6.

Resultados

Neste capítulo, serão apreciados os espectros de absorção e de fotocorrente obtidos por espectroscopia FTIR para as seis amostras descritas na seção 5.2 e dados obtidos por simulação, visando elucidar em detalhe os processos que resultam em transporte eletrônico no QDIP em estudo. Também serão trazidas à luz conclusões e reflexões surgidas a partir da informação contida nas medidas da corrente de escuro.

6.1 Considerações preliminares

Usando a metodologia descrita no Apêndice (pág. 83), foi medido um grande número de espectros de absorção, à temperatura ambiente e à temperatura criogênica do nitrogênio líquido, para 12 diferentes clivagens das amostras 1071, 1072 e 1073, dos quais apresentamos a seguir apenas os melhores resultados. As medidas de fotocorrente foram feitas abaixo de 40K. A amostra 1068 não apresentou nenhum pico de fotocorrente e por isso seu espectro não foi incluído nos resultados. A ausência de picos para esse fotodetector é justificada pela ausência de picos verificada nos espectros de absorção medidos a 77K da amostra 1070 (Figura 20, no alto à esquerda), pois é uma evidência de que a baixas temperaturas os estados eletrônicos confinados aos QDs da amostra não dopada estão desocupados.

Os espectros de absorção da Figura 20 revelam claramente que o QDIP estudado apresenta um pico de absorção em 9 µm e outro em 12 µm, mas a região entre 3 e 8 µm apresenta pequenas elevações de localização irregular. Se uma diferença na dopagem é capaz de alterar a altura dos picos de absorção, não se espera entretanto que ela influa na sua energia. Por isso, devemos atribuir essa irregularidade a variações conjunturais implícitas na realização das medidas. Por outro lado, os espectros de fotocorrente das amostras dopadas (1069 e 1070)

exibiram inequivocamente um pico localizado a 5,5 µm. A Figura 21 mostra o melhor resultado logrado para fotocorrente: o espectro a zero bias da amostra mais dopada (1070).

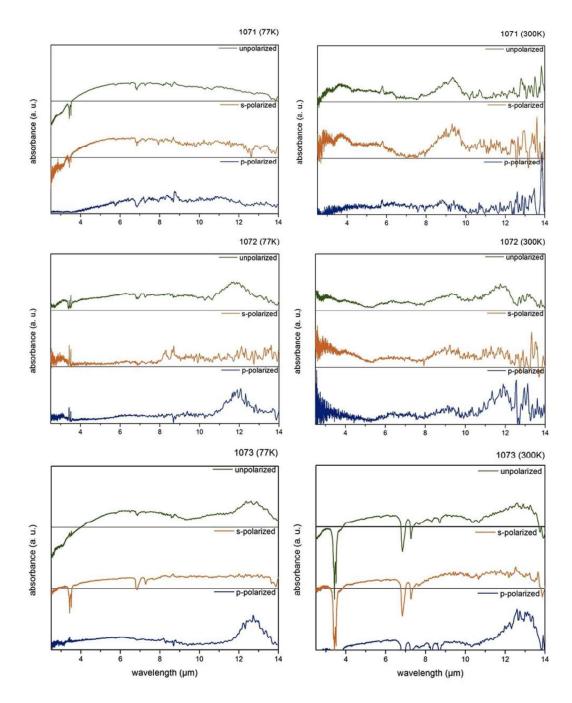


Figura 20: Gráficos comparativos dos espectros de absorção medidos com radiação não polarizada e com polarizações *s* e *p*. Os espectros das amostras não dopada (1071), pouco dopada (1072) e muito dopada (1073) foram medidos a 77K e a 300K.

A ausência de picos a 9 µm e 12 µm em todos os espectros de fotocorrente medidos pode ser entendida da seguinte maneira. Quanto maior o comprimento de

onda do pico de absorção, menor a energia da transição ótica e portanto menor a probabilidade de transporte eletrônico, pois o elétron excitado alcança um estado mais longe do contínuo. Mesmo que haja algum transporte eletrônico, ele será provavelmente menos intenso que o transporte eletrônico resultante de uma transição ótica de maior energia e a fotocorrente gerada terá menos chance de vencer a presença de ruído e produzir alguma detectividade.

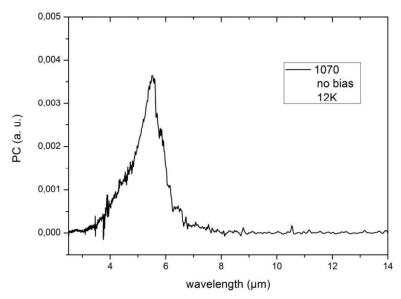


Figura 21: Espectro de fotocorrente da amostra mais dopada, medido por espectroscopia FTIR, a 12K e sem bias aplicado.

A análise comparativa dos espectros de absorção de radiação infravermelha polarizada permitem apreciar o grau de sensibilidade do dispositivo ao feixe normalmente incidente, o que vai depender do pico que se está enfocando. Para o pico de 9 μ m, essa sensibilidade parece bastante acentuada, já que ele é observado predominantemente para radiação de polarização s (Figura 20, no alto à direita) e pode-se deduzir daí que a transição ótica envolvida nesse pico é do tipo $\Delta m = \pm 1$. O fato de esse pico observar-se, em parte, também para radiação de polarização p deve-se ao fato que o campo elétrico dessa radiação tem componentes em ambas orientações espaciais (perpendicular e paralela às interfaces). Para o pico de 12 μ m, não se constata absorção de radiação normalmente incidente, já que ele está praticamente ausente nos espectros para radiação de polarização s (Figura 9, no meio à esquerda e em baixo à direita). Pode-se portanto inferir que a transição ótica envolvida nesse pico é do tipo $\Delta m = 0$. Convém pontuar que é possível observar nos espectros para radiação de polarização s alguma absorção residual

devida a efeitos de difusão que impedem que a radiação que chega à região ativa do fotodetector seja exclusivamente de polarização s.

Devido ao fraco sinal logrado para a absorção de menor comprimento de onda, permanece por ora oculto o tipo da transição ótica envolvida no pico de 5,5 μ m. Por ser o único pico detectado nas medidas de fotocorrente, no entanto, o foco deste desenvolvimento será colocado sobre ele. Veremos que, através de resultados de simulação computacional, seremos capazes, dentre outros *insights*, de estimar o tipo de transição envolvida ($\Delta m = 0$ ou $\Delta m = \pm 1$) e portanto prever a sua sensibilidade à radiação normalmente incidente.

6.2 Investigação da transição ótica

(a) O estado inicial (ϵ_i)

O método analítico proposto na seção 3.4 para estimar a variação da força de absorção com a temperatura será aplicado ao QDIP em estudo. Nesta aplicação, assume-se que o nível de Fermi está muito próximo à energia do estado fundamental, o que é perfeitamente plausível para a amostra 1069, já que sua dopagem foi projetada de modo a prover um elétron por QD.

Será estimada aqui a variação da força de absorção com a temperatura (o fator *PE*), nas hipóteses de o estado inicial ser o estado fundamental (1, 0), o primeiro estado excitado (1, 1), o segundo estado excitado (2, 0) e o terceiro estado excitado (2, 1). Na hipótese de o estado incial ser o estado fundamental, ele estará sobre o nível de Fermi e a expressão (14) do fator *PE* reduz-se a:

fator **PE** (T) =
$$\frac{1}{1 + e^{-(E_f - E_F)/k_B T}}$$
 (15)

Nas outras três hipóteses, considerando as diferenças de energia dos três primeiros estados excitados para o estado fundamental (Tabela 2) e o salto de energia da transição ótica ($E_f - E_i = 225 \text{ meV}$), verifica-se que, para valores de temperaturas abaixo de 2000K, vale a aproximação:

$$fator \mathbf{PE}(T) = \frac{1}{1 + e^{(E_i - E_F)/k_B T}}$$
(16)

Amostra 1069 (E)	$E_F \cong E_{(1.0)}$)
------------------	-----------------------	---

ϵ_i	$E_i - E_F \text{ (meV)}$
(1, 0)	0
(1, 1)	21,5
(2, 0)	48,0
(2, 1)	76,6

Tabela 2: Diferença entre a energia do estado inicial da transição ótica e a energia de Fermi, considerando quatro hipóteses para o estado inicial. Esses valores derivam da simulação computacional dos níveis de energia para a estrutura do QDIP estudado, conforme descrito na seção 5.3. Como primeira aproximação, foram usados para esses cálculos os valores 5 nm e 50 nm, respectivamente, para a altura e o diâmetro do QD.

Os resultados obtidos para essas quatro diferentes hipóteses podem ser comparados nos gráficos da Figura 22.

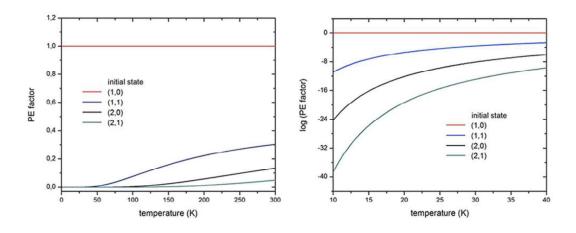


Figura 22: No gráfico à esquerda, observa-se a variação do fator PE com a temperatura, para quatro hipóteses sobre o estado inicial da transição ótica. À direita, para uma observação em maior detalhe, escolheu-se a escala logarítmica e enfocou-se a faixa de temperaturas em que se conseguiram medidas de fotocorrente.

Para observar experimentalmente a variação da altura do pico de fotocorrente com a temperatura, mediu-se o espectro às temperaturas de 12K, 20K, 30K e 35K da amostra 1069, e foi possível constatar que a altura do pico não varia. Contrastando esse resultado experimental com o gráfico à direita na Figura

22, onde se observa, em termos de ordens de grandeza, a variação da fotocorrente com a temperatura entre 10K e 40K, podemos afirmar que o estado inicial da transição ótica não é um estado excitado. O gráfico da esquerda nos informa sobre a constância da fotocorrente (não apenas na faixa entre 10K e 40K, mas também em toda a faixa que vai de 0K a 300K), confirmando ser o estado fundamental, de fato, o estado inicial da transição ótica envolvida na transição do pico de 5,5 μm.

Notas:

- Para assegurar a procedência da comparação das alturas de pico dos espectros obtidos a diferentes temperaturas, as medidas foram tomadas sem alterar os parâmetros de medição ou mudar o posicionamento da amostra em relação ao feixe de infravermelho.
- Pela necessidade de estar populado, a investigação do estado inicial deve estar circunscrita a estados abaixo ou bem próximos ao nível de Fermi. Nesta avaliação, foram admitidas apenas quatro hipóteses, pois a partir do quarto estado excitado, a diferença de energia é demasiado grande para permitir que a energia térmica presente o popule suficientemente. Essa tendência pode ser observada nos gráficos da Figura 22.
- A impossibilidade de se medir o espectro a uma temperatura maior ou igual a 40K se deve ao aumento da corrente de escuro e consequente aumento do ruído, comportamento apreciado na seção 6.4.

(b) O estado final (ϵ_f)

Conforme visto na seção 3.4, ϵ_f pode ser estimado através da análise comparativa de forças de oscilador obtidas através da simulação computacional da heteroestrutura de que é feita a região ativa do fotodetector.

Sabendo que a energia da transição ótica no pico de 5,5 μ m é de 225 meV $(E = hc/\lambda)$ e que o estado inicial é o estado fundamental (1, 0), partimos para a apreciação dos resultados de uma primeira simulação. Nesses primeiros cálculos, os parâmetros usados simulam uma estrutura exatamente conforme está descrita na seção 5.3 e, em particular, com a altura e o diâmetro do ponto quântico iguais a 5 e 50 nm, respectivamente. Limitou-se a simulação a calcular a força de oscilador para transições envolvendo estados (E, m) tais que E < 150 e m = 0 ou 1. Os

resultados mostram, entre as transições de energia na faixa de 175 a 275 meV e partindo do estado fundamental, uma força de oscilador destacando-se nitidamente sobre as demais (Tabela 3). Também é interessante observar que as transições com mudança de momento angular, mesmo as mais representativas, têm força de oscilador muito pouco relevante, característica que persistiu nas simulações subsequentes para a faixa de energia mencionada, de onde se deduz que o pico em questão não é sensível à radiação normalmente incidente.

$\epsilon_{\!f}$	${\mathcal F}$	ΔE (meV)
(75, 0)	0,0059	273,87
(74, 0)	0,0049	272,81
(64, 0)	0,0075	269,04
(53, 0)	0,0107	265,56
(51, 0)	0,0050	264,42
(43, 0)	0,0097	261,72
(34, 0)	0,0048	258,18
(32, 0)	0,0064	257,23
(26, 0)	0,1589	252,82
(11, 0)	0,0027	183,89
(23, 1)	0,0001	237,22
(21, 1)	0,0002	227,29
(20, 1)	0,0001	221,22
(19, 1)	0,0002	218,16
(17, 1)	0,0004	208,95
(15, 1)	0,0002	199,61

Tabela 3: Força de oscilador (\mathcal{F}) e salto de energia ΔE para as transições mais relevantes ou representativas, partindo do estado fundamental. (Nesta simulação, atribuíram-se os valores 5 nm e 50 nm para a altura e o diâmetro do QD, respectivamente.)

A interdifusão nas fronteiras do InAs com o InP e o InGaAlAs, e a incerteza nas medições, por AFM e TEM, da altura e raio médios dos QDs nos permitem uma margem de arbítrio na escolha dos parâmetros para a simulação. Foram realizadas sucessivas simulações alterando-se ligeiramente ora a altura, ora o diâmetro do QD, e apreciando-se os resultados das simulações já feitas para decidir sobre os parâmetros da próxima. O objetivo desse procedimento é observar se a presença de uma transição com uma força de oscilador de ordem de

grandeza maior que as outras se mantém e se a energia dessa transição se aproxima a 225 meV.

Foram comparados ao todo cerca de 6000 resultados para força de oscilador. A Tabela 4 traz uma seleção representativa dos resultados das simulações e evidencia o caminho percorrido até chegar-se a uma correspondência ótima entre cálculos e medidas. A presença de uma transição com força de oscilador de grandeza maior do que as outras persistiu até certo ponto. Aumentando o valor da altura do QD para 7 nm, passou a haver três transições relevantes; e quando atribuiu-se a esse parâmetro o valor de 7,5 nm deixou-se de observar na faixa de interesse qualquer transição com força de oscilador relevante. Mas foi nesse intervalo $(7,0 \le h \le 7,5 \text{ nm})$ que se pôde otimizar os resultados para o salto de energia. Os melhores resultados obtidos são os da simulação que toma respectivamente 7,2 nm e 54 nm como valores da altura e do diâmetro do QD. Com esses parâmetros, a transição de maior força de oscilador corresponde exatamente à energia do pico estudado, enquanto a presença de outras duas transições de energias um pouco maiores e força de oscilador um pouco menor indicam uma configuração que contribuiria para um formato de pico com cauda para altas energias.

h (nm)	d (nm)	$\epsilon_{\!f}$	${\cal F}$	ΔE (meV)
5,0	50	(26, 0)	0,1589	252,82
6,0	50	(24, 0)	0,5850	250,31
6,5	50	(21, 0)	0,6475	241,02
		(19, 0)	0,0849	233,25
7,0	50	(18, 0)	0,4938	230,70
		(17, 0)	0,0424	229,12
7,5	50	(8, 0)	0,0335	182,60
5,0	44	(26, 0)	0,1188	250,74
		(19, 0)	0,4293	232,00
7,0	44	(18, 0)	0,1561	230,51
		(17, 0)	0,0483	227,42
		(19, 0)	0,1676	232,68
7,0	48	(18, 0)	0,4248	230,59
		(17, 0)	0,0249	228,22

7,0	54	(19, 0)	0,0245	234,57
		(18, 0)	0,1227	231,21
		(17, 0)	0,4585	230,39
7,1	54	(17, 0)	0,4887	229,03
		(16, 0)	0,0440	226,86
		(15, 0)	0,0548	225,03
7,2	54	(17, 0)	0,1488	228,55
		(16, 0)	0,1721	227,39
		(15, 0)	0,2310	225,45

Tabela 4: Força de oscilador (\mathcal{F}) e salto de energia para a transição ou transições mais relevantes (partindo do estado fundamental) no resultado de cada simulação, à medida que se variaram a altura (h) e o diâmetro (d) do QD. Em destaque, o resultado de simulação que melhor se adequa ao resultado das medições.

Cabe mencionar que, quando o QD é modelado com altura de 7,2 nm e raio de 27 nm, os saltos de energia entre o estado fundamental e os três primeiros estados excitados são iguais a $\Delta E_1 = 20,6$ meV, $\Delta E_2 = 46,4$ meV e $\Delta E_3 = 74,4$ meV, apenas ligeiramente diferentes dos valores (Tabela 2) relativos à primeira simulação. Essa diferença não afeta de modo substancial os cálculos da variação do fator PE com a temperatura. Portanto, a conclusão de que o estado inicial é o estado fundamental não perde sua validade.

Ainda de acordo com os resultados da simulação com parâmetros h=7,2 nm e d=54 nm, a diferença entre a energia do estado fundamental e o fundo da banda de condução do InAs é 88,7 meV. E conforme consta na Tabela 4, a transição mais importante ($\mathcal{F}=0,2310$) corrensponde a um salto de energia de 225,4 meV, levando o elétron ao estado (15, 0). Arbitrando o fundo da banda de condução do InAs como o zero na escala de energia, foi feito o esquema da Figura 23. Nessa escala, o estado final da transição ótica tem energia igual a 314,2 meV.

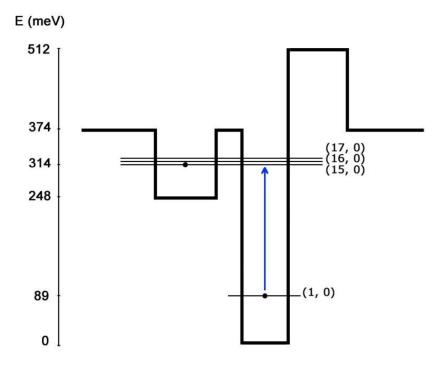


Figura 23: O estado fundamental, os três primeiros estados excitados e o estado final da transição ótica estão representados sobre o diagrama de banda, ao lado de uma escala de energia onde indicam-se as energias dos estados e da BC.

Esse resultado indica uma transição ótica entre dois estados confinados (bound-to-bound), em concordância com a regra da largura de pico, já que se verifica para o pico de fotocorrente em estudo um $\Delta\lambda/\lambda$ próximo a 18%. A contar pela sua energia, o estado (15, 0) é compartilhado espacialmente pelo ponto e o poço quânticos. No esquema da Figura 23, o elétron fotoexcitado foi representado na região do QW e o motivo será abordado na próxima seção.

6.3 Investigação do transporte eletrônico

Segue uma investigação por eliminação, para chegar ao processo mais provável.

(a) Processos térmicos

A uma primeira apreciação, já que não houve variação na intensidade do pico de fotocorrente entre 12K e 35K, uma contribuição térmica relevante para o transporte eletrônico é muito pouco provável. Como se pode notar na Figura 23, a diferença de energia entre o estado final da transição ótica e a menor barreira é 60

meV. Os gráficos da Figura 24 confirmam que, neste caso, o processo térmico não é relevante para o transporte eletrônico.

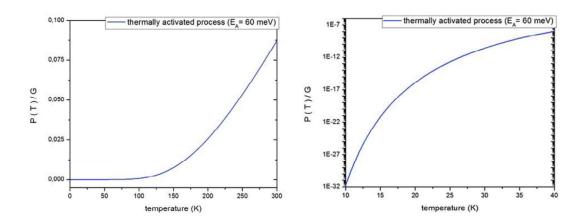


Figura 24: À esquerda, gráfico do processo termicamente ativado para energia de ativação igual a 60 meV, mostrando que até cerca de 130K, o processo está inerte. À direita, detalhe do mesmo gráfico, em escala logarítimica.

(b) Tunelamento

Foi constatada presença do pico de fotocorrente na ausência e na presença de *bias* muito reduzido. Ademais, essas medidas não revelaram variação importante na altura do pico (Figura 26, na página 68). Portanto, não se espera que o tunelamento desempenhe papel relevante na geração da fotocorrente. Esta conclusão está de acordo com resultados obtidos em estudo [35] que realizou medidas de fotocorrente para três dispositivos de estrutura igual à do QDIP estudado aqui, exceto que a espessura da barreira de InP era de 10, 13 e 16 nm, respectivamente. A Figura 25 mostra que, ao contrário dos dispositivos com barreiras de 10 e 13 nm, o dispositivo com barreira de 16 nm (valor igual ao do caso particular deste estudo) não apresentou fotocorrente, evidenciando que o tunelamento, de papel fundamental no transporte eletrônico observado naquele estudo, é impedido pela barreira de 16 nm.

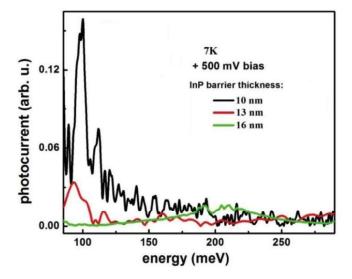


Figura 25: Em estudo anterior, de uma estrutura equivalente à do QDIP investigado aqui, ficou evidente que a barreira de 16 nm é demasiado espessa para permitir que o tunelamento realize o transporte dos elétrons fotoexcitados. Fonte: Alvarenga *et al.* [35]

(c) Corrente de deslocamento

Devido a uma alta taxa de crescimento da corrente de escuro com a intensidade do *bias*, o ruído prejudica radicalmente a detecção do pico de fotocorrente (Figura 26). No entanto, na estreita faixa de bias em que se pôde detectar o pico, a virtual ausência de variação na sua altura sugere que os elétrons responsáveis pela geração de fotocorrente não chegam ao *continuum*.

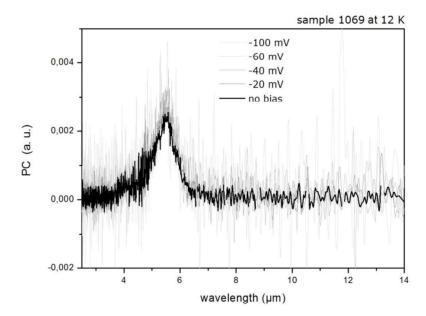


Figura 26: O gráfico aponta o quão drasticamente o ruído, na amostra pouco dopada, aumenta com a intensidade do *bias*. Para *bias* positivo, o ruído é ainda mais crítico e o motivo por que isso ocorre é revelado mais adiante.

De fato, a natureza do estado final da transição ótica, um estado compartilhado entre o poço e o ponto quânticos, permite um transporte eletrônico por corrente de deslocamento, sem a necessidade de um processo intermediário de emissão eletrônica do tipo multifóton ou Auger. A localização espacial dos estados em estrutura semelhante à deste caso particular foi calculada por Parra-Murillo [41]. Na Figura 27, estão os gráficos das localizações espaciais de um estado confinado no QD — tal como o estado inicial (1, 0) — e de um estado compartilhado entre o QD e o QW, dito *well-like*, — tal como o estado final (15, 0). Nesses gráficos, fica patente que, quando os elétrons absorvem radiação, movem-se do QD para QW, realizando um translado orquestrado na direção —z, oposta à do crescimento.

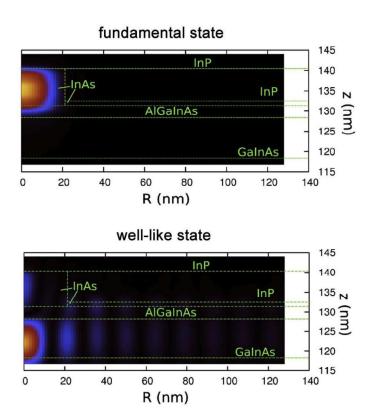


Figura 27: Localização espacial de um estado profundo (em cima) e de um estado *well-like*. Para interpretar os gráficos, convém lembrar que o eixo **z**, ou seja, (R = 0), é o eixo central da simetria cilíndrica. Fonte: Parra-Murillo [41].

As outras duas transições com força de oscilador relevante (Tabela 4) têm estados finais (16, 0) e (17, 0), vizinhos e muito próximos ao estado (15, 0). A Figura 28 ajuda a entender o panorama geral dos estados nesse tipo de QDIP,

mostrando o pequeno número de estados profundos, confinados ao QD, e a grande quantidade de estados *well-like*, de energia muito próxima entre eles, e compartilhados entre o QD e o QW.



Figura 28: Acima, a distribuição, por nível de energia, dos estados confinados na banda de condução de um dispositivo de estrutura equivalente ao estudado aqui. (Adaptado de Parra-Murillo [41]). Abaixo, o desenho da banda de condução em maior perspectiva.

6.4 Outros resultados

(a) Corrente de escuro e energia de ativação

A vinte e três diferentes temperaturas entre 30K e 274K, a corrente de escuro da amostra 1069 foi medida em função do *bias* aplicado, sem o *cold shield*. Plotou-se o gráfico de Arrhenius para bias igual a -2, -1, zero, +1 e +2 volts (Figura 29). Conforme esperado (ver seção 2.6), a energia de ativação a zero *bias* obtida é bem menor do que a energia de ionização de elétrons no estado fundamental $E_b - E_{(1,0)}$ e torna-se menor com a presença de *bias*.

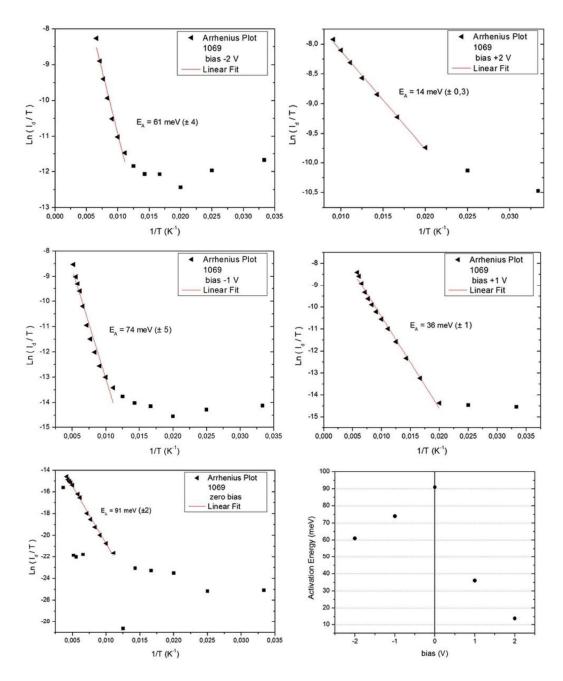


Figura 29: Gráfico de Arrhenius da amostra 1069 (dispositivo 1), para *bias* de cinco diferentes valores. A energia de ativação foi calculada a partir da inclinação da reta que melhor se aproxima ao conjunto dos pontos representados por triângulos (método "*Linear Fit*"). O gráfico em baixo à direita mostra a energia de ativação do dispositivo para os cinco valores de *bias*.

Observando o gráfico de Arrhenius para zero *bias*, nota-se que os pontos da região à direita do processo termicamente ativado não se aproximam a uma reta, ao invés do que poderia ser esperado. Isso se deve à relevância, nessa faixa de temperatura, de outros componentes da corrente de escuro que não a emissão termiônica, o vazamento de elétrons entre QDs (ambos de comportamento exponencial apreciado no capítulo 2 e descrito pela reta da região esquerda), e a

corrente de fundo. Por isso, temos a perda de sinal a 40K, bem abaixo da temperatura crítica, a partir da qual a parte da corrente de escuro que cresce exponencialmente passa a ser relevante, estimada através do gráfico em aproximadamente 90K.

Também observamos, na região do processo termicamente ativado, alguns pontos muito fora da reta. Isso poderia muito facilmente ser atribuído a erros por instabilidades no equipamento eletrônico de medição, porém grita o fato que obtivemos medidas muito parecidas, inclusive nas temperaturas onde os pontos fogem da reta, para dois dispositivos da mesma amostra (Tabela 5). Como as medidas para um e outro dispositivo foram tomadas, uma seguida à outra, durante o mesmo processo criostático, caberia realizar novamente a medição e constatar a permanência ou não dos resultados. Especial interesse é despertado pela corrente de escuro excepcionalmente baixa obtida a 80K. Caso seja um resultado sólido, espera-se que esse fotodetector apresente detectividade acima da temperatura do nitrogênio líquido (77K) para radiação infravermelha de 5,5 μm.

amostra 1069	corrente de escuro (A)		
temperatura (K)	dispositivo 1	dispositivo 2	
30	3 x 10 ⁻¹⁰	2 x 10 ⁻¹⁰	
40	-4 x 10 ⁻¹⁰	-6 x 10 ⁻¹⁰	
50	-3 x 10 ⁻⁹	-5 x 10 ⁻¹⁰	
60	-4 x 10 ⁻⁹	-5 x 10 ⁻⁹	
70	-6 x 10 ⁻⁹	-8 x 10 ⁻⁹	
80	2 x 10 ⁻¹¹	7 x 10 ⁻¹¹	
90	-3 x 10 ⁻⁸	-3 x 10 ⁻⁸	
100	-9 x 10⁻8	-9 x 10 ⁻⁸	
110	-2 x 10 ⁻⁷	-2 x 10 ⁻⁷	
120	-5 x 10 ⁻⁷	-5 x 10 ⁻⁷	
130	-1 x 10 ⁻⁶	-1 x 10 ⁻⁶	
140	-2 x 10 ⁻⁶	-2 x 10 ⁻⁶	
152	5 x 10 ⁻⁸	-3 x 10 ⁻⁸	
163	-1 x 10 ⁻⁵	-5 x 10⁻8	
172	-1 x 10 ⁻⁵	-1 x 10 ⁻⁵	
180	4 x 10 ⁻⁸	-2 x 10 ⁻⁸	
193	6 x 10 ⁻⁸	2 x 10 ⁻⁸	
200	-4 x 10 ⁻⁵	-4 x 10 ⁻⁵	

211	-5 x 10⁻⁵	-5 x 10 ⁻⁵
220	-6 x 10 ⁻⁵	-6 x 10 ⁻⁵
230	-8 x 10 ⁻⁵	-7 x 10 ⁻⁵
240	-1 x 10 ⁻⁴	-1 x 10 ⁻⁴
274	4 x 10 ⁻⁵	5 x 10 ⁻⁵

Tabela 5: Intensidades da corrente de escuro a zero *bias*, medida em dois diferentes dispositivos da amostra 1069. Em destaque, estão os cinco pontos abaixo da reta no gráfico de Arrhenius, conforme mostrado na Figura 29 (em baixo à esquerda) e as segundas medidas. Os valores da corrente estão exibidos com apenas um algarismo significativo, para maior simplicidade. A densidade de corrente é obtida dividindo-se esses valores pela área da janela do fotodetector (1,4 × 10⁻⁴ cm², ver Figura 18).

(b) Assimetrias

Seguem apreciações da coerência entre as assimetrias do dispositivo e as medidas de corrente. A convenção de sinais usada aqui para o sentido da corrente e a polaridade do *bias* aplicado está mostrada na Figura 30.

• Efeito termovoltaico

O sinal da corrente de escuro a zero *bias* (em mais de 80% das temperaturas em que foi medida, conforme se vê na Tabela 5) é negativo. A Figura 30.d mostra uma representação dessa corrente e através da Figura 30.b pode-se verificar que esse fato está em coerência com a estrutura do dispositivo, já que, sem a presença de um campo elétrico externo, os elétrons escapando do estado confinado ao QD movem-se preferencialmente em direção ao substrato.

• Efeito fotovoltaico

Mediu-se, com o amplificador *lock-in*, o sinal de fotocorrente para valores de bias reduzidos e resultou que a fotocorrente é negativa para zero *bias* e se anula para *bias* de +50 meV (Figura 30.e). Da mesma forma que para o efeito termovoltaico, esse fato também está coerente com a estrutura do dispositivo. Cabe mencionar que o uso do *lock-in* para medir o sinal de fotocorrente foi um artifício para perceber o sinal em uma faixa maior de valores para o *bias*, já que na medição do espectro a presença de ruído é mais crítica. Também cabe mencionar foi usado um filtro de germânio para evitar os picos interbanda e que esta análise supõe a ausência de outros picos intrabanda relevantes no espectro de fotocorrente do dispositivo. A fotocorrente medida para zero *bias*, da ordem do picoampère,

confirma a corrente de deslocamento como transporte eletrônico, já que de outra forma se esperaria uma fotocorrente três ordens de grandeza mais intensa [34].

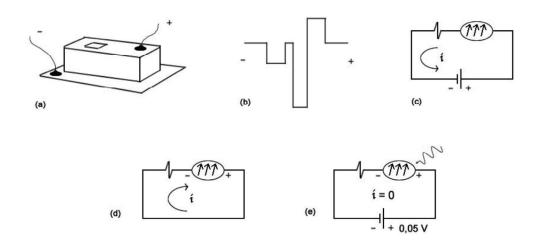


Figura 30: Convenção de sinais para a aplicação de bias sobre o dispositivo processado (a); indicação dessa convenção de sinais em relação à banda de condução (b); circuito representando o dispositivo ligado a uma fonte e convenção de sentido para corrente positiva (c); comportamento termovoltaico (d); e comportamento fotovoltaico, com *bias* de +50 meV (e). Nos circuitos, o QDIP está representado de forma reduzida; as setas dentro da elipse representam elétrons escapando do confinamento no QD por excitação térmica (d) e por fotoexcitação (e), e criando uma diferença de potencial, devido a assimetrias na estrutura.

• Energia de ativação

A variação da energia de ativação para diferentes valores de *bias* (Figura 29, em baixo à direita), por sua vez, aparentemente não está em coerência com a assimetria do dispositivo. Como a barreira à direita é mais alta, dir-se-ia que um *bias* positivo deveria resultar em uma maior energia de ativação. Porém, aqui as intensidades do *bias* aplicado são mais elevadas, modificando consideravelmente a banda de condução e alterando os níveis de energia, além de introduzir novos componentes à corrente de escuro.

Também é interessante observar o que os gráficos da Figura 31 evidenciam, ao comparar as intensidades da corrente de escuro para valores simétricos do *bias*. O gráfico da esquerda mostra intensidades maiores para *bias* positivo, exceto à temperatura de 30K, pois as curvas para essa temperatura se cruzam, mostrando intensidades de corrente de escuro maiores para *bias* negativo de módulo menor que aproximadamente 1,5 volts. O gráfico da direita mostra que a exceção também se verifica às temperaturas de 40K e 50K, para *bias* negativo de módulo menor que 1,1 volts e 0,8 volts, respectivamente. Essa variação de assimetrias

podem ser reflexo da modificação na banda de condução causada pelo *bias*, do efeito de campo por distribuição de carga, de correntes por tunelamento etc. O que está claro é que, para baixas temperaturas e baixos valores em módulo do *bias*, confirma-se a tendência a uma corrente de escuro negativa, conforme identificada na Tabela 5, e em coerência com a assimetria da estrutura, conforme mencionado acima sobre o efeito termovoltaico.

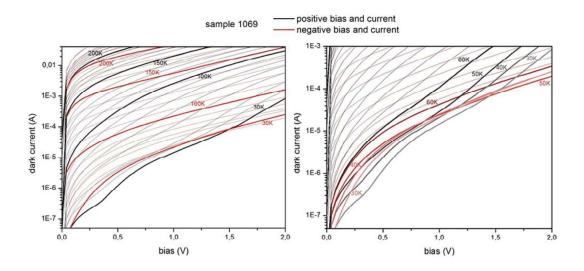


Figura 31: Gráficos I_d×V para a corrente de escuro da amostra pouco dopada, a diversas temperaturas. Foram plotados valores em módulo, distinguindo-se as polaridades através das cores, conforme indicado, e destacando-se algumas linhas. No gráfico à direita, limitou-se o *range* do eixo vertical para maior detalhe das medidas às temperaturas mais baixas.

(c) Ruído e detecção

Nas medições dos espectros de fotocorrente, constatou-se um ruído muito sensível ao *bias*. Apenas foi possível observar o pico com *bias* entre -110 mV e +30 mV para a amostra pouco dopada e entre -30 mV e +50 mV para a amostra muito dopada. Esses valores também são significativos. É de se esperar que as fronteiras de detecção sejam mais limitadoras quando a amostra está mais dopada, e isso se verificou para o bias negativo (já que -110 mV é menos limitador que -30 mV). Por outro lado, para entender as fronteiras observadas quando o *bias* é positivo, convém lembrar que o sinal de fotocorrente desapareceu para *bias* de +50 mV aplicado à amostra pouco dopada. Essa é a razão por que, para essa amostra, só foi observado o pico de fotocorrente com um *bias* positivo de até +30 mV.