ

[(
kρJ0 −

J1

ρ

)
sinφ∓MkρJ1

]
+ cosφ

ρ
J1 cosφ

}}
, (4-63)

were we have dropped the argument of the Bessel functions. The above
equation can be rewrite as

(∇2
t + k2

ρ)G1,± = −γ2
0(α1 + 2ρ cosφ)(J1 sinφ±MJ0)

+ k−2
ρ

{
(k2 + 3γ2

0)
[
−2J1

ρ
sinφ cosφ+ kρJ0 sinφ cosφ∓MkρJ1 cosφ

]

±2γ0k

[
J1

ρ
(cos2 φ− sin2 φ) + kρJ0 sin2 φ∓MkρJ1 sinφ

]}
. (4-64)

By using the trigonometric identities

sinφ cosφ = 1
2 sin 2φ, and (4-65)

cos2 φ− sin2 φ = cos 2φ, (4-66)
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we can show that (4-64) becomes

(∇2
t + k2

ρ)G1,± = −γ2
0(α1 + 2ρ cosφ)(J1 sinφ±MJ0)

+ k−2
ρ

{
(k2 + 3γ2

0)
[
kρJ0 sinφ cosφ− J1

(
±Mkρ cosφ+ sin 2φ

ρ

)]

±2γ0k

[
kρJ0 sin2 φ− J1

(
±Mkρ sinφ− cos 2φ

ρ

)]}
. (4-67)

The result shown above is identical to one obtained in [51, p. 63, eq. 6.24] .

4.2.2
Alternative Decoupling Approach

Here we will derive an alternative approach to decouple the fields in the
toroidal coordinates. Instead the employment of the bi-complex parameters i
and j, we can combine the axial fields in (4-4c) and (4-4f) in the following
matrix form

iω
ρ

h

 µH
−εE

 = ∂

∂ρ

ρ
Eφ
hφ

− ∂

∂φ

Eρ
Hρ

 . (4-68)

Substituting (4-194) and (4-195) in the equation above, we obtain

iω
ρ

h

 µH
−εE

 = ∂

∂ρ

 1
k2
t

 γ ∂
∂φ

−hiωµρ ∂
∂ρ

hiωερ ∂
∂ρ

γ ∂
∂φ

E
H


− 1
ρ

∂

∂φ

 1
k2
t

 γρ ∂
∂ρ

hiωµ ∂
∂φ

−hiωε ∂
∂φ

γρ ∂
∂ρ

E
H

 . (4-69)

Using the product rule for the derivatives, the equation above becomes

iω
ρ

h

 µH
−εE

 =

∂(k−2
t )
∂ρ

 γ ∂
∂φ

−hiωµρ ∂
∂ρ

hiωερ ∂
∂ρ

γ ∂
∂φ


+ k−2

t

 γ ∂
∂ρ

∂
∂φ

−iωµ ∂
∂ρ

(hρ ∂
∂ρ

)
iωε ∂

∂ρ
(hρ ∂

∂ρ
) γ ∂

∂ρ
∂
∂φ

− 1
ρ

∂(k−2
t )
∂φ

 γρ ∂
∂ρ

hiωµ ∂
∂φ

−hiωε ∂
∂φ

γρ ∂
∂ρ


− k−2

t

ρ

 γρ ∂
∂φ

∂
∂ρ

iωµ ∂
∂φ

(h ∂
∂φ

)
−iωε ∂

∂φ
(h ∂

∂φ
) γρ ∂

∂φ
∂
∂ρ


E
H

 . (4-70)

Using
∂(k−2

t )
∂ρ

= 2R−1k2h
cosφ
k4
t

, and (4-71)

∂(k−2
t )
∂φ

= −2R−1k2h
ρ sinφ
k4
t

, (4-72)
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we can derive

iω
ρ

h

 µH
−εE

 =

2k−4
t R−1k2h cosφ

 γ ∂
∂φ

−hiωµρ ∂
∂ρ

hiωερ ∂
∂ρ

γ ∂
∂φ


+ 2k−4

t R−1k2h sinφ
 γρ ∂

∂ρ
hiωµ ∂

∂φ

−hiωε ∂
∂φ

γρ ∂
∂ρ


+ k−2

t

 0 −iωµ[ ∂
∂ρ

(hρ ∂
∂ρ

) + 1
ρ
∂
∂φ

(h ∂
∂φ

)]
iωε[ ∂

∂ρ
(hρ ∂

∂ρ
) + 1

ρ
∂
∂φ

(h ∂
∂φ

)] 0


E
H

 .
(4-73)

To simplify the above equation, we can start with

∂

∂ρ

(
hρ

∂

∂ρ

)
+ 1
ρ

∂

∂φ

(
h
∂

∂φ

)
= h

∂

∂ρ

(
ρ
∂

∂ρ

)
+ h

ρ

∂2

∂φ2

+ ∂h

∂ρ

(
ρ
∂

∂ρ

)
+ 1
ρ

∂h

∂φ

∂

∂φ
. (4-74)

Noting that the first two terms are equal to ρh∇2
t , and using

∂h

∂ρ
= −R−1 cosφ, ∂h

∂φ
= R−1ρ sinφ, (4-75)

we obtain

∂

∂ρ

(
hρ

∂

∂ρ

)
+ 1
ρ

∂

∂φ

(
h
∂

∂φ

)
= ρh∇2

t −R−1ρ cosφ ∂
∂ρ

+R−1 sinφ ∂

∂φ
. (4-76)

Substituting the above in (4-73) allow us to write

iω
ρ

h

 µH
−εE

 =

2k−4
t R−1k2h cosφ

 γ ∂
∂φ

−hiωµρ ∂
∂ρ

hiωερ ∂
∂ρ

γ ∂
∂φ


+ 2k−4

t R−1k2h sinφ
 γρ ∂

∂ρ
hiωµ ∂

∂φ

−hiωε ∂
∂φ

γρ ∂
∂ρ

+ k−2
t ρh

 0 −iωµ∇2
t

iωε∇2
t 0


+R−1k−2

t

 0 −iωµ(−ρ cosφ ∂
∂ρ

+ sinφ ∂
∂φ

)
iωε(−ρ cosφ ∂

∂ρ
+ sinφ ∂

∂φ
) 0


E
H

 .
(4-77)

Multiplying the first line of the equation above by k2
t (iωµρh)−1 and
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multiplying the second line by k2
t (−iωερh)−1, we can obtain

(
∇2
t + k2

t

h2

)H
E

 =

2k−2
t R−1k2 cosφ

 γ
iωµ

1
ρ
∂
∂φ

−h ∂
∂ρ

−h ∂
∂ρ

− γ
iωε

1
ρ
∂
∂φ


+ 2k−2

t R−1k2 sinφ
 γ
iωµ

∂
∂ρ

h1
ρ
∂
∂φ

h1
ρ
∂
∂φ
− γ
iωε

∂
∂ρ


+R−1h−1

 0 (cosφ ∂
∂ρ
− 1

ρ
sinφ ∂

∂φ
)

(cosφ ∂
∂ρ
− 1

ρ
sinφ ∂

∂φ
) 0


E
H

 . (4-78)

Defining

LD = 2R−1k
2h

k2
t

(
− cosφ ∂

∂ρ
+ 1
ρ

sinφ ∂

∂φ

)
+R−1h−1

(
cosφ ∂

∂ρ
− 1
ρ

sinφ ∂

∂φ

)
(4-79)

= R−1h−1
(

2k2h2

k2
t

− 1
)(
− cosφ ∂

∂ρ
+ sinφ

ρ

∂

∂φ

)
(4-80)

= R−1k
2h2 − γ2

hk2
t

(
− cosφ ∂

∂ρ
+ sinφ

ρ

∂

∂φ

)
, and (4-81)

LA = −2R−1k
2

k2
t

γ

iω

(
cosφ
ρ

∂

∂φ
+ sinφ ∂

∂ρ

)
, (4-82)

we can rewrite (4-78) in a compact form:

(
∇2
t + k2

t

h2

)H
E

 =
−µ−1LA LD

LD ε−1LA

E
H

 (4-83)

=
 LD −µ−1LA

ε−1LA LD

H
E

 , (4-84)

or (
∇2
t + k2

t

h2

)E
H

 =
 LD ε−1LA

−µ−1LA LD

E
H

 . (4-85)

An equation more symmetric than the above can be derived if we define

LC = 1
√
µε
LA (4-86)

= 2R−1 k

k2
t

iγ

(
cosφ
ρ

∂

∂φ
+ sinφ ∂

∂ρ

)
, (4-87)

such as (4-85) becomes(
∇2
t + k2

t

h2

)E
H

 =
 LD

√
µ
ε
LC

−
√

ε
µ
LC LD

 E
H

 . (4-88)
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Multiplying the second line of the above equation by Z = (µ/ε)1/2, we obtain5

(
∇2
t + k2

t

h2

) E

ZH

 =
 LD LC

−LC LD

 E

ZH

 . (4-89)

Introducing the differential operators

Ld =
(
∇2
t + k2

t

h2

)
− LD, (4-90)

La = −LC , (4-91)
we can write  Ld La

−La Ld

  E

ZH

 =
0

0

 . (4-92)

We will call as ¯̄M the matrix operator show above, and the vector of the axial
fields as F̄ such as ¯̄MF̄ = 0̄. (4-93)
Then, we can decompose this matrix into the form

¯̄M = ¯̄P ¯̄D ¯̄P−1, (4-94)

where ¯̄P is a matrix composed of the eigenvectors of ¯̄M , and ¯̄D is the diagonal
matrix constructed from the corresponding eigenvalues. Namely

¯̄D =
Ld − iLa 0

0 Ld + iLa

 , (4-95)

¯̄P = 1
2

 1 1
−i i

 , ¯̄P−1 =
1 i

1 −i

 . (4-96)

By substituting the decomposed form of ¯̄M into (4-93), we can obtain

¯̄P ¯̄D ¯̄P−1F̄ = 0̄, (4-97)

which we can reduce to ¯̄D ¯̄P−1F̄ = 0̄. (4-98)
Now, we can look for the vector given by ¯̄P−1F̄ , namely

¯̄P−1F̄ =
E + iZH

E − iZH

 , (4-99)

which reduces our equation to the form

5A matrix equation similar to (4-89) can be found in [138, eq. 2] or in [140, eq. 6], but
with some change in the notation. The approach shown in this section, unlike the method
presented in [138, 140], do not employ any bi-complex field to decouple and solve the axial
fields E and H.
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Ld − iLa 0
0 Ld + iLa

E + iZH

E − iZH

 =
0

0

 , (4-100)

or, alternatively, we can write

(Ld ∓ iLa)(E ± iZH) = 0. (4-101)

At this point we can use the field F± as defined in (4-23), and additionally,
substituting Ld and La by theirs forms in (4-90) and (4-91) allow us to obtain
a decoupled differential equation given by(

∇2
t + k2

t

h2

)
F± = L±F±, (4-102)

where
L± = LD ∓ iLC . (4-103)

The axial fields E and H can be separated from F± by using simple relations
shown in (4-31) and (4-32).

It is important to be observed that in order to obtain the decoupled
equation shown above there is no bi-complex variables. Here, we have employed
a matrix differential operator to combine the axial fields in (4-89), and after
a diagonalization process, we have obtained a decoupled wave equation. In
Section 4.2.1, instead, the new complex variable j was used to help us in the
decoupling process.

Returning to the decoupled differential equation (4-102), it is more
expedite to work with the fields G± defined in (4-33) in place of the hypothetic
fields F±. From (4-33), we have F± = hG± that allow us to rewrite (4-102) as

h

(
∇2
t + k2

t

h2

)
G± +G±∇2

th+ 2
(
∂G±
∂ρ

∂h

∂ρ
+ 1
ρ2
∂G±
∂φ

∂h

∂φ

)
=

h(LD ∓ iLC)G± +G±(LD ∓ iLC)h. (4-104)

We can verify that h is harmonic in (ρ, φ), i.e., satisfies the two-
dimensional Laplace equation ∇2

th = 0 [145], such that we can derive

h

(
∇2
t + k2

t

h2

)
G± − 2R−1

(
cosφ ∂

∂ρ
+ sinφ

ρ

∂

∂ρ

)
G± =

h(LD ∓ iLC)G± +G±(LD ∓ iLC)h. (4-105)

Using (4-81) and (4-87) we can easily shown that LCh vanish, such the
last term in RHS of the above equation reduces to

G±(LD ∓ iLC)h = R−2k
2h2 − γ2

hk2
t

G±. (4-106)
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Then, after we dividing both sides of (4-105) by h, with help of (4-81) and
(4-87), we can finally obtain

(
∇2
t + k2

t

h2

)
G± = R−1 2

h

(
cosφ ∂

∂ρ
+ sinφ

ρ

∂

∂ρ

)

+R−1k
2h2 − γ2

hk2
t

(
− cosφ∂G±

∂ρ
+ sinφ

ρ

∂G±
∂φ

)

± 2R−1 k

k2
t

γ

(
cosφ
ρ

∂G±
∂φ

+ sinφ∂G±
∂ρ

)
+R−2k

2h2 − γ2

h2k2
t

G±, (4-107)

or, in a more compact shape, we can write

(
∇2
t + k2

t

h2

)
G± = R−1

k2
t

[
R−1(k2 − γ2/h2)G±

+h(k2+3γ2/h2)
(

cosφ∂G±
∂ρ
− sinφ

ρ

∂G±
∂φ

)
±2γk

(
sinφ∂G±

∂ρ
+ cosφ

ρ

∂G±
∂φ

)]
.

(4-108)

The above differential equation is exactly equal to (4-46) derived in
Section 4.2.1. The approach proposed here allow us to decouple the differential
equations for the axial fields (by means of the auxiliary fields G±) merely by
carrying out a matrix digitalization, instead of employing a bi-complex variable
as in [51,144].

4.2.3
Solution for Non-Degenerate Modal Fields

The elementary wave function for the zeroth-order vanishing curvature
(R−1 = 0, i.e., for a cylindrical waveguide) is given by

G0,±(ρ, φ) = Ez ±MHz, (4-109)

where Ez and Hz are the axial fields in cylindrical coordinates, and M is an
arbitrary constant to be determined. Note that the axial dependence in form
exp(γ0z) are assumed and omitted in the above.

As said before, the above defined constant M combines the axial electric
and magnetic fields and can be determined by the boundary conditions. Howe-
ver, the zeroth-order solution (in radially-stratified cylindrically waveguides)
only support non-degenerated and orthogonal modes and we can anticipate
that M = N0 = iZ. This is possible because each modal fields is characterized
by a single eigenvalue kz. In contrast, this is not true for example in an homoge-
neous circular waveguide where the modes TEz0p and TMz

1p, p = 1, 2, 3, . . . , are
degenerated and we need to work with their linear combination into G0,±(ρ, φ),
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as analyzed in Section 4.2.1.3 and in [51, p. 62]. Then, our elementary wave
function for non-degenerated modes can be written as

G0,±(ρ, φ) =
{
H(1)
n (kρρ)ae + Jn(kρρ)be ±N0

[
H(1)
n (kρρ)ah + Jn(kρρ)bh

]}
einφ

(4-110)

= Beh
n,±(kρρ) exp(inφ), n = 0, 1,−1, 2,−2, . . . . (4-111)

As an aid to simplifying the notation, we have introduced Beh
n,± as the linear

combination of unperturbed fields, and we will assume that these fields are
already known from Chapter 3. In addition, we will drop temporarily the
subscript ± by using just Beh

n , restoring it later as needed.
By replacing (4-111) in (4-57), and by using the differential operator

L = ∂2

∂ρ2 + 1
ρ

∂

∂ρ
+ 1
ρ2

∂2

∂φ2 + k2
ρ (4-112)

= ∇2
t + k2

ρ, (4-113)

we can write

LG1,± = −γ2
0(α1 + 2ρ cosφ)Beh

n (kρρ)einφ

+ k−2
ρ

{
(k2 + 3γ2

0)
[
cosφkρB′ehn (kρρ)einφ − sinφ

ρ
inBeh

n (kρρ)einφ
]

±2γ0k

[
sinφkρB′ehn (kρρ)einφ + cosφ

ρ
inBeh

n (kρρ)einφ
]}

, (4-114)

where the superscript prime means the derivative with respect to the argument
of the cylindrical functions.

From the trigonometric identities

einφ sinφ = i

2
[
ei(n−1)φ − ei(n+1)φ

]
, (4-115)

einφ cosφ = 1
2
[
ei(n−1)φ + ei(n+1)φ

]
, (4-116)

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 177

we can write

LG1,± = einφ
[
−γ2

0α1B
eh
n (kρρ)

]
+ ei(n−1)φ

[
−γ2

0ρB
eh
n (kρρ) +

k−1
ρ

2 (k2+3γ2
0)B′ehn (kρρ) +

nk−2
ρ

2ρ (k2+3γ2
0)Beh

n (kρρ)

±ik−1
ρ γ0kB

′eh
n (kρρ)±

ink−2
ρ γ0k

ρ
Beh
n (kρρ)

]

+ ei(n+1)φ
[
−γ2

0ρB
eh
n (kρρ) +

k−1
ρ

2 (k2+3γ2
0)B′ehn (kρρ)−

nk−2
ρ

2ρ (k2+3γ2
0)Beh

n (kρρ)

∓ik−1
ρ γ0kB

′eh
n (kρρ)±

ink−2
ρ γ0k

ρ
Beh
n (kρρ)

]
. (4-117)

Using the following properties of the cylindrical functions [55, p. 463]

B′n(kρρ) = ±Bn∓1(kρρ)∓ n

kρρ
Bn(kρρ), (4-118)

and after some simplifications, we can finally obtain

LG1,± = einφ
[
−γ2

0α1B
eh
n (kρρ)

]
+ ei(n−1)φ

[
−γ2

0ρB
eh
n (kρρ) + k−1

ρ

(
k2 + 3γ2

0
2 ± iγ0k

)
Beh
n−1(kρρ)

]

+ ei(n+1)φ
[
−γ2

0ρB
eh
n (kρρ) + k−1

ρ

(
−k

2 + 3γ2
0

2 ± iγ0k

)
Beh
n+1(kρρ)

]
. (4-119)

4.2.3.1
Verification of the Perturbation Solution in a Curved Coaxial Waveguide

The effects of the curvature in a coaxial waveguide was analyzed in [137].
Here, we will use our equations to solve the particular problem presented
in [137], i.e., the first-order correction fields for the fundamental TEMz mode.
The direct application of (4-119) presents some problems: the fundamental
TEMz mode of the unperturbed waveguide does not present axial fields, viz.,
Ez = Hz = 0. To overcome this limitation, we consider instead the excitation
from the mode TM00 to z. This is an asymmetric mode (n = 0) in the limit case
when kρ → 0. We can verify that this mode presents 3 null-field components,
namely, Hz = Eφ = Hρ = 0. Furthermore, the non-null remaining fields are
given by

E0,ζ = H0(kρρ)ae0 + J0(kρρ)be0, (4-120)

E0,ρ = ikz
kρ

[H ′0(kρρ)ae0 + J ′0(kρρ)be0], (4-121)

H0,φ = iωε

kρ
[H ′0(kρρ)ae0 + J ′0(kρρ)be0], (4-122)

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 178

where ae0 and be0 are constant parameters to be determined by the boun-
dary conditions. Using the small argument approximations for the cylindrical
function, we can write [55, p. 462]

H0(kρρ) ≈ 2i
π

log(kρρ), (4-123)

H ′0(kρρ) = −H1(kρρ) ≈ 2i
πkρρ

, (4-124)

J0(kρρ) ≈ 1, (4-125)

J ′0(kρρ) = −J1(kρρ) ≈ −kρρ2 . (4-126)
In the coaxial waveguide at hand, there is a PEC wall at ρ = r0, such we

need to satisfy the condition

H0,φ(ρ = r0) = I0

2πr0
, (4-127)

which allow us to find ae0:
ae0 = −

I0k
2
ρ

4ωε . (4-128)
By combining the above results, and noting that kz → k as kρ → 0, the TMz

00

fields becomes
E0,ζ = 0, (4-129)

E0,ρ = Z
I0

2πρ, and (4-130)

H0,φ = I0

2πρ, (4-131)

that correspond to the same field components for the TEMz mode in a coaxial
waveguide employed in [137]. The above derivation allow us to find ae0 using
(4-128). Note that be0 becomes zero as kρ → 0. Also, like any TMz mode, we
have ahn = bhn = 0 for all n. This allow us to write

Beh
0,± → 0, (4-132)

Beh
−1,± = H−1(kρρ)ae0 → −

I0

2πρ
ikρ
ωε
, (4-133)

Beh
1,± = H1(kρρ)ae0 →

I0

2πρ
ikρ
ωε
. (4-134)

The above equations can be used in (4-119), resulting in

LG1,± = e−iφ
[
k−1
ρ

(
k2 + 3γ2

0
2 ± iγ0k

)(
− I0

2πρ
ikρ
ωε

)]

+ eiφ
[
k−1
ρ

(
−k

2 + 3γ2
0

2 ± iγ0k

)(
I0

2πρ
ikρ
ωε

)]
. (4-135)
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Note that iγ0 = k and γ2
0 = −k2, and from the boundary conditions,

their is no first-order correction on the propagation constant: α1 = 0. Also, we
can simplify the above equation to a more compact form:

LG1,± = I0

2πρ
i

ωε

[
e−iφ(k2 ∓ k2) + eiφ(k2 ± k2)

]
. (4-136)

The first-order axial field corrections can be recovered from G1,± by using
E1,ζ = (G1,+ +G1,−)/2 and H1,ζ = (G1,+ −G1,−)/(2iZ), so we can derive

LE1,ζ = Z
ikI0

πρ
cos(φ), and (4-137)

LH1,ζ = −ikI0

πρ
sin(φ). (4-138)

The above results are identical to ones shown in [137, eq. 8 and eq. 11].

4.2.4
Solving the First-Order Correction Field

In order to solve G1,± in (4-119) it is convenient make use an approach
similar to one used in [139], in which the orthogonality of the azimuthal
harmonic functions allows to establish the ansatz for the particular solution of
G1,±:

Gp
1,± = Rn

1 (ρ)einφ +Rn−1
1 (ρ)ei(n−1)φ +Rn+1

1 (ρ)ei(n+1)φ. (4-139)

Thus, we admit that the homogeneous solution of G1,± satisfies

LGh
1,± = LnG

n
1,±e

inφ + Ln−1G
n−1
1,± e

i(n−1)φ + Ln+1G
n+1
1,± e

i(n+1)φ, (4-140)

where the Bessel differential operator of order integer order m = n, n ± 1 is
given by

Lm = d2

dρ2 + 1
ρ

d

dρ
+
(
k2
ρ −

m2

ρ2

)
. (4-141)

By comparing (4-139) and (4-119), we can derive the following equations
for Rn

1 (ρ), Rn−1
1 (ρ) and Rn+1

1 (ρ):

LnR
n
1 = −γ2

0α1B
eh
n , (4-142a)

Ln−1R
n−1
1 = −γ2

0ρB
eh
n (kρρ) + k−1

ρ

(
k2 + 3γ2

0
2 ± iγ0k

)
Beh
n−1(kρρ), (4-142b)

Ln+1R
n+1
1 = −γ2

0ρB
eh
n (kρρ) + k−1

ρ

(
−k

2 + 3γ2
0

2 ± iγ0k

)
Beh
n+1(kρρ). (4-142c)

To aid in solving (4-142) we can pursue solutions of the operator Lm over
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ρqBp(kρρ):

Lm[ρqBp(kρρ)] =
(
d2

dρ2 + 1
ρ

d

dρ

)
[ρqBp(kρρ)] +

(
k2
ρ −

m2

ρ2

)
[ρqBp(kρρ)] .

(4-143)

By omitting the argument of the cylindrical functions, we can write

Lm[ρqBp(kρρ)] = d2ρq

dρ2 Bp + 2dρ
q

dρ

dBp

dρ
+ d2Bp

dρ2 ρ
q + 1

ρ

{
ρqkρB

′
p + qρq−1Bp

}
+ k2

ρρ
qBp −m2ρq−2Bp, (4-144)

which we can reduce to

Lm[ρqBp(kρρ)] = q(q − 1)ρq−2Bp + 2qρq−1kρB
′
p + ρq

k2
ρ

4 (Bp−2 − 2Bp +Bp+2)

+ ρq−1kρB
′
p + qρq−2Bp + k2

ρρ
qBp −m2ρq−2Bp. (4-145)

Expanding the RHS of the above equation, we have found

Lm[ρqBp(kρρ)] = q2ρq−2Bp−qρq−2Bp+2qρq−1kρB
′
p+ρq

k2
ρ

4 (Bp−2−2Bp+Bp+2)

+ ρq−1kρB
′
p + qρq−2Bp + k2

ρρ
qBp −m2ρq−2Bp. (4-146)

After a simple simplification, we can obtain

Lm[ρqBp(kρρ)] = (q2 −m2)ρq−2Bp + 2qρq−1kρB
′
p

+ ρq
k2
ρ

4 (Bp−2 − 2Bp +Bp+2) + ρq−1kρB
′
p + k2

ρρ
qBp. (4-147)

Employing the identities Bp±1 = 2(p±1)/(kρρ)Bp±1−Bp [55, p. 463], we
can derive

ρq
k2
ρ

4 (Bp−2 +Bp+2) = −1
2ρ

qk2
ρBp + p2ρq−2Bp − ρq−1kρB

′
p, (4-148)

that allows to rewrite Lm[ρqBp(kρρ)] as

Lm[ρqBp(kρρ)] = (q2 −m2)ρq−2Bp + 2qρq−1kρB
′
p −

1
2ρ

qk2
ρBp + p2ρq−2Bp

− ρq−1kρB
′
p −

1
2ρ

qk2
ρBp + ρq−1kρB

′
p + ρqk2

ρBp. (4-149)

After some simplifications, the last equation reduces to

Lm[ρqBp(kρρ)] = (p2 + q2 −m2)ρq−2Bp + 2qρq−1kρB
′
p. (4-150)
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We can derive another pair of useful equation using B′p = ±Bp∓1∓ p/(kρρ)Bp,
resulting in

Lm[ρqBp(kρρ)] = (p2 + q2 −m2)ρq−2Bp(kρρ) + 2qkρρq−1B′p(kρρ) (4-151)

= [(p− q)2 −m2]ρq−2Bp(kρρ) + 2qkρρq−1Bp−1(kρρ) (4-152)

= [(p+ q)2 −m2]ρq−2Bp(kρρ)− 2qkρρq−1Bp+1(kρρ), (4-153)

which is a generalization of the methods used in [51, p. 63] and [139]6 for a
linear combination of cylindrical functions Bp of integer order p.

We can find useful results using (4-152) with p = n+1, q = 1 and m = n,
i.e.,

Ln[ρBn+1(kρρ)] = 2kρBn(kρρ). (4-154)
Alternatively, by using (4-153) with p = n − 1, q = 1 and m = n, we verify
that

Ln[ρBn−1(kρρ)] = −2kρBn(kρρ) (4-155)
also must be satisfied. By subtracting (4-155) from (4-154), after some mani-
pulation we can write

Ln

{
ρ

4kρ
[Bn+1(kρρ)−Bn−1(kρρ)]

}
= Bn(kρρ), (4-156)

Ln

[
− ρ

2kρ
B′n(kρρ)

]
= Bn(kρρ), (4-157)

that allow us to figure out Rn
1 in (4-142a) except for a constant factor. The

above equation also can be used to solve Ln±1[f(ρ)] = Beh
n±1(kρρ), and we can

derive the proper function f(ρ) that satisfies the last terms in (4-142b) and
(4-142c).

At first glance, it may sound strange that the Bessel differential equation
of order n with an inhomogeneous term Bn(kρρ) presents three particular
solutions: ρBn+1(kρρ)/(2kρ), −ρBn−1(kρρ)/(2kρ) and 2ρB′n(kρρ)/(2kρ). But
note that the Bessel operator of order n applied to ρB′n(kρρ) leads to

Ln [B′n(kρρ)] = ±Ln [ρBn∓1(kρρ)]∓ n

kρ
Ln [Bn(kρρ)] , (4-158)

in which the last term clearly satisfies the homogeneous Bessel differential
equation, and becomes zero.

In order to find Rn−1
1 , except for a constant factor, we need to find p, q

and m which satisfy

Ln−1[ρqBp(kρρ)] = ρBn(kρρ), and (4-159)

6An equation similar to (4-151) shown in [139, eq. 45] is incorrect. The last term in the
said equation should instead be equal to the last term shown in (4-151).
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Ln−1[ρqBp(kρρ)] = Bn−1(kρρ). (4-160)
By choosing proper combinations of m, p and q in (4-152) we can find:

m = n− 1
p = n+ 1
q = 2

 : Ln−1[ρ2Bn+1(kρρ)] = 4kρρBn(kρρ), (4-161)

m = n− 1
p = n

q = 1

 : Ln−1[ρBn(kρρ)] = 2kρBn−1(kρρ), (4-162)

that allow us to solve Rn−1
1 in (4-142b).

Proceeding in a similar manner, we can solve Rn+1
1 choosing the following

values for m, p and q in (4-153):

m = n+ 1
p = n− 1
q = 2

 : Ln+1[ρ2Bn−1(kρρ)] = −4kρρBn(kρρ), (4-163)

m = n+ 1
p = n

q = 1

 : Ln+1[ρBn(kρρ)] = −2kρBn+1(kρρ). (4-164)

In short, we can satisfy (4-142) using

Ln

[
− ρ

2kρ
B′n

]
= Bn, (4-165a)

Ln−1

(
ρ2

4kρ
Bn+1

)
= ρBn, (4-165b)

Ln−1

(
ρ

2kρ
Bn

)
= Bn−1, (4-165c)

Ln+1

(
− ρ2

4kρ
Bn−1

)
= ρBn, (4-165d)

Ln+1

(
− ρ

2kρ
Bn

)
= Bn+1, (4-165e)

where the argument of cylindrical functions is omitted for the sake of brevity.
With the results in (4-165) we can solve the particular solution of

(4-119) for each azimuthal dependent term; namely, for terms associated with
exp(imφ), m = n, n± 1.

The homogeneous solution of (4-119) must satisfies (4-140), and based

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 183

on the linear independence of the terms exp(imφ), we can write

LnG
n
1,± = 0, (4-166a)

Ln−1G
n−1
1,± = 0, (4-166b)

Ln+1G
n+1
1,± = 0, (4-166c)

whose solutions for Gm
1,± can be written as combinations of cylindrical function

of order m, e.g.:

Gn
1,± = An1,±Hn(kρρ) +Bn

1,±Jn(kρρ), (4-167a)

Gn−1
1,± = An−1

1,± Hn−1(kρρ) +Bn−1
1,± Jn−1(kρρ), (4-167b)

Gn+1
1,± = An+1

1,± Hn+1(kρρ) +Bn+1
1,± Jn+1(kρρ), (4-167c)

where Hm and Jm are the first kind Hankel and Bessel functions of integer
order m. The constants Am1,± and Bm

1,± will be determined on the application
of the boundary conditions. Note that instead of Hm and Jm we could have
chosen any pair of linear independent cylindrical functions.

Accordingly, we get the general solution for G1,± as

G1,± = einφ
[
γ2

0α1ρ

2kρ
B′ehn,± + An1,±Hn,± +Bn

1,±Jn,±

]

+ ei(n−1)φ

− γ2
0ρ

2

4kρ
Beh
n+1,± + ρ

2k2
ρ

(
k2 + 3γ2

0
2 ± iγ0k

)
Beh
n,±

+ An−1
1,± Hn−1,± +Bn−1

1,± Jn−1,±


+ ei(n+1)φ

γ2
0ρ

2

4kρ
Beh
n−1,± + ρ

2k2
ρ

(
k2 + 3γ2

0
2 ∓ iγ0k

)
Beh
n,±

+ An+1
1,± Hn+1,± +Bn+1

1,± Jn+1,±

. (4-168)

As said before, the arbitrary multiplying constants Am1,± and Bm
1,±, m =

n, n ∓ 1, arise as solutions of the homogeneous equation of (4-119), and will
be determined later by applying the boundary conditions. Note that we have
restored the subscript ± in Beh

n,±, but the argument of cylindrical functions
remains omitted to shorten the notation.

Taking into account the terms of order R−1, due to the linear indepen-
dence of the exponentials exp(inφ), exp[i(n − 1)φ] and exp[i(n + 1)φ], the
boundary conditions split up into three equations, one to each exponential
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term7.

4.2.5
First-Order Correction to Axial Fields

The perturbation solution for G± up to the order R−1 is such as

G± = Eζ ±N0Hζ = (G0,± +R−1G1,±)eγζ . (4-169)

The axial electric field can be recovered from G± by using

Eζ = G+ +G−
2 , (4-170)

and similarly, we can establish the following equation for the axial magnetic
field

Hζ = G+ −G−
2N0

. (4-171)

To recover the axial fields, noting the sign of ± (or ∓) that came with
the term iγ0k in (4-168), the following relationships are relevant. Let us now
consider

B± = (a± b)(Be ±N0B
h), (4-172)

then: B+ +B−
2 = aBe + bN0B

h, and (4-173)

B+ −B−
2N0

= bBe + aN0B
h

N0
= bBe

N0
+ aBh. (4-174)

Using the above relationships, we have found

Eζ =
[
Be
n +R−1

(
γ2

0α1ρ

2kρ
B′en +

An1,+ + An1,−
2 Hn +

Bn
1,+ +Bn

1,−

2 Jn

)]
einφeγζ

+R−1
[
−γ

2
0ρ

2

4kρ
Be
n+1 + ρ

2k2
ρ

(
k2 + 3γ2

0
2 Be

n + iγ0kN0B
h
n

)

+
An−1

1,+ + An−1
1,−

2 Hn−1 +
Bn−1

1,+ +Bn−1
1,−

2 Jn−1

]
ei(n−1)φeγζ

+R−1
[
γ2

0ρ
2

4kρ
Be
n−1 + ρ

2k2
ρ

(
k2 + 3γ2

0
2 Be

n − iγ0kN0B
h
n

)

+
An+1

1,+ + An+1
1,−

2 Hn+1 +
Bn+1

1,+ +Bn+1
1,−

2 Jn+1

]
ei(n+1)φeγζ , and (4-175)

7It is important to observe that in (4-168), the terms An1,±Hn,± exp(inφ) and
Bn1,±Jn,± exp(inφ) are linearly dependent of the zeroth-order solution G0,± defined in
(4-111). This can be a clue that both An1,± and Bn1,± are zero.
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Hζ =
[
Bh
n +R−1

(
γ2

0α1ρ

2kρ
B′hn +

An1,+ − An1,−
2N0

Hn +
Bn

1,+ −Bn
1,−

2N0
Jn

)]
einφeγζ

+R−1
[
−γ

2
0ρ

2

4kρ
Bh
n+1 + ρ

2k2
ρ

(
k2 + 3γ2

0
2 Bh

n + iγ0k

N0
Be
n

)

+
An−1

1,+ − An−1
1,−

2N0
Hn−1 +

Bn−1
1,+ −Bn−1

1,−

2N0
Jn−1

]
ei(n−1)φeγζ

+R−1
[
γ2

0ρ
2

4kρ
Bh
n−1 + ρ

2k2
ρ

(
k2 + 3γ2

0
2 Bh

n −
iγ0k

N0
Be
n

)

+
An+1

1,+ − An+1
1,−

2N0
Hn+1 +

Bn+1
1,+ −Bn+1

1,−

2N0
Jn+1

]
ei(n+1)φeγζ

}
. (4-176)

The axial field can be written in a compact form, highlighting the
azimuthal dependence and the order in terms of R−1 in the shape of

Eζ
Hζ

 =


En

0,ζ

Hn
0,ζ

+R−1

En
1,ζ

Hn
1,ζ

 einφeγζ +R−1

En−1
1,ζ

Hn−1
1,ζ

 ei(n−1)φ−iψeγζ

+R−1

En+1
1,ζ

Hn+1
1,ζ

 ei(n+1)φ+iψeγζ , (4-177)

where the zeroth-order curvature vanishing axial fields are given by En
0,ζ = Be

n

and Hn
0,ζ = Bh

n.
The portion of the axial fields proportional to R−1 exp[inφ] are obtained

comparing (4-177) with (4-175) and (4-176), so that:En
1,ζ

Hn
1,ζ

 = α1
γ2

0ρ

2kρ

B′en
B′hn

+Hn

ae1,n
ah1,n

+ Jn

be1,n
bh1,n

 , (4-178)

where ae1,m
be1,m

 = 1
2

Am1,+ + Am1,−

Bm
1,+ +Bm

1,−

 , (4-179)ah1,m
bh1,m

 = 1
2N0

Am1,+ − Am1,−
Bm

1,+ −Bm
1,−

 . (4-180)

Note that the four unknowns in A1,± and B1,± where transformed to other
four unknowns in ae,h1,m and be,h1,m. These constants will be determined later by
applying the boundary conditions.

The portion of the axial fields proportional to R−1 exp[i(n ± 1)φ] are
derived comparing (4-177) with (4-175) and (4-176), so that:

En±1
1,ζ = Re

ζ,n±1 + ae1,n±1Hn±1 + be1,n±1Jn±1, (4-181)

Hn±1
1,ζ = Rh

ζ,n±1 + ah1,n±1Hn±1 + bh1,n±1Jn±1, (4-182)
where
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Re
ζ,n±1 = Re

ζ,n±1(kρρ) = ±γ
2
0ρ

2

4kρ
Be
n∓1 + ρ

2k2
ρ

(
k2 + 3γ2

0
2 Be

n ∓ iγ0kN0B
h
n

)
,

(4-183)

Rh
ζ,n±1 = Rh

ζ,n±1(kρρ) = ±γ
2
0ρ

2

4kρ
Bh
n∓1 + ρ

2k2
ρ

(
k2 + 3γ2

0
2 Bh

n ∓
iγ0k

N0
Be
n

)
. (4-184)

In a compact manner, for m = n± 1, we can writeEm
1,ζ

Hm
1,ζ

 =
Re

ζ,m

Rh
ζ,m

+Hm

ae1,m
ah1,m

+ Jm

be1,m
bh1,m

 . (4-185)

Recalling that
Be,h
m = Hm(kρρ)ae,h0,n + Jm(kρρ)be,h0,n, (4-186)

we can define
R̄ζ,m =

Re
ζ,m

Rh
ζ,m

 = ¯̄Hp
ζ,mā0,n + ¯̄Jpζ,mb̄0,n, (4-187)

where
¯̄Bp
ζ,n = α1

γ2
0ρ

2kρ

B′n(kρρ) 0
0 B′n(kρρ)

 , (4-188)

¯̄Bp
ζ,n±1 = ±γ

2
0ρ

2

4kρ

Bn∓1(kρρ) 0
0 Bn∓1(kρρ)


+ ρ

2k2
ρ

k2+3γ2
0

2 Bn(kρρ) ∓iγ0kN0Bn(kρρ)
∓ iγ0k

N0
Bn(kρρ) k2+3γ2

0
2 Bn(kρρ)

 . (4-189)

At this point, the first-order correction to propagation constant α1 is an
unknown. Then, it is appropriated to redefine ¯̄Bp

ζ,n such as

¯̄Bp̂
ζ,n = 1

α1

¯̄Bp
ζ,n = γ2

0ρ

2kρ
B′n(kρρ) ¯̄I, (4-190)

Also, using N0 = i(µ/ε)1/2, we can derive ¯̄Bζ,n±1 in a more compact shape:

¯̄Bp
ζ,n±1 = ±γ

2
0ρ

2

4kρ
Bn∓1(kρρ) ¯̄I + ρ

2k2
ρ

Bn(kρρ)
 k2+3γ2

0
2 ±γ0ωµ

∓γ0ωε
k2+3γ2

0
2

 . (4-191)

Thus, for m = n, n± 1, we can writeEm
1,ζ

Hm
1,ζ

 = R̄ζm + ¯̄Hζ,mā1,m + ¯̄Jζ,mb̄1,m (4-192)

= ¯̄Hp
ζ,mā0,n + ¯̄Jpζ,mb̄0,n + ¯̄Hmā1,m + ¯̄Jmb̄1,m, (4-193)

where ¯̄Bζ,m = Bm(kρρ) ¯̄I, with Bm = Hm or Jm being first kinds Hankel or
Bessel function of order m. For m = n we must use ¯̄Bp

ζ,n = α1
¯̄Bp̂
ζ,n to apply the
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boundary conditions for the fields associated to exp(inφ) because α1 is still an
unknown quantity.

4.2.6
First-Order Correction to Transversal Fields

The proper combinations of (4-4a), (4-4b), (4-4d) and (4-4e) allow us to
write the fields transversal to ζ from the axial fields E and H asEφ

Hφ

 = 1
k2
t ρ

 γ ∂
∂φ

−hζiωµρ ∂
∂ρ

hζiωερ
∂
∂ρ

γ ∂
∂φ

 E
H

 , and (4-194)

Eρ
Hρ

 = 1
k2
t ρ

 γρ ∂
∂ρ

hζiωµ
∂
∂φ

−hζiωε ∂∂φ γρ ∂
∂ρ

E
H

 . (4-195)

Recollecting that E = hζEζ and H = hζHζ , we can use

∂

∂φ
(hζGζ) = hζ

∂Gζ

∂φ
+R−1ρ sin(φ+ ψ)Gζ , and (4-196)

∂

∂ρ
(hζGζ) = hζ

∂Gζ

∂ρ
−R−1 cos(φ+ ψ)Gζ , (4-197)

to derive a direct relation between the axial and the transversal fields:
Eφ
Hφ

 =
h2
ζ

k2
t ρ

 γ
hζ

∂
∂φ

−iωµρ ∂
∂ρ

iωερ ∂
∂ρ

γ
hζ

∂
∂φ

 Eζ
Hζ


+R−1hζ

k2
t

 γ
hζ

sin(φ+ ψ) iωµ cos(φ+ ψ)
−iωε cos(φ+ ψ) γ

hζ
sin(φ+ ψ)

Eζ
Hζ

 , and (4-198)

Eρ
Hρ

 =
h2
ζ

k2
t ρ

 γ
hζ
ρ ∂
∂ρ

iωµ ∂
∂φ

−iωε ∂
∂φ

γ
hζ
ρ ∂
∂ρ

Eζ
Hζ

 .
+R−1hζ

k2
t

− γ
hζ

cos(φ+ ψ) iωµ sin(φ+ ψ)
−iωε sin(φ+ ψ) − γ

hζ
cos(φ+ ψ)

Eζ
Hζ

 . (4-199)

At this point, we should truncate the transversal fields up to the order
R−1. For this purpose, the following approximations are useful:

γ = γ0

√
1 +R−1α1 +O(R−2) = γ0

(
1 +R−1α1

2

)
+O(R−2), (4-200)

hζγ

k2h2
ζ + γ2 = γ0

k2
ρ

−R−1γ0(−k2 + γ2
0)

2k4
ρ

[α1 + 2ρ cos(φ+ ψ)] +O(R−2), (4-201)

h2
ζ

k2h2
ζ + γ2 = 1

k2
ρ

−R−1γ
2
0
k4
ρ

[α1 + 2ρ cos(φ+ ψ)] +O(R−2), (4-202)
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γ

k2h2
ζ + γ2 = γ0

k2
ρ

+O(R−1), (4-203)

hζ
k2h2

ζ + γ2 = 1
k2
ρ

+O(R−1). (4-204)

Considering the previous approximations, now we can write

Eφ
Hφ

 =

 1
k2
ρρ

 γ0
∂
∂φ

−iωµρ ∂
∂ρ

iωερ ∂
∂ρ

γ0
∂
∂φ


−R−1γ

2
0 [α1 + 2ρ cos(φ+ ψ)]

k4
ρρ

γ2
0−k

2

2γ0
∂
∂φ
−iωµρ ∂

∂ρ

iωερ ∂
∂ρ

γ2
0−k

2

2γ0
∂
∂φ


+R−1 1

k2
ρ

 γ0 sin(φ+ ψ) iωµ cos(φ+ ψ)
−iωε cos(φ+ ψ) γ0 sin(φ+ ψ)


Ez
Hz


+R−1 1

k2
ρρ

 γ0
∂
∂φ

−iωµρ ∂
∂ρ

iωερ ∂
∂ρ

γ0
∂
∂φ

 E1,ζ

H1,ζ

 , and (4-205)

Eρ
Hρ

 =

 1
k2
ρρ

 γ0ρ
∂
∂ρ

iωµ ∂
∂φ

−iωε ∂
∂φ

γ0ρ
∂
∂ρ


−R−1γ

2
0 [α1 + 2ρ cos(φ+ ψ)]

k4
ρρ

γ2
0−k

2

2γ0
ρ ∂
∂ρ

iωµ ∂
∂φ

−iωε ∂
∂φ

γ2
0−k

2

2γ0
ρ ∂
∂ρ


+R−1 1

k2
ρ

−γ0 cos(φ+ ψ) iωµ sin(φ+ ψ)
−iωε sin(φ+ ψ) −γ0 cos(φ+ ψ)


Ez
Hz


+R−1 1

k2
ρρ

 γ0ρ
∂
∂ρ

iωµ ∂
∂φ

−iωε ∂
∂φ

γ0ρ
∂
∂ρ

E1,ζ

H1,ζ

 , (4-206)

where the axial fields are written such as Gζ = Gz +R−1G1,ζ .
Noting that the zeroth-order solutions are proportional to exp(inφ), we

can use the relations

cos(φ+ ψ)einφ = 1
2
[
ei(n−1)φ−iψ + ei(n+1)φ+iψ

]
, and (4-207)

sin(φ+ ψ)einφ = i

2
[
ei(n−1)φ−iψ − ei(n+1)φ+iψ

]
, (4-208)

to rewrite the transversal field components in the form

Eφ
Hφ

 =


En

0,φ

Hn
0,φ

+R−1

En
1,φ

Hn
1,φ

 einφeγζ +R−1

En−1
1,φ

Hn−1
1,φ

 ei(n−1)φ−iψeγζ

+R−1

En+1
1,φ

Hn+1
1,φ

 ei(n+1)φ+iψeγζ , (4-209)
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Eρ
Hρ

 =


En

0,ρ

Hn
0,ρ

+R−1

En
1,ρ

Hn
1,ρ

 einφeγζ +R−1

En−1
1,ρ

Hn−1
1,ρ

 ei(n−1)φ−iψeγζ

+R−1

En+1
1,ρ

Hn+1
1,ρ

 ei(n+1)φ+iψeγζ , (4-210)

where the zeroth-order curvature vanishing fields are given by
{En

0,t, H
n
0,t} exp(inφ+ γζ), t = ρ, φ. The remaining terms are given by

En
1,φ

Hn
1,φ

 = 1
k2
ρρ

 γ0in −iωµρ ∂
∂ρ

iωερ ∂
∂ρ

γ0in

En
1,ζ

Hn
1,ζ


− γ2

0α1

k4
ρρ

γ2
0−k

2

2γ0
in −iωµρ ∂

∂ρ

iωερ ∂
∂ρ

γ2
0−k

2

2γ0
in

En
0,ζ

Hn
0,ζ

 , (4-211)

En±1
1,φ

Hn±1
1,φ

 = −γ
2
0
k4
ρ

γ2
0−k

2

2γ0
in −iωµρ ∂

∂ρ

iωερ ∂
∂ρ

γ2
0−k

2

2γ0
in

En
0,ζ

Hn
0,ζ


+ i

2k2
ρ

∓γ0 ωµ

−ωε ∓γ0

En
0,ζ

Hn
0,ζ

+ 1
k2
ρρ

γ0i(n± 1) −iωµρ ∂
∂ρ

iωερ ∂
∂ρ

γ0i(n± 1)

En±1
1,ζ

Hn±1
1,ζ

 , (4-212)

En
1,ρ

Hn
1,ρ

 = 1
k2
ρρ

 γ0ρ
∂
∂ρ

iωµ(in)
−iωε(in) γ0ρ

∂
∂ρ

En
1,ζ

Hn
1,ζ


− γ2

0α1

k4
ρρ

 γ2
0−k

2

2γ0
ρ ∂
∂ρ

iωµ(in)
−iωε(in) γ2

0−k
2

2γ0
ρ ∂
∂ρ

En
0,ζ

Hn
0,ζ

 , (4-213)

En±1
1,ρ

Hn±1
1,ρ

 = −γ
2
0
k4
ρ

 γ2
0−k

2

2γ0
ρ ∂
∂ρ

iωµ(in)
−iωε(in) γ2

0−k
2

2γ0
ρ ∂
∂ρ

En
0,ζ

Hn
0,ζ


+ 1

2k2
ρ

 −γ0 ∓iωµi
±iωεi −γ0

 En
0,ζ

Hn
0,ζ

+ 1
k2
ρρ

 γ0ρ
∂
∂ρ

iωµi(n± 1)
−iωεi(n± 1) γ0ρ

∂
∂ρ

En±1
1,ζ

Hn±1
1,ζ

 .
(4-214)

We must simplify the equations (4-211) to (4-214) in order to detach
the parameters α1, ae,h1,m and be,h1,m, for m = n, n ± 1, in order to assist the
application of the appropriated boundary conditions. For this purpose, in the
following sections each of these equations will be simplified.
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4.2.6.1
Simplification of the Equation (4-211)

Defining
¯̄Dφ,m = 1

k2
ρρ

 γ0im −iωµρ ∂
∂ρ

iωερ ∂
∂ρ

γ0im

 , (4-215)

¯̄Ba
φ,n = − γ2

0
k4
ρρ

γ2
0−k

2

2γ0
inBn(kρρ) −iωµkρρB′n(kρρ)

iωεkρρB
′
n(kρρ) γ2

0−k
2

2γ0
inBn(kρρ)

 , (4-216)

we can rewrite (4-211) as

En
1,φ

Hn
1,φ

 = ¯̄Dφ,n

[
α1

¯̄H p̂
ζ,nā0,n + α1

¯̄J p̂ζ,nb̄0,n + ¯̄Hnā1,n + ¯̄Jnb̄1,n
]

+ α1
¯̄Ha
φ,nā0,n + α1

¯̄Jaφ,nb̄0,n. (4-217)

Introducing the new matrices ¯̄Bp̂
φ,n and ¯̄Bφ,m such as

¯̄Bp̂
φ,n = ¯̄Dφ,n

¯̄Bp̂
ζ,n + ¯̄Ba

φ,n

= γ2
0

2k4
ρρ

 in
(
γ0kρρB

′
n −

γ2
0−k

2

γ0
Bn

)
iωµ

[
(k2
ρρ

2 − n2)Bn + 2kρρB′n
]

−iωε
[
(k2
ρρ

2 − n2)Bn + 2kρρB′n
]

in
(
γ0kρρB

′
n −

γ2
0−k

2

γ0
Bn

)
 ,

(4-218)

¯̄Bφ,m = ¯̄Dφ,m
¯̄Bm

= 1
k2
ρρ

 γ0imBm −iωµkρρB′m
iωεkρρB

′
m γ0imBm

 , (4-219)

where Bm = Hm or Jm, we can obtainEn
1,φ

Hn
1,φ

 = α1
¯̄H p̂
φ,nā0,n + α1

¯̄J p̂φ,nb̄0,n + ¯̄Hφ,nā1,n + ¯̄Jφ,nb̄1,n (4-220)

= α1R̄φ,n + ¯̄Hφ,nā1,n + ¯̄Jφ,nb̄1,n. (4-221)

4.2.6.2
Simplification of the Equation (4-213)

Defining
¯̄Dρ,m = 1

k2
ρρ

γ0ρ
∂
∂ρ
−mωµ

mωε γ0ρ
∂
∂ρ

 , (4-222)

¯̄Ba
ρ,n = − γ2

0
k4
ρρ

γ2
0−k

2

2γ0
kρρB

′
n(kρρ) −nωµBn(kρρ)

nωεBn(kρρ) γ2
0−k

2

2γ0
kρρB

′
n(kρρ)

 , (4-223)
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En
1,ρ

Hn
1,ρ

 = 1
k2
ρρ

 γ0ρ
∂
∂ρ

iωµ(in)
−iωε(in) γ0ρ

∂
∂ρ

En
1,ζ

Hn
1,ζ


− γ2

0α1

k4
ρρ

 γ2
0−k

2

2γ0
ρ ∂
∂ρ

iωµ(in)
−iωε(in) γ2

0−k
2

2γ0
ρ ∂
∂ρ

En
0,ζ

Hn
0,ζ

 , (4-224)

we can rewrite (4-213) as

En
1,ρ

Hn
1,ρ

 = ¯̄Dρ,n

[
α1

¯̄H p̂
ζ,nā0,n + α1

¯̄J p̂ζ,nb̄0,n + ¯̄Hnā1,n + ¯̄Jnb̄1,n
]

+ α1
¯̄Ha
ρ,nā0,n + α1

¯̄Jaρ,nb̄0,n. (4-225)

Introducing the new matrices ¯̄Bp̂
ρ,n and ¯̄Bρ,m such as

¯̄Bp̂
ρ,n = ¯̄Dρ,n

¯̄Bp̂
ζ,n + ¯̄Ba

ρ,n

= γ2
0

2k4
ρρ

−γ0(k2
ρρ

2 − n2)Bn − γ2
0−k

2

γ0
kρρB

′
n −nωµ (kρρB′n − 2Bn)

nωε (kρρB′n − 2Bn) −γ0(k2
ρρ

2 − n2)Bn − γ2
0−k

2

γ0
kρρB

′
n

 ,
(4-226)

¯̄Bρ,m = ¯̄Dρ,m
¯̄Bm

= 1
k2
ρρ

γ0kρρB
′
m −nωµBm

nωεBm γ0kρρB
′
m

 , (4-227)

where Bm = Hm or Jm, we can obtainEn
1,ρ

Hn
1,ρ

 = α1
¯̄H p̂
ρ,nā0,n + α1

¯̄J p̂ρ,nb̄0,n + ¯̄Hρ,nā1,n + ¯̄Jρ,nb̄1,n (4-228)

= α1R̄ρ,n + ¯̄Hρ,nā1,n + ¯̄Jρ,nb̄1,n. (4-229)

4.2.6.3
Simplification of the Equation (4-212)

Defining ¯̄Bb
φ,n

8 and ¯̄Bc
φ,n as

¯̄Bb
φ,n = −γ

2
0
k4
ρ

γ2
0−k

2

2γ0
inBn(kρρ) −iωµkρρB′n(kρρ)

iωεkρρB
′
n(kρρ) γ2

0−k
2

2γ0
inBn(kρρ)

 , (4-230)

8Please note that ¯̄Baφ,n = ρ−1 ¯̄Bbφ,n; cf. (4-216).
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¯̄Bc
φ,n = Bn

2k2
ρ

∓iγ0 iωµ

−iωε ∓iγ0

 , (4-231)

and using ¯̄Dφ,m in (4-215), we can rewrite (4-212) as

En±1
1,φ

Hn±1
1,φ

 = ¯̄Hb
φ,nā0,n + ¯̄J bφ,nb̄0,n + ¯̄Hc

φ,nā0,n + ¯̄J cφ,nb̄0,n

+ ¯̄Dφ,n±1
[ ¯̄Hp

ζ,n±1ā0,n + ¯̄Jpζ,n±1b̄0,n + ¯̄Hn±1ā1,n±1 + ¯̄Jn±1b̄1,n±1
]
. (4-232)

Introducing the new matrix ¯̄Bp
φ,n±1 as

¯̄Bp
φ,n±1 = ¯̄Bb

φ,n + ¯̄Bc
φ,n + ¯̄Dφ,n±1

¯̄Bp
ζ,n±1, (4-233)

we can obtainEn±1
1,φ

Hn±1
1,φ

 = ¯̄Hp
φ,n±1ā0,n + ¯̄Jpφ,n±1b̄0,n + ¯̄Hφ,n±1ā1,n±1 + ¯̄Jφ,n±1b̄1,n±1, (4-234)

= R̄φ,n±1 + ¯̄Hφ,n±1ā1,n±1 + ¯̄Jφ,n±1b̄1,n±1, (4-235)

where

¯̄Bφ,n±1 = ¯̄Dφ,n±1Bn±1(kρρ) (4-236)

= 1
k2
ρρ

γ0i(n± 1)Bn±1(kρρ) −iωµkρρB′n±1(kρρ)
iωεkρρB

′
n±1(kρρ) γ0i(n± 1)Bn±1(kρρ)

 . (4-237)

After a series of cumbersome manipulations, we found a simplified version
for ¯̄Bp

φ,n±1 given by

¯̄Bp
φ,n±1 = 1

4k3
ρ

iγ0f11,± −iωµf12,±

iωεf12,± iγ0f11,±

 , (4-238)

where

f11,± = [2k2 ± γ2
0(n± 1)]ρBn∓1(kρρ) + kρ(n± 1)Bn(kρρ), and (4-239)

f12,± = (γ2
0n± k2)ρBn∓1(kρρ)− kρ[γ2

0ρ
2 ± (n± 1))Bn(kρρ). (4-240)

Note that in the above equations Bm = Hm or Jm.

4.2.6.4
Simplification of the Equation (4-214)

Defining ¯̄Bb
ρ,n

9 and ¯̄Bc
ρ,n as

9Please note that ¯̄Baρ,n = ρ−1 ¯̄Bbρ,n; cf. (4-223).
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¯̄Bb
ρ,n = −γ

2
0
k4
ρ

γ2
0−k

2

2γ0
kρρB

′
n(kρρ) −nωµBn(kρρ)

nωεBn(kρρ) γ2
0−k

2

2γ0
kρρB

′
n(kρρ)

 , (4-241)

¯̄Bc
ρ,n = Bn

2k2
ρ

−γ0 ±ωµ
∓ωε −γ0

 , (4-242)

and using ¯̄Dρ,m in (4-222), we can rewrite (4-214) as

En±1
1,ρ

Hn±1
1,ρ

 = ¯̄Hb
ρ,nā0,n + ¯̄J bρ,nb̄0,n + ¯̄Hc

ρ,nā0,n + ¯̄J cρ,nb̄0,n

+ ¯̄Dρ,n±1
[ ¯̄Hp

ζ,n±1ā0,n + ¯̄Jpζ,n±1b̄0,n + ¯̄Hn±1ā1,n±1 + ¯̄Jn±1b̄1,n±1
]
. (4-243)

Introducing the new matrix ¯̄Bp
ρ,n±1 as

¯̄Bp
ρ,n±1 = ¯̄Bb

ρ,n + ¯̄Bc
ρ,n + ¯̄Dρ,n±1

¯̄Bp
ζ,n±1, (4-244)

we can obtainEn±1
1,ρ

Hn±1
1,ρ

 = ¯̄Hp
ρ,n±1ā0,n + ¯̄Jpρ,n±1b̄0,n + ¯̄Hρ,n±1ā1,n±1 + ¯̄Jρ,n±1b̄1,n±1, (4-245)

= R̄ρ,n±1 + ¯̄Hρ,n±1ā1,n±1 + ¯̄Jρ,n±1b̄1,n±1, (4-246)

where

¯̄Bρ,n±1 = ¯̄Dρ,n±1Bn±1(kρρ) (4-247)

= 1
k2
ρρ

 γ0kρρB
′
n±1(kρρ) −(n± 1)ωµBn±1(kρρ)

(n± 1)ωεBn±1(kρρ) γ0kρρB
′
n±1(kρρ)

 . (4-248)

After a series of cumbersome manipulations, we found a simplified version for
¯̄Bp
ρ,n±1 given by

¯̄Bp
ρ,n±1 = 1

4k3
ρ

γ0g11,± −ωµg12,±

ωεg12,± γ0g11,±

 , (4-249)

where

g11,± = [γ2
0(n± 2)± 3k2]ρBn∓1(kρρ)∓ kρ(n∓ 1± γ2

0ρ
2)Bn(kρρ), and (4-250)

g12,± = ±(n∓ 1)[γ2
0ρBn∓1(kρρ)± kρBn(kρρ)]. (4-251)

4.3
Fields Along Radial Stratifications

In the following formulation, we consider that the bend structure shown
in Fig. 4.3 is comprised by N radial layers. Each layer extends over rj−1 < ρ <

rj, 0 < φ < 2π, and is characterized by the constitutive parameters εj and µj,
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j = 1, 2, · · · , N . Note we assume each layer is a homogeneous and isotropic
medium.

To find the proper values of α1 and ā1,m, b̄1,m, for m = n, n± 1, for each
layer, we must enforce the continuity of the fields (transversal to ρ) at the
junctions between each layer.

For brevity, we can write all fields in (4-177), (4-209) and (4-210) in a
compact manner using

Ḡα =
(
Ḡn

0,α +R−1Ḡn
1,α

)
einφeγζ

+R−1Ḡn−1
1,α e

i(n−1)φ−iψeγζ +R−1Ḡn+1
1,α e

i(n+1)φ+iψeγζ , (4-252)

where Ḡα = [Eα, Hα]t, and the polarization direction is α = ρ, φ or ζ.
Taking into account the azimuthal orthogonality in terms of mφ, m =

n, n± 1, the boundary conditions splits up into three independent equations.
Thus, we must satisfy the continuity of fields in terms of exp(inφ), exp[i(n−
1)φ] and exp[i(n+ 1)φ] apart.

4.3.1
Continuity for Fields in Terms of exp(inφ)

The enforcement of boundary conditions for the fields Ḡζ and Ḡφ in terms
of exp(inφ) allow us to determine α1, ā1,n and b̄1,n. From (4-252), is clear that
we must enforce the continuity of only Ḡn

1,ζ and Ḡn
1,φ because the zeroth-order

non-perturbed fields Ḡn
0,ζ and Ḡn

0,φ already fulfill the boundary conditions.
The enforcement of all boundary conditions for the continuity of the fields in
a N -layers stratified cylindrical structure provide us a set of d independent
equations, which can be written as the homogeneous linear system:

[
R̄1,n

¯̄M1,n

]  α1

Ā1,n

 = 0̄, (4-253)

where ¯̄M1,n is a d×d square matrix, R̄1,n and Ā1,n are d×1 column vectors, and
0̄ is a d × 1 mull column vector. The dimension d is the number of boundary
conditions.

The value of d can be easily determined: for each radial layer we need to
include 4 continuity conditions for the fields Eζ , Hζ , Eφ and Hφ. Furthermore,
case our stratified structured presents a hard wall (PEC or PMC) at r0; i.e.,
r0 6= 0; we need to include two additional conditions: Eζ = Eφ = 0 for a PEC,
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Table 4.1: Number of boundary conditions d
r0 = 0 r0 6= 0

rN =∞ 4N − 4 4N − 2
rN 6=∞ 4N − 2 4N

or Hζ = Hφ = 0 for a PMC10. The same idea should be used to include a hard
wall at a finite rN . Table 4.1 shows the number of boundary conditions in a
N -layers stratified structure.

Turning back to (4-253), we can see that our problem has (d+1) unknown
and just d equations. This system of equation is under-determined, but also is
homogeneous and always has at least one solution: the trivial solution where
all the unknowns α1 and Ā1,n are zero.

If we assume for a moment that (4-253) has more solutions than the
trivial, one can write ¯̄M1,nĀ1,n = −α1R̄1,n, (4-254)
where we supposed α1 6= 0.

It is interesting to note that det( ¯̄M1,n) = 0 for any mode that satisfy
the zeroth-order characteristic equation (3-91). This means that ¯̄M1,n is not
invertible, and only the trivial solution Ā1,n = 0̄ and α1 = 0 satisfies both
(4-253) and (4-254). Then, we verify that there is no first-order correction
for the propagation constant. Moreover, as we have anticipated, there is no
perturbation correction for fields in terms of exp(inφ).

4.3.2
Continuity for Fields in Terms of exp(i(n± 1)φ)

To enforce the continuity of Ḡm
1,ζ and Ḡm

1,φ, for m = n± 1, in a N -layers
stratified cylindrical structure we need to simultaneously satisfy a set of d
linear equations, which can be written as

¯̄M1,mĀ1,m = R̄1,m, (4-255)

where ¯̄M1,m is a d× d square matrix given by

10It should be observed that we need to apply the boundary condition on the azimuthal
component of the fields instead of use the derivative in ρ of the axial ones, as usual in straight
structures. From the azimuthal fields in a bend structure (see (4-4e) or (4-4b)) we clearly
see that ∂(hζHζ)/∂ρ = 0 (for PEC) or ∂(hζEζ)/∂ρ = 0 (for PMC). Thus, depicting Gζ as
Eζ or Hζ , we must satisfy

hζ
∂Gζ
∂ρ

+Gζ
hζ
∂ρ

= 0 instead of ∂Gζ
∂ρ

= 0.
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¯̄M1,m =



¯̄C1,0
¯̄D1,1 − ¯̄D2,1

¯̄D2,2 − ¯̄D3,2
. . .

. . .
¯̄DN−1,N−1 − ¯̄DN,N−1

¯̄CN,N


, (4-256)

and Ā1,m and R̄1.m are d× 1 column vectors given by

Ā1,m =



ām,1

b̄m,1

ām,2

b̄m,2

. . .

ām,N

b̄m,N


, R̄1,m =



Ē1,0

F̄1,2

F̄2,3
...

F̄N−1,N

ĒN,N


. (4-257)

Notice that just the non-zero elements of ¯̄M1,m are shown in (4-256), and we
also have omitted the first index in vectors ām,j = ā1,m,j and b̄m,j = b̄1,m,j to
simplify the notation. The dimension d is the number of boundary conditions
given by Table 4.1.

The sub-matrix ¯̄C1,0 and sub-vector Ē1,0 enforce the boundary conditions
of a hard PEC wall placed at ρ = r0. Similarly, ¯̄CN,N ĒN,N enforce the boundary
conditions of a hard PEC wall placed at ρ = rN . The sub-matrices ¯̄Di,j and
¯̄Di+1,j in conjunction of the sub-vectors F̄i,i+1 enforce continuity of the fields
between layer j and j + 1 at ρ = rj. These matrices and vectors are given by

¯̄Ci,j =
 ¯̄Hζ,m(kiρrj)|11 0 ¯̄Jζ,m(kiρrj)|11 0

¯̄Hφ,m(kiρrj)|11
¯̄Hφ,m(kiρrj)|12

¯̄Jφ,m(kiρrj)|11
¯̄Jφ,m(kiρrj)|12

 ,
(4-258)

¯̄Di,j =
 ¯̄Hζ,m(kiρrj) ¯̄Jζ,m(kiρrj)

¯̄Hφ,m(kiρrj) ¯̄Jφ,m(kiρrj)

 , (4-259)

Ēi,j =
−R̄ζ,m(kiρrj)|1
−R̄φ,m(kiρrj)|1

 , and (4-260)

F̄i,i+1 =
−R̄ζ,m(kiρri) + R̄ζ,m(ki+1,ρri)
−R̄φ,m(kiρri) + R̄φ,m(ki+1,ρri)

 . (4-261)

The matrices ¯̄Bζ,m and ¯̄Bφ,m ( ¯̄B = ¯̄H or ¯̄J) have already been defined
in previous sections for a single layer structure. These results can be easily
generalized to take into account the additional stratifications. In layer j, we
must employ
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¯̄Bζ,m(kjρρ) =
Bm(kjρρ) 0

0 Bm(kjρρ)

 , and (4-262)

¯̄Bφ,m(kjρρ) = 1
k2
jρρ

 −mkzBm(kjρρ) −iωµjkjρρB′m(kjρρ)
iωεjkjρρB

′
m(kjρρ) −mkzBm(kjρρ)

 . (4-263)

The above formulation considers a hard wall placed at ρ = r0 and another
at ρ = rN . Case r0 = 0; i.e., there is no boundary condition to be matched
at ρ = r0; we need then to ensure finite fields in the first layer by enforcing
ām,1 = 0̄ and we should not employ ¯̄C1,0 and Ē1,0. Besides that, the fist two
columns of ¯̄D1,1 are no longer necessary.

Similarly, if we consider an unbounded waveguide; i.e., rN → ∞; there
is no backward wave at last radial layer and b̄m,N = 0̄. In this case, we should
not employ ¯̄CN,N and ¯̄EN,N , and the last two columns of ¯̄DN,N−1 are no longer
necessary.

The simple inversion of matrix ¯̄M1,m in (4-255) allow us to find the
unknowns Ā1,m, namely,

Ā1,m = ¯̄M−1
1,mR̄1,m. (4-264)

4.3.3
Mirror Modes and Fields Symmetry

In Section 3.3.5 we have showed that exist symmetric relations for the
fields in a cylindrically-stratified waveguide (zeroth-order fields in our toroidal
structure). Here we will generalize these results for perturbed fields in toroidal
coordinates.

Decomposing the field components in terms of the axial and transversal
in relation to ζ as

E = Et + ζ̂Eζ , H = Ht + ζ̂Hζ , (4-265)

we can write the Maxwell’s curls equations in (4-2) as

ikζ
hζ
ζ̂ × Et + 1

hζ
∇t × (ζ̂hζEζ) = iωµHt, (4-266a)

ikζ
hζ
ζ̂ ×Ht + 1

hζ
∇t × (ζ̂hζHζ) = −iωεEt, (4-266b)

∇t × Et = iωµζ̂Hζ , (4-267a)

∇t ×Ht = −iωεζ̂Eζ , (4-267b)
where

∇ =∇t + ζ̂
ikζ
hζ
, (4-268)

and the two-dimensional (transversal) nabla operator is given by
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∇t = ρ̂
∂

∂ρ
+ φ̂

1
ρ

∂

∂φ
. (4-269)

By the vector multiplication of ζ̂ on both sides of the equations in (4-266)
and using

ζ̂ ×
(
∇t × ζ̂(hζGζ)

)
=∇t(hζGζ), and (4-270)

ζ̂ × (ζ̂ ×Gt) = −Gt, (4-271)
and after a few manipulations, we can express the transversal fields as a
combinations of the axial ones using11

Et = hζ
k2
t

[
ikζ
hζ
∇t(hζEζ) + iωµ∇t × (ζ̂hζHζ)

]
, (4-272)

Ht = hζ
k2
t

[
ikζ
hζ
∇t(hζHζ)− iωε∇t × (ζ̂hζEζ)

]
. (4-273)

If the fields associated with (kζ ,Et, Eζ ,Ht, Hζ) are a solution for (4-266)
and (4-267), the mirror mode (−kζ ,Et,−Eζ ,−Ht, Hζ) is also a solution for
Maxwell’s equations. In this manner, we can write the (np)th modal fields as

E±np(ρ, φ) =
[
E+
t,np(ρ, φ)± ζ̂E+

ζ,np(ρ, φ)
]
e±ikζ,npζ , and (4-274)

H±np(ρ, φ) =
[
±H+

t,np(ρ, φ) + ζ̂H+
ζ,np(ρ, φ)

]
e±ikζ,npζ , (4-275)

for fields propagating to ±ζ. Note that the fields are symmetric in relation to
ζ-axis such as

E−t,np(ρ, φ) = E+
t,np(ρ, φ) H−t,np(ρ, φ) = −H+

t,np(ρ, φ), (4-276)

E−ζ,np(ρ, φ) = −E+
ζ,np(ρ, φ) H−ζ,np(ρ, φ) = H+

ζ,np(ρ, φ), (4-277)

For simplify our notation, we will assumed that the fields G+
α,np = Gα,np,

G = {E,H}, α = {t, ζ}, were derived for the forward axial wavenumber kζ,np
such as =m(kζ,np) ≥ 0. In practical terms, the superscript + will no longer be
employed here.

From the results in Section 4.3.1, we can verify that there is no first-order
perturbation correction for the axial wavenumber in our toroidal coordinate
system, i.e., α1 = 0 and consequently kζ,np = kz,np. Thus, we can continue
employing the all fields and symmetry relations for the zeroth-order solution
derived in (3-128), (3-129) and (3-130). In other words, for n > 0, the (np)th

11Note that the derivative of the unit vectors in toroidal coordinates are given in (C-14)–
(C-16), such ∂ρ̂/∂ζ 6= 0 and ∂φ̂/∂ζ 6= 0, but ∂ζ̂/∂ρ = ∂ζ̂/∂φ = 0. Also, observe that the
fields in (4-272) and (4-272) can be arranged in the matrix forms shown in (4-194) and
(4-195).
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zeroth-order modal fields satisfy:

En
0,ρ,−np = −(−1)nEn

0,ρ,np Hn
0,ρ,−np = (−1)nHn

0,ρ,np (4-278)

En
0,φ,−np = (−1)nEn

0,φ,np Hn
0,φ,−np = −(−1)nHn

0,φ,np (4-279)

En
0,ζ,−np = −(−1)nEn

0,ζ,np Hn
0,ζ,−np = (−1)nHn

0,ζ,np. (4-280)

We could further simplify our analysis using a series of symmetry
relations derived from the first-order fields in (4-192), (4-234), (4-245) and
(4-255), as follows.

For n = 0, the (0p)th first-order modal field satisfies:

En−1
1,ρ,0p = En+1

1,ρ,0p Hn−1
1,ρ,0p = −Hn+1

1,ρ,0p (4-281)

En−1
1,φ,0p = −En+1

1,φ,0p Hn−1
1,φ,0p = Hn+1

1,φ,0p (4-282)

En−1
1,ζ,0p = En+1

1,ζ,0p Hn−1
1,ζ,0p = −Hn+1

1,ζ,0p. (4-283)

For n > 0, the (np)th first-order modal field satisfies:

En±1
1,ρ,−np = −(−1)nEn∓1

1,ρ,np Hn±1
1,ρ,−np = (−1)nHn∓1

1,ρ,np (4-284a)

En±1
1,φ,−np = (−1)nEn∓1

1,φ,np Hn±1
1,φ,−np = −(−1)nHn∓1

1,φ,np (4-284b)

En±1
1,ζ,−np = −(−1)nEn∓1

1,ζ,np Hn±1
1,ζ,−np = (−1)nHn∓1

1,ζ,np. (4-284c)

4.4
Fields Along Axial Stratifications

4.4.1
Axial Mode-Matching

The fields transversal to ζ in the axial region j can be written as

Ejt =
∞∑

n=−∞

∞∑
p=1

(a+
j,npe

ikz,npζ + a−j,npe
−ikz,npζ)

{
En
jt(kρ,npρ)einφ

+R−1
j En−1

jt (kρ,npρ)ei(n−1)φ−iψj +R−1
j En+1

jt (kρ,npρ)ei(n+1)φ+iψj
}
, (4-285)

Hjt =
∞∑

n′=−∞

∞∑
p′=1

(a+
j,npe

ikz,npζ − a−j,npe−ikz,npζ)
{

Hn′

jt (kρ,n′p′ρ)ein′φ

+R−1
j Hn′−1

jt (kρ,n′p′ρ)ei(n′−1)φ−iψj +R−1
j Hn′+1

jt (kρ,n′p′ρ)ei(n′+1)φ+iψj
}
. (4-286)

Suppose a junction between the region 1 and region 2 at ζ = ζ1, as depicted
in Fig. 4.5. Then, we must match the transversal fields such that
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(a) Planes of curvature

(b) Transversal view at the junction

Figure 4.5: Junction between two semi-infinitely-long waveguides.

E1t = E2t

H1t = H2t

 inside S1, (4-287)

E1t = 0 inside S2 − S1, (4-288)
where the waveguide cross-sections in regions 1 and 2 are depicted by S1 and
S2, respectively. To shorting the notation, consider to write the fields as
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Ejt =
∞∑
m

(A+
j,m + A−j,m)Ejt,m, (4-289)

Hjt =
∞∑
m′

(A+
j,m′ − A−j,m′)Hjt,m′ , (4-290)

where the field amplitudes at ζ = ζ1 are A±j,m = a±j,m exp(±ikz,mζ1), and the
mth transversal field Gjt,m, G = E or H, can be write as a function of the
radius of curvature in region j (viz., Rj) as

Gjt,m = G(0)
jt,m(ρ, φ) +R−1

j G(1)
jt,m(ρ, φ) +O(R−2

j ). (4-291)

ConsideringM modes in the region 1, and N modes in the region 2, from
the continuity of the transversal electric fields at ζ = ζ1 we can obtain

M∑
m=1

(A+
1,m + A−1,m)E1t,m =

N∑
n=1

(A+
2,n + A−2,n)E2t,n. (4-292)

Multiplying both sides of the above equation by ×H2t,n′ (n′ = 1, 2, 3, · · · , N)
and integrand over the surface S2 (in the direction ζ > 0), we can obtain a set
of N equations:

M∑
m=1

(A+
1,m + A−1,m)

ˆ
S2

(E1t,m ×H2t,n′) · ζ̂ dS =

N∑
n=1

(A+
2,n + A−2,n)

ˆ
S2

(E2t,n ×H2t,n′) · ζ̂ dS, for n′ = 1, 2, . . . , N. (4-293)

We can reduce the integral in the LHS of the above equation to be over S1

instead S2 because E1t = 0 inside S2 − S1. The reaction of the mth field in
region i to the nth mode in region j can be defined as

〈Eit,m,Hjt,n〉ζ =
ˆ
Si

(Eit,m ×Hjt,n) · ζ̂dS (4-294)

=
ˆ ri

0

ˆ 2π

0
(Eiρ,mHjφ,n − Eiφ,mHjρ,n) ρ dφ dρ (4-295)

= Xim,jn. (4-296)

The self-reaction Xjn,jn can be defined as Qjn. In this way, the set of equations
in (4-293) can be written in a matrix form as

¯̄X12(Ā+
1 + Ā−1 ) = ¯̄Q2(Ā+

2 + Ā−2 ), (4-297)

where the elements of the matrices ¯̄X12 and ¯̄Q2 are given by

¯̄X12|n,m,= X1m,2n (4-298)
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¯̄Q2|n,m,= X2m,2n (4-299)
and the modal amplitudes at the junction A±j,m were proper combined into the
vectors Ā±j , for j = 1 or 2.

Following the above steps for the continuity of the magnetic field at
ζ = ζ1, we can derive

¯̄X t
12(Ā+

2 − Ā−2 ) = ¯̄Qt
1(Ā+

1 − Ā−1 ). (4-300)

Combining the (4-297) and (4-300) we can relate the forward and
backward modal amplitudes at the junction (ζ = ζ1) asĀ−1

Ā+
2

 =
 ¯̄R(ζ)

12
¯̄T (ζ)

21
¯̄T (ζ)

12
¯̄R(ζ)

21

Ā+
1

Ā−2

 , (4-301)

where scattering sub-matrices are given by

¯̄R(ζ)
12 = ( ¯̄Qt

1 + ¯̄X t
12

¯̄Q−1
2

¯̄X12)−1( ¯̄Qt
1 −

¯̄X t
12

¯̄Q−1
2

¯̄X12), (4-302)
¯̄T (ζ)

21 = 2( ¯̄Qt
1 + ¯̄X t

12
¯̄Q−1

2
¯̄X12)−1 ¯̄X t

12, (4-303)
¯̄T (ζ)

12 = 2( ¯̄Q2 + ¯̄X12( ¯̄Qt
1)−1 ¯̄X t

12)−1 ¯̄X12 , and (4-304)
¯̄R(ζ)

21 = −( ¯̄Q2 + ¯̄X12( ¯̄Qt
1)−1 ¯̄X t

12)−1( ¯̄Q2 − ¯̄X12( ¯̄Qt
1)−1 ¯̄X t

12). (4-305)

The above matrices and amplitude vectors have the following dimensions
(rows, columns):

dim(Ā±1 ) = (M, 1), (4-306)

dim(Ā±2 ) = (N, 1), (4-307)

dim( ¯̄X12) = (N,M), (4-308)

dim( ¯̄Q1) = (M,M), (4-309)

dim( ¯̄Q2) = (N,N), (4-310)

where the total number of modes in regions 1 and 2 are given by

M =
N1φ∑

n=−N1φ

N1ρ(n), (4-311)

N =
N2φ∑

n=−N2φ

N2ρ(n), (4-312)

where Njφ is associated to each azimuthal dependence in φ considered in the
modal field expansion. Furthermore, for each Njφ we have a set of Njρ modal
fields.

The modal amplitudes can be written as
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Ā±j =



Ā±j,−Nφ
...

Ā±j,−1

Ā±j,0

Ā±j,+1
...

Ā±j,Nφ


, (4-313)

where

Ā±j,n =



A±j,n1

A±j,n2
...

A±j,np
...


. (4-314)

The reaction matrix will then assume the form

¯̄X12 =



¯̄X+Nφ,−Nφ · · · · · · ¯̄X+Nφ,+Nφ
...

. . . . .
. ...

¯̄X+1,−1
¯̄X+1,0

¯̄X+1,+1
¯̄X0,−1

¯̄X0,0
¯̄X0,+1

¯̄X−1,−1
¯̄X−1,0

¯̄X−1,+1
... . .

. . . .
...

¯̄X−Nφ,−Nφ · · · · · · ¯̄X−Nφ,+Nφ



, (4-315)

or ¯̄X12|n′,n = ¯̄Xn′,n, (4-316)

¯̄Xn′,n

∣∣∣
p′,p

= X1(np),2(n′p′) (4-317)

=
ˆ 2π

0

ˆ
ρ1

(E1ρ,npH2φ,n′p′ − E1φ,npH2ρ,n′p′) ρ dρ dφ. (4-318)

Considering the perturbed fields up to the first-order in relation to the
curvature radius Rj, we can write

X1(np),2(n′p′) ≈ X
(0,0)
1(np),2(n′p′) +R−1

2 X
(0,1)
1(np),2(n′p′) +R−1

1 X
(1,0)
1(np),2(n′p′). (4-319)

We can substantially simplify the reactions in the above equation taking
into account the azimuthal harmonic dependence of the fields. Note that the
zeroth-order curvature vanishing fields are proportionals to exp(inφ) whereas
the first-order fields are proportional to exp[i(n ± 1)φ]. Accordingly, we can
easy ascertain that

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 204

X
(0,0)
1(np),2(n′p′) = 2πδn,−n′

ˆ
ρ1

(
En

1t,np ×Hn
2t,n′p′

)
· ζ̂ ρ dρ, (4-320)

X
(0,1)
1(np),2(n′p′) = 2πe−iψ2δn,−(n′−1)

ˆ
ρ1

(
En

1t,np ×Hn−1
2t,n′p′

)
· ζ̂ ρ dρ

+ 2πeiψ2δn,−(n′+1)

ˆ
ρ1

(
En

1t,np ×Hn+1
2t,n′p′

)
· ζ̂ ρ dρ, (4-321)

X
(1,0)
1(np),2(n′p′) = 2πe−iψ1δn−1,−n′

ˆ
ρ1

(
En−1

1t,np ×Hn
2t,n′p′

)
· ζ̂ ρ dρ

+ 2πeiψ1δn+1,−n′

ˆ
ρ1

(
En+1

1t,np ×Hn
2t,n′p′

)
· ζ̂ ρ dρ, (4-322)

and we can verify that ¯̄X12 is a tridiagonal block matrix because

¯̄Xn′,n = ¯̄0 for |n+ n′| > 1. (4-323)

We can further derive the following specializations:

¯̄Xn′,n

∣∣∣
p′,p

= 2πI(n,n)
1(np),2(n′p′), for n = −n′, (4-324)

¯̄Xn′,n

∣∣∣
p′,p

= 2π
[
R−1

2 e−iψ2I
(n,n−1)
1(np),2(n′p′) +R−1

1 e−iψ1I
(n−1,n)
1(np),2(n′p′)

]
, for n = −(n′−1),

(4-325)

¯̄Xn′,n

∣∣∣
p′,p

= 2π
[
R−1

2 eiψ2I
(n,n+1)
1(np),2(n′p′) +R−1

1 eiψ1I
(n+1,n)
1(np),2(n′p′)

]
, for n = −(n′ + 1).

(4-326)
where we have introduced integrals along the radial space in region 1 of five
kinds, given by

I
(n,n)
1(np),2(n′p′) =

ˆ
ρ1

(
En

1ρ,npH
n
2φ,n′p′ − En

1φ,npH
n
2ρ,n′p′

)
ρ dρ, (4-327)

I
(n,n−1)
1(np),2(n′p′) =

ˆ
ρ1

(
En

1ρ,npH
n−1
2φ,n′p′ − En

1φ,npH
n−1
2ρ,n′p′

)
ρ dρ, (4-328)

I
(n−1,n)
1(np),2(n′p′) =

ˆ
ρ1

(
En−1

1ρ,npH
n
2φ,n′p′ − En−1

1φ,npH
n
2ρ,n′p′

)
ρ dρ, (4-329)

I
(n,n+1)
1(np),2(n′p′) =

ˆ
ρ1

(
En

1ρ,npH
n+1
2φ,n′p′ − En

1φ,npH
n+1
2ρ,n′p′

)
ρ dρ, and (4-330)

I
(n+1,n)
1(np),2(n′p′) =

ˆ
ρ1

(
En+1

1ρ,npH
n
2φ,n′p′ − En+1

1φ,npH
n
2ρ,n′p′

)
ρ dρ. (4-331)

It is clear that (4-324) is precisely the reaction integral between the zeroth-
order fields previously derived in Section 3.4.1.1.
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4.5
Mode Excitation from Sources Inside a Toroidal Waveguide

Consider a generic source inside a toroidal waveguide, located between
two planes at ζ = ζ±T = ζT ± δ as shown in Fig. 4.6. This source generates the
fields E+ and H+ traveling in the positive ζ-direction, and the fields E− and
H− traveling to the opposite direction. The electromagnetic fields generated
by this source can be expressed in terms of the waveguide modes as

E± =
M∑
m=1

A±mE±m(ρ, φ)e±ikζ,m(ζ−ζT ), and (4-332)

H± =
M∑
m=1

A±mH±m(ρ, φ)e±ikζ,m(ζ−ζT ), (4-333)

for ζ ≷ ζ±T . Here we used the single index m to represent any possible mode of
the toroidal waveguide.

We can determine the unknown amplitudes A±m by using the Lorentz
reciprocity theoremˆ

S±0

(E1×H2−E2×H1)·ds =
ˆ
V

(E2·J1−E1·J2+H1·M2−H2·M1) dv, (4-334)

where the surface integral is over the cross-section at ζ = ζ±T .
By selecting E1 and H1 as the fields radiated be the set of sources J1 = J

and M1 = M, and assuming that there is no more sources (J2 = M2 = 0), let

E1 = E±, for ζ ≷ ζ±T , (4-335)

³

½

± A+

A
T³±

J

M

Figure 4.6: Sources inside a radially-stratified and axially-toroidal waveguide.
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H1 = H±, for ζ ≷ ζ±T , (4-336)
and let E2 and H2 the m′th waveguide mode traveling to negative ζ-direction:

E2 = E−m′ , (4-337)

H2 = H−m′ , (4-338)
for m′ = 1, 2, . . . ,M . Now, we can write (4-334) as a set of M equations, i.e.,

ˆ
S+

0

[(∑
m

A+
mE+

m

)
×H−m′ − E−m′ ×

(∑
m

A+
mH+

m

)]
· ds

+
ˆ
S−0

[(∑
m

A−mE−m

)
×H−m′ − E−m′ ×

(∑
m

A−mH−m

)]
· ds

=
ˆ
V

(
E−m′ · J−H−m′ ·M

)
dv, for m′ = 1, 2, . . . ,M. (4-339)

Noting that the vector normal to surface S+
0 (n̂ = ζ̂) is in opposite

direction to the vector normal to surface S−0 (n̂ = −ζ̂) and using the relations
in shown in Section 4.3.3 (decomposing the field components in terms of the
axial and transversal components in relation to ζ), we can simplify the last
equation to obtain

−
ˆ
S0

[(∑
m

A+
mEtm

)
×Htm′ + Etm′ ×

(∑
m

A+
mHtm

)]
· ζ̂ ds

−
ˆ
S0

[
−
(∑

m

A−mEtm

)
×Htm′ + Etm′ ×

(∑
m

A−mHtm

)]
· ζ̂ ds

=
ˆ
V

[
(Etm′ − ζ̂Eζm′) · J− (−Htm′ + ζ̂Hζm′) ·M

]
e−ikζm′ζ dv,

for m′ = 1, 2, . . . ,M. (4-340)

Introducing the matrix ¯̄Q, which combines the reaction integrals Qm,m′

(over the cross-section S0) of the modal fields such as

¯̄Q|m′,m = Qm,m′ =
ˆ
S0

(Etm ×Htm′) · ζ̂ ρ dρ dφ, (4-341)

and defining the column vectors F̄+ and Ā± such as

F̄+|m′ = F+
m′ , (4-342)

Ā±|m = A±m, (4-343)
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F+
m′ =

ˆ
V

[
(Etm′ − ζ̂Eζm′) · J− (−Htm′ + ζ̂Hζm′) ·M

]
e−ikζm′ (ζ−ζT ) dv,

(4-344)
we can rewrite (4-340) as the matrix equation

−( ¯̄Q+ ¯̄Qt)Ā+ + ( ¯̄Q− ¯̄Qt)Ā− = F̄+. (4-345)

By repeating the above procedure but now selecting

E2 = E+
m′ , (4-346)

H2 = H+
m′ , (4-347)

instead of (4-337) and (4-338), we find a set of M equations:

ˆ
S0

[(∑
m

A+
mEtm

)
×Htm′ − Etm′ ×

(∑
m

A+
mHtm

)]
· ζ̂ ds

−
ˆ
S0

[(∑
m

A−mEtm

)
×Htm′ + Etm′ ×

(∑
m

A−mHtm

)]
· ζ̂ ds

=
ˆ
V

[
(Etm′ + ζ̂Eζm′) · J− (Htm′ + ζ̂Hζm′) ·M

]
eikζm′ζ dv,

for m′ = 1, 2, . . . ,M. (4-348)

Now, we can rewrite (4-348) as a matrix equation:

( ¯̄Q− ¯̄Qt)Ā+ − ( ¯̄Q+ ¯̄Qt)Ā− = F̄−, (4-349)

where the column vectors F̄− is such as

F̄−|m′ = F−m′ , (4-350)

where F−m′ can be expressed similarly to (4-344):

F±m′ =
ˆ
V

[
(Etm′ ∓ ζ̂Eζm′) · J− (∓Htm′ + ζ̂Hζm′) ·M

]
× e∓ikζm′ (ζ−ζT ) hζ ρ dρ dφ dζ. (4-351)

To save our notation, we can introduce two new matrices:

¯̄D = ¯̄Q+ ¯̄Qt, and (4-352)

¯̄C = ¯̄Q− ¯̄Qt. (4-353)
We must take care to avoid the inversion the antisymmetric matrix ¯̄C

when solving Ā± from the coupled equations (4-345) and (4-349). In this way,
we can derive
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Ā+ = ( ¯̄C ¯̄D−1 ¯̄C − ¯̄D)−1(F̄+ + ¯̄C ¯̄D−1F̄−), and (4-354)

Ā− = ( ¯̄C ¯̄D−1 ¯̄C − ¯̄D)−1(F̄− + ¯̄C ¯̄D−1F̄+). (4-355)
If we introduce the normalization matrix

¯̄N = ¯̄C ¯̄D−1 ¯̄C − ¯̄D, (4-356)

and the a column vector combining the source amplitudes such as

S̄± = F̄± + ¯̄C ¯̄D−1F̄∓, (4-357)

the forward and backward amplitudes of the fields can be written as

Ā± = ¯̄N−1S̄±. (4-358)

It should be observed that the modal fields in a toroidal coordinate system are
no longer orthogonal over the cross-section S0, and the condition (3-201) can
not be used here.

4.5.1
The Dirac Delta in Toroidal Coordinates

In our toroidal coordinate system we can write the Dirac delta distribu-
tion as

δ(r− r′) = 1
hρhφhζ

δ(ρ− ρ′)δ(φ− φ′)δ(ζ − ζ ′) (4-359)

= 1
ρ [1−R−1ρ cos(φ+ ψ)]δ(ρ− ρ

′)δ(φ− φ′)δ(ζ − ζ ′). (4-360)

We can express the above as a series of the curvature by means of the Maclaurin
series for h−1

ζ using [116, p. 15]

1
1−R−1ρ cos(φ+ ψ) = 1 +R−1ρ cos(φ+ ψ) +R−2ρ2 cos2(φ+ ψ) +O(R−3).

(4-361)

Furthermore, by employing the Fourier series expansion of the azimuthal
variation [15, Appendix C]

δ(φ− φ′) = 1
2π

∞∑
n=−∞

ein(φ−φ′), (4-362)
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we can derive a first-order approximation to δ(r− r′) given by

δ(r− r′) ≈ δ(ρ− ρ′)
2πρ δ(ζ − ζ ′)

∞∑
n=−∞

[
einφ + ρ

2Re
i(n−1)φ−iψ

+ ρ

2Re
i(n+1)φ+iψ

]
e−inφ

′
. (4-363)

It should be observed that the above, in addition to a proper polarization, can
be used to describe a generic source. Hence a given source distribution can be
expanded in terms of exp(inφ) and exp[i(n ± 1)φ] harmonics that will excite
fields with these azimuthal dependences.

4.5.2
Coil Antenna Sources

Consider a circular coil antenna, placed on the plane ζ = ζT and covering
0 ≤ φ ≤ 2π using a constant radius ρ = ρT in our toroidal coordinate system,
as shown in Fig. 4.7. The normal to its plane is n̂T = ζ̂, and the coordinates
of the winding satisfy the equation n̂T · rT and is given by

rT = ρ̂ρT . (4-364)

The electrical current density of the antenna can be written in the form

J = 1
2π

δ(ρ− ρT )
ρ

δ(ζ − ζT )
hζ

φ̂. (4-365)

The current density in (4-365) must be divergenceless vector, such we
can easily verify that ∇ · J = 0, as shown below:

∇ · J = 1
hρhφhζ

[
∂

∂ρ
(Jρhφhζ) + ∂

∂φ
(Jφhρhζ) + ∂

∂ζ
Jζhρhφ

]
(4-366)

= 1
ρhζ

∂

∂φ
(Jφhζ) = 0. (4-367)

³

y

n̂T

x JT

Ã
R

Figure 4.7: Transmitting coil antenna with current density JT placed at a plane
of constant ζ.
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The current IT in the coil is given by the surface integral of J over its
infinitesimal cross-section, i.e.,

IT =
ˆ
ζ

ˆ
ρ

J · φ̂ hρhζ dρ dζ (4-368)

= 1
2πρT

. (4-369)

Note that the magnitude of J varies with φ, but the total current flowing
along the coil is constant and equal to IT . Taking that in consideration, we
can redefine the current distribution in (4-365) such as

J = ITδT , (4-370)

where
δT = δ(ρ− ρT )δ(ζ − ζT )

hζ
φ̂. (4-371)

By substituting (4-370) into (4-351) we can easily show that

F±m′ = ITρT

ˆ π

−π
Eφ,m′(ρT , φ) dφ. (4-372)

Using the fields of the toroidal waveguide, the above equation becomes

F±n′p′ = ITρT

ˆ π

−π

[
En

0,φ,n′p′(ρT )ein′φ

+R−1En−1
1,φ,n′p′(ρT )ei(n′−1)φ−iψ +R−1En+1

1,φ,n′p′(ρT )ei(n′+1)φ+iψ
]
dφ, (4-373)

where the single index m′ was replaced by n′p′. These indices come from the
zeroth-order fields related to Bn′(kρ,n′p′ρ) exp(in′φ). By solving the integral
over φ in (4-373), we can derive

F±n′p′ = IT2πρT δn′,0En
0,φ,n′p′(ρT )

+ IT2πρTR−1
[
δn′,1e

−iψEn−1
1,φ,n′p′(ρT ) + δn′,−1e

iψEn+1
1,φ,n′p′(ρT )

]
, (4-374)

where δi,j the Kronecker delta. From (4-284), we can see that En−1
1,φ,1p′(ρT ) =

−En+1
1,φ,−1p′(ρT ), which allow us to find the symmetry relation

e−iψF±−1p′ = −eiψF±1p′ . (4-375)

In addition, from (4-374) it is clear that the fields radiated by the source
defined in (4-370) are symmetric in relation to plane ζ = ζT , i.e.,

F−n′p′ = F+
n′p′ . (4-376)
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Clearly, (4-374) shows that a coil antenna will excite both the zeroth-order
and the first-order perturbed fields. Our solution must then include the
zeroth-order-axial-symmetric fields derived from exp(inφ) in which n = 0.
Additionally, the first-order fields derived from the zeroth-order ones with
azimuthal index n = 1 and with the form exp(i(n−1)φ) must also be included.
Finally, the first-order fields derived from the zeroth-order ones with azimuthal
index n = −1 and with the form exp(i(n + 1)φ) must also be added with the
previous fields.

Based on the above considerations, our solution require the zeroth-order
fields with azimuthal index n = 0, and n = ±1. Then, it is appropriated to
write Ā±, F̄± and ¯̄Q by using sub-vectors and sub-matrices associated with
these azimuthal indices:

Ā± =


Ā±−1

Ā±0

Ā±+1

 , (4-377)

F̄± =


F̄±+1

F̄±0

F̄±−1

 , (4-378)

¯̄Q =


¯̄Q+1,−1

¯̄Q+1,0
¯̄Q+1,+1

¯̄Q0,−1
¯̄Q0,0

¯̄Q0,+1
¯̄Q−1,−1

¯̄Q−1,0
¯̄Q−1,+1

 , or ¯̄Q|n′,n = ¯̄Qn′,n. (4-379)

From the zeroth-order solution, we know that the modal amplitude of the
field associated with exp(inφ) comes from the excitation linked to exp(−inφ).
This fact motivate us to assembly (4-377) and (4-379) to be consistent with
the definition in (4-378), and also allow ¯̄Q to reduces to a diagonal matrix
for the curvature vanishing scenario (R−1 = 0). In this spacial case our fields
become decoupled in terms of each azimuthal index (±n). Furthermore, these
zeroth-order fields are orthogonal one to each other, and the condition shown
in (3-201) enable to express A±np directly linked to F±−np (or its corresponding
term in the source amplitude vector S̄ from (4-357): S±−np). The sub-vectors
Ā±n and F̄±n′ are assembled as follows:

Ā±n =



A±n,1

A±n,2
...

A±n,p
...


, and (4-380)
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F̄±n′ =



F±n′,1
F±n′,2
...

F±n′,p′
...


. (4-381)

Notice that under conditions (4-375) and (4-376), specifically for coil source
with the current (4-365), we have e−iψF̄±−n′ = (−1)n′eiψF̄±n′ and F̄+

n′ =
F̄−n′ . Consequently, we get the following relations for the modal excitation
amplitudes:

e−iψA±np = (−1)neiψA±−np, and A+
np = A−np, (4-382)

which allow us to reduces the numerical effort in the above vector calculations.
The sub-matrices ¯̄Qn′,n are assembled by the following manner:

¯̄Qn′,n|p′,p = Qnp,n′p′ =
ˆ
S0

(Et,np ×Ht,n′p′) · ζ̂ ρ dρ dφ. (4-383)

From the above equation, it is easy to show that the sub-matrices ¯̄Q0,0 and
¯̄Q±1,∓1 in (4-379) will diagonal matrices, whose its entries are exactly equal
to the reaction integrals in cylindrical coordinates coupling two zeroth-order
fields. The entries of sub-matrices ¯̄Q±1,±1, however, couples two first-order
fields. The resulting amplitudes will be proportional to R−2 and this high-
order term will be neglected. Finally, the same inspection allow us to verify
that entries in the remaining sub-matrices in (4-379) present amplitudes of
order O(R−1) that need to be included in our solution.

4.5.3
Received Voltage

By using the same procedure employed in Section 3.5.5, but now for
receivers sensors inside toroidal structures, the voltage induced at a coil
antenna can be written as

VR = −
ˆ
V

(E+ + E−) · δR dv, (4-384)

where δR is defined similarly to (4-371), but using the subscript substitution
T → R. We can now decouple the forward and the backward contributions for
the received voltage as

VR =
∞∑

n=−∞

∞∑
p=1

(V +
R,np + V −R,np). (4-385)
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We can express the forward and backward voltages as a function of the
modal field amplitudes at the receiver position, A±R,np, such as

V ±R,np = −A±r,np
ˆ
V

E±np(ρ, φ, ζ) · φ̂ δ(ρ− ρT )δ(ζ − ζR)
hζ

ρ hζ dρ dφ dζ, (4-386)

for a receiving coil antenna with radius of ρR and axially placed at ζ = ζR. By
substituting (4-209) into the above, after a little algebra we obtain

V ±R,np = −A±R,np ρR
ˆ π

−π

[
En

0,φ,np(ρR) einφ

+R−1En−1
1,φ,np(ρR) ei(n−1)φ−iψ +R−1En+1

1,φ,np(ρR) ei(n+1)φ+iψ
]
dφ. (4-387)

Then, solving the above integrals yields

V ±R,np = −A±R,np 2π ρR

×
[
δ0,nE

n
0,φ,np(ρR) +R−1e−iψδn,1E

n−1
1,φ,np(ρR) +R−1eiψδn,−1E

n+1
1,φ,np(ρR)

]
,

(4-388)

where δi,j is the Kronecker delta. Notice that the axial positions of transmitting
and receiving antennas are embedded into A±R,np. The procedure required to
transfer the modal source amplitudes at ζ = ζT to a desired observation point
at ζ = ζR can be obtained by means of the formulas presented in Appendix B
with little changes: the orthogonality condition in (B-2) is no longer true
in toroidal structures, and now we need to incorporate all the azimuthal
harmonics into the transfer matrices; similarly to that used in (4-377)–(4-379).

A special case of practical interest is when both transmitting and
receiving antennas are placed inside an infinitely-long axial waveguide. In this
case, for ζR > ζT there is no backward propagating waves inducing voltages at
receiver and thereby we must calculate the received voltage as VR = ∑

n,p V
+
R,np.

Otherwise, when ζR < ζT , the absence of forward waves lead us to conclude
that the received voltage is now given by VR = ∑

n,p V
−
R,np. Consequently, due

the symmetries in (4-382) and (4-284) we can rewrite V ±R as

V ±R = −2π ρR
∞∑
p=1

[
A±R,0pE

n
0,φ,np(ρR) + 2R−1 A±R,+1pE

n−1
1,φ,+1p(ρR)

]
. (4-389)

We can identify the first term of the above as the voltage induced at a coil
antenna inside an ordinary cylindrical waveguide, i.e., a weighted sum of the
azimuthal component of the radiated electric field as predicted by the formulas
in Section 3.5.5 for θR,T = 0. In addition, the second term is a first-order
perturbation correction due to a finite curvature R−1.
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4.5.4
First-Order Approximated Solution for the Excitation Amplitudes

The voltage expressed in (4-389) is proportional to the amplitudes A±R,
that are axial translations of the excitation amplitudes A±T embedded into
vector (4-358); namely, A±R,np = A±T,npe

ikζ,np(ζR−ζT ). These amplitudes, however,
could present terms with orders higher than O(R−1). This motivate us to
further simplify the excitation amplitudes aiming to obtain a physical picture
of the most important perturbation correction due the finite-curvature R−1.

As stated before, all the off-diagonal entries of matrix ¯̄Q are proportional
to R−1. For the propose of our analysis, we can decompose this diagonally-
dominant matrix as ¯̄Q = ¯̄QD +R−1 ¯̄QC (4-390)
where ¯̄QD is a diagonal matrix associated with the zeroth-order fields and ¯̄QC

has only zeros in its diagonal elements. We can use the above to approximate
(4-358) considering terms up to R−1. After some tedious but straightforward
manipulations, we can find

Ā± = −1
2

¯̄Q−1
D F̄ 0,± − R−1

2
¯̄Q−1
D F̄ 1,±

+ R−1

4
¯̄Q−1
D

( ¯̄QC + ¯̄Qt
C

) ¯̄Q−1
D F̄ 0,± − R−1

4
¯̄Q−1
D

( ¯̄QC − ¯̄Qt
C

) ¯̄Q−1
D F̄ 0,∓ +O(R−2),

(4-391)

where we have decomposed the excitation vector as F̄± = F̄ 0,± + R−1F̄ 1,±.
We can identify a zeroth-order normalization matrix as ¯̄N0 = −2 ¯̄QD, so that
Ā0,± = ( ¯̄N0)−1F̄ 0,± are the same source amplitudes derived for the zeroth-order
and curvature vanishing problem. Consequently, we can obtain

Ā± ≈ Ā0,± +R−1( ¯̄N0)−1
[
F̄ 1,± +

( ¯̄QC + ¯̄Qt
C

)
Ā0,± −

( ¯̄QC − ¯̄Qt
C

)
Ā0,∓

]
.

(4-392)
It is interesting to be observed that the source amplitudes in the toroidal
structures are linked directly to the zeroth-order terms Ā0,±, as depicted
in the first term of RHS of the above equation. In addition, the first-order
correction terms are all normalized by the above-defined matrix ¯̄N0 (which
is a diagonal matrix and its entries are equal to those expected in the non-
perturbed problem). The term F̄ 1,± is a consequence of the new shape of
fields in toroidal structures. The remaining two terms revels a coupling of
the zeroth-order amplitudes Ā0,± due the curvature. The third term couples
forward/backward (zeroth-order) waves with the forward/backward solution
amplitudes. The last term, instead, couples Ā0,∓ into Ā±. This means that the
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curvature causes a coupling between the axial forward and backward zeroth-
order fields.

4.6
Numerical Results and Validation

4.6.1
Electromagnetic Field Characteristics in a Radially-Stratified Waveguide

To illustrate the application of the solution derived in this chapter, we
now will present simulation results for the electromagnetic field patterns and
propagation characteristics in radially-stratified and axially-toroidal media.
We consider a typical scenario of geophysical exploration, in which a 4-in-
radius metallic mandrel is inside a 5-in-radius borehole filled with oil-based
mud having conductivity equal to 5 × 10−4 S/m. Outside borehole, the soil
formation has conductivity equal to 1 S/m. We also assume that source
excitation operates at 2 MHz, so that the mandrel layer is assumed as a PEC.
The radial domain is truncated at r̃N = 60+i20 in, with a PML over ρ > 40 in.

The axial propagation constants for the first modes (sorted in ascending
order according to =m(kζ)) with azimuthal dependence n = 0,±1,±2,±3
(with respect to the zeroth-order solution) are shown in Fig. 4.8. As previously
mentioned in Section 4.3.1, there is no first-order correction (in respect to the
torus curvature) for the perturbed propagation constant, so that kζ = kz.

We can better understand the finite-curvature effects in toroidal waveg-

0 5 10
0

5

10

15

18
n = 0

ℜe(kz,np)

ℑ
m
(k

z
,n
p
)

0 5 10

n = ±1

ℜe(kz,np)
0 5 10

n = ±2

ℜe(kz,np)
0 5 10

n = ±3

ℜe(kz,np)

TMz
00

Figure 4.8: Axial propagation constants kz,np for a cylindrical waveguide with
r0 = 4-in, r1 = 5-in and r̃N = 60-in+i20-in, where layer 1 has σ1 = 5×10−4 S/m
and layer 2 has σ2 = 1 S/m.
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uides by analyzing the fields distribution shown in Table 4.2 to Table 4.11. We
show the axial field patterns over the waveguide cross-section for the first five
modes with n = 0 and the first five modes with n = +1. Notice these fields
are not yet normalized in respect to (4-358), and only relative comparisons are
allowed for fields coming from a common eigenvalue kζ,np. The modes for n = 0
will be designed as modes #1, #2, #3, #4 and #5, while modes for n = +1
will be #6, #7, #8, #9 and #10. High-order modes will not be shown here
due its negligible contribution to the total fields. Also notice that at ρ = 40 in,
fields enter into the PML and are then absorbed in the radial direction. The
PML layer inner boundary is depicted by dashed-circles.

From Fig. 4.8 and Table 4.2 (see mode #1 for n = 0 with R → ∞),
we can clear recognize the presence of the fundamental transversal magnetic
(in relation to z-axis) TMz

00 mode. We can shown this mode is a degeneration
of the transversal electromagnetic mode (TEMz) that occur in hollow coaxial
waveguides [119, Ch. 2]. In contrast to TEMz modes, mode #1 presents a Ez
field component. Also for mode #1, we can see the emergence of a Hζ field
component as the radius of curvature decreases. The main pattern of Eζ does
not change significantly for the analyzed curvature scenarios due the small
value of the radial wavenumber associated to the zeroth-order solution.

The curvature-vanishing version of mode #2 is recognized as a TMz
01

field, as depicted in Table 4.3. Again, we can see the emergence of a Hζ

field component as the radius of curvature decreases, and now the pattern
of Eζ changes significantly when compared to corresponding zeroth-oder
azimuthally-symmetric fields.

By analyzing Table 4.4, we can recognize mode #3 as a TEz01 field when
R → ∞. Now, we can see the emergence of a Eζ field component as the
radius of curvature decreases, and also the pattern distribution of Hζ over the
cross-section now becomes more concentrated in the direction of the center of
curvature; that points to positive x-axis.

Similarly, modes #4 and #5 (shown in Table 4.5, and Table 4.6,) are
recognized as TMz

02 and TEz02 as R→∞, respectively. As in the case of mode
#2 (or #3), we can now see the emergence of a Hζ (or Eζ) field component as
the radius of curvature decreases, and also an associated pattern disturbance
of Eζ (or Hζ) over the cross-section concentrating the fields into the direction
of the center of curvature.

Modes #6 to #10 are associated with the hybrid mode with n = +1 in
case of R→∞. In Table 4.7 to Table 4.11 we can verify several modifications
in the original axial field patterns (for R →∞) compared to results for finite
R. Notice that the zeroth-order solutions are associated with an azimuthal
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harmonic in shape of einφ. The combinations of n = +1 and n = −1 harmonics
can give rise to azimuthal cosine-dependent fields. We only show the n = +1
harmonic, but we can recover the corresponding n = −1 complementary fields
using relations shown in (4-281) and (4-284).
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Table 4.2: Axial field patterns for the mode #1 (for n = 0) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
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Table 4.3: Axial field patterns for the mode #2 (for n = 0) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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Table 4.4: Axial field patterns for the mode #3 (for n = 0) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
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Table 4.5: Axial field patterns for the mode #4 (for n = 0) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)

∞

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0.2

0.4

0.6

0.8

Null field

10000

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0.2

0.4

0.6

0.8

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0

5

10

15

x 10
−3

1000

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0

0.05

0.1

0.15

100

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

1

2

3

4

5

6

7

 

 

x (in)

y
(i
n
)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0

0.5

1

1.5

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 222

Table 4.6: Axial field patterns for the mode #5 (for n = 0) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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Table 4.7: Axial field patterns for the mode #6 (for n = +1) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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Table 4.8: Axial field patterns for the mode #7 (for n = +1) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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Table 4.9: Axial field patterns for the mode #8 (for n = +1) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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Table 4.10: Axial field patterns for the mode #9 (for n = +1) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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Table 4.11: Axial field patterns for the mode #10 (for n = +1) in a toroidal
waveguide with r̃N = 60-in+i20-in as a function of the radius of curvature R.
The PML layer is place at ρ > 40-in and its inner boundary is indicated by
the dashed-circles. The center of curvature points to positive x-axis.
R (in) abs(Eζ) abs(Hζ)
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In LWD applications, the azimuthal electric field (around the mandrel) is
of great interest because we need this field to account the source excitation and
to calculate the induced voltages, as described above in Section 4.5.2. Proper
combinations of axial fields shown in Table 4.2 to Table 4.11 (according to
(4-194) and (4-209)) allow us to derive the corresponding Eφ components
depicted below in Table 4.12 to Table 4.16 (associated with n = 0) and
Table 4.17 to Table 4.21 (associated with n = +1). In all plots shown into these
tables, we again shown a dashed-circle at ρ = 40 in indicating the PML inner
boundary. Also, we show a zoom near the mandrel, and another dashed-circle at
ρ = 5 in depicts the interface between the inner borehole and the surrounding
soil formation. We can now see in a clear fashion the real implications of the
curvature in the fields distribution around the mandrel, where normally coil
antennas are wrapped.

Modes #1, #2 and #4 (associated with zeroth-order TMz fields) are not
excited in ordinary cylindrical structures (R → ∞), but for finite curvatures
there is a non-null Eφ component (of course, proportional to R−1) that now
may possibly be excited.

A new inspection in (4-374) revels that the field components En±1
1,φ,∓1p′(ρ)

will contribute to the amplitude excitation of the perturbed versions of TMz
0p′

modes. But, in view of the symmetry relations presented in (4-284), the
corresponding contribution of each term in (4-374) are in opposite phase:
annulling the excitation. Although the significantly fields pattern variations,
modes #1, #2, #4 and all other that come from (zeroth-order) transversal
magnetic fields will not be excited, and do not change the LWD sensor response.

In the case of the excitation of any of the remaining modes coming from
the (zeroth-order) TEz0p (e.g., modes #3 and #5) or from the hybrid fields
(e.g., modes #6 to #10), we need to incorporate the said fields to correctly
capture the curvature effects in our analysis.
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Table 4.12: Azimuthal electric field patterns for the mode #1 (for n = 0) in
a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius of
curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel

∞ Null field Null field
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Table 4.13: Azimuthal electric field patterns for the mode #2 (for n = 0) in
a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius of
curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel

∞ Null field Null field
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Table 4.14: Azimuthal electric field patterns for the mode #3 (for n = 0) in
a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius of
curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.15: Azimuthal electric field patterns for the mode #4 (for n = 0) in
a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius of
curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.16: Azimuthal electric field patterns for the mode #5 (for n = 0) in
a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius of
curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.17: Azimuthal electric field patterns for the mode #6 (for n = +1)
in a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius
of curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.18: Azimuthal electric field patterns for the mode #7 (for n = +1)
in a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius
of curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.19: Azimuthal electric field patterns for the mode #8 (for n = +1)
in a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius
of curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.20: Azimuthal electric field patterns for the mode #9 (for n = +1)
in a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius
of curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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Table 4.21: Azimuthal electric field patterns for the mode #10 (for n = +1)
in a toroidal waveguide with r̃N = 60-in+i20-in as a function of the radius
of curvature R. The borehole-to-formation and the PML inner boundaries are
indicated by the dashed-circles. The center of curvature points to positive x-
axis.
R (in) abs(Eφ) abs(Eφ) near the mandrel
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As an illustrative example, consider now a transmitting 4.5-in-radius coil
antenna operating at 2 MHz wrapped around the mandrel of the structure
defined above. In Fig. 4.9 and Fig. 4.10 we show results for the induced voltage
(amplitude and phase, respectively) due a unit current excitation (IT = 1 A)
at a 4.5-in-radius receiver antenna located 10-in to 100-in away from the
source. We consider 40 modes with azimuthal index n = 0 and others 40
for n = ±1; corresponding to an axial attenuation of about AdB = −50 dB
at 5 in. Configurations with radius of curvature greater than 1000 in does not
disturb significantly the solution if compared to response of a straight borehole.
Solutions for R = 500 in and R = 250 in, however, change dramatically the
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Figure 4.9: Voltage amplitude received by a coil antenna located ζR− ζT away
from the source and inside a bent borehole with curvature R−1.
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Figure 4.10: Voltage phase received by a coil antenna located ζR − ζT away
from the source and inside a bent borehole with curvature R−1.
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LWD response when compared to that of an ordinary vertical well. This may
be an indication that the formulation using only perturbation corrections up to
O(R−1) are no longer sufficient to model directional wells with relatively small
radius of curvature. In next section we will compare our solution with another
method in order to verify the efficacy and the correctness of the formulation
presented in this chapter.

4.6.2
LWD Tools Inside a Directional-Well Borehole

In this section we present simulation results of a triaxial logging tool con-
sisting of one transmitter and two receivers inside a directional-well borehole
of constant curvature. Each antenna consist of a 5.5-in-radius coil wrapped
around a 4-in-radius metallic mandrel inside a 7-in-radius borehole, where
1 in = 2.54 × 10−2 m. The borehole is filled with oil-based mud having con-
ductivity equal to 5× 10−4 S/m and the soil formation has conductivity equal
to 1 S/m. The receivers RX2 and RX1 are placed axially (along the ζ-axis) at
24-in and 30-in away from the TX antenna, respectively. Fig. 4.11 and Fig. 4.12
show the voltages (e.m.f.) evaluated at RX1 and RX2 for a LWD tool operating
in the frequency range of 500 kHz to 2 MHz, for three curvature configurati-
ons: R→∞, R = 400 in and R = 200 in. Good agreement is observed versus
the finite-difference time-domain (FDTD) results from CST [146]. The radial
domain was truncated at 10-in in order to reduce the mesh size required by the
FDTD model. For the sources considered here, only azimuthally independent
TEz modes would be produced in vertical borehole. In contrast, the finite-
curvature case couples the axial fields and excites azimuthally non-symmetric
hybrid modal fields. We have employed perturbed corrections up to order R−1,
and 10 modes with azimuthal indices 0 and ±1.

In our simulations, we first find the curvature-vanishing solutions, and
its fields are then used to determine the corresponding correction terms as a
function of R. In this way, in one simulation we can simultaneously find the
voltages for R → ∞, 400 in and 200 in. Our numerical results were obtained
using a double-precision Fortran code running on a PC with a 2.93-GHz Intel
Xeon W3540 processor. The CPU time required by our algorithm to simulate
the LWD tool response for one frequency was no longer than 52.81 seconds.
The total CPU time required in the simulation of the 11 frequencies shown in
Fig. 4.11 and Fig. 4.12 was 8.94 minutes, requiring 9.10 MB of memory.

The CST’s FDTD results were obtained using a dedicated Workstation
with a 2.10-GHz Intel Xeon E5-2620 v2 twelve-core processor. The CPU time
required by the FDTD solution to simulate the LWD tool response in a bent
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Figure 4.11: Voltages at RX1. Zeroth-order results are shown in dashed-line.
The combination of the zeroth- and first-order perturbation corrections are
indicated by solid lines. The small circles (for R = 400 in) and crosses (for
R = 200 in) are FDTD results.
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Figure 4.12: Voltages at RX2. Zeroth-order results are shown in dashed-line.
The combination of the zeroth- and first-order perturbation corrections are
indicated by solid lines. The small circles (for R = 400 in) and crosses (for
R = 200 in) are FDTD results.

borehole with R = 400 in was 5.18 hours, requiring 2.96 GB of memory in a
simulation with 5,675,184 mesh cells. In the FDTD solution, at each new bent
configuration we need to re-simulate the entire structure, such for the case in
which R = 200 in, the CPU time, memory and number of mesh cells required
by the FDTD were 16.40 hours, 6.04 GB and 10,772,190 cells, respectively.

It is important to mentioned some limitations on the FDTD model
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we have employed. Among them, we can highlight the finite size of space
simulation. Fig. 4.13 depicts the schematic used in the CST modeling in the
case R = 200 in, where we have used a domain with ∆X = 30 in, ∆Y = 120 in
and ∆Z = 20 in. The same model was employed in the case R = 400 in, but
with ∆X = 25 in.

To prevent very long simulations time, the FDTD model do not employed
PMLs (in any direction) due the large number of mesh cells required to simulate
the absorbing layers. This motivate us to simulate a radially-bounded structure,
using a radial domain truncated by a PEC layer at ρ = 10 in (in our local
toroidal coordinate system). The axial space also have employed an ordinary
PEC boundary condition to truncate its domain, but at a distance ∆Y/2 away
from the transmitting antennas, as shown in Fig. 4.13. This model looks more
like a cavity, and some undesirable reflections can arise from the axial domain

Figure 4.13: Schematic used in the CST modeling in the case R = 200 in. The
spacial domain is limited by a parallelepiped with dimension ∆X ×∆Y ×∆Z
on the global Cartesian coordinate system (X, Y, Z) using a PEC boundary
condition. To improve the visualization of small details, the aspect ratio of
coordinates X/Y and Z/Y is 2 by 1. The center of curvature points to the
negative X-axis.

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 4. Analysis of Well-Logging Tools in Directional Wells 243

truncation used in CST (in the Y -direction).
Another limitation in the FDTD model is the discretization grid: CST

provide only Cartesian grid, which are not conformal with the radially-
stratified toroidal structures at hand. As a consequence, severe staircase errors
can occur if a large number of mesh cells was not employed to correctly capture
the curvature effects. In order to try to minimize these errors, the transmitting
antenna is a thin 1/20-in-diameter wire placed aligned with the plane Z-X.
The receiving antennas, on the other hand, will not be conformal like the source
but sometimes we can accurately compute the induced voltages.

We performed several simulations using FDTD until we found a ∆Y that
is large enough to not disturb the solution at the receiving antennas region. In
addition, we have performed simulations varying the grid configuration until
convergence be observed.

The CST’s results showed in Fig. 4.11 for the case R = 200 in will
be identified herein as CST sim. 13, and as noted in the said figure, some
differences can be observed between the FDTD solution versus the proposed
technique. One possible justification to that deviations is that the first-order
correction we have presented are not enough to precisely capture the field
variations in toroidal coordinates, such high order corrections could be needed.
But, we have explored discretization more finer than that in CST sim. 13. In
Fig. 4.14 we shown CST’s results for the voltage received in antenna RX2

for a progressive mesh refinement in simulations 12, 13, and 14. The details
of those simulations are summarized in Table 4.22. We can clear see that
the FDTD results in CST sim. 14 appear a little bit closer to our solution.
Most important: when we look for the imaginary part of the phasor voltage
in Fig. 4.14(b), we note relative good agreement with our results. Notice that
the imaginary part of the voltage is about 10 times greater than the real part
depicted in Fig. 4.14(a).

In Fig. 4.15(a) and Fig. 4.15(b) we show the schematics we have used in
the CST modeling. As said before, in order to avoid very long simulations, the
axial domain was truncated using homogeneous Dirichlet boundary condition
for the electric field. In other words we have used a PEC at the top and at

Table 4.22: Computational cost in FDTD simulations.
CST sim. # Mesh cells CPU time Memory (GB)

12 7082235 9 h, 37 min, 35 s 4.038932
13 10772190 16 h, 24 min, 13 s 6.035560
14 22796246 59 h, 33 min, 2 s 12.500736
18 56135750 138 h, 43 min, 40 s 19.228004
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(b) Imaginary part

Figure 4.14: Voltage at RX2 for R = 200 in. Zeroth-order results are shown
in dashed-lines. The combination of the zeroth- and 1st-order perturbation
corrections are indicated by solid lines. The small dots, crosses, and triangles
are FDTD results for simulations 12, 13, and 14, respectively.

the bottom of the domain, such the ζ-space has about 121 in for the case
R = 400 in. For the case in which the radius of curvature is 200 in, the
increment in the axial domain was only one-inch compared to the case in
which R = 400 in. Such we believed that an undesirable reflection from the
upper boundary can disturb the received voltages. In order to investigate this
effect, we consider a longer axial domain, as showed in Fig. 4.15(c), where now
the ζ-space extends over 200 in.

The FDTD solutions we have obtained for the structure depicted in
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(a) R = 400 in,
∆ζ ≈ 121 in

(b) R = 200 in,
∆ζ ≈ 122 in

(c) R = 200 in,
∆ζ = R

Figure 4.15: Schematics used in the CST modeling. The aspect ratio of
horizontal (X) and vertical (Y ) coordinates is 1 by 1. In all cases, the center
of curvature points to the left side of the page.

Fig. 4.15(c) will be identified herein by the label CST sim. 18, and are
presented in Fig. 4.16. In this figure, we can clear see that the CST’s results
for the voltage at RX2 appear more close to those we have derived with the
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Figure 4.16: Voltages at RX2 for R = 200 in.
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Figure 4.17: Voltages at RX2 for R = 200 in; Zoom near 1.75 MHz.

proposed algorithm. Now, looking at the high frequency range of operation,
we have verified that the proposed solution has a relative error of about 1%
as depicted in Fig. 4.17. To achieve that precision in the FDTD, however,
we have required a relatively high numerical cost. In Table 4.22 we show the
computational effort required for several simulations we have mentioned above.
The simulation 18, for example, that have used an enlarged axial domain,
required more than 56 million of meshcells and almost 6 days of simulation
in a dedicated workstation. In contrast, as said before, the algorithm we have
proposed take about 9 minutes into an ordinary laptop, using about 9 MB of
memory.
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In typical LWD applications, the curvature of the well is very small
compared to the borehole radius: according to Table 2.1 in Chapter 2, drilling
technologies available today allow deviated wells with radius of curvature no
less than about 20 ft (or 240 in). We have verified that corrections solutions
up to the first-order are enough to correctly capture the effect of the finite-
curvature in such conditions.

4.7
Preliminary Conclusion

We have introduced a new formulation to model the response of well-
logging tools in directional wells. The combination of closed-form solutions of
Maxwell’s equations in cylindrical coordinates with a perturbation technique
allow us to express the fields inside an axially-toroidal and radially-layered
Earth formation. Our field solutions are presented as a series in terms of the
radius of curvature of the bend structure. The zeroth-order perturbation cor-
rection is exactly equal to the solution in cylindrical coordinates. The first-
order perturbation solution shows that an important effect of the curvature is
the excitation of new azimuthal-dependent fields other than the usual in cylin-
drical coordinates. As a consequence, the modal fields are no longer orthogonal.
Numerical results showed that the presented method can accurately model the
electromagnetic propagation inside curved boreholes. The computational cost
of the novel technique we have introduced here is very low: compared to FDTD,
the perturbation approach is several orders of magnitude more efficient in both
terms of CPU time and memory requirements.
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5
Analysis of Well-Logging Tools in Dipping-Bed Boundaries:
A Mathematical Description

5.1
Introduction

Logging-while-drilling (LWD) resistivity tools often acquired logging data
along deviated or horizontal holes. In this case, the drilling environment is
no longer conformal with the cylindrical coordinate system. An illustration
of a LWD tool in a three-layer formation with an dipping bed is shown in
Fig. 5.1(a). This three-dimensional (3D) geometry can be handled by means
of numerical techniques as 3D finite-difference time-domain (FDTD) [17,19,68]
or 3D finite-volumes (FV) [45].

As far as we know, pseudo-analytical formulations are not applicable to
simulate 3D Earth formations similar to those of the dipping bed problem.
However, a simplified version of the original problem was solved in [6, 8, 16]
by means of the Fourier-Bessel transform. This pseudo-analytical solution do
not incorporates the borehole and neither the mandrel, so that the geophysical
formations model becomes an ordinary axially-layered media, as depicted in
Fig. 5.1(b). Additionally, the coil sensors were approximated by magnetic
dipoles moving along an axis deviated from the axial one by the angle θd.

To explore the mode-matching technique, we propose a novel approach
to analyze dipping-bed boundaries including the mandrel, the borehole and
additional invasion zones. Our idea is to take advantage of the analytical
solution derived in Chapter 3 and Chapter 4 to solve the radial stratifications
in combination with a new mode-matching along oblique surfaces.

5.2
Mode-Matching along Oblique Surfaces

Consider the junctions between the waveguides of regions 1 and 2 along a
planar surface as shown in Fig. 5.2. Note that this surface is oblique in relation
to the longitudinal axis at each considered region. The waveguide in region 1
is tilted by an angle θ1 and azimuthally rotated by an angle of φ1 in relation to
the coordinates of the oblique junction surface. Similarly, regions 2 is axially
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(a) Dipping bed formation (b) Approximated model

Figure 5.1: Illustration of a LWD tool in a dipping bed. (a) Geometry of the
triaxial coil LWD tool. (b) A simplified model of the tool using magnetic dipole
sources in the absence of mandrel and borehole.
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Figure 5.2: Waveguide junctions at oblique surfaces.

and azimuthally rotated in relation to the junction surface by the angles θ2

and φ2, respectively. For a moment, assume that θ1 = −θ2 and φ2 = φ1 (see
Fig. 5.2(b)).

The coordinates of tilt plane Si are defined by fi(x, y, z) = 0, where

fi(x, y, z) = x sin θi cosφi + y sin θi sinφi + (z − z1) cos θi (5-1)

= ρ sin θi cos(φ− φi) + (z − z1) cos θi, (5-2)

DBD
PUC-Rio - Certificação Digital Nº 1312540/CA



Chapter 5. Dipping-Bed Boundaries: A Mathematical Description 250

and the normal vector to Si is given by ∇fi, namely:

n̂ = x̂ sin θi cosφi + ŷ sin θi sinφi + ẑ cos θi (5-3)

= ρ̂ sin θi cos(φ− φi)− φ̂ sin θi sin(φ− φi) + ẑ cos θi. (5-4)

The electric and magnetic fields at the region j can be written as

Ej =
∞∑
p

a+
j,pe

ikjz,pzE+
j,p + a−j,ne

−ikjz,pzE−j,p, (5-5)

Hj =
∞∑
p

a+
j,pe

ikjz,pzH+
j,p + a−j,pe

−ikjz,pzH−j,p, (5-6)

where the pth modal field is given by

E±j,p = ρ̂Ejρ,p + φ̂Ejφ,p ± ẑEjz,p, (5-7)

H±j,p = ±ρ̂Hjρ,p ± φ̂Hjφ,p + ẑHjz,p. (5-8)
Denoting the cross-sections in regions 1 and 2 over the oblique plane as

S1 and S2, at junction we must match the fields transversal to n̂ such that

n̂× E1 = n̂× E2

n̂×H1 = n̂×H2

 inside S1, (5-9)

n̂× E1 = 0 inside S2 − S1, (5-10)
where we have assumed that S1 ∈ S2.

Considering M mode in the region 1 and N modes in the region 2, from
the continuity of the transversal electric fields at the junction we can obtain

M∑
m=1

a+
1,me

ik1z,mζ(ρ,φ)n̂× E+
1,m + a−1,me

−ik1z,mζ(ρ,φ)n̂× E−1,m =

N∑
n=1

a+
2,ne

ik2z,nζ(ρ,φ)n̂×H+
2,n + a−2,ne

−ik2z,nζ(ρ,φ)n̂×H−2,n, (5-11)

where ζ(ρ, φ) = z1 − ρ tan θi cos(φ− φi). Taking the dot product of the above
vector equation with the term exp(ik2z,n′ζ(ρ, φ))H+

2,n′ (for n′ = 1, 2, . . . , N),
and integrating the result over the cross-section S2 (in the direction for
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ζ(ρ, φ) > 0), we can obtain a set of N equations:

M∑
m=1

¨
S1

[
a+

1,me
i(k1z,m+k2z,n′ )ζ(ρ,φ)E+

1,m ×H+
2,n′

+ a−1,me
−i(k1z,m−k2z,n′ )ζ(ρ,φ)E−1,m ×H+

2,n′

]
· n̂ ρ dρ dφ =

N∑
n=1

¨
S2

[
a+

2,ne
i(k2z,n+k2z,n′ )ζ(ρ,φ)E+

2,n ×H+
2,n′

+ a−2,ne
−i(k2z,n−k2z,n′ )ζ(ρ,φ)E−2,n ×H+

2,n′

]
· n̂ ρ dρ dφ, (5-12)

where we have employed the scalar triple product property (n̂ × E) · H =
(E×H) · n̂. Note that we can also reduce the integral in the left-hand side of
(5-12) to be over S1 instead S2 because E1 = 0 inside S2 − S1. The above set
of equations can be written in a matrix form as

¯̄X+
1,2ā

+
1 + ¯̄X−1,2ā−1 = ¯̄X+

2,2ā
+
2 + ¯̄X−2,2ā−2 , (5-13)

where the reaction integrals

X±i(m),j(n) =
¨
Si

ei(±kiz,m+kjz,n)ζ(ρ,φ)E±i,m ×H+
j,n · n̂ ρ dρ dφ (5-14)

were written as the matrix

¯̄X±i,j|n,m = X±i(m),j(n), (5-15)

and the modal amplitudes were depicted as the column vector

ā±j |m = a±j,m. (5-16)

From the continuity of the transversal magnetic fields at the junction we
must enforce

M∑
m=1

a+
1,me

ik1z,mζ(ρ,φ)n̂×H+
1,m + a−1,me

−ik1z,mζ(ρ,φ)n̂×H−1,m =

N∑
n=1

a+
2,ne

ik2z,nζ(ρ,φ)n̂×H+
2,n + a−2,ne

−ik2z,nζ(ρ,φ)n̂×H−2,n. (5-17)

Now, taking the dot product of the above vector equation with the term
exp(ik1z,m′ζ(ρ, φ))E+

1,m′ (for m′ = 1, 2, . . . ,M), and integrating the result over
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the cross-section S1, we can obtain a set of M equations:

M∑
m=1

¨
S1

[
a+

1,me
i(k1z,m+k1z,m′ )ζ(ρ,φ)H+

1,m × E+
1,m′

+ a−1,me
−i(k1z,m−k1z,m′ )ζ(ρ,φ)H−1,m × E+

1,m′

]
· n̂ ρ dρ dφ =

N∑
n=1

¨
S1

[
a+

2,ne
i(k2z,n+k1z,m′ )ζ(ρ,φ)H+

2,n × E+
1,m′

+ a−2,ne
−i(k2z,n−k1z,m′ )ζ(ρ,φ)H−2,n × E+

1,m′

]
· n̂ ρ dρ dφ. (5-18)

The above set of equations can be written in a matrix form as

¯̄Y +
1,1ā

+
1 + ¯̄Y −1,1ā−1 = ¯̄Y +

1,2ā
+
2 + ¯̄Y −1,2ā−2 , (5-19)

where the reaction integrals

Y ±i(m),j(n) =
¨
Si

ei(+kiz,m±kjz,n)ζ(ρ,φ)E+
i,m ×H±j,n · n̂ ρ dρ dφ (5-20)

were written as the matrix

¯̄Y ±i,j |m,n = Y ±i(m),j(n). (5-21)

Note that [ ¯̄Y +
i,j ]t = ¯̄X+

i,j, and the above coupling matrices have the following
dimensions (rows, columns):

dim( ¯̄X±1,2) = (N,M), (5-22)

dim( ¯̄X±2,2) = (N,N), (5-23)

dim( ¯̄Y ±1,2) = (M,N), (5-24)

dim( ¯̄Y ±1,1) = (M,M). (5-25)

Combining the (5-13) and (5-19) we can relate the forward and backward
modal amplitudes using a generalized scatering matrix:ā−1

ā+
2

 =
 ¯̄R(n)

12
¯̄T (n)

21
¯̄T (n)

12
¯̄R(n)

21

ā+
1

ā−2

 , (5-26)
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where

¯̄R(n)
12 = −

[
¯̄Y −11 −

¯̄Y +
12

( ¯̄X+
22

)−1 ¯̄X−12

]−1 [ ¯̄Y +
11 −

¯̄Y +
12

( ¯̄X+
22

)−1 ¯̄X+
12

]
, (5-27)

¯̄T (n)
21 =

[
¯̄Y −11 −

¯̄Y +
12

( ¯̄X+
22

)−1 ¯̄X−12

]−1 [ ¯̄Y −12 −
¯̄Y +

12

( ¯̄X+
22

)−1 ¯̄X−22

]
, (5-28)

¯̄T (n)
12 =

[
¯̄X+

22 −
¯̄X−12

( ¯̄Y −11

)−1 ¯̄Y +
12

]−1 [ ¯̄X+
12 −

¯̄X−12

( ¯̄Y −11

)−1 ¯̄Y +
11

]
and, (5-29)

¯̄R(n)
21 = −

[
¯̄X+

22 −
¯̄X−12

( ¯̄Y −11

)−1 ¯̄Y +
12

]−1 [ ¯̄X−22 −
¯̄X−12

( ¯̄Y −11

)−1 ¯̄Y −12

]
. (5-30)

The coupling integrals X±i(m),j(n) and Y
±
i(m),j(n) could be generalized by the form

C
si,sj
i(m),j(n) =

¨
Si

ei(sikiz,m+sjkjz,n)ζ(ρ,φ)Esi
i,m ×Hsj

j,n · n̂ ρ dρ dφ, (5-31)

where si and sj independently assume the signs + or −. Since the fields in
region j are express as a double sum in the form ∑

n

∑
p G±j,np(ρ, φ), we must

redefine the reaction integrals to be:

C
si,sj
i(np),j(n′p′) =

¨
Si

ei(sikiz,m+sjkjz,n)ζ(ρ,φ)
(
Esi
i,np ×Hsj

j,n′p′

)
· n̂ ρ dρ dφ. (5-32)

Solving the scalar triple product in the above equation, we can derive

(esii × hsjj ) · n̂ = ei(n+n′)φ
[
(eiφhjz − sisjeizhjφ) sin θi cos(φ− φi)

− (sisjeizhjρ − eiρhjz) sin θi sin(φ− φi)

+ sj(eiρhjφ − eiφhjρ) cos θi
]
, (5-33)

where the field in the shape gqα are ρ-dependent functions, and: g = e or h,
α = ρ, φ or z, and q = i or j.

Introducing

κij = (sikiz,np + sjkjz,n′p′)ρ tan θi, (5-34)

we can write the reaction modal reaction between regions 1 and 2 as

Cs1,s2
1(np),2(n′p′) = ei(s1k1z,np+s2k2z,n′p′ )z1

ˆ
ρ

[
(e1φh2z + s1s2e1zh2φ) sin θ1Iφ1

− (s1s2e1zh2ρ − e1ρh2z) sin θ1Iφ2 + s2(e1ρh2φ − e1φh2ρ) cos θ1Iφ3
]
ρ dρ. (5-35)

where
Iφ1 =

ˆ π

−π
ei(n+n′)φe−iκ12 cos(φ−φ1) cos(φ− φi), (5-36)

Iφ2 =
ˆ π

−π
ei(n+n′)φe−iκ12 cos(φ−φ1) sin(φ− φi), (5-37)

Iφ3 =
ˆ π

−π
ei(n+n′)φe−iκ12 cos(φ−φ1). (5-38)
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Changing the integration to be over φ̃ = φ − φ1, dφ̃ = dφ, we can write the
integrals Iφ1, Iφ2 and Iφ3 in a more compact fashion as

Iφ1

Iφ2

Iφ3

 = ei(n+n′)φ1

ˆ π−φ1

−π−φ1

e−iκ12 cos φ̃ei(n+n′)φ̃


cos φ̃
sin φ̃

1

 dφ̃. (5-39)

The above integrals are over a full period in φ̃, which allow us to solve the
integral over the half period of the even functions, i.e.,

Iφ1

Iφ2

Iφ3

 = 2ei(n+n′)φ1

ˆ π

0
e−iκ12 cosφ


cos(n+ n′)φ cosφ
i sin(n+ n′)φ sinφ

cos(n+ n′)φ

 dφ, (5-40)

or in a more suitable form as
Iφ1

Iφ2

Iφ3

 = ei(n+n′)φ1

ˆ π

0
e−iκ12 cosφ


cos(n+ n′ − 1)φ+ cos(n+ n′ + 1)φ
i cos(n+ n′ − 1)φ− i cos(n+ n′ + 1)φ

2 cos(n+ n′)φ

 dφ.
(5-41)

Now we can use the integral form of the Bessel function shown in (3-250) to
derive

Iφ1

Iφ2

Iφ3

 = πei(n+n′)φ1


in+n′−1Jn+n′−1(−κ12) + in+n′+1Jn+n′+1(−κ12)
iin+n′−1Jn+n′−1(−κ12)− iin+n′+1Jn+n′+1(−κ12)

2in+n′Jn+n′(−κ12)

 ,
(5-42)

which can be readily written as

Iφ1 = −2π(−i)n+n′ei(n+n′)φ1iJ ′n+n′(κ12), (5-43)

Iφ2 = −2π(−i)n+n′ei(n+n′)φ1
n+ n′

κ12
Jn+n′(κ12), (5-44)

Iφ3 = 2π(−i)n+n′ei(n+n′)φ1Jn+n′(κ12). (5-45)
Without loss of generality, assuming that the waveguide junction shown

in Fig. 5.2 is at z1 = 0, we can find

Cs1,s2
1(np),2(n′p′) = 2π(−i)n+n′ei(n+n′)φ1

×
ˆ [
− (e1φh2z − s1s2e1zh2φ)iJ ′n+n′(κ12) sin θ1

+ (s1s2e1zh2ρ − e1ρh2z)
n+ n′

κ12
Jn+n′(κ12) sin θ1

+ s2(e1ρh2φ − e1φh2ρ)Jn+n′(κ12) cos θ1

]
ρ dρ. (5-46)
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5.2.1
Special Case of a Horizontal Bed

For small tilt deviations, i.e., θ1 → 0, the two first and second terms in
the RHS of (5-46) become zero:

Cs1,s2
1(np),2(n′p′)

∣∣∣
θ1→0

= 2π(−i)n+n′ei(n+n′)φ1

×
ˆ [

s2(e1ρh2φ − e1φh2ρ)Jn+n′(κ12)
]
ρ dρ

∣∣∣∣∣
θ1→0

. (5-47)

The parameter κ12 defined in (5-34) vanish, and we can now use

Jn+n′(κ12)→ δn,−n′ , for κ12 → 0, (5-48)

to further simplify (5-47):

Cs1,s2
1(np),2(n′p′)

∣∣∣
θ1→0

= s2 2π
ˆ

(e1ρ,nph2φ,−np′ − e1φ,nph2ρ,−np′)ρ dρ, (5-49)

where we have recovered the modal indices np (for fields in region 1) and n′p′

(for fields in region 2).

Cs1,s2
1(np),2(n′p′)

∣∣∣
θ1→0

=

s2 2π
´

(e1ρ,nph2φ,−np′ − e1φ,nph2ρ,−np′)ρ dρ, for n = −n′

0, else
(5-50)

The above equation shows that fields are azimuthally orthogonal over the
coupling cross-section as the tilt angle θ1 → 0. Further, by using the azimuthal
symmetries in (3-129), we can immediately obtain

Cs1,s2
1(np),2(−np′)

∣∣∣
θ1→0

= −s2 2π(−1)n
ˆ

(sne1ρ,nph2φ,np′ + e1φ,nph2ρ,np′)ρ dρ, (5-51)

where sn = 1−2δ0,n. The above coupling integral is invariant in terms of s1 (=
±), and over the sign of s2 (= ±) we can derive Cs1,−

1(np),2(−np′) = −Cs1,+
1(np),2(−np′)

for θ1 = 0.
Should be observed that for s2 = + (5-49) is equal to the definition of

the reaction in (3-165) that we have derived for the case θ1 = 0, as expected.
Also, the following relations can be obtained for the coupling integrals (5-14)
and (5-20):

Xs1,+
i(m),j(n) = Y s1,+

i(m),j(n), (5-52)

Xs1,−
i(m),j(n) = Xs1,+

i(m),j(n), (5-53)

Y s1,−
i(m),j(n) = −Y s1,+

i(m),j(n), (5-54)

(5-55)
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where s1 can independently assume any value in LHS and RHS.
Case the matrices ¯̄X±i,j and ¯̄Y ±i,j are mounted in the same shape of (4-315)

(by using sub-matrices to relating the azimuthal dependences in region 1 and
2), for the special case in which θ1 = 0, we derive the following relations:

¯̄X±2,2|+n,−n = ¯̄Q2, (5-56)
¯̄X±1,2|+n,−n = ¯̄X1,2, (5-57)
¯̄Y ±1,1|+n,−n = ± ¯̄Q1, (5-58)
¯̄Y +

1,2|+n,−n = ¯̄X t
1,2, (5-59)

¯̄Y −1,2|+n,−n = − ¯̄X1,2, (5-60)

where ¯̄Q1, ¯̄Q2 and ¯̄X1,2 are the reaction matrices we have derived in Chapter 3.
All others off-diagonal sub-matrices are mull; as a consequence of the modal
orthogonality in terms of the azimuthal harmonics. We can finally verify that
under the above relations, the GSM sub-matrices in (5-27) will reduce exactly
to their counterparts presented in (3-151) (for a PEC boundary condition over
S2 − S1, i.e., ¯̄L2 = ¯̄0).

5.2.2
Symmetry Relations for the Coupling Integrals

Using the symmetry relations in (3-129), the coupling integral involving
the modal fields with azimuthal indices −n (in region 1) and −n′ (in region 2)
are given by

Cs1,s2
1(−np),2(−n′p′) = 2πin+n′e−i(n+n′)φ1

×
ˆ [
− (e1φh2z − s1s2e1zh2φ)iJ ′n+n′(κ12) sin θ1

+ (s1s2e1zh2ρ − e1ρh2z)
n+ n′

κ12
Jn+n′(κ12) sin θ1

+ s2(e1ρh2φ − e1φh2ρ)Jn+n′(κ12) cos θ1

]
ρ dρ. (5-61)

Comparing the last two equation, we clearly see a symmetrical relationship of
the azimuthal indices in relation to angle φ1:

Cs1,s2
1(−np),2(−n′p′) = (−1)n+n′e−2i(n+n′)φ1Cs1,s2

1(np),2(n′p′). (5-62)
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5.3
Preliminary Conclusion

In this chapter, we have explored the mode-matching technique along
oblique surfaces. The preliminary mathematical description of this problem
show that we can reuse all closed-form well-known expressions for modeling
radially-stratified media in conjunction of the new generalized scattering
matrices (GSMs) derived here to proper model dipping-bed formations.

An important result derived here is about the modal orthogonality: the
modal fields are no longer orthogonal over the oblique matching surface. In this
way, the new GSM matrices require the inclusion of fields associated to several
azimuthal index. In contrast, the axial mode-matching along a cylindrical
cross-section (presented in Chapter 3) can use the modal orthogonality to
simplify the problem to be over fields of same azimuthal index.

Further investigations are required to verify the efficacy of the approach
presented herein.
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6
Conclusions and Suggestions for Future Research

Accurate electromagnetic propagation analysis of complex geophysical
formations enables the modeling of well-logging tools as an alternative to
costly experimental tests. The modeling of logging-while-drilling (LWD) and
measurement-while-drilling (MWD) tools used in hydrocarbons exploration
have been successfully handled by means of a 3D-FD, 3D-FE or 3D-FV
methods. However, the CPU time and the computer memory required by
these methods can be prohibitive. In addition, these techniques require fine
spatial discretization to accurately model complex geophysical formations. An
alternative to improve the efficiency rely on the mode-matching technique: we
can employ a 2D-FD or 2D-FE formulation to solve the fields along the well
logging cross-section regions and then match the field continuities along each
junction. In this way, the discretization of the axial space is no longer needed,
reducing one dimension from the initial problem. Going further, we can use the
azimuthal symmetry of the problem to match fields with the same azimuthal
harmonic dependence, such just a 1D-FD or 1D-FE formulation can handle
the radial variations of the fields. This last approach combined with the mode-
matching technique is known as NMM. Remarkably, or initial 3D problem was
now transformed to an equivalent form where the discretization of two spatial
coordinates was circumvented.

In Chapter 3, we proposed a method to model well-logging tools based
on an eigenmode expansion that does not rely on spatial discretization. The
advantage of this approach is that the fields can be represented by a sum
of a relatively small number of eigenmodes compared to the number of grid
points or discrete mesh required to discretize the space. The main scientific
contribution of this work was the introduction of a new pseudo-analytical
technique that allows the accurate representation the electromagnetic response
of LWD sensors using a restrict numerical effort. As a consequence, a number
of remarkable features are allowed in the modeling of stratified cylindrical
structures: (1) The eigenfields are orthogonal both in terms of azimuthal as well
as axial harmonics, which simplify substantially our analysis; (2) The linear
combination of Bessel and Hankel functions naturally satisfies the boundary
conditions of the radially-stratified problem; (3) As we know the analytical
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solution for the fields, we can use the invariance of Maxwell’s equations
under the complex stretching mapping of the PML in order to archive closed
form solutions to mimic unbounded regions. Note that we do not need to
employ radially-dependent biaxial media as well as we can avoid the staircase
approximation for the PML profile; (4) The aforementioned eigenfields allow
an analytical mode-matching along the axial direction. Again, the inclusion of
the PML is very easy, requiring just a modification on the reaction integral’s
upper bound; (5) We were able to solve both the source excitation as well
as the received voltage of TCA antennas in closed-forms. In addition, a
further generalization allow us to proper model TCAs crossing axial regions.
In Chapter 3, we showed numerical results that validate our method, and we
also presented numerical simulations of TCAs placed within grooves into a
metallic mandrel, and its implications to the design of novel directional well-
logging sensors.

In Chapter 4, we developed a new analytical formulation to modeling the
electromagnetic propagation along radially-stratified and axially-bent structu-
res. Validation and preliminary results were presented, and we have derived a
generalization of the axial mode-matching to analyze the fields in curved wells.
This technique can be extended in the future to analyze more complex LWD
tools inside directional wells with axial stratifications.

The initial results showed in Chapter 3 brought to light some inquisitive
questions. The effectiveness of the complex stretching of the PML, for example,
appear not be a critical issue for lossy media at typical LWD operation
frequencies. We believed this happen due the prevalence of evanescent modal
fields, but we consider that this issue need be studied with more detail. Another
aspect we must draw attention is that our numerical algorithm becomes ill-
conditioned for high conductivity media. This problem comes from the complex
large argument of the cylindrical functions. In that situations, we could
consider approximated impedance boundary condition (as those proposed in
Section 3.3.3.1) and also the rescaling of Bessel functions (recently proposed
in [50,52,53]) to prevent this numerical problem.

As a future work, we plan to extend our studies of novel well-logging
tools in dipping bed formations. In Chapter 5, we have shown an elementary
application of the mode-matching technique along oblique surfaces. This
initiative was mathematically described as a combination of radial and axial
mode-matching techniques and allow us to depict the fields of a LWD tools
in a dipping-bed layer. We observe that the new modal scattering matrices
derived in this approach can be easily combined with the closed-form results
for fields and sources inside cylindrically layered media.
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Preliminary results shown in Chapter 5 can be naturally generalized in
future to model more complex structures where the axial bending is present.
Another similar formulation can also be of great interest: the directional mode-
matching could instead be formulated in terms of a surface normal to a
misaligned borehole, as illustrated in Fig. 6.1. In this case, we believe that new
radial scattering matrices can be derived to relate the vertical field expansions
used in [8, 9].

Figure 6.1: Geometry of LWD sensor inside a misaligned borehole.
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A
Wave Equation in Cylindrical Coordinates

In this appendix we shown the solution for the wave equation in anisotro-
pic media using the cylindrical coordinate system. The derivations presented
here are heavily based on the work shown in [55, Ch. 5], where the problem is
solved for isotropic media.

According the formulation in Chapter 3, the scalar Helmholtz equation
for axial fields in cylindrical coordinates is given by

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1
ρ2
∂2ψ

∂φ2 + pz
ps

∂2ψ

∂z2 + ω2pzp̃sψ = 0. (A-1)

Following the method of separation of variables, we seek to find solutions of
the form

ψ = R(ρ)Φ(φ)Z(z). (A-2)
Substitution of (A-2) into (A-1), division by ψ, and noting that the partial
derivatives now becomes total derivatives, allow us to derive

1
ρR

d

dρ

(
ρ
dR

dρ

)
+ 1
ρ2Φ

d2Φ
dφ2 + pz

ps

1
Z

d2ψ

dz2 + ω2pzp̃s = 0, (A-3)

where the third term is explicitly independent of ρ and φ. This term must
also be independent of z because the equation is to sum to zero for all ρ, φ, z.
Hence, we can define 1

Z

d2Z

dz2 = −k2
z , (A-4)

where kz is a constant. Substitution of the above into (A-3) multiplied by ρ2

gives
ρ

R

d

dρ

(
ρ
dR

dρ

)
+ 1

Φ
d2Φ
dφ2 +

(
ω2pzp̃s −

pz
ps
k2
z

)
ρ2 = 0. (A-5)

Now, the second term of the above is independent of ρ and z, and the remaining
terms are independents of φ. Hence, we can properly define

1
Φ
d2Φ
dφ2 = −n2, (A-6)

where n is a constant. Now, the preceding equation gives rise to

ρ

R

d

dρ

(
ρ
dR

dρ

)
− n2 +

(
ω2pzp̃s −

pz
ps
k2
z

)
ρ2 = 0. (A-7)

The wave equation is now separated by means of (A-4), (A-6) and (A-7).
To summarize, we can introduce
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k2
ρ = ω2psp̃s − k2

z , (A-8)

and also the wavenumber related to the transversal anisotropy given by

k2
s = ω2psp̃s = ω2εsµs. (A-9)

We can write the separated equations as

ρ
d

dρ

(
ρ
dR

dρ

)
+
(√pz

ps
kρρ

)2

− n2

R = 0, (A-10)

d2Φ
dφ2 + n2Φ = 0, (A-11)

d2Z

dz2 + k2
zZ = 0. (A-12)

The expression in (A-10) is a Bessel differential equation of order n [116,
p. 358], whose general solution is given by

Rn

(√
pz
ps
kρρ

)
= AJn

(√
pz
ps
kρρ

)
+BYn

(√
pz
ps
kρρ

)
, (A-13)

where Jn and Yn are fisrt and second kind Bessel functions, respectively.
The constants A and B are determined by the boundary conditions. Another
commonly used solution to Bessel’s equation employ the first and second kind
Hankel functions of order n:

Rn

(√
pz
ps
kρρ

)
= AH(1)

n

(√
pz
ps
kρρ

)
+BH(2)

n

(√
pz
ps
kρρ

)
, (A-14)

where

H(1)
n (x) = Jn(x) + iYn(x), H(2)

n (x) = Jn(x)− iYn(x). (A-15)

In general, any two of the functions Jn, Yn, H(1)
n and H(2)

n are linearly
independent and can be used as a fundamental of solutions of (A-10). Note that
only the function Jn is nonsingular at ρ = 0. Hence, if a field is to be finite at
the radial origin, we have Rn(·) = AJn(·). In contrast, for an unbounded radial
domain, we must select Rn(·) = AH(1)

n (·) in order to satisfy the Sommerfeld
radiation condition.

Equations (A-11) and (A-12) are one-dimensional non-homogeneous
Laplace’s equations whose solutions are given by harmonic functions such as

Φ(nφ) = C cos(nφ) +D sin(nφ) or Ceinφ +De−inφ, (A-16)

Z(kzz) = E cos(kzz) + F sin(kzz) or Eeikzz + Fe−ikzz, (A-17)
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where C,D, E and F are constants to be determined by enforcing the boundary
conditions. The azimuthal coordinate is an angle, and for this reason, we need
to restrict the choice of Φ(nφ). In order to achieve single-valued fields, it is
required that ψ(φ) = ψ(φ + 2πp), p = 0, 1, 2, . . . . Thus, we have immediately
that n must be an integer. Finally, the elementary solution for (A-1) is given
by

ψ = Rn

(√
pz
ps
kρρ

)
Φ(nφ)Z(kzz). (A-18)
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B
Modal Amplitudes from the Transmitter to the Receiver

The axial mode-matching at the junction between each pair of waveguides
allows to get a generalized scattering matrix. We denote the associated matrices
as local reflection and transmission operators. In this appendix, we will combine
these local operators in order to proper describe the fields at observation point
on the plane z = zR due to a source placed on the plane z = zT .

The electromagnetic field components in a radially-stratified, axially-
infinity cylindrical structure can be write as

Gα(ρ, φ, z) =
∞∑

n=−∞

∞∑
p=1

A±T,npg
±
jα,np(kjρ,npρ)e±ikz,np(z−zT )+inφ for zT ≶ z,

(B-1)
where Gα = {Eα, Hα} and α = {ρ, φ, z}. The g±jα,np = {e±jα,np, h±jα,np} is the
proper electric and magnetic cylindrical function for the radial layer j. Based
on the azimuthal orthogonality of the fields, we can rewrite our fields as

Gα(ρ, φ, z) =
∞∑

n=−∞
Gnα(ρ, z)einφ, (B-2)

where Gnα can be found comparing the last two equations. Truncating the
sum over p in order to include M modes, we can also write Gnα in a compact
matrix form as

Gnα(ρ, z) = [ḡ±jα(ρ)]t ¯̄P±(zT , z)Ā±T for zT ≶ z, (B-3)

where ḡ±jα(ρ) is a M × 1 column vector containing the entries g±jα,np for
the proper radial position, ¯̄P±(zT , z) is a M ×M diagonal matrix with the
elements e±ikz,np(z−zT ) and Ā±T is a M ×1 column vector with the modal source
amplitudes.

B.1
Fields Matching Approach

We use here an algorithm similar to that in [25,26,29] and [15, pp. 360–
365] to compute the fields along the axial stratifications. We should mention
that this technique was used before in the NMM, where the eigenmodes
of an infinitely long cylindrical layered medium are solved by using a one-
dimensional finite-element method. Here, instead, we will employ our closed
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form eigenfunction expansion for the fields in cylindrical coordinates.
Consider now an axially-stratified structure composed by N regions,

as illustrated in Fig. B.1. Each region j comprises zj−1 < z < zj, j =
1, 2, 3, . . . , N , for 0 < φ < 2π. Note that these regions can also be radially-
stratified. It is clear that fields in a multi-stratified medium can no longer be
represented just by one forward or one backward wave as in (B-3). In general,
we need a combination of two waves propagating to +z and to −z to proper
express our field solutions. To proceed our analysis, we will consider just our
transversal (to z) electric field due the axial symmetry of its forward and
backward components1.

Suppose that an source is placed in the region m and we are interested in
the fields in the region n. The transversal electric field components in a region
n above the source, m < n, can be written as2

En(ρ, z) = ētn(ρ)
[

¯̄P+
n (zn, z) + ¯̄P−n (zn, z)

˜̄̄
Rn,n+1

]
Ān. (B-4)

Here ētn(ρ) is a 1×Mn matrix with the eigenmodes of the region n, ¯̄P+
n (zn, z)

is a Mn ×Mn diagonal matrix that propagates a forward wave from zn to z
such as ¯̄P±j (z′, z)

∣∣∣
pp

= e±ikpz(z−z′). (B-5)
We also have introduced the global reflection operator for the up-going waves
in region n given by the Mn ×Mn matrix ˜̄̄

Rn,n+1 and Ān; a Mn × 1 column
vector for the up-going waves in region n at z = zn. Notice that the number
of modes considered in the axial layer is j given by Mj.

Recursive relations for the global reflection operator ˜̄̄
Rn,n+1 and for the

up-going wave expansion vector Ān can be derived by considering the local
reflection and transmission matrices derived by the mode-matching.

zm−1 zm zn−1 zn zNz−1

Region m Region nRegion 1 Region Nz· · · · · ·· · ·

TX RX

z1

zT zR

z

Figure B.1: The axially-stratified structure under consideration.

1See (3-128) for more details. Notice that the axial magnetic field presents the symmetry
in respect to axis z. If we had used the axial electric or the transversal magnetic fields the
sign of the backward wave must be negative instead of positive in (B-4).

2For the sake of simplicity the superscripts in the scattering matrices omitted, but take
in mind that it could assume the quantity (z).
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Following the formulation proposed in [26], At the boundary z = zn,
the down-going waves consist of two contribution: (1) the transmission of the
down-going waves from region n + 1 (characterized by ¯̄Tn+1,n), and (2) the
reflection of the up-going waves in region n + 1 (characterized by ¯̄Rn+1,n).
Using the appropriated expressions of the down-going and up-going waves in
(B-4), we can write

˜̄̄
Rn,n+1Ān = ¯̄Tn+1,n

¯̄Pn+1
˜̄̄
Rn+1,n+2Ān+1 + ¯̄Rn,n+1Ān, (B-6)

where ¯̄Pm = ¯̄P+
m(zm−1, zm) = ¯̄P−m(zm, zm−1). (B-7)

Similarly, at the boundary z = zn, the up-going waves in region n consist
of two contributions: (1) the transmission of the up-going waves from region
n− 1 (characterized by ¯̄Tn−1,n) and (2) the reflection of the of the down-going
waves in region n− 1 (characterized by ¯̄Rn−1,n). Using (B-4), we can write

Ān = ¯̄Pn ¯̄Tn−1,nĀn−1 + ¯̄Pn ¯̄Rn,n−1
¯̄Pn

˜̄̄
Rn,n+1Ān. (B-8)

From (B-8), we can find a recursive relation for the up-going vector Ān given
by

Ān = ¯̄Pn ¯̄M+
n

¯̄Tn−1,nĀn−1, (B-9)
where ¯̄M+

n =
(

¯̄I − ¯̄Rn,n−1
¯̄Pn

˜̄̄
Rn,n+1

¯̄Pn
)−1

. (B-10)

Substituting (B-9) into (B-6) allows us to find a recursive relation for the
global reflection matrices as

˜̄̄
Rn,n+1 = ¯̄Rn,n+1 + ¯̄Tn+1,n

¯̄Pn+1
˜̄̄
Rn+1,n+2

¯̄Pn+1
¯̄M+
n+1

¯̄Tn,n+1. (B-11)

Notice that ˜̄̄
RN−1,N = ¯̄RN−1,N at the last boundary z = zN−1, and all global

reflection matrices for the up-going waves can be found recursively from (B-11).
Suppose now we are interested in the fields in the region n below the

source, i.e., m > n. Similar to (B-4), the transversal electric field components
in region n can be written as

En(ρ, z) = ētn(ρ)
[

¯̄P−n (zn−1, z) + ¯̄P+
n (zn−1, z)

˜̄̄
Rn,n−1

]
B̄n, (B-12)

where the global reflection operator for the down-going waves in region n is
given by the Mn ×Mn matrix ˜̄̄

Rn,n−1 and B̄n; a Mn × 1 column vector for the
down-going waves in region n at z = zn−1. We can derive recursive relations for
B̄n and ˜̄̄

Rn,n−1 using the same argument leading to (B-6) and (B-8) but now
employing the fields in the shape of those in (B-12). For example, at z = zn−1,
the up-going waves in region n satisfy

˜̄̄
Rn,n−1B̄n = ¯̄Tn−1,n

¯̄Pn−1
˜̄̄
Rn−1,n−2B̄n−1 + ¯̄Rn,n−1B̄n. (B-13)
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The down-going waves also at z = zn−1 in region n must satisfy

B̄n = ¯̄Pn ¯̄Tn+1,nB̄n+1 + ¯̄Pn ¯̄Rn,n+1
¯̄Pn

˜̄̄
Rn,n−1B̄n. (B-14)

From (B-14), we can find a recursive relation for the up-going vector B̄n given
by

B̄n = ¯̄Pn ¯̄M−
n

¯̄Tn+1,nB̄n+1, (B-15)
where ¯̄M−

n =
(

¯̄I − ¯̄Rn,n+1
¯̄Pn

˜̄̄
Rn,n−1

¯̄Pn
)−1

. (B-16)

Substituting (B-15) into (B-13) allows us to find a recursive relation for
the global reflection matrices as

˜̄̄
Rn,n−1 = ¯̄Rn,n−1 + ¯̄Tn−1,n

¯̄Pn−1
˜̄̄
Rn−1,n−2

¯̄Pn−1
¯̄M−
n−1

¯̄Tn,n−1. (B-17)

Notice that ˜̄̄
R2,1 = ¯̄R2,1 at the first boundary z = z1, and all global reflection

matrices for the down-going waves can be found recursively from (B-17).
Suppose now we are looking for the fields in the region of the source.

In this region the fields can be written in three parts [26]: (1) the direct
field from the source in the absence of the axial discontinuities at z = zm

and z = zm−1 (the regions m is considered as an infinite-long and axial-
homogeneous medium), (2) the up-going waves due to multiple reflections,
and (3) the down-going waves due to multiple reflections. Thus, the field in
region m becomes [26], [15, p. 363]

Em(ρ, z) = ētm(ρ)
[ ¯̄P±m(zT , z)Ā±T + ¯̄P+

m(0, z)C̄m + ¯̄P−m(0, z)D̄m

]
, (B-18)

for zT ≶ z, where we have assumed that the source may radiate differentially
for forward and backward directions as Ā±T 3, and the Mm × 1 column vectors
C̄m and D̄m are the up-going and down-going amplitudes yet to be determined.

At z = zm−1, the up-going waves result from the multiple reflections
(characterized by ˜̄̄

Rm,m−1) of the down-going waves, i.e.,

¯̄P+
m(0, zm−1)C̄m = ˜̄̄

Rm,m−1
[ ¯̄P−m(zT , zm−1)Ā−T + ¯̄P−m(0, zm−1)D̄m

]
. (B-19)

Similarly, at z = zm, we must satisfy

3To the best of our knowledge, the application of axial mode-matching (or its NMM
version, i.e., the A-NMM) appear restrict to model point sources or horizontal coils
[10, 15, 23–26, 29–32, 60]. This happen because both source and the axial discontinuities are
matched over a constant axial plane. For sources with non-zero span along the axial direction
(such as tilted-coil antennas that are described in Section 3.5.4), vertical mode expansion
described in [6, 8, 27, 46] (where both sources and radial discontinuities are matched over a
constant radial plane) appears an appropriate way to model the problem. In [147–149] we
demonstrate a way to compute the contribution of general and non-zero span sources using
the axial mode-matching. To use this method; that is described in detail in Section 3.5.6;
we need to consider the existence of general modal excitation coefficients, which may leads
to Ā+

T 6= Ā−T .
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¯̄P−m(0, zm)D̄m = ˜̄̄
Rm,m+1

[ ¯̄P+
m(zT , zm)Ā+

T + ¯̄P+
m(0, zm)C̄m

]
. (B-20)

Solving the coupled equations (B-19) and (B-20) yields the vectors C̄m and
D̄m as

C̄m = ¯̄P+
m(zm−1, 0) ˜̄̄

M+
m

˜̄̄
Rm,m−1

[
¯̄P−m(zT , zm−1)Ā−T + ¯̄Pm

˜̄̄
Rm,m+1

¯̄P+
m(zT , zm)Ā+

T

]
,

(B-21)

D̄m = ¯̄P−m(zm, 0) ˜̄̄
M−

m

˜̄̄
Rm,m+1

[
¯̄P+
m(zT , zm)Ā+

T + ¯̄Pm
˜̄̄
Rm,m−1

¯̄P−m(zT , zm−1)Ā−T
]
,

(B-22)
where we have introduced the multiple reflection matrices ˜̄̄

M±
m given by

˜̄̄
M±

m =
(

¯̄I − ˜̄̄
Rm,m∓1

¯̄Pm
˜̄̄
Rm,m±1

¯̄Pm
)−1

. (B-23)

It should be observed that the fields in (B-18), (B-21) and (B-22)
involve propagation matrices similar to ¯̄P±m(0, za) or ¯̄P∓m(0, za). For an arbitrary
position z = za (mainly large positive or negative za), these matrices might
require very large exponents [31]. In order to prevent the overflow during the
numerical computing of the fields, it is better to rewrite (B-18) as

Em(ρ, z) = ētm(ρ)
[

¯̄P±m(zT , z)Ā±T + ¯̄P+
m(zm−1, z) ˆ̄Cm + ¯̄P−m(zm, z) ˆ̄Dm

]
, (B-24)

where the forward reflected waves at z = zm−1 and the backward reflected
waves at z = zm are given by

ˆ̄Cm = ˜̄̄
M+

m

˜̄̄
Rm,m−1

[
¯̄P−m(zT , zm−1)Ā−T + ¯̄Pm

˜̄̄
Rm,m+1

¯̄P+
m(zT , zm)Ā+

T

]
, and

(B-25)

ˆ̄Dm = ˜̄̄
M−

m

˜̄̄
Rm,m+1

[
¯̄P+
m(zT , zm)Ā+

T + ¯̄Pm
˜̄̄
Rm,m−1

¯̄P−m(zT , zm−1)Ā−T
]
, (B-26)

respectively.
Now, the fields into region m can be completely determined by means of

(B-24). Therefore, the expansion vector Ām of the up-going waves at z = zm

is given by
Ām = ¯̄P+

m(zT , zm)Ā+
T + ¯̄Pm ˆ̄Cm, (B-27)

and the expansion vector B̄m of the down-going waves at z = zm−1 is given by

B̄m = ¯̄P−m(zT , zm−1)Ā−T + ¯̄Pm ˆ̄Dm. (B-28)
The expansion vectors for other regions can be derived recursively from (B-9)
and (B-15).

The above results are derived for the transversal electric fields, however,
we can use them to find all electromagnetic field components. In general, we
can write the fields at an observation plane z = zR (characterized by Ā±R) due
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to a source located at z = zT (characterized by Ā±T ) as

Gα(ρ, φ, zR) =
∞∑

n=−∞

MR(n)∑
p=1

(
A+
R,np ± A−R,np

)
gjα,np(kjρ,npρ)einφ, (B-29)

where Gα = {Eα, Hα}, α = {ρ, φ, z} and the non-harmonic portion of the fields
in radial layer j is given by gjα,np = {ejα,np, hjα,np}. In the above summation
MR(n) is the number of modes considered in the axial region of the receiver
point, and the sign ± must be selected such as: (+) for the transversal electric
and the axial magnetic fields, and (−) for the axial electric and transversal
magnetic fields.

The proper values of Ā±R can be extracted from the forward and backward
contribution of the fields in (B-4), (B-12) and (B-24) by using the algorithms
shown in Fig. B.2 to Fig. B.6.

Algorithm 1: Amplitudes Ā±R
Determine Ā±T ; !Calculate the source amplitudes in region
m:
Determine ¯̄Rj,j±1 and ¯̄Tj,j±1 from the mode-matching at z = zj;
Determine ¯̄Pj, ¯̄M±

j ,
˜̄̄
Rj,j±1, ¯̄Tj,j±1 and ˜̄̄

M±
j ;

Execute Algorithm 2; !Calculate ˆ̄C and ˆ̄D
!Transfer ˆ̄C and ˆ̄D to the receiver position in region n:
if (m < n) then

Execute Algorithm 3;
else if (m > n) then

Execute Algorithm 4;
else if (m = n) then

Execute Algorithm 5;
end if

Figure B.2: Description of the algorithm used to calculate the amplitudes of
the forward and backward waves at the observation point.
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Algorithm 2: Calculate ˆ̄Cm and ˆ̄Dm

if (m = 1) then
ˆ̄C1 = 0̄; !There is no up-going wave at z0
ˆ̄D1 = ˜̄̄

R1,2
¯̄P+

1 (zT , z1)Ā+
T ;

else if (m = N) then
ˆ̄CN = ˜̄̄

RN,N−1
¯̄P−N (zT , zN−1)Ā−T ;

ˆ̄DN = 0̄; !There is no down-going wave at zN+1
else

!Calculate ˆ̄Cm using eq. (B-25):
ˆ̄Cm = ˜̄̄

M+
m

˜̄̄
Rm,m−1

[
¯̄P−m(zT , zm−1)Ā−T + ¯̄Pm

˜̄̄
Rm,m+1

¯̄P+
m(zT , zm)Ā+

T

]
;

!Calculate ˆ̄Dm using eq. (B-26):
ˆ̄Dm = ˜̄̄

M−
m

˜̄̄
Rm,m+1

[
¯̄P+
m(zT , zm)Ā+

T + ¯̄Pm
˜̄̄
Rm,m−1

¯̄P−m(zT , zm−1)Ā−T
]
;

end if

Figure B.3: Algorithm used to calculate ˆ̄Cm and ˆ̄Dm.

Algorithm 3: Calculate Ā±R for m < n

!Determine the forward wave at z = zm:
if (m = 1) then

Ā1 = ¯̄P+
1 (zT , z1)Ā+

T ;
else

Ām = ¯̄P+
m(zT , zm)Ā+

T + ¯̄Pm ˆ̄Cm; !Calculate Ām using (B-27)
end if
!Determine the forward and backward waves at z = zR:
if (n = N) then

do p = m+ 1, N − 1,+1
Āp = ¯̄Pp ¯̄M+

p
¯̄Tp−1,pĀp−1; !Calculate Āp using (B-9)

end do
A+
R = ¯̄P+

N (zN−1, zR) ¯̄TN−1,N ĀN−1;
A−R = 0̄; !There is no backward wave

else
do p = m+ 1, n,+1

Āp = ¯̄Pp ¯̄M+
p

¯̄Tp−1,pĀp−1; !Calculate Āp using (B-9)
end do
A+
R = ¯̄P+

n (zn, zR)Ān;
A−R = ¯̄P−n (zn, zR) ˜̄̄

Rn,n+1Ān;
end if

Figure B.4: Algorithm used to calculate the amplitudes of the forward and
backward waves at z = zR (in region n) due to a source at z = zT (in region
m), for m < n.
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Algorithm 4: Calculate Ā±R for m > n

!Determine the backward wave at z = zm−1:
if (m = N) then

B̄N = ¯̄P−N (zT , zN−1)Ā−T
else

B̄m = ¯̄P−m(zT , zm−1)Ā−T + ¯̄Pm ˆ̄Dm; !Calculate B̄m using (B-28)
end if
!Determine the forward and backward waves at z = zR:
if (n = 1) then

do p = m− 1, 2,−1
B̄p = ¯̄Pp ¯̄M−

p
¯̄Tp+1,pB̄p+1; !Calculate B̄p using (B-15)

end do
A−R = ¯̄P−1 (z1, zR) ¯̄T2,1B̄2;
A+
R = 0̄; !There is no forward wave

else
do p = m− 1, n,−1

B̄p = ¯̄Pp ¯̄M−
p

¯̄Tp+1,pB̄p+1; !Calculate B̄p using (B-15)
end do
A−R = ¯̄P−n (zn−1, zR)B̄n;
A+
R = ¯̄P+

n (zn−1, zR) ˜̄̄
Rn,n−1B̄n;

end if

Figure B.5: Algorithm used to calculate the amplitudes of the forward and
backward waves at z = zR (in region n) due to a source at z = zT (in region
m), for m > n.
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Algorithm 5: Calculate Ā±R for m = n

if (zT < zR) then
!Determine the forward wave at z = zR:
if (m = 1) then

A+
R = ¯̄P+

1 (zT , zR)Ā+
T ;

else
A+
R = ¯̄P+

m(zT , zR)Ā+
T + ¯̄P+

m(zm−1, zR) ˆ̄Cm;
end if
!Determine the backward wave at z = zR:
if (m = N) then

A−R = 0̄; !There is no backward wave
else

A−R = ¯̄P−m(zm, zR) ˆ̄Dm;
end if

else if (zT > zR) then
!Determine the backward wave at z = zR:
if (m = N) then

A−R = ¯̄P−N (zT , zR)Ā−T ;
else

A−R = ¯̄P−m(zT , zR)Ā−T + ¯̄P−m(zm, zR) ˆ̄Dm;
end if
!Determine the forward wave at z = zR:
if (m = 1) then

A+
R = 0̄; !There is no forward wave

else
A+
R = ¯̄P+

m(zm−1, zR) ˆ̄Cm;
end if

end if

Figure B.6: Algorithm used to calculate the amplitudes of the forward and
backward waves at z = zR due to a source at z = zT when these positions are
in region m = n.
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B.2
Geometrical Optics Approach

In order to proper express the fields that a transmitter antenna at the
plane z = zT generates at a receiver antenna at the plane z = zR, here we use a
geometrical optics approach to proper transfer the amplitudes ¯̄A±T of a source
embedded in the axial region m to an observation point placed at region n.
In this section, we combine the GSM matrix derived at each axial junction to
express the fields as a superposition of direct and multiple reflected rays by
means of a convergent geometric series. We consider the same axially-layered
structure used in last section (see Fig. B.1) and the appropriated modal field
expansion in terms of exp(±ikzz).

In the following analysis, we first consider that the observation point
is at the same axial region of the source (m = n) and also we assume that
zT < zR, as illustrated in Fig. B.7. In our analysis, we will decompose the
electromagnetic fields into forward and backward propagating waves in relation
to the axial axis.

Initially, consider only the forward amplitudes of the source Ā+
T , and

for simplicity, we will seek just to the forward amplitudes at the receiver
position on the plane z = zT . For this situation, the fields excited by the
source amplitude Ā+

T will propagate from z = zT to z = zR, as shown in
Fig. B.8. Additionally, the associated field will also propagates forwardly, and
will experience a reflection at z = zm, and will propagates backwardly from
z = zm to z = zm−1. At this step, this field will suffer a new reflection at
z = zm−1, changing its propagating direction again, becoming a forward wave.
This wave propagates from z = zm−1 to z = zR. This propagation process
continues endlessly. In a compact manner, we can mathematically describes
the forward amplitude at z = zR due Ā+

T as

Ā+
R(T+) = ā+ ¯̄bā+ ¯̄b¯̄bā+ ¯̄b¯̄b¯̄bā+ . . . , (B-30)
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−
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R
eg
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n
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+
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r     Ā−
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Figure B.7: The source and the observation point in the region m = n.
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Figure B.8: The contribution of the forward source amplitudes to the received
fields in the forward direction.

where
ā = ¯̄P+

m(zT , zR)Ā+
T , (B-31)

¯̄b = ¯̄P+
m(zm−1, zR) ˜̄̄

Rm,m−1
¯̄P−m(zm, zm−1) ˜̄̄

Rm,m+1
¯̄P+
m(zR, zm). (B-32)

We have introduced the diagonal propagation matrices ¯̄P±j (z′, z), that relates
the axial propagation along the axial positions z′ to z on the region m. The
elements for a mode p is given by

¯̄P±j (z′, z)
∣∣∣
pp

= e±ikpz(z−z′), (B-33)

where kpz is the axial wavenumber of the pth mode of the region j. Note that
¯̄P+
j (z′, z) = ¯̄P−j (z, z′)4. The generalized reflections matrices ˜̄̄

Rm,±m comprise
all the reflection that the fields are subject in the forward/backward direction.

From the definitions in (B-33), it is clear that amplitude entries of
¯̄P±j (z′, z) are limited to 1 for z′ ≶ z. From this, we can verify that limj→∞

¯̄bj =
¯̄0, and the geometrical series ¯̄I+¯̄b+¯̄b2+¯̄b3+. . . converges to ( ¯̄I−¯̄b)−1 [116, p. 15].
Then,

Ā+
R(T+) =

[
¯̄I − ¯̄P+

m(zm−1, zR) ˜̄̄
Rm,m−1

¯̄P−m(zm, zm−1) ˜̄̄
Rm,m+1

¯̄P+
m(zR, zm)

]−1

× ¯̄P+
m(zT , zR)Ā+

T . (B-34)

In order to simplify the notation, we will introduce the generalized
multiple reflection matrix ˜̄̄

M+
j (z) at the axial position z, given by

˜̄̄
M+

j (z) =
[

¯̄I − ˜̄̄
D+
j (z, z)

]−1
, (B-35)

where
˜̄̄
D+
j (z′, z) = ¯̄P+

j (zj−1, z)
˜̄̄
Rj,j−1

¯̄P−j (zj, zj−1) ˜̄̄
Rj,j+1

¯̄P+
j (z′, zj). (B-36)

4At first glance, this may seem like a redundant notation. However, we prefer to use this
form because it preserves the sense of forward/backward (±) propagation.
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The matrix ˜̄̄
D+
j (z′, z) can be understood as an operation that transfer a forward

propagating wave from z′ to z experiencing a double reflection in the borders
of region j. The matrix ˜̄̄

M+
j (z), on the other hand, can be interpreted as the

sum of all multiple reflections that a forward field shows in the region j, with
reference to the axial position z.

Using the above definitions, we can rewrite the contribution of the
forward source amplitudes to the received fields in the forward direction as

Ā+
R(T+) = ˜̄̄

M+
m(zR) ¯̄P+

m(zT , zR)Ā+
T . (B-37)

The physical interpretation of the above equation can be done from right to
left: the forward source fields propagate to the receiver position, but it are
subject to the multiple reflections at the junctions of regions m→ m+ 1 and
m→ m− 1.

Now, we consider the excitation of the backward source amplitude Ā−T .
The down-going associated fields will also generate a forward field at z = zR.
A sketch of this situation is shown in Fig. B.9. For this situation, the fields
excited by Ā−T will propagate in the backward direction from zT to zm−1. This
field suffer a reflection at zm−1, change its propagation direction, becoming a
forward wave that propagates from zm−1 to the zR. At this point, this forward
wave will experience multiple reflections in the region j. In a compact fashion,
we can write the forward amplitude at zR due Ā−T as

Ā+
R(T−) = ˜̄̄

M+
m(zR) ˜̄̄

U−m(zT , zR)Ā−T , (B-38)

in which we define a matrix that describes a unique reflection of the backward
fields given by

˜̄̄
U−j (z′, z) = ¯̄P+

j (zj−1, z)
˜̄̄
Rj,j−1

¯̄P−j (z′, zj−1). (B-39)

The combination of (B-37) and (B-38) gives us the complete forward
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Figure B.9: The contribution of the backward source amplitudes to the received
fields in the forward direction.
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received field amplitudes at zR, i.e.,

Ā+
R = ˜̄̄

M+
m(zR)

[
¯̄P+
m(zT , zR)Ā+

T + ˜̄̄
U−m(zT , zR)Ā−T

]
, for m = n and zT < zR.

(B-40)
In order to find the backward fields at the receiver position zR, we first

consider the contribution of the forward source amplitudes to the received
fields in the backward direction, as illustrated in Fig. B.10. By going through
an analysis similar that to used above, we can write the backward amplitude
at zR due Ā+

T as
Ā−R(T+) = ˜̄̄

M−
m(zR) ˜̄̄

U+
m(zT , zR)Ā+

T , (B-41)

where the generalized multiple reflection matrix ˜̄̄
M−

j (z) defined at the axial
position z is given by

˜̄̄
M−

j (z) =
[

¯̄I − ˜̄̄
D−j (z, z)

]−1
. (B-42)

The matrix ˜̄̄
D−j (z′, z) can be interpreted similarly to ˜̄̄

D+
j (z′, z), but operating

in the opposite direction. Now, ˜̄̄
D−j (z′, z) transfers a backward propagating

wave from z′ to z experiencing a double reflection in the borders of region j,
i.e.,

˜̄̄
D−j (z′, z) = ¯̄P−j (zj, z)

˜̄̄
Rj,j+1

¯̄P+
j (zj−1, zj)

˜̄̄
Rj,j−1

¯̄P−j (z′, zj−1), (B-43)

The matrix ˜̄̄
U+
j (z′, z) is similar to ˜̄̄

U−j (z′, z) , but, operate in the opposite
direction, i.e., ˜̄̄

U+
j (z′, z) = ¯̄P−j (zj, z)

˜̄̄
Rj,j+1

¯̄P+
j (z′, zj). (B-44)

Finally, we can write the contribution of the backward source amplitudes
to the received fields in the backward direction (see the illustration shown in
Fig. B.11) in the fashion of

Ā−R(T−) = ˜̄̄
M−

m(zR) ˜̄̄
D−m(zT , zR)Ā−T . (B-45)
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Figure B.10: The contribution of the forward source amplitudes to the received
fields in the backward direction.
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−
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+
1

zm

· · ·

 

Ā−
t

Figure B.11: The contribution of the backward source amplitudes to the
received fields in the backward direction.

The combination of (B-41) and (B-45) give us the complete backward
received field amplitudes at at zR, i.e.,

Ā−R = ˜̄̄
M−

m(zR)
[ ˜̄̄
U+
m(zT , zR)Ā+

T + ˜̄̄
D−m(zT , zR)Ā−T

]
, for m = n and zT < zR.

(B-46)
Now we consider the case in which the source is at an axial region m,

and the source is at a region n, for m < n (and zT < zR). The first step is to
transfer the source amplitudes Ā±T from z = zT to z = zm, i.e.,

Ā+
m|z=zm = ˜̄̄

M+
m(zm)

[
¯̄P+
m(zT , zm)Ā+

T + ˜̄̄
U−m(zT , zm)Ā−T

]
. (B-47)

Note that we have used (B-40) and (B-46), but we replaced the receiver position
by zm. Next, we can use the generalized transmission matrix from the regions
m to n, denoted by ˜̄̄

Tmn, to get the forward fields in region n at z = zn−1 as

Ā+
n |z=zn−1 = ˜̄̄

TmnĀ
+
m|z=zm . (B-48)

Now, we need to transfer Ā+
n |z=zn−1 to the plane of the receiver at zR using

Ā+
R = ¯̄P+

n (zn−1, zR)Ā+
n |z=zn−1 , (B-49)

Ā−R = ˜̄̄
U+
n (zn−1, zR)Ā+

n |z=zn−1 , (B-50)
or, combining the preceding results, we have

Ā+
R = ¯̄P+

n (zn−1, zR) ˜̄̄
Tmn

˜̄̄
M+

m(zm)
[

¯̄P+
m(zT , zm)Ā+

T + ˜̄̄
U−m(zT , zm)Ā−T

]
, (B-51)

Ā−R = ˜̄̄
U+
n (zn−1, zR) ˜̄̄

Tmn
˜̄̄
M+

m(zm)
[

¯̄P+
m(zT , zm)Ā+

T + ˜̄̄
U−m(zT , zm)Ā−T

]
, (B-52)

valid for m < n.
The above formulation consider that the zT < zR and for that reason

m < n. Case the source in an axial position greater than the observation point,
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we can analyze the problem considering the inversion of the z-axis direction.
With the mapping ẑ → −ẑ, we can preserve the above definitions just replacing
zm → zm−1, zn−1 → zn, and all superscripts ± → ∓. Performing these changes
in (B-40), (B-46), (B-51) and (B-52) we can derive general expressions for Ā±R
as

Ā±R = ¯̄P±n (z∓n , zR) ˜̄̄
Tmn

˜̄̄
M±

m(z±m)
[

¯̄P±m(zT , z±m)Ā±T + ˜̄̄
U∓m(zT , z±m)Ā∓T

]
, (B-53)

Ā∓R = ˜̄̄
U±n (z∓n , zR) ˜̄̄

Tmn
˜̄̄
M±

m(z±m)
[

¯̄P±m(zT , z±m)Ā±T + ˜̄̄
U∓m(zT , z±m)Ā∓T

]
, (B-54)

valid for m ≶ n, and

Ā±R = ˜̄̄
M±

m(zR)
[

¯̄P±m(zT , zR)Ā±T + ˜̄̄
U∓m(zT , zR)Ā∓T

]
, (B-55)

Ā∓R = ˜̄̄
M∓

m(zR)
[ ˜̄̄
U±m(zT , zR)Ā±T + ˜̄̄

D∓m(zT , zR)Ā∓T
]
, (B-56)

for m = n and zT ≶ zR. In order to improve the symmetry of our equations,
notice that in the above we have introduced z±j such as

z+
j = zj, (B-57)

z−j = zj−1. (B-58)

It is important to be noted that the field matching between the source
and the observation point is done apart from the source excitation. This allow
us to reuse all transfer matrices in (B-53), (B-54), (B-55) and (B-56) case we
want to analyze the response of different types of sources, i.e., we can store
the local and global scattering matrices of the structure and the field for many
transmitters and receivers can be computed efficiently [26].

B.2.1
Generalized Reflection Matrices

A geometrical optics interpretation is evident in both equations (B-11)
and (B-17). For example, the generalized reflection of the up-going wave at
z = z+

n comes from the local reflection ¯̄Rn,n+1 plus a term accounting the
multiple reflections in all regions above n. This second term can be written
as the transmission from region n → n + 1, the forward propagation from
z−n+1 → z+

n+1, and the generalized reflection from region n + 1 → n + 2, the
backward propagation from z+

n+1 → z−n+1. Further, we need to consider all
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multiple reflections in region n + 1, by using ¯̄M+
n+1(z)5. Finally, we need to

transfer the wave back from region n + 1→ n using ¯̄Tn+1,n. We can write the
above mathematically as

˜̄̄
Rn,n+1 = ¯̄Rn,n+1 + ¯̄Tn+1,n

¯̄Pn+1
˜̄̄
Rn+1,n+2

¯̄Pn+1
¯̄M+
n+1(z+

n ) ¯̄Tn,n+1. (B-59)

where the forward multiple reflection matrix ¯̄M+
j (z) satisfies

¯̄M+
j (z) =

[ ¯̄I − ¯̄D+
j (z, z)

]−1
, and (B-60)

¯̄D+
j (z′, z) = ¯̄P+

j (z−j , z)
¯̄Rj,j−1

¯̄P−j (z+
j , z

−
j ) ˜̄̄
Rj,j+1

¯̄P+
j (z′, z+

j ). (B-61)
Noting that ¯̄M+

n+1(z+
n ) = ¯̄M+

n+1, comparing (B-59) with (B-11) we can see that
both equations are identical.

It is interesting to be noted that in the above analysis we have included
the multiple reflection term just before the down-going wave be transmitted
from region n + 1 → n at z = z+

n . Generally speaking, the inclusion of the
multiple reflection term is not strictest to this position, and could be consider
at any point inside region n + 1. In this way, any of the above forms are
equivalent to (B-59):

˜̄̄
Rn,n+1 = ¯̄Rn,n+1 + ¯̄Tn+1,n

¯̄M+
n+1(z+

n ) ¯̄Pn+1
˜̄̄
Rn+1,n+2

¯̄Pn+1
¯̄Tn,n+1, (B-62a)

= ¯̄Rn,n+1 + ¯̄Tn+1,n
¯̄Pn+1

¯̄M+
n+1(z+

n+1) ˜̄̄
Rn+1,n+2

¯̄Pn+1
¯̄Tn,n+1, (B-62b)

= ¯̄Rn,n+1 + ¯̄Tn+1,n
¯̄Pn+1

˜̄̄
Rn+1,n+2

¯̄M+
n+1(z+

n+1) ¯̄Pn+1
¯̄Tn,n+1. (B-62c)

Similar results hold also for ˜̄̄
Rn,n−1, and we can be easily verify that the

changing the subscripts and superscripts + → − in (B-59) results in (B-17),
where ¯̄M−

j (z) =
[ ¯̄I − ¯̄D−j (z, z)

]−1
, and (B-63)

¯̄D−j (z′, z) = ¯̄P−j (z+
j , z)

¯̄Rj,j+1
¯̄P+
j (z−j , z+

j ) ˜̄̄
Rj,j−1

¯̄P−j (z′, z−j ). (B-64)
The same is true for the equivalent forms shown in (B-62).

B.2.2
Generalized Transmission Matrices

The forward propagating amplitude in region j + 1 at z+
j can be written

as

5Note that we could instead employ the generalized multiple reflection matrix ˜̄̄
M+
n+1(z).

However, in this case we will couple the generalized forward and backward reflections, i.e.,
˜̄̄
Rn,n+1 and ˜̄̄

Rn,n−1. Here we prefer to employ ¯̄M+
n+1(z) and fields in the shape of those in

(B-4) in order to express ˜̄̄
Rn,n+1 in terms of ˜̄̄

Rn+1,n+2.
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Ā+
j+1,− = ¯̄M+

j+1(z+
j ) ¯̄Tj,j+1Ā

+
j,+, (B-65)

in which allow us to define the generalized transmission matrix between the
region j to j + 1 as ˜̄̄

Tj,j+1 = ¯̄M+
j+1(z+

j ) ¯̄Tj,j+1. (B-66)
At z = z+

j+1, the forward amplitude in region j + 2 can be written as the
forward amplitude in region j+1 at z−j+1 propagated up to z+

j+1 and transmitted
from region j + 1 to j + 2, i.e.,

Ā+
j+2,− = ˜̄̄

Tj+1,j+2
¯̄P+
j+1(z−j+1, z

+
j+1)Ā+

j+1,− (B-67)

= ˜̄̄
Tj+1,j+2

¯̄P+
j+1(z−j+1, z

+
j+1) ˜̄̄

Tj,j+1Ā
+
j,+ (B-68)

= ˜̄̄
Tj,j+2Ā

+
j,+. (B-69)

From the above we can find ˜̄̄
Tj,j+2 comparing the last two equations. This pro-

cedure can be used to derive the remaining generalized transmission matrices
˜̄̄
Tm,n for m < n.

The backward propagating amplitude in region j−1 at z−j can be written
as

Ā−j−1,+ = ¯̄M−
j−1(z−j ) ¯̄Tj,j−1Ā

−
j,−, (B-70)

in which allow us to define the generalized transmission matrix between the
region j to j + 1 as ˜̄̄

Tj,j−1 = ¯̄M−
j−1(z−j ) ¯̄Tj,j−1. (B-71)

At z = z−j−1, the backward amplitude in region j − 2 can be written as
the backward amplitude in region j − 1 at z+

j−1 propagated up to z−j−1 and
transmitted from region j − 1 to j − 2, i.e.,

Ā−j−2,+ = ˜̄̄
Tj−1,j−2

¯̄P−j−1(z+
j−1, z

−
j−1)Ā−j−1,+ (B-72)

= ˜̄̄
Tj−1,j−2

¯̄P−j−1(z+
j−1, z

−
j−1) ˜̄̄

Tj,j−1Ā
−
j,− (B-73)

= ˜̄̄
Tj,j−2Ā

−
j,−. (B-74)

From the above we can find ˜̄̄
Tj,j−2 comparing the last two equations. This pro-

cedure can be used to derive the remaining generalized transmission matrices
˜̄̄
Tm,n for m > n.

The above recursive formulas can be generalized as
˜̄̄
Tj,j±1 = ¯̄M±

j±1
¯̄Tj,j±1, and (B-75)

˜̄̄
Tm,n =

m±2∏
j=∓n

˜̄̄
T∓j∓1,∓j

¯̄P∓j∓1

 ˜̄̄
Tm,m±1, (B-76)
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for m ≶ n, where ∏J
j=1

¯̄Aj means ¯̄A1
¯̄A2 . . .

¯̄AJ .

B.2.3
Further Remarks

We can use the above expressions for sources and observation points at
any positions. However, we can simplify (B-51) and (B-52) for spacial case.
First, we can use the following helpful definitions for regions 1 and Nz:

˜̄̄
U−1 (z′, z) = ˜̄̄

D±1 (z′, z) = ¯̄0, (B-77)
˜̄̄
U+
N (z′, z) = ˜̄̄

D±N(z′, z) = ¯̄0, (B-78)
˜̄̄
M±

1 (z) = ¯̄M±
1 (z) = ¯̄I (B-79)

˜̄̄
M±

N (z) = ¯̄M±
N (z) = ¯̄I. (B-80)

If The GSM matrix is normalized such as ¯̄S ¯̄S = ¯̄I, it allow us to write

¯̄Rj,j±1 =
[ ¯̄Rj,j±1

]t
, (B-81)

¯̄Tj,j+1 =
[ ¯̄Tj+1,j

]t
. (B-82)

Additionally, we can easy verify that

˜̄̄
Rj,j±1 =

[ ˜̄̄
Rj,j±1

]t
. (B-83)

B.3
Comparison of Formulations

The matrices in (B-7) are related to the ones in (B-33) via

¯̄P±j (z∓j , z±j ) = ¯̄Pj. (B-84)

Notice also that the generalized multiple reflections matrices in (B-35) and
(B-42) are closely related to (B-10) and (B-16) such as

˜̄̄
M±

j (z∓j ) = ˜̄̄
M±

j (z±j∓1) = ˜̄̄
M±

j . (B-85)

Similar relations also hold for ¯̄M±
j (z) (without the tilde). Consequently, after

a few simplifications, we can show (B-55) and (B-56) can be represented in the
same manner as described in the algorithm shown in Fig. B.6 for m = n.

For m < n we can verify that the forward propagation of Ā+
j+1,− from

z−j+1 to z+
j+1 in (B-65) results in (B-9), i.e., Āj+1 = ¯̄Pj+1Ā

+
j+1,−. Similarly, for

m > n we can verify that the backward propagation of Ā−j−1,+ from z+
j−1 to

z−j−1 in (B-70) results in (B-15), i.e., B̄j−1 = ¯̄Pj−1Ā
−
j−1,+.
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Accordingly, we can conclude that (B-53) and (B-54) are the same as
those calculated by the algorithms shown in Fig. B.4 and Fig. B.5 under the
proper definition of the ˜̄̄

Tmn given in (B-75) and (B-76).
In our numerical calculations we have verified the above reported equi-

valence between the modal received amplitudes derived using the algorithm
described in Fig B.2 and the amplitudes derived by means of (B-54), (B-53),
(B-55) and (B-56). By this reason, all results shown in this Dissertation where
calculated by using the second formulation due to its symmetry that enable
us to relate the source to the observation point using one simple step.
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C
Local Toroidal Coordinate System

Consider the curved, circular cross section waveguide shown in Fig. C.1.
This structure is centered at the origin of the Cartesian coordinates (X, Y, Z),
and has a constant curvature R−1. A local toroidal coordinate system is defined
through the transversal polar parameters ρ and φ, and by the bend axial
coordinate ζ. We will assume that the curvature radius R is larger than the
maximum required ρ. Denoting the toroidal angle as Φ = ζ/R, and the poloidal
angle such as φ + ψ, as shown in Fig. C.1, the torus transformation of the
coordinates is given by

X = (R− ρ cos(φ+ ψ)) cos
(
ζ

R

)
, (C-1)

Y = (R− ρ cos(φ+ ψ)) sin
(
ζ

R

)
, (C-2)

Z = ρ sin(φ+ ψ). (C-3)

As the coordinate system (ρ, φ, ζ) is clearly orthogonal, the metric
coefficients can be calculated by using the formulas in [143, pp. 47–50], such

z

F

Figure C.1: Geometry of a Torus and its coordinate systems.
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as
hρ =

√√√√(∂X
∂ρ

)2

+
(
∂Y

∂ρ

)2

+
(
∂Z

∂ρ

)2

= 1, (C-4)

hφ =

√√√√(∂X
∂φ

)2

+
(
∂Y

∂φ

)2

+
(
∂Z

∂φ

)2

= ρ, (C-5)

hζ =

√√√√(∂X
∂ζ

)2

+
(
∂Y

∂ζ

)2

+
(
∂Z

∂ζ

)2

= 1− ρ

R
cos(φ+ ψ). (C-6)

Let r denote the vector from the origin to a variable point P (X, Y, Z).
We can write the position vector as

r = XX̂ + Y Ŷ + ZẐ. (C-7)

Now, we can compute the unit vectors in our toroidal coordinate system as

ρ̂ = 1
hρ

∂r
∂ρ

= − cos(φ+ ψ)
[
cos

(
ζ

R

)
X̂ + sin

(
ζ

R

)
Ŷ

]
+ sin(φ+ ψ)Ẑ,

(C-8a)

φ̂ = 1
hφ

∂r
∂ρ

= sin(φ+ ψ)
[
cos

(
ζ

R

)
X̂ + sin

(
ζ

R

)
Ŷ

]
+ cos(φ+ ψ)Ẑ, (C-8b)

ζ̂ = 1
hζ

∂r
∂ζ

= − sin
(
ζ

R

)
X̂ + cos

(
ζ

R

)
Ŷ . (C-8c)

Using the above equations, we can transform the Cartesian unit vectors X̂, Ŷ
and Ẑ into our unit toroidal vectors ρ̂, φ̂ and ζ̂. Similarly, we can derive the
reverse transformation, given by

X̂ =
[
− cos(φ+ ψ)ρ̂+ sin(φ+ ψ)φ̂

]
cos

(
ζ

R

)
− sin

(
ζ

R

)
ζ̂ , (C-9)

Ŷ =
[
− cos(φ+ ψ)ρ̂+ sin(φ+ ψ)φ̂

]
sin

(
ζ

R

)
+ cos

(
ζ

R

)
ζ̂ , (C-10)

Ẑ = sin(φ+ ψ)ρ̂+ cos(φ+ ψ)φ̂. (C-11)

In addition to the above formulas, we can express the local polar vectors
ρ̂ and φ̂ according to their associated local Cartesian coordinates x̂ and ŷ:

ρ̂ = x̂ cosφ+ ŷ sinφ, (C-12)

φ̂ = −x̂ sinφ+ ŷ cosφ. (C-13)

From the above results, we can verify that our toroidal coordinate system
preserves the well-know relations of polar coordinates, as expected.
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The differentiation of the unit vectors in (C-8) yields [150, Appendix A]:

∂ρ̂

∂ρ
= 0, (C-14a)

∂ρ̂

∂φ
= φ̂, (C-14b)

∂ρ̂

∂ζ
= ζ̂

1
hρ

∂hζ
∂ρ

= −ζ̂R−1 cos(φ+ ψ), (C-14c)

∂φ̂

∂ρ
= 0, (C-15a)

∂φ̂

∂φ
= −ρ̂, (C-15b)

∂φ̂

∂ζ
= ζ̂

1
hφ

∂hζ
∂φ

= ζ̂R−1 sin(φ+ ψ), (C-15c)

∂ζ̂

∂ρ
= 0, (C-16a)

∂ζ̂

∂φ
= 0, (C-16b)

∂ζ̂

∂ζ
= −ρ̂ 1

hρ

∂hζ
∂ρ
− φ̂ 1

hφ

∂hζ
∂φ

= ρ̂R−1 cos(φ+ ψ)− φ̂R−1 sin(φ+ ψ). (C-16c)

The metric coefficient defined in [150, p. 477] differs from ours, introduced in
(C-4), (C-5) and (C-6). We can show that the coefficients in [150] are equal to
1/hρ, 1/hφ and 1/hζ in our notation.
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