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computationally efficient quota-sharing methodologies for large-scale 

renewable generation portfolios. Rio de Janeiro, 2017. 131p. Tese de 

Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade 

Católica do Rio de Janeiro. 

Portfolios of renewable electricity sources are interesting risk-management 

mechanisms for trading in electricity contract markets. When they are formed by 

players belonging to different companies, their stability relies on the way the risk-

mitigation benefit generated by the optimal portfolio is allocated through 

individual participants. The problem of reaching a stable allocation can be 

mathematically formulated in terms of finding a quota-sharing vector belonging to 

the Core of a cooperative game, which can be formulated as a set of linear 

constraints that exponentially grows with the number of participants. Moreover, 

the right-hand-side of each constraint defining the Core relies on a given coalition 

value which, in the present work, is obtained by a two-stage stochastic 

optimization model. This work presents and compares efficient methodologies 

mainly based on mixed integer linear programming and Benders decomposition to 

find quota allocation vectors that belongs to the Core of large-scale renewable 

energy portfolios. Case studies are presented with realistic data from the Brazilian 

power system. 
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Benefits; large-scale Nucleolus; large-scale Proportional Nucleolus; fractional 

programming.
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Freire, Lucas; Aguiar, Alexandre Street (Orientador). Comparação de 

metodologias computacionalmente eficientes para rateio de quotas de 

portfolios de geração de energia renovável de larga escala. Rio de 

Janeiro, 2017. 131p. Tese de Doutorado – Departamento de Engenharia 

Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

Portfólios de fontes renováveis de energia elétrica são mecanismos de 

gerenciamento de risco interessantes para comercialização de energia em 

mercados de negociação bilateral. Quando formados por agentes que pertencem a 

diferentes companhias sua estabilidade depende da maneira com que os benefícios 

de mitigação de risco gerados pelo portfólio são alocados individualmente entre 

os participantes. O problema de se encontrar uma solução estável pode ser 

matematicamente formulado através da busca de um vetor de alocação de quotas 

que pertença ao núcleo do jogo cooperativo, que por sua vez pode ser formulado 

como um conjunto de restrições lineares que aumenta exponencialmente com o 

número de participantes. Adicionalmente, o lado direito de cada restrição que 

define o núcleo do jogo cooperativo define o valor de uma determinada coalisão 

que, no presente trabalho, é obtido através de um modelo de otimização 

estocástica de dois estágios. Este trabalho compara diferentes metodologias 

computacionalmente eficientes baseadas em programação linear inteira mista e na 

técnica de decomposição de Benders para encontrar vetores de alocação de quotas 

que pertençam ao núcleo de portfólios de larga escala de geradores de energia 

renovável. São apresentados estudos de casos que utilizam dados reais do sistema 

elétrico brasileiro. 
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1  
Introduction 

It is visible the globe’s urgent call for the increase of sustainable practices. 

As a consequence of decades of irresponsible and predatory programs, many 

countries are starting to experience visible impacts on the quality of life of their 

populations. People are finally pressuring their governments and even the private 

sector to force a complete redesign of social, economic and environmental 

policies in defense of practices that will lead us to a more sustainable world. 

Fortunately, actions are being taken along this path. The International Energy 

Agency (IEA) recently announced emissions have stalled in 2014 [1] for the first 

time in 40 years, even with a global economy growth of 3%. This reflects the 

expansion (and effectiveness) of “green” global efforts. In this context, the 

development of new technologies in many areas such as transport and energy 

represents a new shift on the way private and public sectors are now planning 

their future. 

On the energetic side a lot of effort has been done with the goal of 

decarbonizing the energetic matrices of countries. Hence, renewable energy 

sources (RES) have been receiving more and more incentives, year by year, since 

they are much less aggressive for the environment by virtue of being really low in 

greenhouse emissions (or even neutral depending on the kind of the source). The 

participation and growth of each technology of renewable power plants varies 

from country to country. However, the ones that have been leading the 

investments and, consequently, the penetration on the grids worldwide is the wind 

power, followed by solar, hydros with small (or even none) reservoirs, and 

biomass cogeneration plants that use different forms of waste as resource. 

Those sources arise as a solution, at least in the short and medium term, for 

the urgency of electrical energy generation with the less environmental impact as 

possible. This necessity has even represented a shift on the way the new ventures 

and enterprises in energy has been globally driven. Even large reservoir hydros, a 
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source that few decades ago was considered renewable, are facing aggressive 

critics from part of the society and environmentalists, forcing the authorities to opt 

for the expansion of their grids through the development of hydro plants with 

small reservoirs, the so called small hydros. Large reservoir hydros demand huge 

deluged areas, which can lead to more impacts than deforestation in general due to 

the production of methane as a consequence of organic material decomposition. 

On the contrary, small hydros have the advantage of producing energy from a 

renewable source with much less impact but lose, however, their capability of 

regulating the energy production along periods. 

Leading global investments, wind power plants emerge as a cheap [2],[3], 

reliable and, at certain point, a versatile alternative for producing clean energy. 

Even though some few problems occur in terms of noise and visual pollution and 

when windmills are deployed in the route of bird migration, for instance, the 

technology is relatively easy and fast to build and deploy. Those characteristics 

make wind power the leading renewable source almost in the whole world with 

more than 130 gigawatts of installed capacity from 2011 to 2014 [4]. 

As another option, cogeneration from biomass [5] appears as an alternative 

that has cheap resource, since it usually makes use of organic waste from different 

kinds of plants/mills as intake. However, when biomass plants use sugar cane 

bagasse as resource, for example, the energy production faces a strong seasonality 

since the availability of the resource is linked to the cane harvest pattern. Outside 

the harvest period the energy generation of such plants is null. Unfortunately, the 

uncertainty on energy production is only one of the challenges RES face in the 

market. In a nutshell it is essential to foster and create fruitful environments for 

renewables.  

Fortunately, RES have been receiving different forms of incentives from the 

private and public sectors, in favor of the intensification on their penetration on 

the energetic matrices of many countries. Associations of investors of specific 

renewable sources, such as the Brazilian Association of Wind Power (ABEEólica, 

in Portuguese), have been responsible for negotiating with governments for 

incentives, like financial subsidies and other specific instruments, for example. On 

the other hand, the public sector is corresponding with incentives that vary on a 

country to country basis, but are mainly constituted by support mechanisms, such 

as feed-in tariffs (FiTs) and specific auctions for renewables only (see [6] and 
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[7]). This kind of cooperation between the public and private sectors has been 

building up an attractive environment for the development of tenths of gigawatts 

of RES worldwide. 

However, even with the existing incentives, the integration of RES faces 

difficult challenges, not only on the technical, but also on the commercial side. 

The inevitable injection of more gigawatts of new intermittent sources, as in the 

case of RES, in the countries’ energetic matrices will bring difficult challenges for 

the grids on-time operation [8] and expansion planning as well. This has forced 

debates from part of experts and scientists from all around the world, on how the 

impact of the large penetration of RES on the grids can be suppressed [9]. Since 

RES are completely dependent on their natural resources (wind, inflows and 

waste), they present a strong uncertainty on the short-term generation due to the 

intrinsic unpredictable weather conditions, and one of the current main challenges 

is to outline a safe power system expansion and operation planning. Additionally, 

a lot of research has been done on system reliability for example, as the prominent 

growth of the market share of RES becomes imminent [10]. 

Yet, it seems the commercial challenges for RES penetration have not been 

the major focus of researchers, with less work being done in this area. The main 

problem to be addressed is to design economic models that can guarantee the 

integration of RES in power market, which is the exact purpose of this work. 

Located on an environment where generators face uncertain production and are 

constantly exposed to market risks, RES need models that safely quantify the 

market’s inherent risks and develop strategies that can guarantee a good horizon 

for investors. 

 In the case of Brazil, which serves as basis for this work, two environments 

are available: (i) the Regulated Trade Environment (RTE) and (ii) the Free Trade 

Environment (FTE). In the RTE the regulator, looking for the lowest tariffs as 

possible for the end-users, sets auctions by price-decreasing rounds where 

investors bids only determines if they are in or out for the given price of each 

round. This is continued until the total determined volume of energy, interest of 

the regulator, is fulfilled by investors that bid in within the lowest tariff. In the 

other environment, the liberalized one, Generation Companies (GenCos) and 

Energy Trading Companies (ETCs) can freely sign energy contracts between 

themselves as well as with special consumers. Moreover, in the liberalized 
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market, focus of this work, the competition for contracts with consumers places 

risks on the spot market for the sellers (and buyers in a lower level). The supply 

contracts set the obligation, by the part of the seller, to comply with the delivery 

of the contracted amount of energy in each period of the contracts’ time horizon, 

usually in exchange for a flat rate payment by the buyer (payoff). As in many 

other countries, this arrangement represents only a financial instrument [11] and 

the differences between the contracted amount of energy and the real energy 

production/consumed volume are settled in the spot market. Also, the spot price 

behaves randomly between lower and upper bounds which are defined annually 

by the system regulator. As strong characteristics, it is usually kept at low values 

in average but also very volatile, sometimes floating from the lower to upper 

bound in few weeks, for instance. 

In this conjuncture, the intrinsic intermittent and seasonal resources of RES 

together with unpredictable spot prices mutually place the well-known price and 

quantity risk: in the case where the spot prices are in a higher level than the fixed 

payment price and the generated amount of energy is not enough to satisfy the 

contract, the seller finds himself exposed in the spot market, which can lead to 

high financial losses. To prevent this kind of situation, the development of 

portfolio trading strategies arises as an excellent risk mitigation strategy. Many 

works have presented different effective proposals for risk mitigation portfolios. 

In general, those strategies make use of the synergic complementarity of different 

sources, with different generation profiles, and make use of a joint selling strategy 

to mitigate the inherent risks of the business. In this setting, it is a common 

practice to use the linear stochastic programming framework to develop strategic 

trading models. Moreover, the use of measures of values in which agents express 

their preference towards risks is also a common practice. For instance, the Value-

at-Risk (VaR) and its successor Conditional Value-at-Risk (CVaR) are also 

widely used in the election of the most adequate certainty-equivalent functional, 

which constitutes a key tool to define the always very personal risk averseness 

profile of authors. Furthermore, on an attempt to bring a more foreseeable pattern 

for the energy trading strategies, the use of sampling methods such as Monte 

Carlo is a common practice to simulate scenarios that faithfully represent the 

stochastic processes of energy generation and energy spot prices.  

DBD
PUC-Rio - Certificação Digital Nº 1312937/CA



Chapter 1: Introduction 23 
 

It is also standard works that use these techniques considering their 

portfolios composed by generators that belong to a particular company, case of 

the works previews mentioned. However, it becomes interesting as well the 

analysis of portfolios formed by units of different companies, which in a practical 

viewpoint represents a plausible condition. The main contribution of this setting, 

in comparison with a single company portfolio, is that it represents a typical case 

of cooperative games theory. This area vastly studies circumstances where 

different companies cooperate, aiming greater benefits with a joint trade strategy 

then the ones they would receive while operating alone in the market. Moreover, 

it brings the challenge of sharing the quotas of the joint financial gain among its 

participants (also called players), which is as important as the optimization of the 

portfolio trading strategy itself. In this setting, the concept of fairness on the 

quotas allocation methods is a key point for the success of the cooperation among 

the companies. Otherwise the portfolio (also called pool or grand coalition in this 

scheme) does not remain stable, ending up with participants’ desertion. 

In this context, the cooperative games theory [12] plays a central role in the 

portfolio’s stability, since it is a framework capable of producing sharing solutions 

for the intrinsic synergic benefits of the joint trading strategy. Different works in 

power systems have already explored the idea of allocating benefits among the 

participants of a portfolio. For example, [13] has studied different allocation 

methods for a portfolio composed by 3 renewable units, one small hydro, one 

wind power plant and one biomass plant. Still in [13], the allocation methods 

analyzed were: proportional share [14]; Shapley value [15]; and Nucleolus [16]. 

The former two methods share a common characteristic of having the drawback 

on the computational side: the problem becomes intractable if the number of 

participants in the pool increases two much. Nevertheless, they are not the only 

allocation methods in the cooperative games theory. For example, Aumann-

Shapley [17][18] and Marginal Benefits [17] arise as computationally efficient 

allocation methods. For certain applications, this could place these two methods in 

advantage when compared to non-scalable methods. However, previews works 

has shown that the disadvantageous computational burden of the Nucleous 

method can be favorably resolved. For instance, based on the Benders 

decomposition technique, [19] have presented an efficient algorithm that recovers 

the nucleolus solution for quota allocation of a renewable pool composed by a 
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large number of participants. But it is, however, limited to the analysis of the 

Nucleolus as the only employed method for allocating quotas. 

In this context, the present work proposes a robust comparison of different 

quota allocation methods for sharing the benefits of a joint selling strategy for a 

RES pool. All concepts regarding to energy commercialization, risk management, 

decision under uncertainty and cooperative games theory (which includes the 

allocation methods) are presented. As well, the pool design and the mathematical 

models that solve the computational intractability for the Nucleolus [20][21] and 

Proportional Nucleolus [20][22] methods are properly introduced. Furthermore, 

for the sake of clarification, small and didactical case studies with 3 players only 

are presented, where the qualitative differences among the allocation methods are 

well exposed. Finally, a larger case study is presented, where each one of the 

allocation methods are challenged on their capability of solving large instances. 

Those case studies are built to evaluate the underlying aspects of the quota sharing 

methods, with the final goal of depicting the robustness of the presented 

Nucleolus and Proportional Nucleolus methods.   

1.1  
Motivation 

Aiming the diversification of the Brazilian electrical matrix, it was created 

in 2004 a program to foster the penetration of RES in the sector. This was made 

through incentives that promoted a safer environment for new investments in 

renewables, with small hydros, wind power and biomass plants on its majority. 

The main incentive was the creation of long-term contracts with distribution 

companies. Since then, RES have been increasing their penetration on the 

Brazilian free market, but do not retrieve all possible benefits of such environment 

yet.  

Moreover, according to the market’s official EPE’s (Energetic Research 

Company, in Portuguese) medium term expansion planning (Decennial Expansion 

Plan for 2023) there is an expectation of growth of the electrical matrix from 

about 125 GW in Dec-2013 to 196 GW of total installed capacity in Dec-2023, 

representing a growth of 72GW (or 58%) in ten years. Figure 1.1 shows this 

expansion. More impressively, according to the same document, it is also 
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expected a growth of 26 GW in renewables’ (including solar) installed capacity in 

the same period, jumping from 17 GW to around 43 GW, a difference of 153%, as 

shown in Figure 1.2. 

 

Figure 1.1– Prospected evolution of the Brazilian electrical matrix.  

 

Figure 1.2 – Prospected evolution of RES in Brazil.  

However, to exploit such growth, RES will need to overcome hard 

challenges. For example, the typical seasonal profile on the energy generation of 

RES brings difficulties on the sale of the very common flat quantity contracts for 

example. In such contracts, differently from the generation, the energy amount 
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that has to be delivered is the same for all periods in the horizon of contracts. 

More specifically, among variables that represent risks to RES agents, there is the 

nature of renewable sources itself and the spot price. These two randomly 

behaved variables are the main responsible factors for the volatility on contracts’ 

revenue, especially on the free market. They depend basically on the future 

occurrence of states of nature (e.g., climate factors). And despite obeying a certain 

pattern, such variables sometimes emerge with a combination of low probability 

scenarios that can strongly affect the cash flow of intermittent sources, case of 

RES, inducing high financial losses. Under this framework, it is natural the 

adequate capture of these low-probability scenarios is of utmost importance. This 

is exactly what risk measures like CVaR proposes to do. 

In the view of these considerations, it is necessary to pursue new energy 

trading models that can enhance the RES capability of competing with other 

sources in risky markets, case of the Free Trade Environment. The existing 

regulatory incentives – such as tariffs discounts for RES – play an important role 

in this context, although being not enough to mitigate the price-and-quantity risk, 

inherent to the FTE. It is necessary to make the FTE a real alternative for RES, so 

they can appreciate the benefits of this environment and break the limitation of 

trading only (or mainly) via auctions. A smart diversification of an energy 

contracts portfolio, utilizing the synergic seasonal energy profiles of RES can 

became a fruitful risk-mitigation option, making the FTE an attractive opportunity 

for investors. In this context, it is clear the necessity of using the correct 

framework to treat the inherent risks of the business. Furthermore, a model that 

mitigates the price-and-quantity risks and consequently aggregates value to the 

business of RES is crucial for the consolidation of such sources in a sustainable 

way, not only in the Brazilian electrical matrix, but also worldwide. 

1.2  
Literature review 

The use of portfolio optimization techniques to devise models on electrical 

markets represents a common practice in the academic area. Some examples can 

be seen in [23], [24] and [25], where portfolio of pumped storage hydros and wind 

power plants are studied. Additionally, further examples of recent works that 
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make use of such techniques, as well as the CVaR can be seen in [26], [27], [28], 

[29] and [30]. Specifically, in [26] it is done an evaluation of sales contracts via 

option theory. Moreover, optimum electrical energy auction strategies are 

developed in [27]. Still, [28] presents a model to evaluate the risk for an optimum 

energy portfolio selection and [29] presents a combined stochastic-robust 

optimization approach to reduce risks of a renewable energy-trading portfolio.  

Furthermore, [30], [31] and [32] can be cited as applied works on energy 

trading schemes that address the Monte Carlo simulation technique to produce 

energy generation scenarios as input of a stochastic optimization model that uses 

the CVaR as risk-averse measure. Specifically, a portfolio composed by a biomass 

unit and a small hydro to back a contract in the FTE is presented in [30]. As other 

examples of papers that resort to this scheme, [31] extends the analysis of [30] to 

a general renewable portfolio of wind, small hydros and biomass plants. 

Notwithstanding, the main contribution of [32] was to enhance the analysis of 

[31] by representing correlated wind and inflows and their joint dependence with 

spot prices. This contributed to a better risk tracking, done via the consideration of 

uncertainty variables from the Brazilian hydro-thermal dispatch model as 

explanatory variables. In this same paper, a wind power plant and a small hydro 

jointly trade their energy in the FTE with results that show a substantial reduction 

on the price-and-quantity risk due to the synergic complementarity on the source’s 

production. Additionally, the statistical model used in [32] is extensively depicted 

in another paper, [35], at the same conference. 

On games theory side, there are many examples of papers and applications. 

Particularly, [36] discussed stochastic cooperative games (under uncertainty), 

addressing many of the aspects of the present work, such as superadditivity, 

convexity and certainty equivalents. As example of application on Brazilian 

power sector in a cooperative games theory framework, [37] has presented a 

Nucleolus-based quotas-sharing scheme for the FEC (Firm Energy Certificates) of 

the Brazilian large hydros alongside the comparison with various other classic-

fashioned methods. Still, [13] proposes a pool composed by different renewable 

energy generators to jointly trade the pool’s equivalent energy in the FTE in order 

to mitigate the price-and-quantity risk. The main idea of the work is to take 

advantage on the synergy from the complementary pattern on the energy 

production of different sources to promote a surplus on the source’s financial 
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gains.  A cooperative games theory based analysis was made in order to show that 

the establishment of a renewable pool generates greater benefits than any other 

subcoalition of players in the pool. However, this work explored a single case 

study with only three sources and do not address the computational intractability 

that emerges with the increase on the number of participants.  

Such burden aspect is typical of cooperative games theory problems, as 

depicted in [38] and [39]. Both works focus on the development of computational 

methods that can capably solve this intractability issue, thus allowing assessment 

of the core of large-scale problems in a reasonable computational time. Finally, 

[19] presents a model that, besides establishing a large-scale RES pool in the 

shape of the one presented in [13], it also solves the Nucleolus method 

computational intractability. The paper, however, does not make any comparison 

with different quotas-allocation methods for the proposed renewable pool. 

1.3  
Publications related to this thesis 

The bellow-disposed publications are related to the theme of the present 

thesis and were produced during the journey of the PhD course. 

I) Journal Publications 

a) L. Freire, A. Street, D. Lima, L.A. Barroso, “A Hybrid MILP and 

Benders Decomposition Approach to Find the Nucleolus Quota 

Allocation for a Renewable Energy Portfolio”, IEEE Trans. Power Syst., 

Dec. 2014. 

II) Conference Proceedings 

a) A. Street, L. Freire, D. Lima, J. Contreras, “Sharing Quotas of a 

Renewable Energy Hedge Pool: A Cooperative Game Theory 

Approach”, in Proc. IEEE PowerTech 2011, Trondheim, Norway, 2011; 

b) A. Street, B. Fanzeres, D. Lima, J. Garcia, L. Freire, R. Rajagopal, 

“Mecanismo de Realocação de Energia Renovável: Uma Nova Proposta 

para Fontes Alternativas” in Proc. XXII Seminário Nacional de Produção 

e Transmissão de Energia Elétrica (XXII SNPTEE) 2013, pp. 1-9, 

Brasília, Brazil, Oct. 2013; 
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c) A. Street, A. Veiga, D. Lima, A. Moreira, B. Fanzeres, J. Garcia, L. 

Freire, “Simulação da Geração de Usinas Renováveis Coerentes com os 

Cenários de Operação do Sistema Elétrico Brasileiro”, in Proc. XXII 

Seminário Nacional de Produção e Transmissão de Energia Elétrica 

(XXII SNPTEE) 2013, pp. 1-8, Brasília, Brazil, Oct. 2013; 

d) A. Street, A. Veiga, D. Lima, B. Fanzeres, L. Freire, B. Amaral, 

“Fostering Wind Power Penetration into the Brazilian Forward-Contract 

Market”, in Proc. IEEE PES General Meeting 2012, pp. 1-8, San Diego, 

California, USA, Jul. 2012; 

e) B. Fanzeres, A. Street; A. Veiga, D. Lima, L. Freire, B. Amaral, 

“Comercialização de Energia Eólica no Ambiente Livre: Desafios e 

Soluções Inovadoras”, in Proc. XII Symposium of Specialists in Electric 

Operational and Expansion Planning (XII SEPOPE) 2012, pp. 1-10, Rio 

de Janeiro, Rio de Janeiro, Brazil, May 2012. 

 

1.4  
Objectives of this work 

The main objective of this work is to present and compare different 

allocation methods for a risk-averse RES pool formed by a large number of assets 

belonging to different companies. Also, the analyzed methods are compared in 

qualitative and quantitative ways. The qualitative comparison is done via analysis 

of economic signals produced by the allocation methods outcomes. In the 

quantitative side, the efficiency of an allocation method is “measured” in terms of 

its capabilities of computationally resolving large instances of the problem in a 

reasonable execution time. The used framework is the stochastic cooperative 

games theory [36] and the allocation methods studied are the following: FEC-

Proportional Share; Shapley-Value; Marginal Benefits; Nucleolus and 

Proportional Nucleolus. 

Special attention in this work is given for the last two methods, since they 

pursue the greater stability as possible for the model studied here. As previously 

mentioned, the goal of the Nucleolus allocation method is to increase the benefit 

of the absolute monetary worst case advantage within all possible coalitions that 

can be formed among the participants of the pool. It is based on the idea that if the 

worst-case gain coalition is satisfied, so it is all the other ones. Under this setting, 
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the so important stability of the pool is assured. Moreover, the Nucleolus and the 

Proportional Nucleolus allocation methods
1
 slightly differ from each other. The 

difference is that the last one, which is devised from the first, aims the 

maximization of the worst-case gain in terms of relative gain, i.e., it maximizes 

the percentage gain of the coalition, in contrast with the maximization in terms of 

absolute value from its precursor method. 

Behind the characteristic of fairness (or justice) around a given allocation 

method, there is the concept of core. The core of a cooperative game is the set of 

solutions for quotas allocation of a joint trading strategy portfolio that produces 

(positive) gains for all possible coalitions. In this context, if a given solution for 

quotas allocation belongs to the core, no participant (or coalition) has any 

monetary incentive to leave the pool, securing then the stability of the grand 

coalition. In practical applications, this arises as a very important characteristic, 

since a given subset of participants can quit the pool if their cooperation brings 

more benefits than the ones produced by the grand coalition. Furthermore, the 

core of a given game can be empty or not. Inside this environment, the exploration 

of the existence (non-emptiness) of the core of the proposed cooperative game is 

also a relevant ingredient of the present work. 

In this context, it is worth mentioning that the importance of Nucleolus 

methods is enforced by the fact that both methods always produce solutions that 

belong to the core of the cooperative game, whenever it is non-empty, which is 

the case here. This is one of the most important aspects of an allocation method in 

cooperative games, since it provides a strong economical signal for the players 

and not all allocation methods benefits from this peculiarity. Hence, any method 

with this aspect can be used as a “verifier” of the existence of the core: if the 

method produces positive gains for all coalitions, then the core is non-empty; 

otherwise, the core is empty.  

Moreover, the Nucleolus methods also maximize the gains of the most 

threatening coalitions, which bring a greater stability for the pool. On the other 

hand, the inconvenience of Nucleolus methods is the obstacle faced when 

resolving the optimization problem, which grows exponentially as the number of 

players in the pool increases [38]. Additionally, at the present work, the right hand 

                                                 
1 For the sake of brevity, hereinafter it will be used the term ‘Nucleolus methods’ (in plural) when referring to both 

Nucleolus and Proportional Nucleolus methods 
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side (RHS) of the set of constraints on the Nucleolus problem defines the optimal 

trading strategies of each coalition in the pool, representing the synergic gains of 

the portfolio. In this context, there is an additional difficulty on solving the 

problem, because each individual optimal strategy is the outcome of an isolated 

risk-averse stochastic optimization problem. In a real situation of a pool composed 

by 30 players, the set of constraints imposes that the stochastic optimization 

problem has to be solved more than one billion times, making the computation of 

the Nucleolus intractable. 

To overcome this obstacle, the present work makes use of the efficient 

algorithm presented in [19], which is based in Benders decomposition. This 

interactive algorithm is composed by a primary linear programming (LP) problem 

and by a secondary Mixed Integer Linear Programming (MILP) problem. The 

primary (or master) problem is a reduced version of the full Nucleolus problem 

and produce trial solutions for the Nucleolus allocation. Given a trial solution, the 

secondary problem, so, finds the worst-case gain coalition among all possible 

combinations of players in the pool. Next, a cut (constraint) is added on the master 

problem to force it to satisfy the gains of this just-discovered coalition in the next 

trial solution. The outcome of this iterative process between the two problems 

builds the known set of umbrella constraints [40], allowing the algorithm to 

finitely converge to the Nucleolus solution without the need of evaluating the 

complete set of coalitions. 

However, the work presented in [19] focused exclusively on the analysis of 

the Nucleolus method and does not incorporate analysis on the Proportional 

Nucleolus (or any other method). Furthermore, there still exists one more 

particular complication when such methodology is applied to the Proportional 

Nucleolus: the auxiliary (secondary) problem, outgrowth of the methodology, 

becomes nonlinear and cannot be solved by commercial linear programming 

solvers. This additional drawback is solved for a renewable pool scheme for the 

first time in the present work. The linearization of the auxiliary problem is done 

via fractional programming technique (see chapter 4.3.2 of [41]), following the 

findings of [42].  
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1.5  
Contributions 

The contributions of the present work are listed below: 

i. Present and compare different quota allocation methods for a large-

scale risk-averse cooperative RES pool; 

ii. Present an MILP (Mixed-Integer Linear Programming problem) 

approach that, given a trial solution for the quota allocation, finds the 

coalition with the worst-case gain for the Proportional Nucleolus 

method via fractional programming technique. This procedure 

generates strong cuts for the relaxed problem, used as Benders cuts to 

locally approximate the worst-case gain function in a reformulated 

version of the full problem. Moreover, this procedure can be used as an 

“oracle” that verifies if a given solution, produced by any method, are 

always inside the core of the cooperative game or not; 

iii. Present an algorithm based on Benders decomposition and MILP that 

efficiently finds the Proportional Nucleolus quota allocation for a large-

scale RES pool. This algorithm makes use of an MILP problem that is 

similar to the one described in the previews item; 

iv. Present the proof of existence of the non-empty core for the proposed 

cooperative renewable portfolio. 

Additionally, it is important to highlight that the contribution above disposed in 

item (iii) arise as natural development of the publication I.a of Section 1.3.    

To corroborate the effectiveness of the proposed methodology, realistic data 

from the Brazilian power system is used to build a large-scale dataset of test 

instances. Due to the algorithmic nature of the contribution, results will focus on 

the capability of solving large-scale problems with acceptable computational 

effort.  
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1.6  
Organization 

Chapter 2 introduces the reader the main RES of the Brazilian power 

market. Chapter 3 discourses about the peculiarities of the market where those 

sources trade their energy, as well as the uncertainties regarding the energy trade 

in the FTE. Closing the chapter, the mathematical expression that rules their 

revenue in the FTE is presented, which is promptly modified to reflect the pool’s 

revenue. Chapter 4 initially presents the concepts of the cooperative games theory, 

supporting the cooperative game characterization of the pool. Then, the adopted 

value function (also known as certainty equivalent) for the RES pool is presented, 

prior to the proof of the existence of the non-empty core of the game. Chapter 5 is 

responsible for presenting all the allocation methods used in this work, discussing 

their characteristics and presenting their respective formulation. Still, a small 

example of quotas sharing is presented for a 3-players case pool in order to 

compare and motivate the underlying allocation methods. Chapter 6 highlights the 

combinatory explosion of the pool, a problem that affects almost all the presented 

methods, and proposes the MILP-based Benders decomposition approach to solve 

this issue for the two Nucleolus Allocation based methods. The chapter then 

presents a methodology that ensures the equalization of individual gains for the 

Nucleolus methods, which is not always guaranteed by the original formulations. 

Chapter 7 presents realistic case studies that compare all proposed allocation 

methods, firstly in a qualitative optics, and then testing their performance on 

solving large-scale instances of the pool, showing the effectiveness of the 

proposed MILP-based approaches. Finally, Chapter 8 closes the work with 

conclusions and suggestions on immediate and eventual future researches.  
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2  
The main RES in Brazil 

Since the global oil crisis of 1973, Brazil has focus on investments on non-

oil-dependent energy sources, such as the production of alcohol from sugar cane 

to substitute gasoline, and also expanding the hydroelectric share on its electrical 

matrix. As a consequence, currently in Brazil around 80% of the grid’s installed 

capacity come from renewable energy sources, including 84.6 GW of large 

reservoir hydros (63%), 4.8 GW of small hydros (3.5%), 12.4 GW of biomass 

(9%) and 6.2 GW of wind power (4.6%). Under this environment, the three main 

RES in the Brazilian power sector, which is used as basis for this work, are small 

run-of-river hydros, wind power plants and biomass cogeneration plants. These 

sources had a boom after the Brazilian regulator established the PROINFA 

program, in 2002, which was focused in the promotion of RES in the power 

sector. During the active period of the program, which was closed in 2011, more 

than 1,152 MW of installed capacity of small hydros and 553 MW of biomass 

were added to grid [43]. Adversely, wind power technology was yet very 

expensive in Brazil during the 2000’s decade, so that its current protagonist role 

on the penetration of RES in the Brazilian grid started to show up by the 

beginning of the 2010’s decade only. Further information about the individual 

aspects of these sources will be discussed in the next sections.  

2.1  
Small hydro plants 

Brazil’s main alternative to foster investment policies on renewables was 

exploring the large number of basins on its vast territory. This promoted an 

expansion on investments of hydro plants throughout the national territory, with 

exception for amazon forest areas that, due to environmental and technical 

barriers, experienced less investment on this side. In this context, Brazil’s South 

and Southeast regions currently concentrate the major number of hydro plants, 

followed by the Central and Northeast regions, as seen in Figure 2.1. On the 
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contrary, the majority of unexplored hydraulic potential of Brazil’s is 

concentrated in the amazon. This contrast is seen in Figure 2.2, where dark 

colored areas in the map constitute regions with greater unexplored potential than 

the light colored ones, with pizza graphs indicating the total estimated unexplored 

potential in gray.  

 

Figure 2.1 – Explored hydraulic potential – hydraulic plants – of Brazil. 

Still in the graphs of Figure 2.2, the known unexplored potentials of each 

region are indicated in dark blue with the explored potentials under construction 

or under operation being represented by blue and light blue colors, accordingly. 
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Figure 2.2 – Total hydraulic potential of Brazil (including unexplored). 

Despite the great unexplored hydraulic potential, as previously discussed, on 

the environmental side small hydros are practically seen as the only option to 

produce electrical energy on areas where the Brazilian basins are still unexplored. 

Nevertheless, in early 2012, the small hydros represented 3.3% (3.86 GW) of the 

117 GW of total installed capacity in Brazil (including the whole national 

electrical grid). According to ANEEL (Electrical Energy National Agency, in 

Portuguese), 2.3 GW from small hydros are already licensed making total 

installed capacity from this source reach nearly 7 GW by the end of 2019. 

Considering the extension of the basin areas of the country, it is possible that this 

share increases even more in the coming decades [44]. Additionally, prospections 

of National Reference Center in Small Hydropower Plants (CERPCH, in 

Portuguese) are more optimists and anticipate the total installed capacity from 

small hydros, considering the explored and unexplored potential, can reach 12 

GW. 
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More specifically, following the resolution 394 from 04/12/1998 from 

ANEEL, a small run-of-river hydro is any small hydro plant with at least 1 MW 

and up to 30 MW of installed capacity that respects the maximum of 13 km
2
 of 

deluged area. In this context, a small run-of-river hydro plant operates without the 

regulation of its production, i.e., small reservoirs do not allow the unit’s operators 

to control the water flow through the turbines. Additionally, these kinds of plants 

are usually installed in small to medium size rivers that have a minimum 

significant altitude variation on the watercourse, in order to achieve enough 

hydraulic head to move the plant’s turbines. On situations where the river inflow 

exceeds turbines’ capacity, the water has to be spilled. Contrarily, in dry periods, 

the lack of water can even let turbines idle. Finally, another strong characteristic 

of hydro plants in Brazil is the seasonal pattern of energy production, with well-

defined periods of high and low production at months around summer and winter, 

respectively. This typical profile is depicted in Figure 2.3, represented by terms of 

the average and the quantiles of 5% and 95% of de historical production of a unit 

placed at Paraibuna river (south-east of Brazil). 

 

Figure 2.3 – Generation profile of a typical small hydro.  
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2.2  
Biomass plants 

The use of sugarcane bagasse for electricity generation is a practice used in 

several places in the world. This production is done via biomass plants: thermal 

units that generate electrical energy through organic materials (the so called 

biomass resources). Depending on the particular conditions of each country, the 

variation is found in the energetic efficiency the bagasse provides. Currently, the 

best results are achieved in Hawai’i and Reunion Island. In Brazil, the world's 

largest cane sugar producer, the cogeneration at sugar cane and alcohol plants is 

also a common practice with the generation of between 20 and 30 kWh per ton of 

crushed cane. With the adoption of higher pressure levels on steam and more 

efficient turbines, steam cycles can produce more than 80 kWh per ton of crushed 

cane. Additionally, according to [5], this value can be further increased with the 

energetic use of cane leaves and tips currently left in the field during harvesting. 

Moreover, since the beginning of the colonization, in century XI, sugar cane 

production was always a strong product of the Brazilian economy, with huge 

plantations spread throughout the Southeast and Northeast regions of the country. 

Furthermore, also due to investments policies on non-oil-dependent energy 

sources, Brazil launched a program to promote investments on the production of 

sugar cane alcohol. This kind of alcohol became an alternative to gasoline, with 

the first cars moved 100% by the new fuel being produced by the end of the 

1970’s decade. 

The huge number of sugar cane plantations in Brazil creates also the 

opportunity of cogeneration of electrical energy through burning of the sugar cane 

bagasse. Although sugar cane bagasse is the main resource for biomass plants in 

Brazil, as input they can also have other kinds of organic resources, such as wood 

combings, manure, food waste and other agricultural waste that produce methane 

gas. Additionally, recent investments point out another promising biomass 

resource: eucalypt combings, which also have strong availability in Brazil, due to 

the numerous eucalypt plantations that produces cellulose, intake of paper plants. . 

Moreover, according to a report of the Pew Environment Group (non-

governmental organization based in the US), in 2011 Brazil was for the first time 

the world leader in installed capacity for power generation from biomass 
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(including generation from dung, wood, agricultural residues and food waste), 

with total of 1.9 GW at that year. 

Finally, as the sugar cane harvest periods are yearly well defined, it can be 

observed an almost unique generation profile of sugar-cane biomass plants, with 

little variations among years. In this context, Figure 2.4 presents the typical 

energy generation profile of a biomass plant placed in the Southeast region of 

Brazil.  

 

Figure 2.4 – Deterministic biomass plant generation profile. 

2.3  
Wind power plants 

Wind power plants are those that use wind turbines to convert the kinetic 

energy from wind into electrical energy.  Such kinds of plants are experiencing an 

aggressive growth worldwide. According to WWEA (World Wind Energy 

Association), the total installed capacity of wind power around the world jumped 

from 236 GW in 2011 to more than 370 GW by the end of 2014, a growth of 56% 

in 3 years, average of 18.8% per year, as seen in Figure 2.5. 
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Figure 2.5 – Total installed capacity of wind power plants worldwide.  

This situation has not been different in Brazil, where wind power has been 

receiving concrete investments, with a promising prospective growth for the next 

years. The upsurge in installed capacity of this technology from 27 MW in 2005 

to more than 6.2GW in 2014 corroborate with this fact. Furthermore, as seen in 

Figure 2.6, the prospection is wind power plants meet solids 16 GW of installed 

capacity in Brazil by the end of 2019.  

 

Figure 2.6 – Wind power installed capacity evolution in Brazil (with prospection).  

Moreover, studies from ABEEólica indicate a total potential of 

approximately 300 GW in Brazil [45]. The prospected new investments in wind 

power should maintain Brazil among the 10 first nations in the rank of wind 

power installed capacity. Currently leading the rank, China has incredibly added 
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more than 23GW of wind installed capacity to its grid only in 2014, meeting 

almost 115 GW of total installed capacity, as disposed next, in Figure 2.7.  

 

Figure 2.7 – Top 12 worldwide wind energy rank. 

In a highly hydro-generation based country, case of Brazil, the penetration 

of a different source like wind can positively contribute to the diversification of 

the electrical matrix, due to its great unexplored potential and complementary 

pattern of its generation profile with the current generation profile of Brazil’s 

electrical matrix. Not differently from small hydros and biomass plants, in Brazil 

the wind power production is also driven by strong seasonal pattern. In Figure 2.8, 

it is shown the generation profile of a typical wind power plant of the northeastern 

Brazil. Additionally, jointly analyzing Figure 2.3, Figure 2.4 and Figure 2.8 it is 

possible to note the complementary generation profiles among the sources, where 

the peak of wind power production coincides with the dry period on hydro 

generation and with the sugar cane harvest period. This complementarity 

characteristic of RES will be discussed in the next chapter. 
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Figure 2.8 – Generation profile of a typical wind power plant. 
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3  
Market setup 

Since the beginning of the past decade, investments in renewables were 

mainly promoted in Brazil through the Regulated Trade Environment, with less 

appearance of RES in the Free Trade Environment. Those two environments were 

created within the Brazilian power sector reformulation of 2004, guided by the 

system regulator, ANEEL
2
 [46]. This reformulation was necessary to correct 

structural problems that induced the energy crisis of 2001 and the consequent well 

succeeded volunteered energy-rationing campaign within the population. Among 

other measures, the regulatory plan of 2004 established two important firms for 

the power sector: (i) the Energetic Research Company (EPE in Portuguese), 

responsible for the long-term expansion planning of the sector and (ii) the 

Electrical Energy Commercialization Chamber (CCEE in Portuguese), responsible 

for operating the two trade environments, the RTE and the FTE (both created in 

the reformulation as well, as previously mentioned). The main goal of the 

reformulation was to ensure the power sector expansion in a safe and organized 

way, at the lower cost as possible, via incentives to attract private investments 

[47]. 

In this context, some actions were taken to enforce the safety of supply 

expansion. One of the most important was the obligation that supply contracts 

should be physically backed on energy generation, i.e., an agent can only sell a 

supply contract if possess enough energy rights to cover the amount sold. This 

was done through the creation of firm energy certificates (FEC) issued by the 

system regulator and assigned to each generator [48]. This value is calculated via 

long-term generation average of the units and is periodically revised to protect the 

system against underperformances. Moreover, FEC are defined in average-MW, 

or MWh/year, and defines the total amount of energy rights of generators, 

                                                 
2  The Brazilian power system regulatory agency, ANEEL, was created in 1998 when the Brazilian government 

promoted a reformulation of the power sector in order to increase the participation of private investors. 
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working as an upper bound for the total amount that can be sold through contracts 

by generators. 

Another measure taken to increase the system reliability was the creation of 

the long-term supply contracts. These kinds of contracts promote better conditions 

for new enterprises in the generation sector, since they provide better signals of 

future energy prices for investors, who are consequently beneficiated with better 

credit conditions. In general, these types of contracts have been practiced in the 

RTE, which is the environment operated by energy auctions controlled by CCEE. 

It is through the RTE that the distribution companies (DisCos) contract all the 

energy they need to supply their consumers (this is another example that any 

demand has to be 100% backed on supply contracts). In this setting, this 

environment has been fostering new investments in generation in Brazil. 

On the other hand, the FTE is the one where GenCos and ETCs are free to 

sign bilateral contracts with special consumers
3

, which in turns have the 

alternative of contracting energy from companies other than its local DisCo. 

Additionally, the contracts in the FTE frequently expose the agents to the well-

known price-and-quantity risk. In spite of that, the inherent risks of the FTE have 

positive counterparts. For example, (i) generators get higher prices for the energy 

sold and (ii) for special consumers, energy bought from renewable generators 

grant discounts in energy transmission tariffs when compared with the ones 

charged from DisCos (this is the so called renewable energy incentive). 

Another important aspect of the Brazilian power sector is that, differently 

from many other countries and markets, the system dispatch is done on a 

centralized way. The National System Operator (ONS, in Portuguese) is 

responsible for minimizing the final energy cost for consumers while operating 

the system. Since 75% of the Brazilian installed capacity is originated from large 

hydros [49], the system operator is capable of managing the load and 

contingencies on a weekly timescale basis, but it also faces strong uncertainties 

during the periods within a year, due to the intrinsic seasonal profile of inflows. 

Such uncertainty has direct influence on the total storage capacity of the system, 

addressing strong variation on the energy spot prices that have strong negative 

correlation with the total system storage. This is due to high storage levels favors 

                                                 
3 The FTE special consumers are the ones that satisfy certain conditions on minimal demand and specific supply 

tension. 
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the system capability of attending the load at low costs (through hydro usage, 

which is much cheaper than thermal generation). Under this environment, the spot 

price, which is an outcome of the dispatch model and reflects the cost of the most 

expensive unit under dispatch, can increase rapidly in periods of strong storage 

drops. For the sake of clarification, Figure 3.1 denotes the (strong) negative 

correlation between the total system storage and the spot price (the graph was 

built with real historical data of the total water storage and energy spot prices for 

the Southeast/Center-west subsystem of Brazil). 

 

Figure 3.1 – The negative correlation between total storage and energy spot prices. 

Strong uncertainty pattern and volatile behavior are also characteristics of 

RES generation profiles, not only because of their dependence on the availability 

of its natural resources (inflow, wind and biomass waste), but also because of the 

lack of any storage capacity. However, due to this last aspect, RES are considered 

must run units within the centralized dispatch model, i.e., differently from large 

hydros (which are capable of regulating their energy generation along time), RES 

are considered non-dispatchable units, injecting in the grid every single watthour 

that their resources can provide. This represents another challenge to be faced by 

the system regulator, since the actual scenario is of growth in the penetration of 

RES into the Brazilian grid, intensifying the volatility of the system. 

It is also important to highlight that the two available environments of the 

Brazilian power sector are, in a certain manner, mutually exclusives. Nonetheless, 

DBD
PUC-Rio - Certificação Digital Nº 1312937/CA



Chapter 3: Market setup 48 
 

in another sense, they are not. Summing up: investors can freely allocate portions 

of the FEC of their generation assets on both environments, as soon as the sum of 

energy credits sold throughout the two environments don’t exceed units’ total 

FEC. At the present work, however, it will be considered only opportunities in the 

FTE, as previously pointed out.  

Granting all this, apart of the environment where the energy is traded, RES 

face many risks when signing annual energy supply contracts with consumers. 

The natural uncertain generation pattern of RES, allied to the intrinsic volatile 

spot prices of the Brazilian power market let traders and generators exposed to the 

so called price and quantity risk, or volume and price risk. This risk is intrinsically 

linked to the fact that agents are obligated to clear in the spot market the 

differences between the amount of energy produced and the contracted amount (or 

difference between the amount of energy rights and energy obligations, 

respectively). Such risk is exemplified in Figure 3.2, when a determined agent has 

a fixed monthly obligation within a bilateral contract during a given year.  

 

Figure 3.2 – Exemplification of price and quantity risk. 

To deal with such risks, agents make use of modeling techniques capable of 

faithfully represent the variables involved in the power sector. The existing 

uncertainties in energy generation and spot prices are usually modeled through 

stochastic processes [50] that carry out historical information of the data series 

and, in some cases, can also carry information about the existing correlation 

among different processes. For example, [32] has modeled, through stochastic 
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processes, the spatial and time correlated behavior of the resources of a small 

hydro (inflow) and a wind power plant (wind), also incorporating their 

dependence with the spot price, in order to produce realistic scenarios of 

realization of these resources. 

Although inflow, wind and biomass present very seasonal availability 

profile, which imposes many risks to whomever wants to trade energy from such 

sources, they have a very important aspect: they present a strong complementarity 

among each other. Figure 3.3 shows the complementarity in the generation profile 

of the three main RES of the Brazilian power sector. 

 

Figure 3.3 – Generation profile in % of the FEC (long-term average) for the three main 

renewable sources present in Brazil. 

This aspect has been object of study by many authors, which came up to 

expectations when building portfolio-trading strategies to mitigate the price and 

quantity risk as in [30], [31] and [32], for instance. Besides, the trading scheme 

presented by [19] (an improved version of the idea presented in [13]), which also 

takes advantage on the complementary profiles of RES, serves as basis for the 

trading model at the present work as well. In such scheme an independent ETC is 

responsible for the risk management of the joint financial operation of the RES in 

the portfolio.  

Differently from other schemes, like the one presented in [30], here the 

centralizing agent is not the only risk taker, since the risk is shared among all 

DBD
PUC-Rio - Certificação Digital Nº 1312937/CA



Chapter 3: Market setup 50 
 

participants, which are in fact shareholders of the cooperative risk-mitigation 

pool. Moreover, the ETC models the portfolio’s price and quantity risk to devise 

the joint selling strategy where the outcome is the defined optimal energy amount 

to be sold in a contract with a consumer. This optimally defined energy amount, 

together with the equivalent generation profile that is transferred to the ETC (as 

energy rights) are key elements to mitigate the price and quantity risk. The 

uncertainties involved in the joint selling strategy will be discussed in the next 

section. 

3.1  
Uncertainty characterization 

The correct pricing of the joint trading strategy is crucial for the risk 

analysis of energy portfolios. One of the main challenges of such task is the 

appropriate mapping of the inherent interrelationship between the energy 

generation and spot prices. These are the two risk factors considered at the present 

work: 

i. �̃�𝑡, a random variable that represents the spot price at a given period 𝑡 

in $/MWh and; 

ii. �̃�𝑖,𝑡, a random variable that expresses the amount of electrical energy 

produced by the generation unit 𝑖 at period 𝑡, in MWh. 

Throughout this work, random variables are assumed to be discrete 

following stochastic programming standards [51]. Therefore, both uncertainty 

factors (�̃�𝑡, �̃�𝑖,𝑡) can be characterized by means of a set of possible realization 

scenarios and respective probabilities {(𝜋𝑡,𝑠, 𝐺𝑖,𝑡,𝑠), 𝑝𝑠}
𝑠∈𝑆

, where 𝑆 is the set of 

indexes for scenarios.  

In this setting, as the solution approach is of stochastic nature, the 

simulation of renewable generation and spot price scenarios made through a 

multivariate statistical model is of crucial importance. This is due to the essence 

of the model that relies in the existing synergy of RES. For this reason, at the 

present work the data simulation process is done according to [33] and includes: i) 

the spatial and time (seasonal) dependence between the generation units and ii) 

the correlation between the simulated resources and the spot price scenarios. 

Moreover, the future energy spot prices scenarios come from the Newave program 
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[52] and [53], used in the centralized dispatch of the National System Operator 

(ONS).  

Accordingly, following the procedure described in [34] a multivariate 

VARx model (Vector Auto Regressive with eXternal variables) was used to 

produce the input data for the uncertainty factors (�̃�𝑡, �̃�𝑖,𝑡). Such model is capable 

of properly simulating scenarios of renewable resources in fine-tune with the spot 

price scenarios as it uses external (or explanatory) information from the system’s 

operative model. These explanatory variables are the simulated data of inflow 

from the Southeast, South, Northeast and North subsystems of Brazilian power 

sector. Such data is produced by a statistical module called PAR-p (Periodic Auto 

Regressive model of order p), part of the Newave. 

Additionally, it is also very important to clarify that synthetic series of 

inflow produced by the PAR-p model only consider data from medium to large 

hydro units. As renewables (such as small hydros, biomass, wind power plants 

and others) are much less representative in the system than the major plants, such 

units are considered in the model on an aggregate way and by means of the 

seasonal average production in each period of the operation horizon. This brings 

to RES the necessity of generating its own scenarios of energy generation, which 

should also save the relation with the scenarios of spot prices. 

More specifically, besides PAR-p, Newave counts with a dispatch module 

that operates the electrical system in each one of the synthetic inflow scenarios. 

This is done via minimization of a measure of value over the total cost for 

operating the hydrothermal system in the whole time horizon of simulation. As 

outcome of the optimum dispatch policy, the model produces one spot price 

scenario for each one of the generated synthetic inflow scenarios. In this 

framework, the set of spot prices saves a one-to-one correspondence with the set 

of inflows. This same set of inflows is used by the VARx model to explain the 

spatial-and-time-correlated behavior of natural resources (wind and inflow) for the 

renewable units. As a consequence, its outcome (i.e., the set of renewable 

resources scenarios) is properly correlated with the energy spot prices. 

In this framework, Figure 3.4 shows how the VARx model generates the 

scenarios of renewable resources correlated with the spot price scenarios. 
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Figure 3.4 – The relation stablished by the VARx model between the renewable 

resources historical series (input data), the dispatch model (external information) and the 

correlated renewable generation (output data) and spot prices scenarios. 

More details of the statistical model and simulated energy generation 

scenarios are disposed in the Appendix of the present document. However, it is 

important to highlight that both uncertainty factors �̃�𝑡 and �̃�𝑖,𝑡 are considered as 

input data and further explanation of the process for simulating the renewable 

energy scenarios is out of the scope of this work. Please refer for [32] to [35] in 

order to obtain more details from the model.  

Finally, in the hypothesis of market-driven liberalized frameworks where 

the operation is outcome of the energy spot prices (contrarily from the Brazilian 

case) and, for example, spot price is given in a shorter time basis (such as hourly 

or even few minutes), the model presented in the present work would still be 

valid, as soon as the set of uncertainty factors (�̃�𝑡 and �̃�𝑖,𝑡) recovers all critical 

aspects from such markets. 
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3.2  
Revenue of a RES pool 

At the present work, it is considered only one type of contract: the bilateral 

quantity contract, also known as contract for differences, or forward contracts. 

This type of contract is arranged between two agents: (i) an agent that sells energy 

rights, e.g., a GenCo or an ETC, and (ii) an agent that buys energy rights, e.g., a 

liberalized consumer or also an ETC. In Brazil, like many other markets, contracts 

establish the obligation, from the part of the seller, to deliver the exact amount of 

energy contracted per period. However, this obligation is only a financial 

instrument, without the need of the physical energy delivery, since all the energy 

produced by generators is injected onto grid. So, when an agent sells the contract, 

it assumes an energy duty with the system. On the other side, the buyer receives 

the same amount in energy rights. These amounts of traded energy are then 

cleared at spot market. For the sake of exemplification, in the case of a GenCo 

that has sold 𝑄  MWh at a fixed price 𝑃  $/MWh for example, the difference 

between its amount of energy rights (i.e. amount of energy generated) and its 

amount of energy duty (𝑄) in a given period is cleared at the spot market. If such 

difference is positive, this operation will bring financial gains, on the contrary, 

losses. In this setting, the (stochastic) net revenue �̃�𝑡 of the generator at a given 

period 𝑡 is denoted by 

�̃�𝑡(𝑄) = 𝑃 ⋅ 𝑄 + �̃�𝑡 ⋅ �̃�𝑡 − 𝑄 ⋅ �̃�𝑡, (3.1) 

where: (i) the first term of expression (3.1) defines the fixed payment received by 

the trade of the energy rights, which is part of the financial instrument of the 

bilateral contract and does not counts for the spot market clearance; (ii) the second 

term defines the clearance, at the spot price �̃�𝑡, of the energy rights obtained with 

the amount of energy generated at period 𝑡  and finally; (iii) the last term in 

expression (3.1) defines the clearance of the energy duty with the system (𝑄) at 

the spot market. For further details on bilateral contracts, please refer to [30], [31], 

[32] and [54]. 

In a more general sense, and introducing this concept to a portfolio 

framework, expression (3.1) can be reorganized in order to reflect the (stochastic) 

net revenue �̃�𝑡 of a pool of RES that recovers the sale of 𝑄 MWh on a financial 

bilateral quantity contract at a fixed payoff at price 𝑃 (in $/MWh): 
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�̃�𝑡
𝑃𝑂𝑂𝐿(𝑄) = (𝑃 − �̃�𝑡) ⋅ 𝑄 + ∑ �̃�𝑖,𝑡 ⋅ (�̃�𝑡 − 𝐶𝑖,𝑡

𝑈 )𝑖∈𝐼 , ∀ 𝑡 ∈  𝑇. (3.2) 

Where 𝐶𝑖,𝑡
𝑈  is introduced to denote the unitary cost of energy production of unit 𝑖 

in period 𝑡 in $/MWh, 𝐼 denotes the set of generators in the pool and 𝑇 denotes the 

set of periods in the horizon of the contract. In this new scheme, first term of 

expression (3.2) denotes the financial result of the (fixed) payoff against the spot 

market. The second term is the financial result due to the equivalent aggregated 

generation of the pool in the spot market. Moreover, as depicted in Figure 3.5, an 

optimal selling strategy 𝑄∗𝑃𝑂𝑂𝐿  of the pool should maximize a selected risk 

measure of value of the total stochastic cash flow given by (3.2). This is done by 

properly balancing the trade-off between the deterministic fixed payment part of 

the revenue of the contract against the risks associated with the spot market. A 

proper risk-adjusted measure for the future stochastic cash flow will be discussed 

further in the text.  
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Figure 3.5 – Exemplification of the contracted amount 𝑄 optimization benefits. 

Nevertheless, such amount Q is also subject to the regulatory limit of the 

total FEC of the pool: QPOOL ≤  ∑ FECii∈I , where FECi is the total amount of FEC 

issued by the regulator to generator i in avg-MW4 (see [30], [31] and [32] for 

further details). Although this is not an aspect discussed in the present work, it is 

also important to note that despite of the obligation on energy delivery be placed 

over seller agents, consumers must also settle differences between the contracted 

                                                 
4 Firm Energy Certificates (FEC) are usually issued in terms of avg-MW (MWh/year), based on the unit’s total long 

term average production per year. 
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amount and the energy effectively consumed. Nonetheless, usually the seller, 

legally representing the buyer, is responsible for the clearance operation.
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4  
RES pool under a cooperative game framework  

In general, games theory models mutual and independent behaviors of 

agents that interact among themselves. Such interaction can assume a cooperative 

character or even a conflicted character. These so called agents can be people, 

companies, institutions, countries, coalitions, etc., and are usually called players 

under this framework. The games theory is based on the idea that the best decision 

for a given agent should always be taken considering the possible decisions the 

other players in the market can take. Thus, under this framework, the optimal 

decision for such a player is conditional upon the optimal decisions of others. 

Games theory had its upsurge after John Nash
5
 published his articles [55], 

[56], [57] and [58] between 1950 and 1953, initiating the modern times of this 

area, with the introduction of the concepts of Nash equilibrium in non-cooperative 

games and also modeling a solution to cooperative games in [57] and [58]. The 

Nash equilibrium concept produced the distinction between cooperative and non-

cooperative games. The main difference is that in cooperative games, agreements 

can be forced (through contracts or decision on tribunals, for example), differently 

from non-cooperative games where only the equilibrium results are self-

sustainable (i.e., stable).  

Moreover, in cooperative games, players interact on a coordinate way in 

order to obtain better benefits than the ones that could be reached in case of non-

cooperation. Once the goal is reached, the direct challenge is placed on the way 

such benefits are distributed among players. As one of the assertions of games 

theory, in a cooperative game it is necessary to analyze the optimum strategies of 

each one of the possible coalitions of the game. Those can put in risk the stability 

of the grand coalition, producing the desertion by the part of some players from 

the pool in order to form smaller coalitions, even at the expense of others.  

                                                 
5 It is left here a respectful recognition for the contributions of John Forbes Nash, Jr, in Games Theory, a field of study 

which is vastly explored in the present work. Nash died tragically along with his wife in a car accident on Saturday, 23th of 
March, 2015, at the time of the production of this work. 
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In this context, cooperative games theory appears as an interesting area of 

study for allocation methods which are capable of producing results where the 

equilibrium among players can be reached. For example, cooperative games 

commonly use axioms and methods that produce a result considered fair by all 

participants. In this framework, the optimum Pareto is searched. The Pareto 

efficiency was developed by Vilfredo Pareto between centuries XIX and XX (see 

[59] and [60]). It states that an economic allocation is efficient in Pareto’s 

principle only if in case of loss on the utility of others, it is possible an increase in 

the utility of a given player.  

Granting all this, the pool scheme proposed at the present work is naturally 

embedded on the cooperative games framework since its main idea is aggregate 

value to a joint selling strategy of a set of RES, in order to take advantage of the 

intrinsic synergy on the energy production profile of different sources. Such 

scheme should also share the reduced price-and-quantity risk among the players 

of the pool. Furthermore, the sharing strategy should be such that every single 

player or coalition of players stays satisfied with the benefits received, that is, the 

decision of the quotas allocation should take into account the necessity of 

attending all possible coalitions of players. Hence, the only path to success is 

reaching the so important stability of the pool, when no player has any economic 

incentive to leave the grand coalition or move to any other subcoalition. 

Summarizing, this set of aspects of the proposed pool justifies the cooperative 

games theory as the appropriate framework to treat the quotas allocation problem. 

4.1  
The game setup 

In order to setup the cooperative game, it is relevant to formally introduce 

two important and vastly used concepts of cooperative games theory: (i) coalition 

and, (ii) characteristic function. First, given a set 𝐼 of 𝑛 players, i.e., 𝐼 = {1, … , 𝑛}, 

a coalition of players is formally defined as any combination of the elements 

(players) of 𝐼, reserving the name grand-coalition to the particular case of the 

coalition formed by all 𝑛  players of the set 𝐼 . At last, the term characteristic 

function was primarily introduced in 1947 by John Von Neumann and Oskar 

Morgenstern [61] to designate the function that calculates the value of the higher 
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benefits members of a given coalition can exploit through a cooperative action. 

Already, a game is defined by the set 𝐼 of 𝑛 players and a characteristic function 

𝑣, which assigns to each coalition of players a real number that represents the 

measure of the optimal selling strategy of its aggregated generation. 

4.1.1  
Notation 

This work uses the following transformation (or isomorphism) throughout 

the text: for each set 𝐶 ⊆ 𝐼 , there exists a transformation 𝑇: ℘{𝐼} → 𝔹𝑛 , with 

domain on the powerset of 𝐼 and image on the set of n-dimensional binary vectors 

𝔹𝑛  such that 𝑇(𝐶) = 𝒄. In this setting, hereinafter the coalitions of players are 

defined by a binary vector 𝒄 ∈ 𝔹𝑛 with 𝑛 entries, in which component 𝑐𝑖 assumes 

value 1 (one) if player 𝑖 belongs to the coalition and 0 (zero) otherwise.  

Thus, the characteristic function 𝑣: 𝔹𝑛 → ℝ  measures the value of a 

coalition 𝒄 ∈ 𝔹𝑛 . Still, the two elements, 𝐶 and 𝒄 = 𝑇(𝐶) , have a one-to-one 

correspondence or, in a more formal manner, are isomorphs. Yet, there is also the 

inverse transformation 𝑇− 1: 𝔹𝑛 → ℘{𝐼} such that 𝑇−1(𝒄) = 𝐶. In this context, the 

characteristic function 𝑣: ℘{𝐼} → ℝ, with domain on the powerset of 𝐼 and image 

in the Real Numbers, is now represented by 𝑣: 𝔹𝑛 → ℝ, having its domain shifted 

to the set of n-dimensional binary vectors (number of players). Note that in fact 

what is considered is 𝑣(𝑇−1(𝒄)), but for the sake of convenience on notation, 

from now on, it is simply used 𝑣(𝒄). In particular, 𝒄{𝑖} is the vector that represents 

the individual coalition where all elements assume value 0 (zero) except the one 

on the 𝑖 -th position, which assumes value 1 (one). In other words, 𝒄{𝑖}  is the 

coalition that represents the player 𝑖, individually. Also, vector 𝟙, of dimension 𝑛, 

which all elements assume value 1 (one) represents the great coalition itself and 

𝑣(𝟙) its respective characteristic function. In this same context, vector 𝟘, also of 

dimension 𝑛, is the null vector (the origin) which has the value 0 (zero) associated 

with its respective characteristic function, 𝑣(𝟘). Finally, 𝒞 is defined as the set of 

all possible subcoalitions of 𝐼 , excluding the grand coalition and the empty 

coalition, that is, 𝒞 = 𝔹𝑛\{𝟘, 𝟙}. Still, it is worth anticipating the set 𝒞  as of great 

value in terms of notation convenience throughout the text.   
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4.1.2  
Pool scheme 

As a risk mitigation mechanism, the RES pool does not ensure a prior fixed 

(deterministic) payoff for its participants. What is really allocated to each 

participant 𝑖  is a percentage 𝑥𝑖  of the future stochastic net revenue of the 

optimized joint trading strategy of the pool in both contract and spot market. Both 

the selling and the quota allocation strategies of the grand coalition are, hence, 

optimized by the pool manager, e.g., an independent ETC, following the common-

agreed pool standards. In this setting, the scheme proposed in this work belongs to 

the class of stochastic cooperative games [36]. Finally, the revenue of player 𝑖 in 

the pool is defined as follows: 

�̃�𝑖,𝑡
𝑝𝑜𝑜𝑙(𝑄∗𝑝𝑜𝑜𝑙) = 𝑥𝑖�̃�𝑡

𝑝𝑜𝑜𝑙(𝑄∗𝑝𝑜𝑜𝑙), ∀𝑡 ∈ 𝑇. (4.1) 

For the sake of clarification, Figure 4.1 exemplifies the payment flow of the 

pool.  

 

Figure 4.1 – Exemplification of the energy and payment flows of the proposed 

cooperative RES trading mechanism. 

4.1.3  
The value function 

The definition of a characteristic function in the context of a stochastic 

game requires a measure of value, or certainty equivalent, to assess the collective 

value of the stochastic outcome obtained with the optimal selling strategy for a 
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given coalition [18]. Measures of risk must recover the value of the future cash 

flow of a given asset and transcribe it in a single number. Additionally, measures 

of value have the goal of quantifying the exposure of the asset to risks and limit 

such risks to acceptable values. They compute the risk that a given position 

provides to agents, following the most different criteria and should also satisfy the 

agents in terms of comprehension, complexity and objectivity necessities.  

Additionally, it is worthwhile the use of measures of risk which exhibits 

particular characteristics that provide decision takers with tools that support 

operations involving risk control in decision processes. For example, one 

desirable aspect of the characteristic function in cooperative games is the 

superadditivity property, formally defined as follows. Let 𝐶1  and 𝐶2  be two 

coalitions of players (recall that 𝐶1 = 𝑇(𝒄1)  and 𝐶2 = 𝑇(𝒄2) ). So, a given 

measure of value 𝑣 is superadditive if the inequality on expression (4.2) holds.  

𝑣(𝐶1 ∪ 𝐶2) ≥  𝑣(𝐶1) +  𝑣(𝐶2), ∀ 𝐶1, 𝐶2 ⊆ 𝐼; 𝐶1 ∩ 𝐶2 = ∅. (4.2) 

Thus, in the cooperative games framework, superadditivity determines that 

the associated benefit of any coalition must be always greater or equal to the sum 

of the associated benefits of any partition of subcoalitions. This aspect is 

important because, since superadditivity must be satisfied for any 𝐶1 and 𝐶2, the 

property thus guarantees that the cooperation explores on a benefic way the 

available synergy among players and always generates value for the pool (in terms 

of increase on the pool’s total welfare). 

Hence, it is used at the present work the risk averse 𝛼-left-tail conditional 

value at risk (CVaR) to model the pool’s risk profile. Roughly speaking, the 

CVaR [62] applied to measure the value of stochastic incomes (net revenues) is 

defined as the average of the (1 − 𝛼)100% worst-case scenarios, i.e., those below 

the (1 − 𝛼)  quantile, or  𝛼  Value at Risk (VaR) [63]. In this setting, 𝛼  is a 

confidence level demanded by a risk-averse decision maker, generally ranging 

between 0.95 and 0.99. For purpose of comparison, Figure 4.2 illustrates the 𝛼-

VaR and 𝛼-CVaR for a general continuous probability density function 𝑓. 
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Figure 4.2 – CVaR of a general revenue probability mass function.  

 Moreover, the CVaR presents all desirable properties of a coherent measure 

of risk: it is monotone, homogeneous, superadditive and more (see [64] and [65] 

for further details). Besides that, the CVaR can be written as a maximization 

problem with linear constraints and be easily embedded in portfolio optimization 

problems [66], where what agents want is to maximize its objective function, or 

its certainty equivalent. 

Taking all this in consideration, the adopted certainty equivalent (or 

characteristic function) of the present work, assessed in a given point 𝒄 ∈ 𝒞, is a 

convex combination between this risk averse measure and the expected value, and 

defined as follows: 

 
𝑣(𝒄) = 𝑚𝑎𝑥

𝑄≥0
{ 𝜌𝛼,𝜆 ( ∑

�̃�𝑡(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

) |  𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖𝑐𝑖

𝑖∈𝐼

} . (4.3) 

Where, 

�̃�𝑡(𝑄, 𝒄) = (𝑃 −  �̃�𝑡)ℎ𝑡𝑄 + ∑ �̃�𝑖,𝑡(�̃�𝑡 − 𝐶𝑖,𝑡
𝑈 )𝑐𝑖

𝑖∈𝐼

  (4.4) 

is the stochastic net revenue in both contract and spot markets considering the 

total energy produced by the set of generators in the coalition and 𝜌𝛼,𝜆  is the 

adopted risk measure, formally defined as: 

𝜌𝛼,𝜆(⋅) = 𝜆 ⋅ 𝐶𝑉𝑎𝑅𝛼(⋅) + (1 − 𝜆) ⋅ 𝔼(⋅). (4.5) 
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In (4.3), 𝐽 is the risk-free opportunity cost of money between two periods (in 

percentage per period), and 𝐹𝐸𝐶𝑖  is the amount of FEC (in average-MW) of 

player 𝑖. The right-hand-side of expression (4.3) assesses the value of the optimal 

selling strategy of the coalition by choosing, within the total amount of FEC in the 

coalition, the energy amount to be sold in contract that maximizes the net present 

value of the stochastic cash flow defined in (4.4). In (4.5), 𝔼(⋅) accounts for the 

expected value operator and 𝛼 and 𝜆 are the risk-aversion parameters. Expression 

(4.3) is then a two-stage stochastic optimization problem and can be assessed by 

means of the following deterministic equivalent linear program (LP): 

 𝑣(𝒄) = 𝑚𝑎𝑥
𝑄,𝛥𝑠,𝑧

 𝜆 (𝑧 − ∑
𝑝𝑠 𝛥𝑠

(1 − 𝛼)
𝑠∈𝑆

) + (1 − 𝜆) ∑ 𝑝𝑠 (∑
𝑅𝑡,𝑠(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

)

𝑠∈𝑆

 (4.6) 

 subject to:  
 

𝛥𝑠 ≥ 𝑧 − ∑
𝑅𝑡𝑠(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

, ∀ 𝑠 ∈ 𝑆 (4.7) 

 𝛥𝑠 ≥ 0,                                       ∀ 𝑠 ∈ 𝑆 (4.8) 
 0 ≤ 𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖𝑐𝑖

𝑖∈𝐼

. (4.9) 

In this model, expressions (4.6)-(4.8) account for the CVaR, following the 

findings of [66] and (4.9) states the regulatory constraint on the amount of 

contracted energy, described earlier at the end of section 3.2.  

It is worth mentioning that the value of the optimal selling strategy of the 

pool (grand coalition) is a particular case of (4.3) and can be found by calculating 

𝑣(𝟙) , i.e., the value of the characteristic function assessed at the point  

𝒄 = 𝟙 = [1, … ,1]𝑇. In this case, expression (4.4) precisely meets the revenue of 

the pool, presented in (3.1) (and (3.2)), and the optimized amount of contract 

obtained in (4.3) meets the optimal selling strategy of the grand coalition, 𝑄∗𝑃𝑂𝑂𝐿. 

4.2  
The core is non-empty 

Mathematically, the core of a cooperative game can be defined as the set of 

quota allocation vectors 𝒙 such that the value allocated to every possible coalition 

𝒄 ∈ 𝒞  in the pool, given by 𝑣(𝟙) ∑ 𝑥𝑖𝑖∈𝐼  or, in vector notation,  
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𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙), is greater than or equal to its independent result 𝑣(𝒄). In this setting, 

the formal definition of the core is given as follows: 

𝐶𝑜𝑟𝑒(𝑣) ≔ {𝒙 ∈ [0,1]𝑛 |
𝟙𝑇𝒙 = 1

 𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) ≥ 𝑣(𝒄), ∀ 𝒄 ∈ 𝒞
}. (4.10) 

Inside the context of the core, it might be important to mention that the 

superadditivity property of the CVaR (and consequently, of the adopted certainty 

equivalent) does not guarantee the existence of the core in cooperative games, as 

disposed in [67]. In the next paragraphs it is presented the proof of non-emptiness 

of the core of the proposed cooperative game.  

The proof is based on the concept of a balanced collection of the coalitions 

in a cooperative game. The characteristic function 𝑣(𝒄) of a cooperative game 

which is defined as the optimal solution of a linear programming problem where 

the entire right-hand-side vector (from the set of constraints) is composed of a 

linear transformation of 𝒄 is said to be concave and positive homogeneous. This is 

the case of the present adopted characteristic function and the mutual existence of 

these two properties guarantee the existence of a balanced collection of the 

coalitions (see [15]). Therefore, the Bondareva-Shapley Theorem, which was 

independently proven by Olga Bondareva in 1963 [68] and by Loyd Shapley in 

(1967) [69] can be applied to prove the existence of the core. 

Likewise and more formally, the core of a cooperative game is nonempty if 

and only if there is at least one allocation vector of quotas that provides all 

coalitions in 𝒞  with a surplus value when participating in the grand coalition 

(pool). Therefore, the core is nonempty if and only if 𝑓∗ ≤ 𝑣(𝟙), where 𝑓∗  is 

defined as follows: 

 𝑓∗ = 𝑚𝑖𝑛
𝒙

𝑣(𝟙)(𝟙𝑇𝒙)  (4.11) 

 subject to:   
 𝑣(𝟙)(𝒄𝑇𝒙) ≥ 𝑣(𝒄) : 𝜇𝑐 , ∀ 𝒄 ∈ 𝒞. (4.12) 

Note that the absence of the constraint 𝟙𝑇𝒙 = 1 in formulation (4.11)-(4.12) 

allows the search of the minimum amount of value 𝑓∗ necessary to provide all 

possible coalitions with a surplus when shared among players through an optimal 

solution 𝒙∗ . Thus, if 𝑓∗ , through the quota allocation vector 𝒙∗  such that 

𝟙𝑇𝒙∗ < 1, is strictly lower than 𝑣(𝟙), one can share the excess among players in 

many ways in order to guarantee gains for individual players and, consequently, it 
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is guaranteed the core is non-empty. Additionally, note also that in this case the 

excess is given by 𝑣(𝟙)(1 − 𝟙𝑇𝒙∗) > 0. 

So, according to the strong duality theorem, the optimal solution of problem 

(4.11)-(4.12) equals the optimal solution of its dual problem, which is given by: 

 𝑓∗ = 𝑚𝑎𝑥
𝜇

∑ 𝜇𝒄𝑣(𝒄)

𝒄∈𝒞

 
(4.13) 

 subject to:  
 ∑ 𝒄𝑇𝜇𝒄

𝒄∈𝒞

 = 𝟙𝑇 (4.14) 

 𝜇𝒄 ≥ 0, ∀ 𝒄 ∈ 𝒞, (4.15) 

where 𝜇𝒄 are the dual variables of the set of constraints (4.12). Hence, the core is 

nonempty if and only if 

𝑓∗ = ∑ 𝜇𝑐
∗𝑣(𝒄)

𝒄∈𝒞

≤ 𝑣(𝟙). (4.16) 

For instance, this derivation follows the aforementioned Bondareva-Shapley 

Theorem. Furthermore, in (4.16), {𝜇𝑐
∗}𝒄∈𝒞  is the optimal solution of problem 

(4.13)-(4.15).  

According to (4.6)-(4.9), 𝑣(𝒄)  is a convex optimization problem whose 

right-hand-side (RHS) is composed by a linear transformation of 𝒄. Then, from 

linear programming theory, the following properties of function 𝑣 are verified (for 

the sake of brevity the proofs will be omitted): 

i. 𝒗  is concave: ∑ 𝑎𝒄𝑣(𝒄)𝒄∈𝒞 ≤ 𝑣(∑ 𝑎𝒄𝒄𝒄∈𝒞 ) , if 𝑎𝒄 ≥ 0, ∀ 𝒄 ∈ 𝒞  and 

∑ 𝑎𝒄𝒄∈𝒞 = 1; 

ii. 𝒗 is positive homogeneous: 𝑣(𝑏 ⋅ 𝒄) = 𝑏 ⋅ 𝑣(𝒄), for all 𝑏 > 0. 

Thus, according to properties (i) and (ii), which guarantees a balanced 

collection of coalitions, by setting {𝑎𝒄 =
𝜇𝒄

∗

∑ 𝜇𝒄
∗

𝒄∈𝒞
}

𝒄∈𝒞
, the following inequality 

holds true: 

∑ 𝜇𝒄
∗𝑣(𝒄)

𝒄∈𝒞

≤ 𝑣 (∑ 𝜇𝒄
∗𝒄

𝒄∈𝒞

). (4.17) 

Finally, the proof is complete by replacing the RHS of (4.17) by 𝑣(𝟙), 

which can be justified by the dual constraint (4.14), and thus meeting the 

existence condition (4.16). 
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5  
Allocation methods 

Once proved the joint trading strategy always brings financial benefits in 

terms of risk mitigation ([13],[19]), the subsequent challenge is how to share the 

quotas of the pool among its participants in order to secure their financial benefits 

and the consequent stability of the pool. As previously mentioned, this need relies 

in the problem of finding allocation quotas that belong to the core of the game, 

since not all allocation methods has the property of generating solutions of this 

kind. For the sake of motivation, next it is presented a small example for the quota 

allocation problem. 

5.1  
A brief motivation 

In a simple example, take three generator units with different energy 

production profiles that trade their energy in the FTE. For instance, the three 

generators are each one of the RES disposed in Chapter 2. Suppose risk-averse 

agents and that the metric used to calculate the future financial cash flow of their 

assets is the one defined by (4.3), applied to various scenarios of future stochastic 

income (under uncertainty), under risk-averse parameters 𝜆 = 90%  and 𝛼 =

95%. Furthermore, the referenced metric is also applied to medium-term contracts 

(e.g. 12 months). 

For the sake of comparison, in this example all agents maximize their 

respective certainty equivalent to obtain optimum energy trading revenues. Still, 

the trading strategy is done via standard sales contract with a fixed price of 100 

$/MWh. Thus, Table 5.1 disposes the values agents quantify their respective 

businesses, as well as the joint selling strategy of the aggregated energy of all 

possible combinations from the three sources, in order to help the investigation of 

the cooperation among the three profiles. 
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Table 5.1 – Comparison of the future stochastic revenues of three different renewable 
units that trade their energy in the FTE individually and through cooperation. 

Unit (or coalition) 
(𝒄) 

FEC  
(avg-MW) 

Contracting level  
(% of FEC) 

Revenue in $ 
(𝑣(𝒄)) 

Small hydro (SH) 5 59% 2,447.00   

Biomass (Bio) 1 79% 594.99   

Wind Power (WP) 1 84% 683.00   

SH – Bio 6 65% 3,411.03   

SH – WP 6 72% 3,509.97   

Bio – WP 2 84% 1,378.93   

SH – Bio - WP 7 75% 4,467.94   

The first column of Table 5.1 denotes the FEC of each player, and the 

respective aggregated FEC of each possible coalition of players, as a sum of the 

FEC of its participants. The third column expresses the optimum quantity, 

regarding to the FEC, that each coalition of units sells through the standard sales 

contract, leaving the difference to be settled at the spot market, using the same 

logic of Figure 3.5 (regarding to optimal contracting level 𝑄∗). At last, the forth 

column disposes the value of the optimum trading strategy of coalitions’ energy.  

Analyzing the results, it can be noticed the cooperation would result in a 

future stochastic revenue (𝑅𝑐𝑜𝑜𝑝) greater then the sum of the individual ones. 

Therefore, the generated synergic gain should be shared among units. The first 

and intuitive guess is to divide the benefit in the same rate as the unit’s FEC 

represent from the total, which is theoretically equivalent to the amount of energy 

that each player contributed with. The results of this sharing scheme are disposed 

in Table 5.2. The first three lines of second column denote the quotas sharing for 

each individual player and the subsequent lines denote the quota of each coalition, 

which is equal to the sum of the quotas of individual players that participate in 

each coalition. Thus, following expression (4.1), the total monetary value 

allocated to a given coalition is equal to its quotas times the total value of the 

grand coalition (disposed in last cell of Table 5.1). Finally, the last row denotes 

the difference between the value a given coalition receives in the cooperation and 

its value if trading its energy by itself. 
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Table 5.2 – Allocation of the benefits in a possible cooperation proportionally to the 
respective FEC of each player in relation to the cooperation’s total FEC. 

Unit (or coalition) 
(𝒄) 

Allocation  

(𝒄𝑇𝒙) 

Original  
Revenue in $ 

(𝑣(𝒄)) 

Revenue in the  
cooperation in $  

(𝑅𝑐𝑜𝑜𝑝 ⋅ 𝒄𝑇𝒙) 

Absolute gains in $ 

(𝑅𝑐𝑜𝑜𝑝 ⋅ 𝒄𝑇𝒙 − 𝒗(𝒄)) 

Small hydro (SH) 71.43% 2,447.00  3,191.45  744.45  

Biomass (Bio) 14.29% 594.99  638.47  43.48  

Wind Power (WP) 14.29% 683.00  638.47  - 44.53  

SH – Bio 85.72% 3,411.03  3,829.92  418.89  

SH – WP 85.72% 3,509.97  3,829.92  319.95  

Bio – WP 28.58% 1,378.93  1,276.94  - 101.99  

The results show a curious aspect of cooperative games: in spite of the 

cooperation generates value for the units’ energy trading, depending on the way 

the allocation is made, some units can obtain great advantages of the cooperation, 

case of the small hydro, whereas others can even have losses, case of the wind 

power plant. Under this condition, the cooperation is not stable, since the wind 

power plant would rather trade its energy individually in the market. Thus, under 

this framework, it is important to share the quotas on a smart way, with the main 

objective of keeping the cooperation stable. The next sections present different 

types of methods for sharing the quotas of a cooperative game.  

5.2  
FEC-proportional 

This allocation method is built as the one in the above example of section 

5.1 and does not require any games theory technique since the combination of 

players does not disturb the marginal contribution of each player in the coalition. 

Mathematically, the bellow-disposed expression denotes the formal definition of 

this allocation method. 

𝑥𝑖
𝐹𝐸𝐶 = 𝑣(𝟙)

𝐹𝐸𝐶𝑖

∑ 𝐹𝐸𝐶𝑖𝑖∈𝐼  
 . (5.1) 

Please note that, differently from the other methods (that will be presented next) 

the sharing represented by (5.1) is independent of coalitional synergic effects. 

Therefore, an agent 𝑖 is remunerated only by its individual energy contribution, in 

terms of FEC, for the pool. Additionally, this allocation method does not 

guarantee a solution inside the core of the cooperative game, even if the core is 

non-empty, as already shown. 
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5.3  
Shapley value 

The Shapley value was introduced by Lloyd Shapley in 1953 [70] and is a 

solution method for quota allocation problems in cooperative games theory. In 

this method, the distribution of the total benefits generated by the grand coalition 

among all players is calculated at once, through the determination of the 

respective contribution of each player to the coalition. Thus, the Shapley value of 

each player 𝑖 can be retrieved through the average of its marginal contribution in 

all possible (sub)coalitions that such player can participate. For the quota 

allocation problem of a RES pool, the Shapley value associated with a given 

player 𝑖 is given as 

𝑥𝑖
𝑆𝑉 =

[
1
𝑛! (∑ [(𝟙𝑇𝒄)! (𝑛 − (𝟙𝑇𝒄) − 1)!] ⋅ [𝑣(𝒄 + 𝒄{𝑖}) − 𝑣(𝒄)]

(𝒄∈𝒞)|𝑐𝑖=0
)]

𝑣(𝟙)
, (5.2) 

where  𝑥𝑖
𝑆𝑉  is the quota associated to player 𝑖, 𝑛 is the number of players in the 

grand coalition, and (𝟙𝑇𝒄)  accounts for the number of players in coalition. 

Additionally, 𝒄{𝑖}  is the aforementioned vector full of zeros with input 1  at 

position 𝑖 that represents the coalition of player 𝑖, individually. Thereby, 𝒄 + 𝒄{𝑖} 

represents the coalition 𝒄  with the inclusion of player 𝑖 . Hence,  

𝑣(𝒄 + 𝒄{𝑖}) is the characteristic function associated to coalition 𝒄 including agent 

𝑖. Note that in this case, 𝒄 denotes a vector which has value 0 at position 𝑖 and 

vector 𝒄{𝑖}  is the null vector, except by value 1  in position 𝑖 . Thus, the sum  

𝒄 + 𝒄{𝑖} will obligatorily place the value 1 at position 𝑖 of vector 𝒄. Finally, 𝑣(𝒄) 

the characteristic function associated to coalition 𝒄 only (without agent 𝑖). 

Although the method is constructed on an intuitive way, it unfortunately 

presents two drawbacks. The first is the increase on its complexity while the 

number of players in the coalition grows, since it is built under a combinatory 

basis. The second drawback is the lack of isonomy, where large players can 

obtain, on a disproportional way, greater benefits in a given coalition. This effect 

occurs because, differently than the smaller ones, large players are less sensible in 

the input order in the analytical expression used to calculate the allocation. 
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5.4  
Marginal Benefits 

The allocation method by Marginal Benefits is based on the idea that a fair 

solution for quotas allocation in a cooperative game is achieved when the benefit 

regarding to a given player 𝑖 is proportional to the marginal contribution of such 

player to the coalition’s total benefit. In other words, the quota sharing is done 

according to the marginal increase player 𝑖 grant to the benefit 𝑣(𝒄) of a given 

coalition 𝒄 (e.g., the grand coalition 𝒄 = 𝟙), which is promoted by the contribution 

of the vector of resources 𝒃𝑖. So, the monetary benefit that player 𝑖 receives in the 

particular case of the grand coalition is given by 𝜙𝑖 =
𝜕𝑣(𝒄)

𝜕𝑐𝑖
|

𝒄=𝟙
, which is the 

marginal increment of the benefit function assessed in 𝒄 = 𝟙 , induced by the 

component 𝑐𝑖 (regarding player 𝑖) of the total vector of resources 𝒄 of the grand 

coalition. For instance, the resources a given player 𝑖 brings to a given coalition 

are: (i) FEC, which can be translated as contracting capacity and; (ii) the spot 

price revenue under the measure of value given by (4.5). 

Furthermore, since the benefit function of the RES pool is obtained through 

an LP (Linear Programming problem) (model (4.6)-(4.9)), the marginal benefit 

can be directly retrieved from the value of the dual variables associated with the 

constraints of the resources of each player. Such variables carry the information 

on how the objective function, i.e., total benefit of the pool, varies with the 

marginal increment of resource associated to such constraint (see [17] for further 

details).  

Thus, in order to devise the Marginal Benefits allocation, first take the 

generalization of characteristic function disposed in (4.3), as follows: 

 𝑣(𝒄) = 𝑚𝑎𝑥
𝒙

{𝒂𝑇𝒙} + ∑ 𝑐𝑖𝑞𝑖
𝑖∈𝐼

.  (5.3) 

 subject to:   

 𝑨𝒙 ≤ ∑ 𝑐𝑖𝒃𝑖
𝑖∈𝐼

 : 𝛄 (5.4) 

 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼,  (5.5) 

where 𝒙 is the vector of decision variables for the generalized problem and 𝜸 is 

the vector of dual variables associated to problem’s set of constraints, (5.4). From 

the duality theory, the derivative of the objective function 𝑣(𝒄) with respect to the 

resource 𝒃𝑖 grant by player 𝑖 in the coalition is given by: 
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𝜕𝑣

𝜕𝑐𝑖

(𝒄) = 𝜸∗, (5.6) 

where 𝜸∗  is the vector of dual variables in the optimal solution. Hence, the 

monetary amount received by player 𝑖 is given by 

𝜙𝑖 = 𝜸∗𝑇𝒃𝑖 + 𝑞𝑖  , (5.7) 

where 𝑞𝑖 denotes the derivation of the second part of the RHS of expression (5.3) 

in relation to the component 𝑐𝑖 of the pool’s total resource.  

Now, recall the LP model that defines the characteristic function in  

(4.6)-(4.9), which can be properly rearranged in order to separate the resources 

terms from the decision variables terms, in ways of model  (5.3)-(5.5), as follows. 

 𝑣(𝒄) = 𝑚𝑎𝑥
𝑄,𝑧,𝛥𝑠

{𝜆 (𝑧 − ∑
𝑝𝑠𝛥𝑠

1 − 𝛼
𝑠

)

+ (1 − 𝜆) (∑ 𝑝𝑠(𝑃 − 𝜋𝑡,𝑠)𝑄ℎ𝑡

𝑡,𝑠

)}

+ ∑ 𝑐𝑖  ∑(1 − 𝜆)𝑝𝑠𝜋𝑡,𝑠𝐺𝑖,𝑡,𝑠ℎ𝑡

𝑡,𝑠𝑖∈𝐼

  

 (5.8) 

 subject to:   

 𝑧 − 𝛥𝑠 − ∑(𝑃 − 𝜋𝑡,𝑠)

𝑡

𝑄ℎ𝑡 ≤ ∑ 𝑐𝑖𝜋𝑡,𝑠𝐺𝑖,𝑡,𝑠ℎ𝑡

𝑖,𝑡

 : 𝛾𝑠, ∀𝑠 ∈ 𝑆 (5.9) 

 𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖𝑐𝑖

𝑖

 :𝛽 (5.10) 

 𝑄 ≥ 0  (5.11) 
 𝛥𝑠 ≥ 0, ∀𝑠 ∈ 𝑆,  (5.12) 

where 𝛾𝑠 and 𝛽 are the dual variables associated to constraints (5.9) and (5.13), 

which are reformulated versions of (4.7) and (4.9), respectively. The segregation 

of the players’ resources onto the RHS of constraints (5.9)-(5.10), like in (5.4), 

makes the derivation of the benefit function much easier. Furthermore, since the 

last term of the objective function (5.8) is not part of the maximization operator, 

the dual variables incorporate no information of such component, which in turns 

have to be derived separately. In this setting, this pair of derivations is done 

following (5.7). 

Finally, the derivation of 𝑣(𝒄) in relation to a given component 𝑐𝑖 is denoted 

by: 
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𝜙𝑖 =
𝜕𝑣

𝜕𝑐𝑖

(𝒄)|
𝒄=𝟙

= ∑ 𝛾𝑠
∗𝜋𝑡,𝑠𝐺𝑖,𝑡,𝑠ℎ𝑡

𝑡,𝑠

+ 𝛽∗𝐹𝐸𝐶𝑖 + (1 − 𝜆) ∑ 𝑝𝑠𝜋𝑡,𝑠𝐺𝑖,𝑡,𝑠ℎ𝑡

𝑡,𝑠

, (5.13) 

where the first two terms are the derivatives, with respect to 𝑐𝑖 , of the RHS 

(resources) of constraints (5.9) and (5.10), respectively and the last term is the 

derivative, also with respect to 𝑐𝑖 , of the constant (last) term of the objective 

function (5.8), following (5.7), accordingly. For instance, the resources a given 

player 𝑖  brings to a given coalition are: (i) FEC, which can be translated as 

contracting capacity, associated to the dual variable 𝛽; (ii) the spot price revenue 

under the measure of value given by (4.5), where 𝛾𝑠 is related to for the CVaR and 

𝑞𝑖  regards to the expected value. In this setting, the Marginal Benefits method 

allocates to each player the respective portion of the objective function of the 

corresponding dual problem, which is equal to the primal problem in the optimal 

solution. Thus, it recovers the total value of 𝒗(𝟙). 

Additionally, it is important to note that in (5.13) 𝜙𝑖 is the monetary benefit 

value (in $) produced by the resources with which player 𝑖 contributes to the pool. 

Hence, in order to obtain the value of the quota itself, in percentage of the total 

value of the grand coalition, as done in the other methods, it is necessary to divide 

such number by the total value of the pool. 

Finally, the allocation of a given player 𝑖 in the pool, through the Marginal 

Benefits method, is given by:  

𝑥𝑖
𝑀𝐵 =

𝜙𝑖  

𝑣(𝟙)
. (5.14) 

5.5  
Nucleolus 

The goal of the renewable pool is to find the optimum-selling strategy for its 

aggregated energy generation profile and guarantee its own stability by 

distributing benefits for its participants. Therefore, the pool manager needs to 

share the participants’ quotas in such a way that the value of the quotas allocated 

to any coalition of players exceeds the value of its optimal selling strategy, outside 

the pool, for a given contract price opportunity, 𝑃 ($/MWh), and risk-profile, 𝛼 

and 𝜆 . In other words, the quota allocation must be such that the difference 
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𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄) holds for all 𝒄 ∈ 𝒞. Thereby, such expression represents the 

monetary gain (in $) that a given coalition 𝒄 has when participating in the pool.  

An allocation with these properties belongs to the core of the cooperative 

game. This work studies the Nucleolus allocation method, which is known to be 

computationally intensive, for a large number of players. The main goal of the 

Nucleolus method is to share the quotas such that the monetary worst-case gain 

among all coalitions is maximized. Hence, by construction, if the core of the 

cooperative game is non-empty, the solution produced by the Nucleolus lays 

inside the core. It is worth mentioning that, in cooperative games theory, the word 

Nucleolus is the given name for the point (or solution) that maximizes the worst-

case gain among all players. Therefore, the name of the method coincides with the 

optimum value it produces as output. 

Moreover, the gain of a given coalition 𝒄 ∈ 𝒞 in the pool can be retrieved by 

computing the difference between the revenue, in terms of 𝜌𝛼,𝜆, of the cash flow 

obtained with the totality of the quotas allocated for such coalition and the cash 

flow it would obtain with the respective optimal selling strategy outside the pool. 

Thus, under a given shared quotas, defined by the vector 𝒙 = [𝑥1, … , 𝑥𝑛]𝑇 , the 

gain of a given coalition 𝒄 in the pool is defined by: 

𝑔(𝒄, 𝒙) = 𝜌𝛼,𝜆 ( ∑
�̃�𝑡

𝑃𝑂𝑂𝐿(𝑄∗𝑃𝑂𝑂𝐿)

(1 + 𝐽)𝑡

𝑡∈𝑇

(𝒄𝑇 ⋅ 𝒙)) − 𝑣(𝒄), (5.15) 

where 𝒄𝑇 ⋅ 𝒙 = ∑ 𝑐𝑖 ⋅ 𝑥𝑖𝑖∈𝐼  is the inner product that computes the sum of quotas 

allocated to coalition 𝒄. 

Since the CVaR is a coherent and positive-homogeneous measure of risk  

(as previously mentioned), so the product (𝒄𝑇 ⋅ 𝒙)  can be extracted from the 

measure 𝜌𝛼,𝜆  and because, according to expression (4.3), the characteristic 

function of the grand coalition can be assessed a priori as  

𝑣(𝟙) = 𝜌𝛼,𝜆 ( ∑
�̃�𝑡

𝑃𝑂𝑂𝐿(𝑄∗𝑃𝑂𝑂𝐿)

(1+𝐽)𝑡𝑡∈𝑇 ), expression (5.15) can be rewritten  as: 

𝑔(𝒄, 𝒙) = 𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄). (5.16) 

In this context, the quota allocation vector 𝒙 for the Nucleolus allocation method 

for the proposed RES pool can be retrieved via the following mathematical 

programming problem: 
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 𝛿∗ = 𝑚𝑎𝑥
𝛿,𝒙

𝛿 (5.17) 

 subject to:  

 𝛿 ≤ 𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄), ∀𝒄 ∈ 𝒞 (5.18) 
 𝟙𝑇 ⋅ 𝒙 = 1 (5.19) 
 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (5.20) 

In (5.17), the auxiliary variable 𝛿 is maximized. Constraints (5.18) ensure 

the gains of all coalitions 𝒄 ∈ 𝒞, except the grand coalition, and are responsible 

for making δ to push the worst-case gain coalition to the higher value as possible 

and constraint (5.19) guarantees the quotas are shared on its totality. Moreover, 

note that in the optimum point (solution), (𝛿∗, 𝒙∗), 𝛿∗ = 𝑚𝑖𝑛𝒄∈𝒞{𝑔(𝒄, 𝒙∗)}. 

The drawback of (5.17)-(5.19) is its famous computational burden, since the 

number of constraints grows exponentially while the number 𝑛 of players in the 

pool increases, due to the combinatory nature of the coalitions. The number of 

constraints in (5.17)-(5.19) relies on the cardinality of the set of (sub)coalitions 𝒞, 

which is 2𝑛 − 1 . As an example, if 𝑛 = 30 , one would need to assess the 

characteristic function 𝑣(𝒄) more than one billion of times to obtain the right-

hand-side (RHS) vector of the problem. The complexity of this assessment is 

enforced by the fact that, in the present problem, the RHS vector is defined as a 

two-stage stochastic optimization portfolio problem, i.e., the computation of 𝑣(𝒄). 

Thus, in the next chapter, an efficient methodology is derived to solve problem 

(5.17)-(5.19) without needing to explicitly impose the full set of gain constraints 

(5.18).  

5.6  
Proportional Nucleolus 

Since the Nucleolus method is based on the maximization of the worst-case 

gain in terms of monetary value, in cases where a coalition is formed with players 

of different size, the solution can produce some distortion in terms of the relative 

gain among coalitions. For the sake of simplicity, imagine a simple game of three 

players where the quota-sharing is given by the Nucleolus method, as follows. 
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Table 5.3 – Quotas sharing via the Nucleolus allocation method for a game with players 
disproportionally sized. 

coalition 
(𝒄) 

FEC  
(avg-MW) 

Revenue  
in $10

3
 

(𝑣(𝒄{𝒊})) 

Allocation 
(𝑥𝑖) 

Absolute Gain 
in ($) 

(𝑣(𝟙) − 𝑣(𝒄{𝒊})) 

Proportional Gain  

(
𝑣(𝟙) − 𝑣(𝒄{𝒊})

𝑣(𝒄{𝒊})
) 

SH 5 2,447.00   63.27% 379.86  15.52%  

Bio 1 594.99   17.38% 181.54  30.51%  

WP 1     683.00   19.35% 181.54  26.58%  

SH – Bio 6 3,411.03   80.65% 192.37  5.64%  

SH – WP 6 3,509.97   82.62% 181.45  5.17%  

Bio – WP 2 1,378.93   36.73% 262.15  19.01%  

SH – Bio - WP 7 4,467.94   w-c gain: 181.45  5.17%  

Although the (monetary) absolute worst-case gain was maximized, resulting 

in a gain of $ 379.86 thousand for the small hydro unit which is at principle a 

very good gain, the unit could claim better benefits, once the two smaller units, 

biomass and wind power, had not so smaller monetary gains but contributed only 

with 1  avg-MW of FEC each for the cooperation, while the small-hydro, 

contributed with much more energy. This leaves a sensation that the smaller units 

are “surfing the wave” of the small hydro. Additionally, the percentage gains, 

disposed in the last column of Table 5.3 shows a smaller gain for the bigger unit, 

besides pointing a considerable difference between the smaller ones, while both 

contributed with the same amount of FEC.  

The Proportional Nucleolus reduces such distortion since its main goal is to 

maximize the worst-case gain proportionally (or relatively) to the value coalitions 

receive by themselves. Nevertheless, the gain function the Proportional Nucleolus 

maximizes is 
𝑣(𝟙)−𝑣(𝒄)

𝑣(𝒄)
, which should also hold for all 𝒄 ∈ 𝒞  (as stated in the 

Nucleolus gain function, in previous section) and which is also the object in focus 

of the last column in Table 5.3. For comparison purposes, Table 5.4, disposed 

bellow, denotes the results of the quota allocation via the Proportional Nucleolus 

method for the same game of Table 5.3.  
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Table 5.4 – Contrast of the quotas sharing via the Proportional Nucleolus allocation 
method for the game of Table 5.3. 

coalition 
(𝒄) 

FEC  
(avg-MW) 

Revenue in 
$10

3
 

(𝑣(𝒄{𝒊})) 

Allocation 
(𝑥𝑖) 

Absolute Gain 
in ($) 

(𝑣(𝟙) − 𝑣(𝒄{𝒊})) 

Proportional Gain  

(
𝑣(𝟙) − 𝑣(𝒄{𝒊})

𝑣(𝒄{𝒊})
) 

SH 5 2,447.00   66.77% 536.24  21.91%  

Bio 1 594.99   15.42% 93.97  15.79%  

WP 1 683.00   17.81% 112.74  16.51%  

SH – Bio 6 3,411.03   82.19% 261.17  7.66%  

SH – WP 6 3,509.97   84.58% 269.02  7.66%  

Bio – WP 2 1,378.93   33.23% 105.77  7.67%  

SH – Bio - WP 7 4,467.94   w-c gain: 93.97  7.66%  

In this second case, admitting that the absolute worst-case gain dropped 

from $ 181.45 thousand on the previous example by half, it is undeniable the 

proportional benefit of 21.91% for the small hydro is more reasonable. This would 

also keep away the risk of the bigger player (small hydro) quit the cooperation, 

which would be a bad deal for the cooperation and, first and foremost, for the 

smaller players. Still, note that the difference between the gains of the small 

players was decreased. Finally, the proportional worst-case gains among all 

coalitions increased from 5.17% to 7.66%. 

In the formal (and further) definition of the Proportional Nucleolus method, 

it might be worth make use of the Nucleolus notation previously presented, in 

order to save time, since both methods are really similar. Therefore, the 

proportional gain function for a given coalition 𝒄 and quota allocation vector 𝒙 is 

given by: 

 𝑔𝑝(𝒄, 𝒙) =
𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄)

𝑣(𝒄)
. (5.21) 

Furthermore, in this setting the Proportional Nucleolus allocation method to 

share the quotas of the proposed RES pool can be retrieved via the following 

mathematical programming problem. 

 𝛿𝑝∗ = 𝑚𝑎𝑥
𝛿𝑝,𝒙

𝛿𝑝 (5.22) 
 subject to: 

 
 

𝛿𝑝 ≤
𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄)

𝑣(𝒄)
, ∀𝒄 ∈ 𝒞 (5.23) 

 𝟙𝑇 ⋅ 𝒙 = 1 (5.24) 

 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (5.25) 
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In (5.22), the auxiliary variable 𝛿𝑝 is maximized. Constraints (5.23) ensure the 

proportional gains of all coalitions  𝒄 ∈ 𝒞 , except the grand coalition, and are 

responsible for making 𝛿𝑝 to push the proportional worst-case gain coalition to 

the higher value as possible and constraint (5.24) guarantees the quotas are shared 

on its totality. Moreover, note that in the optimum point (solution), (𝛿𝑝∗, 𝒙∗), 

𝛿𝑝∗ = 𝑚𝑖𝑛𝒄∈𝒞{𝑔𝑝(𝒄, 𝒙∗)}. 

The Proportional Nucleolus method has the same computational drawback 

of his predecessor. Additionally, it brings one more difficulty when the devised 

efficient methodology that bypasses such computational issue is applied to it. 

Fortunately, this second drawback will also be appropriately solved in the sequel. 

5.7  
The pros and cons of studied allocation methods 

The fact that the core of the proposed cooperative game is non-empty 

provides a very good signal for the stability of the pool, since some of the 

methods presented above always generate solutions inside the core, whenever it 

exists (which is thus the case of the present work). Therefore, with such solutions, 

no player has incentives to leave the pool, once benefits are guaranteed for all 

possible coalitions of players.  

On a slightly different manner, games theory also discusses the concept of 

fairness of the many different solution methods. Despite a given solution for a 

cooperative game could bring substantial gains for the cooperation, this does not 

grant fairness, necessarily. For instance, if a given solution allocates great part of 

the global gains for a single player and little gains for the remaining players, such 

solution would be said to bring stability for the cooperation, although not being 

fair at all. Contradictorily, in such situation the absence of fairness could even 

break the stability of the cooperation, forcing some players to quit the pool.  

In this context, researchers in cooperative games evaluate the level of 

fairness from solution methods on different ways. Moreover, it is also important 

to state that the concept of fairness is subjective and very personal. It depends on 

the characteristics of each case or application. For example, a very common way 

to evaluate the fairness of a given solution is via the marginal contributions of 

each player to the final results of the grand coalition, which is the main concept 
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behind the Shapley value and Marginal Benefits methods. However, as stated 

before, Shapley value method is not scalable and case studies presented in 

Chapter 7 will show that the Marginal Benefits method can produce solutions with 

null worst-case gains, i.e., the method is not as stable as the Nucleolus, for 

example. As pointed before, another intuitive way of generating a fair solution 

would be proportionally by terms of the size of each player in the cooperation, via 

the rational “what you give is what you get”. However, the motivation Section 5.1 

of the present Chapter has already shown that this kind of solution does not bring 

stability for the cooperation in certain cases.  

On the other hand, another common argument to produce fair solutions is 

based on the maximization of the worst-case gain, such as the Nucleolus methods 

do. Summarizing, it is important to note that there is no unanimity about which is 

the best type of allocation. Each of the different aforementioned methods has their 

pros and cons, which shall be further pointed out throughout the text. So, while 

choosing a quota sharing methodology, it is necessary to take into account the 

appropriate balance between the stability and the fairness each solution method 

can provide.  

Particularly, the nucleolus allocation methods are associated to the concept 

of strong fairness, as well as strong stability: while maximizing the worst-case 

gain among all possible coalitions of players, the methods are maximizing a 

measure of stability. For this reason the present work focus on nucleolus methods. 

Additionally, after solving the Nucleolus problems, the proposed methodology 

runs a post-optimization algorithm to maximize individual worst-case gains, in 

order to improve even more the incentives for individual agents. Moreover, it is 

intuitive that players would pursue greater individual gains relatively to the best it 

could be obtained outside the cooperation, which motivates the present work to 

focus on the Proportional Nucleolus method. Finally, next chapter presents the 

methodology that overcomes the computational burden of the nucleolus methods, 

which is responsible for placing these methods a little ahead from the other ones. 
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6  
Allocation methods by Benders decomposition 

As previously mentioned, in order to work-around the combinatory 

explosion problem on the number of constraints, an efficient methodology is 

devised to solve (5.22)-(5.24) without needing to explicitly build the full set of 

constraints. Hence, problem (5.22)-(5.24) can be rewritten as the following 

nonlinear optimization problem: 

 𝛿∗ = 𝑚𝑎𝑥
𝛿,𝒙

𝑔∗(𝒙) 
(6.1) 

 subject to:  

 𝟙𝑇 ⋅ 𝒙 = 1 (6.2) 
 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (6.3) 

Where, 𝑔∗(𝒙) = 𝑚𝑖𝑛𝒄∈𝒞 𝑔(𝒄, 𝒙)  represents the optimal value of 𝛿  for each 

feasible vector 𝒙  in (5.22)-(5.24) which is the worst-case gain, among all 

coalitions for a given allocation vector 𝒙. Thus, according to (5.21), the worst-

case gain function can be defined as the following expression: 

𝑔∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

{𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄)}. (6.4) 

Moreover, according to (4.3), expression (6.4) can be expanded to: 

𝑔∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

{𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑚𝑎𝑥
0≤𝑄≤∑ 𝐹𝐸𝐶𝑖𝑐𝑖𝑖∈𝐼

𝜌𝛼,𝜆 ( ∑
�̃�𝑡(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

)} . (6.5) 

Once that for a general function 𝑓 , the equality 𝑚𝑎𝑥(𝑓) = −𝑚𝑖𝑛(−𝑓) always 

holds, expression (6.5) can be expressed as: 

𝑔∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

{𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) + 𝑚𝑖𝑛
0≤𝑄≤∑ 𝐹𝐸𝐶𝑖𝑐𝑖𝑖∈𝐼

−𝜌𝛼,𝜆 ( ∑
�̃�𝑡(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

)} . (6.6) 

Furthermore, since vector 𝒄  is a parameter for the 𝑚𝑎𝑥𝑄{⋅}  operator of the 

characteristic function (in expression (4.3)), the joint minimization of variables 𝒄 

and 𝑄 can be properly done, as disposed in the following two steps: 
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𝑔∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

{ 𝑚𝑖𝑛
0≤𝑄≤∑ 𝐹𝐸𝐶𝑖𝑐𝑖𝑖∈𝐼

[𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝜌𝛼,𝜆 ( ∑
�̃�𝑡(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

)]} (6.7) 

and, finally, 

𝑔∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

0≤𝑄≤∑ 𝐹𝐸𝐶𝑖𝑐𝑖𝑖∈𝐼

{𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝜌𝛼,𝜆 ( ∑
�̃�𝑡(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

)} , (6.8) 

which is equivalent to (6.4), representing the worst-case gain among all possible 

coalitions of the cooperative game, for a given allocation vector 𝒙. Additionally, 

in (6.4), 𝑔∗(𝒙)  is defined as a pointwise minimum within a family of affine 

functions in 𝒙, inside a set indexed by 𝒄 ∈ 𝒞, {𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄)}𝒄∈𝒞 . Hence, 

𝑔∗(𝒙) is a concave function of 𝒙 (see chapter 3.2.3 of [41]). In such a framework, 

the MILP (6.1)-(6.3) is suitable for the Benders decomposition approach.   

6.1  
MILP formulation for the Nucleolus worst-case gain function 

The challenge of computing 𝑔∗(𝒙) is the need to evaluate expression (5.16) 

for all possible coalitions of players. This would demand the assessment of 2𝑛 − 2 

two-stage stochastic programs to find 𝑣(𝒄) for all 𝒄 ∈ 𝒞. However, 𝑔∗(𝒙) can be 

written as a MILP that finds 𝒄∗ for each 𝒙 and is solved efficiently by Branch-and-

Cut algorithms [71], thus avoiding the need to explicitly explore the whole set of 

coalitions. According to the definition of 𝑣(𝒄)  in (4.3), the worst-case gain 

function can be assessed by the following program: 

 
𝑔∗(𝒙) = 𝑚𝑖𝑛

𝒄,𝑄
 𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝜌𝛼,𝜆 ( ∑

�̃�𝑡(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

) (6.9) 

 subject to:  

 0 ≤ 𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖𝑐𝑖

𝑖∈𝑁

 (6.10) 

 1 ≤ 𝟙𝑇 ⋅ 𝒄 ≤ 𝑛 − 1 (6.11) 
 𝑐𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼. (6.12) 

In (6.9)-(6.12), the objective function minimizes expression (5.16) to assess the 

worst-case function (6.4). Expression (6.10) is directly inferred from (4.3), and 

expression (6.11) excludes the null and the grand coalitions from the feasible set 

according to (6.4). Finally, (6.12) imposes the binary nature to the decision vector 
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𝒄 . The problem (6.9)-(6.12) can be solved by its deterministic equivalent 

formulation, which can be obtained by replacing the second term of (6.9) with 

expressions (4.6)-(4.8). This formulation leads to a MILP that can be solved by 

commercial solvers such as IVE Xpress [72]. 

It is worth to highlight that the problem (6.9)-(6.12) is a separation problem 

that discovers the worst-case constraint violation for a given quota allocation 

vector. To do that, it co-optimizes the vector 𝒄 and quantity 𝑄 to select, in the set 

of constraints defined in (5.18), the constraint with the lowest right-hand-side (a 

similar idea is proposed in [38]). Then, the current vector of quotas is said to 

belong to the core of the game if and only if the result of this minimization is non-

negative. Under this framework, problem (6.9)-(6.12) can be also understood as 

an “oracle” that determines if a given vector of allocated quotas belongs to the 

core independently of the allocation method used to find it. This separation 

problem will be used as a cut generator in the developed decomposition 

framework of the next section.  

6.2  
Benders decomposition algorithm 

Pursuing a more efficient solution in terms of computational effort, Benders 

decomposition technique [73] prompted as an alternative: the main idea consists 

in splitting the problem (6.1)-(6.3), which has high computational complexity, 

into two problems of low computational cost. Benders decomposition was 

developed to solve problems of elevated computation cost and is quite common in 

large-scale stochastic programming problems applications. The two problems that 

compose the technique are so-called primary and secondary problems or problems 

of first and second levels, respectively. Still, the primary problem is also 

commonly known as master problem.  

The intuition behind the method is to approximate a convex function with 

the first-order Taylor expansion through hyperplanes, known as Benders cuts. 

Under this framework, the problem is solved by way of an iterative process, with 

the addition of new cuts in each step, until a certain tolerance level over the value 

of the objective function is achieved as well as the consequent convergence 

(termination) of the algorithm. In the worst case analysis, the first level 
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completely recovers the feasible region of the original problem, by means of the 

cuts generated by the secondary level, which is the one that assesses the true 

function under inspection. However, in most cases, few iterations are necessary.    

At the proposed method, a master problem is solved to determine an upper 

bound, 𝑈𝐵(𝑘) , for δ∗  and an optimal solution 𝒙(𝑘)  in each iteration 𝑘 .  This 

allocation 𝒙(𝑘) is a trial solution for the Nucleolus problem (6.1)-(6.3). Therefore, 

the true function 𝑔∗(𝒙) can be evaluated in 𝒙(𝑘), by (6.9)-(6.12) to determine a 

lower bound, 𝐿𝐵(𝑘), for 𝛿∗ and to obtain a new cut for the first level. The master 

problem of each iteration 𝑘 optimizes an outer approximation for 𝑔∗(𝒙) built as 

the pointwise minimum of the Benders cuts, which are affine approximations of 

the function around 𝒙(𝑘). This problem can be written as the following LP: 

 𝑈𝐵(𝑘) = 𝑚𝑎𝑥
𝛿,𝒙

𝛿 
(6.13) 

 subject to:  

 𝛿 ≤ 𝑔∗(𝒙(𝑗)) + 𝜕𝑔∗(𝒙(𝑗))
𝑇

(𝒙 − 𝒙(𝑗)), ∀𝑗 = 1, … , 𝑘 − 1 (6.14) 

 𝟙𝑇 ⋅ 𝒙 = 1 (6.15) 
 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (6.16) 

Where the objective function (6.13) maximizes an auxiliary variable δ that, in the 

optimal solution, meets the value of the lowest cut considered in the problem. The 

set of constraints (6.14) represent the Benders cuts, in which 𝜕𝑔∗(𝒙(𝑗))
𝑇

 is the 

subgradient of 𝑔∗ when 𝒙 = 𝒙(𝑗). And according to (6.4): 

𝜕𝑔∗(𝒙(𝑗))
𝑇

= 𝑣(𝟙)𝒄(𝑘)
𝑇 . (6.17) 

 The following algorithm summarizes the Benders Decomposition approach 

to solve problem (6.1)-(6.3). 

Benders decomposition algorithm 

1: Initialization: 

2:   𝑘 ← 1 and 𝒙(𝑘) = 𝟙𝑛−1; 

3:   𝑈𝐵(𝑘) ← +∞ and 𝐿𝐵(𝑘) ← 𝑔∗(𝒙(𝑘)). 

4: While 𝑈𝐵(𝑘) − 𝐿𝐵(𝑘) > 𝜀 do: 

5:   𝑘 ← 𝑘 + 1; 

6:   Solve the master problem (6.13)-(6.16) and store 𝑈𝐵(𝑘) and 𝒙(𝑘); 

7:   Solve the MILP (6.9)-(6.12) for 𝒙(𝑘) and store 𝑔∗(𝒙(𝑘)) and 𝜕𝑔∗(𝒙(𝑘))
𝑇
; 

8:   𝐿𝐵(𝑘) ← 𝑔∗(𝒙(𝑘)). 

9: Repeat do 
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Because 𝑔∗ is concave, the algorithm finitely converges to an ε-near optimal 

(global) solution 𝒙(𝑘∗), i.e., |𝑔∗(𝒙(𝑘∗)) − 𝛿∗| ≤ 𝜀. In the case study section, the 

performance of the Benders algorithm is compared with the classical full 

coalition-dependent formulation (5.22)-(5.24).  

It is important to note that the Benders cuts expression, (6.14), precisely 

recovers expression (5.23) for each coalition found in step 7 of the algorithm. 

Therefore, in the specific case of this application, the proposed Benders algorithm, 

devised as an outer (dual) representation of the worst-case gain function, can also 

be understood as a primal algorithm. In this setting, the algorithm finds a subset of 

the most-inner constraints of (5.23) necessary to allow the master problem, which 

is a relaxed version of the full problem, to obtain the optimal solution of (5.22)-

(5.24). This set of constraints is also known as umbrella constraints [40]. Next, it 

will be illustrated the algorithm’s iterative process. 

 

Figure 6.1 – Iteration 1 of the illustrative example of the Nucleolus allocation algorithm via 

Benders decomposition. 

The illustrative example of Figure 6.1 represents the approximation of the 

worst-case gain function 𝑔∗(𝒙) (vertical axis), which is function of the allocation 

vector 𝒙 (horizontal axis). What the algorithm does is approximate the worst-case 

function through support planes, represented in the figure by the linear by parts 

concave curve, until finding the point 𝒙∗  of Figure 6.1, that maximizes the 

function 𝑔∗(𝒙) (note that 𝑔∗(𝒙∗) = 𝛿∗). The dashed line in the horizontal axis 
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represents the range of allocations that defines the core of the cooperative game, 

since it is the rage where the worst-case gain function assumes positive values. 

Additionally, the figure denotes an example where the problem’s initial 

formulation that contains the constraints of individual gain. Here only the cuts for 

players 𝒄{1}, 𝒄{2} and 𝒄{3} are represented, but actually there is one cut for each 

player in the cooperative game. Nonetheless, these initial cuts will be employed 

on an improved version of the algorithm, further in the text. The next steps of the 

algorithm are depicted in the sequel.  

At initialization, first, the iteration counter (𝑗) is set to 1 and a confidence 

level 𝜀 is defined. Next, the first trial solution 𝒙(1) is found, together with the first 

upper bound, 𝑈𝐵(1), for the problem. Both are represented in Figure 6.2. Note that 

the point that intersects cuts 𝒄{1} and 𝒄{3} defines 𝑈𝐵(1), since it maximizes 𝑔∗(𝒙), 

given cuts 𝒄{1}, 𝒄{2} and 𝒄{3}.  

 

Figure 6.2 – Iteration 2 of the illustrative example of the Nucleolus allocation algorithm via 

Benders decomposition. 

Now equipped with 𝒙(1) , the algorithm adds the cut 1  to the problem’s 

formulation, since the worst-case coalition 𝒄{1} was found. At this moment, the 

first lower bound for the problem is also obtained, when 𝑔∗(𝒙(1)) defines 𝐿𝐵(1), 

since the assessment of the real worst-case gain function is done at the point 𝒙(1). 

As the gap between the upper and lower bounds is still not satisfactory, i.e. 
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𝜀 < 𝑈𝐵(1) − 𝐿𝐵(1) , the iteration counter is incremented in one unit and the 

algorithm follows to step 3. 

 

Figure 6.3 – Iteration 3 of the illustrative example of the Nucleolus allocation algorithm via 

Benders decomposition. 

A new trial solution, 𝒙(2), is found solving once more the problem defined 

in (6.13)-(6.16), that now contains the cut 1, added at the previews step. A new 

upper bound, 𝑈𝐵(2), is also retrieved. With the new trial allocation vector 𝒙(2) in 

hands, the algorithm finds the new worst-case coalition 𝒄(2)  and the respective 

lower bound of iteration 2, 𝐿𝐵(2). Such procedures are disposed in Figure 6.3. 

Note that the new gap (𝑈𝐵(2) − 𝐿𝐵(2)) is smaller than the first one but it is, also, 

bigger then 𝜀 and therefore, not yet satisfactory (𝜀 < 𝑈𝐵(2) − 𝐿𝐵(2) < 𝑈𝐵(1) −

𝐿𝐵(1)). Therefore, the second cut is added, the iteration counter incremented and 

the procedure is continued. Finally, it can be noted that by repeating the procedure 

once more, only, with the addition of the next cut, the illustrative algorithm 

converges to the optimum solution, reaching the pair (𝛿∗, 𝒙∗).  

Hence, expression (6.14) represents each one of the generated cuts in the 

problem’s original polyhedron (expression (5.23)) during the iterative process, 

significantly reducing the feasible space, since the problem’s feasible region 

frontier is approximated through hyperplanes. The main objective is to find and 

allocation vector 𝒙  such that all subcoalition receives from the pool a greater 

value then it would individually obtain. Instead of worrying about with all 
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possible coalitions, which is already known to be an intractable problem, what the 

algorithm pursues is to approximate, linearly by parts, via the function  

𝑔∗(𝒙) = min𝒄∈𝒞 𝑔(𝒄, 𝒙), the worst-case gain function, given an allocation 𝒙. 

Under this framework, the methodologies presented in (6.14) and (5.22)-

(5.24) are equivalent. To demonstrate such aspect, it is sufficient the substitution 

of (6.17) in (6.14) that, for a given cut in a given iteration 𝑘, leads towards the 

following expression:   

𝛿 ≤ 𝑔∗(𝒙(𝑘)) + 𝑣(𝟙) (𝒄∗𝑇 ⋅ (𝒙 − 𝒙(𝑘))). (6.18) 

Then, since 𝑔∗(𝒙(𝑘)) = 𝑚𝑖𝑛𝒄∈𝒞 𝑔(𝒄, 𝒙(𝑘)) = 𝑣(𝟙)(𝒄∗𝑇 ⋅  𝒙(𝑘)) − 𝑣(𝒄∗),  the 

following expression holds. 

𝛿 ≤ 𝑣(𝟙)(𝒄∗𝑇 ⋅  𝒙(𝑘))  − 𝑣(𝒄∗) + 𝑣(𝟙) (𝒄∗𝑇 ⋅  𝒙) − 𝑣(𝟙)(𝒄∗𝑇 ⋅  𝒙(𝑘)), (6.19) 

which finally yields to: 

𝛿 ≤ 𝑣(𝟙)(𝒄∗𝑇 ⋅  𝒙)  − 𝑣(𝒄∗). (6.20) 

In this setting, the problem constituted by expressions (6.13)-(6.16) can have the 

expression (6.14) substituted by (6.20). Thus, it is built in the same way of 

problem (5.22)-(5.24). 

 The presented methodology saves computational effort since the second 

level does not need to visit all possible coalitions of players, focusing only in the 

ones that have the lower gains. In this context, a reasoning gain in terms of 

computing time is expected in the RES pool quotas sharing problem. Case studies 

will be further presented in the text to corroborate with such expectation and also 

will all theory and concepts presented throughout the work. The most relevant 

result is the comparison table between the quotas sharing of the RES pool via the 

Full Coalition Dependent Nucleolus methods and the Benders decomposition 

approaches.  

6.3  
MILP formulation for the Proportional Nucleolus worst-case gain 
function 

As previously mentioned, besides the computational issue, which can be 

properly solved through the model disposed in the previews section, the 
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Proportional Nucleolus method has one more drawback: when the just described 

Benders decomposition method is applied to it, the problem becomes non-linear. 

That is due to the method’s original formulation, which aims to maximize the 

proportional gain of the coalitions, 
𝑣(𝟙)(𝒄𝑻⋅𝒙)−𝑣(𝒄)

𝑣(𝒄)
, where the vector of coalitions 𝒄 

in this form of the problem is a decision variable. Fortunately, the formulation can 

be properly linearized through fractional programming technique, found in a 

general form in section 4.3.2 of [41]. However, the present application follows the 

findings of [42], which differently from [41] presents a version of the technique 

where (besides the linear variables) the integer variables are strictly binary, case 

of the present problem. The main idea behind the technique is to introduce new 

variables that yield to a non-linear optimization problem containing only products 

of decision variables (instead of division of variables) that can, so, be linearized 

via the big- 𝑀  technique. The non-linear formulation for the Proportional 

Nucleolus allocation method and the respective linearized solution problem are 

disposed in the sequel. 

Hence, the fractional programming technique presented in [42] will be 

depicted, but considering only the variables involved in the particular case of the 

present work. That is due to the fact that, in the referred model, linear and binary 

variables are present at both numerator and denominator of the function object of 

linearization. In the case of the present work, the integer variables are also binary, 

which allows the application of the solution presented in [42]. However, the 

Proportional Nucleolus presents only binary variables at the numerator and only 

linear variables in the denominator. Therefore and reinforcing, please do refer to 

[41] for a more general model and further information. 

Thus, first take the general non-linear problem:  

 𝑓 = 𝑚𝑖𝑛
𝒙,𝒚

 
𝒂𝑇𝒚

𝒃𝑇𝒙
 (6.21) 

 subject to:  

 𝒒𝑇𝒙 + 𝒓𝑇𝒚 = 0 (6.22) 
 𝒙 ≥ 𝟘, 𝒚 ∈ {0,1}𝑛, (6.23) 

where 𝒃𝑇𝒙 must be strictly positive, since it is on the denominator of  (6.21). 

Then, the variables 𝑢 =
1

𝒃𝑇𝒙
 and 𝒙𝑢 =

𝒙

𝒃𝑇𝒙
= 𝒙 ⋅ 𝑢 are introduced. Please note that 

the superscript ‘𝑢’ in 𝒙𝑢  is only for notation purposes and does not denote an 
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exponent. Next, 
1

𝒃𝑇𝒙
 is replaced by 𝑢 in the objective function and since 𝑢 is also 

strictly positive, (6.22) can be multiplied by 𝑢 without further problems. These 

steps yield to the following formulation. 

 𝑓 = 𝑚𝑖𝑛
𝒙,𝒚,𝑢

 𝒂𝑇(𝒚 ⋅ 𝑢) 
(6.24) 

 subject to:  

 𝒒𝑇(𝒙 ⋅ 𝑢) + 𝒓𝑇(𝒚 ⋅ 𝑢) = 0 (6.25) 
 𝒃𝑇(𝒙 ⋅ 𝑢) = 1 (6.26) 
 𝒙 ≥ 𝟘, 𝑢 ≥ 0, 𝒚 ∈ {0,1}𝑛, (6.27) 

where (6.26) defines variable 𝑢. Then, the substitution of variables 𝒙𝑢 is properly 

done, together with the replacement of the product 𝒚 ⋅ 𝑢  by the new variable 

𝒘 = 𝒚 ⋅ 𝑢, leading to the final problem: 

 𝑓 = 𝑚𝑖𝑛
𝒙,𝒚,𝒘,𝑢

 𝒂𝑇𝒘 
(6.28) 

 subject to:  

 𝒒𝑇𝒙𝑢 + 𝒓𝑇𝒘 = 0 (6.29) 
 𝒃𝑇𝒙𝑢 = 1 (6.30) 
 𝒘 ≤ 𝑢 ⋅ 𝟙 (6.31) 
 𝒘 ≤ 𝑀 ⋅ 𝒚 (6.32) 
 𝒘 ≥ 𝑢 ⋅ 𝟙 − 𝑀(𝟙 − 𝒚) (6.33) 
 𝒙 ≥ 𝟘, 𝒘 ≥ 𝟘, 𝑢 ≥ 0, 𝒚 ∈ {0,1}𝑛, (6.34) 

which is the final linear and equivalent formulation for the original problem, 

where 𝑀 is a sufficiently large number and (6.31)-(6.33) are the so-called big-𝑀 

constraints, responsible for making 𝒘 properly recover the dynamic of the product 

𝒚 ⋅ 𝑢. In this setting, when a given entry of 𝒚 assumes value 1, the product should 

assume the value 𝑢. This is guaranteed by (6.31)-(6.33), since the sufficiently 

large 𝑀 leaves (6.32) unrestricted and the pair {(6.31), (6.33)} forces the relation 

𝑢 ⋅ 𝟙 ≤ 𝒘 ≤ 𝑢 ⋅ 𝟙, i.e. 𝒘 = 𝑢 ⋅ 𝟙 . On the other hand, when a given entry of 𝒚 

assumes value 0, the product should also assume the value 0. Again, this is also 

guaranteed by (6.31)-(6.33), since the sufficiently large number 𝑀 and the pair 

{(6.32),(6.33)} force the relation (𝑢 − 𝑀) ⋅ 𝟙 ≤ 𝟘 ≤ 𝒘 ≤ 𝟘, i.e. 𝒘 = 𝟘, and 𝒘 is 

non-negative. Under this framework, the choice of a proper value for 𝑀 is crucial 

for the correct functioning of the formulation, in computational terms, due to 

numerical-precision issues. This choice will be discussed further in the text. 

Hereinafter in the chapter the MILP formulation for the Proportional Nucleolus 

will be presented, culminating with the fractional programing technique applied to 

the specific case of this work. 
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For convenience purposes, since the Proportional Nucleolus method is very 

similar to its precursor method and the MILP formulations for both methods are 

almost identical, once again, the proceeding to devise the formulation for the 

MILP will be skipped. In this context, please refer to section 6.1 for the full 

development. Hence, the worst-case gain function for the Proportional Nucleolus 

can be assessed by the following program: 

 𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛
𝒄,𝑄

 
𝑣(𝟙)(𝒄𝑇 ⋅ 𝒙) − 𝑣(𝒄)

𝑣(𝒄)
 (6.35) 

 subject to:  

 0 ≤ 𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖𝑐𝑖

𝑖∈𝑁

 (6.36) 

 1 ≤ 𝟙𝑇 ⋅ 𝒄 ≤ 𝑛 − 1 (6.37) 
 𝑐𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼. (6.38) 

Accordingly, the problem that determines the upper bound 𝑈𝐵(𝑘)  for the 

Proportional Nucleolus at a given iteration 𝑘  of the Benders decomposition 

algorithm is stated as: 

 𝑈𝐵(𝑘) = 𝑚𝑎𝑥
𝛿,𝒙

𝛿 
(6.39) 

 subject to:  

 𝛿 ≤ 𝑔𝑝∗(𝒙(𝑗)) + 𝜕𝑔𝑝∗(𝒙(𝑗))
𝑇

(𝒙 − 𝒙(𝑗)),   ∀𝑗 = 1, … , 𝑘 − 1 (6.40) 

 𝟙𝑇 ⋅ 𝒙 = 1 (6.41) 
 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (6.42) 

Moreover, the set of constraints (6.40) represent the Benders cuts for the 

Proportional Nucleolus, in which 𝜕𝑔𝑝∗(𝒙(𝑗))
𝑇

 is the subgradient of 𝑔𝑝∗
 when 

𝒙 = 𝒙(𝑗). And according to (5.21): 

𝜕𝑔𝑝∗(𝒙(𝑗))
𝑇

=
𝑣(𝟙)

𝑣(𝒄)
𝒄(𝑘)

𝑇 . (6.43) 

Under this structure, since the vector of coalitions 𝒄 is a decision variable and due 

to the characteristic function 𝑣(𝒄)  placed at the denominator of the objective 

function expression that involves the proportional gains, problem (6.35)-(6.38) 

turns to be non-linear. As a consequence, it cannot be solved by MILP solvers. 

Nevertheless, it is good to highlight that, although the cut constraints (6.40) in the 

method also involves a proportional gain expression, it does not represent a 

problem for the method. The reason is that the problem that determines the upper 

bound does not see this non-linearity, once the decision variable under 
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optimization is only the trial quota allocation vector 𝒙, with 𝒄 simply playing the 

role of a parameter. 

The fractional programming technique is then applied to solve the non-

linearity of (6.35)-(6.38). The starting point is the Proportional Nucleolus worst-

case gain function: 

𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

{
𝑣(𝟙)(𝒙𝑇 ⋅ 𝒄)

𝑣(𝒄)
}, (6.44) 

which is a non-linear minimization problem on the binary variable 𝒄. Replacing 

𝑣(𝒄)  in (6.44) by the expression of the characteristic function, the following 

equivalent form of the worst-case gain function is: 

𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛
𝑐∈𝒞

{
𝑣(𝟙)(𝒙𝑇 ⋅ 𝒄)

𝑚𝑎𝑥
𝑄

𝜌 (�̃�(𝑄, 𝒄))
}, (6.45) 

which is a different case of the ones studied in [41] and [42] due to the 

maximization problem in the denominator of the objective function of the outer 

minimization. Fortunately, since the maximization of the risk measure 𝜌{�̃�(𝑄, 𝒄)} 

in the denominator naturally minimizes {
𝑣(𝟙)(𝒙𝑻⋅𝒄)

𝑚𝑎𝑥𝑄 𝜌(�̃�(𝑄,𝒄))
} , the following joint 

minimization: 

𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛
𝒄∈𝒞

0≤𝑄≤∑ 𝐹𝐸𝐶𝑖𝑐𝑖𝑖∈𝐼

{
𝑣(𝟙)(𝒙𝑇 ⋅ 𝒄)

𝜌 (�̃�(𝑄, 𝒄))
}, (6.46) 

is valid. Recall that the denominator should be strictly positive and this is the case 

of the present problem. This will be demonstrated through the analysis of the 

behavior of the characteristic function of the game where �̃�𝑡,𝑠(𝑄, 𝒄) was expanded 

via (3.2): 

 𝑣(𝒄) = 𝑚𝑎𝑥
𝑄

{𝜌𝛼,𝜆 ( ∑
(𝑃 −  �̃�𝑡)ℎ𝑡𝑄 + ∑ �̃�𝑖,𝑡(�̃�𝑡 − 𝐶𝑖,𝑡

𝑈 )𝑐𝑖𝑖∈𝐼

(1 + 𝐽)𝑡

𝑡∈𝑇

)} (6.47) 

 subject to:  

 0 ≤ 𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖 ⋅ 𝑐𝑖

𝑖∈𝐼

. (6.48) 

In (6.47)-(6.48), note that: (i) the second part of the revenue expression is always 

positive, since �̃�𝑖,𝑡 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 , �̃�𝑡 ≥ 0 ∀𝑡 ∈ 𝑇  and the unit is only 
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dispatched if its generation cost 𝐶𝑖,𝑡
𝑈  is lower than the spot price �̃�𝑡  (system’s 

marginal cost); (ii) since the objective function maximizes the measure 𝜌𝛼,𝜆 , 

whenever the first part of the (measure over the) revenue expression attempt to be 

negative, the 𝑚𝑎𝑥𝑄{⋅} operator would annul 𝑄 , preventing a negative revenue. 

Thus, 𝑣(𝒄) is strictly positive.  

The equivalent deterministic formulation for (6.46) is given by: 

 𝑔𝑝∗(𝒙) = 

𝑚𝑖𝑛
𝒄,Δ𝑠,𝑧,𝑄

𝑣(𝟙)(𝒙𝑇 ⋅ 𝒄)

𝜆 (𝑧 − ∑
𝑝𝑠

(1 − 𝛼)
Δ𝑠𝑠∈𝑆 ) + (1 − 𝜆) ∑ 𝑝𝑠 (∑

𝑅𝑡,𝑠(𝑄, 𝒄)
(1 + 𝐽)𝑡𝑡∈𝑇 )𝑠∈𝑆

 (6.49) 

 subject to:  

 
0 ≤ 𝛥𝑠 ≥ 𝑧 − ∑

𝑅𝑡,𝑠(𝑄, 𝒄)

(1 + 𝐽)𝑡

𝑡∈𝑇

, ∀ 𝑠 ∈ 𝑆 (6.50) 

 0 ≤ 𝑄 ≤ ∑ 𝐹𝐸𝐶𝑖 ⋅ 𝑐𝑖

𝑖∈𝐼

 (6.51) 

 1 ≤ 𝟙𝑇 ⋅ 𝒄 ≤ 𝑛 − 1 (6.52) 

 𝑐𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼. (6.53) 

It is worth mentioning that such problem has a very specific construction 

and could fortunately be put in the form of (6.21)-(6.23) and so be solved through 

the solution presented in [42]. Finally, the particular function of the present work 

is, thus, now suitable for fractional programming. 

Hence, the following variables are introduced: 

 𝑢 =
1

𝑣(𝒄)
=

1

𝜆(𝑧−∑
𝑝𝑠

(1−𝛼)
𝛥𝑠𝑠∈𝑆 )+(1−𝜆) ∑ 𝑝𝑠(∑

𝑅𝑡,𝑠(𝑄,𝒄)

(1+𝐽)𝑡𝑡∈𝑇 )𝑠∈𝑆

 ,  
(6.54) 

 𝑧𝑢 =
𝑧

𝜆(𝑧−∑
𝑝𝑠

(1−𝛼)
𝛥𝑠𝑠∈𝑆 )+(1−𝜆) ∑ 𝑝𝑠(∑

𝑅𝑡,𝑠(𝑄,𝒄)

(1+𝐽)𝑡𝑡∈𝑇 )𝑠∈𝑆

 ,  (6.55) 

 𝛥𝑠
𝑢 =

𝛥𝑠

𝜆(𝑧−∑
𝑝𝑠

(1−𝛼)
𝛥𝑠𝑠∈𝑆 )+(1−𝜆) ∑ 𝑝𝑠(∑

𝑅𝑡,𝑠(𝑄,𝒄)

(1+𝐽)𝑡𝑡∈𝑇 )𝑠∈𝑆

 ,    ∀𝑠 ∈ 𝑆  (6.56) 

 𝑄𝑢 =
𝑄

𝜆(𝑧−∑
𝑝𝑠

(1−𝛼)
𝛥𝑠𝑠∈𝑆 )+(1−𝜆) ∑ 𝑝𝑠(∑

𝑅𝑡,𝑠(𝑄,𝒄)

(1+𝐽)𝑡𝑡∈𝑇 )𝑠∈𝑆

 .  (6.57) 

The next steps are then: (i) replace the denominator of the objective function 

(6.49) by 
1

𝑢
 and; (ii) multiply both sides of constraints (6.50)-(6.52) by 𝑢. These 

two steps are valid in this case, since 𝑢 is strictly positive, so the formulation 

remains unsullied. This leads to the following formulation where, again, 𝑅𝑡,𝑠(𝑄, 𝒄) 

was expanded via (3.2): 
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 𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛
𝒄,𝛥𝑠,𝑧,𝑄,𝑢

 𝑣(𝟙) ∑ 𝑥𝑖
𝑖∈𝐼

(𝑐𝑖 𝑢) (6.58) 

 subject to:  

 
𝛥𝑠 𝑢 ≥ 𝑧 𝑢 − ∑

(𝑃− 𝜋𝑡,𝑠)ℎ𝑡𝑄 𝑢+∑ 𝐺𝑖,𝑡,𝑠(𝜋𝑡,𝑠−𝐶𝑖,𝑡
𝑈 )𝑐𝑖 𝑢𝑖∈𝐼

(1+𝐽)𝑡𝑡∈𝑇 , ∀ 𝑠 ∈ 𝑆  (6.59) 

 𝑄 𝑢 ≤ ∑ 𝐹𝐸𝐶𝑖  𝑐𝑖 𝑢

𝑖∈𝐼

 (6.60) 

 1 𝑢 ≤ 𝑐𝑖 𝑢 ≤ (𝑛 − 1) 𝑢, ∀𝑖 ∈ 𝐼 (6.61) 
 𝜆 (𝑧 𝑢 − ∑

𝑝𝑠

(1−𝛼)
𝛥𝑠 𝑢𝑠∈𝑆 ) +

(1 − 𝜆) ∑ 𝑝𝑠 (∑
(𝑃− 𝜋𝑡,𝑠)ℎ𝑡𝑄 𝑢+∑ 𝐺𝑖,𝑡,𝑠(𝜋𝑡,𝑠−𝐶𝑖,𝑡

𝑈 )𝑐𝑖 𝑢𝑖∈𝐼

(1+𝐽)𝑡𝑡∈𝑇 ) = 1𝑠∈𝑆   
(6.62) 

 𝑢 ≥ 0 (6.63) 
 𝑐𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼 (6.64) 

 𝛥𝑠 ≥ 0,              ∀𝑠 ∈ 𝑆, (6.65) 

where the new expression (6.62) imposes the definition of 𝑢 through the relation 

(6.54). Furthermore, the resulting formulation is still non-linear, since the 

objective function had the division of decision variables replaced by a product of 

decision variables. However, this new formulation can be linearized, through the 

transformation of the product (𝑐𝑖 𝑢) into the new variable 𝑤𝑖 . Hence, replacing 

(𝑐𝑖 𝑢) by 𝑤𝑖 in the formulation (6.58)-(6.62), the following problem is obtained.  

 𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛
𝒄,𝒘,𝛥𝑠

𝑢,𝑧𝑢,𝑄𝑢,𝑢
 𝑣(𝟙) ∑ 𝑥𝑖

𝑖∈𝐼
𝑤𝑖 (6.66) 

 subject to:  

 
𝛥𝑠

𝑢 ≥ 𝑧𝑢 − ∑
(𝑃− 𝜋𝑡,𝑠)ℎ𝑡𝑄𝑢+∑ 𝐺𝑖,𝑡,𝑠(𝜋𝑡,𝑠−𝐶𝑖,𝑡

𝑈 )𝑤𝑖𝑖∈𝐼

(1+𝐽)𝑡𝑡∈𝑇 ,    ∀ 𝑠 ∈ 𝑆  (6.67) 

 𝑄 𝑢 ≤ ∑ 𝐹𝐸𝐶𝑖  𝑤𝑖

𝑖∈𝐼

 (6.68) 

 𝑢 ≤ 𝑤𝑖 ≤ (𝑛 − 1) ⋅ 𝑢, ∀𝑖 ∈ 𝐼 (6.69) 
 

𝜆 (𝑧𝑢 − ∑
𝑝𝑠

(1 − 𝛼)
𝛥𝑠

𝑢

𝑠∈𝑆

) + 

(1 − 𝜆) ⋅ ∑ 𝑝𝑠 (∑
(𝑃− 𝜋𝑡,𝑠)ℎ𝑡𝑄𝑢+∑ 𝐺𝑖,𝑡,𝑠(𝜋𝑡,𝑠−𝐶𝑖,𝑡

𝑈 )𝑤𝑖𝑖∈𝐼

(1+𝐽)𝑡𝑡∈𝑇 )𝑠∈𝑆 = 1  

(6.70) 

 𝑤𝑖 ≤ 𝑢                            ∀𝑖 ∈ 𝐼 (6.71) 
 𝑤𝑖 ≤ 𝑀 𝑐𝑖                    ∀𝑖 ∈ 𝐼 (6.72) 
 𝑤𝑖 ≤ 𝑢 − 𝑀(1 − 𝑐𝑖)    ∀𝑖 ∈ 𝐼 (6.73) 
 𝑄 ≥ 0, 𝑢 ≥ 0 (6.74) 
 𝑤𝑖 ≥ 0, 𝑐𝑖 ∈ {0,1},        ∀𝑖 ∈ 𝐼 (6.75) 
 𝛥𝑠 ≥ 0,                            ∀𝑠 ∈ 𝑆. (6.76) 

Under this framework, the Proportional Nucleolus method is now suitable 

for the Benders decomposition approach presented in section 6.2. The bellow-

disposed algorithm summarizes the Benders Decomposition approach to solve 

problem:  
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 𝛿∗ = 𝑚𝑎𝑥
𝛿,𝒙

𝑔𝑝∗(𝒙) (6.77) 
 subject to:  

 𝟙𝑇 ⋅ 𝒙 = 1 (6.78) 
 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼, (6.79) 

where, 𝑔𝑝∗(𝒙) = 𝑚𝑖𝑛𝒄∈𝒞 𝑔𝑝(𝒄, 𝒙)  represents the optimal value of 𝛿  for each 

feasible vector 𝒙  in (5.22)-(5.24) which is the worst-case gain, among all 

coalitions for a given allocation vector 𝒙. 

Benders decomposition algorithm 

1: Initialization: 

2:   𝑘 ← 1 and 𝒙(𝑘) = 𝟙𝑛−1; 

3:   𝑈𝐵(𝑘) ← +∞ and 𝐿𝐵(𝑘) ← 𝑔𝑝∗(𝒙(𝑘)). 

4: While 𝑈𝐵(𝑘) − 𝐿𝐵(𝑘) > 𝜀 do: 

5:   𝑘 ← 𝑘 + 1; 

6:   Solve the master problem (6.39)-(6.41) and store 𝑈𝐵(𝑘) and 𝒙(𝑘); 

7: 
  Solve the MILP (6.66)-(6.73) for 𝒙(𝑘) and store 𝑔𝑝∗(𝒙(𝑘)) and 

𝜕𝑔𝑝∗(𝒙(𝑘))
𝑇
; 

8:   𝐿𝐵(𝑘) ← 𝑔𝑝∗(𝒙(𝑘)). 

9: Repeat do 

Because 𝑔𝑝∗
 is concave, the algorithm finitely converges to an ε -near 

optimal (global) solution 𝒙(𝑘∗) , i.e., |𝑔𝑝∗(𝒙(𝑘∗)) − 𝛿∗| ≤ 𝜀 . In the case study 

section, the performance of the Benders algorithm is compared with the classical 

full coalition-dependent formulation (5.22)-(5.24). 

Finally, it is important to note that, for the present problem, the choice of a 

proper value for 𝑀  is crucial for the well-functioning of the algorithm. For 

instance, the value of 𝑀 should be as tight as possible, i.e., the upper bound of 

variable 𝑢. More precisely, it can be noted from (6.54) that 𝑀 should assume the 

lowest value of 𝑣(𝒄) for all 𝒄 ∈ 𝒞 which, in a first moment, does not seams an 

easy task. However, since the measure 𝑣(𝒄)  counts with the superadditivity 

property, its lowest value comes from one of the individual coalitions (the lowest 

one, for instance). Fortunately, the characteristic function 𝑣(𝒄)  is computed a 

priori of the resolution of the present method (this will be clarified in the 

beginning of section 7.4). Hence, the determination of 𝑀 is done with no further 

problems. 
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6.4  
The post-optimization algorithm 

 During the developments of the present work it was noted that, for certain 

instances of the pool, the Nucleolus methods produce solutions where the gain of 

a given coalition exceeds by far the gains of the others. This did not happen for all 

cases, but still represents a weak point of the methods. With this in mind, a post-

optimization algorithm was devised on an attempt to minimize such drawback. 

This happens because the approach for the Nucleolus methods at the present work 

has the characteristic of producing the so-called degenerated solutions. This kind 

of solution is common in Linear Programming problems, where optimality can be 

reached with not only a unique solution, but within a set of possible realizations of 

the decision variables. For instance, in the case of the Nucleolus methods, there 

might be a set of optimal allocation vectors that, besides maximizing the worst-

case gain, it distributes the pool’s total excess among players in different ways. 

This is due to their single target of maximization of the worst-case gain among all 

possible coalitions. Thus, these methods are blind when concerning the gains of 

non-binding players, i.e., players that are not within the group of worst-case gains 

coalitions. 

In this context, after a Nucleolus (or Proportional Nucleolus) solution is 

found, one could try to equalize the gains among individual players respecting, of 

course, the just obtained worst-case gain. This should be done through a round of 

𝑛 − 1 optimizations, where 𝑛 is the number of players. The round starts with the 

attempt of optimizing the worst-case gain within the 𝑛 individual players. Once 

this goal is reached, the gains of such player is ensured by an added new 

constraint and the process is repeated for the remaining 𝑛 − 1 players, ending-up 

with the determination of the maximum gains of the last two players, that are 

always obtained at once. These rounds are said to be lexicographical optimization 

rounds, since the coalitions are satisfied from the ones with the lower gains to the 

ones with higher gains, mandatorily in this order.  This process is also expected in 

the classic-fashioned Nucleolus methods, and leads to a more fair (and stable) 

solution.  

Prior to the presentation of the devised algorithm, for the sake of 

exemplification and to motivate the reader, three examples were produced in 
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which a RES pool is again composed by three players: a small hydro (SH); a 

biomass plant (Bio) and a wind power plant (WP). Moreover, in such examples, 

two of those three players have a FEC of 50 avg-MW and the other one has a FEC 

of 1 avg-MW. The results are presented in Table 6.1, where the first column 

shows the FEC of each player, which are themselves disposed in the second 

column and their respective characteristic function values denoted in the third 

column. Additionally, the next two pairs of columns present, for the Nucleolus 

and Proportional Nucleolus methods, respectively, the results obtained with the 

original solutions followed by the solutions obtained after the post-optimization 

algorithm was employed, accordingly. 

Table 6.1 – Comparison of individual gains before and after the post-optimization 
algorithm for a pool with 3 players in cases where players have different FEC. 

FEC 

(avg-MW) 
𝒄 

𝑣(𝒄) 

($10
3
) 

Abs. Nuc. gains Prop. Nuc. gains 

Original Post Original Post 

50 𝒄𝑆𝐻    24,470.03     11,606.72      5,915.51  2.17% 22.10% 

50 𝒄𝐵𝑖𝑜    29,749.39           224.31      5,915.51  38.50% 22.10% 

1 𝒄𝑊𝑃        683.00           155.86          155.86  0.47% 0.47% 

50 𝒄𝑆𝐻    24,470.03       9,663.58  4,940.23 2.09% 17.11% 

1 𝒄𝐵𝑖𝑜        594.99           150.12  150.12 0.44% 0.44% 

50 𝒄𝑊𝑃    34,150.14           216.88  4,940.23 27.87% 17.11% 

1 𝒄𝑆𝐻       489.40   225.94          225.94  0.65% 0.65% 

50 𝒄𝐵𝑖𝑜    29,749.39       4,906.50      2,636.39  2.21% 8.60% 

50 𝒄𝑊𝑃    34,150.14           366.28      2,636.39  14.17% 8.60% 

Note that both the absolute and proportional gains of the big players (FEC = 

50 avg-MW) were equalized in all cases, after the post-optimization algorithm 

was employed. It is also worth mentioning that the gains of the small player  

(FEC = 1 avg-MW) could not be improved, since that, for these examples, they 

constitute the binding coalition in terms of worst-case gains. Next, the proceeding 

of the post-optimization algorithm for the equalization of individual gains is 

presented. Additionally, for the sake of brevity, the algorithm will be presented 

using the Nucleolus method as reference. It is worth to highlight the particular 

case of the algorithm for the Proportional Nucleolus method is very similar to this 

one, with no further complications.  

The algorithm is initialized with the computation of the 𝑘 worst-case gain 

coalitions from the solution of the Nucleolus (or Proportional Nucleolus) method 
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as well as the optimal solution value 𝛿∗. Next, the following linear programing 

problem is solved. 

 𝑓 = 𝑚𝑎𝑥
𝒙,𝛿𝑝𝑜𝑠𝑡

𝛿𝑝𝑜𝑠𝑡 
(6.80) 

 subject to:  

 𝛿𝑝𝑜𝑠𝑡 ≤ 𝑣(𝟙)𝑥𝑖 − 𝑣(𝒄{𝑖}),             ∀𝑖 ∈ 𝐼 (6.81) 
 𝛿∗ ≤ 𝑣(𝟙)(𝒄(𝑗)

𝑇 𝒙) − 𝑣(𝒄(𝑗)), ∀𝑗 = 1, … , 𝑘 (6.82) 

 𝟙𝑇 ⋅ 𝒙 = 1 (6.83) 
 𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (6.84) 

In (6.80) an auxiliary variable 𝛿𝑝𝑜𝑠𝑡  maximizes the players’ individual gains, 

supported by the set of constraints (6.81). Furthermore, the set of constraints 

(6.82) accounts for the computed worst-case gain coalitions of the original 

solution of the Nucleolus that composes the well-known set of umbrella 

constraints. Finally, constraint (6.83) ensures the complete share of the excess of 

the pool. On a given iteration 𝑘𝑝𝑜𝑠𝑡 of the algorithm, a trial solution 𝒙(𝑘𝑝𝑜𝑠𝑡) is 

obtained and the useful “oracle” problem (6.9)-(6.12), i.e., the secondary problem 

of the prior-proposed Benders decomposition algorithm, is used to determine: (i) 

whether the value of the worst-case gain coalition 𝑔∗ (𝒙(𝑘𝑝𝑜𝑠𝑡)) for the given trial 

solution equals 𝛿∗ and; (ii) the worst-case gain coalition 𝒄(𝑘𝑝𝑜𝑠𝑡) itself.  

If the new worst-case gain value 𝑔∗ (𝒙(𝑘𝑝𝑜𝑠𝑡))  equals 𝛿∗ , the satisfied 

individual constraints counter 𝑘𝑖𝑛𝑑 is incremented, the current tighter individual 

player 𝑖𝑖𝑛𝑑 gain was maximized to the respective value of 𝛿𝑝𝑜𝑠𝑡 and its associated 

constraint in the set (6.81) must be substituted by: 

𝛿
(𝑘𝑝𝑜𝑠𝑡)

𝑝𝑜𝑠𝑡
≤ 𝑣(𝟙)𝑥𝑖𝑖𝑛𝑑 − 𝑣(𝒄{𝑖𝑖𝑛𝑑}). (6.85) 

Otherwise, if 𝑔∗ (𝒙(𝑘𝑝𝑜𝑠𝑡)) violates (is greater than) 𝛿∗, a new constraint has to be 

added in the original set of constraints (6.82), as follows: 

𝛿∗ ≤ 𝑣(𝟙) (𝒄(𝑘𝑝𝑜𝑠𝑡)
𝑇 𝒙) − 𝑣(𝒄(𝑘𝑝𝑜𝑠𝑡)). (6.86) 

After this verification, the iteration counter is increased and the process 

loops until all individual gains are maximized. It is also important to note that the 

individual player 𝑖𝑖𝑛𝑑 satisfied in a given iteration of the algorithm is the one that 

has the higher value of the dual variables associated with the set of constraints 

(6.81). 
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The following algorithm summarizes the approach for the individual gains 

equalization. 

Post-optimization algorithm for individual gains equalization 

1: Initialization: 

2:   Compute the set of umbrella constraints and 𝛿∗ for the Nucleolus method; 

3:    𝑘𝑝𝑜𝑠𝑡 ← 1; 

4:    𝑘𝑖𝑛𝑑   ← 0. 
5: While 𝑘𝑖𝑛𝑑 < 𝑛 do: 

6:   Solve problem (6.80)- (6.83) and store 𝒙(𝑘𝑝𝑜𝑠𝑡); 

7:   Solve the MILP (6.9)-(6.12) for 𝒙(𝑘𝑝𝑜𝑠𝑡) and store 𝑔∗(𝒙(𝑘𝑝𝑜𝑠𝑡)); 

8:   If 𝑔∗(𝒙(𝑘𝑝𝑜𝑠𝑡)) = 𝛿∗ then 

9:     𝑘𝑖𝑛𝑑 ← 𝑘𝑖𝑛𝑑  + 1; 

10:     Determine the individual player 𝑖𝑖𝑛𝑑 by the higher dual variable of (6.81); 

11: 
    Replace 𝛿𝑝𝑜𝑠𝑡 ≤ 𝑣(𝟙)𝑥𝑖𝑖𝑛𝑑 − 𝑣(𝒄{𝑖𝑖𝑛𝑑}) in (6.81) by  

    𝛿
(𝑘𝑝𝑜𝑠𝑡)

𝑝𝑜𝑠𝑡
≤ 𝑣(𝟙)𝑥𝑖𝑖𝑛𝑑 − 𝑣(𝒄{𝑖𝑖𝑛𝑑}); 

12:   Else 

13:     Add 𝛿∗ ≤ 𝑣(𝟙)(𝒄(𝑘𝑝𝑜𝑠𝑡)
𝑇𝒙) − 𝑣(𝒄(𝑘𝑝𝑜𝑠𝑡)) to (6.82); 

14:   End-if 

15:   𝑘𝑝𝑜𝑠𝑡 ← 𝑘𝑝𝑜𝑠𝑡 + 1. 

16: Repeat do 

For the sake of clarification, a case study with 3 players of size equal to 1 

avg-MW is presented to show the path the algorithm takes during execution. 

Firstly, the original and post-optimization results for the small pool are presented 

in Table 6.2. Next, the iterations of the algorithm are disposed in Table 6.3. 

Table 6.2 – Comparison of coalition gains before and after the post-optimization algorithm 
for a pool with 3 players in a case where players have the same FEC of 1 avg-MW. 

FEC 

(avg-MW) 
𝒄 

𝑣(𝒄) 

($10
3
) 

Abs. Nuc. gains Prop. Nuc. gains 

Original Post Original Post 

1 𝒄𝑆𝐻  489.40  218.53 194.61 42.68% 42.68% 

1 𝒄𝐵𝑖𝑜  594.99  100.94 124.86 19.50% 19.50% 

1 𝒄𝑊𝑃  683.00  85.96 85.96 11.79% 11.79% 

2 𝒄𝑆𝐻,𝐵𝑖𝑜  1,317.89  85.96 85.96 6.93% 6.93% 

2 𝒄𝑆𝐻,𝑊𝑃  1,367.01  109.88 85.96 6.93% 6.93% 

2 𝒄𝐵𝑖𝑜,𝑊𝑃  1,378.93  85.96 109.88 6.93% 6.93% 

3 𝒄𝑆𝐻,𝐵𝑖𝑜,𝑊𝑃  2,172.81  - - - - 

Worst case gain ( $10
3
 | % ): 85.96 85.96 6.93% 6.93% 
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Table 6.3 – Case study example for the post-optimization algorithm results for the 
Nucleolus method. 

Post-optimization algorithm iterations for the Nucleolus (𝑘𝑝𝑜𝑠𝑡) 

𝒙(𝑘𝑝𝑜𝑠𝑡) | 𝒄(𝑘𝑝𝑜𝑠𝑡) Original Step 1 Step 2 Step 3 

𝒙𝑆𝐻  | 𝒄𝑆𝐻
𝑤𝑐  32.58% | 1 32.58% | 1 29,88% | 1 31.48% | 1 

𝒙𝐵𝐼𝑂  | 𝒄𝐵𝑖𝑜
𝑤𝑐  32.03% | 1 32.03% | 1 34,73% | 0 33.13% | 0 

𝒙𝑊𝑃 | 𝒄𝑊𝑃
𝑤𝑐  35.39% | 0 35.39% | 0 35,39% | 1 35.39% | 1 

𝐿𝐵
(𝑘

𝑝𝑜𝑠𝑡
)
 ($ 10

3
): 85.96 85.96 51.08 85.96 

Found 𝒄{𝑖𝑖𝑛𝑑}: - 𝒄𝑊𝑃 𝒄𝑆𝐻 , 𝒄𝐵𝑖𝑜, 𝒄𝑊𝑃 𝒄𝑆𝐻  | 𝒄𝐵𝑖𝑜 

𝒄{𝑖𝑖𝑛𝑑} gain ($ 10
3
): - 85.96 159.73 194.61 | 124.86 

In the original solution, the worst-case gain of $85.96  thousand for the 

coalition 𝑐0 = [1 1 0]  was found. Then, in the first iteration of the post-

optimization algorithm, the same gain of $85.96 thousand was assigned to the 

wind power plant and the same worst-case gain coalition was obtained with this 

solution. Step 2 then attempted to equalize the gain of both small hydro and 

biomass to a value of $159.73 thousand. Note that 159.73 x 2 (SH and Bio gains) 

+ 85.96 (WP gains) equals the total excess of $405.42 thousand for the pool. 

However, the solution would promote a worst-case gain of $51.08 thousand for 

coalition 𝑐2 = [1 0 1], which did not belonged to the original set of umbrella 

constraints yet. Thus, since the given solution violates the original worst-case gain 

of $85.96 thousand the constraint for the gains of coalition 𝑐2  is added to the 

problem. The next step takes charge of satisfying such gains of coalition 𝑐2 and 

produces a solution that assigns gains of $194.61 thousand for the small hydro 

and $124.86 thousand for the biomass plant. 

Finally, it can be noted that the algorithm had no effect over the 

Proportional Nucleolus solution, which indicates that such outcome was already 

equalized since the original solution.  
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7  
Case studies 

In order to demonstrate the benefits of the proposed model three 

computational case studies are presented. The first experiment is of qualitative 

manner, where a small pool composed by three generators, being one small hydro, 

one biomass plant and one wind power plant is explored to show the differences 

among the solutions provided by the different proposed allocation methods. The 

following case study is responsible for depicting the Benders algorithm behavior 

for the Nucleolus methods for the same 3-players pool with the objective of 

giving primary indications of the benefits the proposed method supply. The final 

experiment runs the allocation methods for different instances of the pool, 

gradually increasing the number 𝑛 of players and, consequently, its computational 

complexity, in order to stress the methods. Notwithstanding, case studies were 

executed in a computer with Intel® Core™ i7-3960X CPU @3.30GHz and 64Gb 

of RAM memory. The linear programming problems (LPs) and mixed-integer 

linear programming problems (MILPs) were implemented in Mosel language and 

made use of the FICO™ Xpress solver [72]. 

Furthermore, the experiments were made with realistic data from the 

Brazilian electrical system. The energy generation scenarios of 23 small hydros 

and 17 wind power units were produced simultaneously via the VARx statistical 

model introduced in Section 3.1, while 10 biomass units were considered as 

deterministic. Furthermore, the biomass generation scenarios contain small 

disturbances between the units without compromising, however, the typical 

pattern of this kind of source, which was previously depicted in Figure 2.4 of 

section 2.2.  
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It is also important to state the following data set is common to all 

experiments:  

i. the time horizon is 12 months, from Jan/2020-Dec/2020; 

ii. the energy selling is always done through a flat quantity contract at 

fixed price 𝑃 = 100 $/MWh; 

iii. the simulated data of energy generation and spot prices contains 200 

scenarios within the time horizon; 

iv. it is considered the certainty equivalent disposed in model (4.3)-(4.5) 

with risk aversion parameters 𝜆 = 90% and 𝛼 = 95%; 

v. the discount rate considered is 𝐽 = 0% per month; 

vi. energy losses are considered as 3%; 

vii. the FEC of each unit is always 1 avg-MW and, consequently, in each 

instance of 𝑛 players of the case studies presented in this work, the pool 

has a total FEC of 𝑛 avg-MW; 

viii. the convergence gap level 𝜀 is considered equal to 10 $/MWh for the 

objective functions of the allocation methods via Benders algorithm. 

7.1  
Isonomic 3-players RES pool case study – comparison of allocation 
methods 

In this section it is presented a case study with real data for the proposed 

RES pool composed by a small hydro (SH), a biomass (Bio) plant and a wind 

power plant (WP). The 5 methods presented in Chapter 5 were used to share the 

quotas and the respective results are disposed in Table 7.1. In order to promote a 

qualitative comparison of the behavior of each one of the methods on an isonomic 

pool, in this case study the players have the same size, equal to 1 avg-MW. 

Table 7.1 – Quota allocation results for each of the methods presented for a RES pool 
formed by 3 players. 

𝒙 
FEC 

proportional 
Shapley value 

Marginal 
Benefits 

Nucleolus 
Proportional 
Nucleolus 

𝒙𝑆𝐻 33.33% 30.48% 30.95% 31.48% 32.14% 

𝒙𝐵𝑖𝑜 33.33% 33.18% 31.80% 33.13% 32.72% 

𝒙𝑊𝑃 33.33% 36.34% 37.25% 35.39% 35.14% 

Firstly, it can be noted that the allocation results from the different methods 

do not differ too much from the ones presented by the FEC proportional method, 
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which is the one that distribute the benefits equally among players, since they 

have the same size (FEC). However, on the qualitative side, such a small variation 

produces crucial differences in the results. This will be further clarified in the 

sequel. The first column in Table 7.2 and Table 7.3 dispose each of the possible 7 

coalitions formed by a combination of the three players. The optimal trading 

quantities 𝑄∗ (as a percentage of the total FEC in a coalition) are disposed in the 

second column with the respective average of its individual players’ contracted 

amount denoted in column 3. Next, the certainty equivalents 𝑣(𝒄)  of each 

coalition are presented. Moreover, Table 7.2 disposes the coalition’s 

correspondent absolute gains (in $), with the proportional gains (%) being 

disposed in Table 7.3. Finally, both kinds of gains were obtained via the solution 

of each one of the studied methods. 

Table 7.2 – Absolute gains for a RES pool formed by 3 players of equal FEC (1 avg-MW). 

𝒄 
𝑄∗ 

(%FEC) 

∑ 𝑐𝑖𝑄𝑖
∗

𝑖∈𝐼

∑ 𝑐𝑖𝑖∈𝐼
 

𝑣(𝒄) 
(103$) 

Absolute gain of coalition 𝒄 (103$): 𝑣(𝟙)(𝒙𝑇𝒄) − 𝑣(𝒄) 

FEC 
prop 

SV MB Nuc. 
Prop. 
Nuc. 

𝒄𝑆𝐻  58.55  58.55  489.40  234.87 172.85  183.17 194.61 208.87 

𝒄𝐵𝑖𝑜  79.23  79.23  594.99  129.28 126.01  95.87 124.86 116.02 

𝒄𝑊𝑃  83.59  83.59  683.00  41.27 106.56  126.38 85.96 80.53 

𝒄𝑆𝐻,𝐵𝑖𝑜  74.65  68.99  1,317.89  130.65 65.36  45.54 85.96 91.39 

𝒄𝑆𝐻,𝑊𝑃  76.12  71.07  1,367.01  81.53 84.80  114.94 85.96 94.79 

𝒄𝐵𝑖𝑜,𝑊𝑃  84.21  81.41  1,378.93  69.62 131.64  121.32 109.88 95.62 

𝒄𝑆𝐻,𝐵𝑖𝑜,𝑊𝑃  84.11  73.79  2,172.81  - - - - - 

Absolute worst-gain ($): 41.27  65.36  45.54  85.96  80.53  

Table 7.3 – Proportional gains for a RES pool formed by 3 players of equal FEC (1 avg-
MW). 

𝒄 
𝑄∗ 

(%FEC) 

∑ 𝑐𝑖𝑄𝑖
∗

𝑖∈𝐼

∑ 𝑐𝑖𝑖∈𝐼
 

𝑣(𝒄) 
(103$) 

Proportional gain of coalition 𝒄 (%): 
𝑣(𝟙)(𝒙𝑇𝒄)−𝑣(𝒄)

𝑣(𝒄)
 

FEC 
prop 

SV MB Nuc. 
Prop. 
Nuc. 

𝒄𝑆𝐻  58.55  58.55  489.40  47.99% 35.32%  37.43% 39.76% 42.68% 

𝒄𝐵𝑖𝑜  79.23  79.23  594.99  21.73% 21.18%  16.11% 20.98% 19.50% 

𝒄𝑊𝑃  83.59  83.59  683.00  6.04% 15.60%  18.50% 12.59% 11.79% 

𝒄𝑆𝐻,𝐵𝑖𝑜  74.65  68.99  1,317.89  9.91% 4.96%  3.46% 6.52% 6.93% 

𝒄𝑆𝐻,𝑊𝑃  76.12  71.07  1,367.01  5.96% 6.20%  8.41% 6.29% 6.93% 

𝒄𝐵𝑖𝑜,𝑊𝑃  84.21  81.41  1,378.93  5.05% 9.55%  8.80% 7.97% 6.93% 

𝒄𝑆𝐻,𝐵𝑖𝑜,𝑊𝑃  84.11  73.79  2,172.81  - - - - - 

Proportional worst-gain (%): 5.05% 4.96% 3.46% 6.29% 6.93% 
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The FEC (energy) proportional method provides an intuitive solution for the 

quota sharing via the rationale “what you give is what you get”. However, in 

terms of absolute gains, this method provides the least stable solution, since the 

absolute worst-case gain is the smaller one among the methods. On the 

proportional side, it goes better than the Shapley Value and Marginal Benefits 

methods. Furthermore, although the FEC proportional method produced a solution 

that belongs to the core of the cooperative game, this is not always guaranteed. It 

can also be noted that, for this case study, both Nucleolus methods produced the 

best solutions in terms of absolute and proportional gains, which shows a good 

qualitative behavior for these methods on isonomic pools. Additionally, by 

analyzing the generation profiles of the different sources in Figure 3.3, it can be 

noted that the biomass plant has a profile more similar to the wind power plant, 

and both present good seasonal complementarity with the small hydro plant. 

Hence, both biomass and wind power plants compete for the perfect matching 

with the small hydro, which benefits from this complementarity and present the 

higher values in terms of both absolute and proportional gains for all sharing 

methodologies. Moreover, it can be seen that, besides the wind power has the 

highest payoff among the three players (individual coalitions), it receives the 

lowest quota allocation and gains, when compared with the other two players, 

mainly because its synergy with the complementary player, small hydro, is lower 

than the synergy between the biomass and the small hydro plant. Finally, the 

complementary synergy effect is enforced by the fact that coalitions 𝒄𝑆𝐻,𝐵𝑖𝑜 , 

𝒄𝑆𝐻,𝑊𝑃 and 𝒄𝐵𝑖𝑜,𝑊𝑃 exhibits more aggressive trading strategies (higher values of 

𝑄∗  in a percentage of the total FEC of the coalition) when compared to the 

average of the contracted amount of the individual players that compose such 

coalitions, disposed in the third column of the tables.  
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Figure 7.1 – Core of the cooperative game and respective quota allocation by the 

different presented methods.  

In Figure 7.1, the core of the cooperative game and the set of allocations is 

represented on the sum-one plane projection, in two dimensions, developed by 

[74]. The outer triangle defines the frontier of the set of quota allocations 

solutions that ensure the players’ individual gains. Still, the core of the 

cooperative game is defined by the inner dark polygon, where the gains of all 

possible coalitions are ensured. In this context, the Nucleolus methods pursue 

points inside the core’s polygon, which goes in accordance with its objective. 

Furthermore, these methods tend to push the solution as far as possible from the 

coalitions’ gain frontiers and that is why their solutions are the closest ones from 

the polygon’s centroid. In addition, it might be highlighted that even though the 

Shapley Value and Marginal Benefits solutions lay inside the core of the game, it 

was not proved that this necessarily holds for all cases.  
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7.2  
Non-isonomic 3-players RES pool case study – comparison of 
allocation methods 

In order to promote the investigation of methods’ behavior in non-isonomic 

pools, it was done a parametrization on the units’ size for a pool with the same 

three players of earlier case studies. For this purpose, the size of each player was 

increased in separate, to produce instances where one player is bigger than the 

other two (in terms of FEC). As the cases are many, only the results for individual 

players are disposed. Thus, the absolute and proportional gains for the individual 

players are disposed in Table 7.1 and Table 7.2, respectively, and in which the 

first column shows the size of each player in each pool (lines). It is worth 

mentioning that: (i) except for the FEC proportional solutions with negative gains, 

all solutions lied in the core of the cooperative game and; (ii) the first line 

represents the same pool for the previews case study (section 7.1), used as the 

reference pool where all players have the size of 1avg-MW. 

Table 7.4 – Absolute gains ($10
3
) for a RES pool formed by 3 players of different FEC. 

FEC 

(avg-MW) 

FEC  

Proportional 
Shapley Value 

Marginal 

Benefits 
Nucleolus 

Proportional 

Nucleolus 

SH BIO WP SH BIO WP SH BIO WP SH BIO WP SH BIO WP SH BIO WP 

1 1 1 235 129 41 173 126 107 183 96 126 194 125 86 209 116 81 

3 1 1 575 86 -2 301 187 172 173 276 210 357 151 151 442 121 97 

10 1 1 907 -15 -103 358 215 216 16 395 379 386 202 202 615 84 91 

20 1 1 1002 -55 -144 365 219 219 24 395 385 393 205 205 659 70 74 

50 1 1 1084 -84 -172 378 222 228 34 415 380 413 208 208 708 54 67 

1 3 1 205 300 12 197 194 126 313 58 147 236 188 94 201 256 61 

1 10 1 153 475 -41 218 233 137 329 58 201 263 224 100 195 360 33 

1 20 1 134 571 -59 246 261 138 329 116 201 319 224 102 205 430 10 

1 50 1 118 641 -75 262 277 145 460 0 224 347 224 112 199 480 5 

1 1 3 237 131 129 205 132 159 283 163 52 251 105 141 222 74 200 

1 1 10 217 111 229 225 138 194 382 158 16 278 105 173 218 44 295 

1 1 20 206 101 257 223 141 201 366 185 13 270 105 189 207 42 316 

1 1 50 199 94 290 222 147 214 366 185 31 258 108 217 195 45 343 
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Table 7.5 – Proportional gains (%) for a RES pool formed by 3 players of different FEC. 

FEC 

(avg-MW) 

FEC  

Proportional 
Shapley Value 

Marginal 

Benefits 
Nucleolus 

Proportional 

Nucleolus 

SH BIO WP SH BIO WP SH BIO WP SH BIO WP SH BIO WP SH BIO WP 

1 1 1 48 22 6 35 21 16 37 16 19 40 21 13 43 20 12 

3 1 1 39 14 0 20 31 25 12 46 31 24 25 22 30 20 14 

10 1 1 19 -2 -15 7 36 32 0 66 55 8 34 30 13 14 13 

20 1 1 10 -9 -21 4 37 32 0 66 56 4 34 30 7 12 11 

50 1 1 4 -14 -25 2 37 33 0 70 56 2 35 30 3 9 10 

1 3 1 42 17 2 40 11 18 64 3 21 48 11 14 41 14 9 

1 10 1 31 8 -6 45 4 20 67 1 29 54 4 15 40 6 5 

1 20 1 27 5 -9 50 2 20 67 1 29 65 2 15 42 4 2 

1 50 1 24 2 -11 54 1 21 94 0 33 71 1 16 41 2 1 

1 1 3 48 22 6 42 22 8 58 27 3 51 18 7 45 13 10 

1 1 10 44 19 3 46 23 3 78 27 0 57 18 3 45 7 4 

1 1 20 42 17 2 46 24 1 75 31 0 55 18 1 42 7 2 

1 1 50 41 16 1 45 25 1 75 31 0 53 18 1 40 8 1 

Firstly, it is good to note that the FEC proportional method promoted 

instable solutions for some instances, where the gains became negative for the 

biomass and wind power units, which compete for the small hydro synergic-

complementary effects. Thus, these solutions lie outside the core of the 

cooperative game. Secondly, it can be noted that the Marginal benefits method 

produced solutions with gain 0 (zero) for some cases, which represents quite 

unstable solutions for the pool. 

For a more visual inspection, the results are condensed in Figure 7.2, in the 

next page. The radar graphs are separated by player and display its gains in each 

instance of the pool, for each one of the studied methods. The absolute gains 

graphs are disposed in the left side, while the proportional gains ones are disposed 

in the right side. Please note that the axis legends that represent the gains are 

placed in vertical just as a reference. Actually the gains increase from the center of 

the graphs (lower gains) to the border (higher gains), regardless if goes up, down, 

left or right, for example. Yet, the superior vertical line denotes the reference pool, 

where all players have size 1 (avg-MW).  Furthermore, the cases were placed in 

the same order of Table 7.1 and Table 7.2, with the objective of condensing the 

cases were the small hydro increases firstly, followed by the biomass unit and the 
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wind power at last. Finally, the instances are denoted by the radial lines, with the 

size of each player placed in the order {𝑆𝐻, 𝐵𝐼𝑂, 𝑊𝑃}. 

 

Figure 7.2 – Distribution of absolute and proportional gains of each source, by method, 

for different case studies, when the units’ FEC are modified. 
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Finally, it is worth mentioning that these graphs highlight the cases where 

some player receives a higher allocation from a given method than the others, as 

seen next. 

The first conclusion is that the graphs allowed the capture of the curious 

effect of, while the size of the small hydro gradually increases, so do its absolute 

gains. However, its proportional gains go on the other way. This shows that the 

(marginal) increments on its absolute gains do not consort with the (large) 

increment on its FEC, which makes total sense. The same happen for the other 

players, but in a smaller scale, since the small hydro is the one that most benefit 

from the coalitional synergic effects. In this context, the Proportional Nucleolus 

always tries to equalize the (proportional) gains of the smaller players, presenting 

a more stable result. Note that its solution has a smaller variance then the other 

methods, which can be noticed via the lines on the graphs that lie almost in a 

“constant” level of gains, i.e., the lines present a “almost-constant” radius (for the 

small players areas). Contrarily, the other methods produce solutions that keep 

“jumping” from a gain level to another, more frequently, especially the FEC 

proportional and the Marginal Benefits methods. So, besides the Shapley Value 

and the absolute Nucleolus solutions presented a behavior that varies between the 

smooth Proportional Nucleolus and the two volatile ones, they also produced 

solutions that are similar to each other. 

Finally, one more effect can be highlighted: the Proportional Nucleolus 

produces higher absolute gains than the Absolute Nucleolus and vice-versa. This 

is caused by the fact that the given methods maximize its own respective rationale 

for all possible coalitions, which leads to a smaller surplus for individual gains 

than the other one (please recall that the graphs only display the gains for 

coalitions of individual players, but respect the gains of all possible coalitions). 

This justifies the higher proportional gains for the Absolute Nucleolus, Shapley 

Value and Marginal Benefits methods (on the left-sided graphs). 

Next, a final case study is presented, where two of the three players are 

much bigger in FEC then the other one, also with the purpose of studying the 

behavior of the proposed methods for the underlying non-isonomic pools.  
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Table 7.6 – Comparison of individual absolute gains in very non-isonomic pools. 

FEC 

(avg-MW) 
𝒄 

𝑣(𝒄) 

($10
3
) 

Absolute gains ($10
3
) 

FEC prop. Shapley MB Nuc. 
Prop. 

Nuc. 

50 𝒄𝑆𝐻 24,470.03  8,643.49  5,935.61  7,557.29  5,915.51  5,408.42  

50 𝒄𝐵𝑖𝑜 29,749.39  3,364.13  5,841.10  4,117.87  5,915.51  6,575.27  

1 𝒄𝑊𝑃 683.00  (20.73) 210.18  311.73  155.86  3.20  

50 cSH 24,470.03   9,810.04   4,959.96   6,418.67   4,940.23   4,186.02  

1 cBio 594.99   90.61   203.23   300.23   150.12   2.59  

50 cWP 34,150.14   129.93   4,867.39   3,311.68   4,940.23   5,841.97  

1 𝒄𝑆𝐻 489.40   202.56   288.27   451.87   225.94   3.18  

50 𝒄𝐵𝑖𝑜 29,749.39   4,848.46   2,628.55   3,209.61   2,636.39   2,558.53  

50 𝒄𝑊𝑃 34,150.14   447.70   2,581.90   1,837.23   2,636.39   2,937.00  

Table 7.7 – Comparison of individual proportional gains in very non-isonomic pools. 

FEC 

(avg-MW) 
𝒄 

𝑣(𝒄) 

($10
3
) 

Proportional gains (%) 

FEC prop. Shapley MB Nuc. 
Prop. 

Nuc. 

50 𝒄𝑆𝐻 24,470.03  35.32% 24.26% 30.88% 24.17% 22.10% 

50 𝒄𝐵𝑖𝑜 29,749.39  11.31% 19.63% 13.84% 19.88% 22.10% 

1 𝒄𝑊𝑃 683.00  -3.04% 30.77% 45.64% 22.82% 0.47% 

50 𝒄𝑆𝐻 24,470.03  40.09% 20.27% 26.23% 20.19% 17.11% 

1 𝒄𝐵𝑖𝑜 594.99  15.23% 34.16% 50.46% 25.23% 0.44% 

50 𝒄𝑊𝑃 34,150.14  0.38% 14.25% 9.70% 14.47% 17.11% 

1 𝒄𝑆𝐻 489.40  41.39% 58.90% 92.33% 46.17% 0.65% 

50 𝒄𝐵𝑖𝑜 29,749.39  16.30% 8.84% 10.79% 8.86% 8.60% 

50 𝒄𝑊𝑃 34,150.14  1.31% 7.56% 5.38% 7.72% 8.60% 

The first relevant aspect of the case study is the big players’ gains 

equalization for the Nucleolus methods, in comparison to solutions produced by 

the other methods, which is due to the algorithm presented in section 6.4. The 

second aspect is that specifically, the Proportional Nucleolus solutions allocated 

really small gains to the small player in all cases, which can be seen as a method’s 

week point. However, this is again due to the fact that, since the method 

maximizes the worst-case gains among all coalitions, the distribution of the pool’s 

total excess among the individual players gets tied. In this framework, this 

represents the contradictory balance of the pool’s stability, which has the strategy 

of defending itself from the most threatening coalitions but can also, sometimes, 

lead to solutions where a given player would have small individual gains, which 

would also bring instability for the pool. Finally, it can be mentioned that once 
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more the FEC Proportional method produces solutions outside the core of the 

cooperative game. 

7.3  
Benders algorithm exemplification for a 3-players RES pool case 
study 

The main goal of this experiment is to enforce the convergence between the 

Benders algorithms and the Nucleolus methods that enumerates all gain 

constraints from all coalitions, called here Full Coalition Dependent method 

(FCD), of models (5.17)-(5.19) and (5.22)-(5.24). Secondly, the experiment 

presents some primary evidences of the algorithms’ efficiency, which will be of 

great value on the large-scale instances of the next (and last) case study. In this 

context, the cutting plane algorithms were executed to the same data-set of the 

isonomic pool composed by the three RES plants of experiment 7.1. The results of 

the algorithm iterations are presented in Table 7.8 and Table 7.9 for the Nucleolus 

and Proportional Nucleolus, respectively, until the optimum solution are found. 

Moreover, such tables dispose the quotas share, the worst-case gain coalition and 

the upper and lower bound for each iteration. Finally, it is worth mentioning that 

the solutions disposed bellow constitute the original Nucleolus methods solutions, 

and do not include the post-optimization algorithm solution. Thus, the final worst-

case gain results of Table 7.6 and Table 7.7 should be compared with the original 

worst-case gain solutions of Table 6.2, of section 6.4.  

Table 7.8 – Benders algorithm results for the Nucleolus method. 

  Algorithm iterations for Nucleolus (𝑘) 

𝒙(𝑘)|𝒄(𝑘) FCD 1 2 3 

𝒙𝑆𝐻|𝒄𝑆𝐻 32.58% 28.74% | 1 33.27% | 0 32.58% | 1 

𝒙𝐵𝐼𝑂|𝒄𝐵𝐼𝑂 32.03% 33.60% | 1 31.34% | 1 32.03% | 1 

𝒙𝑊𝑃|𝒄𝑊𝑃 35.39% 37.65% | 0 35.39% | 1 35.39% | 0 

𝑈𝐵(𝑘) - $ 135,140.91 $ 85,959.79 $ 85,959.79 

𝐿𝐵(𝑘) -   $ 36,778.67 $ 70,982.75 $ 85,959.79 
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Table 7.9 – Benders algorithm results for the Proportional Nucleolus method. 

  Algorithm iterations for Proportional Nucleolus (𝑘) 

𝒙(𝑘)|𝒄(𝑘) FCD 1 2 3 4 

𝒙𝑆𝐻|𝒄𝑆𝐻 32.14% 27.69% | 1  36.13% | 0 31.08% | 1 32.14% | 1 

𝒙𝐵𝑖𝑜|𝒄𝐵𝑖𝑜 32.72% 33.66% | 1  29.74% | 1 34.78% | 0 32.72% | 0 

𝒙𝑊𝑃|𝒄𝑊𝑃 35.14% 38.64% | 0  34.13% | 1 34.13% | 1 35.14% | 1 

𝑈𝐵(𝑘) - 22.94% 8.59% 8.59% 6.93% 

𝐿𝐵(𝑘) -  1.16% 0.64% 3.66% 6.93% 

In the each iteration, the master problem provides trial solutions with partial 

information of the worst-case gain constraints, while the oracle (MILP approach), 

identify if such solutions lie within the core and feed the master with new 

information (by means of the Benders cuts) to approximate the FCD problem. 

Finally, the algorithm converges providing the same solution found by the FCD 

problem. 

At last, it is worth mentioning that only a part of the possible 7 constraints 

were necessary to allow the BA to find optimal solutions. Although this saving is 

not representative, which is due to the reduced size of these instances, this is a 

salient feature of the method and very valuable in large instances. In the next case 

study, it is shown that the proposed BA considerably outperforms the FCD 

problem in medium and large-scale instances. 

Next, it is presented in Figure 7.3 the path the algorithm takes while 

pursuing the optimal solution until convergence for the game of sum-one 

projection plane, for the (Absolute) Nucleolus method. 
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Figure 7.3 – Core of the cooperative game and respective quota allocation by the 

Benders algorithm for the Nucleolus method. 

Note that the trial solution of the first step already presented a positive 

worst-case gain (last row of Table 7.6). Thereby, this solution lied inside the core 

of the cooperative game. Additionally, the first cut is added for coalition 𝒄𝑆𝐻,𝐵𝑖𝑜. 

Thus the second step takes charge of repelling the solution from the SH-WP gains 

frontier. Next, the same happens for coalition 𝒄𝐵𝑖𝑜,𝑊𝑃 and the following point is 

placed a little bit way from the BIO-WP frontier. Finally, the post-optimization 

algorithm of section 6.4 pushes the solution as close as possible to the centroid of 

the inner-polygon (core region). 

7.4  
50-players RES pool case study – stress analysis 

In this experiment, it is compared the computational execution time of three 

models: (i) the Full Coalition Dependent (FCD) model that calculates the quotas 

sharing through the Nucleolus and Proportional Nucleolus methods, by the 

enumeration of all possible coalitions of players; (ii) the same methods calculated 
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via the Benders algorithm and; (iii) the Marginal Benefits method. To do so, the 

methods were tested in different instances of the problem, with the unitary 

increase of the number 𝑛 of players in the pool until the execution time for the 

first method was considered unacceptable. Furthermore, this case study aims a 

qualitative analysis of the methods’ performance, since it is known the complexity 

of the cooperative game grows exponentially on the number of players 𝑛. For 

instance, the number of constraints in the FCD model is ruled by the number of 

possible coalition that can be formed with 𝑛 players which is, precisely, 2𝑛 − 1. 

Thereby, on a realistic case of a pool formed by 30 generators, one would have to 

assess the two-stage stochastic problem that evaluates the coalition’s 

characteristic function more than one billion times. Moreover, since the 

formulation of the Shapley Value method also imposes such assessment, this 

method is omitted from this case study, since its computational time would be 

practically the same of the FCD method. 

In addition, in this experiment an improved algorithm is used. The following 

modifications are employed to enhance the algorithms performance: (i) expression 

(6.14) is included, for all the individual coalitions into the master problem  

(6.13)-(6.16) and; (ii) step 3 of the Benders algorithm is replaced by a copy of 

steps 6-8. This provides the algorithm with trial solutions that satisfies individual 

gains since the first iteration. Moreover, although the addition of such constraints 

does not conceptually change the solution of the algorithm, the consideration of 

such tighter space helps in stabilizing the algorithm convergence.  

Finally, in Table 7.10: column 1 exhibits the number of players in the pool 

for each iteration; column 2 shows the growth of the number of constraints in 

problem (5.17)-(5.19), i.e. the number of two-stage stochastic programming 

problems needed to solve the Nucleolus method in the FCD formulation; column 

3 shows the computing time of the solutions found by the FCD problem; Columns 

4-6 display the value of the absolute and proportional worst-case gains of the 

solutions given by the Marginal Benefits method and its execution time and; 

finally, the other columns disposes the worst-case gain (wc-gain), the computing 

time and the number of cuts for the Nucleolus problems. 
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Table 7.10 – Comparison among the FCD formulation, Marginal Benefits and Benders 
algorithm for both Nucleolus methods on the solution of large instances of the problem  

𝑛 2𝑛 − 1 
FCD 
Time 
(s) 

Marginal Benefits Nucleolus Proportional Nucleolus 

wc-gain 
($10

3
) 

wc-gain 
(%) 

Time 
(sec.) 

wc-gain 
($10

3
) 

BA Time 
(s) 

BA Cuts 
wc-gain 

(%) 
BA Time 

(s) 
BA Cuts 

3 7  <1 857.35 3.24% <1 1,397.42  <1 4 6.06% <1 4 

4 15  <1 396.92 0.97% <1 1,240.98  <1 5 3.43% <1 7 

5 31  <1 169.40 0.32% <1  648.99  <1 7 1.41% <1 11 

6 63  1 20.32 0.03% <1  406.97  1 12 0.91% 1 13 

7 127  1 29.23 0.07% <1  96.74  1 17 0.21% 1 18 

8 255  3 112.93 0.12% <1  208.20  1 20 0.33% 2 25 

9 511  6 42.17 0.05% <1 166.75  2 25 0.28% 2 31 

10 1,023  14 0.00 0.00% <1  107.82  2 33 0.14% 3 42 

11 2,047  30 0.00 0.00% <1  28.75  3 46 0.03% 5 61 

12 4,095  64 0.00 0.00% <1  29.24  4 51 0.03% 5 59 

13 8,191  134 0.00 0.00% <1  7.46  4 48 0.01% 7 74 

14 1.6E04 294 0.00 0.00% <1  0.33  6 73 0.00% 8 76 

15 3.3E04 644 0.00 0.00% <1  0.48  8 87 0.00% 8 83 

16 6.6E04 1362 0.00 0.00% <1  0.00  9 92 0.00% 10 93 

17 1.3E05 3051 0.00 0.00% <1  0.00  6 63 0.00% 9 81 

18 2.6E05 7117 0.00 0.00% <1  0.00  7 68 0.00% 11 91 

19 5.2E05 - 0.00 0.00% <1  0.00  6 63 0.00% 11 94 

20 1.0E06 - 0.00 0.00% <1  0.00  18 121 0.00% 20 142 

25 3.4E07 - 0.00 0.00% <1  0.42  44 208 0.00% 52 233 

30 1.1E09 - 0.00 0.00% <1  27.04  69 368 0.01% 119 534 

35 3.4E10 - 0.00 0.00% <1  2.65  103 405 0.00% 177 609 

40 1.1E12 - 0.00 0.00% 1  0.00  279 481 0.07% 232 551 

45 3.5E13 - 0.00 0.00% 1  31.29  368 739 0.01% 756 974 

50 1.1E15 - 0.00 0.00% 1  17.29  312 613 0.03% 896 1010 

It is important to highlight, first, that the optimality gap was closed (zero) 

for all reported solutions for the improved Benders algorithm for both Nucleolus 

methods for all instances. Moreover, in the Benders algorithm the secondary 

problem is responsible for the majority of the computational time needed to find 

the optimal solution. Now analyzing the results, as expected, the FCD 

methodology is quickly beaten by the other three methods, which present 

expressive results in terms of computational time when the number of players 

increase, principally the Marginal Benefits method. For small instances, with up 

to 7 players, the FCD model provides low computing time. However, for 

instances with more than 9 players, the computing time demanded to solve the 

FCD problem is twofold greater than the time needed for the BA-based methods 

to achieve convergence. When the instance reached 18 players, the FCD was 

interrupted after more than 2 hours of execution, without reaching the solution 
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and was then considered intractable, since the Benders approach for the Nucleolus 

and Proportional Nucleolus solved the 50-players instance within 312 (5 minutes) 

and 896 seconds (15 minutes) of execution time, respectively. The difference in 

the execution time between the Nucleolus and the proportional Nucleolus method 

is due to the “spare” sets of constraints (6.69)-(6.73), needed for the linearization 

of the nucleolus method, as they enhance the complexity of the solution 

methodology.  

A special attention might be given for the Marginal Benefits method, which 

solves the problem very quickly, since it is needed only the solution of one single 

LP (the characteristic function of the grand coalition, 𝑣(𝟙) ) to obtain such 

solution. However, as can be seen in the results, the method does not produce a 

solution of the quality of the Nucleolus methods, in the sense that the worst case 

gains for this method is always smaller than the ones produced by the Nucleolus 

methods. For instance, the 10-players pool is the first where a really small unit 

enters the pool. At this arrangement, the marginal Benefits method starts to 

produce worst-case null-gain solutions. For transparency purposes, the table with 

the size (in terms of FEC) of each player for the proposed method is disposed in 

Table A, on the Appendix. 

In this context, it can be concluded from the Nucleolus methods that: (i) the 

method produces solutions that are the most adequate for the proposed RES pool 

model, since it provides better signals for players, in terms of stability and; (ii) the 

computational burden of the FCD formulation, which makes the method 

inappropriate for large-scale problems, was successfully solved through the 

Benders algorithm approach. Finally, it is important to mention that the Benders 

algorithm approach successfully reached all expectations, since it solved the 

intractability of the Nucleolus problems for the quota allocation of the proposed 

RES pool, allowing a consistent analysis of a pool with 50 players in about 15 

minutes for the proportional Nucleolus. 

Finally, in Figure 7.4, the number of cuts, or number of iterations, of the 

improved BA approximately exhibits a polynomial growth within the set of tested 

instances, whereas the full set of constraints used in the FCD problem is 

exponential (see the first two columns of Table 7.10). This provides a tractable 

algorithm even in the case of large-scale instances. 
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Figure 7.4 – Number of cuts as a function of the number of players in the pool. The thin 

line represents a polynomial trend (with equation and R
2
 index displayed in the graph) 

within the observed data. 
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8  
Final remarks 

This work compared different quota allocation methods for a stochastic 

cooperative portfolio of renewable energy. The compared methods were: FEC-

proportional, Shapley Value, Marginal Benefits, Nucleolus and Proportional 

Nucleolus. The work has proved the core of the proposed game to be non-empty. 

Further and more important, the work presented an efficient methodology to find 

the Nucleolus and Proportional Nucleolus shares of quotas for the proposed large-

scale RES pool. The proposed method is a MILP-based Benders decomposition 

applied to the full Nucleolus and the non-linear Proportional Nucleolus problems 

where the last one had a further difficulty that was overcame by means of 

Fractional Programming linearization technique. Finally, such method was 

capable of solving instances with realistic data of the Brazilian power sector that 

were, until then, intractable in the full problem formulation. In this context, this 

arises as the work’s strongest contribution. 

It was highlighted that regardless of the existing regulatory incentives for 

renewables, investors still remain highly exposed to risks with an inappropriate 

vision for the future cash flow of new investments. This is due to the 

characteristic intermittent and seasonal energy generation profile of such sources, 

which are intensified by the market’s intrinsic uncertain and volatile spot prices. 

Moreover, the work proposed a model for trading renewable energy in the Free 

Trade Environment of the Brazilian power sector aiming to bring incentives to the 

penetration of the three main Brazilian renewable energy sources in such 

environment. Thus, RES can substantially reduce the inherent risks of the energy 

trade in the FTE, by means of the proposed model that can take advantage from 

the existing synergy among their complementary seasonal generation profiles. In 

this context the cooperative games framework, in tune with stochastic 

programming techniques as well as the correct risk-aversion measures has 

emerged as an appropriate approach, given the strong uncertainties that are typical 

of the energy trading in the FTE. Still, the use of realistic data of the Brazilian 
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power sector, with spatial-and-time correlated scenarios of energy generation and 

spot prices had a very important role to capture the portfolio synergic effects of 

the proposed model. 

8.1  
Future research 

Probably demanding low effort, the bellow-disposed topics arise as 

immediate promising investigations, which can bring solid improvements to the 

thesis’ contents. 

i. Investigate if the solutions of the Marginal Benefits method always lie 

inside the core of the cooperative game. Besides being computationally 

fast, the Marginal Benefits method can, in some cases, always lie inside 

the core of the cooperative game. For instance, [75] states that the method 

always produces solutions inside the core, when applied to a game 

modeled as a LP where the modification of the RHS of the constraints is 

the only necessary change to calculate the benefit of any subcoalition of 

players (which is the case of the present game). Still, results from section 

7.4 strongly indicates that the Marginal Benefits method is always inside 

the core of the game, since no results from the different tested instances 

produced negative (worst-case) gains. 

ii. Explore the equivalence between the Marginal Benefits and the Aumann-

Shapley methods. One of the drawbacks of the Marginal Benefits method 

is that it can become inadequate in problems where the resources are 

discrete. Since the method is based in small incremental variations, it can 

become (too) sensible to small changes in the resources of agents, 

producing disproportional variations on the allocation of players that have 

their resources slightly modified. However, the proposed cooperative 

game of the present work is similar to the one studied in [75], which 

disposes aspects that lead to the equivalence between the Marginal 

Benefits and the Aumann-Shapley allocation methods. Thus, since the 

Aumann-Shapley method does not present the above mentioned sensibility 

issue, the Marginal Benefits method also does not, since they are 
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equivalent. On the other hand, the expected property of always producing 

solutions that belongs to the core would be directly expanded to the 

Aumann-Shapley method. 

As proposals for future work, the first suggestion is to study the concept of a 

dynamic framework where quotas are reallocated over time. The stability of the 

model under new conditions and under the realization of the uncertainties, as well 

as the volatility of the quotas are relevant themes of future research that represent 

the border line between academic and practical implementation of RES pools. 

Additionally, another important and direct extension of the proposed methodology 

relates to the consideration of non-convex characteristic functions, incorporating 

for example price maker generators and risk-constrained self-scheduling decisions 

[76]. In the latter case, such decisions could be considered in the methodology by 

incorporating the generation and the related technical constraints, e.g., as ramp 

and minimum up and down times, into model (4.6)-(4.9). This would allow for the 

consideration of physical contracts, since generation and the contract decisions 

would be part of the decision variables, and for the possibility of considering units 

with storage capacity to alleviate operational constraints and maximize incomes. 

Although the proposed methodology could be extended to incorporate such 

features and the Benders algorithm would still be valid, the existence proof might 

not be possible for the general case due to the non-convex nature of the 

characteristic function. However, in this case, the justification for the Nucleolus 

method would be strengthened due to its nature of pursuing the maximization of 

the worst-case allocation, thus, finding the most stable pool. 

One more proposal for future research is to use the CVaR risk measure in all 

formulations as a constraint for the problems, instead of as part of the Certainty 

Equivalent (or objective function) throughout the work.  This is a common 

practice in many applications of portfolio management, where authors maximize a 

more simple revenue expression, such as the expected value of the portfolio and 

use the CVaR as a hard constraint that forces a minimal gain for the portfolio. 

However, for the models presented at the present work the correct functioning of 

developments that make use of properties like superadditivity, positive-

homogeneity such as Benders decomposition techniques and fractional 
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programming for example are not guaranteed and would demand further 

inspection.  

Finally, a new Nucleolus-based method can be properly developed. What is 

pursued by the presented Nucleolus methods in the proposed cooperative game, in 

fact, is to defend the grand coalition from the most threatening subcoalitions and 

promote, indeed, an environment where those do not exist. However, in theory, 

once a solution inside the core of the cooperative game is reached, this is 

automatically guaranteed. In this context, a new variation of the Nucleolus 

methods can be devised in order to satisfy coalitions that belongs to the set of 

umbrella constraints with a specific small fixed non-negative gains (for example, 

zero?), instead of pushing such gains to the higher possible values. This would 

sound illogical in the first moment. However, in terms of stability, the high 

disparity of individual gains emerged in case-studies of section 7.2 exposed a 

weak point of the Proportional Nucleolus method. Thus, one can argue that this 

can be more dangerous for the grand coalition than a distribution of null benefits 

for the most threatening coalitions, since the solution already belongs to the core. 

Under this framework, such coalitions would then be placed in the edge of the 

indifference between being in the pool or not. Hence, any little monetary incentive 

would keep those coalitions in the pool. However, from a practical view-point, the 

underlying new Nucleolus variations methods could promote more flexibility for 

the post optimization algorithm of section 6.4 on its duty for the equalization of 

individual gains, thus enhancing the pool’s stability. 
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Appendix 

Size of the 50-players for the case study of section 7.4  

Table A – Size of the 𝑛 players of case study of section 7.4, in terms of Firm Energy 

Certificates (FEC, in average-MW). 

𝑛 
Name of 

unit 

FEC 

(avg-MW) 
𝑛 

Name of 

unit 

FEC 

(avg-MW) 

1 SH1 12.13  26 BIO9 17.54  

2 BIO1 17.54  27 WP9 17.65  

3 WP1 20.76  28 SH10 7.34  

4 SH2 17.52  29 BIO10 17.54  

5 BIO2 17.54  30 WP10 207.53  

6 WP2 15.43  31 SH11 11.63  

7 SH3 20.23  32 WP11 12.37  

8 BIO3 17.54  33 SH12 0.85  

9 WP3 20.53  34 WP12 13.11  

10 SH4 0.44  35 SH13 22.93  

11 BIO4 17.54  36 WP13 17.71  

12 WP4 11.33  37 SH14 9.63  

13 SH5 7.90  38 WP14 10.23  

14 BIO5 17.54  39 SH15 18.26  

15 WP5 11.33  40 WP15 28.83  

16 SH6 9.00  41 SH16 16.19  

17 BIO6 17.54  42 WP16 20.74  

18 WP6 11.33  43 SH17 17.06  

19 SH7 7.98  44 WP17 18.31  

20 BIO7 17.54  45 SH18 16.56  

21 WP7 25.15  46 SH19 2.55  

22 SH8 2.45  47 SH20 10.82  

23 BIO8 17.54  48 SH21 4.42  

24 WP8 7.93  49 SH22 13.56  

25 SH9 3.77  50 SH23 16.36  
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The data set of simulated scenarios of renewable energy resources 

and the energy spot prices used in the computational experiments 

This section presents graphs that expose the characteristics of the data 

produced by the VARx model used in the computational experiments. It is also 

important to highlight that the data used to simulate the wind power plants natural 

resource (wind) is given in terms of the capacity factor (% of maximum 

production) of the wind power plants while the data for hydro plants are given by 

the natural resource itself, inflow, in m³/s. The raw data of the simulated scenarios 

of wind (capacity factor) and inflow (m³/s) is then used to calculate the energy 

generation of each one of the wind and small hydro plants of the case studies, 

respecting the characteristics of the set of plants denoted in Table A. Additionally, 

as previously mentioned in Section 3.1, more details of the complete process for 

generating such data can be found in [32] to [35]. 

To illustrate the data related to the two simulated renewable resources, in 

Figure A and Figure B the historical and simulated data of wind farm WP1 and 

small hydro SH1 from Table A, respectively, are contrasted in a seasonal 

(monthly) basis. Notwithstanding, the historical data is depicted by the dots while 

the simulated scenarios are represented by the quantiles of 5% and 95% of the 

scenarios, in blue lines and the average, in black. 

 

Figure A – Historical wind data (dots) contrasted with the seasonal average and 

confidence interval (quantiles of 5% and 95%) of simulated data (lines). 
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Figure B – Historical inflow data (dots) contrasted with the seasonal average and 

confidence interval (quantiles of 5% and 95%) of simulated data (lines). 
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