

 05 de julho de 2017

MATHEMATICAL MODELING OF A TILT-ROTOR

DRONE

Rodrigo Simões Pessoa

Mathematical Modeling of a Tilt-Rotor Drone

Aluno: Rodrigo Simões Pessoa

Orientador(es): Msc. William de Souza Barbosa

 Phd. Mauro Speranza Neto

Course completion work determined as a partial requirement for obtaining a

Bachelor’s Degree in Control and Automation Engineering from the Pontifícia

Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brasil.

DEDICATION

I dedicate this work to my late uncle Mario D. P. Simões; an exemplar scholar and student throughout

all his life. His attention to detail and excellence in all manners of work, no matter how hard it seemed
to be, serve both as inspiration and as a cherished memory. It is said that one lives on through their

work and the memories left behind. Let this work be a tiny piece of good memory, one through which

he can live onwards.

ACKNOWLEDGEMENTS

To my main supervisor Msc. William de Souza Barbosa: I will miss our interesting chats and long
discussions when trying to figure out what happened in unclearly explained theses. I will always

remember how simplicity and humility will never mask knowledge or intelligence, but rather add to

them. Naturally, I owe him many thanks for his assistance throughout this project and for his
knowledge in nonlinear control systems and dynamic systems modelling, as they proved to be

invaluable.

To my secondary supervisor Phd. Mauro Speranza Neto: I will miss his confidence when stating,
matter-of-factly, that I would be able to solve any problem I came across, even when I did not know

entirely how to go about it. His extensive experience with dynamic systems modelling was, without a

doubt, a crucial help throughout this project.

I would also like to thank the Pontifical Catholic University of Rio de Janeiro for providing the
knowledge, skillset, tools and workspace for the creation of this project, which would be bound to fail

otherwise.

I would like to extend my thanks to Phd. Ana Maria Beltran Pavani for help and dedication as
coordinator of the Control and Automation Engineering course and Phd. Professor Thiago Roux de

Oliveira for his insight and guidance of nonlinear control techniques.

A very special gratitude to Bárbara Gomes Dantas, who provided me with unwavering emotional
support, for always encouraging and being supportive. It was she who made me strive for excellence,

especially through the struggles, always certain that I could triumph over any obstacle.

I am grateful to my mother, Lilia Domingues de Paula Simões, and my father, Marcio Nunes Pessoa,
who have provided me through moral, emotional and economical support in my life. I am also grateful

to my other family members and friends who have supported me along the way.

ABSTRACT

The objective of this course completion work was to develop a realistic and sophisticated mathematical

model of a tilt rotor drone in modular form. The mathematical formulation used, as well as its

implications, simplifications and assumptions were exposed in a detailed manner, to allow for future
research. A discrete, code line simulator using MATLAB script and a continuous simulator using

MATLAB’s Simulink tool were created. The PID control was used as a classical control technique in an

attempt to stabilize and control the system. The LQR control was used as a modern control technique
and discussions were made about the use of a feedback control loop stabilization applied to this

multiple inputs multiple outputs (MIMO) nonlinear non affine system. The aerodynamic forces and drag

were discussed and a mathematical implementation of such forces was suggested as a possible addition
to future models.

Keywords: tilt rotor drone, mathematical modeling, MIMO, non-affine, nonlinear systems

Modelagem Matemática de um Drone com Rotores

Inclináveis

RESUMO

O objetivo deste trabalho de conclusão de curso foi desenvolver um modelo matemático realista e

sofisticado de um drone com rotor inclináveis, em forma modular. A formulação matemática utilizada,
bem como suas implicações, simplificações e premissas forma expostas de forma detalhada para

permitir o seu uso em pesquisas futuras. Um simulador de linha de código, discreto, usando o script do

MATLAB e um simulador contínuo utilizando a ferramenta Simulink do MATLAB foram desenvolvidos. O
controle PID foi usado como técnica de controle na tentativa de estabilizar e controlar o sistema. O

controlador LQR foi usado como técnica de controle moderno e foram feitas discussões sobre o uso da

estabilização por realimentação de estados aplicado a este sistema de múltiplas entradas e múltiplas
saídas (MIMO), não-linear e não-afim. As forças aerodinâmicas e o arrasto foram discutidos e a

implementação matemática de tais forças foi sugerida como uma possível adição aos futuros modelos.

Palavras-chaves: drone com rotores inclináveis, modelagem matemática, MIMO, não-afim,

sistemas não-lineares

FIGURE LIST

Figure 1 (Wing-arms and motors counter rotations) …………………………………………………………………… page 03

Figure 2 (Alteration of flaps to back propeller) …………………………………………………………………………… page 03

Figure 3 (Coordinate system fixed to the drone’s body 𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹) ……………………………………………… page 04

Figure 4 (Figure depicting the tilting of a propeller) …………………………………………………………………… page 06

Figure 5 (Figure depicting the linearization of 𝑓(𝑡) with a frequency of 3.33 𝐻𝑧) ………………………… page 12

Figure 6 (Figure depicting the linearization of 𝑓(𝑡) with a frequency of 16.67 𝐻𝑧)………………………… page 12

Figure 7 (Figure depicting the linearization of 𝑓(𝑡) with a frequency of 33.33 𝐻𝑧) ……………………… page 13

Figure 8 (Figure depicting the linearization of 𝑓(𝑡) when the frequency approaches infinity) …… page 13

Figure 9 (PID controller diagram) ………………………………………………………………………………………………… page 17

Figure 10 (State-space feedback controller diagram) ………………………………………………………………… page 18

ABREVIATIONS AND ACRONYMS LIST

VTOL – Vertical Takeoff and Landing

BC – Before Christ

CAC - California Aero Components

UAV - Unmanned Aerial Vehicles
MIMO – Multiple Inputs, Multiple Outputs

SISO – Single Input, Single Output

ZOH – Zero Order Hold
PID – Proportional Integral Derivative controller

LQR – Linear Quadratic Regulator

EAS – Equivalent Airspeed
MAC – Mean Aerodynamic Chord

AR – Aspect Ration

ISA– International Standard Atmosphere

SYMBOL LIST

𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹 – Non-inertial coordinate system fixed to the drone’s body and free to rotate with it.

𝑂𝐼𝑥𝐼𝑦𝐼𝑧𝐼 – Inertial coordinate system fixed to a given point in space.

𝜙 – Angular position in relation to the X-axis (it is also a state).

𝜃 – Angular position in relation to the Y-axis (it is also a state).

Ψ – Angular position in relation to the Z-axis (it is also a state).

𝑅(𝜙, 𝜃,ψ) – Three dimensional rotation matrix.

𝑅𝑥(𝜙) – Rotational matrix along the X-axis. It is called the roll matrix.
𝑅𝑦(𝜃) – Rotational matrix along the Y-axis. It is called the pitch matrix.

𝑅𝑧(ψ) – Rotational matrix along the Z-axis. It is called the yaw matrix.

𝑐𝛼 – Abbreviation for the cosine function applied to the variable (cos(𝑎)).
𝑠𝛼 – Abbreviation for the sine function applied to the variable (sin(𝑎)).

�⃗� – State vector 𝑋.

Ρ⃗⃗ – Position vector 𝑃.

�⃗⃗� – Velocity vector 𝑉.

Ξ⃗⃗ – Attitude vector Ξ.

Ω⃗⃗⃗ – Angular velocity vector Ω.

𝑥 – Position along the X-axis (it is also a state).

𝑦 – Position along the Y-axis (it is also a state).

𝑧 – Position along the Z-axis (it is also a state).

𝑣𝑥 – Component of the velocity along the X-axis (it is also a state).

𝑣𝑦 – Component of the velocity along the Y-axis (it is also a state).

𝑣𝑧 – Component of the velocity along the Z-axis (it is also a state).

𝜔𝜙 – Component of the angular velocity along the X-axis (it is also a state).

𝜔𝜃 – Component of the angular velocity along the Y-axis (it is also a state).

𝜔ψ – Component of the angular velocity along the Z-axis (it is also a state).

�⃗� – Net force vector.

𝑚 – Mass.

�⃗⃗�
̇
 – Acceleration vector.

�⃗⃗⃗� – Net moment vector.

𝐽 – Inertia matrix (generally called inertia tensor).

Ω⃗⃗⃗
̇
 – Angular acceleration vector.

�⃗�𝑝𝑟𝑜𝑝 – Net propeller force vector.

�⃗�𝑑𝑟𝑎𝑔 – Net aerodynamic force vector (often called drag).

�⃗�𝑔 – Gravity force vector.

�⃗⃗⃗�𝑝𝑟𝑜𝑝 – Net propeller moment vector.

�⃗⃗⃗�𝑑𝑟𝑎𝑔 – Net aerodynamic moment vector.

�⃗⃗⃗�𝑔𝑦𝑟𝑜 – Net gyroscopic moment vector.

𝐹𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 – Propeller force (absolute value for it is not a vector).

𝑘𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 – Propeller angular velocity to lift (force) constant.

�⃗⃗⃗�𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 – Propeller angular velocity vector.

�⃗�𝑙𝑝
𝑇
 – Transposed left propeller force vector.

�⃗�𝑟𝑝
𝑇
 – Transposed right propeller force vector.

𝛿𝑙𝑝 – Left propeller tilt angle.

𝛿𝑟𝑝 – Right propeller tilt angle.

𝑘𝑙𝑝 – Left propeller angular velocity to lift (force) constant.

𝑘𝑟𝑝 – Right propeller angular velocity to lift (force) constant.

�⃗⃗⃗�𝑙𝑝 – Left propeller angular velocity vector.

�⃗⃗⃗�𝑟𝑝 – Right propeller angular velocity vector.

𝑠𝑖𝑔𝑛(𝜔) – Sign function applied to variable 𝜔.

𝑠𝑔𝑛(𝜔) – Alternative symbol for sign function applied to variable 𝜔.

�⃗�𝑏𝑝
𝑇
 – Transposed back propeller force vector.

𝑘𝑏𝑝 – Back propeller angular velocity to lift (force) constant.

𝜔𝑏𝑝 – Back propeller angular velocity vector.

𝑔 – Absolute force of gravity (approximately 9.81 𝑚 𝑠⁄).

(�⃗�𝑔
𝑇
)
𝐹
 – Transposed force of gravity vector written in the fixed (non-interial) coordinate system.

(�⃗�𝑔
𝑇
)
𝐼
 – Transposed force of gravity vector written in the inertial coordinate system.

𝜏 – Torque or moment of force.

𝑟 – Position vector from a given point to the point where a given force acts upon (different from

position vector Ρ⃗⃗).
𝑟𝑐𝑚→𝑟𝑝 – Position vector from the center of mass to the right propeller.

𝑟𝑐𝑚→𝑙𝑝 – Position vector from the center of mass to the left propeller.

𝑟𝑐𝑚→𝑏𝑝 – Position vector from the center of mass to the back propeller.

𝑥𝑐𝑚→𝑙𝑝 – X-axis component of vector 𝑟𝑐𝑚→𝑙𝑝.

𝑦𝑐𝑚→𝑙𝑝 – Y-axis component of vector 𝑟𝑐𝑚→𝑙𝑝.

𝑧𝑐𝑚→𝑙𝑝 – Z-axis component of vector 𝑟𝑐𝑚→𝑙𝑝.

𝑥𝑐𝑚→r𝑝 – X-axis component of vector 𝑟𝑐𝑚→𝑟𝑝.

𝑦𝑐𝑚→𝑟𝑝 – Y-axis component of vector 𝑟𝑐𝑚→𝑟𝑝.

𝑧𝑐𝑚→𝑟𝑝 – Z-axis component of vector 𝑟𝑐𝑚→𝑟𝑝.

𝑥𝑐𝑚→𝑏𝑝 – X-axis component of vector 𝑟𝑐𝑚→𝑏𝑝.

𝑦𝑐𝑚→𝑏𝑝 – Y-axis component of vector 𝑟𝑐𝑚→𝑏𝑝.

𝑧𝑐𝑚→𝑏𝑝 – Z-axis component of vector 𝑟𝑐𝑚→𝑏𝑝.

�̇⃗� – Angular velocity vector of propeller’s tilt.

|�⃗�| – Norm of the net force vector �⃗�.

|�⃗⃗⃗�| – Norm of the angular velocity vector �⃗⃗⃗�

𝐽𝑥𝑥 – Component of the inertia matrix (inertia tensor) 𝐽.
𝐽𝑥𝑦– Component of the inertia matrix (inertia tensor) 𝐽.

𝐽𝑥𝑧– Component of the inertia matrix (inertia tensor) 𝐽.
𝐽𝑦𝑥 – Component of the inertia matrix (inertia tensor) 𝐽.

𝐽𝑦𝑦– Component of the inertia matrix (inertia tensor) 𝐽.

𝐽𝑦𝑧– Component of the inertia matrix (inertia tensor) 𝐽.

𝐽𝑧𝑥 – Component of the inertia matrix (inertia tensor) 𝐽.
𝐽𝑧𝑦– Component of the inertia matrix (inertia tensor) 𝐽.

𝐽𝑧𝑧– Component of the inertia matrix (inertia tensor) 𝐽.

�⃗�
̇
 – First derivative with respect to time of the state vector �⃗�.

𝐴(𝑡) – Time variant matrix.

𝐵(𝑡) – Time variant matrix.

�⃗⃗⃗� – Input or control vector.

𝐶(𝑡) – Time variant matrix.

𝐷(𝑡) – Time variant matrix.

𝐴1, … , 𝐴n – Time invariant matrices.

𝐵1, … , 𝐵n – Time invariant matrices.

𝐶1, … , 𝐶n – Time invariant matrices.

𝐷1, … , 𝐷n – Time invariant matrices.

𝑡 – Time.

𝑓(𝑡) – Single variable function.

�⃗�(𝑘) – Discrete time state vector.

𝑓(�⃗�, �⃗⃗⃗�) – Function with multiple vectorial inputs.

ℎ(�⃗�, �⃗⃗⃗�) – Function with multiple vectorial inputs.

�⃗⃗� – Output vector.

𝑓(𝑛) – Nth derivative of function 𝑓(𝑡).
𝑡∗ – Chosen local point for function 𝑓(𝑡).
𝐴(𝑘) – Jacobian matrix.

𝐵(𝑘) – Jacobian matrix.

𝐶(𝑘) – Jacobian matrix.

𝐷(𝑘) – Jacobian matrix.

𝑇 – Sampling frequency (rate).

𝐴𝐷 – Zero order hold equivalent matrix.

𝐵𝐷 – Zero order hold equivalent matrix.

𝑒(𝑡) – Error function.
𝐾𝑝 – Proportional gain (or constant).

𝐾𝑖 – Integral gain (or constant).

𝐾𝑑 – Derivative gain (or constant).

�⃗�𝑑 – Desired values for the state vector �⃗�.

𝑄1 – State cost matrix

𝑄2 – Controller cost matrix

𝑁 – Positively defined matrix

𝐽(�⃗⃗⃗�) – Linear quadratic cost equation

𝐹1(�⃗�) – Vectorial function obtained from combining other state functions

ℎ2(�⃗⃗⃗�) – Input vectorial function

𝑓3(�⃗�) – State vectorial function

ℎ4(�⃗⃗⃗�) – Input vectorial function

𝐾1 – Gain matrix

𝐾2 – Gain matrix

𝑤𝑣 – Noise and / or perturbation matrix related to vector �⃗⃗�
̇

𝑤Ω– Noise and / or perturbation matrix related to vector Ω⃗⃗⃗
̇

𝜋𝑥𝑦: 𝐴𝑥𝑦�̅�𝑥𝑦 – Finite plane 𝜋 generated by normal vector �̅� with area 𝐴

𝑑𝑟𝑎𝑔𝑙𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ – Lift induced drag force

𝐹𝐿⃗⃗⃗⃗⃗ – Lift force vector

𝑉𝑒 – Equivalent airspeed (EAS)

𝜌 – Air density at current altitude

𝜌0 – Air density at sea level under ISA conditions

𝑣 – Relative air velocity

𝑆 – Total wing area

𝑒 – Wing efficiency

(𝐴𝑅) – Aspect ratio

𝐴𝑠 – Surface area

𝑑𝑟𝑎𝑔𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ – Parasitic drag force vector (if there is no accent then it is the absolute value of the vector)

𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ – Surface drag force vector (if there is no accent then it is the absolute value of the vector)

𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ – Shape drag force vector (if there is no accent then it is the absolute value of the vector)

𝑑𝑟𝑎𝑔𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗– Interference drag force vector (if there is no accent then it is the absolute value of the

vector)
𝐶𝑠ℎ𝑎𝑝𝑒 – An aerodynamical coefficient that depends on the shape of the object

𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 – An aerodynamical coefficient that depends on the Reynold number

𝐶1⃗⃗⃗⃗⃗ – Vectorial coefficient related to the shape drag

𝐶2⃗⃗⃗⃗⃗ – Vectorial coefficient related to the surface drag

𝐶3⃗⃗⃗⃗⃗ – Vectorial coefficient related to the interference drag

𝑃𝑟𝑜𝑗�̅��̅� – Orthogonal projection of vector �⃗⃗� in vector 𝑣

𝐹𝐷⃗⃗⃗⃗ ⃗ – Net drag force vector

SUMMARY

INTRODUCTION …… page 01

1. DESCRIPTION OF MATHEMATICAL MODELLING ……………………………………………………………………… page 03

1.1 Description of the v-22 osprey dynamics and the proposed model dynamics ………… page 03

1.2 Definition of norms used, coordinate systems and states ………………………………………… page 04

1.3 Application of newton-euler equations ….…………………………………………………………………… page 06

1.4 System analisys and nonlinear simulators ………………………………………………………………… page 11

 1.5 Proposed mathematical modelling of aerodynamic forces ………………………………………… page 11

2. POSSIBLE IMPLEMENTATIONS OF SOME CONTROLLERS ………………………………………………………… page 17

2.1 PID controller……… page 17

2.2 State-space feedback controller ………………………………………………………………………………… page 18

2.3 Linear Quadratic Regulator controller (LQR)……………………………………………………………… page 18

2.4 Discussion of hover control through feedback loop stabilization ……………………………… page 19

3 CONCLUSION AND FUTURE IMPROVEMENTS …………………………………………………………………………… page 22

4 REFERENCES……… page 23

5 APPENDICES …… page 24

5.1 Appendix 1 – 3d model of the tilt rotor drone ………………………………………………………… page 25

5.2 Appendix 2 – simulation results without control ……………………………………………………… page 26

1

INTRODUCTION

The helicopter is an aircraft created with the ability to take off and land vertically (VTOL), to hover and

maneuver in all directions in restricted airspaces where fixed-winged aircrafts would not be able to

perform. It is, therefore, an agile aircraft, capable of following targets in constrained spaces, which led,
naturally, military applications.

The origins of the helicopter date to 400 BC in China where children would play with a flying bamboo

toy typically referred to as a Chinese top [10]. The toy was spun and, as a result, the spinning would
create lift, enabling the top to fly once it was released. Later contributions to the creation of the

helicopter came from Leonard Da Vinci during the renaissance who envisioned the helicopter as a screw

and from Mikhail Lomonosov (July 1754) [10] who adapted Da Vinci’s model with a wound-up spring
device and demonstrated it to the Russian Academy of Science.

Many continued to contribute and work on the helicopter’s design until the helicopters reached the

design it is known for today, with a main rotor and a tail rotor. An earlier model worth mentioning is
the German Focke-Wulf Fw 61 which, according to the company Heli-Mart (a subsidiary of California

Aero Components – CAC), “broke all of the existing 1937 world records for helicopter flight, and

became a benchmark of the age” [10]. Another important model the American R-4 helicopter, also

called Sikorsky R-4, created by Igor Sikorsky, which was one of the first mass produced helicopters.

The aircrafts with tilt rotors come as an attempt to create aircrafts, which could fill the niche between

fixed-wing aircrafts and helicopters. The objective would be to synergistically unite the advantages of

both aircrafts, as the helicopter cannot achieve high cruising speeds when compared to the fixed-wing
aircrafts. A high cruise speed is desirable, especially when large travel distances are required, for

example, from a safe zone to a zone of confrontation or danger. The tilt rotors aircraft seeks, therefore,

to combine the following characteristics:

1. Vertical Takeoff and Landing (VTOL)

2. Precise movement in spatially restricted airspaces
3. High cruising speeds

4. Greater stability and control

The first characteristic eliminates the need for a landing strip requiring, instead, a sufficiently big
circular space, for example a forest clearing, as in the case of the helipad. The second characteristic,

inherent to helicopters, is desired for the new aircraft to be agile enough, enabling it to adequately

position itself even in spatially restricted airspaces. This is an important characteristic for military
applications as it guarantees that the aircraft will be able to chase ground-based mobile targets with

ease, maintaining positional and aerial superiority. Furthermore, the aircraft’s agility would facilitate

difficult maneuvers, common in rescue situations at high-risk environments (for example, in the rescue
of survivors during a flood with torrential rains and strong winds).

The third characteristic is important because it enables the aircraft to reach far destinations rapidly.
The reduction in time lost during flight can be critical in rescue missions and can be profitable on cargo

supplying and transportation missions. The high cruise speeds also create the possibility for mid-flight

refueling missions of fixed-winged aircrafts. The fourth feature is sought after in any aircraft (and most
systems) because it reduces the risk of compromising the aircraft’s stability, which, in the worst-case

scenario, can lead to loss of the aircraft and, potentially, human lives.

The exponential growth and miniaturization of technology enabled the creation of drones and UAVs
(unmanned aerial vehicles) as automated or remote controlled unmanned aerial vehicles capable of

performing several tasks. Drones are capable of spying, collecting data and have been employed in

geographical mapping, terrain recognition and other applications, such as aerial supervision of crop
fields. The American Army concluded that the loss of soldier lives in manned aircraft missions and,

consequently, the loss of investment was so considerable that many missions replaced manned

aircrafts with UAVs.

The advent of drones and UAV brought many challenges and innovations to the field of control and

automation. The mathematical modelling and control of flying aircrafts continue to pose challenges to

2

this day, because the variety of aircraft types and models lead to various systems, which, typically,

have multiple inputs and multiple outputs (MIMO).

These systems may also be sub actuated, nonlinear, non-affine and exhibit partial controllability and

stability. The construction of tilt rotor drones, made possible by the new technologies, would require a

suitable and fine-tuned mathematical model and control in order to allow the drones to be autonomous
or remote controlled.

The objective of this course completion work is to develop a realistic and sophisticated mathematical

model of a tilt rotor drone in modular form. This allows it to be used in the simulation and control of a
tilt rotor drone (and aircraft) while allowing other models to be incorporated into it with the intent of

creating larger, more complex models if required. Classical control methods and other nonlinear

methods will be discussed and suggested as means to control the aircraft.

3

1. DESCRIPTION OF MATHEMATICAL MODELLING

The following section will describe in details the process through which the mathematical modeling was
obtained. Descriptions of the dynamical behavior of the real V-22 Osprey aircraft will be discussed as

well as their implementation, in mathematical terms, in the model.

1.1 Description of the v-22 osprey dynamics and the proposed model

dynamics

The tilt rotor aircraft model will be based on the V-22 Osprey military aircraft because it is an example

of a 'real' aircraft built by Bell Helicopter and Boeing Helicopters at the request of the US Army. Its
dynamics serve as a basis for describing the behavior of an aircraft with generic tilting rotors.

Assumptions and hypothesis will be made to simplify the state-space model and to accommodate the

large-scale difference.

The yaw control in the V-22 Osprey is obtained through control of the differential longitudinal cyclic

pitch, which displaces the pressure angle resulting in a yaw moment around the center of mass while
maintaining a net vertical thrust. This method will be simplified in the mathematical model by counter-

rotations of the wing-arms and motors as shown in Fig. 1 During cruise flight the motors, typically

vertically aligned due to takeoff, need to be able to tilt until they are horizontal and, as a result, they
will be designed to be able to rotate slightly more than 90 °.

The pitch control, in practice, is accomplished by the use of various complex techniques, such as

pendulum balancing and longitudinal cyclic step control. The mathematical model will add a vertically

aligned tail rotor instead of utilizing flaps as this will provide a control method dissociated from the yaw
control to simplify the pitch control (figure 2). This method is much simpler to utilize than those used in

the V-22 Osprey and it mainly compromises the aesthetic appeal of the original aircraft.

Fig. 2 – Alteration of flaps to back propeller

Fig. 1 – Wing-arms and motors counter-rotations.

4

The roll control is produced by creating a pressure differential on each propeller. This differential

impulse creates a moment around the center of mass of the aircraft, causing a rotation about its
longitudinal axis. The V-22 Osprey creates this pressure differential by adjusting the angular velocity of

each propeller since the overall speed control is slower due to the big inertia of the rotating propeller

blades.

The model will use two separate engines and will create the differential boost simply by differences in

the angular velocities of each engine. An important observation is the lack of considerable moment of
inertia of the propeller blade on a drone since it has small and light propellers. Their physical

dimensions and properties mean that the moment of inertia does not prevent fast rates of change of

the motors angular velocity.

The vertical translation control is obtained, in the V-22 Osprey, by the collective change of the impulse

in each propeller that is consequence of the collective alteration of the angular velocities of the motors.

The V-22 Osprey is able to adjust the longitudinal angle between the wing and the rotors by tilting
them laterally. This feature will be neglected in the mathematical model due to the associated

mechanical, technical and control complexities. The horizontal translation control is obtained, therefore,

through the natural coupling with the pitch and roll.

1.2 Definition of norms used, coordinate systems and states

The coordinate systems chosen will be defined according to the DIM 9300 norm as this is commonly

used norm to describe aircrafts. The coordinate system will have the vertical axis defined as the Z-axis
with downwards being the positive direction. The longitudinal axis is defined as the X-axis and aligned

with the drone. The front of the drone is the positive direction. The transversal axis is defined as the Y-

axis. If observed in the YZ plane, the left is defined as the positive Y-axis direction. The resulting
coordinate system is shown in Fig 2.

The equations of motion will be derived using the coordinate system fixed to the drone and will be
called 𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹 (Fig. 3). The origin of this coordinate system 𝑂𝐹 is chosen to coincide with the center of

mass of the drone. It is noted that this coordinate system is free to rotate with the drone. Another
coordinate system is required in order to fully derive the equations of motion. This second coordinate

system will be an inertial coordinate system 𝑂𝐼𝑥𝐼𝑦𝐼𝑧𝐼 whose axis are parallel to that of the fixed to the

drone’s frame coordinate system 𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹 and with the same directions. The origin of this system can

be placed anywhere in space.

A state can be expressed in either the inertial reference frame using the inertial coordinate system

𝑂𝐼𝑥𝐼𝑦𝐼𝑧𝐼 or in the non-inertial reference frame using the fixed to the drone coordinate system 𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹,
referred to as ‘fixed coordinate system’. Since the same state can be written using two different

reference frames, said frames share a basis change relationship between them. The linear

transformation matrix that brings a state from the fixed coordinate system to the inertial coordinate
system is the three dimensions rotation matrix.

Fig. 3 – Coordinate system fixed to the drone’s body 𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹.

𝑂𝐹

𝑧𝐹

𝑥𝐹

𝑦𝐹

5

The rotation matrix 𝑅(𝜙, 𝜃, ψ) ∈ ℝ3 can be decomposed into three matrices, each corresponding to a

rotation along an axis. These matrices represent the yaw, pitch and roll movement. The convention

chosen for the rotation will be the 𝑧 − 𝑦 − 𝑥 intrinsic rotations convention and the yaw, pitch and roll

angles will be, respectively, 𝜙, 𝜃, ψ such that:

𝑅(𝜙, 𝜃,ψ) = 𝑅𝑧(𝜙)𝑅𝑦(𝜃)𝑅𝑥(ψ)

Where:

𝑅𝑥(𝜙) = [
1 0 0
0 cos (𝜙) sin (𝜙)
0 −sin (𝜙) cos (𝜙)

] 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥

𝑅𝑦(𝜃) = [
cos (𝜃) 0 −sin (𝜃)
0 1 0

sin (𝜃) 0 cos (𝜃)
] 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑖𝑡𝑐ℎ 𝑚𝑎𝑡𝑟𝑖𝑥

𝑅𝑧(ψ) = [
cos (ψ) sin (ψ) 0
−sin (ψ) cos (ψ) 0

0 0 1

] 𝑖𝑠 𝑡ℎ𝑒 𝑦𝑎𝑤 𝑚𝑎𝑡𝑟𝑖𝑥

The orientation and rotation of the drone can, therefore, be describe through the matrix 𝑅(𝜙, 𝜃, ψ)
assuming the rotations are always performed in the order shown above (roll, pitch and yaw). The
matrix 𝑅(𝜙, 𝜃, ψ) can be obtained by the product of each intrinsic rotation:

∴ 𝑅(𝜙, 𝜃, ψ) = 𝑅𝑧(𝜙)𝑅𝑦(𝜃)𝑅𝑥(ψ) =

[
cos (ψ) sin (ψ) 0
−sin (ψ) cos (ψ) 0

0 0 1

] [
cos (𝜃) 0 −sin (𝜃)
0 1 0

sin (𝜃) 0 cos (𝜃)
] [
1 0 0
0 cos (𝜙) sin (𝜙)
0 −sin (𝜙) cos (𝜙)

] =

[

cos(ψ) cos(𝜃) − sin(ψ) cos(𝜙) + cos(ψ) sin(𝜃) sin(𝜙) sin(ψ) sin(𝜙) + cos(ψ) sin(𝜃) cos(𝜙)

sin(ψ) cos(𝜃) cos(ψ) cos(𝜙) + sin(ψ) sin(𝜃) sin(𝜙) −cos(ψ) sin(𝜙) + sin(ψ) sin(𝜃) cos(𝜙)

− sin(𝜃) cos(𝜃) sin (𝜙) cos(𝜃) cos (𝜙)

]

In order to reduce the size of a matrix to a more comprehensible and compact form, let cos(𝛼) = 𝑐𝛼 and

sin(𝛼) = 𝑠𝛼. The complete rotation matrix 𝑅(𝜙, 𝜃, ψ) can be rewritten as:

𝑅(𝜙, 𝜃, ψ) = [

𝑐ψ𝑐𝜃 −𝑠ψ𝑐𝜙 + 𝑐ψ𝑠𝜃𝑠𝜙 𝑠ψ𝑠𝜙 + 𝑐ψ𝑠𝜃𝑐𝜙
𝑠ψ𝑐𝜃 𝑐ψ𝑐𝜙 + 𝑠ψ𝑠𝜃𝑠𝜙 −𝑐ψ𝑠𝜙 + 𝑠ψ𝑠𝜃𝑐𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

]

The complete movement of a rigid body can be described through its position, orientation, velocity and
angular velocity. The states are chosen as to describe the complete movement of the drone and, as a

result, the choice of position, velocity, orientation and angular velocity is natural. The complete state

is:

�⃗� =

[

 Ρ⃗⃗

�⃗⃗�

Ξ⃗⃗

Ω⃗⃗⃗]

=

[

𝑥
𝑦
𝑧
𝑣𝑥
𝑣𝑦
𝑣𝑧
𝜙
𝜃
ψ
𝜔𝜙
𝜔𝜃
𝜔ψ]

[𝟏]

[𝟐]

[𝟑]

[𝟒]

[𝟓]

[𝟔]

[𝟕]

6

Where Ρ⃗⃗ is the position vector, �⃗⃗� is the velocity vector, Ξ⃗⃗ is the angle vector (more commonly called

orientation vector or attitude vector) and Ω⃗⃗⃗ is the angular velocity vector.

1.3 APPLICATION OF NEWTON-EULER EQUATIONS

The mathematical model will use the Newton-Euler formulation to obtain the dynamic equations for the

motion of the drone in the fixed reference frame 𝑂𝐹𝑥𝐹𝑦𝐹𝑧𝐹. The Newton-Euler formulation states that

the motion of a rigid body can be describe through two equations, one related to the summation of

forces and one related to the summation of moments, both of which are all acting upon the rigid body:

{
�⃗� = 𝑚�̇⃗⃗� + Ω⃗⃗⃗ × (𝑚�⃗⃗�)

�⃗⃗⃗� = 𝐽Ω̇⃗⃗⃗ + Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)

In the above equation, 𝐽 is an inertia matrix, �⃗� is the summation of forces and �⃗⃗⃗� is the summation of

moments. This means that:

{
�⃗� = �⃗�𝑝𝑟𝑜𝑝 + �⃗�𝑑𝑟𝑎𝑔 + �⃗�𝑔

�⃗⃗⃗� = �⃗⃗⃗�𝑝𝑟𝑜𝑝 + �⃗⃗⃗�𝑑𝑟𝑎𝑔 + �⃗⃗⃗�𝑔𝑦𝑟𝑜

Where �⃗�𝑝𝑟𝑜𝑝 and �⃗⃗⃗�𝑝𝑟𝑜𝑝 are the net propulsion force and moment respectively, �⃗�𝑑𝑟𝑎𝑔 and �⃗⃗⃗�𝑑𝑟𝑎𝑔 are the net

aerodynamic drag force and moment respectively, �⃗�𝑔 is the force of gravity and �⃗⃗⃗�𝑔𝑦𝑟𝑜 is the gyroscopic

moment of the tilting rotors.

To determine �⃗�𝑝𝑟𝑜𝑝, the propulsion force generated by one propeller will be modelled as:

𝐹𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 = 𝑘𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 �⃗⃗⃗�𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟
2

Where 𝑘𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 is a constant relating the angular velocity of the rotor and the lift generated and

�⃗⃗⃗�𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 is the angular velocity of said rotor. Both frontal propellers can be tilted by an angle 𝛿 as

shown in Fig. 4. These tilt angles are unique for each propeller, that is, they are not coupled and are
independently controlled. The vectorial decomposition of propeller forces is the same for each of the

frontal propellers:

Fig. 4 – Figure depicting the tilting of a propeller.

{
�⃗�𝑙𝑝

𝑇
= [sin(𝛿𝑙𝑝) 0 −cos(𝛿𝑙𝑝)]𝑘𝑙𝑝�⃗⃗⃗�𝑙𝑝

2
 (𝑙𝑒𝑓𝑡 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟)

�⃗�𝑟𝑝
𝑇
= [sin(𝛿𝑟𝑝) 0 −cos(𝛿𝑟𝑝)]𝑘𝑟𝑝�⃗⃗⃗�𝑟𝑝

2
 (𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟)

𝜹

𝑿

𝒁

𝑭

[𝟖]

[𝟗]

[𝟏𝟎]

[𝟏𝟏]

7

In order to ensure the model is generic, propellers can either have opposing directions for the angular

velocities or the same direction for them (typically they have an opposing direction to compensate for
the gyroscopic effect). To allow this to be changed by a given controller or by a parameter in case of a

simulation, the ‘𝑠𝑖𝑔𝑛’ (or ‘𝑠𝑔𝑛’) function is used. The ‘𝑠𝑖𝑔𝑛’ function is given by the following

mathematical expression:

𝑠𝑖𝑔𝑛(𝜔) = {

−1,𝜔 < 0
1,𝜔 ≥ 0

𝑠𝑔𝑛(𝜔) ≡ 𝑠𝑖𝑔𝑛(𝜔)

The resulting equation for the frontal propeller forces becomes:

{
�⃗�𝑙𝑝

𝑇
= [sin(𝛿𝑙𝑝) 0 − cos(𝛿𝑙𝑝)]𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝

2 (𝑙𝑒𝑓𝑡 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟)

�⃗�𝑟𝑝
𝑇
= [sin(𝛿𝑟𝑝) 0 −cos(𝛿𝑟𝑝)]𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝

2 (𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟)

The back propeller (or tail propeller) is fixed parallel to the Z-axis such that:

�⃗�𝑏𝑝
𝑇
= [0 0 −1]𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝

2 (𝑏𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟)

The resulting propeller forces �⃗�𝑝𝑟𝑜𝑝 can, therefore, be written in matrix form as:

�⃗�𝑝𝑟𝑜𝑝 = [

sin(𝛿𝑙𝑝) sin(𝛿𝑟𝑝) 0

0 0 0
−cos(𝛿𝑙𝑝) −cos(𝛿𝑟𝑝) −1

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

∴ �⃗�𝑝𝑟𝑜𝑝 = [

𝑠𝛿𝑙𝑝 𝑠𝛿𝑟𝑝 0

0 0 0
−𝑐𝛿𝑙𝑝 −𝑐𝛿𝑟𝑝 −1

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

The next force to determine is the force of gravity �⃗�𝑔 which is given, in the inertial reference frame, by

the expression:

�⃗�𝑔
𝑇
= [0 0 1]𝑚𝑔

In order to write �⃗�𝑔 in the fixed (and non-inertial) reference frame, it is necessary to apply a basis

change transformation matrix:

(�⃗�𝑔
𝑇
)
𝐹
= 𝑅(𝜙, 𝜃,ψ) (�⃗�𝑔

𝑇
)
𝐼

Where (�⃗�𝑔
𝑇
)
𝐹
 and (�⃗�𝑔

𝑇
)
𝐼
 is the force of gravity written in the fixed basis and inertial basis respectively.

Since the Newton-Euler formulation is being applied on the fixed reference frame, the force of gravity

can be written as:

�⃗�𝑔 = 𝑅(𝜙, 𝜃, ψ) (�⃗�𝑔
𝑇
)
𝐼
= [

𝑐ψ𝑐𝜃 −𝑠ψ𝑐𝜙 + 𝑐ψ𝑠𝜃𝑠𝜙 𝑠ψ𝑠𝜙 + 𝑐ψ𝑠𝜃𝑐𝜙
𝑠ψ𝑐𝜃 𝑐ψ𝑐𝜙 + 𝑠ψ𝑠𝜃𝑠𝜙 −𝑐ψ𝑠𝜙 + 𝑠ψ𝑠𝜃𝑐𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

] [
0
0
1
]𝑚𝑔

�⃗�𝑔
𝑇
= [

𝑠ψ𝑠𝜙 + 𝑐ψ𝑠𝜃𝑐𝜙
−𝑐ψ𝑠𝜙 + 𝑠ψ𝑠𝜃𝑐𝜙

𝑐𝜃𝑐𝜙

]𝑚𝑔

[𝟏𝟐]

[𝟏𝟑]

[𝟏𝟒]

[𝟏𝟓]

[𝟏𝟔]

[𝟏𝟕]

[𝟏𝟖]

[𝟏𝟗]

[𝟐𝟎]

[𝟐𝟏]

8

Initially, the aerodynamic drag force and moment will be consider to have negligible effect on the

drone’s dynamics and, as a result, �⃗�𝑑𝑟𝑎𝑔 = �⃗⃗⃗�𝑑𝑟𝑎𝑔 = 0⃗⃗. To determine �⃗⃗⃗�𝑝𝑟𝑜𝑝, it is necessary to determine all

components of each torque, created by each force acting upon the drone. The relationship between

force and torque, or moment of force, is given by the following equation:

𝜏 = 𝑟 × �⃗�

Where 𝑟 is the position vector. Let 𝑟𝑐𝑚→𝑟𝑝, 𝑟𝑐𝑚→𝑙𝑝 and 𝑟𝑐𝑚→𝑏𝑝 be position vectors between the center of

mass of the drone and the respective point of actuation of the lift force for each rotor. The respective
torques are, therefore:

𝜏𝑙𝑝 = 𝑟𝑐𝑚→𝑙𝑝 × �⃗�𝑙𝑝 = [

𝑥𝑐𝑚→𝑙𝑝
𝑦𝑐𝑚→𝑙𝑝
𝑧𝑐𝑚→𝑙𝑝

] × [

𝑠𝛿𝑙𝑝
0

−𝑐𝛿𝑙𝑝

] 𝑘𝑙𝑝𝜔𝑙𝑝
2 = [

−𝑦𝑐𝑚→𝑙𝑝𝑐𝛿𝑙𝑝
𝑧𝑐𝑚→𝑙𝑝𝑠𝛿𝑙𝑝 + 𝑥𝑐𝑚→𝑙𝑝𝑐𝛿𝑙𝑝

−𝑦𝑐𝑚→𝑙𝑝𝑠𝛿𝑙𝑝

] 𝑘𝑙𝑝𝜔𝑙𝑝
2

𝜏𝑟𝑝 = 𝑟𝑐𝑚→𝑟𝑝 × �⃗�𝑟𝑝 = [

𝑥𝑐𝑚→𝑟𝑝
𝑦𝑐𝑚→𝑟𝑝
𝑧𝑐𝑚→𝑟𝑝

] × [

𝑠𝛿𝑟𝑝
0

−𝑐𝛿𝑟𝑝

] 𝑘𝑟𝑝𝜔𝑟𝑝
2 = [

−𝑦𝑐𝑚→𝑟𝑝𝑐𝛿𝑟𝑝
𝑧𝑐𝑚→𝑟𝑝𝑠𝛿𝑟𝑝 + 𝑥𝑐𝑚→𝑟𝑝𝑐𝛿𝑟𝑝

−𝑦𝑐𝑚→𝑟𝑝𝑠𝛿𝑟𝑝

] 𝑘𝑟𝑝𝜔𝑟𝑝
2

𝜏𝑏𝑝 = 𝑟𝑐𝑚→𝑏𝑝 × �⃗�𝑏𝑝 = [

𝑥𝑐𝑚→𝑏𝑝
𝑦𝑐𝑚→𝑏𝑝
𝑧𝑐𝑚→𝑏𝑝

] × [
0
0
1
] 𝑘𝑏𝑝𝜔𝑏𝑝

2 = [

𝑦𝑐𝑚→𝑏𝑝
−𝑥𝑐𝑚→𝑏𝑝

0
] 𝑘𝑏𝑝𝜔𝑏𝑝

2

Adding the ‘𝑠𝑖𝑔𝑛’ function and writing the compact matrix form for all propeller torques 𝜏𝑝𝑟𝑜𝑝:

𝜏𝑝𝑟𝑜𝑝 = [

−𝑦𝑐𝑚→𝑙𝑝𝑐𝛿𝑙𝑝 −𝑦𝑐𝑚→𝑟𝑝𝑐𝛿𝑟𝑝 𝑦𝑐𝑚→𝑏𝑝
𝑧𝑐𝑚→𝑙𝑝𝑠𝛿𝑙𝑝 + 𝑥𝑐𝑚→𝑙𝑝𝑐𝛿𝑙𝑝 𝑧𝑐𝑚→𝑟𝑝𝑠𝛿𝑟𝑝 + 𝑥𝑐𝑚→𝑟𝑝𝑐𝛿𝑟𝑝 −𝑥𝑐𝑚→𝑏𝑝

−𝑦𝑐𝑚→𝑙𝑝𝑠𝛿𝑙𝑝 −𝑦𝑐𝑚→𝑟𝑝𝑠𝛿𝑟𝑝 0
] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

The gravitational force is treated as a net force acting on the drone’s center of mass and, as a result,

produces no net torque. Since two rotors are also being rotated, the gyroscopic effect must be

considered in this model. The total gyroscopic moment is the sum of each gyroscopic moment given by
the formula (KENDOUL, FANTONI, and LOZANO, “Modeling and Control of a Small Autonomous Aircraft

Having Two Tilting Rotors”[12]):

�⃗⃗⃗�𝑔𝑦𝑟𝑜 = 𝐽 (�̇⃗� ×
�⃗�

|�⃗�|
)𝜔

Each frontal rotor are able to tilt around the Y-axis with angular velocity �̇�. This angular velocity will be

defined by the servomotor’s nominal speed (assuming a servomotor is used to produce the tilting of the
propellers). Applying the above equation to each propeller:

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑙𝑝 = 𝐽 (�̇⃗� ×
�⃗�𝑙𝑝

|�⃗�𝑙𝑝|
) |�⃗⃗⃗�𝑙𝑝| = [

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

](�̇� [
0
−1
0
] × [

𝑠𝛿𝑙𝑝
0

−𝑐𝛿𝑙𝑝

])𝑘𝑙𝑝𝜔𝑙𝑝
2

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑙𝑝 = [

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

] [

𝑐𝛿𝑙𝑝
0
𝑠𝛿𝑙𝑝

] 𝑘𝑙𝑝�̇�𝜔𝑙𝑝
2 = [

𝐽𝑥𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑥𝑧𝑠𝛿𝑙𝑝
𝐽𝑦𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑦𝑧𝑠𝛿𝑙𝑝
𝐽𝑧𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑧𝑧𝑠𝛿𝑙𝑝

] 𝑘𝑙𝑝�̇�𝜔𝑙𝑝
2

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑟𝑝 = 𝐽 (�̇⃗� ×
�⃗�𝑟𝑝

|�⃗�𝑟𝑝|
) |�⃗⃗⃗�𝑟𝑝| = [

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

] (�̇� [
0
−1
0
] × [

𝑠𝛿𝑟𝑝
0

−𝑐𝛿𝑟𝑝

])𝑘𝑟𝑝𝜔𝑟𝑝
2

[𝟐𝟐]

[𝟐𝟑]

[𝟐𝟒]

[𝟐𝟓]

[𝟐𝟔]

[𝟐𝟕]

[𝟐𝟖]

[𝟐𝟗]

[𝟑𝟎]

9

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑟𝑝 = [

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

] [

𝑐𝛿𝑟𝑝
0
𝑠𝛿𝑟𝑝

] 𝑘𝑟𝑝�̇�𝜔𝑟𝑝
2 = [

𝐽𝑥𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑥𝑧𝑠𝛿𝑟𝑝
𝐽𝑦𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑦𝑧𝑠𝛿𝑟𝑝
𝐽𝑧𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑧𝑧𝑠𝛿𝑟𝑝

] 𝑘𝑟𝑝�̇�𝜔𝑟𝑝
2

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑏𝑝 = 𝐽 (�̇⃗� ×
�⃗�𝑏𝑝

|�⃗�𝑏𝑝|
) |�⃗⃗⃗�𝑏𝑝| = [

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

] (�̇� [
0
−1
0
] × [

0
0
0
])𝑘𝑏𝑝𝜔𝑏𝑝

2

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑏𝑝 = [

𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧
𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧
𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧

] [
0
0
0
] 𝑘𝑏𝑝�̇�𝜔𝑏𝑝

2 = [
0
0
0
] 𝑘𝑟𝑝�̇�𝜔𝑟𝑝

2 = 0⃗⃗

The back propeller does not produce a gyroscopic effect, naturally, because it is fixed to the body of the

drone and it cannot tilt like the frontal propellers. Combining the results in matrix form �⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑝𝑟𝑜𝑝 and

adding the ‘𝑠𝑖𝑔𝑛’ function:

�⃗⃗⃗�𝑔𝑦𝑟𝑜,𝑝𝑟𝑜𝑝 = [

𝐽𝑥𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑥𝑧𝑠𝛿𝑙𝑝 𝐽𝑥𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑥𝑧𝑠𝛿𝑟𝑝 0

𝐽𝑦𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑦𝑧𝑠𝛿𝑙𝑝 𝐽𝑦𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑦𝑧𝑠𝛿𝑟𝑝 0

𝐽𝑧𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑧𝑧𝑠𝛿𝑙𝑝 𝐽𝑧𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑧𝑧𝑠𝛿𝑟𝑝 0

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

To obtain the differential equations of the system it is necessary to apply the obtained relationships to

the Newton-Euler formulation [3, 7, 12]. The expressions will be given in their reduced form as
expanding them would result in impractically big equations.

{
�⃗� = �⃗�𝑝𝑟𝑜𝑝 + �⃗�𝑑𝑟𝑎𝑔 + �⃗�𝑔 ≅ �⃗� = �⃗�𝑝𝑟𝑜𝑝 + �⃗�𝑔

�⃗� = 𝑚V̇⃗⃗⃗ + Ω⃗⃗⃗ × (𝑚�⃗⃗�)

∴ �̇⃗⃗� =
1

𝑚
[�⃗� − Ω⃗⃗⃗ × (𝑚�⃗⃗�)]

{
�⃗⃗⃗� = �⃗⃗⃗�𝑝𝑟𝑜𝑝 + �⃗⃗⃗�𝑑𝑟𝑎𝑔 + �⃗⃗⃗�𝑔𝑦𝑟𝑜 ≅ �⃗⃗⃗�𝑝𝑟𝑜𝑝 + �⃗⃗⃗�𝑔𝑦𝑟𝑜

�⃗⃗⃗� = 𝐽Ω̇⃗⃗⃗ + Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)

∴ Ω̇⃗⃗⃗ = 𝐽−1[�⃗⃗⃗� − Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)]

The above differential equations can be written as two separate functions 𝑓(�⃗�) and ℎ(�⃗⃗⃗�). Considering

the first Newton-Euler equation:

�̇⃗⃗� =
1

𝑚
[�⃗� − Ω⃗⃗⃗ × (𝑚�⃗⃗�)] =

�⃗�

𝑚
−
1

𝑚
[Ω⃗⃗⃗ × (𝑚�⃗⃗�)]

Let:

𝑔1(�⃗�, �⃗⃗⃗�) = −
1

𝑚
[Ω⃗⃗⃗ × (𝑚�⃗⃗�)]

𝑔2(�⃗�, �⃗⃗⃗�) =
�⃗�

𝑚
=

1

𝑚
[�⃗�𝑝𝑟𝑜𝑝(�⃗⃗⃗�) + �⃗�𝑔(�⃗�)]

The above functions can both be dissociated into a sum of 𝑓(�⃗�) and ℎ(�⃗⃗⃗�) functions:

𝑓1(�⃗�) = −
1

𝑚
[Ω⃗⃗⃗ × (𝑚�⃗⃗�)]

ℎ1(�⃗⃗⃗�) = 0

∴ 𝑔1(�⃗�, �⃗⃗⃗�) = 𝑓1(�⃗�) + ℎ1(�⃗⃗⃗�) = 𝑓1(�⃗�)

𝑓2(�⃗�) =
�⃗�𝑔(�⃗⃗�)

𝑚

[𝟑𝟏]

[𝟑𝟐]

[𝟑𝟑]

[𝟑𝟒]

[𝟑𝟓]

[𝟑𝟔]

[𝟑𝟕]

[𝟑𝟖]

[𝟑𝟗]

[𝟒𝟎]

[𝟒𝟏]

[𝟒𝟐]

[𝟒𝟑]

[𝟒𝟓]

[𝟒𝟒]

10

ℎ2(�⃗⃗⃗�) =
�⃗�𝑝𝑟𝑜𝑝(�⃗⃗⃗�)

𝑚

∴ 𝑔2(�⃗�, �⃗⃗⃗�) = 𝑓2(�⃗�) + ℎ2(�⃗⃗⃗�)

∴ �⃗⃗�
̇
= 𝑔1(�⃗�, �⃗⃗⃗�) + 𝑔2(�⃗�, �⃗⃗⃗�) = 𝑓1(�⃗�) + 𝑓2(�⃗�) + ℎ2(�⃗⃗⃗�)

Combining 𝑓1(�⃗�) and 𝑓2(�⃗�) into a new function 𝐹1(�⃗�):

𝐹1(�⃗�) = 𝑓1(�⃗�) + 𝑓2(�⃗�)

∴ �̇⃗⃗� = 𝑓1(�⃗�) + 𝑓2(�⃗�) + ℎ2(�⃗⃗⃗�) = 𝐹1(�⃗�) + ℎ2(�⃗⃗⃗�)

Applying the same procedure to the second Newton-Euler equation:

Ω̇⃗⃗⃗ = 𝐽−1[�⃗⃗⃗� − Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)] = 𝐽−1�⃗⃗⃗� + 𝐽−1[−Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)]

Let:

𝑔3(�⃗�, �⃗⃗⃗�) = 𝐽
−1[−Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)]

𝑔2(�⃗�, �⃗⃗⃗�) = 𝐽
−1�⃗⃗⃗� = 𝐽−1[�⃗⃗⃗�𝑝𝑟𝑜𝑝(�⃗⃗⃗�) + �⃗⃗⃗�𝑔𝑦𝑟𝑜(�⃗⃗⃗�)]

Similarly to what was done previously, the above functions can also be dissociated into a sum of 𝑓(�⃗�)

and ℎ(�⃗⃗⃗�) functions:

𝑓3(�⃗�) = 𝐽
−1[−Ω⃗⃗⃗ × (𝐽Ω⃗⃗⃗)]

ℎ3(�⃗⃗⃗�) = 0

∴ 𝑔3(�⃗�, �⃗⃗⃗�) = 𝑓3(�⃗�) + ℎ3(�⃗⃗⃗�) = 𝑓3(�⃗�)

𝑓4(�⃗�) = 0

ℎ4(�⃗⃗⃗�) = 𝐽
−1[�⃗⃗⃗�𝑝𝑟𝑜𝑝(�⃗⃗⃗�) + �⃗⃗⃗�𝑔𝑦𝑟𝑜(�⃗⃗⃗�)]

∴ 𝑔4(�⃗�, �⃗⃗⃗�) = 𝑓4(�⃗�) + ℎ4(�⃗⃗⃗�) = ℎ4(�⃗⃗⃗�)

Ω̇⃗⃗⃗ = 𝑔3(�⃗�, �⃗⃗⃗�) + 𝑔4(�⃗�, �⃗⃗⃗�) = 𝑓3(�⃗�) + ℎ4(�⃗⃗⃗�)

1.4 System analysis nonlinear simulators

Analyzing equations [54] − [60] it was possible to observe some nonlinearities particularly in, but not

restricted to, the inputs. This type of system is called non-affine in input system, that is, a system in
which the input does not appear linearly (or in a linear form) [4, 5, 6]. Non-affine systems are, usually,

harder to control than affine systems. Typical control strategies for affine systems, such as feedback

loop stabilization and other techniques often require complex adaptations for non-affine systems, with
mixed results.

Computer simulations are attempts to represent behaviors of, typically, real systems or phenomena.
They reproduce such behaviors, generally, though the use of mathematical models and have become a

powerful and useful tool, capable of providing insight as to how systems behave and work, even if the

‘why’ is not clear (STROGATZ, “The End of Insight”) [20].

[𝟒𝟔]

[𝟒𝟕]

[𝟒𝟖]

[𝟒𝟗]

[𝟓𝟎]

[𝟓𝟏]

[𝟓𝟐]

[𝟓𝟑]

[𝟓𝟒]

[𝟓𝟓]

[𝟓𝟔]

[𝟓𝟕]

[𝟓𝟖]

[𝟓𝟗]

[𝟔𝟎]

11

A computer simulation is the execution of an actual computer model which, because it is composed of
equations, relationships and algorithms, that describe a certain behavior, typically assumes the form of

a mathematical model. One of the most common uses for computer simulation, in science, is to solve

differential equations that cannot be solved analytically or that would be to ineffective and inefficient to
be solved analytically. It is also used extensively in the control and automation field to simulate space

state models.

There are many ways to analyze and simulate dynamic systems but three common approaches are

solving differential equations, space state model analysis and transfer function analysis. Solving

differential equations are often expensive in terms of computer power and time. Differential equations

algorithms, however, are often used by mathematical programs when performing certain types of
simulations, especially if such simulation is defined “continuously” (defined and modelled in continuous

time although, strictly speaking, since it is a computer simulation, it is necessarily discrete). The

transfer function approach has many drawbacks, however, which render it unable to adequately
analyze the system studied here. These drawbacks include:

 definition under zero initial conditions (which will not be the case for certain types of
movements)

 can only be applied to linear time invariant systems (the system studied here is both

nonlinear and time variant)
 it does not give any information about the internal states of the system

 it cannot be applied to MIMO systems (there are techniques which attempt to

circumvent this restriction by creating matrices of transfer functions)

The space state model [17] is comparatively more effective because it has as advantages many of the

transfer function’s disadvantages. It can be applied to nonlinear, time variant MIMO systems and gives

information about the behavior of the systems states. A nonlinear, time variant MIMO space state
model is defined by a system dynamic equation and an output equation:

{
�̇⃗� = 𝐴(𝑡)�⃗� + 𝐵(𝑡)�⃗⃗⃗�

�⃗⃗� = 𝐶(𝑡)�⃗� + 𝐷(𝑡)�⃗⃗⃗�

Using the mathematical computation program MATLAB two simulators were created, one modelled in

continuous time and the other one modelled in discrete time [16]. The continuous time simulator was

created using MATLAB’s simulation tool “Simulink” and consists of the implementation, in block
diagrams, of the Newton-Euler equations. The discrete time simulator was implemented as a MATLAB

script and, thusly, it is a code line simulator.

A strategy to implement a nonlinear system simulation is to perform successive linearization around

different points and treat the nonlinear system as linear in each region [16]. A time variant system,

written in the form of state space, has matrices 𝐴, 𝐵, 𝐶, 𝐷 that vary with time as shown by the equation

above. It is necessary, then, to introduce a linearization frequency, that is, a period in which the

system is assumed linear around a previously defined point. It can be said, using this assumption, that
the matrices of the system are, in fact, constant for a given time interval:

𝐴(𝑡) =

{

𝐴1, 𝑡 ∈ [0 𝑡1[

𝐴2, 𝑡 ∈ [𝑡1 𝑡2[
⋮

𝐴𝑛 , 𝑡 ∈ [𝑡𝑛−1 𝑡𝑛[
⋮

𝐵(𝑡) =

{

𝐵1, 𝑡 ∈ [0 𝑡1[

𝐵2, 𝑡 ∈ [𝑡1 𝑡2[
⋮

𝐵𝑛, 𝑡 ∈ [𝑡𝑛−1 𝑡𝑛[
⋮

𝐶(𝑡) =

{

𝐶1, 𝑡 ∈ [0 𝑡1[

𝐶2, 𝑡 ∈ [𝑡1 𝑡2[
⋮

𝐶𝑛 , 𝑡 ∈ [𝑡𝑛−1 𝑡𝑛[
⋮

𝐷(𝑡) =

{

𝐷1, 𝑡 ∈ [0 𝑡1[

𝐷2, 𝑡 ∈ [𝑡1 𝑡2[
⋮

𝐷𝑛 , 𝑡 ∈ [𝑡𝑛−1 𝑡𝑛[
⋮

[𝟔𝟏]

[𝟔𝟐]

12

The linearization frequency, naturally, must be adequately small for the system to avoid being

represented with aliasing. Consider a SISO system with a behavior described by 𝑓(𝑡) and given by the

following expression:

𝑓(𝑡) = 𝑒𝑡 sin(5𝑡) , 𝑡 ∈ [0 3]

The following sequence of figures (Fig 5, Fig 6, Fig 7 and Fig 8) show that the effects of linearization
are negligible provided the frequency is big enough in relation the frequency of the system’s behavior.

For the example SISO system, a frequency of approximately 33 𝐻𝑧 already yields reasonable answers.

Fig. 5 - Figure depicting the linearization of 𝑓(𝑡) with a frequency of 3.33 𝐻𝑧.

Fig 6 – Figure depicting the linearization of 𝑓(𝑡) with a frequency of 16.67 𝐻𝑧

[𝟔𝟑]

13

Fig 7– Figure depicting the linearization of 𝑓(𝑡) with a frequency of 33.33 𝐻𝑧.

Fig 8 – Figure depicting the linearization of 𝑓(𝑡) when the frequency approaches infinity.

The discrete time simulator was implemented by locally linearizing the space state system on a 𝑋(𝑘)
neibourghood. Since the studied system is composed of nonlinear equations, consider that those

equations are written in the following form:

{
�̇⃗� = 𝑓(�⃗�, �⃗⃗⃗�)

𝑌 = ℎ(�⃗�, �⃗⃗⃗�)

A first order Taylor series can be used to linearize the nonlinear system above. The Taylor series is

given by:

𝑓(𝑡) ≅ ∑
𝑓(𝑛)(𝑡∗)

𝑛!
(𝑡 − 𝑡∗)𝑛

∞

𝑛=0

Where 𝑓(𝑛) is the nth derivative of 𝑓(𝑡) and 𝑡∗ is the local point where the function was linearized. The

first order Taylor series is a reduced form of the general equation and is given by:

𝑓(𝑡) ≅
𝑓0(𝑡∗)

0!
(𝑡 − 𝑡∗)0 +

𝑓1(𝑡∗)

1!
(𝑡 − 𝑡∗)1

[𝟔𝟒]

[𝟔𝟓]

[𝟔𝟔]

14

∴ 𝑓(𝑡) ≅ 𝑓(𝑡∗) +
𝑑𝑓(𝑡)

𝑑𝑡
|
𝑡=𝑡∗

(𝑡 − 𝑡∗)

Applying the first order Taylor series transformation to the nonlinear system on a local point 𝑋(𝑘), the

following is obtained:

{
�̇⃗� ≅ �̇⃗�(𝑘) + 𝐴(𝑘)[�⃗� − �⃗�(𝑘)] + 𝐵(𝑘)[�⃗⃗⃗� − �⃗⃗⃗�(𝑘)]

�⃗⃗� ≅ �⃗⃗�(𝑘) + 𝐶(𝑘)[�⃗� − �⃗�(𝑘)] + 𝐷(𝑘)[�⃗⃗⃗� − �⃗⃗⃗�(𝑘)]

Where 𝐹, 𝐺, 𝐻, 𝐽 are Jacobian matrices given by:

𝐴 =
𝑑𝑓(�⃗⃗�,�⃗⃗⃗�)

𝑑�⃗⃗�
𝐵 =

𝑑𝑓(�⃗⃗�,�⃗⃗⃗�)

𝑑�⃗⃗⃗�

𝐶 =
𝑑ℎ(�⃗⃗�,�⃗⃗⃗�)

𝑑�⃗⃗�
𝐷 =

𝑑ℎ(�⃗⃗�,�⃗⃗⃗�)

𝑑�⃗⃗⃗�

Assuming the control of the system is done through the use of a digital medium, it is reasonable to

assume that the actuation will be ‘discrete’ and, as a result, a suitable representation of such

phenomena is the use of the zero order holder (ZOH). Considering that the sampling frequency is 𝑇,

the new matrices 𝐴𝐷 and 𝐵𝐷 are given by:

𝐴𝐷 = 𝑒
𝐴𝑇

𝐵𝐷 = ∫ 𝑒𝐵𝜏𝑑𝜏
𝑇

0

The next discrete value of �⃗�
̇
 is given by:

�⃗�(𝑘 + 1) = 𝐴𝐷�⃗�(𝑘) + 𝐵𝐷[𝑓(�⃗�(𝑘), �⃗⃗⃗�(𝑘)) − 𝐹(𝑘)�⃗�(𝑘)]

The next output values is simply given by:

�⃗⃗�(𝑘) = ℎ(�⃗�(𝑘), �⃗⃗⃗�(𝑘))

Most parameters used in the simulator, such as inertia matrix 𝐽, the position vectors 𝑟𝑐𝑚→𝑟𝑝, 𝑟𝑐𝑚→𝑙𝑝 and

𝑟𝑐𝑚→𝑏𝑝, etc, were obtained from a 3D model, based upon the original V-22 Osprey aircraft, created

using the program SolidWorks. Other experimentally and heuristically obtained parameters were

conjectured for the purpose of the simulation. The 3D drone model can be seen in APPENDIX 1 and

some preliminary simulation results (without any controller) can be seen in APPENDIX 2.

1.5 Proposed mathematical modelling of aerodynamic forces

There are several mathematical models for the aerodynamic forces [1, 8, 9, 19, 21], yet, most of them

are based of experiments and are, in essence, heuristically obtained. These mathematical model

propositions tend to be relationships with a strict working boundary, one that, if violated, ensures that
the model will fail.

Initially, the drone’s volume is divided into control areas or planes. The planes are chosen in such a

way that each normal vector generating each plane is parallel to the unit canonical vectors 𝑖, 𝑗, �⃗⃗�. This

means, in other words, that each unit canonical vector of the coordinate system fixed to the drone are

normal vectors that generate the planes. For each plane, a control area is defined with the same area

(and shape) as the drone’s respective projection on that plane:

[𝟔𝟕]

[𝟔𝟖]

[𝟔𝟗]

[𝟕𝟎]

[𝟕𝟏]

[𝟕𝟐]

[𝟕𝟑]

15

𝜋𝑥𝑦: �̅�𝑥𝑦 = �̅�

𝜋𝑦𝑥: �̅�𝑦𝑥 = −�̅�

𝜋𝑦𝑧: �̅�𝑦𝑧 = 𝑖̅

𝜋𝑧𝑦: �̅�𝑧𝑦 = −𝑖̅

𝜋𝑧𝑥: �̅�𝑧𝑥 = 𝑗̅
𝜋𝑥𝑧: �̅�𝑥𝑧 = −𝑗̅

𝜋𝑥𝑦: 𝐴𝑥𝑦�̅�𝑥𝑦 = 𝐴𝑥𝑦�̅�

𝜋𝑦𝑥: 𝐴𝑦𝑥�̅�𝑦𝑥 = −𝐴𝑦𝑥�̅�

𝜋𝑦𝑧: 𝐴𝑦𝑧�̅�𝑦𝑧 = 𝐴𝑦𝑧𝑖̅

𝜋𝑧𝑦: 𝐴𝑧𝑦�̅�𝑧𝑦 = −𝐴𝑧𝑦𝑖̅

𝜋𝑧𝑥: 𝐴𝑧𝑥�̅�𝑧𝑥 = 𝐴𝑧𝑥𝑗̅
𝜋𝑥𝑧: 𝐴𝑥𝑧�̅�𝑧𝑥 = −𝐴𝑥𝑧𝑗̅

In most aircrafts, drones, UAVs, etc, there are symmetries between opposing control areas. This means

that it is possible to reduce the number of planes, as each opposing plane will have, approximately, the
same drag force acting upon it.

The aerodynamic drag is divided into three parts:

1. Parasitic drag - composed as a linear combination of shape drag, surface friction and

interference.

2. Lift-induced drag - a component that occurs whenever a moving object redirects the flow of air

coming in its direction.

3. Wave drag - a component of aerodynamic drag on wings of airplanes and fuselage, on propeller

blades and projectiles moving at supersonic transonic speeds and due to the presence of shock

waves.

Wave drag can be neglected in this approach since the real V-22 Osprey aircraft (the one used to base

the drone upon) cannot reach supersonic speeds because the maximum speed of this aircraft is
approximately 565 𝑘𝑚 ℎ⁄ and supersonic speed (called Mach 1) is roughly 1224 𝑘𝑚 ℎ⁄ (which is almost

double the maximum speed of the aircraft).

The drag induced by lift can be defined as the component of the lift force that opposes the direction of

movement due to the vector decomposition of the lift force. For a planar wing with an elliptical
distribution for the lift force, induced drag is often calculated as follows:

{

 𝑑𝑟𝑎𝑔𝑙𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝐹𝐿⃗⃗ ⃗⃗
2

1
2𝜌0𝑉𝑒

2𝑆𝜋𝑒(𝐴𝑅)

𝑉𝑒 = √
𝜌𝑣2

𝜌0
= 𝑣√

𝜌

𝜌0

Where 𝐹𝐿⃗⃗⃗⃗⃗ is the lift force, 𝜌0 is the air density at sea level under ISA conditions (1225 𝑘𝑚 𝑚3⁄), 𝑉𝑒 is the

equivalent airspeed (EAS), 𝑆 is the total area of the wing (given by the product of the reach of the wing

and the average linear dimension called the ‘chord’ or mean aerodynamic chord – MAC), 𝑒 is the

efficiency of the wing given its geometric shape and distribution of the sustaining force (typically
between 0.85 and 0.95 for an elliptic distribution of the lift force) and (𝐴𝑅) is a product of geometric

dimensions of the wing called aspect ratio.

An important observation to make is that these equations make the induced drag depend on the square

of the lift force. They also take into account the (AR) and surface area. This is only an approximation
and is not valid for high angles of attack and for very high (AR) values. High angles of attack,

nonetheless, tend not to be a problem as a high angle of attack would compromise the flight stability of

drone regardless.

The parasitic drag is composed of three drag subtypes: the surface drag (induced when a fluid drags on

a non-ideal surface), the drag shape (induced when the shape of an object strikes and redirects a fluid)

and the interference drag. This approach will consider that the interference drag is a milder
manifestation of the wave drag and, therefore, only assumes expressive values when the velocity

reaches values close to Mach 1 and, as a result, the net parasitic drag is:

[𝟕𝟒]

[𝟕𝟓]

16

𝑑𝑟𝑎𝑔𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 = 𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒 + 𝑑𝑟𝑎𝑔𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒 ≫ 𝑑𝑟𝑎𝑔𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

∴ 𝑑𝑟𝑎𝑔𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 ≈ 𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒

The remaining forms of drag follow the general drag equation but have different drag coefficients for

each drag type:

{
𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒 =

1

2
𝜌𝑉2𝐴𝑠𝐶𝑠ℎ𝑎𝑝𝑒

𝐶𝑠ℎ𝑎𝑝𝑒 → 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒

{
𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =

1

2
𝜌𝑉2𝐴𝑠𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≈
0.074

𝑅𝑒0.2

The net parasitic drag is given as a weighted linear combination of the different drag subtypes. These
weighting coefficients vary with the relationship between the velocity vector and the control surfaces.

Consider, for example, a square with almost null length. If it is parallel to the velocity vector, it will only

have surface drag but, on the other hand, if it is perpendicular to the velocity vector it will only have

shape drag. If it is not perpendicular or parallel to the velocity vector it will have the two forms of drag.
The total drag is defined as:

𝑑𝑟𝑎𝑔𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 = 𝐶1𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒 + 𝐶2𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐶3𝑑𝑟𝑎𝑔𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐶1 = 𝐶1(�⃗⃗�, 𝐴, �⃗�), 𝐶2 = 𝐶2(�⃗⃗�, 𝐴, �⃗�), 𝐶3 ≅ 0

It is necessary to decompose the velocity into components parallel to each normal vector of each
control area, in order to use them. This can be done by utilizing the orthogonal projection and by

defining the coefficients 𝐶1 and 𝐶2 as the result of these projections (𝐶1 ∈ ℝ
3, 𝐶2 ∈ ℝ

3). The orthogonal

projection is given by:

𝑃𝑟𝑜𝑗�̅��̅� = (
�⃗⃗�∙�⃗⃗⃗�

|�⃗⃗�|2
)𝑣

Regardless of the choice of control area, the other control areas will always be orthogonal to the chosen

area because the unit canonic vectors that generate each control area are orthogonal, thus:

𝐶1⃗⃗⃗⃗⃗ = [

𝑃𝑟𝑜𝑗𝑖�⃗⃗�

𝑃𝑟𝑜𝑗𝑗�⃗⃗�

𝑃𝑟𝑜𝑗�⃗⃗��⃗⃗�

] = [

(𝑖 ∙ �⃗⃗�)𝑖

(𝑗 ∙ �⃗⃗�)𝑗

(�⃗⃗� ∙ �⃗⃗�)�⃗⃗�

]

𝐶2⃗⃗⃗⃗⃗ = [

𝑃𝑟𝑜𝑗𝑗�⃗⃗� + 𝑃𝑟𝑜𝑗�⃗⃗��⃗⃗�

𝑃𝑟𝑜𝑗𝑖�⃗⃗� + 𝑃𝑟𝑜𝑗�⃗⃗��⃗⃗�

𝑃𝑟𝑜𝑗𝑖�⃗⃗� + 𝑃𝑟𝑜𝑗𝑗�⃗⃗�

] = [

(𝑗 ∙ �⃗⃗�)𝑗 + (�⃗⃗� ∙ �⃗⃗�)�⃗⃗�

(𝑖 ∙ �⃗⃗�)𝑖 + (�⃗⃗� ∙ �⃗⃗�)�⃗⃗�

(𝑖 ∙ �⃗⃗�)𝑖 + (𝑗 ∙ �⃗⃗�)𝑗

]

The total net drag 𝐹𝐷⃗⃗⃗⃗ ⃗ is simply the sum of both types of drags:

𝐹𝐷⃗⃗ ⃗⃗⃗ = 𝑑𝑟𝑎𝑔𝑙𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑑𝑟𝑎𝑔𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝐹𝐷⃗⃗ ⃗⃗⃗ = 𝑑𝑟𝑎𝑔𝑙𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝐶1𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒 + 𝐶2𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹𝐷⃗⃗ ⃗⃗⃗ = 𝑑𝑟𝑎𝑔𝑙𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + [

(𝑖̅ ∙ �̅�)𝑖̅

(𝑗̅ ∙ �̅�)𝑗̅

(�̅� ∙ �̅�)�̅�

] 𝑑𝑟𝑎𝑔𝑠ℎ𝑎𝑝𝑒 + [

(𝑗̅ ∙ �̅�)𝑗̅ + (�̅� ∙ �̅�)�̅�

(𝑖̅ ∙ �̅�)𝑖̅ + (�̅� ∙ �̅�)�̅�

(𝑖̅ ∙ �̅�)𝑖̅ + (𝑗̅ ∙ �̅�)𝑗̅

] 𝑑𝑟𝑎𝑔𝑠𝑢𝑟𝑓𝑎𝑐𝑒

[𝟕𝟔]

[𝟕𝟕]

[𝟕𝟖]

[𝟕𝟗]

[𝟖𝟎]

[𝟖𝟏]

[𝟖𝟐]

[𝟖𝟑]

[𝟖𝟒]

[𝟖𝟓]

[𝟖𝟔]

17

2. POSSIBLE IMPLEMENTATIONS OF SOME CONTROLLERS

This section will discuss the implementations and results of some controllers, stating their overall

effective and limitations.

2.1 PID controller

The PID controller is one of the oldest and most widely used controller in industrial applications [17].

Its success and overall acceptability stems from its simplicity in terms of implementation and

effectiveness, as well as its low cost (in terms of both purchase and installation). It has been proven to

be robust and adequate in various different types of control applications and systems, failing only in
very niche applications, generally involving extremely complex, typically nonlinear, systems.

The PID controller has three terms or constants, which give its namesake. These are the proportional,

integral and derivative constants (hence “PID”) (Figure 9). The controller seeks to minimize an error
function 𝑒(𝑡), which is, commonly, the difference between the current states (obtained through a sensor

or group of sensors) and the desired states. It then proceeds to minimize error over time, allowing by

adjusting the inputs �⃗⃗⃗�(𝑡). Mathematically, it is a weighted sum where each coefficient is positive:

{
�⃗⃗⃗�(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏

𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑒(𝑡) = �⃗�𝑑 − �⃗⃗�

Fig. 9 – PID controller diagram

Where �⃗�𝑑 is the desired value for the states and �⃗⃗� is the sensor readings of the states. The proportional
coefficient 𝐾𝑝 acts on the present error. Increasing it results in a reduction of the time constant of an

output, its error in steady state and the output’s general stability. Its increase also increases the

amount of overshoot and does not affect the stabilization time. The integral coefficient 𝐾𝑖 acts on the
past error. Increasing it has similar results to increasing 𝐾𝑝 in term of what is reduced (time constant

reduction, steady state error reduction and stabilization reduction).

Increasing 𝐾𝑖, however, increases the amount of overshoot and stabilization time. Finally, the

derivative coefficient 𝐾𝑑 acts on the future error. Increasing it has no effects on the output’s time

constant or error in steady state; nevertheless, it reduces overshoot and stabilization time while

increasing the overall stability.

These gains (or coefficients or constants) are obtained heuristically and experimentally. There are

several techniques to provide an initial estimate for these gains including Ziegler-Nichols, Cohen-Coon,

Tyreus Luyben, etc, all with its advantages and disadvantages. In practice, these techniques are used
once (if at all) and the rest of the calibration is done manually in an experimental manner.

[𝟖𝟕]

18

The PID controllers, however, may fail if the system parameters cannot be precisely estimated or

obtained and the resulting designed PID gains may not resist certain uncertainties and disturbances.
Even though the PID gains can be well designed, this controller still is not as robust as other robust

controllers are and often fail when the system is too complex (and nonlinear) or encounters multiple

challenges from the operating environment of the system (XIN, Ming). PID controllers often are used in
SISO systems because its implementation becomes significantly harder to use in MIMO systems, and its

results tend to be underwhelming.

The system presented in this work is nonlinear, time-variant and non-affine in inputs, therefore,

conjecturing values for the PID gains at every control period would not only be unfeasible, but also

unrealistic. The system also has varying poles and zeros which may or may not be unstable for certain

cases and this stops the successful control of the system by the PID controller.

2.2 State-space feedback controller

A State-space feedback controller [17] was implemented using MATLAB and its ‘place’ function. This

function implements a closed-loop pole assignment using state feedback and, to that effect, “computes

a state-feedback matrix K such that the eigenvalues of 𝐴 − 𝐵𝐾 are those specified in vector 𝑃” (MATLAB

‘place’ function help description) (figure 10). The function, however, failed to compute such a matrix

and listed as reasons a probable proximity to a singularity or because of the lack of (or extremely
reduced) controllability of the system.

Fig. 10 - State-space feedback controller diagram

Verifying the rank of the controllability matrix, it is clear that the system has a reduced controllability,
with the result being a rank of 4 on a 12 dimension matrix. The controller was able to find the gain

matrix 𝐾 for a reduced order system obtained through pole-zeros cancellation and state dynamic

elimination; however, this reduced order system does not represent reality in terms of the physical

relationships regarding the drone’s flight and is, mainly, a mathematical construct.

2.3 Linear Quadratic Regulator controller (LQR)

In optimal control theory, the linear quadratic regulator (LQR) control was developed with the intent of
finding the minimum cost of an operating dynamical system. The LQR controller attempts to minimize a

cost function through means of a mathematical algorithm, taking into account weighting factors

supplied by the user. The LQR controller, analogue to the PID controller, uses a state cost matrix 𝑄1and

a controller cost matrix 𝑄2 which act similar to the PID gains and are obtained heuristically. Both 𝑄1 and

𝑄2 matrices are positively semi-defined. The LQR controller then attempts to minimize a linear

quadratic cost function given by the following expression:

𝐽(�⃗⃗⃗�) =
1

2
∫ (�⃗�𝑇𝑄1�⃗� + �⃗⃗⃗�

𝑇𝑄2�⃗⃗⃗� + 2�⃗�
𝑇𝑁�⃗⃗⃗�)𝑑𝑡

𝑡

0

Subject to the system dynamics:

�̇⃗� = 𝐴�⃗� + 𝐵�⃗⃗⃗�

[𝟖𝟖]

[𝟖𝟗]

19

Where 𝑁 is a positively defined matrix. Typically, this function has an infinite horizon 𝑡 → ∞ but it is not

mandatory and, in practice, the matrix 𝑁 is chosen to be the same as the identity matrix I. The optimal

gain matrix 𝐾 is given by:

𝐾 = 𝑄2
−1(𝐵𝑇𝑆 + 𝑁𝑇)

Where 𝑆 is the solution of the Riccati equation given by:

𝐴𝑇𝑆 + 𝑆𝐴 − (𝑆𝐵 + 𝑁)𝑄2
−1(𝐵𝑇𝑆 + 𝑁𝑇) + 𝑄1 = 0

The control law implemented by this controller is simply an optimized proportional controller on a

closed loop state feedback and is given by the equation:

�⃗⃗⃗� = −𝐾�⃗�

A LQR controller was implemented using MATLAB and its ‘dlqr’ function. As expected, since the control
law is fundamentally an optimization of a closed loop state feedback proportional control, it failed to

find the gain matrix 𝐾 and listed as reasons a probable proximity to a singularity or because of the lack

of (or extremely reduced) controllability of the system. One of the limitations of this technique is that

the matrix pair 𝐴 and 𝐵 must be stabilizable which could be the reason why it failed.

The extremely reduced controllability is also another strong possibility as to why the controller failed to

stabilize the plant. Much like the PID controller, it was able to find the gain matrix 𝐾 for a reduced order

system, nevertheless, since the physical meaning of the system is lost when its order is reduced

mathematically, it is of little relevance in terms of applied control.

2.4 Discussion of hover control through feedback loop linearization

A possible nonlinear control technique to control the hover movement is the feedback loop

linearization technique [4, 5, 6], in which the nonlinear components are cancelled (or have their effects

extremely diminished) through the feedback loop of an adequately chosen control law. An ideal control
law would create a resulting system with a proportional control. Considering the studied system:

�̇⃗⃗� = 𝐹1(�⃗�) + ℎ2(�⃗⃗⃗�)

Ω⃗⃗⃗
̇
= 𝑓3(�⃗�) + ℎ4(�⃗⃗⃗�)

The first derivative of the states with respect to time would be given by the following mathematical

expression:

�⃗�
̇
=

[

 ∫ �̇⃗⃗�

�⃗⃗�
̇

∫ Ω̇⃗⃗⃗

Ω̇⃗⃗⃗]

Let �⃗⃗⃗�∗ be an ideal control law that would result in:

�̇⃗⃗� = 𝐹1(�⃗�) + ℎ2(�⃗⃗⃗�
∗) ≅ −𝐾�⃗� + 𝐹1(�⃗�) ≅ −𝐾1�⃗� + 𝑤𝑣

Ω̇⃗⃗⃗ = 𝑓3(�⃗�) + ℎ4(�⃗⃗⃗�
∗) ≅ −𝐾�⃗� + 𝑓3(�⃗�) ≅ −𝐾2�⃗� + 𝑤Ω

[𝟗𝟎]

[𝟗𝟏]

[𝟗𝟐]

[𝟗𝟑]

[𝟗𝟒]

[𝟗𝟓]

[𝟗𝟔]

[𝟗𝟕]

20

Where 𝑤𝑣 and 𝑤Ω are nonlinear noises and disturbances acting upon the system. If possible, the noises

and disturbances should be such that:

|−𝐾1�⃗�| ≫ 𝑤𝑣

|−𝐾2�⃗�| ≫ 𝑤Ω

Considering equations [46] and [58]:

ℎ2(�⃗⃗⃗�) =
�⃗�𝑝𝑟𝑜𝑝(�⃗⃗⃗�)

𝑚

ℎ4(�⃗⃗⃗�) = 𝐽
−1[�⃗⃗⃗�𝑝𝑟𝑜𝑝(�⃗⃗⃗�) + �⃗⃗⃗�𝑔𝑦𝑟𝑜(�⃗⃗⃗�)]

Expanding both of the equations above:

ℎ2(�⃗⃗⃗�) =
1

𝑚
[

𝑠𝛿𝑙𝑝 𝑠𝛿𝑟𝑝 0

0 0 0
−𝑐𝛿𝑙𝑝 −𝑐𝛿𝑟𝑝 −1

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

ℎ4(�⃗⃗⃗�) = 𝐽−1

[

[

𝐽𝑥𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑥𝑧𝑠𝛿𝑙𝑝 𝐽𝑥𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑥𝑧𝑠𝛿𝑟𝑝 0

𝐽𝑦𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑦𝑧𝑠𝛿𝑙𝑝 𝐽𝑦𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑦𝑧𝑠𝛿𝑟𝑝 0

𝐽𝑧𝑥𝑐𝛿𝑙𝑝 + 𝐽𝑧𝑧𝑠𝛿𝑙𝑝 𝐽𝑧𝑥𝑐𝛿𝑟𝑝 + 𝐽𝑧𝑧𝑠𝛿𝑟𝑝 0

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

]

+

𝐽−1

[

[

−𝑦𝑐𝑚→𝑙𝑝𝑐𝛿𝑙𝑝 −𝑦𝑐𝑚→𝑟𝑝𝑐𝛿𝑟𝑝 𝑦𝑐𝑚→𝑏𝑝
𝑧𝑐𝑚→𝑙𝑝𝑠𝛿𝑙𝑝 + 𝑥𝑐𝑚→𝑙𝑝𝑐𝛿𝑙𝑝 𝑧𝑐𝑚→𝑟𝑝𝑠𝛿𝑟𝑝 + 𝑥𝑐𝑚→𝑟𝑝𝑐𝛿𝑟𝑝 −𝑥𝑐𝑚→𝑏𝑝

−𝑦𝑐𝑚→𝑙𝑝𝑠𝛿𝑙𝑝 −𝑦𝑐𝑚→𝑟𝑝𝑠𝛿𝑟𝑝 0
] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

]

It is assumed for the hover movement that the drone has both propellers in vertical position, that is,

with zero tilt. These assumptions reduce the equations above to:

{

𝛿𝑙𝑝 = 𝛿𝑟𝑝 = 0

cos(0) = 1
sin(0) = 0

ℎ2(�⃗⃗⃗�) =
1

𝑚
[
0 0 0
0 0 0
−1 −1 −1

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

ℎ4(�⃗⃗⃗�) = 𝐽
−1

[

[

𝐽𝑥𝑥 𝐽𝑥𝑥 0
𝐽𝑦𝑥 𝐽𝑦𝑥 0

𝐽𝑧𝑥 𝐽𝑧𝑥 0
] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

]

+

𝐽−1

[

[

−𝑦𝑐𝑚→𝑙𝑝 −𝑦𝑐𝑚→𝑟𝑝 𝑦𝑐𝑚→𝑏𝑝
𝑥𝑐𝑚→𝑙𝑝 𝑥𝑐𝑚→𝑟𝑝 −𝑥𝑐𝑚→𝑏𝑝
0 0 0

][

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝
2

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝
2

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝
2

]

]

[𝟗𝟖]

[𝟗𝟗]

[𝟏𝟎𝟎]

[𝟏𝟎𝟏]

[𝟏𝟎𝟐]

[𝟏𝟎𝟑]

[𝟏𝟎𝟒]

[𝟏𝟎𝟓]

[𝟏𝟎𝟔]

21

Choosing as an initial design for the control law:

�⃗⃗⃗� =

[

 √
𝜔𝑙𝑝

√𝜔𝑟𝑝

√𝜔𝑏𝑝
0
0]

− 𝐾�⃗�

ℎ2(�⃗⃗⃗�) =
1

𝑚
[
0 0 0
0 0 0
−1 −1 −1

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝

]

ℎ4(�⃗⃗⃗�) = 𝐽
−1

[

[

𝐽𝑥𝑥 𝐽𝑥𝑥 0
𝐽𝑦𝑥 𝐽𝑦𝑥 0

𝐽𝑧𝑥 𝐽𝑧𝑥 0
] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝

]

]

+

𝐽−1

[

[

−𝑦𝑐𝑚→𝑙𝑝 −𝑦𝑐𝑚→𝑟𝑝 𝑦𝑐𝑚→𝑏𝑝
𝑥𝑐𝑚→𝑙𝑝 𝑥𝑐𝑚→𝑟𝑝 −𝑥𝑐𝑚→𝑏𝑝
0 0 0

] [

𝑠𝑔𝑛(𝜔𝑙𝑝)𝑘𝑙𝑝𝜔𝑙𝑝

𝑠𝑔𝑛(𝜔𝑟𝑝)𝑘𝑟𝑝𝜔𝑟𝑝

𝑠𝑔𝑛(𝜔𝑏𝑝)𝑘𝑏𝑝𝜔𝑏𝑝

]

]

This suggestion for a possible control law still failed to stabilize the system since MATLAB’s function

‘place’ and ‘dlqr’ where unable to find suitable gain matrices 𝐾. This suggests that a more robust and

complex control technique is required. An alternative possibility to explore is the further use of

linearization, including the linearization of the input. By applying the Taylor series to the definition of

the propeller force, it is possible to transform it into a piece wise equation, such that, given a certain
boundary, it is linear within that boundary:

{

𝐹𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟(�⃗⃗⃗�𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟)|�⃗⃗⃗⃗�∗ ≅ 𝛼 + 𝛽(�⃗⃗⃗�𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 − �⃗⃗⃗�
∗)

𝛼 = 𝑘𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 �⃗⃗⃗�
∗2

𝛽 = 2𝑘𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 �⃗⃗⃗�
∗

The aforementioned alternative does not solve, however, the nonlinearities present the tilting of the

propellers and the coupling of the states. An alternative possible solution is to implement a sliding

mode output-feedback linearization as proposed by Giorgio Bartolini and Elisabetta Punta on their
article “Sliding mode output-feedback stabilization of uncertain nonlinear nonaffine systems” [6]. The

implementation is complex and the article does not cover certain important aspects such as strategies

to define an adequate sliding manifold.

[𝟏𝟎𝟕]

[𝟏𝟎𝟖]

[𝟏𝟎𝟗]

[𝟏𝟏𝟎]

22

3. CONCLUSIONS AND FUTURE IMPROVEMENTS

The objective of this final course work was achieved, as a realistic, modular, mathematical model was

created for the tilt rotor drone. Difficulties were encountered when attempting to control the system,

however, due to is complex, nonlinear, non-affine in input nature. Classical techniques such as the PID
and state-space feedback controller failed, as well as modern control techniques such as LQR controller

and the feedback loop stabilization technique, although promising, needs to be further refined so that

control of model can be achieved. A discrete time, code line simulator and a continuous time, Simulink
simulator were created successfully to demonstrate the system’s behavior.

A mathematical approach to the modelling of the aerodynamic forces was proposed. It consisted of
control surfaces to map the behavior of the different forms of drag, offering an alternative ‘exact’ model

as opposed to the commonly found experimental or heuristic models present in literature. It can be

easily implemented due to the model’s modular form, allowing the user to choose to incorporate it into
their model or neglect its effects altogether.

The next suggested step would be the application and implementation of robust control laws and
techniques such as adaptive control [11, 14], feedback stabilization [13], sliding mode control [5, 6,

11, 14], extremum seeking control [15], etc, with the objective of controlling the system without

further simplifications and specific assumptions.

It is clear that this model requires sophisticated control techniques, many of which are new to field of

control and automation. The lack of adequate mathematical models for this aircraft concept

corroborates to the idea that this aircraft is still a challenge to control, requiring innovations and
discoveries of new control methods. It is a complex system that poses a challenge from its dynamic

model to the control of its behavior.

23

4. REFERENCES

[1] ABBOTT, Ira H; VON DOENHOFF, Albert E. “Theory of Wing Sections” 1st edition (1959)

[2] ANDERSON JR, John. “Introduction to Flight” 7th edition (2011)

[3] BARKAI, S. M.; RAND, O.; PEYRAN; R. J.; CARLSON, R. M. “Modeling and analysis of tilt-rotor
aeromechanical phenomena” (1997)

[4] BARTOLINI, G; PYDYNOWSKI, P. “Approximate linearization of uncertain nonlinear systems by

means of continuous control” (1991)
[5] BARTOLINI, Giorgio; PUNTA, Elisabetta. “Multi-input sliding mode control of nonlinear uncertain

non-affine systems with mono-directional actuation” (2015)

[6] BARTOLINI, Giorgio; PUNTA, Elisabetta. “Sliding mode output-feedback stabilization of uncertain

nonlinear non-affine systems” (2012)
[7] ÇAKICI, Ferit. “Modelling, stability analysis and control system design of a small-sized tiltrotor UAV”

(2009)

[8] CLANCY, L.J. “Aerodynamics” 1st edition (1978)
[9] DEMASI, Luciano; DIPACE, Antonio; MONEGATO, Giovanni; CAVALLARO, Rauno. “An invariant

formulation for the minimum induced drag conditions of non-planar wing systems” (2014)

[10] HELIMART. “How helicopters have helped better the world”. Available in:
http://helimart.com/helicopter-resources/history-in-helicopters.html. Accessed in: 11 April. (2017)

[11] IOANNOU, Petrus; SUN, Jing. “Robust adaptive control”, 1st edition (1996)

[12] KENDOUL, Farid; FANTONI, Isabelle; LOZANO, Rogelio. “Modeling and control of a small
autonomous aircraft having two tilting rotors”, (2005)

[13] KHALIL, Hassan K. “Nonlinear control systems”, 1st edition (2000)

[14] KRSTIĆ, Miroslav. “Nonlinear and adaptive control design”, 1st edition (1995)
[15] KRSTIĆ, Miroslav. “Real-time optimization by extremum–seeking control”, 1st edition (2003)

[16] MEGGIOLARO, Marco Antonio. “Controle discreto do acrobot”, (2014)

[17] OGATA, Katsuhiko. “Modern Control Engineering”, 1st edition (1970)

[18] OLFATI-SABER, Reza. “Nonlinear control of underactuated mechanical systems with application to
robotics and aerospace vehicles” (2001)

[19] ÖNER, Kaan Taha; ÇETİNSOY, Ertuğrul; SIRIMOĞLU, Efe; HANÇER, Cevdet; ÜNEL, Mutafa; AKŞİT,

Mahmut Faruk; GÜLEZ, Kayhan; KANDEMİR, İlyas. “Mathematical modelling and vertical flight control
of a tilt-wing UAV” (2010)

[20] STROGATZ, Steven. “The End of Insight” article obtained from “Edge” website, available at

<https://www.edge.org/response-detail/11385> accessed at 18 June (2017)
[21] WHITE, Frank M. “Fluid Mechanics” 5th edition (2003)

FIGURES:

Fig 1 – Obtained from materials provided by supervisor William de Souza Barbosa at 10 May (2017).

Fig 3 – Obtained and edited from “Scale Modelling Now” website, available at

<https://www.scalemodellingnow.com/hnaircraftkits-revell-mv22-osprey> and accessed at 10 May

(2017).
Fig 9 – Obtained from “PID Controller” website, available at

<https://en.wikipedia.org/wiki/PID_controller > and accessed at 10 May (2017).

Fig 10 – Obtained from “Maxwell – Simulações em engenharia elétrica – Motor DC” website, available

at < https://www.maxwell.vrac.puc-rio.br/25077/25077.PHP> and accessed at 18 June (2017).

24

5. APPENDICES

25

5.1 Appendix 1 - 3D MODEL OF THE TILT ROTOR DRONE

26

5.2 Appendix 2 - SIMULATION RESULTS WITHOUT CONTROL

27

28

29

30

31

