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Abstract 

 
            Pereira, Manoel Francisco de Souza; Veiga Filho, Álvaro de Lima 

(Advisor). Nonparametric Estimation of Risk-Neutral Distribution via 
the Empirical Esscher Transform. Rio de Janeiro, 2016. 127p. PhD 
Thesis – Departamento de Engenharia Elétrica, Pontifícia Universidade 
Católica do Rio de Janeiro. 

 
 

   This thesis is comprised of three studies concerning the use of an 

empirical version of the Esscher Transform for nonparametric option pricing. The 

first one introduces the empirical Esscher transform and compares its performance 

against some well-known parametric option pricing approaches. In our proposal, 

we make only mild assumptions on the pricing kernel and there is no need for a 

risk-neutral model. In the second study, we propose a method for nonparametric 

option pricing under a GARCH framework with nongaussian innovations. Several 

papers have extended nonparametric option pricing and provided evidence that 

this methodology performs adequately in the presence of realistic financial time 

series. To represent a realistic time series, we use a new class of observation 

driven model, called dynamic conditional score model, proposed by Harvey 

(2013), for modeling the volatility (and heavy tails) of the asset’s price. Finally, in 

the third study, we introduce a new approach for indirect estimation of state-prices 

implicit in financial asset prices from empirical Esscher transform. First, we 

generalize the discrete version of the Breeden and Litzenberger (1978) method for 

the case where states are not equally spaced. Second, we use the historical 

distribution of the underlying asset’s price and the observed option prices to 

estimate the implicit Esscher parameter. 

 

Keywords 
Nonparametric estimation; indirect estimation; state-price; risk-neutral 

probability; empirical Esscher transform. 
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Resumo 

Pereira, Manoel Francisco de Souza; Veiga Filho, Álvaro de Lima 
(Orientador). Estimação não Paramétrica da Distribuição Neutra ao 
Risco através da Transformada de Esscher Empírica. Rio de Janeiro, 
2016. 127p. Tese de Doutorado - Departamento de Engenharia Elétrica, 
Pontifícia Universidade Católica do Rio de Janeiro. 

 

  Esta tese é composta de três estudos referentes ao uso de uma versão 

empírica da Transformada de Esscher para o apreçamento não paramétrico de 

opções. O primeiro introduz a transformada Esscher empírica e compara seu 

desempenho contra algumas bem conhecidas abordagens de apreçamento de 

opções paramétricas. Em nossa proposta, fazemos apenas suposições simples 

sobre o pricing kernel e não há necessidade de um modelo neutro ao risco. No 

segundo estudo, propomos um método de apreçamento de opções não paramétrico 

sob uma estrutura GARCH com inovações não Gaussianas. Vários artigos 

estenderam o apreçamento de opções não paramétrico e fornecendo evidências 

que esta metodologia funciona adequadamente na presença de séries temporais 

financeiras realistas. Para representar uma série temporal realista, usamos uma 

nova classe de modelo conduzido pela observação, denominado modelo de score 

condicional dinâmico, proposto por Harvey (2013), para modelar a volatilidade (e 

a cauda pesada) do preço do ativo. Finalmente, no terceiro estudo, introduzimos 

uma nova abordagem para a estimação indireta dos state-prices implícitos nos 

preços dos ativos financeiros a partir da transformada Esscher empírica. Primeiro, 

generalizamos a versão discreta do método de Breeden e Litzenberger (1978) para 

o caso em que os estados não são igualmente espaçados. Em segundo lugar, 

utilizamos a distribuição histórica do preço do ativo subjacente e os preços das 

opções observadas para estimar o parâmetro Esscher implícito. 

 

Palavras-chave 
Estimação não paramétrica; estimação indireta; preço de estado; 

probabilidade neutra ao risco; transformada de Esscher empírica. 
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1 
Introduction 
 
 
1.1  
Risk-Neutral Pricing 

 

In most option pricing models, the fair price is determined from the 

expected value of its cash flow, under a risk-neutral probability (measure Q), and 

discounted by a risk-free rate. Under the assumption that the market is 

dynamically complete, it could be shown that every derivative security can be 

hedged and the measure Q is unique (Bingham and Kiesel, 2004). However, 

incomplete markets exist for many reasons and, according to the second 

fundamental theorem of asset pricing, we have an infinite number of measures Q 

under which one can get prices of derivatives. Then, one of the central questions 

in quantitative finance is how to get a measure of the risk-neutral probability that 

provides theoretical prices closest to those observed in the market. 

 According to Danthine and Donaldson (2015), the literature highlights two 

approaches to this problem: models based on the general equilibrium (Arrow, 

1964, Debreu, 1959, Lucas, 1978, Rubinstein, 1976) and the models based on 

absence of arbitrage (Black-Scholes, 1973, Cox and Ross, 1976, Harrison and 

Kreps, 1979, Harrison and Pliska, 1981). In the general equilibrium, the supply 

and demand interacts in various markets affecting the prices of many goods 

simultaneously. The valuation of assets occurs when the markets are balanced, 

that is, when supply equals the demand. Thus, from a theoretical connection 

between macroeconomics (aggregate consumption) and financial markets, the 

marginal rate of substitution is used to determine a measure Q by solving a utility 

maximization problem. 

In absence of arbitrage, we are appealing to the law of one price. This 

states that the equilibrium prices of two separate units of what is essentially the 

same good should be identical. If this was not the case, a riskless and costless 

arbitrage opportunity would open up: buy extremely large amounts at the low 

price and sell them at the high price, forcing the two prices to converge. The first 
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fundamental theory of asset pricing says that, if a market model has a risk-neutral 

measure Q, then it does not admit arbitrage. The conditions that the risk-neutral 

probability structure must satisfy are that the discounted price process has zero 

drift and it must also be equivalent to the original structure (i.e., the same set of 

price paths must have positive probability under both structures). Then, a class of 

pricing kernels, or Radon-Nikodym derivatives, can be specified and impose 

restrictions that ensure the existence of a measure Q. In this case, the measure Q 

can be obtained without completely characterizing equilibrium in the economy 

(Christoffersen, Elkamhi, Feunou, and Jacobs, 2010, Christoffersen, Jacobs and 

Ornthanalai, 2013). 

In both cases, these approaches require the formulation of an explicit risk-

neutral model and are restricted to a few probability distributions for modeling the 

economy’s uncertainty. However, empirical observations of asset returns showed 

several stylized facts, which highlight the parametric misspecification risk for the 

used stochastic process. Hence, due to the poor empirical performance of 

parametric methods, the nonparametric option pricing techniques have expanded 

rapidly in recent years, because they offer an alternative by avoiding possibly 

biased parametric restrictions (Haley and Walker, 2010). 

 This thesis presents two methods to determine the measure Q and to price 

European call option from nonparametric methods. 

 

1.2  
Objectives  

 

The main objective of this thesis is to verify if simple assumptions on 

empirical pricing kernel are able to generate a measure Q that produces theoretical 

prices closer to those observed in the market. 

From our investigation, we are able to derive three articles. The first article 

introduces the empirical Esscher transform and studies the nonparametric option 

pricing. In the second, we demonstrate that our proposal is flexible and performs 

very well in the presence of realistic financial time series and, in the third article, 

we use the empirical Esscher transform to include assets’ and derivatives’ data to 

get a risk-neutral probability. 
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1.3  
Main Contributions 
 

In general, in nonparametric option pricing methods, the historical 

distribution of the asset’s prices is used to predict the distribution of future prices 

and the maximum entropy principle is employed to transform the empirical 

distribution into its risk-neutral counterpart, by minimizing some information 

criterion (Stutzer, 1996, Haley and Walker, 2010, Almeida and Azevedo, 2014). 

As the change of measure does not involve the distribution of the model’s 

innovations, this method of risk-neutralization is applicable even when there are 

restrictions under the innovations’ probability distribution. 

Roughly speaking, on nonparametric option pricing there are two main 

objectives, not necessarily excludent. In the first type, the main objective is the 

adoption of other functions (for example, the Cressie-Read family) as alternative 

ways of measuring distance in the space of probabilities. While the second one is 

more focused on providing evidence that the methodology is flexible and that it 

performs adequately in the presence of realistic financial time series. Our first and 

second contributions are in this direction. 

In our first contribution (Chapter 2), we assume that the empirical pricing 

kernel is known and given by an empirical version of the Esscher transform 

(1932). This assumption is reasonable, because it is well known in information 

theory that a problem of entropy maximization has its solution in the form of the 

Esscher transform (Buchen and Kelly, 1996, Stutzer, 1996, Duan, 2002). 

In our second contribution (chapter 3), we use a recent proposal of 

dynamic model, proposed by Harvey (2013), which offers an alternative to model 

the volatility (and heavy tails) of observed underlying asset price using GARCH 

models and analyzes the nonparametric option pricing method.  

In our third contribution (Chapter 4), we introduce a new approach for 

indirect estimation of the implicit state-price in financial asset prices using the 

empirical Esscher transform. First, we generalize the discrete version of the 

Breeden and Litzenberger (1978) method for the case where states are not equally 

spaced. Second, we use the empirical Esscher transform to include underlying 

assets’ and derivatives’ data. We use the historical distribution of the underlying 

asset prices and the observed option prices to estimate the implicit empirical 
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Esscher parameter. Then, we fit polynomials between the implied Esscher 

parameter and the strike price, as in Shimko (1993), to obtain our measure Q. 

In order to evaluate the flexibility of the proposed method to adapt to 

different levels of maturity and moneyness, experiments (with synthetic data and 

real data) are performed and compared to main benchmarking. 

 

1.4  
Outline 
  

The papers in this thesis share the common theme of asset pricing under a 

nonparametric structure. Each of these papers examines a distinct, well defined 

research problem related to the main topic and occupies a separate chapter. 

Moreover, the thesis contains sections on literature review, methodology and case 

study.  

 The remainder of this thesis is organized as follows. Chapter 2 presents an 

empirical version of the Esscher transform (1932). Chapter 3 uses a more realistic 

data generator process to analyze the nonparametric option pricing method. 

Chapter 4 introduces a new approach for indirect estimation of implicit state-price 

in financial asset price using empirical Esscher transform. In chapter 5 we 

conclude by summarizing the main results of this thesis in more detail. All the 

works cited in the thesis and other relevant documents are presented in the 

Bibliography. The Appendix is included at the end of this document. 
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2 
Nonparametric Option Pricing 

 

 
Chapter Abstract: 

This paper introduces an empirical version of the Esscher transform for nonparametric option 
pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model 
and are operational only for a few probability distributions for the returns of the underlying asset. 
In our proposal, we make only mild assumptions on the price kernel and there is no need for the 
formulation of the risk-neutral model. First, we simulate sample paths for the returns under the 
physical measure P. Then, based on the empirical Esscher transform, the sample is reweighted, 
giving rise to a risk-neutralized sample from which derivative prices can be obtained by a 
weighted sum of the options’ payoffs in each path. We analyze our proposal in experiments with 
artificial and real data. 
 
Keywords: nonparametric estimation, risk-neutral density, option pricing, empirical Esscher 
transform. 

 

2.1  
Introduction 

 

In most option pricing models, the fair price is determined from the 

expected value of its cash flow, under a risk-neutral probability (measure Q), and 

discounted by a risk-free rate. Under the assumption that the market is 

dynamically complete, it could be shown that every derivative security can be 

hedged and the measure Q is unique (Bingham and Kiesel, 2004). However, 

incomplete markets exist for many reasons and, according to the second 

fundamental theorem of asset pricing, we have an infinite number of measures Q 

under which one can get prices of derivatives. Then, how to choose a measure Q 

from an infinite set of possible measures? 

 According to Danthine and Donaldson (2015), the literature highlights two 

approaches to this problem: models based on the general equilibrium (Arrow, 

1964, Debreu, 1959, Lucas, 1978, Rubinstein, 1976, Brennan, 1979) and the 

models based on absence of arbitrage (Black-Scholes, 1973, Cox and Ross, 1976, 

Harrison and Kreps, 1979, Harrison and Pliska, 1981). In the general equilibrium, 

the supply and demand interacts in various markets affecting the prices of many 

goods simultaneously. The valuation of assets occurs when the markets are 

balanced, that is, when the supply equals the demand. Thus, from a theoretical 

connection between macroeconomics (aggregate consumption) and financial 
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markets, the marginal rate of substitution is used to determine a measure Q by 

solving a utility maximization problem. 

In absence of arbitrage, we are appealing to the law of one price. This 

states that the equilibrium prices of two separate units of what is essentially the 

same good should be identical. If this was not the case, a riskless and costless 

arbitrage opportunity would open up: buy extremely large amounts at the low 

price and sell them at the high price, forcing the two prices to converge. The first 

fundamental theory of asset pricing says that, if a market model has a measure Q, 

then it does not admit arbitrage. The conditions that the risk-neutral probability 

structure must satisfy are that the discounted price process has zero drift and it 

must also be equivalent to the original structure. Then, a class of pricing kernels, 

or Radon-Nikodym derivatives, can be specified and impose restrictions that 

ensure the existence of a risk-neutral measure. In this case, the measure Q can be 

obtained without completely characterizing equilibrium in the economy 

(Christoffersen, Elkamhi, Feunou, and Jacobs, 2010, Christoffersen, Jacobs and 

Ornthanalai, 2013). 

In both cases, these approaches require the formulation of an explicit risk-

neutral model and are restricted to a few probability distributions for the measure 

Q. First, because it is difficult to characterize the general equilibrium setup 

underlying a Risk-Neutral Valuation Relationship (RNVR), see for example Duan 

(1995, 1999). Second, it is possible to investigate option valuation for a large class 

of conditionally heteroskedastic processes (Gaussian or non-Gaussian), provided 

that the conditional moment generating function exists. Christoffersen, Jacobs and 

Wang (2004), cite that they help explain some stylized facts (smile effect, 

volatility variability over time and presence of clusters in certain periods) in a 

qualitative sense, but the magnitude of the effects is insufficient to completely 

solve the biases. The resulting pricing errors have the same sign as the Black-

Scholes (1973) pricing errors, but are smaller in magnitude. 

Due to the poor empirical performance of parametric methods, according 

to Haley and Walker (2010), the nonparametric option pricing techniques have 

expanded rapidly in recent years. In these methods, the historical distribution of 

prices is used to predict the distribution of future asset prices. According to 

Stutzer (1996), by using past data to estimate the payoff distribution at expiration, 

it permits more accurate assessment of the likely pricing impact caused by 
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investors' data-based beliefs about the future value distribution. Moreover, it 

offers an alternative by avoiding possibly biased parametric restrictions and 

reducing the misspecification risk.  

There are two ways to nonparametric estimate risk-neutral probabilities 

implicit in financial instruments: the methods that seek to infer the empirical risk-

neutral probability from option market1 (kernel, maximum entropy, and curve 

fitting) and the methods that seek to infer the empirical risk-neutral probability 

from asset price (with or without option price), as canonical valuation developed 

by Stutzer (1996). In the case of canonical valuation, the maximum entropy 

principle is employed to transform the empirical distribution into its risk-neutral 

counterpart, by minimizing the Kullback–Leibler information criterion (KLIC). 

Several papers have extended Stutzer’s original work and demonstrated 

that the methodology is flexible and performs very well in the presence of realistic 

financial time series, see Gray and Newman (2005), Gray, Edwards, and Kalotay 

(2007), Alcock and Carmichael (2008), Haley et al (2010) and Almeida and 

Azevedo (2014). Other researchers, as Haley et al (2010) and Almeida et al 

(2014), suggested the adoption of members of the Cressie-Read family of 

discrepancy functions as alternative ways of measuring distance in the space of 

probabilities.  

This paper introduces an empirical version of the Esscher transform (1932) 

for nonparametric option pricing. We assume that the empirical pricing kernel is 

known and given by an empirical version of the Esscher transform (1932). This 

assumption is reasonable, because it is well-known in the information theory that 

a problem of maximum entropy has its solution in the form of the Esscher 

transform (Buchen and Kelly, 1996, Stutzer, 1996, Duan, 2002). 

Duan (2002) also develops a nonparametric option pricing theory based on 

Esscher transform (1932). He uses a binary search to find the Esscher parameter 

and the measure Q is evaluated using the standard polynomial approximation 

formula. In our case, we use a consistent estimator for the moment generation 

function and we avoid the use of intensive computational methods. As the change 

of measure does not involve the distribution of the model’s innovations, this 

method of risk-neutralization is applicable even when the moment generating 

                                                
1 There are also parametric methods such as Expansion, Distributions and Generalized Mixture. 
Parametric methods use a known probability distribution adjusted to observed option prices. 
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function of the innovations’ probability distribution does not exist. Hence, we 

obtain a method that does not require a set of restrictive assumptions for the 

formulation of a specific model; that provides a clear and easy way to obtain a 

risk-neutral distribution; is adaptable and flexible to respond to changes in the 

data generating process; and explores the whole cross-section information 

contained in the underlying asset’s price.  

In many applications, the empirical pricing kernel is the object of interest 

because it describes risk preferences of a representative agent in an economy, and 

the risk aversion function estimates the investors’ expectations about future return 

probabilities (Hansen and Jagannathan, 1991, Aït-Sahalia and Lo, 2000, and 

Jackwerth, 2000). Our objective is to verify if mild assumptions on the empirical 

pricing kernel are able to obtain option prices closer to the observed in the market.  

In order to evaluate the flexibility of the proposed method to adapt to 

different contexts, three experiments (two with synthetic data and one with real 

data) are performed. We compare the proposed pricing method to the Black-

Scholes (1973) model and the Heston (1993) model. 

The paper is organized as follows. Section 2.2 discusses the Esscher 

transform. In Section 2.3, we introduce the empirical Esscher transform. Section 

2.4 presents the methodology we use to compare the different pricing methods, 

and the results are discussed in Section 2.5. Finally, Section 2.6 concludes. 

 
2.2  
The Esscher transform 

 

Let 𝑋 be a random variable with probability density function 𝑓(𝑥) and let 

𝜃 be a real number. Then, the Esscher transform (ET) of 𝑓(𝑥) with Esscher 

parameter 𝜃 is given by 𝑓(𝑥;𝜃), defined as: 

 

𝑓(𝑥;𝜃) =
𝑒𝜃𝑥

∫ 𝑒𝜃𝑥𝑓(𝑥)𝑑𝑥+∞
−∞

𝑓(𝑥). (2.1) 
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Note that 𝑓(𝑥;𝜃) is also a probability density function since it integrates 

one. Furthermore, the ET can be interpreted as a reweighted version of 𝑓(𝑥), with 

reweighting function given by: 

 

𝑚(𝑥;𝜃) =
𝑒𝜃𝑥

∫ 𝑒𝜃𝑥𝑓(𝑥)𝑑𝑥+∞
−∞

. (2.2) 

 

The denominator of this expression represents the moment generating 

function (mgf) of 𝑓(𝑥), denoted by: 

 

𝑀(𝜃) = 𝐸�𝑒𝜃𝜃� = � 𝑒𝜃𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞
. (2.3) 

 

In this case, for the Esscher transform to exist, the mgf of X must exist, 

which precludes some well-known density functions, like the t-student. Hence, the 

ET of 𝑓(𝑥) can be expressed as: 

 

𝑓(𝑥;𝜃)    =   𝑚(𝑥;𝜃)𝑓(𝑥)   =   
𝑒𝜃𝑥

𝑀(𝜃)𝑓
(𝑥). (2.4) 

 

Consider now the ET of the density 𝑓(𝑥𝑇) of 𝑋𝑇, the log-return of an asset 

for a period 𝑇,  given by: 

 

𝑓(𝑥𝑇;𝜃) = 𝑚(𝑥𝑇;𝜃)𝑓(𝑥𝑇) =
𝑒𝜃𝑥𝑇
𝑀(𝜃)𝑓

(𝑥𝑇). (2.5) 

 

Gerber and Shiu (1994) proposed to use the ET of 𝑋𝑇 as the risk-neutral 

distribution (RND) for the log-return of this asset. They call it Risk-Neutral 

Esscher Transform (RNET). In this context, 𝑓(𝑥𝑇) is referred to as the physical 

probability measure P and  𝑓(𝑥𝑇;𝜃), the ET of  𝑓(𝑥𝑇) , is identified as the risk-

neutral measure Q or, still, the equivalent martingale measure. 

Let 𝑆𝑡 be the price of an asset at time t. According to the fundamental 

theorem of asset pricing (Bingham et al, 2004), the risk-neutral value 
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𝑣 �𝑔(𝑆𝑇)
𝑆0
� � of a derivative 𝑔(𝑆𝑇) with maturity T is given by the expected 

value of the payoff under the measure Q, discounted by the risk-free rate of return 

for period T, 𝑟𝑇: 

 

𝑣 �𝑔(𝑆𝑇)
𝑆0
� � = 𝑒−𝑟𝑇𝐸𝑄 �𝑔(𝑆𝑇)

𝑆0
� �. (2.6) 

 

This is also true if the derivative is the asset itself so that 𝑣 �𝑔(𝑆𝑇)
𝑆0
� � =

𝑆0 and 𝑔(𝑆𝑇) = 𝑆𝑇 with 𝑆𝑇 = 𝑆0𝑒𝜃𝑇.  This imposes the non-arbitrage constraint: 

 

𝑆0 = 𝑒−𝑟𝑇𝐸𝑄 �𝑆0𝑒
𝜃𝑇

𝑆0
� �   → 𝑒𝑟𝑇 = 𝐸𝑄[𝑒𝜃𝑇]. (2.7) 

 

 Now, defining the measure Q as the ET of 𝑓(𝑥𝑇), we obtain the following 

condition for the value of 𝜃: 

 

𝑒𝑟𝑇 = � 𝑒𝜃𝑇𝑓(𝑥𝑇;𝜃)𝑑𝑥𝑇
+∞

−∞
 

𝑒𝑟𝑇 = �
𝑒(𝜃+1)𝑥𝑇

𝑀(𝜃) 𝑓(𝑥𝑇)𝑑𝑥𝑇
+∞

−∞
=
𝑀(𝜃 + 1)
𝑀(𝜃) . 

(2.8) 

 

Hence, the measure Q is given by 𝑓(𝑥𝑇;𝜃∗), with 𝜃∗ = 𝑎𝑟𝑔𝜃  �𝑒𝑟𝑇 =

𝑀(𝜃+1)
𝑀(𝜃) � . 

Gerber et al (1994) explores several different distributional assumptions to 

𝑋𝑇, price dynamics and log-returns of an asset. They show that the RNET 
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encompasses the classical option pricing formula of Black-Scholes (1973)2 for 

Wiener processes, and the Binomial Model (Cox, Ross and Rubinstein, 1979).3  

Duan (2002) explored empirical distribution of 𝑋𝑇 and develops a 

nonparametric option pricing theory based on the first equation in (2.8). In this 

case, he  used a binary search to find 𝜃∗, the integral was evaluated numerically 

and 𝑓(𝑥𝑇;𝜃) was evaluated using the standard polynomial approximation 

formula. 

The RNET can also be applied to incomplete markets, which admit infinite 

measure Q. It provides an economic justification for selecting this particular 

transform, since it emerges as the solution for the problem of pricing a derivative 

under a power utility function (see Gerber et al, 1996).  

Moreover, using the relative entropy principle, the risk-neutral density can 

be obtained from the following problem: 

 

min
𝑔(𝑥)

� 𝑔(𝑥)𝑙𝑙
𝑔(𝑥)
𝑓(𝑥) 𝑑𝑥

∞

−∞
 (2.9) 

 

where 𝑔(𝑥) is the model known and the discrepancy between it and 

another model 𝑓(𝑥) can be obtained by minimization of an information criterion. 

It is well-known in the information theory that the programming problem in (2.9) 

has its solution in the form of the ET (Buchen and Kelly, 1996, Stutzer, 1996, 

Duan, 2002). 

 
2.3 
The empirical Esscher transform 

 

Consider a random sample of size 𝑙 from 𝑋𝑇, denoted by �𝑋𝑇,𝑖�𝑖=1,𝑛
. 

Then, we define the Empirical Esscher Transform (EET) as: 

 
                                                
2 See appendix 6.1. 
3 The Esscher transform can be used in both cases, discrete time (Bühlmann, 1996 and Siu, Tong 
and Yang, 2004) and continuous time (Gerber et al, 1994). Chan (1999) showed the relationship 
between minimal entropy equivalent measure and the Esscher transform when asset prices follow 
the Lévy process (see Chorro, Guégan and Ielpo, 2008 and Ornthanalai, 2011). For more studies 
see Monfort and Pegoraro (2011), Li and Badescu (2012) and Guégan, Ielpo and Lalaharison 
(2013). 
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𝑞𝑖,𝜃 =
𝑒𝜃𝜃𝑇,𝑖

∑ 𝑒𝜃𝜃𝑇,𝑗𝑛
𝑗=1

. (2.10) 

 

Note that �𝑞𝑖,𝜃�𝑖=1,𝑛
 constitutes a probability mass function since 

∑ 𝑞𝑖,𝜃𝑛
𝑖=1 = 1 and 𝑞𝑖,𝜃 > 0 ∀𝑖. Furthermore, in analogy to the ET, it can be 

interpreted as a reweighted version of the original sample �𝑋𝑇,𝑖�𝑖=1,𝑛
. Then, one 

can write: 

 

𝑞𝑖,𝜃 = 𝑚𝑞�𝑋𝑇,𝑖;𝜃�𝑝𝑖 (2.11) 

 

with 𝑝𝑖 = 1/𝑙 being the original weight and 𝑚𝑞�𝑋𝑇,𝑖;𝜃� the reweighting 

function, given by:  

 

𝑚𝑞�𝑋𝑇,𝑖;𝜃� =
𝑒𝜃𝜃𝑇,𝑖

1
𝑙∑ 𝑒𝜃𝜃𝑇,𝑗𝑛

𝑗=1

. (2.12) 

 

The denominator of this expression represents an estimator of the moment 

generating function (mgf) of 𝑓𝜃𝑇(𝑥): 

𝑀�(𝜃) =
1
𝑙
�𝑒𝜃𝜃𝑇,𝑗

𝑛

𝑗=1

. (2.13) 

 

Then, if �𝑋𝑇,𝑖�𝑖=1,𝑛
  is a i.i.d sample, the weak law of large numbers 

assures that, if  𝐸�𝑒𝜃𝜃� exists for all 𝜃 ∈ ℜ, then 𝑀�(𝜃) is a consistent estimator of 

𝑀(𝜃), i.e.: 

 

𝑀�(𝜃)
𝑃
→𝑀(𝜃). (2.14) 

 

Now, take the sample version of the fundamental theorem of asset pricing 

stated in the preceding section. An estimate of the risk-neutral value 
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𝑣� �𝑔(𝑆𝑇)
𝑆0
� � is then given by the estimated expected value, denoted by 𝐸�𝑄[∙] of 

the payoff under the measure Q, discounted by the risk-free rate of return for 

period T, 𝑟𝑇: 

 

𝑣� �𝑔(𝑆𝑇)
𝑆0
� �  = 𝑒−𝑟𝑇𝐸�𝑄 �𝑔(𝑆𝑇)

𝑆0
� � (2.15) 

 

with  𝑆𝑇,𝑖 = 𝑆0𝑒𝜃𝑇,𝑖   and   𝐸�𝑄 �𝑔(𝑆𝑇)
𝑆0
� � = 𝑒−𝑟𝑇 ∑ 𝑔(𝑆0𝑒𝜃𝑇,𝑖)𝑞𝑖,𝜃𝑛

𝑖=1  . 

Using the above expressions, it is easy to check that the sample version of the no-

arbitrage condition is given by: 

 

𝑒𝑟𝑇 =
𝑀�(𝜃 + 1)
𝑀�(𝜃)

. (2.16) 

 

Then, the empirical risk-neutral measure Q is given by �𝑞𝑖,𝜃�∗�𝑖=1,𝑛
 , with 

𝜃�∗ = 𝑎𝑟𝑔𝜃  �𝑒𝑟𝑇 = 𝑀�(𝜃+1)
𝑀�(𝜃) �. Again, if 𝐸�𝑒𝜃𝜃� exists for all 𝜃 ∈ ℜ then 𝑀�(𝜃 + 1) 

and 𝑀�(𝜃) will converge in probability to their respective population values and, 

by consequence, the solution of the non-arbitrage constraint will also converge, 

i.e., 𝜃�∗
𝑃
→ 𝜃∗. 

The price of a European call on a non-dividend-paying stock is obtained 

under the risk-neutral distribution 𝑞(𝑆𝑇) and the payoff is discounted at the 

deterministic risk-free rate 𝑟: 

 

𝐶(𝐾,𝑇) = 𝑒−𝑟𝑇 � (𝑆𝑇 − 𝐾)+𝑞(𝑆𝑇)𝑑
∞

−∞
𝑆𝑇 (2.17) 

 

or, alternatively, 
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𝐶(𝐾,𝑇) = 𝑒−𝑟𝑇 � (𝑆𝑇 − 𝐾)+𝑚(𝑆𝑇)𝑓(𝑆𝑇)𝑑
∞

−∞
𝑆𝑇 (2.18) 

 

where T is the time to maturity, 𝑆𝑇 is the underlying asset price, K is the 

strike price, 𝑓(𝑆𝑇) is the physical distribution of the asset price at the option’s 

expiration and 𝑚(𝑆𝑇) = 𝑞(𝑆𝑇) 𝑓(𝑆𝑇)⁄  is the pricing kernel, characterizing the 

change of measure 𝑓(𝑆𝑇) to 𝑞(𝑆𝑇). 

Consider the discretization of integral in (2.18): 

 

𝐶(𝐾,𝑇) = 𝑒−𝑟𝑇 ���𝑆𝑇,𝑗 − 𝐾�
+
𝑚(𝑆𝑇)𝑝(𝑆𝑇)

𝑛

𝑗=1

� (2.19) 

 

where 𝑞(𝑆𝑇) = 𝑚(𝑆𝑇)𝑝(𝑆𝑇) is the risk-neutral probability mass function. 

 
2.4  
Methodology 

 

This section presents the methodology that is used to compare the 

proposed method to artificial and real data. To investigate its applicability in some 

settings, the empirical Esscher transform is applied to price European call options 

across a range of moneyness and maturities. The algorithm for our method is: 

1. Simulate the physical distribution for 𝑆𝑇,𝑖, 𝑖 = 1, … ,𝑙; 

2. Compute the  empirical Esscher parameter, 𝜃�∗, using the equation (2.16);  

3. Compute the option price with the equation (2.19). 

 In experiment 1, the asset price (step 1) follows a Geometric Brownian 

Model (GBM), under the physical measure: 

 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑑 + 𝜎𝑆𝑡𝑑𝑧𝑡 (2.20) 

 

where 𝑆𝑡 is the underlying asset’s price at time t, 𝜇 is the expected rate of 

return, 𝜎 is the volatility and 𝑑𝑧𝑡 follows a Wiener process. We compare the 

empirical Esscher transform simulated option prices to the true price, Black-

Scholes model. 
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Using the assumptions that the future asset price follows a lognormal 

distribution, and the returns follow a normal distribution, we obtain the Black-

Scholes (1973) formula for the price, at time 0, of a European call option on a 

non-dividend-paying stock, 

 

𝐶 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) (2.21) 

where, 

 

𝑑1 =
𝑙𝑙(𝑆0 𝐾⁄ ) + (𝑟 + 𝜎2 2⁄ )𝑇

𝜎√𝑇
 (2.22) 

 

𝑑2 =
𝑙𝑙(𝑆0 𝐾⁄ ) + (𝑟 − 𝜎2 2⁄ )𝑇

𝜎√𝑇
 (2.23) 

 

The functions N(d1) and N(d2) are the cumulative probability distribution 

function for  a normal variable with zero mean and variance equal to 1, C is the 

price of the call option, 𝑆0 is the stock price at time 0, r is the risk-free interest 

rate continuously compounded, and σ is the asset volatility. Based on the works of 

Hutchinson and Poggio (1994), Stutzer (1996) and Gray et al (2005), we use an 

annualized volatility of 20%, a drift of 10% and the riskless rate of interest is 

assumed to be a constant of 5%.  

In experiment 2, the asset price (step 1) follows the Heston (1993) model, 

which assumes a diffusion process for the asset price and another stochastic 

process for the volatility. The asset price 𝑆𝑡 follows the diffusion, under the 

physical measure: 

 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑑 + �𝑣𝑡𝑆𝑡𝑑𝑧1,𝑡 (2.24) 

 

where 𝑧1,𝑡 is a Wiener process. The volatility �𝑣𝑡 follows the diffusion: 

 

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑑 + 𝜎�𝑣𝑡𝑑𝑧2,𝑡 (2.25) 

 

𝑑𝑧1,𝑡𝑑𝑧2,𝑡 = 𝑝𝑑𝑑 (2.26) 
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where 𝑧2,𝑡 is a Wiener process that has correlation 𝜌 with 𝑧1,𝑡, 𝜃 is the 

long-run mean of the variance, 𝜅 is a mean reversion parameter, 𝜎 is the volatility 

of variance. We compare the empirical Esscher transform simulated option prices 

to the true price, the Heston models. 

The price of a European call option with time to maturity (𝑇 − 𝑑), is given 

by: 

 

𝐶 = 𝑆𝑡𝑃1 − 𝑒−𝑟(𝑇−𝑡)𝐾𝑃2. (2.27) 

 

The quantities 𝑃1 and 𝑃2 are the probabilities that the call option expires 

in-the-money, conditional on the log of the asset price, 𝑥𝑡 = 𝑙𝑙(𝑆𝑡), and on the 

volatility 𝑣𝑡, each at time 𝑑. The probabilities 𝑃𝑗 can be obtained by inverting the 

characteristic functions 𝑓𝑗 defined below. Thus: 

 

𝑃𝑗 =
1
2

+
1
𝜋
� 𝑅𝑒 �

𝑒−𝑖𝑖𝑖𝑛(𝐾)𝑓𝑗
𝑖𝑖

� 𝑑𝑖
∞

0
 (2.28) 

 

𝑓𝑗 = 𝑒𝑥𝑝�𝐶𝑗 + 𝐷𝑗𝑣𝑡 + 𝑖𝑖𝑥� (2.29) 

 

𝐶𝑗 = 𝑟𝑖𝑖𝑟 +
𝜅𝜃
𝜎2

��𝑏𝑗 − 𝜌𝜎𝑖𝑖 + 𝑑𝑗�𝑟 − 2𝑙𝑙 �
1 − 𝑔𝑗𝑒𝑑𝑗𝜏

1 − 𝑔𝑗
�� (2.30) 

 

𝐷𝑗 =
𝑏𝑗 − 𝜌𝜎𝑖𝑖 + 𝑑𝑗

𝜎2
�

1 − 𝑒𝑑𝑗𝜏

1 − 𝑔𝑗𝑒𝑑𝑗𝜏
� (2.31) 

 

𝑔𝑗 =
𝑏𝑗 − 𝜌𝜎𝑖𝑖 + 𝑑𝑗
𝑏𝑗 − 𝜌𝜎𝑖𝑖 − 𝑑𝑗

 (2.32) 

 

𝑑𝑗 = ��𝜌𝜎𝑖𝑖 − 𝑏𝑗�
2
− 𝜎2�2𝑢𝑗𝑖𝑖 − 𝑖2�. (2.33) 

 

In these expressions 𝑟 = 𝑇 − 𝑑 is the time to maturity, 𝑖 = √−1 is the 

imaginary unit, 𝑢1 = 1 2⁄ , 𝑢2 = − 1 2⁄ , 𝑏1 = 𝜅 + 𝜆 − 𝜌𝜎, and 𝑏2 = 𝜅 + 𝜆. The 
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parameter 𝜆 represents the price of volatility risk as a function of the asset price, 

volatility, and time. 

We use the Euler discretizations for the stochastic process of price and 

volatility. Based on the works of Lin, Strong and Xu (2001), Zhang and Shu 

(2003) and Gray et al (2005), we use the following values: 𝜅 = 3.00, 𝜃 =0.04, 

𝜎 =0.40 and 𝜌 = −0.50. The initial value of the volatility equals to its long-term 

average. For consistency with the Black-Scholes world simulations, the drift of 

10% and the riskless rate of interest is assumed to be a constant 5% continuously 

compounded.  

In these artificial experiments, the moneyness (𝑆/𝐾) is equal to 0.90, 0.97, 

1.00, 1.03, 1.125 and the maturities are equal to 1 12⁄ , 1 4⁄ , 1 2⁄  and 1 years. For 

each time to maturity T, 200 returns are drawn to generate the distribution of T-

year forward. We obtain the risk-neutral measure (step 2) and we calculate the 

option price (step 3). This procedure is repeated 10.000 times and we calculate the 

Mean Absolute Percentage Error (MAPE). We repeat the artificial experiments 

with 5 × 104 returns, and 200 repetitions, to analyze if the accuracy improves 

with an increase in the sample size. 

In experiment 3, we evaluate nonparametric opting pricing with real data. 

We compare the prices of the proposed method (EET) to Stutzer prices (STZ) and 

Black-Scholes prices (BSM). For each time to maturity T, we perform bootstrap 

with replacement on historical returns of the underlying asset. We follow the 

sequence: (a) we construct a single trajectory for the asset price by drawing a 

certain quantity of historical log returns. For example, if the option has 17 days to 

maturity, then we draw the same quantity; (b) we accumulate the log returns of 

this trajectory and we obtain one price; (c) we repeat the process (a) and (b) 252 

times to construct the physical distribution for the price at maturity (step 1). We 

obtain the risk-neutral measure (step 2) and we calculate the option price (step 3). 

We repeat this procedure 15.000 times and we calculate the MAPE. 

The Stutzer (1996) method begins with the asset’s historical distribution of 

T-year gross returns 𝑅𝑖, 𝑖 = 1, … ,𝑙, which are expressed as price relatives. By the 

maximum entropy principle, it shows that the risk-neutral probabilities are: 
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𝜋�𝑖∗ =
𝑒𝑥𝑝 �𝛾∗ 𝑅𝑖

(1 + 𝑟)𝑇�

∑ 𝑒𝑥𝑝 �𝛾∗ 𝑅𝑖
(1 + 𝑟)𝑇�

𝑛
𝑖=1

 (2.34) 

 

where 𝛾∗ is the Lagrange multiplier, given by the following minimization 

problem: 

 

𝛾∗ = 𝑎𝑟𝑔min
𝛾
�𝑒𝑥𝑝 �𝛾 �

𝑅𝑖
(1 + 𝑟)𝑇 − 1��

𝑛

𝑖=1

. (2.35) 

 

Note that the equation (2.34) is similar to risk-neutral probabilities of the 

empirical version of the Esscher transform in the equation (2.10).4 Canonical 

option prices follow from the equation: 

 

𝐶(𝐾,𝑇) =
1

(1 + 𝑟)𝑇 ���𝑃𝑇,𝑖 − 𝐾�
+
𝜋�𝑖∗

𝑛

𝑖=1

� , 𝑃𝑇,𝑖 = 𝑃0𝑅𝑖 ,

𝑖 = 1, … , 𝑙. 

(2.36) 

 

where 𝑃𝑇,𝑖 are the prices of underlying asset.  

We consider the closing values of two daily databases of Vale’s and 

Petrobras’ prices from January 17, 2011 to January 17, 2012, containing 251 

observations for each database.5 We set time 0 to January 17, 2012 (the end point 

of the data sample period). The closing value of Vale on that day was 𝑆0 = 41.13 

and of Petrobras was 𝑆0 = 24.37.  We use the corresponding true market price on 

the valuation date as a benchmark.6 The true market prices of the options with the 

strikes and maturities under consideration are shown in Table 2.2. The maturities 

are equal to 17 252⁄ , 40 252⁄ , 59 252⁄  and 121/252 years for Petrobras 

(PETR4) and only the three first for Vale (VALE5). The interest risk-free rate was 

10.3499% (17/252), 10.2485% (40/252), 10.1721% (59/252) and 10.032% 

                                                
4 Stutzer (1996) reports that the performance of canonical valuation improves when a small 
amount of option data is used. 
5 These data are specifics to the Brazilian market. 
6 All required data are obtained from Bovespa (http://www.bmfbovespa.com.br). 
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(121/252) obtained by linear interpolations.7 Table 2.1 presents the main 

descriptive statistics of the log returns. 
 

Table 2.1: Descriptive Statistics of the Log Returns. 

  Mean Standard 
Deviation Skewness Kurtosis Maximum Minimum 

Petrobras -0.0007 0.0180 0.5621 5.2172 0.0480 -0.0788 

Vale -0.0011 0.0174 -0.6538 7.1367 0.0577 -0.0962 

 

 
            Figure 2.1: Vale prices from January 17, 2011 to January 17, 2012. 

 
        Figure 2.2: Petrobras prices from January 17, 2011 to January 17, 2012. 

                                                
7 http://www.bcb.gov.br. 
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Table 2.2: Market prices of options from Vale and Petrobras. 

 
Vale (VALE5) Petrobras (PETR4) 

Maturity (days) Strike Option price Strike Option price 

17 

44.00 0.11 25.66 0.18 
43.14 0.21 25.16 0.27 
42.00 0.54 24.83 0.43 
41.14 0.99 23.66 1.12 
41.00 1.03 22.83 1.80 
40.14 1.72 21.66 2.88 
39.07 2.50 20.83 3.63 
38.57 2.75 19.66 4.94 
37.14 4.24 18.66 5.78 
37.00 4.41 17.66 6.78 
36.14 5.32 15.16 9.19 
36.00 5.34 

  35.00 6.05 
  34.00 7.31 
  30.14 11.41 
  30.00 11.65 
  28.00 13.59 
  

40 

46.07 0.15 27.83 0.09 
46.00 0.20 27.00 0.17 
45.57 0.19 25.83 0.40 
44.07 0.42 25.33 0.61 
43.07 0.86 25.00 0.77 
42.07 1.25 23.83 1.38 
42.00 1.32 22.83 2.11 
41.00 1.83 21.66 3.08 
40.57 2.01 21.00 3.70 
40.00 2.51 19.66 4.95 
38.00 4.00 18.66 5.79 
37.00 4.75 17.83 6.60 
36.57 5.21 

  35.07 6.50 
  32.00 9.30 
  

59 

48.00 0.21 26.00 0.58 
44.14 0.87 24.00 1.50 
44.00 0.90 21.83 3.21 
41.07 2.30 

  40.00 3.00 
  121 

  
25.50 1.85 
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Figures 2.1 and 2.2 present the prices’ behavior during the studied period. 

Since the 2008 crisis, the prices of these companies have presented a downward 

trend. The main factors that have contributed to the prices’ fall were the Arab 

spring, the downgrade in the US credit rating from Standard and Poor’s and the 

crisis in the Eurozone (Greece, Italy, Ireland and Portugal declared inability to pay 

their debts). 

 

2.5  
Results  

 

Experiment 1 compares the Empirical Esscher transform (EET) method 

performance when the conditions are the same as in the Black-Scholes model 

through the MAPE (Mean Absolute Percentual Error). Results in the table 2.3 

show that the EET prices reproduced BSM prices when the sample size increases. 

Moreover, results also show that the EET presents the highest pricing errors in 

situations Deep-Out-of-the-money. 

Experiment 2 compares the EET method performance when the conditions 

are the same as in the Heston model through the MAPE. Results in the table 2.4, 

as in the table 2.3, show that the EET prices improves with sample size. 

In experiment 3, we compare the EET, the Stutzer method (STZ) and the 

Black-Scholes model (BSM) in real data (from Petrobras and Vale). Tables 2.5 

and 2.6 show that the lowest pricing errors are between the nonparametric 

methods. Table 2.5, for the maturity equal to 17, the nonparametric methods 

present similar results. For others maturities, the proposed method presents the 

lowest MAPE for moneyness equal to deep-out-of-the-money, out-of-the-money 

and at-the-money. Results in the table 2.6 are similar to the ones in table 2.5. 
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Table 2.3: MAPE of Empirical Esscher Transform Estimates in a Black-Scholes World. 

This table contains the prices for a European call option, where the underlying prices are simulated 
by a geometric Brownian motion with 𝜇 = 0.1 and 𝜎 = 0.20, and they are compared to the true 
Black-Scholes call prices. The top and bottom numbers reported for each combination are the 
mean absolute percentage error (MAPE) of the EET with 200 returns and with 5 × 104 estimated 
returns respectively over 10.000 and 200 simulations.  
 
  Time to expiration (years) 
Moneyness (S/K) 1/12 1/4 1/2 1 
Deep-out-of-the-money 25.1459 5.9172 2.9991 2.0394 
(0.90) 1.6812 0.3472 0.1720 0.1325 
Out-of-the-money 2.8328 1.8461 1.6741 1.6500 
(0.97) 0.1870 0.1166 0.1041 0.1054 
At-the-money 1.4156 1.4219 1.4480 1.5203 
(1.00) 0.0932 0.0817 0.0898 0.0964 
In-the-money 0.9585 1.1688 1.2757 1.3936 
(1.03) 0.0612 0.0710 0.0787 0.0862 
Deep-in-the-money 0.1512 0.5227 0.7681 0.9774 
(1.125) 0.0092 0.0320 0.0477 0.0628 

 

Table 2.4: MAPE of Empirical Esscher Transform Estimates in a Heston World. 

This table contains the prices for a European call option, where the underlying prices are simulated 
by stochastic volatility with 𝜇 = 0.1, 𝜅 = 3.00, 𝜃 =0.04, 𝜎 =0.40 and 𝜌 = −0.50, and they are 
compared to the true Heston call prices. The top and bottom numbers reported for each 
combination are the mean absolute percentage error (MAPE) of the EET with 200 returns and with 
5 × 104 estimated returns respectively over 10.000 and 200 simulations.  

  Time to expiration (years) 

Moneyness (S/K) 1/12 1/4 1/2 1 
Deep-out-of-the-money 36.7566 13.4996 9.5056 7.6861 
(0.90) 4.8636 4.9842 5.8228 6.0545 
Out-of-the-money 7.2624 5.6063 5.1907 5.0316 
(0.97) 1.2073 2.3118 3.2218 3.9084 
At-the-money 3.8561 3.9084 4.0431 4.2104 
(1.00) 0.6422 1.5878 2.4599 3.2255 
In-the-money 2.0482 2.7513 3.1526 3.5286 
(1.03) 0.3030 1.0644 1.8609 2.6532 
Deep-in-the-money 0.2332 0.8956 1.4536 2.0503 
(1.125) 0.0171 0.2615 0.7414 1.4129 
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Table 2.5: MAPE of Empirical Esscher Transform Estimates in Petrobras. 
This table contains the prices for a European call option, where the underlying prices are simulated from 
bootstrap with replacement on historical returns, and they are compared to the true market price. The numbers 
reported for each combination are the MAPE of the EET (proposed method), STZ (Stutzer method) and BSM 
(Black-Scholes model) with 252 returns and the simulation is repeated 15,000 times. 
 

Maturity Moneyness (spot/strike) EET STZ BSM 

T = 17/252 

Deep-out-of-the-money 0.95 60.2770 61.5768 71.3672 

Out-of-the-money 0.97 63.0951 63.9341 70.4573 

  0.98 32.2144 32.6802 36.5306 

In-the-money 1.03 8.6391 8.6142 9.3748 

  1.07 2.5588 2.4217 2.5840 

Deep-in-the-money 1.13 0.4307 0.3273 0.2894 

 
1.17 1.6701 1.5079 1.6076 

 
1.24 1.9466 2.0699 1.9588 

 
1.31 0.9689 0.8672 0.9671 

 
1.38 0.7246 0.6422 0.7244 

  1.61 1.3303 1.2781 1.3303 

T =40/252 

Deep-out-of-the-money 0.88 131.3580 140.6030 157.7360 

 
0.9 102.7306 108.7454 118.8495 

 
0.94 62.9430 65.8111 70.0874 

  0.96 36.6367 38.4690 41.1048 

Out-of-the-money 0.97 26.2260 27.6094 29.5751 

At-the-money 1.02 15.0387 15.5256 16.3215 

In-the-money 1.07 7.3354 7.4032 7.7823 
Deep-in-the-money 1.13 4.0906 3.9246 4.1547 

 
1.16 2.4239 2.2025 2.4157 

 
1.24 1.9286 1.6844 1.8991 

 
1.31 3.8815 3.6555 3.8650 

  1.37 3.4446 3.2459 3.4375 

T = 59/252 

Deep-out-of-the-money 0.94 52.6996 56.6112 58.6471 

At-the-money 1.02 20.8055 21.8995 22.4323 

Deep-in-the-money 1.12 3.5929 3.5943 3.8422 

T = 121/252 Deep-out-of-the-money 0.96 6.4109 8.8424 6.3078 
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Table 2.6: MAPE of Empirical Esscher Transform Estimates in Vale. 

This table contains the prices for a European call option, where the underlying prices are simulated 
from bootstrap with replacement on historical returns, and they are compared to the true market 
price. The numbers reported for each combination are the MAPE of the EET (proposed method), 
STZ (Stutzer method) and BSM (Black-Scholes model) with 252 returns and the simulation is 
repeated 15,000 times. 
 

Maturity Moneyness (spot/strike) EET STZ BSM 

T = 17/252 

Deep-out-of-the-money 0.93 175.9523 182.4160 207.2992 
  0.95 134.9038 138.7734 154.2885 
Out-of-the-money 0.98 61.8209 63.3503 69.8371 
At-the-money 1 28.7498 29.5111 32.7514 

 1 31.0346 31.7410 34.7763 
  1.02 8.7360 9.0209 10.4410 
In-the-money 1.05 5.9744 6.0083 6.5923 

 1.07 11.1145 11.0728 11.4601 

 1.11 1.9831 1.8404 1.9505 
  1.11 1.0093 0.8644 0.9658 
Deep-In-the-money 1.14 0.9143 1.0715 0.9810 

 1.14 1.2425 1.0812 1.1752 

 1.18 5.4708 5.3079 5.4227 

 1.21 0.7746 0.6326 0.7515 

 1.36 1.8743 1.9600 1.8745 

 1.37 2.7023 2.7859 2.7025 
  1.47 1.9758 2.0428 1.9759 

T = 40/252 

Deep-out-of-the-money 0.89 193.5641 211.4168 228.3421 

 0.89 126.1923 139.6921 152.3182 

 0.9 178.4586 193.7011 207.7265 

 0.93 111.0552 119.0766 125.9295 

 0.95 41.1680 45.1967 48.5118 
Out-of-the-money 0.98 29.8445 32.5372 34.7016 
  0.98 25.3795 27.9143 29.9489 
At-the-money 1 17.9030 19.5386 20.8631 

 1.01 19.4561 20.8401 21.9774 
In-the-money 1.03 9.5245 10.4966 11.3238 

 1.08 4.4847 4.7102 5.0866 
  1.11 5.2491 5.2654 5.5572 
Deep-In-the-money 1.12 3.0515 3.0024 3.2671 

 1.17 3.3883 3.2020 3.4340 
  1.29 3.8424 3.6109 3.8307 

T = 59/252 

Deep-out-of-the-money 0.86 116.3855 135.1830 144.3093 

 0.93 51.9814 58.8867 61.0783 
  0.93 52.1273 58.8390 60.9299 
At-the-money 1 15.6564 18.0059 18.5215 
In-the-money 1.03 9.4821 11.0098 11.3472 

 

We also analyze the behavior of the empirical Esscher parameter. The 

results are presented in Figure 2.3 and tables 2.7, 2.8, 2.9 and 2.10. In the Figure 

2.3, the panels (a) and (d) present the empirical Esscher parameters obtained for 

200 returns (and 10,000 repetitions) in the Black-Scholes and Heston worlds, 

respectively. We note a cloud of points when the size of the sample is small. 

Histograms in panels (b) and (e) show that the Esscher parameter is symmetric in 
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the Black-Scholes world and negatively skewed in the Heston world, what can 

suggest that the probability distribution of the empirical Esscher parameter 

follows the behavior of data generating process. The same behavior was observed 

in others maturities. The panels (c) and (f) present the empirical parameters for 

5x10 returns (and 200 repetitions) in the Black-Scholes and Heston worlds, 

respectively. These figures show that the empirical parameter converges for one 

specific value when the sample increases. 

Tables 2.7 and 2.8 present the main descriptive statistics of the empirical 

parameter in the Black-Scholes and Heston world. We can highlight that the 

standard deviation decreases along with the maturity and with the increase in the 

sample size, and the statistics’ values begin to converge to a constant value in 

larger samples.  

Tables 2.9 and 2.10 present the main descriptive statistics of the empirical 

parameters of both methods: Esscher (𝜃∗) and Stutzer (𝛾∗). Note that the values 

are close. When we compare only the empirical Esscher parameter obtained for 

synthetic data with the one obtained for real data, the more important change is 

the signal. That is, the Esscher parameters obtained with synthetic data are 

simulated with a drift (𝜇 = 10.00%) greater than the risk-free rate (𝑟 = 5.00%). 

Thus, the negative parameter shifts the risk-neutral distribution to the left, what 

eliminates the risk premium and assures the average yield equal to risk-free rate. 

In real data, the opposite happens. The positive parameter shifts the risk-neutral 

distribution to the right. This is contrary to financial theory. However, this does 

not constitute an arbitrage opportunity, because the daily risk-free rate is between 

the worst and the best daily return (see Cox et al, 1979). As we can see in figures 

2.1 and 2.2, and in Table 2.2, the price time series are in fall, and in this case, 

applications in risk-free interest rates are paying more than these stocks. 
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Black-Scholes World 

  
(a) 200 returns (b) Histogram for 200 returns  

 

 

(c) 5x104 returns  

Heston World 

  
(d) 200 returns (e) Histogram for 200 returns  

 

 

(f) 5x104 returns  
 

Figure 2.3: Empirical Esscher Parameter T=1/12. 
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Table 2.7: Empirical Escher Parameter in Black-Scholes World. 
 

 200 returns and 10.000 repetitions 5x104 returns and 200 repetitions 

 
𝑇
= 1 12⁄  

𝑇
= 1 4⁄  

𝑇
= 1 2⁄  𝑇 = 1 𝑇 = 1 12⁄  

𝑇
= 1 4⁄  

𝑇
= 1 2⁄  𝑇 = 1 

Mean -1.2538 -1.2539 -1.2539 -1.2543 -1.2500 -1.2500 -1.2500 -1.2500 
Std Deviation 0.0032 0.0056 0.0079 0.0110 0.0002 0.0003 0.0005 0.0008 
Maximum -1.2379 -1.2255 -1.2194 -1.2020 -1.2495 -1.2492 -1.2487 -1.2482 
Minimum -1.2676 -1.2792 -1.2836 -1.3007 -1.2506 -1.2509 -1.2518 -1.2520 

 
Table 2.8: Empirical Escher Parameter in Heston World. 

 200 returns and 10.000 repetitions 5x104 returns and 200 repetitions 
 T = 21 T = 63 T = 126 T = 252 T = 21 T = 63 T = 126 T = 252 

Mean -1.2665 -1.2545 -1.2434 -1.2318 -1.2484 -1.2366 -1.2264 -1.2139 
Std Deviation 0.1665 0.1548 0.1406 0.1239 0.0116 0.0098 0.0088 0.0078 
Maximum -0.6649 -0.6557 -0.7943 -0.8156 -1.2189 -1.2126 -1.2073 -1.1982 
Minimum -2.1098 -2.0004 -1.8774 -1.7747 -1.2758 -1.2568 -1.2509 -1.2378 

 
Table 2.9: Empirical Parameters (Esscher and Stutzer) – Petrobras. 

  Esscher (𝜃∗) Stutzer (𝛾∗) 
  T = 17 T = 40 T = 59 T = 121 T = 17 T = 40 T = 59 T = 121 

Mean 2.8557 2.8891 2.9031 2.9309 2.8002 2.8253 2.8327 2.8460 

Std Deviation 0.9265 0.6626 0.5826 0.4915 0.9276 0.6652 0.5881 0.5127 

Maximum 7.0618 6.4443 5.7783 5.4746 6.9985 6.3773 5.6778 5.5471 

Minimum -0.5597 0.6241 0.7970 1.3742 -0.6260 0.5585 0.7238 1.1808 
 

Table 2.10: Empirical Parameters (Esscher and Stutzer) – Vale. 

  Esscher (𝜃∗) Stutzer (𝛾∗) 
  T = 17 T = 40 T = 59 T = 17 T = 40 T = 59 
Mean 4.8156 4.8404 4.8830 4.7550 4.7724 4.8129 
Std Deviation 1.0412 0.8152 0.7700 1.0451 0.8298 0.7974 
Maximum 9.7780 8.4302 8.8304 9.7615 8.4394 8.8084 
Minimum 0.9284 2.2304 2.7088 0.8686 2.1183 2.3691 
 

 
2.6 
Conclusions 

 

In this paper, we propose an empirical version of the Esscher transform for 

nonparametric option pricing. We conduct artificial experiments in Black-Scholes 

and Heston worlds and real experiments to explore the potential usefulness of the 

proposed method.  
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Artificial results show that the EET prices improve alongside sample size. 

EET also provides higher prices for all maturities, and the MAPE decreases as 

moneyness does. 

Real data results show that, when the stochastic process of underlying 

asset is unknown, the lowest pricing errors are between the nonparametric 

methods. For a maturity equal to 17, the nonparametric methods present similar 

results. For others maturities, the proposed method presents the lowest MAPE for 

moneyness equal to deep-out-of-the-money, out-of-the-money and at-the-money. 

We also analyze the behavior of the empirical Esscher parameter. We can 

highlight that the standard deviation decreases with the maturity and with the 

increase in the sample size, and the values of the descriptive statistics begin to 

converge to a constant value in larger samples. When we compare only the 

empirical Esscher parameter obtained for synthetic and real data, the more 

important change is the signal. That is, the Esscher parameters obtained with 

synthetic data are simulated with a drift (𝜇 = 10.00%) greater than the risk-free 

rate (𝑟 = 5.00%). Thus, the negative parameter shifts the risk-neutral distribution 

to the left, what eliminates the risk premium and assures the average yield equal to 

risk-free rate. With real data, the opposite happens. The positive parameter shifts 

the risk-neutral distribution to the right. This is contrary to financial theory. 

However, this does not constitute an arbitrage opportunity, because the daily risk-

free rate is between the worst and the best daily return. Price time series are have 

been falling and in this case, applications in risk-free interest rates are paying 

more than in these stocks. 

Further research can be done comparing the proposed method to other 

nonparametric pricing methodologies, verifying Monte Carlo simulation 

techniques and obtaining the Greeks. 
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3 
Dynamic Conditional Score Model 
 

Chapter Abstract: 
 

We propose a method to nonparametric option pricing under a GARCH framework with non-
Gaussian innovations. Several papers have extended nonparametric option pricing and provided 
evidence that this methodology performs adequately in the presence of realistic financial time 
series. To represent a realistic time series, we use a new class observation driven model, called 
dynamic conditional score model, proposed by Harvey (2013), for modeling the volatility (and 
heavy tails) of the asset price. These models use the score of the conditional distribution instead of 
square observations, what mitigates the effect of outliers. We identify our risk-neutral measure 
from empirical Esscher transform. We compare our proposal with the Black-Scholes (1973) and 
Heston and Nandi (2000) models in experiments with real data. 

 
Keywords: nonparametric option pricing, Beta-t-GARCH, Empirical Esscher transform. 

 

3.1  
Introduction 

 

Volatility is perhaps the most used risk measure in finance and it is a key 

factor in option pricing and asset allocation. Although asset return volatility is 

well defined, it is not directly observable. What we observe are prices of an asset 

and of its derivatives, leading to several important implications in studying and 

modeling the volatility. Empirical evidences also show that asset return volatility 

is stochastic and mean reverting, it responds asymmetrically to positive and 

negative returns, and the systematic patterns in implied volatility indicate that 

only an asymmetric probability distribution with heavier tails would be able to 

produce market prices (Tsay, 2013).  

In option pricing, there are two directions in which we model volatility: 

continuous time and discrete time models. Christoffersen, Heston and Jacobs 

(2011) argue that continuous time models have become the workhorse of modern 

option pricing theory, given that they offer closed-form solutions for European 

option and have the flexibility of incorporating stochastic volatility, stochastic 

jumps, leverage effects and various types of risk premia (Heston, 1993, Bakshi, 

Cao and Chen, 1997 and Broadie, Chernov and Johannes, 2007).  

In a discrete time setting, the stochastic volatility is often modeled using 

extensions of the autoregressive conditional heteroscedasticity (ARCH) model 

proposed by Engle (1982) and generalized by Bollerslev (1986) through 
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(GARCH) framework. When regard to option pricing, they offer, at least, five 

advantages with regard to continuous time pricing models. First, it may be 

considered an accurate numerical approximation of continuous time models 

(Nelson and Cao, 1992 and Nelson, 1996) avoiding any discretization bias. 

Second, their predictions are exactly compatible with the filter to extract the 

variance. Third, estimation is computationally fast. Fourth, the volatility is 

observable in each time point. Fifth, they can incorporate multiple factors (Engle 

and Lee, 1999), long memory (Bollerslev and Mikkelsen, 1996), and non-

Gaussian innovations (Bollerslev, 1987, and Nelson, 1991). 

The theoretical price of an option is evaluated as the discounted expected 

value of the payoff function under a martingale measure. In general, to change the 

physical measure to an artificial one, in continuous time models, used the 

Girsanov theorem.8 In discrete time models, according to Christoffersen, Elkamhi, 

Feunou and Jacobs (2010), a class of pricing kernels, or Radon-Nikodym, can be 

specified and impose restrictions that ensure the existence of an artificial measure. 

Obviously, option pricing models with Gaussian innovations cannot 

capture the skewness, the kurtosis and the leptokurtosis of the financial data. The 

use of stochastic jumps is the preferred approach to deal with the shortcoming of 

models with Gaussian innovations in continuous time (Bates, 2000, Eraker, 

Johannes and Polson, 2003, Chernov, Gallant, Ghysels and Tauchen, 2003). In 

discrete time, the moment generating function is only able to risk-neutralize a few 

probabilities distributions, beyond the Gaussian case. For example, gamma 

distribution (Siu, Tong and Yang, 2004), inverse gaussian innovations 

(Christoffersen, Jacobs and Heston, 2006), smoothly-truncated stable distribution 

(Menn and Rachev, 2005), generalized error distributions innovations 

(Christoffersen, Jacobs and Minouni, 2006) and generalized hyperbolic 

innovations (Chorro, Guégan and Ielpo, 2008 and Badescu, Elliott, Kulperger, 

Miettinen and Siu, 2011). 

In situations where we need to model innovations with heavy-tailed 

distributions such as Student’t, we can use three methods, according to Liu, Li and 

Ng (2015). The first method used is a Markov-switching GARCH model with 

Student’s t innovations. To avoid changing the measure, Satoyoshi and Mitsui 

                                                
8 See appendix 6.3. 
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(2011) replaced the drift term in the conditional mean equation with the risk-free 

interest rate. They justified the drift term’s replacement by using the assumption 

that investors in the real world are risk-neutral, requiring no compensation for 

risk.  

The second method does not require any distributional assumption for the 

innovations. The asymmetric GJR-GARCH model9, implemented by Barone-

Adesi, Engle, and Mancini (2008), consists of two steps: first, they estimate the 

GARCH parameters using historical returns; in the second step, they calibrate the 

model to the observed market prices. The drift term in the conditional mean 

equation is determined in such a way that the expected asset return implied by the 

model was the risk-free interest rate. 

The third method, propose by Badescu and Kulperger (2007), is similar to 

that of Barone-Adesi et al (2008), but without resorting to option prices. The 

authors estimate the GARCH parameters by quasi-maximum likelihood and then, 

approximate the unknown innovation distribution function using a kernel density 

estimator based on the standardized residuals. They compute option prices by 

simulating stock prices under the physical measure and by evaluating Radon-

Nikodym derivatives.  

Liu et al (2015) proposes one more method for heavy-tailed distributions 

under GARCH models with Hansen’s skewed-t distributed innovations. They use 

the canonical valuation method, developed by Stutzer (1996), to identify a risk-

neutral measure. That is, the risk-neutralization is applied to the empirical 

distribution of the sample paths generated from the assumed model. The change of 

measure does not involve the distribution of the model’s innovations, this method 

of risk-neutralization is applicable even when the moment generating function of 

the innovations’ probability distribution does not exist. Maximum entropy 

principle is then employed to transform the empirical distribution of the sample of 

future asset returns distribution into its risk-neutral counterpart, by minimizing the 

Kullback–Leibler information criterion (KLIC).  

In a spirit similar to the canonical valuation method of Stutzer (1996), 

Duan (2002) develops a nonparametric option pricing theory without resorting to 

option prices. He formalizes the risk-neutralization process so that one can infer 

                                                
9 This model is used to handle leverage effects. The model uses zero as its threshold to separate the 
impacts of past shocks though a variable indicator for negative values. 
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directly from the price dynamics of the underlying asset to establish the risk-

neutral pricing dynamic under GARCH framework.10 Transforming one-period 

asset return empirical distribution to normality is a key step in constructing this 

nonparametric option pricing theory. Applying the relative entropy principle with 

the condition that the expected asset returns are equal to the risk-free rate, one can 

derive the risk-neutral distribution for the normalized asset return. 

In this work, we propose a method to obtain European option prices under 

a GARCH framework with non-Gaussian innovations. Several papers have 

extended nonparametric option pricing and demonstrated that this methodology 

performs very well in the presence of realistic financial time series. To represent a 

realistic financial time series, we use a new class of time series models, dynamic 

conditional score, proposed by Harvey (2013), for modeling the volatility (and 

heavy tails) of the observed underlying asset price. These models replace the 

observations, or their squares, by the score of the conditional distribution. They 

are more robust in extreme events, when compared to standard GARCH, allowing 

the modeling of leverage effect, adding components of short and long-term 

volatility.11 

To avoid the formulation of a restricted model, risk-neutralization is 

applied to the empirical distribution of the sample paths generated from the 

assumed model, as Liu et al (2015) and Duan (2002). To identify a risk-neutral 

measure, we use the empirical Esscher transform. Hence, the sample paths are 

reweighted, giving rise to a risk-neutralized sample from which option prices can 

be obtained by a weighted sum of the options’ payoffs in each path. We will 

compare our approach empirically to two competing benchmarks: Black-Scholes 

(1973) and Heston and Nandi (2000). 

The paper is organized as follows. In section 3.2 we introduce the 

proposed method. Section 3.3 presents the methodology used to compare the 

different pricing methods, and the results are discussed in section 3.4. Finally, 

section 3.5 concludes. 

 

 
                                                
10 It is in this regard that his nonparametric option pricing theory differs from the canonical 
evaluation method of Stutzer (1996). 
11 In this case it is used an exponential function as link, as the asymptotic distribution of the 
maximum likelihood estimators can be derived from it. 
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3.2  
Proposed Method 

 

In this section, we develop a data generator process dynamic that captures 

the most important features of the return process. 

 

3.2.1  
Asset Price Dynamic 

 

Under physical measure the GARCH model assumed is: 

 

𝑦𝑡 = 𝑙𝑙(𝑆𝑡 𝑆𝑡−1⁄ ) = 𝜇 + 𝑎𝑡, 𝑎𝑡 = �ℎ𝑡𝑧𝑡 (3.1) 

 

where 𝑆𝑡 is the asset price at time 𝑑, 𝜇 is a constant, ℎ𝑡 is the conditional 

variance, with its evolution captured by some GARCH-type model, and {𝑧𝑡} is the 

sequence of standardized innovations, which are independent and identically 

distributed random variables with zero mean and unit variance. It follows the 

conditional mean and variance of 𝑦𝑡 are 𝜇 and ℎ𝑡, respectively.  

According to Tsay (2013), for most asset return series, the serial 

correlations are weak, if there is any. Thus, building a mean equation, 𝜇, to 

remove the sample mean from data if the sample mean is significantly different 

from zero.  In some cases, a simple auto-regressive model might be needed. In 

other cases, the equation mean may employ some explanatory variables, such as 

indicator variables to capture possible daily effects.  

In option pricing, the form of the equation (3.1) depends on an underlying 

risk-neutral model. For example, in Duan (1995), 𝜇 was replaced by 𝑟 + 𝜆�ℎ𝑡 −

ℎ𝑡 2⁄ , so that the expected value in risk-neutral measure is equal to the risk-free 

rate.  
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3.2.2  
Return volatility 

 

Time series models in which a parameter of conditional distribution is a 

function of past observations are widely used in econometrics. Such models are 

termed ‘observation driven’ as opposed to ‘parameter driven’. Examples of 

observation driven models are the class of GARCH models. The stochastic 

volatility models are parameter driven in which the volatility is determined by an 

unobserved stochastic process, such as the Heston (1993) model. The works of 

Harvey (2013) and Creal, Koopman and Lucas (2013) propose a new approach to 

the formulation of observation driven models where time-varying parameters are 

driven by the score.12 

In both cases, when the disturbance is Gaussian, the models are equivalent 

to the standard GARCH (1,1). If we assume that the disturbance follows a Student 

t distribution, there is an important difference between the standard t-GARCH 

(1,1) model of Bollerslev (1987) and the Harvey (2013) one: the updating 

equation for the conditional volatility is not the same in both models. According 

to Harvey (2013), the standard GARCH model responds too much to extreme 

observations, and this effect is slow to dissipate. Letting the dynamic equation for 

volatility depend on the conditional score of the t distribution, as it is the case of 

Harvey’s set up, mitigates the effect of outliers. Creal et al (2013) cite that, if the 

errors are modeled by a fat-tailed distribution, a large observation causes a more 

moderate increase in the variance when the dynamic equation depends on the 

conditional score. 

Harvey (2013) presents the following models for volatility: Beta-t-

(E)GARCH and Gamma-GED-(E)GARCH. In the first, the conditional score is a 

linear function of a variable that has a beta distribution, while in the latter the 

conditional score is a linear function of a variable that has a gamma distribution. 

 The Beta-t-GARCH model depends on ensuring a positive variance and 

the asymptotic distribution of the maximum likelihood estimators cannot be 
                                                
12This idea was suggested independently in papers by Creal et al (2013) and Harvey and 
Chakravarty (2009). Creal et al (2013) went on to develop a whole class of score driven models, 
while Harvey and Chakravarty (2009) concentrated on GARCH type models. Creal et al (2013) 
named their work as Generalized Autoregressive Score (GAS), while Harvey (2013) refers to them 
as dynamic conditional score. However, only in Harvey’s paper the model asymptotic theory was 
addressed. 
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obtained. In Beta-t-EGARCH model, it works with a scale13 which employs an 

exponential link function, and it is possible to derive closed form expressions for 

multistep predictions, moments the autocorrelations of absolute values together 

with the mean square error of these predictions. Moreover, it has all the 

advantages of the standard EGARCH model and the asymptotic distribution of the 

maximum likelihood estimators can be derived analytically. 

 When the conditional distribution of the innovations has a Generalized 

Error Distribution (GED), the Dynamic Conditional Score (DCS) approach leads 

to a complementary class of models in which score is a linear function of 

observations’ absolute values raised to a positive power. These variables can be 

transformed in order to have a gamma distribution, so the properties of the model, 

denoted as Gamma-GED-EGARCH, can again be obtained. The normal 

distribution is a special case of the GED, as is the Laplace distribution. In his 

empirical studies, Harvey (2013) recognizes that Beta-t-(E)GARCH models 

overcome gamma-GED-(E)GARCH models. Moreover, Beta-t-GARCH model 

can be considered as approximating a Beta-t-EGARCH model. This work is 

concerned with the Beta-t-GARCH model for modeling the volatility. 

 

3.2.2.1  
Model specification 

 

Let 𝑦𝑡 be the dependent variable of interest and ℎ𝑡 the time-varying 

parameter, all at time t. The available information set at a time 𝑑 consists of 

𝑌𝑡−1 = {𝑦1,𝑦2, … ,𝑦𝑡−1} and ℎ𝑡−1 = {ℎ1,ℎ2, … ,ℎ𝑡−1}. An observation-driven 

model is set up in terms of a conditional distribution for the t-th observation. The 

model assumes that 𝑦𝑡 is generated by the observation probability density function 

(pdf):14 

 

𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1), 𝑑 = 1, … ,𝑇. (3.2) 

 

The mechanism for updating the time-varying parameter ℎ𝑡 is given by: 

                                                
13 The scale is defined as 𝜑𝑡 ∗= (𝜐 − 2)1 2� ℎ𝑡. The dynamic equation is then set up for the logarithm 
of scale 𝜆𝑡 = 𝑙𝑙𝜑𝑡. 
14 The appendix 6.2 presents the link between equations (3.1) and (3.2). 
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𝜂𝑡−1 = 𝜓
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−1
 

(3.3) 

 

where 𝜓 is a finite constant which may be the information matrix, or some 

other constant, including unity. Let the information matrix be: 

 

𝜓 = �𝑉𝑎𝑟 �
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−1
𝑌𝑡−1� � = 𝐸 ��

𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)
𝜕ℎ𝑡−1

�
2

𝑌𝑡−1� �

= −𝐸 �
𝜕2𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−12 𝑌𝑡−1� ��
−1

. 

 

 
 
 
 

(3.4)  

 

The derivative 𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1) 𝜕ℎ𝑡−1⁄ , or score of the conditional 

distribution, is a random variable which has zero mean at the true parameter value. 

This variable is a martingale difference by construction,15 as it is shown below:  

 

𝐸[𝜂𝑡−1 𝑌𝑡−1⁄ ] = 𝜓𝐸 �
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−1
𝑌𝑡−1� � = 0 

(3.5) 

 

𝑉𝑎𝑟[𝜂𝑡−1 𝑌𝑡−1⁄ ] = 𝐸 ��𝜓
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−1
�
2

𝑌𝑡−1� �

= 𝜓2𝐸 ��
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−1
�
2

𝑌𝑡−1� � 

 

 

 

(3.6) 

 

 

𝐸 ��
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−1
�
2

𝑌𝑡−1� � =
𝑉𝑎𝑟[𝜂𝑡−1 𝑌𝑡−1⁄ ]

𝜓2 =
𝜎𝜂2

𝜓2. 
(3.7) 

 

In the dynamic conditional score models, the idea is to replace the 

observation, or their squares, in the dynamic equation for the volatility, by the 

                                                
15 When markets are working efficiently, returns are martingale differences. In other words, they 
should not be predictable on the basis of past information. However, returns are not usually 
independent, and so features of the conditional distribution apart from the mean may be 
predictable. 
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score of the conditional distribution. For example, let the first-order Gaussian 

GARCH model be, according to equation (3.1) with 𝑧𝑡~𝑁𝑁𝐷(0,1), then: 

 

ℎ𝑡 = 𝛿 + 𝛽ℎ𝑡−1 + 𝛼𝑎𝑡−12 , 𝛿 > 0,𝛼 ≥ 0,𝛽 ≥ 0. (3.8) 

 

The conditions on 𝛿, 𝛼 and 𝛽 ensure that the variance remains positive. 

The sum of 𝛼 and 𝛽 is typically close to one. The logarithm of the pdf is: 

 

𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇, ℎ𝑡−1) = 𝑙𝑙 �
1

√2𝜋
� −

1
2
𝑙𝑙ℎ𝑡−1 −

(𝑦𝑡−1 − 𝜇)2

2ℎ𝑡−1
 

(3.9) 

 

and the first derivative: 

 

𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇,ℎ𝑡−1)
𝜕ℎ𝑡−1

=
1

2ℎ𝑡−12 (𝑎𝑡−12 − ℎ𝑡−1). 
(3.10) 

 

The information matrix is: 

 

𝜓 = −
1

𝐸 �𝜕
2𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1,ℎ𝑡−1)

𝜕ℎ𝑡−12 𝑌𝑡−1� �
= 2ℎ𝑡−12  

(3.11) 

and by replacing (3.10) and (3.11) in (3.3), we have: 

 

𝜂𝑡−1 = 𝑎𝑡−12 − ℎ𝑡−1. (3.12) 

 

Rewriting it (3.12) as:  

 

𝑎𝑡−12 = 𝜂𝑡−1 + ℎ𝑡−1 (3.13) 

 

and finally replacing (3.13) in (3.8), we have: 

 

ℎ𝑡 = 𝛿 + 𝑖ℎ𝑡−1 + 𝛼𝜂𝑡−1, 𝛿 > 0,𝑖 ≥ 𝛼,𝛼 ≥ 0 (3.14) 

 

DBD
PUC-Rio - Certificação Digital Nº 1121534/CA



  
49 

where 𝑖 = 𝛼 + 𝛽 and 𝜂𝑡−1 is given by (3.12). In the normal case, the 

mechanism for updating the ℎ𝑡, given by score of the conditional distribution is 

similar to standard Gaussian GARCH(1,1). 

 

3.2.2.2  
Beta-t-GARCH Model 

 

When the observations have a conditional t distribution, with 𝜐 degrees of 

freedom, we can write 𝑧𝑡 in (3.1) as: 

  

𝑧𝑡 = �
𝜐 − 2
𝜐

�
1
2
𝜀𝑡, 𝜐 > 2, (3.15) 

 

where the serially independent zero mean variable 𝜀𝑡 has a standard 𝑑𝜐 

distribution: 

 

𝜀𝑡~𝑑𝜐 �0,
𝜐

𝜐 − 2
�. (3.16) 

 

Therefore, 𝑧𝑡 has a 𝑑𝜐 distribution and standardized to have unit variance. 

Let the conditional pdf be given by a Student t distribution: 

 

𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇,ℎ𝑡−1, 𝜐) =
Γ((𝜐 + 1) 2⁄ )

Γ(𝜐 2⁄ )�𝜋(𝜐 − 2)
�

1
ℎ𝑡−1

�
1
2
�1 +

(𝑦𝑡−1 − 𝜇)2

(𝜈 − 2)ℎ𝑡−1
�
−𝜐+12

. 

(3.17) 

 

 

Its logarithm is given by: 

 

𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇,ℎ𝑡−1, 𝜐) = 𝑙𝑙Γ �
𝜐 + 1

2
� − 𝑙𝑙Γ �

𝜐
2
� −

1
2
𝑙𝑙𝜋 −

1
2
𝑙𝑙(𝜐 − 2) 

−1
2
𝑙𝑙ℎ𝑡−1 −

𝜐+1
2
𝑙𝑙 �1 + (𝑦𝑡−1−𝜇)2

(𝜐−2)ℎ𝑡−1
�.                                                        (3.18) 
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Consider 𝑢𝑡−1 another mechanism for updating the time varying parameter 

for the Student t distribution, similar to (3.3). Then, the score of 𝑢𝑡−1 is: 

  

𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇,ℎ𝑡−1, 𝜐)
𝜕ℎ𝑡−1

= −
1

2ℎ𝑡−1
�1 − �

(𝜐 + 1)(𝑦𝑡−1 − 𝜇)2

(𝜐 − 2)ℎ𝑡−1 + (𝑦𝑡−1 − 𝜇)2��. 

 

(3.19) 

 

 

Making 𝑚 = (𝑦𝑡 − 𝜇) and 𝜔 = (𝜐 − 2)ℎ𝑡−1, and dividing (3.19) by 𝜔, we 

have: 

 

𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇,ℎ𝑡−1, 𝜐)
𝜕ℎ𝑡−1

= −
1

2ℎ𝑡−1
�1 − (𝜐 + 1) �

𝑚2 𝜔⁄
1 + 𝑚2 𝜔⁄

��. (3.20) 

 

Lemma 1 If 𝑔 is gamma (𝜃,𝛼) and 𝑠 is gamma (𝜃,𝛽), then 𝑥 =

𝑔 (𝑠 + 𝑔)⁄  is beta (𝛼,𝛽). 

 

Corollary 1 The variable (𝑚2 𝜔⁄ ) (1 + 𝑚2 𝜔⁄ )⁄  has a beta (1 2⁄ , 𝜐 2⁄ ) 

distribution, whereas 1 (1 + 𝑚2 𝜔⁄ )⁄  has a beta (𝜐 2⁄ , 1 2⁄ ) distribution.  

 

Proof: Since 𝑚2 𝜔⁄  is the ratio of a squared standard normal to a 𝜒𝜐2, it 

follows from Lemma 1 that (𝑚2 𝜔⁄ ) (1 + 𝑚2 𝜔⁄ )⁄ = (𝑔 𝑠⁄ ) (1 + 𝑔 𝑠⁄ )⁄ =

𝑔 (𝑠 + 𝑔)⁄ . Similarly, 1 (1 + 𝑚2 𝜔⁄ )⁄ = 𝑠 (𝑠 + 𝑔)⁄ ∎ 

 

If  𝑏 ~ beta (1 2⁄ , 𝜐 2⁄ ), then its mean and variances will be given by: 

 

𝐸[𝑏] =
1

(𝜐 + 1) (3.21) 

 

𝑉𝑎𝑟[𝑏] =
2𝜐

(𝜐 + 3)(𝜐 + 1)2. (3.22) 

 

The score in (3.20), according to (3.21) and (3.22), has mean zero and 

variance given by: 
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𝑉𝑎𝑟 �
𝜕𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇,ℎ𝑡−1, 𝜐)

𝜕ℎ𝑡−1
𝑌𝑡−1� � =

(𝜐 + 1)2

4ℎ𝑡−12
2𝜐

(𝜐 + 3)(𝜐 + 1)2

=
𝜐

2ℎ𝑡−12 (𝜐 + 3). 
(3.23) 

 

Rewriting (3.7), but with 𝑢𝑡−1, we have: 

 

𝜓 = �
𝜎𝑢2

𝑉𝑎𝑟 �𝜕𝑙𝑙𝑓(𝑦𝑡; 𝜇,𝜑, 𝜐)
𝜕ℎ𝑡

�
= �

2𝜐
(𝜐 + 3)

𝜐
2ℎ𝑡−12 (𝜐 + 3)

= 2ℎ𝑡−1. (3.24) 

 

This model is named Beta-t-GARCH because 𝑢𝑡−1 is a linear function 

which its variable has a beta distribution. The principal feature of the Beta-t-

GARCH class is that a linear combination of past values of the martingale 

difference is given by the conditional score: 

 

𝑢𝑡−1 =
(𝜐 + 1)(𝑦𝑡−1 − 𝜇)2

(𝜐 − 2)ℎ𝑡−1 + (𝑦𝑡−1 − 𝜇)2 − 1, −1 ≤ 𝑢𝑡−1 ≤ 𝜐, 𝜐 > 2. (3.25) 

 

The variable 𝑢𝑡−1 may be expressed as: 

 

𝑢𝑡−1 = (𝜐 + 1)𝑏𝑡−1 − 1 (3.26) 

 

where 

 

𝑏𝑡−1 =
(𝑦𝑡−1 − 𝜇)2 (𝜐 − 2)ℎ𝑡−1⁄

1 + (𝑦𝑡−1 − 𝜇)2 (𝜐 − 2)ℎ𝑡−1⁄ , 0 ≤ 𝑏𝑡−1 ≤ 1,

0 < 𝜐 < ∞. 
(3.27) 

 

When 𝜐 = ∞, 𝑢𝑡−1 = 𝑎𝑡−12 ℎ𝑡−1⁄ − 1 and the standard GARCH model in 

(3.14), is obtained by setting 𝜂𝑡−1 = ℎ𝑡−1𝑢𝑡−1. The Beta-t-GARCH (𝑝, 𝑞) model, 

using (3.26), is given by: 
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ℎ𝑡 = 𝛿 + 𝛽1ℎ𝑡−1 + ⋯+ 𝛽𝑞ℎ𝑡−𝑞 + 𝛼1ℎ𝑡−1(𝜐 + 1)𝑏𝑡−1 + ⋯

+ 𝛼𝑞ℎ𝑡−𝑞(𝜐 + 1)𝑏𝑡−1−𝑞 
(3.28) 

 

where 𝛼𝑖 = 𝜃𝑖  and 𝛽𝑖 = 𝑖𝑖 − 𝛼𝑖, 𝑖 = 1, … , 𝑞. In the limit as 𝜐 →

∞, (𝜐 + 1)𝑏𝑡−1 = 𝑎𝑡−12 , it leads to the standard GARCH specification. A 

sufficient condition for the conditional variance to remain positive is 𝛿 > 0, 

𝛽𝑖 ≥ 0, and 𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑞. The beta-t-GARCH (1,1) model is: 

 

ℎ𝑡 = 𝛿 + 𝑖ℎ𝑡−1 + 𝛼ℎ𝑡−1𝑢𝑡−1. (3.29) 

 

The Beta-t-GARCH (1,1) model may be extended to include leverage 

effects by adding the indicator variable 𝑁(𝑦𝑡−1 < 0): 

 

ℎ𝑡 = 𝛿 + 𝑖ℎ𝑡−1 + 𝛼ℎ𝑡−1𝑢𝑡−1 + 𝑁(𝑦𝑡−1 < 0)𝛼∗ℎ𝑡−1𝑢𝑡−1. (3.30) 

 

Forecasts for more than one step ahead of the conditional variance can be 

made for Beta-t-GARCH models, as in standard GARCH case, by using the law 

of iterated expectations.16  

 

3.2.3  
Risk-Neutral Measure 

 

Consider a random sample of size 𝑙 of an asset’s log-return for a period 𝑇, 

denoted by �𝑦𝑇,𝑖�𝑖=1,𝑛
. Then, the empirical risk-neutral Q measure is given by 

�𝑞𝑖,𝜃�∗�𝑖=1,𝑛
 , with 𝜃�∗ = 𝑎𝑟𝑔𝜃  �𝑒𝑟𝑇 = 𝑀�(𝜃+1)

𝑀�(𝜃) �. See section 2.3. 

 

3.3  
Methodology 

 

This section presents the methodology used to compare the proposed 

method to artificial and real data. To investigate its applicability in some settings, 

                                                
16 See appendix 6.4 for properties of first-order model. 
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the empirical Esscher transform is applied to price European call option across a 

range of moneyness and maturities.  

The real-world parameters are estimated using the log returns of the 

closing values of two daily databases of Vale’s and Petrobras’ prices from January 

2, 2011 to January 17, 2012, containing 260 daily observations for each 

database.17 We set time 0 to January 17, 2012 (the end point of the data sample 

period) and Vale’s closing value on that day was 𝑆0 = 𝑅$ 41.13 and Petrobras’ 

was 𝑆0 = 𝑅$ 24.37. The corresponding true market price on the valuation date 

was used as a benchmark.18 The true market prices of the options with the strikes 

and maturities under consideration are shown in Table 2.2. The maturities are 

equal to 17 252⁄ , 40 252⁄ , 59 252⁄  and 121/252 years. The risk-free interest 

rate was 10.3499% (17/252), 10.2485% (40/252), 10.1721% (59/252) and 

10.032% (121/252) obtained by linear interpolations.19  Table 3.1 presents main 

descriptive statistics for the time series returns. 

 
Table 3.1: Descriptive Statistics of Log Returns. 

 Log return 

Statistics Vale Petrobras 

Mean -0.00076 -0.00048 

Standard deviation 0.01740 0.01760 

Skewness -0.64820 -0.67110 

Kurtosis 7.05440 5.24140 

Maximum 0.05750 0.04530 

Minimum -0.09610 -0.07800 

 

Pricing procedures 

 

The Black–Scholes model for the price, at time 0, of a European call 

option on a non-dividend-paying stock is given by the formulae: (2.21), (2.22) and 

(2.23). See section 2.4. 

In the model of Heston and Nandi (2000), the logarithmic return 𝑦𝑡 =

𝑙𝑙(𝑆𝑡 𝑆𝑡−1⁄ ) is assumed to follow GARCH (1,1) in the mean process driven by the 

following pair of equations, under physical measure: 
                                                
17 These data are specific to the Brazilian market.  
18 All required data are obtained from Bovespa (http://www.bmfbovespa.com.br). 
19 http://www.bcb.gov.br 
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𝑦𝑡 = 𝑟 + 𝜆𝜎𝑡2 + 𝜎𝑡𝑧𝑡 (3.31) 

 

𝜎𝑡2 = 𝜔 + 𝛽𝜎𝑡−12 + 𝛼(𝑧𝑡−1 − 𝛾𝜎𝑡−1)2 (3.32) 

 

where 𝑟 is the risk-free interest rate, 𝜆 represents the risk premium, 𝜎𝑡2 is 

the conditional variance, 𝑧𝑡 is the error term distributed as a standard normal 

variable, 𝑧𝑡~𝑁(0,1). The 𝛼 determines kurtosis, 𝛾 determines skewness and 

variance persistence is 𝛽 + 𝛼𝛾2, the process will be mean-reverting if 𝛽 + 𝛼𝛾2 <

1. The risk-neutral version of this model can be written as: 

 

𝑦𝑡 = 𝑟 −
1
2
𝜎𝑡2 + 𝜎𝑡𝑧𝑡∗ 

(3.33) 

 

𝜎𝑡2 = 𝜔 + 𝛽𝜎𝑡−12 + 𝛼(𝑧𝑡−1∗ − 𝛾∗𝜎𝑡−1)2 (3.34) 

 

where 𝜆 is replaced by -1/2, 𝑧𝑡∗ is equal to 𝑧𝑡∗ = 𝑧𝑡 + �𝜆 + 1
2
� 𝜎𝑡 and 𝛾 is 

replaced by 𝛾∗ = 𝛾 +  𝜆 − 1/2. The price at time t of a European call option with 

maturity at time t+T is given by: 

 

𝐶 = 𝑒−𝑟𝑇𝐸𝑡∗[(𝑆𝑡+𝑇 − 𝐾)+] = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝑇𝑃2 (3.35) 

 

where T is the time to maturity, 𝐸𝑡∗[] is the expectation at time t under risk-

neutral distribution, 𝑆𝑡 is the price of the underlying asset at time t and 𝑃1, 𝑃2 are 

the risk-neutral probabilities. 

The quantities 𝑃1 and 𝑃2 are the probabilities that can be obtained by 

inverting the characteristic functions 𝑓∗(𝑖): 

 

𝑃1 =
1
2

+
𝑒−𝑟𝑇

𝜋𝑆𝑡
� 𝑅𝑒 �

𝐾−𝑖𝑖𝑓∗(𝑖𝑖 + 1)
𝑖𝑖

� 𝑑𝑖
∞

0
 

(3.36) 

𝑃2 =
1
2

+
1
𝜋
� 𝑅𝑒 �

𝐾−𝑖𝑖𝑓∗(𝑖𝑖)
𝑖𝑖

� 𝑑𝑖
∞

0
. 

(3.37) 

 

𝑓(𝑖) = 𝑆𝑡
𝑖𝑒𝑥𝑝(𝐴𝑡 + 𝐵𝑡𝜎𝑡2) (3.38) 
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 𝐴𝑡 = 𝐴𝑡+1 + 𝑖𝑟 + 𝐵𝑡+1𝜔 − 1
2
𝑙𝑙𝑔(1 − 2𝛼𝐵𝑡+1) (3.39) 

 

𝐵𝑡 = 𝑖(𝜆 + 𝛾) −
1
2
𝛾2 + 𝛽𝐵𝑡+1 +

1
2 (𝑖 − 𝛾)2

1 − 2𝛼𝐵𝑡+1
. 

(3.40) 

 

Note that 𝐴𝑡 and 𝐵𝑡 are defined recursively, by working backwards from 

the maturity time t+T of the option. Note also that 𝐴𝑡 and 𝐵𝑡 are functions of t, 

t+T, and 𝑖, so that 𝐴𝑡 ≡ 𝐴(𝑑; 𝑑 + 𝑇,𝑖) and 𝐵𝑡 ≡ 𝐵(𝑑; 𝑑 + 𝑇,𝑖). Both these terms 

can be solved recursively from time t+T, working back through time and using the 

terminal conditions: 

 

𝐴𝑡+𝑇 = 𝐵𝑡+𝑇 = 0. (3.41) 

 

The next terms in the backward recursion would be 𝐴𝑡+𝑇 = 𝑖𝑟 and: 

 

𝐵𝑡+𝑇 = 𝑖(𝜆 + 𝛾) −
1
2

[𝛾2 + (𝑖 − 𝛾)2]. 
(3.42) 

 

As mentioned earlier, for pricing options the risk-neutral distribution must 

be used. To obtain the risk-neutral generating function 𝑓∗(𝑖), in all terms 𝐴𝑡 and 

𝐵𝑡, we replace 𝜆 with -1/2, and 𝛾 with 𝛾∗.  

For our proposal, the algorithm is: 

1. Simulate the physical distribution for 𝑆𝑇; 

2. Compute the Esscher parameter, 𝜃�∗, using the equation (2.16);  

3. Compute the option price with the equation (2.19); 

In the step 1, we simulate the returns from equation (3.1) and the volatility 

is obtained from equation (3.30), after that we obtain the parameter values through 

maximum likelihood estimator. For each time to maturity T, 252 returns are drawn 

to generate the distribution of T-year forward. We repeat the experiments with 

5 × 104 returns to analyze if the accuracy improves with an increase on the 

sample size. We obtain the risk-neutral measure (step 2) and we calculate the 

option price (step 3). We repeat this procedure 15.000 times (or 200 times) and we 

calculate the Mean Absolute Percentage Error (MAPE). 
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For each time to maturity T, we performed bootstrap with replacement on 

the underlying asset’s historical returns. We follow the sequence: (a) we construct 

a single trajectory for the asset price by drawing a certain quantity of historical log 

returns. For example, if the option has 17 days to maturity, then we draw the same 

quantity; (b) we accumulate the log returns of this trajectory and we obtain one 

price; (c) we repeat the process (a) and (b) 252 times (or 5 × 104 times) to 

construct the physical distribution for the price at maturity. We obtain the risk-

neutral measure (step 2) and we calculate the option price (step 3). We repeat this 

procedure 15.000 times (or 200 times) and we calculate the Mean Absolute 

Percentage Error (MAPE). 

 

3.4  
Results 

 

Testing for serial dependence in the data 

 

The basic idea behind volatility study is that the series of log returns is 

serially uncorrelated or with minor lower order serial correlations, but is a 

dependent series. The Ljung-Box statistics20 show that Q(12) = 22.173 with p 

value 0.03563 for Vale, except lag 3, and Q(12) = 13.275 with p value 0.3494 for 

Petrobras.  

The Ljung-Box statistics for the squared log returns show that Q(12)= 

35.558 with p value 3.814e-04 for Vale and Q(12) = 43.438 with p value 1.903e-

05 for Petrobras. We can conclude that daily log returns of Vale’s and Petrobras’ 

stocks are serially uncorrelated, but non-linearly dependent. 

If we rewrite (3.1) as 𝑎�𝑡 = 𝑦�𝑡 − 𝜇�, where 𝜇� is the mean of 𝑦𝑡 (observed 

market returns), then 𝑎�𝑡 will be the centered return. The squared series 𝑎�𝑡2 is then 

used to check for conditional heteroscedasticity, which is also known as the 

ARCH effect. The Ljung-Box statistics of 𝑎�𝑡2 show strong ARCH effects with 

                                                
20 The null hypothesis of the test statistic is 𝐻0: 𝜌1 = ⋯ = 𝜌𝑚 = 0 and alternative hypothesis is 

𝐻𝑎: 𝜌𝑖 ≠ 0 for some i between 1 and m. Under the null hypothesis, 𝑄(𝑚) = 𝑇(𝑇 + 2)∑ 𝜌�𝑙
2

𝑇−𝑖
𝑚
𝑖=1  

follows asymptotically a chi-squared random variable with m degrees of freedom. The decision 
rule is to reject 𝐻0 if 𝑄(𝑚) > 𝜒𝛼2, where 𝜒𝛼2 denotes the 100(1 − 𝛼)th percentile of a chi-squared 
distribution with m degrees of freedom. 
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Q(12) = 36.011, the p value of which is 3.227e-04 for Vale and Q(12) = 43.849 

with p value 1.62e-05 for Petrobras. 

 

Parameter estimation  

 

Regarding the optimization of parameters, we used the following 

heuristics. From the sets of generated initial conditions, we start the optimization 

using the Nelder-Mead method. The values of the resulting parameters will serve 

as initial conditions for optimization through BFGS method, and these are later 

passed to the Nelder-Mead method and so on, until the difference between the 

solutions is less than a tolerance value of 0.10. 

All parameters were estimated by maximum likelihood method from the 

underlying asset’s historical prices. In the Heston-Nandi (2000) model, the 

estimated parameter values to Vale data were: 𝜔� = 1.6835𝑒 − 05, �̂� = 0.9295, 

𝛼� = 2.9611𝑒 − 06, 𝛾� = 5.1837𝑒 − 05, �̂� = 2.2808𝑒 − 07. And the estimated 

parameter values to Petrobras data were: 𝜔� = 2.51387𝑒 − 06, �̂� = 0.9866, 

𝛼� = 1.7055𝑒 − 06, 𝛾� = 3.6264𝑒 − 06, �̂� = 0.1407. 

In the proposed method, the estimated parameter values to Vale data were: 

𝛿 = 2.7639e − 05, 𝑖 = 0.9006, 𝛼 = 0.1627, 𝛼∗ = 0.0413, 𝜇 = −6.4173e −

04, 𝜐 = 6.3983. And the estimated parameter values to Petrobras data were: 

𝛿 = 2.0921e − 05, 𝑖 = 0.9307, 𝛼 = 0.0577, 𝛼∗ = 0.0684, 𝜇 = −1.3085e −

04, 𝜐 = 6.9949. 

The sufficient condition for the conditional variance to remain positive 

was obtained (𝛿 > 0, 𝑖 ≥ 0, 𝛼 ≥ 0 and 𝛼∗ ≥ 0) and  𝑦𝑡 is strictly stationary and 

ergodic because 𝑖 < 1. The estimated degrees of freedom (𝜐) have values that 

are typical of distribution with heavy tails. The leverage effect parameter (𝛼∗) 

also shows that a positive 𝑦𝑡 contributes 𝛼𝑢𝑡−1ℎ𝑡−1 to ℎ𝑡, whereas a negative 𝑦𝑡 

has a larger impact (𝛼 + 𝛼∗)𝑢𝑡−1ℎ𝑡−1 with 𝛼∗ ≥ 0. Figures 3.1 and 3.2 show the 

estimated volatility with the absolute value of returns for Vale and Petrobras, 

respectively. We observe the same robustness for conditional volatility in the 

presence of outliers, as seen in Harvey (2013).  
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Diagnostics 

 

We can check the adequacy of a fitted model by examining its series of 

standardized residuals. In particular, the Ljung-Box statistics of 𝑎�𝑡 20F

21 can be used 

to check the adequacy of the mean equation and 𝑎�𝑡2 can be used to test the validity 

of the volatility equation.  

In Beta-t-GARCH (1,1), the Ljung-Box test on the standardized residuals 

gives Q(12) = 16.944 with p value 0.1517 and the Q-statistics of {𝑎�𝑡2} give 

Q(12)=5.3256 with p value 0.9462 for Vale. For Petrobras, the results are Q(12) 

= 12.798 with p value 0.3839, while the Q-statistics of {𝑎�𝑡2} give Q(12) = 13.435 

with p value 0.3382.  

In the GARCH (1,1) of Heston-Nandi (2000), the Ljung-Box test on the 

standardized residuals gives Q(12) = 20.086 with p value 0.06547 and the Q-

statistics of {𝑎�𝑡2} give Q(12)=26.679  with p value 0.08592 for Vale. For 

Petrobras, the results are Q(12) = 13.992 with p value 0.3012, while the Q-

statistics of {𝑎�𝑡2} give Q(12) = 13.752 with p value 0.3382. 

The test results show no significant serial correlations in the squared 

standardized residuals, suggesting that the models are sufficient to explain the 

heteroscedasticity in the log returns series of both stocks.  

We investigate if the standardized residuals have a normal distribution 

(null hypothesis) through the Jarque Bera test.22 In the beta-t-GARCH (1,1), the 

values are:  p-value = 1.991e-13 for Petrobras and p-value = 2.997e-06 for Vale. 

In the GARCH (1,1) of Heston-Nandi (2000), the values are equals to:  p-value = 

2.2e-16. 

                                                
21 Where 𝑎�𝑡 = (𝑦𝑡 − �̂�)/�ℎ𝑡 are standardized residuals and �̂� is estimated by maximum likelihood. 
22 This test statistic is asymptotically distributed as chi-square random variables with 2 degrees of 
freedom. 
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Figure 3.1: Estimated Volatility and the Absolute log returns from Vale. 

 
Figure 3.2: Estimated Volatility and the Absolute log returns from Petrobras. 

 

Monte Carlo simulation analysis 

 

Table 3.2 presents the results of the mean absolute percentage error 

(MAPE) obtained between pricing methods and the Petrobras database. The 

proposed method, with an assumed model to describe the empirical distribution of 

prices, in most cases, presents the lowest MAPE. Table 3.3 presents the results of 

the MAPE obtained between pricing methods and the Vale database. This table 

showed similar results to Table 3.2. 

Table 3.4 shows the results of the MAPE obtained between the proposed 

method and the Petrobras database. We increased the size of the empirical 

distribution to analyze the impact on prices calculated by proposed method. For 
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lower maturity (17/252), the increase of the sample reduced the MAPE. For other 

periods, a sample of 252 observations tends to have smaller MAPE. Table 3.5 

shows the results of the MAPE obtained between the proposed method and the 

Vale database. This table showed similar results to Table 3.4. 
 

Table 3.2: MAPE of Empirical Esscher Transform Estimates for Petrobras. 

This table contains the prices for a European call option from EET-AM (empirical Esscher 
transform - assumed model), EET-B (bootstrap with replacement on historical returns), BS (Black-
Scholes) and HN (Heston-Nandi) methods for different moneyness, maturities and they are 
compared to the true market price of Petrobras data. The numbers reported for each combination 
are the mean absolute percentage error (MAPE). In the proposed method, we use 252 returns and 
the simulation is repeated 15,000 times. 

 

Maturity Moneyness (spot/strike) EET-AM EET-B BS HN 

T = 17/252 

Deep-out-of-the-money 0.95 30.0697 51.6393 63.7784 77.4953 
Out-of-the-money 0.97 39.0752 56.8726 64.7611 78.4734 
  0.98 16.1753 28.2949 32.8115 43.1060 
In-the-money 1.03 1.6857 7.5260 8.1260 13.4044 
  1.07 0.8618 2.1482 2.0521 5.2937 
Deep-in-the-money 1.13 0.3616 0.3637 0.1661 1.8891 
  1.17 1.4873 1.6451 1.5740 2.7965 
  1.24 1.9716 1.9494 1.9618 1.1296 
  1.31 0.9664 0.9686 0.9669 1.1198 
  1.38 0.7244 0.7245 0.7244 0.7847 
  1.61 1.3303 1.3303 1.3303 1.3654 

T =40/252 

Deep-out-of-the-money 0.88 97.0938 112.7758 140.7773 91.3502 
  0.90 81.8346 90.5321 107.5664 91.6974 
  0.94 56.2463 56.8326 64.2107 64.7549 
  0.96 29.6578 32.5719 37.0929 39.6310 
Out-of-the-money 0.97 17.9689 23.0286 26.3649 29.5165 
At-the-money 1.02 8.0226 13.4987 14.6670 18.5379 
In-the-money 1.07 2.9488 6.5800 6.9186 10.3816 
Deep-in-the-money 1.13 2.2976 3.7873 3.7871 6.6295 
  1.16 1.4679 2.2564 2.2069 4.6907 
  1.24 1.7016 1.8856 1.8454 3.7674 
  1.31 3.8063 3.8681 3.8496 5.4948 
  1.37 3.4178 3.4406 3.4331 3.9858 

T = 59/252 
Deep-out-of-the-money 0.94 40.0601 47.5063 53.6051 54.6439 
At-the-money 1.02 19.8938 19.0197 20.5533 24.8240 
Deep-in-the-money 1.12 4.1748 3.1370 3.3037 6.7046 

T = 121/252 Deep-out-of-the-money 0.96 0.6364 5.1689 3.9998 7.5215 
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Table 3.3: MAPE of Empirical Esscher Transform Estimates for Vale. 
 

This table contains the prices for a European call option from EET-AM (empirical Esscher 
transform - assumed model), EET-B (bootstrap with replacement on historical returns), BS (Black-
Scholes) and HN (Heston-Nandi) methods for different moneyness, maturities and they are 
compared to the true market price of Vale data. The numbers reported for each combination are the 
mean absolute percentage error (MAPE). In the proposed method, we use 252 returns and the 
simulation is repeated 15,000 times. 

 

Maturity Moneyness (Spot/strike) EET-AM EET-B BS HN 

T = 17/252 

Deep-out-of-the-money 0.93 132.3809 177.7454 207.6516 149.4234 
  0.95 102.9132 136.3859 154.5106 124.6248 
Out-of-the-money 0.98 42.8648 62.7852 69.9354 59.8857 
At-the-money 1.00 15.7799 29.4206 32.8052 28.5659 
  1.00 18.2929 31.6931 34.8277 30.9905 
  1.02 0.6636 9.1424 10.4689 9.1643 
In-the-money 1.05 1.5949 6.2268 6.6073 6.6472 
  1.07 7.6055 11.3211 11.4716 11.8876 
  1.11 0.7302 2.0628 1.9543 2.1187 
  1.11 0.0997 1.0810 0.9691 1.8023 
Deep-In-the-money 1.14 1.4029 0.8775 0.9795 0.1384 
  1.14 0.8132 1.2765 1.1766 2.0321 
  1.18 5.3185 5.4862 5.4232 6.2524 
  1.21 0.7264 0.7801 0.7516 1.4623 
  1.36 1.8745 1.8742 1.8745 1.8421 
  1.37 2.7025 2.7022 2.7025 2.6711 
  1.47 1.9758 1.9758 1.9759 1.9513 

T = 40/252 

Deep-out-of-the-money 0.89 97.1126 198.1214 228.7324 140.4928 
  0.89 52.9349 129.5083 152.6143 86.4836 
  0.90 98.3808 182.5218 208.0594 138.9450 
  0.93 72.0110 113.4649 126.1089 96.9817 
  0.95 21.8471 42.4646 48.6054 35.7837 
Out-of-the-money 0.98 17.2539 30.8073 34.7675 72.3618 
  0.98 13.4745 26.2884 30.0114 23.0940 
At-the-money 1.00 8.7974 18.5782 20.9070 17.1773 
  1.01 11.0570 20.0682 22.0163 19.1798 
In-the-money 1.03 2.7025 9.9956 11.3534 9.7122 
  1.08 0.5307 4.7083 5.1001 5.5257 
  1.11 2.7652 5.3974 5.5660 6.4849 
Deep-In-the-money 1.12 1.0646 3.1720 3.2741 4.3086 
  1.17 2.4545 3.4474 3.4372 4.7063 
  1.29 3.7298 3.8515 3.8311 4.9972 

T = 59/252 

Deep-out-of-the-money 0.86 22.6917 119.5118 144.6253 64.5129 
  0.93 22.9524 53.6051 61.1890 46.6326 
  0.93 23.9124 53.7180 61.0375 47.2443 
At-the-money 1.00 5.3325 16.2658 18.5636 16.1516 
In-the-money 1.03 3.1441 9.9069 11.3773 10.5606 
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Table 3.4: Comparison Between the MAPEs of the Proposed Method for Different Sample 
Sizes for Petrobras. 

 
This table contains the prices for a European call option from EET-AM (empirical Esscher transform - 
assumed model) and the EET-B (bootstrap with replacement on historical returns) method for different 
moneyness, maturities and they are compared to the true market price of Petrobras data. The numbers 
reported for each combination are the mean absolute percentage error (MAPE). In the proposed method, we 
use 252 returns and the simulation is repeated 15,000 times and we repeat the experiment in EET-AM*, EET-
B* with 50,000 returns, and the simulation is repeated 200 times. 

 
Maturity Moneyness (spot/strike) EET-AM EET-B EET-AM* EET-B* 

T = 17/252 

Deep-out-of-the-money 0.95 30.0697 51.6393 28.8035 52.4537 
Out-of-the-money 0.97 39.0752 56.8726 35.4213 57.5193 
  0.98 16.1753 28.2949 12.6480 28.7008 
In-the-money 1.03 1.6857 7.5260 1.2814 7.6249 
  1.07 0.8618 2.1482 0.3616 2.1653 
Deep-in-the-money 1.13 0.3616 0.3637 0.1626 0.3199 
  1.17 1.4873 1.6451 1.5369 1.6473 
  1.24 1.9716 1.9494 1.9543 1.9492 
  1.31 0.9664 0.9686 0.9693 0.9687 
  1.38 0.7244 0.7245 0.7247 0.7245 
  1.61 1.3303 1.3303 1.3303 1.3303 

T =40/252 

Deep-out-of-the-money 0.88 97.0938 112.7758 118.6863 116.2486 
  0.90 81.8346 90.5321 85.3186 92.6886 
  0.94 56.2463 56.8326 48.1147 57.8006 
  0.96 29.6578 32.5719 25.2225 33.1587 
Out-of-the-money 0.97 17.9689 23.0286 16.4807 23.4608 
At-the-money 1.02 8.0226 13.4987 9.2738 13.6603 
In-the-money 1.07 2.9488 6.5800 4.1976 6.6383 
Deep-in-the-money 1.13 2.2976 3.7873 2.7985 3.8054 
  1.16 1.4679 2.2564 1.7425 2.2653 
  1.24 1.7016 1.8856 1.7912 1.8884 
  1.31 3.8063 3.8681 3.8544 3.8692 
  1.37 3.4178 3.4406 3.4420 3.4408 

T = 59/252 
Deep-out-of-the-money 0.94 40.0601 47.5063 43.4797 48.4873 
At-the-money 1.02 19.8938 19.0197 15.9649 19.2947 
Deep-in-the-money 1.12 4.1748 3.1370 2.1643 3.1809 

T = 121/252 Deep-out-of-the-money 0.96 0.6364 5.1689 1.2779 2.1500 
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Table 3.5: Comparison Between the MAPEs of the Proposed Method for Different Sample 
Sizes for Vale. 

 
This table contains the prices for a European call option from EET-AM (empirical Esscher 
transform - assumed model) and the EET-B (bootstrap with replacement on historical returns) 
method for different moneyness, maturities and they are compared to the true market price of Vale 
data. The numbers reported for each combination are the mean absolute percentage error (MAPE). 
We use 252 returns and the simulation is repeated 15,000 times and we repeat the experiment in 
EET-AM*, EET-B* with 50,000 returns, and the simulation is repeated 200 times. 
 
Maturity Moneyness (Spot/strike) EET-AM EET-B EET-AM* EET-B* 

T = 17/252 

Deep-out-of-the-money 0.93 132.3809 177.7454 129.1951 180.9486 
  0.95 102.9132 136.3859 92.3902 138.1864 
Out-of-the-money 0.98 42.8648 62.7852 36.1791 63.3947 
At-the-money 1.00 15.7799 29.4206 12.6889 29.6875 
  1.00 18.2929 31.6931 15.4971 31.9417 
  1.02 0.6636 9.1424 0.1448 9.2528 
In-the-money 1.05 1.5949 6.2268 1.3282 6.2675 
  1.07 7.6055 11.3211 7.6805 11.3457 
  1.11 0.7302 2.0628 1.0069 2.0680 
  1.11 0.0997 1.0810 0.1570 1.0852 
Deep-In-the-money 1.14 1.4029 0.8775 1.2766 0.8763 
  1.14 0.8132 1.2765 0.9220 1.2770 
  1.18 5.3185 5.4862 5.3597 5.4856 
  1.21 0.7264 0.7801 0.7432 0.7797 
  1.36 1.8745 1.8742 1.8740 1.8742 
  1.37 2.7025 2.7022 2.7021 2.7022 
  1.47 1.9758 1.9758 1.9759 1.9758 

T = 40/252 

Deep-out-of-the-money 0.89 97.1126 198.1214 214.8283 203.1444 
  0.89 52.9349 129.5083 141.1287 133.2440 
  0.90 98.3808 182.5218 188.8369 186.5764 
  0.93 72.0110 113.4649 104.8281 115.2330 
  0.95 21.8471 42.4646 34.2552 43.2622 
Out-of-the-money 0.98 17.2539 30.8073 22.8009 31.2986 
  0.98 13.4745 26.2884 18.5726 26.7483 
At-the-money 1.00 8.7974 18.5782 11.9412 18.8487 
  1.01 11.0570 20.0682 13.7751 20.2916 
In-the-money 1.03 2.7025 9.9956 4.8394 10.1493 
  1.08 0.5307 4.7083 2.1299 4.7574 
  1.11 2.7652 5.3974 3.7281 5.4220 
Deep-In-the-money 1.12 1.0646 3.1720 1.8532 3.1884 
  1.17 2.4545 3.4474 2.8787 3.4521 
  1.29 3.7298 3.8515 3.7985 3.8518 

T = 59/252 

Deep-out-of-the-money 0.86 22.6917 119.5118 148.5000 125.0559 
  0.93 22.9524 53.6051 50.7790 55.1348 
  0.93 23.9124 53.7180 50.5609 55.1857 
At-the-money 1.00 5.3325 16.2658 12.1033 16.6808 
In-the-money 1.03 3.1441 9.9069 6.3625 10.1655 
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3.5  
Conclusions 

 

In this work, we propose a method to obtain European option prices under 

a GARCH framework with non-Gaussian innovations. We used a new class of 

models, the dynamic conditional score, proposed by Harvey (2013), for modeling 

the volatility (and heavy tails) of observed underlying asset prices. These models 

replace the observations, or their squares, by the score of the conditional 

distribution. They are more robust in extreme events, allowing the modeling of 

leverage effect, adding components of short and long-term volatility.  

To avoid the formulation of a restrict model, the risk-neutralization is 

applied to the empirical distribution of the sample paths generated from the 

assumed model, as Liu et al (2015) and Duan (2002) have done. To identify a 

risk-neutral measure, we use the empirical Esscher transform. The sample paths 

are reweighted, giving rise to a risk-neutralized sample from which option prices 

can be obtained by a weighted sum of the options’ pay-offs in each path.  

We empirically compare our approach to competing benchmarks: Black-

Scholes (1973) and Heston and Nandi (2000). In general, the proposed method, 

with an assumed model to describe the empirical distribution, presented the lowest 

MAPE. When we increase the size of the empirical distribution, only in lower 

maturities the MAPE was reduced. 

Future research would benefit from conducting an extensive empirical 

study on the performance of our proposed pricing method, considering asset 

returns of different frequencies, multiple cross-sections of market option prices 

and long-dated options. 
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4 
Breeden and Litzenberger Method to Uneven Spaced 
States 

 
Chapter Abstract: 

 
This work proposes a new approach for indirect estimation of the risk-neutral distribution. We 
develop a discrete version of the Breeden and Litzenberger (1978) theorem based on the use of a 
combination of options to synthetize Arrow-Debreu securities and obtain their prices from the 
prices of said options. These prices are called the ‘risk-neutral probabilities mass function’, 
RNPMF. Then we generalize this derivation for the case where states are not equally spaced. 
Finally, we consider that the risk-neutral distribution is obtained by an Empirical Esscher 
Transform, with ‘flexible’ Esscher parameter, in the same spirit of Shimko (1993). 
 
Keywords: Risk-neutral probability, empirical Esscher transform, indirect estimation, state-price. 

 

4.1  
Introduction 

 

The importance of option-implied information was seen in Bates (1991). 

He studied the behavior of S&P 500 future options’ prices prior to the crash of 

October 1987, and found unusually negative skewness in the option-implied 

distribution leading to the conclusion that the crash was expected by the market. 

This fact led to the development of methods that seek more information to explain 

the behavior of assets, markets and investors. The assumption is based on 

financial assets which are continually updated and thus incorporate more recent 

information than other economic indicators. Several studies have emerged with 

varying objectives:  

• Pricing of illiquid derivatives and exotic options – Pérignon and Villa 

(2002); 

• Extract indicators of the level of uncertainty and future trends of the 

economy – Almeida, Ardison, Garcia, Vicente (2016), Kitsul and Wright 

(2013), Hui, Lo and Lau (2013), Birru and Figlewski (2012), Ornelas and 

Takami (2011), Bakshi, Panayotov, and Skoulakis (2011); 

• Estimation of parameters of the stochastic process (the assumption is 

based on cross-section option prices containing forward-looking 

information beyond historical returns) –Christoffersen, Jacobs, and 
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Ornthanalai (2012), Santa-Clara and Yan (2010), Bams, Lehnert, and 

Wolff (2009), Figlewski (2010); 

• Recover the asset price’s stochastic process (building an implied binomial 

tree) – Rubinstein (1994), Derman and Kani (1994), Jackwerth (1999); 

• Estimate implied risk aversion (describes risk preferences of a 

representative agent in an economy) – Figlewski and Malik (2014), 

Bollerslev and Todorov (2011), Duan and Zang (2013), Bondarenko 

(2003, 2009), Jackwerth (2000), Aït-Sahalia and Lo (2000), Rosenberg 

and Engle (2002), Bliss and Panigirtzoglou (2002). 

• Estimate empirical risk-neutral density – Almeida and Azevedo (2014), 

Monnier (2013), Grith, Härdle and Schienle (2012), Markose and Alentorn 

(2011), Cheng (2010), Figlewski (2010); 

• Risk management (portfolio management and selection, implied betas of 

the capital asset pricing model) – Chang, Christoffersen and Jacobs 

(2013), De Miguel, Plyakha, Uppal and Vilkov (2013), Giamouridis and 

Skiadopoulos (2012), Kostakis, Panigirtzoglou and Skiadopoulos (2011), 

Chang, Christoffersen, Jacobs and Vainberg (2011), Buss and Vilkov 

(2012); 

• Implied information indices – They are published by the Chicago Board of 

Options Exchange (CBOE) for S&P 500 firms: the implied volatility index 

(market indicator), the implied correlation index (risk management) and 

the implied skew index (interpreted as indicator of a possible market 

crash). 

 

We can observe that most studies are concerned about the implied 

moments of risk-neutral distributions. According to Jackwerth (2004), these 

methods can be segregated into two general groups: parametric and 

nonparametric.23  

Parametric methods can be sub-divided into three groups: expansion, 

generalized distribution and mixture methods. The risk-neutral distribution is 

obtained by criterion optimization which minimizes the sum of squared errors 

given by the difference between occurred and predicted values.  

                                                
23 The work of Christoffersen, Jacobs and Chang (2011) presents several techniques. 

http://www.sciencedirect.com/science/article/pii/S0304405X12001523
http://www.sciencedirect.com/science/article/pii/S0304405X12001523
http://www.sciencedirect.com/science/article/pii/S0304405X12001523
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Nonparametric methods allow greater flexibility when fitting the risk-

neutral distribution. Rather than requiring a parametric form of distribution, they 

allow general functions. These methods can be divided in three groups: kernel, 

maximum entropy and curve-fitting methods. Curve-fitting methods can be 

divided into other two sub-classes: fitting a function between implied volatilities 

and strike prices or a risk-neutral distribution being approximated by some general 

function.  

 The advantages of parametric methods, according to Bondarenko (2003), 

are analytical expressions and the possibility of extracting parameters to perform 

hedge. However, effectiveness depends on the correct modeling of the data 

generating process. The main advantage of nonparametric methods is that they do 

not require a specific format for the probability distribution, they are more flexible 

and adaptable to any function class. Although these techniques reduce the 

misspecification risk, they require larger sample sizes and are affected by 

irregularities such as data sparsity and problems to complete tails.  

 Jackwerth (2004) argues that both methods suffer with negative 

probabilities and integrability to one. Another important constrain is the number 

of options that are traded in the market. Moreover, these methods are specific for 

a given maturity, because statistical properties of observed prices cannot be used 

for other maturities (Duan, 2002).  

The robustness of the option-implied risk-neutral distribution can be 

compared between several methods by perturbing actual option prices. Bliss et al 

(2001) derived risk-neutral distributions based on many different perturbed sets of 

prices. The result is an indicative of how much risk-neutral distributions can differ 

from each other and that the confidence intervals around the moments can be 

large. Santos and Guerra (2015), Jackwerth (2004) and Bliss et al (2001) cite that 

the easiest and most stable methods tend to be in the group of curve-fitting 

methods. However, Jackwerth (2004) says that a largely unresolved area of study 

is the development of statistical tests. Much of the current work lacks statistical 

rigor and is merely descriptive.  

This work introduces a new approach to indirect estimation of implicit 

risk-neutral probability. We generalize the discrete version of the Breeden and 

Litzenberger (1978) method for the case where states are not equally spaced. We 

suppose that the risk-neutral probability mass function is given by Empirical 
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Esscher transform and it depends on the strike price. We use the historical 

distribution of the underlying asset price and the observed option prices to 

estimate the implicit Esscher parameter. Then, we fit a polynomial between the 

implied Esscher parameter and the strike price in the same spirit of Shimko 

(1993). 

Indirect estimation combines the historical information of the underlying 

asset with the option-implied information. According to Christoffersen et al 

(2011), option prices contain useful information that are not easily extracted using 

econometric models, and combining historical information may be effective and 

provide new insights about how information and risk preferences are incorporated 

into prices on financial markets. 

 The works of Aït-Sahalia et al (2000), Jackwerth (2000) and Rosenberg et 

al (2000) explore the idea of indirect estimation to obtain empirical pricing kernel, 

the relationship between probabilities (risk-neutral and physical) and the implied 

risk aversion. Grith et al (2012) uses the indirect estimation to obtain empirical 

pricing kernel and the risk-neutral probabilities. In our case, we suppose that the 

empirical pricing kernel is known and given by an empirical version of the 

Esscher transform (1932). This assumption is reasonable, because it is well known 

in the information theory that a problem of maximum entropy has a solution in the 

form of the Esscher transform (Buchen and Kelly, Stutzer, 1996, Duan, 2002). 

We ran simulation experiments under different situations which seek to 

highlight the differences and similarities between the methods. We compare our 

method to two approach alternatives: Double Lognormal proposed by Baha 

(1997) and the Shimko (1993) method. 

The remainder of this work is organized as follows. In Section 4.2 we 

describe the theoretical framework of Breeden et al (1978). In section 4.3 we 

introduce the new methodology. The validity of this methodology is tested with 

numerical experiments in section 4.4.  The conclusions and future researches are 

presented in the section 4.5. 
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4.2 
Breeden and Litzenberger method 

 

The time-state preference approach to general equilibrium in an economy, 

as developed by Arrow (1964) and Debreu (1959), is one of the most general 

frameworks available for the theory of finance under uncertainty. An Arrow-

Debreu security is a security associated with a particular state of the economy 

which pays $1 if that state occurs, and nothing otherwise. The price of an Arrow-

Debreu security is referred to as state-price. According to Cox, Ross and 

Rubinstein (1979), the state-price associated with a particular state is simply the 

risk-neutral probability of that state discounted at the risk-free rate.  

 Breeden and Litzenberger (1978) implements the time-state preference 

model in a multiperiod economy, deriving the prices of Arrow-Debreu securities 

from prices of call options on aggregate consumption. Given the prices of Arrow-

Debreu securities, the value of any cash flow is calculated, that is, these prices 

permit an equilibrium evaluation of assets with uncertain payoffs at many future 

dates. 

Suppose that the value of the underlying asset in 𝑇 periods has a discrete 

probability distribution with possible values of: 𝑆𝑇 = $1.00, $2.00, … , $𝑁. Let 

𝐶(𝐾,𝑇) = 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0), the vector of payoffs of a European call option at 

time 𝑇 and strike price of 𝐾. For calls with strike prices of $0.00, $1.00, and 

$2.00, its payoffs are as shown in table 4.1. 

 
Table 4.1: Payoffs on Call Options with Equally Spaced States. 

Underlying Asset 𝐶(0,𝑇) 𝐶(1,𝑇) 𝐶(2,𝑇) 
𝑆𝑇 = 1 

⎝

⎜
⎛

1
2
3
⋮
𝑁⎠

⎟
⎞

 

⎝

⎜
⎛

0
1
2
⋮

𝑁 − 1⎠

⎟
⎞

 

⎝

⎜
⎛

0
0
1
⋮

𝑁 − 2⎠

⎟
⎞

 
𝑆𝑇 = 2 
𝑆𝑇 = 3 

(… ) 
𝑆𝑇 = 𝑁 
 

Note that, as the strike price of a call option is increased from 𝐾 to 𝐾 + 1, 

two changes occur in the payoff vector: (1) the payoff in the set of states with 

𝑆𝑇 = 𝐾 + 1 becomes zero, and (2) the payoffs in all states with 𝑆𝑇 ≥ 𝐾 + 2 are 

reduced by the change in the strike price. The difference between 𝐶(𝐾,𝑇) −
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𝐶(𝐾 + 1,𝑇) gives a payoff of $1.00 in every state with 𝑆𝑇 ≥ 𝐾 + 1, and 𝐶(𝐾 +

1,𝑇) − 𝐶(𝐾 + 2,𝑇) gives a payoff of $1.00 in every state for which 𝑆𝑇 ≥ 𝐾 + 2:  

 

⎝

⎜
⎛

1
2
3
⋮
𝑁⎠

⎟
⎞
−

⎝

⎜
⎛

0
1
2
⋮

𝑁 − 1⎠

⎟
⎞

=

⎝

⎜
⎛

1
1
1
⋮
1⎠

⎟
⎞

 𝑎𝑙𝑑 

⎝

⎜
⎛

0
1
2
⋮

𝑁 − 1⎠

⎟
⎞
−

⎝

⎜
⎛

0
0
1
⋮

𝑁 − 2⎠

⎟
⎞

=

⎝

⎜
⎛

0
1
1
⋮
1⎠

⎟
⎞

. 

 

A payoff of $1.00 for 𝑆𝑇 = 1 may be constructed as [𝐶(0,𝑇) − 𝐶(1,𝑇)] −

[𝐶(1,𝑇) − 𝐶(2,𝑇)], since this combination of calls would have a payoff vector 

of: 

 

⎝

⎜
⎛

1
1
1
⋮
1⎠

⎟
⎞
−

⎝

⎜
⎛

0
1
1
⋮
1⎠

⎟
⎞

=

⎝

⎜
⎛

1
0
0
⋮
0⎠

⎟
⎞

. 

 

Given the call prices, 𝐶(𝐾,𝑇), prices of elementary claims, 𝜋(𝑆𝑇 ,𝑇), must 

be computed from the replicating portfolio of calls that consists of one long call 

with 𝐾 = 𝑆𝑇 − 1, one long with 𝐾 = 𝑆𝑇 + 1 and two short calls with 𝐾 = 𝑆𝑇. 

In general, if the step size between potential values is ∆𝑆𝑇, then 

[𝐶(𝐾,𝑇) − 𝐶(𝐾 + ∆𝑆𝑇 ,𝑇)] has a payoff vector with zeros for 𝑆𝑇 ≤ 𝐾, and with 

∆𝑆𝑇 for all levels greater than or equal to 𝐾 + ∆𝑆𝑇. Therefore, the portfolio of call 

options that produces a payment of $1.00 if the market is 𝑆𝑇, and zero otherwise, 

is: 

 

𝜋(𝑆𝑇 ,𝑇) =
[𝐶( 𝑆𝑇 − ∆𝑆𝑇 ,𝑇) − 𝐶(𝑆𝑇 ,𝑇)] − [𝐶(𝑆𝑇 ,𝑇) − 𝐶( 𝑆𝑇 + ∆𝑆𝑇 ,𝑇)]

𝛥𝑆𝑇
. 

(4.1) 

 

The payoff of portfolio 𝜋(𝐾,𝑇) is the same as one Arrow-Debreu security 

that payoffs one unit of cash if, and only if, 𝑆𝑇 is equal to 𝐾. Thus, it turns out that 

a complete set of options at all strike prices is equivalent to a complete set of 

Arrow-Debreu securities. 
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Consider 1 𝛥𝑆𝑇⁄  shares of this portfolio: 

 
1
𝛥𝑆𝑇

𝜋(𝑆𝑇 ,𝑇)

=
[𝐶( 𝑆𝑇 − ∆𝑆𝑇 ,𝑇) − 𝐶(𝑆𝑇 ,𝑇)]− [𝐶(𝑆𝑇 ,𝑇) − 𝐶( 𝑆𝑇 + ∆𝑆𝑇 ,𝑇)]

(𝛥𝑆𝑇)2 . 

(4.2) 

 

Assuming that the asset 𝑆𝑇 has a continuous payoff and taking the limit of 

expression (4.2) as ∆𝑆𝑇 goes to zero, we have: 

 

𝑙𝑖𝑚
𝛥𝑆𝑇→0

𝜋(𝑆𝑇 ,𝑇;𝛥𝑆𝑇)
𝛥𝑆𝑇

=
𝜕2𝐶(𝐾,𝑇)
𝜕𝐾2 |𝐾=𝑆. 

(4.3) 

 

Thus (4.2) gives the pricing function for an elementary claim on 𝑆𝑇 

maturing in 𝑇 periods in the discrete case, and (4.3) gives the pricing function for 

the continuous case. 

The result (4.3) can also be obtained from the relationship proposed by 

Cox and Ross (1976).24 Under the risk-neutral distribution 𝑞(𝑆𝑇), the payoff is 

discounted at the deterministic risk-free rate 𝑟: 

 

𝐶(𝐾,𝑇) = 𝑒−𝑟𝑇 � (𝑆𝑇 − 𝐾)+𝑞(𝑆𝑇)𝑑
∞

−∞
𝑆𝑇 (4.4) 

 

or, 

 

𝐶(𝐾,𝑇) = 𝑒−𝑟𝑇 � (𝑆𝑇 − 𝐾)+𝑚(𝑆𝑇)𝑓(𝑆𝑇)𝑑
∞

−∞
𝑆𝑇 (4.5) 

 

where 𝑓(𝑆𝑇) is the physical distribution and 𝑚(𝑆𝑇) = 𝑞(𝑆𝑇) 𝑓(𝑆𝑇)⁄  is the 

pricing kernel, characterizing the change of measure 𝑓(𝑆𝑇) to 𝑞(𝑆𝑇). Take the 

partial derivative of 𝐶 with respect to 𝐾 to get: 

 

                                                
24 See appendix 6.5. 
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𝜕𝐶(𝐾,𝑇)
𝜕𝐾

= −𝑒−𝑟𝑇[1 − 𝑄(𝐾)] (4.6) 

 

which yields the cumulative distribution function denoted by 𝑄(. ), 

 

𝑄(𝐾) = 1 + 𝑒𝑟𝑇
𝜕𝐶(𝑇,𝐾)
𝜕𝐾

 (4.7) 

 

or 

 

𝑄(𝑆𝑇) = 1 + 𝑒𝑟𝑇
𝜕𝐶(𝑇,𝐾)
𝜕𝐾

|𝐾=𝑆𝑇 . (4.8) 

 

 The probability distribution function 𝑞(. ) can be obtained by taking the 

derivative of (4.7) or (4.8) with respect to K: 

 

𝑞(𝐾) = 𝑒𝑟𝑇
𝜕2𝐶(𝑇,𝐾)
𝜕𝐾2  (4.9) 

or 

𝑞(𝑆𝑇) = 𝑒𝑟𝑇
𝜕2𝐶(𝑇,𝐾)
𝜕𝐾2 |𝐾=𝑆𝑇 . (4.10) 

 

 According to Christoffersen et al (2011), an approximation to 𝑄(. ) and 

𝑞(. ) can be made using finite differences. Following the put-call parity, we can 

replace call prices by put prices (𝑃) in the formulas above.  

According to Aparicio and Hodges (1998), one important characteristic of 

the Breeden and Litzenberger (1978) approach is that no assumptions are made 

about the underlying asset price dynamics and also, market participants 

preferences are not restricted as they are reflected in the call option prices. 

Moreover, it is assumed that there are no restrictions on short sales, that there are 

no transaction costs or taxes, and that investors may borrow at the riskless rates of 

interest. Their work is the starting point of a line of research addressed to the 

recovery of relevant aspects of the underlying asset distribution from option 

market data. 
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4.2.1  
No-arbitrage constraints 

 

According to Carr (2001), there are three essential properties to obtain a 

well-defined risk-neutral distribution (RND). The RND is nonnegative: 

 

𝑞𝑆𝑇(𝑆𝑇) ≥ 0, (4.11) 

 

it integrates to one: 

 

� 𝑞𝑆𝑇(𝑆𝑇)𝑑𝑆𝑇
∞

0
= 1, (4.12) 

 

and the RND reprices all calls (or martingale property): 

 

� 𝑚𝑎𝑥[𝑆𝑇 − 𝐾; 0]𝑞𝑆𝑇(𝑆𝑇)𝑑𝑆𝑇
∞

0
= 𝑒𝑟(𝑇−𝑡)𝐶(𝐾,𝑇), 𝐾 ≥ 0. (4.13) 

 

The nonnegativity (4.11) and integrability (4.12) properties ensure that the 

risk-neutral distribution is a probability distribution. The martingale property 

(4.13) ensures that the means of distribution is the forward price, which includes 

the special case 𝐾 = 0. That is, this option is guaranteed to be in-the-money and 

at maturity we exercise the option and buy the underlying asset. 

According to Brunner and Hafner (2003), these three properties, (4.11), 

(4.12) and (4.13), can be formulated in terms of a call option (or implied 

volatilities). A set of equivalent conditions is, at first,25 

 

𝑆0 ≥ 𝐶(𝐾,𝑇) ≥ 𝑚𝑎𝑥�𝑆0 − 𝑒−𝑟(𝑇−𝑡)𝐾; 0� (4.14) 

 

that the value of a call option never be greater than the asset price and never 

less than its intrinsic value. Second,  

 

                                                
25 See appendix 6.6. 
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−𝑒−𝑟𝑇 ≤
𝜕𝐶(𝐾,𝑇)
𝜕𝐾

≤ 0 (4.15) 

 

that the call price function monotonically decrease. Finally, 

 

𝜕2𝐶(𝐾,𝑇)
𝜕𝐾2 ≥ 0, 𝐾 ≥ 0. (4.16) 

 

that the call option price function be convex. 

Äit-Sahalia and Duarte (2003) proposed a method of option-implied 

density estimation based on locally polynomial regressions that incorporate shape 

restriction. The theory-imposed restrictions are that the price of a call option must 

be a decreasing (4.15) and convex function of the option’s strike price (4.16). 

 

4.3 
Proposed method  

 

 Consider the notation: 𝑁 is the number of possible states for the underlying 

at maturity 𝑑 = 𝑇; 𝑆𝑖 are the possible prices at time 𝑑 = 𝑇; 𝑝𝑖 are the physical 

probabilities of price 𝑖; 𝑞𝑖 are the risk-neutral probabilities of state 𝑖; 𝑂𝑖 is the fair 

value for derivative 𝑖; 𝑃0 is the price of underlying  at 𝑑 = 0 (present day), where 

𝑖 = 1, … ,𝑁, and K is the strike price. 

 

4.3.1  
Breeden and Litzenberger Method with Uneven Spaced States 

 

The price of a call option under a discrete risk-neutral distribution can be 

expressed as: 

𝐶(𝑃0,𝐾) = 𝑒−𝑟𝑇 � (𝑆𝑖 − 𝐾)𝑞𝑖

𝑁

𝑖,𝑆𝑖>𝐾

 (4.17) 

 

 with 𝐾 ∈ {𝑆𝑖}. Now, consider that options 𝑂𝑖, for every possible strike 

prices 𝑆𝑖, are available. Possible payoffs for option 𝑂𝑖 are one of the 𝑁 + 1 values 

max [0, 𝑆𝑖 − 𝐾], 𝑖 = 0, … ,𝑁, according to the state at 𝑑 = 𝑇.  
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Table 4.2: Payoffs on Call Options with Uneven Spaced States. 

 0 1 2 … N-1 N 
00 0 𝑆1 − 𝑆0 𝑆2 − 𝑆0   𝑆𝑁−1 − 𝑆0 𝑆𝑁 − 𝑆0 
01 0 0 𝑆2 − 𝑆1   𝑆𝑁−1 − 𝑆1 𝑆𝑁 − 𝑆1 
02 0 0 0   𝑆𝑁−1 − 𝑆2 𝑆𝑁 − 𝑆2 
03 0 0 0   𝑆𝑁−1 − 𝑆3 𝑆𝑁 − 𝑆3 
… … … …   … … 

0𝑁−1 0 0 0   0 𝑆𝑁 − 𝑆𝑁−1 
0𝑁 0 0 0   0 0 
 

  So, one can assemble a portfolio formed by one long position on option 𝑂𝑖 

and a short position on 𝑂𝑖+1. The possible payoffs are then given by a sequence of 

𝑖 + 1 zeros followed by 𝑁 − 1 of difference between the payoffs, given by 𝑆𝑖: 

 
Table 4.3: Portfolios of Call Options with Uneven Spaced States. 

  0 1 2 … N-1 N 
00 − 01 0 𝑆1 − 𝑆0 𝑆1 − 𝑆0   𝑆1 − 𝑆0 𝑆1 − 𝑆0 
01 − 02 0 0 𝑆2 − 𝑆1   𝑆2 − 𝑆1 𝑆2 − 𝑆1 
02 − 03 0 0 0   𝑆3 − 𝑆2 𝑆3 − 𝑆2 
03 − 04 0 0 0   𝑆4 − 𝑆3 𝑆4 − 𝑆3 

…… … … …   … … 
0𝑁−2 − 0𝑁−1 0 0 0   𝑆𝑁−1 − 𝑆𝑁−2 𝑆𝑁−1 − 𝑆𝑁−2 

0𝑁−1 − 0𝑁 0 0 0   0 𝑆𝑁 − 𝑆𝑁−1 
 

 Consider now that we take  1
(𝑆𝑖−𝑆𝑖−1) , 𝑖 = 1, … ,𝑁, shares of these 

portfolios:  

 
Table 4.4: Arrow-Debreu Securities. 

  0 1 2 … N-1 N 
(00 − 01) (𝑆1 − 𝑆0)⁄  0 1 1  1 1 
(01 − 02) (𝑆2 − 𝑆1)⁄  0 0 1  1 1 

…… … … …   1 1 
(0𝑁−2 − 0𝑁−1) (𝑆𝑁−1 − 𝑆𝑁−2)⁄  0 0 0   1 1 

(0𝑁−1 − 0𝑁) (𝑆𝑁 − 𝑆𝑁−1)⁄  0 0 0   0 1 
 

 Now, it is easy to see that the portfolio is: 

 
1

(𝑆1 − 𝑆0)
[𝑂0 − 𝑂1] −

1
(𝑆2 − 𝑆1)

[𝑂1 − 𝑂2] (4.18) 
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 and pays 1 if 𝑆1 occurs. Then, the portfolio: 

 

1
(𝑆𝑁 − 𝑆𝑁−1) �𝑂𝑁−1 − 𝑂𝑁�

=0

� (4.19) 

 

 and pays  1 if 𝑆𝑁 occurs. In general: 

 
1

(𝑆𝑖 − 𝑆𝑖−1)
[𝑂𝑖−1 − 𝑂𝑖] −

1
(𝑆𝑖+1 − 𝑆𝑖)

[𝑂𝑖 − 𝑂𝑖+1], 𝑖 = 1, … ,𝑁 (4.20) 

 

 is an Arrow-Debreu security giving a payoff of 1 when, taking 𝑆𝑁+1 = ∞, 

final state is 𝑖. Note that 𝑖 represents the strike price around which is calculated 

the second difference above. Also, remember that the price of an Arrow-Debreu 

security is the ‘risk-neutral probability’ multiplied by 𝑒−𝑟𝑇 (see equation 4.10). 

The price of this portfolio is known, since options 𝑂𝑖 are available in the market.  

 Using the definition (4.17) in (4.20): 

 
1

(𝑆𝑖 − 𝑆𝑖−1)
[𝐶(𝑃0, 𝑆𝑖−1) − 𝐶(𝑃0, 𝑆𝑖)]

−
1

(𝑆𝑖+1 − 𝑆𝑖)
[𝐶(𝑃0, 𝑆𝑖) − 𝐶(𝑃0, 𝑆𝑖+1)], 

(4.21) 

 

 and we have: 

 

𝐶(𝑃0, 𝑆𝑖−1) − 𝐶(𝑃0, 𝑆𝑖)

= 𝑒−𝑟𝑇��𝑆𝑗 − 𝑆𝑖−1�𝑞𝑗

𝑁

𝑗=𝑖 

− 𝑒−𝑟𝑇 � �𝑆𝑗 − 𝑆𝑖�𝑞𝑗

𝑁

𝑗=𝑖+1

. 

 

(4.22) 

 

 The solution of (4.21) is: 

 

𝐶(𝑃0, 𝑆𝑖−1) − 𝐶(𝑃0, 𝑆𝑖) = 𝑒−𝑟𝑇(𝑆𝑖 − 𝑆𝑖−1)�𝑞𝑗

𝑁

𝑗=𝑖

 (4.23) 
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 and we also have: 
 

𝐶(𝑃0, 𝑆𝑖) − 𝐶(𝑃0, 𝑆𝑖+1) = 𝑒−𝑟𝑇(𝑆𝑖+1 − 𝑆𝑖) � 𝑞𝑗

𝑁

𝑗=𝑖+1

. (4.24) 

 

 Replacing (4.23) and (4.24) in (4.21): 

 

𝑒−𝑟𝑇 � 𝑞𝑗

𝑁

𝑗,𝑆𝑗>𝑆𝑖−1

− 𝑒−𝑟𝑇 � 𝑞𝑗

𝑁

𝑗,𝑆𝑗>𝑆𝑖

= 𝑒−𝑟𝑇𝑞𝑖 . (4.25) 

 

 We have proven that the second ‘modified’ difference gives the risk-

neutral probability mass function. 

 

4.3.2  
Breeden and Litzenberger Method with uneven spaced states and 𝒒𝒊 

depending on 𝑲 
 

Consider now that the probability mass function 𝑞 depends on 𝐾. The 

price of a call option would then be written as: 

 

𝐶(𝑃0,𝐾) = 𝑒−𝑟𝑇 ∑ (𝑆𝑖 − 𝐾)𝐺(𝑆𝑖,𝐾)𝑁
𝑖,𝑆𝑖>𝐾 , 𝐾 ∈ {𝑆𝑖, 𝑖 = 1,𝑁} (4.26) 

 

 where: 

𝑞 = 𝐺(𝑆𝑖,𝐾) =
𝑒ℎ(𝐾) ln

𝑆𝑗
𝑃0

∑ 𝑒ℎ(𝐾) ln𝑆𝑘𝑃0𝑁
𝑘=1 𝑝𝑚

𝑝𝑖 

 

 is the empirical Esscher transform. In our case, 𝑝 = 𝑝𝑚 = 1/𝑁 and can be 

cancelled: 

 

𝐺�𝑆𝑗 ,𝐾� =
𝑒ℎ(𝐾) ln

𝑆𝑗
𝑃0

∑ 𝑒ℎ(𝐾) ln𝑆𝑘𝑃0𝑁
𝑘=1

. (4.27) 
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As in (4.21): 

 

𝐶(𝑃0, 𝑆𝑖−1) − 𝐶(𝑃0, 𝑆𝑖)

= 𝑒−𝑟𝑇��𝑆𝑗 − 𝑆𝑖−1�𝐺�𝑆𝑗 , 𝑆𝑖−1�
𝑁

𝑗=𝑖

− 𝑒−𝑟𝑇 � �𝑆𝑗 − 𝑆𝑖�𝐺�𝑆𝑗, 𝑆𝑖�
𝑁

𝑗=𝑖+1

 

(4.28) 

 

and according to the precedent section in equation (4.22): 

 

𝑞𝑖 = 𝑒𝑟𝑇 �
1

(𝑆𝑖 − 𝑆𝑖−1)
[𝐶(𝑃0, 𝑆𝑖−1) − 𝐶(𝑃0, 𝑆𝑖)]

−
1

(𝑆𝑖+1 − 𝑆𝑖)
[𝐶(𝑃0, 𝑆𝑖) − 𝐶(𝑃0, 𝑆𝑖+1)]� 

(4.29) 

 

𝑞𝑖 = �
1

(𝑆𝑖 − 𝑆𝑖−1) ���𝑆𝑗 − 𝑆𝑖−1�𝐺�𝑆𝑗, 𝑆𝑖−1�
𝑁

𝑗=𝑖

− � �𝑆𝑗 − 𝑆𝑖�𝐺�𝑆𝑗 , 𝑆𝑖�
𝑁

𝑗=𝑖+1

�

−
1

(𝑆𝑖+1 − 𝑆𝑖)
� � �𝑆𝑗 − 𝑆𝑖�𝐺�𝑆𝑗 , 𝑆𝑖�

𝑁

𝑗=𝑖+1

− � �𝑆𝑗 − 𝑆𝑖+1�𝐺�𝑆𝑗, 𝑆𝑖+1�
𝑁

𝑗=𝑖+2

�� 

(4.30) 

 

4.3.3  
No-arbitrage constraints for the proposed method 

 

Nonnegativity property 

 

This property depends on two factors in the formula (4.30): the difference 

between prices, (𝑆𝑖 − 𝑆𝑖−1) and (𝑆𝑖+1 − 𝑆𝑖), and the impact that ℎ(𝐾) causes in 

the terms 𝐺(. ) in the second bracket. Assuming that the difference in the second 

ratio, 1 (𝑆𝑖+1 − 𝑆𝑖)⁄ , occurs in the tenth decimal, i.e, it is much smaller than the 

difference in the first ratio, 1 (𝑆𝑖 − 𝑆𝑖−1)⁄ . Suppose that the amount generated in 

DBD
PUC-Rio - Certificação Digital Nº 1121534/CA



  
79 

the first bracket is approximately equal to the value generated in the second 

bracket. Thus, the nonnegativity property is violated due to the quantity generated 

by the second ratio. But if we fit, in ℎ(𝐾), a function that reduces the importance 

of the second ratio, that is, the difference in the second bracket becomes the 

smallest, then it does not violate the property of nonnegativity. 

 

Integrability property 

  

 Suppose that the scenarios 𝑆𝑖 are equally spaced, 𝑖 = 1, … ,𝑁, we have: 

 

�𝑞𝑖

𝑁

𝑖=1

= ���(𝑗 − 𝑖 + 1)𝐺(𝑗, 𝑖 − 1)
𝑁

𝑗=𝑖

− 2 � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ � (𝑗 − 𝑖 − 1)𝐺(𝑗, 𝑖 + 1)
𝑁

𝑗=𝑖+2

� 

 then, 

 

�𝑞𝑖

𝑁

𝑖=1

= ��(𝑗 − 𝑖 + 1)𝐺(𝑗, 𝑖 − 1)
𝑁

𝑗=𝑖

− 2
𝑁

𝑖=1

� � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ � � (𝑗 − 𝑖 − 1)𝐺(𝑗, 𝑖 + 1)
𝑁

𝑗=𝑖+2

𝑁−2

𝑖=1

 

 

�𝑞𝑖

𝑁

𝑖=1

= � � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

− 2
𝑁−1

𝑖=0

� � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ � � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=2

 

 

�𝑞𝑖

𝑁

𝑖=1

= � � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

− 2
𝑁−1

𝑖=1

� � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ � � (𝑗 − 𝑖)𝐺(𝑗, 𝑖)
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

�������������������������������������������������
=0

 

+�𝑗𝐺(𝑗, 0) −
𝑁

𝑗=1

�𝑗𝐺(𝑗, 1)
𝑁

𝑗=2

+ �𝐺(𝑗, 1)
𝑁

𝑗=2

. 
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It doesn’t sum to one. But if 𝐺(𝑗, 0) = 𝐺(𝑗, 1), it sums to one. Note that 

the formula is imperfect because ℎ(𝐾) is not perfect. 

According to Casella and Berger (2010), from a purely mathematical 

viewpoint, any nonnegative function with a finite positive integral (or sum) can be 

turned into a probability distribution function (or probability mass function). For 

example, if 𝑤(𝑥) is any nonnegative function that is positive on a set 𝐴, 0 

elsewhere, and: 

 

� 𝑤(𝑥)𝑑𝑥
0

{𝑥∈𝐴}
= 𝑊 < ∞ 

  

for some constant 𝑊 > 0, then the function 𝑓𝜃(𝑥) = 𝑤(𝑥) 𝑊⁄  is a 

probability distribution function of a random variable X taking values in A. Most 

methods use this standardization for risk-neutral distribution sum to one. 

 

 

 

Martingale property 

  

 Note that call option prices vary greatly across strike prices. That is, deep-

in-the-money (DITM) are valued as high as the underlying asset itself, whereas 

deep-out-of-the-money (DOTM) calls are valued close to zero. According to 

Jackwerth (2004), the particular exercise of fitting the risk-neutral distribution is 

rarely undertaken because some of the requirements lead to numerical difficulties. 

Thus, Jackwerth (2004) concludes that the choice of option prices, for each 

method, can be somewhat of an art.  

In our case, we include the special case by calculating the h-implied for 

strike equal to zero. Moreover, as noted in the literature, we obtain the martingale 

condition depending on a set of options used for each maturity. For example, for 

short periods, we can use two types of combinations: DITM, in-the-money (ITM) 

and at-the-money (ATM) or ATM and out-of-the-money (OTM). For long 
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periods, just ATM, OTM and DOTM. Obviously, these combinations can yield a 

range of risk-neutral distributions.26  

 

4.4  
Methodology 

 

 The algorithm for our method: 

1. Simulate the physical distribution for 𝑆𝑇; 

2. Compute the h-implied for each observed option (including 𝐾 = 0); 

ℎ𝑗 = arg
ℎ∈𝑅

�𝐶�𝐾𝑗� = 𝑒−𝑟𝑇 � �𝑆𝑇,𝑖 − 𝐾𝑗�𝐺�𝑆𝑇,𝑖, 𝑆,ℎ �
𝑁

𝑖, 𝑆𝑖>𝐾

� ,  𝑗 = 1, … ,𝑙 

3. Fit the function ℎ(𝐾); 

4. Compute 𝐺(. ) for 𝑗 = 1, . . ,𝑁 and 𝑖 = 1, … ,𝑁 with the equation (4.26); 

5. Compute 𝑞𝑗 for 𝑗 = 1, … ,𝑁 with the equation (4.30). 

In step one, our analysis is performed based on an unknown data generator 

process for the underlying asset. First, we simulate 5,000 prices, for each maturity, 

using the data generator process of the Heston (1993) model. After, we performed 

5,000 bootstraps with replacement on historical returns to simulate an unknown 

stochastic process for the underlying asset.27 In step two, we consider the market 

price given by the Heston (1993) model. We substitute these prices in step two’s 

equation to calculate the h-implied. In step three, we fit a polynomial of degree 

two in ℎ(𝐾).28 We calculate 𝐺(. ) in step four, and in step five, 𝑞𝑗. 

 The parameter values of the Heston (1993) model follow Almeida and 

Azevedo (2014). They use the objective and risk-neutral parameters estimated in 

Garcia, Lewis, Pastorello and Renault (2011) adopting S&P 500 daily data from 

January 1996 to December 2005. 

                                                
26 Some researchers prefer robustness to precision. That is, they provide a range of risk-neutral 
distribution and impose restrictions on characteristics of admissible risk-neutral distributions to 
reduce no-arbitrage bounds. For example, Jackwerth (2004) suggests that the call price functions 
themselves need to be fairly smooth. 
27 It is not possible to write options that distinguish between two states if the underlying assets pay 
identical returns in those states. Hence, after we had performed bootstraps with replacement on 
historical returns, we used only 4,500 scenarios. 
28 Any other function could be used. However, we use a polynomial of degree 2 to compare with 
Shimko’s method. He fits a polynomial with the same order between the strike price and the 
implied volatility. 
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Garcia et al (2011) does not report the estimated drift and the risk-free rate. 

Almeida et al (2014) imputes arbitrarily the drift to 10% and the risk-free rate to 

the year 2000 average of the 1-year T-Bill, 𝑟 = 5.93%. The same value for drifts 

has also been used in Gray and Newman (2005) and Harley and Walker (2010). 

According to latter authors, these values represent typical estimates from market 

data. 

We consider four scenarios for pricing in table 4.4. We introduce three 

scenarios (scenario 1, 2 and 3) beyond the estimated in Garcia (2011) et al 

(scenario 4). That is, we change 𝜌 to a positive value (scenarios 1 and 2) and we 

reduce the value of 𝜎 in 50% (scenario 1 and 3). The initial value of the volatility 

was equal to its long-term average. 
 

Table 4.5: Parameter Values. 

Scenary 𝜅 𝜃 𝜎 𝜌 

1 6.48 0.0203 0.2232 0.215 
2 6.48 0.0203 0.4464 0.215 
3 6.48 0.0203 0.2232 -0.215 
4 6.48 0.0203 0.4464 -0.215 

 

Finally, we compare our method to two approach alternatives: mixture 

method (following Ait-Sahalia and Duarte, 2003, Baha, 1997, Ornelas et al, 2011, 

Santos et al, 2015) and the Shimko (1993) method. The prices of the mixture 

method, or mixture of double lognormal (DLN), and the prices of the Shimko 

(1993) method (SHM) are calculated using expression (4.4). The strike prices 

were 70, 80, 90, 92.5, 95, 97.5, 100, 102.5, 105, 107.5, 110 and 120. The spot 

price was 100 and we use three maturities, 30, 90 and 180. 

 

Lognormal Mixture 

 

The mixture of lognormals was proposed by Bahra (1997) and Melick and 

Thomas (1997). Instead of specifying a dynamic for the underlying asset price, it 

is possible to make assumptions about the functional form of the risk-neutral 

distribution and then obtain the parameters of the distribution by minimizing the 

distance between observed option prices and theoretical prices. Consider the 

weighted sum of lognormal distribution functions: 
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𝑞(𝑆𝑇) = �[𝜃𝑖𝐿(𝜇𝑖,𝜎𝑖; 𝑆𝑇)]
𝑘

𝑖=1

 (4.31) 

 

𝐿(𝜇𝑖,𝜎𝑖; 𝑆𝑇) =
1

𝑆𝑇𝜎√2𝜋
𝑒�−

(𝑖𝑛𝑆𝑇−𝜇)2
2𝜎2 � (4.32) 

 

𝜇𝑖 = 𝑙𝑙(𝑆𝑡) + �𝜇𝑖 −
1
2
𝜎𝑖2� (𝑇 − 𝑑) (4.33) 

 

𝜎𝑖 = 𝜎𝑖�(𝑇 − 𝑑) (4.34) 

 

where 𝐿(𝜇𝑖,𝜎𝑖; 𝑆𝑇) is the ith lognormal distribution with parameters 𝜇𝑖 and 

𝜎𝑖. The term k defines the number of mixtures describing the risk-neutral 

distribution. In order to guarantee that 𝑞(𝑆𝑇) is a probability distribution, 𝜃𝑖 ≥ 0 

for 𝑖 = 1, … ,𝑘., and ∑ 𝜃𝑖𝑘
𝑖 = 1. Replacing (4.48) in (4.4), we have the theoretical 

prices of the European call option: 

 

�̂�(𝐾,𝑇) = 𝑒−𝑟𝑇�𝜃𝑖

𝑘

𝑖=1

� (𝑆𝑇 − 𝐾)𝐿(𝜇𝑖,𝜎𝑖, 𝑆𝑇)𝑑𝑆𝑡
∞

𝜃
. (4.35) 

Applying the mixture of two lognormals used by Bahra (1997), named 

double lognormal (DLN), we get the following formula for theoretical prices of 

European call options: 

 

�̂�(𝐾,𝑇) = 𝑒−𝑟𝑇 �𝜃 �𝑒𝛼1+
1
2𝛽1

2
𝑁(𝑑1) − 𝑋𝑁(𝑑2)�

+ (1 − 𝜃) �𝑒𝛼2+
1
2𝛽2

2
𝑁(𝑑3) − 𝑋𝑁(𝑑4)�� 

(4.36) 

 

where 𝑁(. ) accumulated normal and: 

 

𝑑1 =
−𝑙𝑙(𝐾) + 𝜇1 + 𝜎12

𝜎1
 (4.37) 

 

𝑑2 = 𝑑1 − 𝜎1 (4.38) 
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𝑑3 =
−𝑙𝑙(𝐾) + 𝜇2 + 𝜎22

𝜎2
 (4.39) 

 

𝑑4 = 𝑑3 − 𝜎2. (4.40) 

 

For theoretical prices of European put options:  

 

�̂�(𝑋𝑖,𝑇) = 𝑒−𝑟𝑇 �𝜃 �−𝑒𝛼1+
1
2𝛽1

2
𝑁(−𝑑1) − 𝐾𝑁(−𝑑2)�

+ (1 − 𝜃) �−𝑒𝛼2+
1
2𝛽2

2
𝑁(−𝑑3) − 𝐾𝑁(−𝑑4)��. 

(4.41) 

 

In order to find the parameters of the implied risk-neutral distribution we 

have to solve the minimization problem: 

 

min
𝜇𝑖𝜎𝑖,,𝜃

�[𝑐 − �̂�]2
𝑛

𝑖=1

+ �[𝑝 − �̂�]2
𝑛

𝑖=1

+ �𝜃𝑒𝛼1+
1
2𝛽1

2
+ (1 − 𝜃)𝑒𝛼2+

1
2𝛽2

2
− 𝑒𝑟𝑇𝑆0� 

 

 

(4.42) 

 

where the first and second terms refer to the sum of the squared deviation 

between theoretical prices and the observed market prices (𝑐 and 𝑝). The third 

term of the equation states that the expected value of the risk-neutral distribution 

must be equal to the underlying asset’s forward price (𝐹 = 𝑆0𝑒𝑟𝑇). 

 

Shimko Method 

  

The Shimko method (1993) assumes that the volatility smile is a function 

of strike price: 

 

𝜎(𝐾) = 𝑎0 + 𝑎1𝐾 + 𝑎2𝐾2. (4.43) 

 

The annual implied volatility function 𝑣(𝐾) is given by: 

𝑣(𝐾) = 𝜎(𝐾)√𝑟. (4.44) 

DBD
PUC-Rio - Certificação Digital Nº 1121534/CA



  
85 

Shimko (1993) applies Breeden et al (1978) in the Black-Scholes (1973) 

model. Taking the first and second derivatives with respect to 𝐾, we obtain: 

 

𝑣′ = (𝑎1 + 2𝑎2𝐾)√𝑟 (4.45) 

 

𝑣′′ = 2𝑎2√𝑟. (4.46) 

 

The probability distribution function is calculated by: 

 

𝑞(𝐾𝑡) = 𝐹𝑙(𝑑1)[𝑣′′ − 𝑣′𝑑1𝑑1𝐾] − 𝑙(𝑑2)𝑑2𝐾 (4.47) 

 

where 𝐹 is the forward price and 𝑙(𝑑𝑖) is the Gaussian normal distribution 

function: 

 

𝑑1 =
𝑙𝑙(𝐹 𝐾⁄ ) + 1

2𝜎
2(𝐾)𝑟

𝜎(𝐾)√𝑟
 (4.48) 

𝑑2 = 𝑑1 − 𝜎2(𝐾)√𝑟 (4.49) 

𝑑1𝐾 = �1 −
𝑑1
𝑣
� 𝑣′ −

1
𝐾𝑣

 (4.50) 

𝑑2𝐾 = −�
1
𝐾

+ 𝑑1𝑣′�
1
𝑣

 (4.51) 

𝑙(𝑑𝑖) =
1

√2𝜋
𝑒−

1
2𝑑𝑖

2
, 𝑖 = 1,2. (4.52) 

 

In the original formulation of Shimko (1993), the volatilities are 

interpolated by the range containing the observed prices. Probabilities in the 

sections located above and below the range of interpolated values are estimated by 

lognormal distributions. In this work, we keep a constant volatility for these 

points, as Campa, Chang and Reider (1998) and Malz (1997).  
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4.5 
Results  

  

The following Figures illustrate the h-implied behavior for the different 

proposed scenarios. In Figures (4.1) to (4.6), we obtain the h-implied based on the 

data generator process of Heston (1993) to analyze several effects about the 

empirical parameter. In tables 4.6 to 4.9, we use bootstrap with replacement under 

historical prices of the data generator process by Heston (1993). 

 

Effect of the sign 

 

Figure 4.1 presents the effects of changing the h-implied using the same 

distribution. We can observe that an increase in the h-implied changes the risk-

neutral distribution to the right. That is, the growth of the h-implied heightens the 

probabilities of the right side of the distribution and reduce the probabilities of the 

tail side. When we reduce the h-implied, the opposite happens.  

 
Figure 4.1: Effect of the sign  

 

Effect of the asymmetry and kurtosis 

 

In Figure 4.2, we analyze the impact of positive skewness on the h-

implied. The correlation parameter 𝜌 controls the skewness return’s distribution. 

When 𝜌 > 0, the probability distributions will be positively skewed. This has the 

effect of fattening the right tail of distribution, and thinning the left tail. In our 

case, to reproduce the market prices with greater strikes, the value of the h-
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implied grows and in consequence increases the probabilities of the underlying 

asset’s price in the right tail. 

 
Figure 4.2: Effect of the asymmetry – 𝑇 = 90,𝜌 = 0.215,𝜎 = 0.2232 

 

In Figure 4.3, we analyze the impact of negative skewness on the h-

implied. When the correlation is negative, the distribution is negatively skewed 

and more weight goes to the left tail, and less to the right tail. In our case, to 

reproduce the market prices with bigger strikes, the value of the h-implied reduces 

and in doing so, it decreases the probabilities of the underlying asset’s price in the 

right tail. 

 
Figure 4.3: Effect of the asymmetry – 𝑇 = 90,𝜌 = −0.215,𝜎 = 0.2232. 

 

In Figures 4.4 and 4.5, we consider the impact of increasing the volatility. 

The volatility of the variance parameter controls the kurtosis. When 𝜎 is high, the 

variance process is highly dispersed and the distribution of returns has higher 

kurtosis and fatter tails than when 𝜎 is small. Thus, a high variance volatility will 
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increase the range of terminal stock price values. At maturities of 90 and 180 

days, the increase of sigma changes the h-implied along the strike price according 

to the sign of 𝜌. At a maturity of 30 days, the increase of sigma only makes the 

value of the h-implied grow.  

 
Figure 4.4: Effect of the kurtosis – 𝑇 = 180,𝜌 = 0.215,𝜎1 = 0.2232,𝜎2 = 0.4464. 

 
Figure 4.5: Effect of the kurtosis – 𝑇 = 180,𝜌 = −0.215,𝜎1 = 0.2232,𝜎2 = 0.4464. 

 

We can conclude that the behavior of the h-implied depends on the 

deformation required in the distribution to reproduce the market price.  

 

Effect of the sample size 

 

The sample size affects only the intensity of the h-implied value in the 

tails’ distribution. That is, if we have more mass in the tails, the h-implied value is 

small. In the table 4.5, we calculate the probability of exercising the option, for a 

given strike price, and we analyze the impact that the sample size (5,000 

scenarios) has on the value of h-implied. In the maturity 𝑇 = 30 and 𝐾 = 120, the 

probability of exercising the option is very small and the value of h-implied 
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increases (see Figure 4.6). Therefore, to minimize the effect of the sample size on 

the h-implied, we can discard option (D)OTM in the short term. 

 
Figure 4.6: Effect of the sample size – 𝑇 = 30,𝜌 = −0.215,σ = 0.2232. 

 
Table 4.6: Probability of Exercising the Option. 

𝝆 = −𝟎.𝟐𝟐𝟐 −  𝝈 = 𝟎.𝟐𝟐𝟐𝟐 

K 
0.00 0.00 0.00 2.50 5.00 7.50 00.00 02.50 05.00 07.50 10.00 20.00 

∆𝑇=30 
.0000 .0000 .9859 .9560 .8865 .7587 .5760 .3744 .2040 .0926 .0353 .0002 

∆𝑇=90 
.9999 .9963 .9345 .8875 .8202 .7318 .6259 .5102 .3947 .2891 .2005 .0282 

∆𝑇=180 
.9990 .9850 .9014 .8586 .8051 .7417 .6697 .5919 .5114 .4315 .3556 .1299 

𝝆 = −𝟎.𝟐𝟐𝟐 −  𝝈 = 𝟎.𝟒𝟒𝟒𝟒 

∆𝑇=30 
.9999 .9994 .9822 .9537 .8914 .7715 .5885 .3726 .1933 .0852 .0323 .0008 

∆𝑇=90 
.9996 .9937 .9355 .8938 .8324 .7478 .6407 .5182 .3930 .2795 .1876 .0266 

∆𝑇=180 
.9977 .9821 .9056 .8664 .8162 .7547 .6829 .6029 .5182 .4332 .3521 .1201 

𝝆 = 𝟎.𝟐𝟐𝟐 −  𝝈 = 𝟎.𝟐𝟐𝟐𝟐 

∆𝑇=30 
.0000 .0000 .9907 .9629 .8896 .7506 .5585 .3601 .2014 .0989 .0434 .0007 

∆𝑇=90 
.0000 .9985 .9413 .8904 .8159 .7191 .6069 .4895 .3776 .2792 .1986 .0377 

∆𝑇=180 
.9997 .9899 .9045 .8576 .7990 .7303 .6540 .5736 .4927 .4148 .3426 .1351 

𝝆 = 𝟎.𝟐𝟐𝟐 −  𝝈 = 𝟎.𝟒𝟒𝟒𝟒 

∆𝑇=30 
.9997 .0000 .9900 .9660 .8977 .7587 .5528 .3453 .1912 .0964 .0470 .0021 

∆𝑇=90 
.0000 .9977 .9469 .9001 .8268 .7258 .6048 .4783 .3612 .2630 .1865 .0418 

∆𝑇=180 
.9994 .9899 .9117 .8658 .8064 .7346 .6537 .5680 .4826 .4017 .3286 .1304 
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Comparison with other methods 

 

In Tables 4.7 and 4.8, we present the biases between the prices of the 

methods and the market price for different scenarios. In the tables 4.9 and 4.10, 

we present the Mean Absolute Percentage Error (MAPE) of the methods. Finally, 

in the Figures 4.8 – 4.13, we present the volatility smiles. 

It is shown in tables 4.7 and 4.8, under assumptions of the scenarios 1 and 

2 of the table 4.4, in general, that the biases of EET are small, except for 𝐾 =

120, at time 𝑇 = 30. Biases tend to increase when volatility increases, 

independent of the method. There is a change signal for all methods, indicating 

that the recovered risk-neutral density provides prices above or below  the market. 

From the ratio between the underlying asset price and the strike price, we 

can classify the options’ prices by moneyness. For example, we separate strike 

prices in ITM (𝐾 ≤ 92.50), ATM (95.00 ≤ 𝐾 ≤ 105.00) and OTM (𝐾 ≥

107.50) and we calculate the MAPE by Moneyness (MM). The general MAPE 

(GM) is calculated for all strike prices. 

In the table 4.8, under assumptions of the scenarios 1 and 2 of the table 

4.4, we get the smaller MM in the scenario 1. For the GM, the smaller errors were 

obtained by the Shimko method. Our method outperforms the DLN method in 

maturities T=90 and T=180. When we increase the volatility, the lowest GM are 

among the proposed method and Shimko’s method. 

Table 4.9, under assumptions of the scenarios 3 and 4 of the table 4.4, 

shows that the Shimko method outperforms the other methods with the lowest 

MM and GM. In scenario 3, the proposed method outperforms the DLN method. 

When we increase the volatility, the lowest MM and GM are among the Shimko 

method and the DLN method. 

Although percentage bias allows detecting differences in call prices, it 

gives no indication of the relative difference between them. Implied volatilities 

are important because they are embedded in option prices, and the mentioned 

prices  reflect future expectations of market participants. This means that implied 

volatilities constitute a forward-looking estimate of the underlying asset’s 

volatility. 

Market returns and prices are more skewed, and show greater kurtosis, 

than the normal distributions allow. Both of these distributional features are 
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thought to explain smiles and smirks. If returns were normal, then implied 

volatility would be constant across moneyness and maturity according to the 

Black-Scholes (1973) model. Smiles can occur, however, because returns show 

greater kurtosis than stipulated under normality, so extreme returns are more 

likely. This implies that DITM and DOTM options are more expensive related to 

the Black-Scholes’ price. Smirks can occur because returns often show 

asymmetry, which again the normal distribution does not allow. For example, 

large negative returns are more likely, leading to implied volatilities for ITM calls 

that are higher than implied volatilities for OTM calls.  

In general, smiles and smirks are more pronounced for short-term options 

and less pronounced for long-term options. This is synonymous with long-term 

returns being closer to being normally distributed than short-terms returns. 

Moneyness and maturity are the two factors thought to influence the most the 

shape of smiles and smirks.  

When 𝜌 > 0, the volatility smile is positively sloped and when 𝜌 < 0, the 

volatility smile is negatively sloped. The increase of sigma also causes an increase 

of the volatility smile’s curvature. In this work, we can see that the proposed 

method follows market expectations and reproduces the volatility smile. In some 

situations, the smile of the proposed method alternates above and below the 

market volatility smile. 
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Table 4.7: Option Pricing under scenarios 1 and 2. 

Percentage bias for different strike prices (K) and maturities (T) from EET (empirical Esscher 
transform), DLN (double lognormal) and SHM (Shimko method), under assumptions of the 
scenarios 1 and 2 in the table 4.4. Underlying asset current price = $ 100.00; risk-free rate = 
5.93%. 

 
  Scenario 1: 𝝆 = 𝟎.𝟐𝟐𝟐,𝝈 = 𝟎.𝟐𝟐𝟐𝟐 Scenario 2: 𝝆 = 𝟎.𝟐𝟐𝟐,𝝈 = 𝟎.𝟒𝟒𝟒𝟒 

T K Bias%-EET Bias%-DLN Bias%-SHM Bias%-EET Bias%-DLN Bias%-SHM 

30 

70.0000 0.0031 -0.0313 -0.0031 0.0064 -0.0618 0.0423 

80.0000 0.0045 -0.0464 -0.0040 0.0088 -0.0924 0.0639 

90.0000 -0.0307 -0.0711 0.0874 -0.0640 -0.2064 0.2440 

92.5000 0.0010 0.0099 0.1738 -0.1896 -0.1632 0.4381 

95.0000 0.2306 0.1336 0.1064 -0.5674 0.0673 0.6876 

97.5000 0.4190 0.5435 -0.6543 -1.3970 0.9778 0.6572 

100.0000 0.3955 0.1074 -2.9374 -3.1398 1.0437 -0.8449 

102.5000 -0.2602 -0.7569 -7.2345 -5.7790 -1.1828 -5.6653 

105.0000 -0.3810 -5.8111 -12.8871 -8.7376 -10.9678 -13.3601 

107.5000 -0.1618 -12.3768 -18.0461 -13.7118 -25.5579 -21.2308 

110.0000 2.2337 -25.8865 -20.2418 -17.9238 -46.9184 -25.5478 

120.0000 180.7643 -81.5024 64.8157 85.4722 -95.1619 78.2250 

90 

70.0000 0.0000 -0.0637 -0.0057 0.0010 -0.1104 0.8126 

80.0000 0.0214 -0.0912 -0.0078 0.0136 -0.1787 1.1744 

90.0000 -0.0073 0.0166 0.0178 0.3650 -0.1974 2.1113 

92.5000 -0.0152 0.1732 0.0338 0.5975 0.0463 2.6489 

95.0000 -0.0730 0.2850 0.0378 1.0227 0.3934 3.4400 

97.5000 -0.3903 0.4573 0.0045 1.4916 0.9174 4.5328 

100.0000 -0.6187 0.2467 -0.0972 1.6133 0.9636 5.9255 

102.5000 -0.7268 -0.1285 -0.2906 1.5146 0.3771 7.6149 

105.0000 -0.7883 -1.5395 -0.5736 0.8694 -2.1879 9.7302 

107.5000 -0.5319 -3.4365 -0.9021 0.1625 -6.4734 12.6780 

110.0000 -0.7140 -7.0825 -1.1795 -0.1085 -13.7626 17.2144 

120.0000 -1.9399 -32.8712 1.8915 -0.5792 -56.3341 76.8027 

180 

70.0000 0.0054 -0.6449 -0.0804 -0.0035 -0.1265 0.1883 

80.0000 0.0006 -0.9026 -0.1099 0.1297 -0.1958 0.2639 

90.0000 0.1223 -1.3952 -0.1580 0.5332 0.0005 0.4677 

92.5000 0.3715 -1.5890 -0.1861 0.7496 0.2009 0.5556 

95.0000 0.6914 -1.9125 -0.2314 1.1004 0.3851 0.6482 

97.5000 0.9901 -2.2943 -0.3015 1.2923 0.5969 0.7271 

100.0000 1.2045 -2.9375 -0.4028 1.1952 0.5709 0.7692 

102.5000 1.2877 -3.7003 -0.5393 0.8785 0.3529 0.7557 

105.0000 1.4649 -4.8984 -0.7102 0.1913 -0.4941 0.6836 

107.5000 1.4914 -6.2778 -0.9089 -0.7723 -1.8360 0.5773 

110.0000 1.2494 -8.2693 -1.1221 -1.7651 -4.2131 0.4938 

120.0000 0.4846 -20.4278 -1.6609 -5.7578 -22.6493 2.4148 
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Table 4.8: Option Pricing under scenarios 3 and 4. 

Percentage bias for different strike prices (K) and maturities (T) from EET (empirical Esscher 
transform), DLN (double lognormal) and SHM (Shimko method), under assumptions of the 
scenarios 3 and 4 in the table 4.4. Underlying asset current price = $ 100.00; risk-free rate = 
5.93%. 
 

  Scenario 3: 𝝆 = −𝟎.𝟐𝟐𝟐,𝝈 = 𝟎.𝟐𝟐𝟐𝟐 Scenario 4: 𝝆 = −𝟎.𝟐𝟐𝟐,𝝈 = 𝟎.𝟒𝟒𝟒𝟒 
T K Bias%-EET Bias%-DLN Bias%-SHM Bias%-EET Bias%-DLN Bias%-SHM 

30 

70.00 0.0118 0.0886 0.0001 0.0052 0.2000 0.0104 
80.00 0.0173 0.1329 0.0000 0.0047 0.2967 0.0154 
90.00 -0.0197 0.1403 -0.0373 -0.0153 0.2759 0.0241 
92.50 -0.0285 0.0128 -0.0844 0.1044 -0.0393 -0.0376 
95.00 0.0183 -0.3116 -0.1193 0.4483 -0.6123 -0.1040 
97.50 0.2776 -0.3958 -0.0287 1.0428 -0.8211 -0.1070 

100.00 0.0334 -0.5719 0.3852 1.2365 -0.4930 0.2803 
102.50 0.3775 0.9976 1.2949 1.1667 2.2241 1.0711 
105.00 -0.3749 1.8924 2.6369 0.7526 2.4515 0.8754 
107.50 -2.0098 6.0797 4.0586 1.8946 1.6984 -0.6581 
110.00 -8.2485 6.3500 4.8899 8.1050 -10.1213 -3.3494 
120.00 30.8831 36.7322 -18.9177 13.4011 -69.8823 -26.6836 

90 

70.00 0.0020 0.2531 0.0000 -0.0020 0.5059 0.0245 
80.00 -0.0339 0.3300 -0.0015 -0.0597 0.6127 0.0150 
90.00 -0.2779 0.0504 -0.0150 0.0156 -0.0170 -0.1009 
92.50 -0.1363 -0.0911 -0.0141 0.2549 -0.3172 -0.1040 
95.00 -0.0288 -0.2800 -0.0028 0.6814 -0.5993 -0.0179 
97.50 0.0445 -0.2558 0.0244 1.3207 -0.5000 0.2328 

100.00 0.0896 -0.2173 0.0688 2.2239 -0.1314 0.7072 
102.50 -0.4343 0.3555 0.1226 3.2997 1.0319 1.3799 
105.00 -0.9195 0.8923 0.1657 4.3332 2.1643 2.0700 
107.50 -0.6579 2.2416 0.1666 5.4273 3.6877 2.4343 
110.00 -0.5760 3.2109 0.0896 7.2129 3.6065 2.0838 
120.00 -0.9089 7.0713 -1.0688 12.8573 -17.7861 -5.7523 

180 

70.00 -0.0104 0.0760 -0.0093 0.0127 -0.0178 -0.0187 
80.00 -0.0719 -0.0137 -0.0124 0.1632 0.0183 -0.0421 
90.00 0.2093 -0.3354 -0.0160 0.9195 -0.0102 -0.0969 
92.50 0.4211 -0.3740 -0.0184 1.2317 -0.0324 -0.0985 
95.00 0.6919 -0.4029 -0.0229 1.4857 -0.0895 -0.0836 
97.50 0.8193 -0.2807 -0.0311 1.7666 -0.0611 -0.0475 

100.00 0.8661 -0.1203 -0.0447 1.9949 -0.0707 0.0088 
102.50 0.9890 0.3041 -0.0653 2.1031 0.0774 0.0737 
105.00 0.8553 0.7731 -0.0939 1.8854 0.1005 0.1217 
107.50 0.5733 1.6156 -0.1297 1.3091 0.2657 0.1122 
110.00 0.1607 2.4654 -0.1695 1.0791 0.0493 -0.0061 
120.00 -0.5427 8.2436 -0.1546 0.0286 -5.0617 -2.3583 
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Table 4.9: MAPE under scenarios 1 and 2. 

MAPE over different strike prices (K) and maturities (T) of EET (empirical Esscher transform), 
DLN (double lognormal) and SHM (Shimko method), under assumptions of the scenarios 1 and 2 
in the table 4.4. 
 

  Scenario 1: 𝝆 = 𝟎.𝟐𝟐𝟐,𝝈 = 𝟎.𝟐𝟐𝟐𝟐 Scenario 2: 𝝆 = −𝟎.𝟐𝟐𝟐,𝝈 = 𝟎.𝟒𝟒𝟒𝟒 

T Moneyness EET DLN SHM EET DLN SHM 

30 

ITM 0.0098 0.0397 0.0671 0.0672 0.1309 0.1971 

ATM 0.3373 1.4705 4.7639 3.9242 2.8479 4.2430 

OTM 61.0533 39.9219 34.3679 39.0359 55.8794 41.6679 

General 15.4071 10.6064 10.5997 11.4165 15.2001 12.2694 

90 

ITM 0.0110 0.0862 0.0163 0.2443 0.1332 1.6868 

ATM 0.5194 0.5314 0.2007 1.3023 0.9679 1.6868 

OTM 1.0619 14.4634 1.3244 0.2834 25.5234 35.5650 

General 0.4856 3.8660 0.4204 0.6949 6.8285 12.7183 

180 

ITM 0.1249 1.1329 0.1336 0.3540 0.1309 0.3689 

ATM 1.1277 3.1486 0.4371 0.9315 0.4800 0.7168 

OTM 1.0751 11.6583 1.2307 2.7651 9.5662 1.1620 

General 0.7803 4.6041 0.5674 1.1974 2.6352 1.0564 
 

Table 4.10: MAPE under scenarios 3 and 4. 

MAPE over different strike prices (K) and maturities (T) of EET (empirical Esscher 
transform), DLN (double lognormal) and SHM (Shimko method), under assumptions of the 
scenarios 3 and 4 in the table 4.4.  

 

  
Scenario 3: 𝝆 = −𝟎.𝟐𝟐𝟐,𝝈 =

𝟎.𝟐𝟐𝟐𝟐 
Scenario 4: 𝝆 = −𝟎.𝟐𝟐𝟐,𝝈 =

𝟎.𝟒𝟒𝟒𝟒 

T 
Moneynes

s EET DLN SHM EET DLN SHM 

30 

ITM 0.0193 0.0936 0.0305 0.0324 0.2030 0.0219 

ATM 0.2163 0.8339 0.8930 0.9294 1.3204 0.4876 

OTM 13.7138 16.3873 9.2887 7.8002 27.2340 10.2304 

General 3.5250 4.4755 2.7044 2.3481 7.4263 2.7678 

90 

ITM 0.1125 0.1811 0.0076 0.0831 0.3632 0.0611 

ATM 0.3033 0.4002 0.0768 2.3718 0.8854 0.8816 

OTM 0.7143 4.1746 0.4417 8.4992 8.3601 3.4234 

General 0.3425 1.2708 0.1450 3.1407 2.5800 1.2466 

18
0 

ITM 0.1782 0.1998 0.0140 0.5818 0.0197 0.0640 

ATM 0.8443 0.3762 0.0516 1.8471 0.0798 0.0671 

OTM 0.4256 4.1082 0.1512 0.8056 1.7922 0.8255 

General 0.5176 1.2504 0.0682 1.1649 0.4879 0.2562 
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Figure 4.7: Volatility smile – 𝑇 = 30,𝜌 = 0.215,𝜎 = 0.4464. 

 
Figure 4.8: Volatility smile T = 30, ρ = −0.215,σ = 0.4464. 

 
Figure 4.9: Volatility smile – 𝑇 = 90,𝜌 = 0.215,𝜎 = 0.2232. 
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Figure 4.10: Volatility smile – 𝑇 = 90,𝜌 = −0.215,𝜎 = 0.4464. 

 
Figure 4.11: Volatility smile – 𝑇 = 180,𝜌 = 0.215,𝜎 = 0.4464. 

 
Figure 4.12: Volatility smile – 𝑇 = 180,𝜌 = −0.215,𝜎 = 0.4464. 
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4.6 
Conclusions 

 

This work proposes a new approach for the estimation of risk-neutral 

distribution. We develop a discrete version of Breeden and Litzenberger (1978) 

where states are not equally spaced. Our method can be classified as an indirect 

way of estimation because we estimate the physical distribution of the underlying 

asset’s historical prices and the empirical Esscher parameter from option market 

prices. Following, we fit a polynomial of degree two, between the h-implied and 

the strike price, in order to estimate the state price. 

The most straightforward application of the risk-neutral distribution is 

pricing any payoff with the same time until expiration (including illiquid and 

exotic options). We ran simulation experiments under different situations, which 

seek to highlight the differences and similarities between the methods. We 

compare our method to two approach alternatives: Double Lognormal proposed 

by Baha (1997) and the Shimko (1993) method. We calculate the European call 

option prices for each method according to various scenarios and maturities. Our 

method shows better results in various scenarios and, when we analyze the 

volatility smile (or smirk), our method reproduces market asymmetry.  

Further research can be done comparing the proposed method to others 

methodologies, studying other option-implied information and its applications, 

verifying the results with parametric data generating processes, and using other 

functions instead of polynomials to help with pricing accuracy. 
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5 
Conclusion 

 

 

One of the central questions in quantitative finance is how to get a measure 

of the risk-neutral probability that provides theoretical prices closer to those 

observed in the market. The literature highlights two approaches to this problem: 

models based on the general equilibrium (Arrow, 1964, Debreu, 1959, Lucas, 

1978, Rubinstein, 1976) and the models based on absence of arbitrage (Black-

Scholes, 1973, Cox and Ross, 1976, Harrison and Kreps, 1979, Harrison and 

Pliska, 1981). 

In both cases, these approaches require the formulation of an explicit risk-

neutral model and are restricted to a few probability distributions for modeling the 

economy’s uncertainty. However, empirical observations of asset returns showed 

several stylized facts, which highlight the parametric misspecification risk for the 

used stochastic process. Hence, due to the poor empirical performance of 

parametric methods, the nonparametric option pricing techniques have expanded 

rapidly in recent years, because they offer an alternative by avoiding possibly 

biased parametric restrictions (Haley and Walker, 2010). 

The main objective of this thesis is to verify if simple assumptions on 

empirical pricing kernel are able to generate a measure Q that produces theoretical 

prices closer to those observed in the market. From our investigation, we are able 

to derive three articles. 

The first article (Chapter 2) introduces the empirical Esscher transform 

and studies the nonparametric option pricing. In our proposal, we make only mild 

assumptions on the price kernel and there is no need for the formulation of a risk-

neutral model. First, we simulate sample paths for the returns under the physical 

measure P. Then, based on the empirical Esscher transform, the sample is 

reweighted, giving rise to a risk-neutralized sample from which derivative prices 

can be obtained by a weighted sum of the options’ pay-offs in each path.  

We conduct artificial experiments in Black-Scholes and Heston worlds and 

real experiments to explore the potential usefulness of the proposed method. 

Artificial results show that the EET prices improve along with the sample size.  
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Real data results show that, when the stochastic process of underlying 

asset is unknown, the lowest pricing errors are between the nonparametric 

methods. For a maturity equal to 17, the nonparametric methods present similar 

results. For others maturities, the proposed method presents the lowest MAPE for 

moneyness equal to deep-out-of-the-money, out-of-the-money and at-the-money. 

We also analyze the behavior of the empirical Esscher parameter. We can 

highlight that the standard deviation decreases along with the maturity and with 

the increase in the sample size, and the values of the descriptive statistics begin to 

converge to a constant value in larger samples. When we compare only between 

the empirical Esscher parameter obtained for synthetic and real data, the more 

important change is the signal. That is, the Esscher parameters obtained with 

synthetic data are simulated with a drift (𝜇 = 10.00%) greater than the risk-free 

rate (𝑟 = 5.00%). Thus, the negative parameter shifts the risk-neutral distribution 

to the left, which eliminates the risk premium and assures the average yield equal 

to the risk-free rate. With real data, the opposite happens. The positive parameter 

shifts the risk-neutral distribution to the right. This is contrary to financial theory. 

However, this does not constitute an arbitrage opportunity, because the daily risk-

free rate is between the worst and the best daily return. When price time series are 

in falling, applications in risk-free interest rates are paying more than in these 

stocks. 

In the second article (Chapter 3), we demonstrate that our proposal is 

flexible and performs very well in the presence of realistic financial time series. 

We use a recently proposed dynamic conditional score models, developed by 

Harvey (2013), which offers an alternative to model the volatility (and heavy tails) 

of observed underlying asset price using GARCH models and analyzes the 

nonparametric option pricing method. 

We empirically compare our approach to competing benchmark 

approaches, like Black-Scholes (1973) and Heston and Nandi (2000), with real 

data. In general, the proposed method with an assumed model to describe the 

empirical distribution presents the lowest MAPE. When we increase the size of 

the empirical distribution, only for lower maturity the MAPE was reduced. 

In our third contribution (Chapter 4), we introduce a new approach for 

indirect estimation of the implicit state-price in financial asset prices using the 

empirical Esscher transform. First, we generalize the discrete version of the 
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Breeden and Litzenberger (1978) method for the case where states are not equally 

spaced. Second, we use the empirical Esscher transform to include underlying 

assets’ and derivatives’ data. We use the historical distribution of the underlying 

asset prices and the observed option prices to estimate the implicit empirical 

Esscher parameter. Then, we fit polynomials between the implied Esscher 

parameter and the strike price, as in Shimko (1993), to obtain our measure Q. 

We run simulation experiments under different situations, which seek to 

highlight the differences and similarities between the methods. We compare our 

method to two approach alternatives: Double Lognormal proposed by Baha 

(1997) and the Shimko (1993) method. We calculate the European call option 

prices for each method according to various scenarios and maturities. Our method 

shows better results in various scenarios and, when we analyze the volatility smile 

(or smirk), our method reproduces market asymmetry.  
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6 
Appendix 

 
 

6.1 
Option Pricing by Gerber and Shiu 

 

The price of a European call on a non-dividend-paying stock is obtained 

under the risk-neutral distribution 𝑞(𝑆𝑇) and the payoff is discounted at the 

deterministic risk-free rate 𝑟: 

 

𝐶 = 𝑒−𝑟𝑇𝐸[𝑚𝑎𝑥(𝑆𝑇 − 𝑘, 0)] =  𝑒−𝑟𝑇 � 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0)𝑓(𝑥,𝑇; ℎ)𝑑𝑥
+∞

𝑥∗
 (6.1) 

 

where T is the time to maturity, 𝑆𝑇 is the underlying asset price, K is the 

strike price, 𝑓(𝑥,𝑇;ℎ) is the risk-neutral distribution of the asset price at the 

option’s expiration. Consider: 

 

𝑆𝑇 = 𝑆0𝑒𝜃𝑇 (6.2) 

 

𝑓(𝑥,𝑇;ℎ) =
𝑒ℎ𝑥𝑓(𝑥,𝑇)

∫ 𝑒ℎ𝑥𝑓(𝑥,𝑇)𝑑𝑥+∞
−∞

=
𝑒ℎ𝑥𝑓(𝑥,𝑇)
𝑀𝜃𝑇(ℎ,𝑇)  

(6.3) 

 

𝑀𝜃𝑇(ℎ, ) = � 𝑒ℎ𝑥𝑓(𝑥,𝑇)𝑑𝑥
+∞

−∞
. 

(6.4) 

 

The lower bound is: 

 

𝐾 = 𝑆𝑜𝑒𝑥 → 𝑒𝑥 =
𝐾
𝑆𝑜

 

 

ln(𝑒𝑥) = ln �
𝐾
𝑆𝑜
� → x∗ = ln(K So⁄ ). (6.5) 
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Rewrite (6.1), using the equations (6.2)-(6.5): 

 

𝐶 = 𝑒−𝑟𝑇 �𝑆𝑜 � 𝑒(1+ℎ)𝑥 1
𝑀𝜃𝑇(ℎ,𝑇)𝑓

(𝑥,𝑇)𝑑𝑥
+∞

𝑥∗

− 𝐾� 𝑒ℎ𝑥
1

𝑀𝜃𝑇(ℎ,𝑇)𝑓
(𝑥,𝑇)𝑑𝑥

+∞

𝑥∗
�. 

(6.6) 

 

Consider the probability distribution 𝑋 ~ 𝑁(𝜇,𝜎2): 

 

𝑓(𝑥,𝑇) =
1

√2𝜋𝜎2
𝑒−

1
2�
𝑥−𝜇
𝜎 �

2

. 

 

Then (6.4) will be: 

 

𝑀𝜃𝑇(ℎ,𝑇) = � 𝑒ℎ𝑥
1

√2𝜋𝜎2
𝑒−

1
2�
𝑥−𝜇
𝜎 �

2

𝑑𝑥
+∞

−∞
. (6.7) 

 

Let the changing of variable in (6.7): 

 

𝑦 = ℎ𝑥 → 𝑥 = 𝑦 ℎ⁄  (6.8) 

 

𝑑𝑥
𝑑𝑦

=
1
ℎ
→ 𝑑𝑥 =

1
ℎ
𝑑𝑦. (6.9) 

 

Replace (6.8) and (6.9) in (6.7): 

 

𝑀𝜃𝑇(ℎ,𝑇) = �
1

√2𝜋ℎ𝜎
𝑒−

1
2�
𝑦−ℎ𝜇
ℎ𝜎 �

2
+𝑦𝑑𝑦.

+∞

−∞
 (6.10) 

Solve only the exponential of (6.10): 

 

=
𝑦2 − 2𝑦ℎ(𝜇 + ℎ𝜎2) + ℎ2𝜇2

2ℎ2𝜎2
 

 

add and subtract ℎ2(𝜇 + ℎ𝜎2)2:  
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= −
1
2
�
�𝑦 − ℎ(𝜇 + ℎ𝜎2)�

𝜎ℎ
�
2

+ �𝜇ℎ +
1
2
ℎ2𝜎2�. (6.11) 

 

Rewritte (6.10) using (6.11):  

 

𝑀𝜃𝑇(ℎ,𝑇) = 𝑒�𝜇ℎ+
1
2ℎ

2𝜎2� �
1

√2𝜋ℎ𝜎
𝑒
−12�

�𝑦−ℎ�𝜇+ℎ𝜎2��
𝜎ℎ �

2

𝑑𝑦
+∞

−∞
. 

(6.12) 

 

We need to transform (6.12) in a standardized normal: 

 

𝑧 =
𝑦 − ℎ(𝜇 + ℎ𝜎2)

𝜎ℎ
 

 
𝑑𝑧
𝑑𝑦

=
1
𝜎ℎ

∴ 𝑑𝑦 = 𝜎ℎ𝑑𝑧 

 

then: 

 

𝑀𝜃𝑇(ℎ,𝑇) = 𝑒�𝜇ℎ+
1
2ℎ

2𝜎2� �
1

√2𝜋
𝑒−

1
2𝑧

2
𝑑𝑧

+∞

−∞�������������
=1

= 𝑒�𝜇ℎ+
1
2ℎ

2𝜎2�. (6.13) 

 

Replacing (6.13) in (6.6), we have: 

 

𝐶 =
𝑒−𝑟𝑇

𝑒�𝜇ℎ+
1
2ℎ

2𝜎2�
�𝑆𝑜 � 𝑒(1+ℎ)𝑥𝑓(𝑥,𝑇)𝑑𝑥

+∞

𝑥∗
− 𝐾� 𝑒ℎ𝑥𝑓(𝑥,𝑇)𝑑𝑥

+∞

𝑥∗
�. (6.14) 

 

Parcels in (6.14) are expected value of the truncated normal: 

 

𝐸�𝑒(1+ℎ)𝑥� = �
1

√2𝜋𝜎2
𝑒−

1
2�
𝑥−𝜇
𝜎 �

2
+(1+ℎ)𝑥𝑑𝑥

+∞

𝑥∗
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= 𝑒�𝜇(1+ℎ)+12(1+ℎ)2𝜎2� �
1

√2𝜋(1 + ℎ)𝜎
𝑒
−12�

𝑦−(1+ℎ)�𝜇+(1+ℎ)𝜎2�
𝜎(1+ℎ) �

2

𝑑𝑦
+∞

𝑥∗
. (6.15) 

 

We need to transform (6.15) in standardized normal: 

 

𝑧 =  
𝑦 − (1 + ℎ)(𝜇 + (1 + ℎ)𝜎2)

𝜎(1 + ℎ)  

 

𝑑𝑧
𝑑𝑦

=
1

𝜎(1 + ℎ) ∴ 𝑑𝑦 = 𝜎(1 + ℎ)𝑑𝑧 

 

and lower bound: 

 

𝐿𝑧 =
𝑥∗ − 𝜇∗𝑇
𝜎√𝑇

,𝑤𝑖𝑑ℎ 𝜇∗ = 𝜇 + (1 + ℎ)𝜎2 

 

then: 

 

𝐸�𝑒(1+ℎ)𝑥� = 𝑒�𝜇(1+ℎ)+12(1+ℎ)2𝜎2�𝑁(𝐿𝑧). (6.16) 

 

By symmetry of the normal distribution, we have: 

 

�
1

√2𝜋
𝑒−

1
2(𝑧)2

−𝐿𝑧

−∞
𝑑𝑧 = �

1
√2𝜋

𝑒−
1
2(𝑧)2

∞

−𝐿𝑧
𝑑𝑧. 

 

Then (6.16) will be: 

 

𝐸�𝑒(1+ℎ)𝑥� = 𝑒�𝜇(1+ℎ)+12(1+ℎ)2𝜎2�𝑁 �−
𝑥∗ − 𝜇∗𝑇
𝜎√𝑇

�

= 𝑒�𝜇(1+ℎ)+12(1+ℎ)2𝜎2�𝑁 �
−𝑙𝑙(𝐾 𝑆𝑜⁄ ) + 𝜇𝑇 + (1 + ℎ)𝜎2𝑇

𝜎√𝑇
�. 

(6.17) 
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The expected value of the first parcel in (6.14) is: 

 

� 𝑒(1+ℎ)𝑥𝑓(𝑥,𝑇)𝑑𝑥
+∞

𝑥∗
= 𝑒�𝜇(1+ℎ)+12(1+ℎ)2𝜎2�𝑁(𝑑1) (6.18) 

 

𝑑1 =
𝑙𝑙(𝑆𝑜 𝐾⁄ ) + 𝜇𝑟 + (1 + ℎ)𝜎2𝑇

𝜎√𝑇
 (6.19) 

 

and of the second parcel in (6.14) is: 

 

� 𝑒ℎ𝑥𝑓(𝑥,𝑇)𝑑𝑥
+∞

𝑥∗
= 𝑒�𝜇ℎ+

1
2ℎ

2𝜎2�𝑁(𝑑2) (6.20) 

 

𝑑2 =
𝑙𝑙(𝑆𝑜 𝐾⁄ ) + 𝜇𝑟 + ℎ𝜎2𝑇

𝜎√𝑇
. (6.21) 

 

Replace the results of (6.18)-(6.21) in (6.14): 

 

𝐶 = 𝑆𝑜𝑒
−𝑟𝑇+�𝜇+ℎ𝜎2�+12𝜎

2
𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2). (6.22) 

 

The ℎ∗ depends on of the condition martingale by equation (2.8): 

𝑒𝑟 = �
𝑀𝜃𝑇(1 + ℎ;𝑇)
𝑀𝜃𝑇(ℎ;𝑇) = 𝑒𝜇+ℎ𝜎

2+12𝜎
2
� 

 

𝑙𝑙(𝑒𝑟) = 𝑙𝑙 �𝑒𝜇+ℎ𝜎
2+12𝜎

2
� 

 

ℎ =
𝑟 − 𝜇
𝜎2

−
1
2

 (6.23) 

 

Replace (6.23) in (6.22): 

 

𝐶 = 𝑆𝑜𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) 
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𝑑1 =
𝑙𝑙(𝑆𝑜 𝐾⁄ ) + �𝑟 + 1

2𝜎
2� 𝑇

𝜎√𝑇
 

 

𝑑2 =
𝑙𝑙(𝑆𝑜 𝐾⁄ ) + �𝑟 − 1

2𝜎
2�𝑇

𝜎√𝑇
. 

 

Finally, we have the Black and Scholes formula. 

 

6.2  
Jacobian Method 

 

Let 𝜀𝑡 a continuous random variable with density 𝑓(𝜀𝑡). We want to find 

the density of a new random variable 𝑦𝑡 = ℎ(𝜀𝑡), where ℎ(. ) is a function. The 

density of 𝑦𝑡, 𝑓(𝑦𝑡), can be found from following procedure: 

 

𝑓(𝑦𝑡) = 𝑓(𝜀𝑡) �
𝜕𝜀𝑡
𝜕𝑦𝑡

� (6.24) 

 

where the absolute value |𝜕𝜀𝑡 𝜕𝑦𝑡⁄ |, called Jacobian term, is to ensure that 

𝑓(𝑦𝑡) is not negative. 

 Consider the equations: 

 

𝑦𝑡 = 𝜇 + �ℎ𝑡𝑧𝑡 (6.25) 

 

𝑧𝑡 = �
𝜐 − 2
𝜐

�
1
2
𝜀𝑡, 𝜐 > 2 (6.26) 

 

𝜀𝑡~𝑑𝜐 �0,
𝜐

𝜐 − 2
� (6.27) 

 

and the t-student distribution: 
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𝑓(𝜀𝑡; 𝜐) =
Γ((𝜐 + 1) 2⁄ )
Γ(𝜐 2⁄ )√𝜋𝜐

�1 +
𝜀𝑡2

𝜐
�
−𝜐+12

. (6.28) 

 

Rewrite (6.25), using (6.26), we have: 

 

𝜀𝑡 =
𝑦𝑡 − 𝜇

�ℎ𝑡−1(𝜐 − 2)
𝜐 �

1 2⁄  
(6.29) 

 

and  

 

�
𝜕𝜀𝑡
𝜕𝑦𝑡

� =
1

�ℎ𝑡−1(𝜐 − 2)
𝜐 �

1 2⁄ . (6.30) 

 

Replace (6.28), (6.29) and (6.30) in (6.24): 

 

𝑓(𝑦𝑡;𝐹𝑡−1) =
Γ((𝜐 + 1) 2⁄ )
Γ(𝜐 2⁄ )√𝜋𝜐

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1

+ ⎝

⎛ 𝑦𝑡 − 𝜇

�ℎ𝑡−1(𝜐 − 2)
𝜐 �

1 2⁄

⎠

⎞

2

𝜐

⎠

⎟
⎟
⎟
⎟
⎟
⎞

−𝜐+12

��
1

�ℎ𝑡−1(𝜐 − 2)
𝜐 �

1 2⁄ �� 

(6.31) 

 

𝑓(𝑦𝑡;𝐹𝑡−1) =
Γ((𝜐 + 1) 2⁄ )

Γ(𝜐 2⁄ )�𝜋(𝜐 − 2)
�

1
ℎ𝑡
�
1
2
�1 +

(𝑦𝑡 − 𝜇)2

(𝜈 − 2)ℎ𝑡
�
−𝜐+12

. (6.32) 
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The logarithm of (6.32): 

 

𝑙𝑙𝑓(𝑦𝑡|𝑌𝑡−1, 𝜇, ℎ𝑡−1, 𝜐) = 𝑙𝑙Γ �
𝜐 + 1

2
� − 𝑙𝑙Γ �

𝜐
2
� −

1
2
𝑙𝑙𝜋 −

1
2
𝑙𝑙(𝜐 − 2) 

−
1
2
𝑙𝑙ℎ𝑡−1 −

𝜐 + 1
2

𝑙𝑙 �1 +
(𝑦𝑡−1 − 𝜇)2

(𝜐 − 2)ℎ𝑡−1
�. 

(6.33) 

 

6.3  
Changing the Measure 

 

Under the risk-neutral probability, the discounted price process must be a 

martingale. The first condition that the risk-neutral probability structure must 

satisfy is that the discounted price process has zero drift under this structure and it 

must also be equivalent to the original structure (i.e., the same set of price paths 

must have positive probability under both structures). This section presents the 

key to achieving both results. 

 
6.3.1  
Girsanov Theorem 

 

Since under continuous-time stochastic processes the events can occur 

over a continuous range of values, we define the physical probability space as 

{Ω,ℱ,𝒫}, where filtration ℱ = {ℱ𝑡, 0 ≤ 𝑑 ≤ 𝑇} gives the information structure of 

events over a continuous interval [0,𝑇]. The cumulative probability now defined 

as 𝒫(𝑧𝑡), where 𝑧𝑡 belongs to the N-dimensional continuous sample space of real 

number ℝ𝑁 = {−∞,∞}. The differential of 𝒫(𝑧𝑡) is given as 𝑑𝒫(𝑧𝑡),  which can 

be used to obtain the time 0 probability density function of events at time t. 

Though 𝑑𝒫(𝑧𝑡) gives the time 0 probability density, we do not explicitly mention 

the subscript for time 0. Let a stochastic process 𝑋(𝑑) be adapted, which means 

that it is observable on ℱ𝑡. In other words, it is possible to deduce all possible 

values of 𝑋(𝑑) based on events in ℱ𝑡.  

At least since the paper of Black and Scholes (1973), it has become 

commonplace in the study of derivative pricing to employ continuous-time 
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models of asset price evolution. Most continuous-time models are based on 

Wiener process. Assume that the Ito process 𝑌𝑡, with drift 𝜇 and variance 𝜎2: 

𝑑𝑌𝑡 = 𝜇𝑑𝑑 + 𝜎𝑑𝑊𝑡 (6.34) 

 

where 𝑑𝑊𝑡 is Wiener process. Suppose we wish to change the drift of the 

(6.34) to another drift in an equivalent probability structure. We use the following 

procedures: 

1. First, we define a new Wiener process, 𝑊�𝑡, using the old Wiener process, 

𝑊𝑡; 

2. Next, we redefine a new process, 𝑌�𝑡, using the step 1. 

 

Step 1: Define 𝜆 and 𝑊�𝑡: 

 

𝜇 − 𝜂 = 𝜎𝜆 (6.35) 

 

Note that λ need not be a constant, since 𝜇, 𝜎 and 𝜂 are not required to be 

constants. Now define the process 𝑊�𝑡 by: 

 

𝑑𝑊�𝑡 = 𝜆𝑑𝑑 + 𝑑𝑊𝑡. (6.36) 

 

Step 2: Now, let the process Ŷ be defined by: 

 

𝑑𝑌𝑡� = 𝜂𝑑𝑑 + 𝜎𝑑𝑊�𝑡. (6.37) 

 

 By definition, the 𝑌𝑡�  process has a drift of 𝜂. A little bit of algebra shows 

that this process 𝑌𝑡�  is identical to the process 𝑌𝑡 defined in (6.34). Replace (6.36) 

in (6.37): 

 

𝑑𝑌𝑡� = 𝜂𝑑𝑑 + 𝜎[𝜆𝑑𝑑 + 𝑑𝑊𝑡] = [𝜂 + 𝜎𝜆]𝑑𝑑 + 𝜎𝑑𝑊𝑡 (6.38) 

 

and use (6.35) in (6.38): 

 

𝑑𝑌𝑡� = [𝜂 + (𝜇 − 𝜂)]𝑑𝑑 + 𝜎𝑑𝑊𝑡 = 𝑑𝑌𝑡. (6.39) 
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Note that the variance 𝜎2 has not changed in going from the original process 

to the new process. Girsanov’s Theorem ensures that the new probability structure 

is equivalent to the original structure only if following technical condition holds: 

 

𝜉(𝜆) = 𝑒𝑥𝑝 �−
1
2
�𝜆2𝑑𝑠
𝑡

0

+ �𝜆𝑑𝑊
𝑡

0

�. (6.40) 

 

and 

 

𝐸 �𝑒𝑥𝑝 �−
1
2
�𝜆2𝑑𝑠
𝑡

0

�� < ∞ (6.41) 

 

 This technical conditional ensures that the process 𝜉(𝜆) must be a 

martingale under the original probability structure, and the process 𝑊�𝑡 is a Wiener 

process under the new structure. Equation (6.41) is named Novikhov’s Condition. 

Consider the discounted price process obtained by discounting the growth 

in stock prices at the risk-free rate, i.e., by dividing the stock price, 𝑆𝑡, by the bond 

price, 𝐵𝑡: 

 

𝑍𝑡 =
𝑆𝑡
𝐵𝑡

. (6.42) 

 

The bond price evolves from its initial value 𝐵0 = 1 according to the 

ordinary differential equation: 

 

𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑑 (6.43) 

 

where r (expressed in continuously compounded terms) is constant. The 

stock price evolves from its initial value 𝑆0 according to the stochastic differential 

equation: 

 

𝑑𝑆𝑡 = 𝜇𝑑𝑑 + 𝜎𝑑𝑊𝑡. (6.44) 
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Using Ito’s lemma in conjunction with (6.43) and (6.44), we can derive the 

instantaneous drift and variance of the 𝑍𝑡 process. Let 𝜇 denote this drift and 𝜎2 

the variance: 

 

𝑑𝑍𝑡 = 𝜇𝑑𝑑 + 𝜎𝑑𝑊𝑡. (6.45) 

 

To find a risk-neutral probability, we have to find an equivalent 

probability structure in which 𝑍𝑡 has zero drift. That is, 𝜂 = 0 in (6.35) and λ is 

given by: 

 

𝜇 = 𝜆𝜎. (6.46) 

 

Girsanov’s Theorem ensures that the 𝑍𝑡 process may be rewritten using Ŵ 

as a process with zero drift: 

 

𝑑𝑍𝑡 = 𝜎𝑑𝑊𝑡�  (6.47) 

 

Since the new probability structure is equivalent to the original structure, 

and since 𝑍𝑡 is a martingale under the new structure. 

 

6.4  
Properties of First-Order Model 

 

If 𝐸�𝑧𝑡
𝑗� < ∞, a necessary and sufficient condition for the existence of the 

𝑗 − 𝑑ℎ moment of 𝑦𝑡 is: 

 

𝐸[𝑖 + 𝛼𝑢𝑡−1]𝑗 2⁄ < 1, 𝑗 = 2,4, … (6.48) 

 

Proof. The model is a member of the class of models defined by He and 

Terasvirta (1999) in which ℎ𝑡, ℎ𝑡 = 𝜎𝑡2, is given by: 

 

𝜎�𝑡𝑑 = 𝑎(𝑧𝑡−1) + 𝑐(𝑧𝑡−1)𝜎�𝑡−1𝑑 . (6.49) 
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He and Teräsvirta (1999) stated the condition for the existence of moments 

in terms of 𝑐(𝑧𝑡), that is, 𝐸[𝑐(𝑧𝑡)]𝑗 2⁄ < 1, 𝑗 = 2,4, …. In (3.30) 𝑑 = 2, 𝑎(𝑧𝑡) = 𝛿 

and 𝑐(𝑧𝑡) = 𝑖 + 𝛼𝑢𝑡∎  

From He et al (1999), 𝑦𝑡 strictly stationary and ergodic if 𝐸[𝑖 + 𝛼𝑢𝑡] =

𝑖 < 1. Furthermore, 𝑦𝑡 is second-order stationary if 𝜐 > 2.  For 𝑗 = 4, the 

condition is: 

 

𝑖2 + 𝛼2𝐸[𝑢𝑡2] = 𝑖2 + 𝛼2
2𝜐
𝜐 + 3

< 1, 𝜐 > 4 (6.50) 

 

or, if we write 𝑐(𝑧𝑡) = 𝛽 + 𝛼(𝜐 + 1)𝑏𝑡: 

 

𝛽2 + 2𝛼𝛽 +
3𝛼2(𝜐 + 1)
𝜐 + 3

< 1, 𝜐 > 4. (6.51) 

 

In the limit as 𝜐 → ∞ the above expression tends to the standard 

GARCH(1,1) condition for the existence of fourth moments. As in the standard 

GARCH(1,1) model, the autocorrelation function of Beta-t-GARCH (1,1) is of the 

form 𝜌(𝑟;𝑦𝑡2) = 𝑖𝜏−1𝜌(1;𝑦𝑡2) for 𝑟 ≥ 1, but 𝜌(1;𝑦𝑡2) now depends on 𝜐 as well 

as 𝑖 and 𝛼, with 0 < 𝑖 < 1 is: 

 

𝜌(𝑟;𝑦𝑡2) =
𝑖𝜏−1(𝑖 + 2𝛼)𝐾𝑣∗ − 𝑖𝜏

𝜅𝜐 − 1
, 𝑟 = 1,2, … (6.52) 

 

where, 

𝐾𝑣∗ =
1 − 𝑖2

1 − 𝑖2 − 𝛼2 2𝜐 (𝜐 + 3)⁄  (6.53) 

 

𝜅𝜐 =
3(𝜐 − 2)
(𝜐 − 4) , 𝜐 > 4. (6.54) 

 

The Beta-t-GARCH model may be extended to include leverage effects by 

adding the indicator variable 𝑁(𝑦𝑡−1 < 0)(𝜐 + 1)𝑏𝑡−1. When (3.28), or (3.29), is 

modified in this way, the model is still a special case of (6.49) with: 
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𝑐(𝑧𝑡) = 𝛽 + 𝛼(𝜐 + 1)𝑏𝑡−1 + 𝛼∗𝑁(𝑦𝑡−1 < 0)(𝜐 + 1)𝑏𝑡−1 

 

= 𝛽 + {𝛼 + 𝛼∗𝑁(𝑦𝑡−1 < 0)}(𝜐 + 1)𝑏𝑡−1. 

(6.55) 

 

Hence the condition for the existence of the second moment, assuming 

𝜐 > 2, is now 𝛼 + 𝛽 + 𝛼∗ 2⁄ < 1, whereas the fourth moment exists if: 

 

𝛽2 + 2𝛼𝛽 +
3(𝛼2 + 𝛼𝛼∗ + 𝛼∗2 2⁄ )(𝜐 + 1)

𝜐 + 3
< 1, 𝜐 > 4 (6.56) 

 

The properties of the Gamma-GED-GARCH model can be derived in a 

similar way. 

 

6.5  
Breeden and Litzenberger Method with Integral 

 

According to Leibnitz rule, if we can derivative𝑓(𝑥,𝜃), 𝑎(𝜃) and 𝑏(𝜃) with 

relation at 𝜃, we have: 

 

𝑑
𝑑𝜃

� 𝑓(𝑥, 𝜃)𝑑𝑥

𝑏(𝜃)

𝑎(𝜃)

= 𝑓(𝑏(𝜃),𝜃)
𝑑𝑏(𝜃)
𝑑𝜃

− 𝑓(𝑎(𝜃),𝜃)
𝑑𝑎(𝜃)
𝑑𝜃

+ �
𝑑
𝑑𝜃

𝑓(𝑥, 𝜃)𝑑𝑥

𝑏(𝜃)

𝑎(𝜃)

 

(6.57) 

 

where −∞ < 𝑎(𝜃) and 𝑏(𝜃) < ∞.  

 

From the relationship proposed by Cox and Ross (1976) to option pricing: 

 

𝐶(𝐾,𝑇) = 𝑒−𝑟𝑇 � (𝑆𝑇 − 𝐾)+𝑞(𝑆𝑇)𝑑𝑆𝑇
∞

−∞
. (6.58) 
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If we rewrite (6.58) using (6.57), then: 

 

𝜃 = 𝐾,𝑎(𝐾) = 𝐾, 𝑏(𝐾) → ∞ 𝑎𝑙𝑑 𝑓(𝑥, 𝜃) = (𝑆𝑇 − 𝐾)𝑞(𝑆𝑇).   (6.59) 

 

Consider the first term in (6.57): 

 

𝑓(𝑏(𝐾),𝜃)
𝜕𝑏(K)
𝜕𝐾

= (𝑏(𝐾) − 𝐾)𝑓(𝐾) = 0 (6.60) 

 

because 𝜕𝑏(K) 𝜕𝐾⁄ = 0. Let the second term in (6.57): 

 

−𝑓(𝑎(𝐾),𝜃)
𝜕𝑎(𝐾)
𝜕𝐾

= −(𝑎(𝐾) − 𝐾)𝑓(𝐾) = 0 (6.61) 

 

because 𝑎(𝐾) = 𝐾. Finally, the third term in (6.57): 

 

�
𝜕
𝜕𝐾

𝑓(𝑥,𝐾)𝑑𝑥

𝑏(𝐾)

𝑎(𝐾)

= �
𝜕
𝜕𝐾

(𝑆𝑇 − 𝐾)𝑞(𝑆𝑇)
∞

𝐾

𝑑𝑆𝑇 = −� 𝑞(𝑆𝑇)
∞

𝐾

𝑑𝑆𝑇 . (6.62) 

 

 Then, take the partial derivative of 𝐶 with respect to 𝐾, expression (6.58), 

to get: 

 

𝜕𝐶(𝐾,𝑇)
𝜕𝐾

= −𝑒−𝑟𝑇 � 𝑞(𝑆𝑇)
∞

𝐾

𝑑𝑆𝑇 . (6.63) 

 

But, we know that: 

 

� 𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

−∞

= � 𝑞(𝑆𝑇)𝑑𝑆𝑇

𝐾

−∞

+ � 𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝐾

 (6.64) 

 

then: 
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� 𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝐾

= 1 − � 𝑞(𝑆𝑇)𝑑𝑆𝑇

𝐾

−∞

= 1 − 𝑄(𝑆𝑇). (6.65) 

 

Rewrite (6.65) in (6.63): 

 

𝑄(𝑆𝑇) = 1 + 𝑒𝑟𝑇
𝜕𝐶(𝑇,𝐾)
𝜕𝐾

|𝐾=𝑆𝑇 (6.66) 

 

which yields the cumulative distribution function denoted by 𝑄(𝑆𝑇). The 

probability distribution function 𝑞(𝑆𝑇) can be obtained by taking the derivative of 

(6.66): 

 

𝑞(𝑆𝑇) = 𝑒𝑟𝑇
𝜕2𝐶(𝑇,𝐾)
𝜕𝐾2 |𝐾=𝑆𝑇 . (6.67) 

 

 

6.6  
Boundary Conditions of Option Prices 

 

In order to avoid arbitrage opportunities, there are several restrictions on 

the price of an option, which are discussed in the appendix. This section discusses 

boundary conditions of calls only.29  

In the first restriction (4.14), the value of a call option is never greater than 

the asset price and never less than its intrinsic value: 

 

𝑆0 ≥ 𝐶(𝐾,𝑇) ≥ 𝑚𝑎𝑥(𝑆0 − 𝑒−𝑟𝑇𝐾; 0). (6.68) 

 

Moreover, the value of a call option takes the value of the asset at a strike 

price of zero and converges to a value of zero for very large strike prices: 

 

𝐶(0,𝑇) = 𝑆𝑇 , 𝑙𝑖𝑚
𝐾→∞

𝐶(𝐾,𝑇) = 0. (6.69) 

 

                                                
29 Restrictions on puts can be derived in a similar way. 
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The price of a call cannot be negative 𝐶(𝐾,𝑇) ≥ 0, as it needs not be 

exercised, because its intrinsic value is 𝑚𝑎𝑥(𝑆𝑇 − 𝑒−𝑟𝑇𝐾; 0). If call has a 

negative price, 𝐶(𝐾,𝑇) < 0, then a riskless profit could be made by buying the 

call (receiving an instant positive profit equal to the value of the call) and holding 

it until expiration to make a nonnegative income equal to the value of the call at 

expiration. The price also cannot exceed the stock price 𝐶(𝐾,𝑇) ≤ 𝑆0, since 

ending up owning the stock is the best that can happen to the option holder. If  

𝐶(𝐾,𝑇) > 𝑆0, buying the stock and selling the call would create an instant profit 

of 𝐶(𝐾,𝑇) − 𝑆0 and generate a nonnegative amount at expiration equal to 

𝑆𝑇 − 𝑚𝑎𝑥(𝑆𝑇 − 𝐾; 0). 

Now, consider the following portfolios: portfolio #1 consist of one call, 

𝐶(𝐾,𝑇), and 𝐾𝑒−𝑟𝑇 zero-bonds yielding the risk-free rate and portfolio #2 consist 

of one stock of value 𝑆0. These portfolios are compared in table 6.1. 

 
Table 6.1: Portfolio Comparison. 

Portfolio Value at 𝑑 = 0 
Value at expiration 𝑑 = 𝑇 

𝑆𝑇 < 𝐾 𝑆𝑇 ≥ 𝐾 

#1 𝐶(𝐾,𝑇) + 𝐾𝑒−𝑟𝑇 0 + 𝐾 (𝑆𝑇 − 𝐾) + 𝐾 

#2 𝑆0 𝑆𝑇 𝑆𝑇 

Portfolio comparison at expiration #1 > #2 #1 = #2 

 

At expiration, portfolio #1 has the same or a higher value than portfolio #2. 

Hence, an arbitrage-free call has to satisfy: 

 

𝐶(𝐾,𝑇) + 𝐾𝑒−𝑟𝑇 ≥ 𝑆0 → 𝐶(𝐾,𝑇) ≥ 𝑚𝑎𝑥(0, 𝑆0 − 𝐾𝑒−𝑟𝑇). (6.70) 

 

If 𝐶(𝐾,𝑇) ≤ 𝑆0 − 𝑒−𝑟𝑇𝐾, once again we can make an instant profit by 

buying the call and selling the portfolio 𝑆0 − 𝑒−𝑟𝑇𝐾. Then at expiration date we 

receive a non-negative payoff equal to 𝑚𝑎𝑥(0,𝐾 − 𝑆𝑇). 

In the second restriction (4.15), the value of a vertical call spread is 

nonpositive or the call price function is monotonically decreasing:  

−𝑒−𝑟𝑇 ≤
𝜕𝐶(𝐾,𝑇)
𝜕𝐾

≤ 0. (6.71) 
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The monotonicity of the call option prices establishes that the following 

inequality has to be satisfied: 

 

(𝐾1 − 𝐾2)𝑒−𝑟𝑇 ≥ 𝐶(𝐾2,𝑇) − 𝐶(𝐾1,𝑇),𝑤𝑖𝑑ℎ 𝐾1 > 𝐾2. (6.72) 

 

In case inequality above is not fulfilled, buy 𝐶(𝐾1) short sell 𝐶(𝐾2). This 

yields at least (𝐾1 − 𝐾2)𝑒−𝑟𝑇, which is invested at the risk-free rate. This portfolio 

has a nonnegative value at expiration. Moreover, it requires no net investment, 

and in case of strict inequality even yields a positive amount of money at 𝑑 = 0. A 

detailed analysis is shown in table 6.2. 

 
Table 6.2: Arbitrage Portfolio. 

Value at 𝑑 = 0 
Value at expiration 𝑑 = 𝑇 

𝑆𝑇 < 𝐾2 < 𝐾1 𝐾2 ≤ 𝑆𝑇 < 𝐾1 𝑆𝑇 ≥ 𝐾1 > 𝐾2 

−𝐶(𝐾1,𝑇) 0 0 𝑆𝑇 − 𝐾1 

+𝐶(𝐾2,𝑇) 0 −(𝑆𝑇 − 𝐾2) −(𝑆𝑇 − 𝐾2) 

−(𝐾1 − 𝐾2)𝑒−𝑟𝑇 +(𝐾1 − 𝐾2) +(𝐾1 − 𝐾2) +(𝐾1 − 𝐾2)′ 

≥ 0 +(𝐾1 − 𝐾2) > 0 +(𝐾1 − 𝑆𝑇) > 0 0 

 

Finally, the third restriction (4.16), the value of a butterfly spread is 

nonnegative or the call option price function is convex. The risk-neutral 

distribution is given as a function of the first derivative of the call option pricing 

formula: 

 

𝑄(𝑆𝑇) = 1 + 𝑒𝑟𝑇
𝜕𝐶(𝑇,𝐾)
𝜕𝐾

|𝐾=𝑆𝑇 . (6.73) 

 

If 𝐶 is twice differentiable, the risk-neutral density function is given by the 

following expression: 

 

𝑑𝑄(𝑆𝑇) = 𝑒𝑟𝑇
𝜕2𝐶(𝑇,𝐾)
𝜕𝐾2 |𝐾=𝑆𝑇 . (6.74) 
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A direct implication of the convexity assumption is: 

 

� 𝑑𝑄(𝐾 = 𝑆𝑇)𝑑𝐾
∞

0
= � 𝑒𝑟𝑇

𝜕2𝐶(𝑇,𝐾)
𝜕𝐾2

∞

0

= 𝑒𝑟𝑇 � lim
𝐾→∞

𝜕𝐶(𝑇,𝐾)
𝜕𝐾

− lim
𝐾→0

𝜕𝐶(𝑇,𝐾)
𝜕𝐾

� = 1. 
(6.75) 

 

 

Note that these assumptions are sufficient to ensure that the mean of the 

distribution is the forward price since: 

 

𝐸𝑄 = � 𝑆𝑇𝑑𝑄(𝑆𝑇)
∞

0
= −

1
𝑒−𝑟𝑇

�
𝜕𝐶(𝑇,𝐾)
𝜕𝐾

𝑑𝑆𝑇
∞

0
=

1
𝑒−𝑟𝑇

𝑆, (6.76) 

 

i.e., the underlying forward price. 
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