

Marko Antonio López Bendezú

Simulação Numérica do Fraturamento de Rocha por Explosão Considerando o Modelo de Zona Coesiva

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Prof. Celso Romanel

Co-orientadora: Prof^a. Deane de Mesquita Roehl

Rio de Janeiro Dezembro de 2015

Marko Antonio López Bendezú

Simulação Numérica do Fraturamento de Rocha por Explosão considerando o Modelo de Zona Coesiva

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Celso Romanel Orientador Departamento de Engenharia Civil – PUC-Rio

Prof^a. Deane de Mesquita Roehl Co-orientadora Departamento de Engenharia Civil – PUC-Rio

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

Prof. Sérgio Augusto Barreto de Fontoura Departamento de Engenharia Civil – PUC-Rio

> Dr. Nelson Inoue GTEP/PUC-Rio

Prof^a. Anna Laura Lopes da Silva Nunes Universidade Federal do Rio de Janeiro

Prof^a. Bernadete Ragoni Danziger Universidade do Estado do Rio de Janeiro

Prof. Márcio da Silveira Carvalho Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 17 de dezembro de 2015

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marko Antonio López Bendezú

Graduou-se em Engenharia Mecânica na Universidad Nacional de Ingeniería - UNI, Lima-Peru, em 2005 e possui mestrado em Engenharia Mecânica na área de Petróleo e Energia pela Pontifícia Universidade Católica de Rio de Janeiro (PUC-Rio) em 2009. Desde 2010 é pesquisador no Instituto TECGRAF da PUC-Rio, colaborando em projetos de geomecânica de petróleo com ênfase em análise numérica.

Ficha Catalográfica

López Bendezú, Marko Antonio
Simulação Numérica do Fraturamento de Rocha por Explosão Considerando o Modelo de Zona Coesiva / Marko Antonio López Bendezú; orientador: Celso Romanel; co- orientadora: Deane de Mesquita Roehl – 2015.
199 f.: il.; 30 cm
Tese (Doutorado em Engenharia Civil) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2015.
Incluí referências bibliográficas.
 Engenharia Civil – Tese. 2. Explosão de rocha. Fraturamento dinâmico; 4. Análise numérica. 5. Método dos

 Engenharia Civil – Tese. 2. Explosão de rocha.
 Fraturamento dinâmico; 4. Análise numérica. 5. Método dos elementos finitos estendidos. 6. modelo de zona coesiva.
 Romanel, Celso. II. Roehl, Deane. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título. PUC-Rio - Certificação Digital Nº 0921953/CA

Dedico esta tese aos meus pais Jose Luis e Maria Imperio e aos meus irmãos: Pepe, Juan Carlos e Franco pelo amor, incentivo e apoio a mim sempre dados.

Agradecimentos

Ao meu orientador Professor Celso Romanel, pelos ensinamentos, orientações e pela ajuda durante a elaboração desta tese. Saiba que a minha admiração e o meu respeito por você é muito grande.

À Professora Deane Roehl, pela coorientação, paciência e apoio brindado durante a tese e meu período como pesquisador no Instituto Tecgraf da PUC-Rio, que contribui para minha formação durante meu período de doutorado.

Ao CNPq, CAPES e PUC-Rio pelo apoio financeiro.

Ao Instituto Tecgraf pelo ambiente de trabalho e colaborativo.

A todos os professores pelos conhecimentos adquiridos, por suas aulas e pela forma que conduzem aos alunos.

Aos meus amigos, com os quais sempre compartilhei meus sucessos e fracassos, e que tornaram está caminhada mais leve e tranquila, proporcionando inúmeros momentos de alegria e descontração.

A minha família que sempre esteve presente nos momentos de alegria e nas situações e decisões difíceis durante minha estadia no doutorado.

Resumo

López Bendezú, Marko Antonio; Romanel, Celso (Orientador); Roehl, Deane de Mesquita (Co-orientadora). Simulação Numérica do Fraturamento de Rocha por Explosão considerando o Modelo de Zona Coesiva. Rio de Janeiro, 2015. 199p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo de iniciação e propagação de fraturas em rochas devido à energia gerada por explosões é uma tarefa desafiadora em mecânica computacional dada a natureza multifísica e multi-escala do fenômeno. Uma das técnicas utilizadas para simulação deste processo pelo método dos elementos finitos consiste em acompanhar a evolução de fraturas no tempo, com atualizações frequentes da malha de elementos, o que torna as análises demoradas e complicadas, com perda de precisão numérica no processo de atualização dos valores calculados em pontos da malha antiga para os pontos correspondentes da malha nova. O método estendido dos elementos finitos (XFEM) permite a incorporação de enriquecimentos locais, i.e. de um conjunto de funções de interpolação enriquecidas que fornecem valores das variáveis de interesse (deslocamentos, tensões) com maior precisão e eficiência computacional. Além disso, é importante ressaltar, que a presença da fratura, e sua propagação no tempo através da rocha, não é geometricamente modelada e a malha de elementos não precisa ser constantemente atualizada. Quatro diferentes abordagens são examinadas para simular o processo de fraturamento na rocha, com a comparação entre os respectivos resultados: o método XFEM, os elementos de interface coesivas, os elementos finitos com singularidade e a técnica de eliminação de elementos que remove elementos da malha, simulando o fraturamento, quando os mesmos atingem a ruptura de acordo com algum critério. Nesta pesquisa, o método XFEM é aplicado para investigar o desmonte de rocha com base no método dos nós fantasma onde as descontinuidades nos campos de deslocamentos são introduzidas através de novos graus de liberdade em elementos sobrepostos. O maciço rochoso considerado é um granito admitido isotrópico no meio homogêneo ou heterogêneo que tem comportamento elástico linear até o início da quebra, onde a propagação de fraturas utiliza o modelo de zona coesiva. Alguns exemplos numéricos são apresentados aspectos relacionados com o fraturamento de um macico rochoso sujeito a explosão, a fim de discutir as vantagens e limitações. Além

disso, os resultados numéricos são comparados com os obtidos por outros autores utilizando diferentes abordagens numéricas.

Palavras-chave

Explosão de rocha; fraturamento dinâmico; análise numérica; método dos elementos finitos estendidos; modelo de zona coesiva.

Abstract

López Bendezú, Marko Antonio; Romanel, Celso (Advisor); Roehl, Deane de Mesquita (Co-advisor). Numerical Simulation of Blasting-Induced Rock Fractures Considering the Cohesive Zone Model. Rio de Janeiro, 2015. 199 p. Ph. D Thesis - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The study of propagation of fractures in rocks due to the energy generated by explosions is a challenging task in computational mechanics given the multiphysics and multiscale nature of the phenomenon. One of the most widely used methods for simulation of this process is the finite element method, which follows the time evolution of fractures, with frequent updates of mesh elements to represent the new geometry of the newly fractured material. This approach, besides being computationally time consuming and difficult for the necessity of constant rebuilding meshes, also results in the loss of numerical accuracy when the variables of interest are mapped and interpolated from the old mesh to the Gauss points and nodal points the new mesh. The Extended Finite Element Method (XFEM) local enrichment functions to be easily incorporated into a finite element approximation. The presence of fracture is ensured by the special enriched functions in conjunction with additional degrees of freedom with greater accuracy and computational efficiency. Furthermore, it is important to note that does not require the mesh to match the geometry of the fracture. It is a very attractive and effective way to simulate initiation and propagation of a crack along an arbitrary, solution-dependent path without the requirement of remeshing. Four different approaches are examined to simulate the rock fracturing process, with comparison between respective results: the XFEM, the interelement crack method, the conventional finite element method (FEM) using a remeshing technique and based on the linear fracture mechanics and the element deletion method with Rankine failure-type material model to simulate discrete rock fracture. In this research, XFEM is applied to investigate rock blasting based on the phantom node method where discontinuities in the displacement fields are introduced through new degrees of freedom in overlapping elements. The rock mass considered is a sound granite admitted as an isotropic, homogeneous or heterogeneous medium that remains linear elastic right up the moment of breakage, and then the propagation of cracks using the cohesive zone model. Several

numerical examples are presented aspects related to the fracturing of a rock mass under the effect of blast-induced dynamic pressure pulse, in order to discuss the advantages and limitations of each of the aforementioned approaches. Furthermore, the numerical results are compared with those obtained by other authors using different numerical approaches.

Keywords

Rock blasting; dynamic fracturing; numerical analysis; extended finite element method; cohesive zone model.

Sumário

1 Introdução	29
1.1 Motivação da pesquisa	32
1.2 Objetivos da pesquisa	34
1.3 Organização da tese	36
2 Propagação de fraturas em rochas por energia de ondas de tensão	37
2.1 Equações da elastodinâmica	37
2.2 Reflexão de onda P	40
2.3 Reflexão de onda SV	44
2.4 A rocha vizinha ao furo	47
2.5 Fraturamento dinâmico	51
2.6 Pulso de pressão na parede do furo	54
3 Métodos numéricos na propagação dinâmica de fraturas em	
rocha	61
3.1 Introdução	61
3.2 Elementos finitos com singularidade	61
3.3 Elementos de interface	63
3.4 Eliminação de elementos	67
3.5 Elementos enriquecidos EFEM	73
3.6 Outras técnicas alternativas	76
 Revisão de algumas simulações de fraturamento de rocha por explosão 	77
4 Método Estendido dos Elementos Finitos	80

4.1 Introdução	80
4.2 Formulação do XFEM	82
4.3 Descontinuidade com nós fantasmas	86
4.4 Modelo da zona coesiva	88
4.5 Discretização espacial	93
4.6 Integração numérica	95
5 Simulações numéricas	97
5.1 Aspectos da análise dinâmica	97
5.1.1 Tamanho do elemento finito	97
5.1.2 Condições de contorno	98
5.1.3 Amortecimento do material	99
5.1.4 Fechamento da fratura	101
5.1.5 Critérios de convergência	102
5.2 Exemplos de aferição	106
5.2.1 Viga com entalhe no modo I de fraturamento	106
5.2.2 Viga com entalhe no modo misto de fraturamento	112
5.3 Furo de detonação em meio infinito: Influência do pulso de	
pressão	115
5.4 Furo de detonação com uma face livre	123
5.4.1 Influência do pulso de pressão	123
5.4.2 Influência do fechamento de fraturas	131
5.4.3 Técnica de eliminação de elementos	136
5.5 Efeitos de entalhes radiais e de fissuras preexistentes	139
5.6 Influência do módulo de elasticidade	145
5.7 Influência da heterogeneidade da rocha	147
5.8 Influência da resistência à tração máxima	150
5.9 Modelo com dois furos de detonação	152
5.9.1 Furos alinhados com a face livre	152
5.9.2 Dois furos perpendiculares à face livre	159

5.10 Simulação de um plano de fogo	164
6 Conclusões e considerações finais	172
6.1 Conclusões	172
6.2 Propostas para continuação desta pesquisa	175
7 Referências bibliográficas	176
Apéndice A: Tipos de Explosivos	191
Apéndice B: Estimativa dos fatores de intensidade de tensão	193

Lista de figuras

Figura 1.1 - Geometria de uma bancada e elementos típicos de um	
plano de fogo (adaptado de Silva, 2013).	30
Figura 1.2 - Seção típica de uma escavação de túnel (adaptado de	
Silva, 2013).	31
Figura 1.3 - Fatores a serem considerados no planejamento de	
desmonte de rocha por explosão (adaptado de Saharan e Mitri, 2008).	33
Figura 2.1 - Reflexão de uma onda <i>P</i> (adaptado de Achenbach, 1975).	40
Figura 2.2 - Amplitude relativa da onda <i>P</i> para vários valores do	
coeficiente de Poisson v (adaptado de Achenbach, 1975).	43
Figura 2.3 - Amplitude relativa da onda SV para vários valores do	
coeficiente de Poisson v (adaptado de Achenbach, 1975).	46
Figura 2.4 - Ângulos de incidência para vários valores do coeficiente	
de Poisson v. Reflexão total de uma onda SV: $ heta$. Reflexão de uma	
onda SV como uma P: SV-P. Reflexão de uma onda P como uma	
onda <i>SV</i> : <i>P-SV</i> (adaptado de Achenbach 1975).	47
Figura 2.5 - Principais mecanismos de ruptura da rocha por explosão	
(Silva, 2013).	48
Figura 2.6 - (a) propagação de ondas de choque. (b) expansão de	
gases (adaptado de Bhandari, 1997).	49
Figura 2.7 - Zonas de esmagamento (raio a_{c}) e de intenso	
fraturamento (raio $a_{ m e}$) ao redor do furo de detonação (raio $a_{ m 0}$) –	
Aimone (1982).	49
Figura 2.8 - Energia explosiva liberada durante a detonação da rocha	
(adaptado de Whittaker et al., 1992).	50
Figura 2.9 - (a) Mecanismo de ruptura por flexão; (b) Pilha do material	
(Silva, 2013).	53
Figura 2.10 - Formas do pulso de pressão para duas categorias de	
detonação (Aimone, 1992; Olsson et al., 2001).	56

Figura 2.11 - Pulso de pressão optimizado de diferentes tipos de	
explosivos para um furo de detonação de 38 mm de diâmetro	
(Saharan e Mitri, 2008).	57
Figura 2.12 - Comparação de diferentes métodos para a aproximação	
do pulso de pressão (Saharan e Mitri, 2008).	58
Figura 2.13 - Superposição de ondas <i>P</i> no ponto receptor A geradas	
pela explosão de cargas esféricas T_n (Dowding e Aimone, 1985)	60
Figura 3.1 - Modelagem de descontinuidade via MEF: (a) abordagem	
discreta e (b) abordagem contínua.	62
Figura 3.2 - Posição da roseta com elementos singulares quarter-	
<i>point</i> s na ponta da fratura.	63
Figura 3.3 - Curvas da tração em função da separação para modelos	
coesivos: (a) intrínsecos e (b) extrínsecos. As linhas pontilhadas	
indicam trajetórias de descarregamento / recarregamento.	64
Figura 3.4 - Exemplos de fraturamento com o modelo coesivo	
intrínseco: a) Ensaio DC(T) (Song et al., 2006); b) fraturamento	
hidráulico (Bendezu et al., 2013).	64
Figura 3.5 - Propagação e ocorrência de novas fraturas em uma	
malha de elementos finitos triangulares (Espinha, 2011).	65
Figura 3.6 - Propagação de fratura considerando: (a) malha refinada	
de elementos finitos; e (b) malha grosseira e adaptativa (Park et al.,	
2012).	66
Figura 3.7 - Representação de uma fratura por elementos removidos	
(adaptado de Song et al., 2008).	68
Figura 3.8 - Curvas de tensão vs. deformação para um material com	
dano exibindo: (a) amolecimento elástico e (b) endurecimento	
plástico (Song et al., 2008).	68
Figura 3.9 - Sistema local de coordenadas <i>n</i> , <i>t</i> .	69
Figura 3.10 - Representação da energia de fraturamento no modo I.	70
Figura 3.11 - Curvas de pós-fissuração: a) tensão-deformação e b)	
tensão-deslocamento.	71
Figura 3.12 - Fator de retenção cisalhante α dependente da abertura	
da fratura.	72

Figura 3.13 - Modelo de retenção ao cisalhamento no modelo da lei	70
	3
Figura 3.14 - Elemento com (a) uma descontinuidade fraca; (b) duas	
descontinuidades fracas; (c) uma descontinuidade forte (Rabczuk,	
2013). 74	'4
Figura 3.15 - Enriquecimento do: a) elemento e b) nó (Oliver et al.,	
2006). 74	'4
Figura 4.1 - Representação do método cohesive segment (Remmers	
et al., 2003). 8	31
Figura 4.2 - Representação do método cracking node (Song e	
Belytschko, 2009). 8	31
Figura 4.3 - Esquema de enriquecimento dos nós em uma malha de	
elementos finitos. 84	34
Figura 4.4 - Valores das funções <i>level set</i> para descrição da fratura.	35
Figura 4.5 - Estratégia de enriquecimento na ponta da fratura. 80	36
Figura 4.6 - Ilustração da técnica dos nós fantasmas gerados quando	
uma fratura secciona o elemento finito. As integrações são realizadas	
separadamente nos domínios Ω_0^+ e Ω_0^- . 8	37
Figura 4.7 - Tipos de comportamento da zona de processo de fratura	
(Bazant e Planas, 1998). 89	39
Figura 4.8 - Zona de processo de fratura para o modelo de zona	
coesiva (adaptado de Hillerberg et al., 1976). 90)0
Figura 4.9 - Modelo constitutivo: (a) zona de processo de fratura; (b)	
evolução do dano. 9)1
Figura 4.10 - Respostas no modo misto do MZC. 92)2
Figura 4.11 - Corpo 2D com uma descontinuidade e sua	
representação no domínio inicial (esquerda) e atual (direita). 93)3
Figura 4.12 - Integração numérica com esquema de integração: (a) de	
subdomínio; (b) com um ponto (Song et al., 2006). 9	95
Figura 5.1 - Contornos de transmissão imperfeita. 99	99
Figura 5.2 - Detalhes de elementos infinitos. 100)0

Figura 5.4 - Método de Newton-Raphson em solução numérica de	
problema não linear.	104
Figura 5.5 - Esquema de uma viga com entalhe central (dimensões	
em mm).	106
Figura 5.6 - Malhas de elementos finitos para a viga de concreto com	
entalhe central.	108
Figura 5.7 - Malhas deformadas (x 100) para a discretização refinada	
(2128 elementos): a) XFEM; b) elementos de interface coesivos; c)	
TEE.	109
Figura 5.8 - Influência do refinamento da malha de elementos finitos	
no fraturamento de viga de concreto no modo I - a) XFEM; b)	
elementos de interface; c) TEE.	110
Figura 5.9 - Modelos de amolecimento: a) linear; b) bilinear (Rots et	
al., 1985).	111
Figura 5.10 - Influência da forma de amolecimento na viga de	
concreto com entalhe central no modo I de fraturamento. a) elementos	
de interface (malha refinada com 2128 elementos); b) TEE (malha	
muito refinada com 8480 elementos).	111
Figura 5.11 - Curvas carga vs. deflexão para uma viga de granito com	
entalhe central no modo I.	112
Figura 5.12 - Modelo de uma viga com entalhe no modo misto de	
fraturamento (dimensões em mm).	113
Figura 5.13 - Malha deformada para uma viga de concreto com	
entalhe no modo misto de fraturamento: (a) XFEM; (b) TEE.	
Resultados experimentais da viga de concreto ensaiada por Arrea e	
Ingraffea (1982): (c) trajetória da fratura e (d) detalhe da superfície de	
fratura.	114
Figura 5.14 - Curvas carga vs. CMSD para uma viga de concreto com	
entalhe no modo misto de fraturamento.	115
Figura 5.15 - Curvas carga - CMSD para uma viga de granito com	
entalhe no modo misto de fraturamento.	115
Figura 5.16 - (a) Geometria do modelo analisado; (b) malha com	
elementos finitos (em amarelo) e infinitos (em laranja).	116

Figura 5.17 - Pulsos de pressão normalizados para valores de β/α =	
1.5, 3, 5, 10, 50 e 100.	117
Figura 5.18 - Pulsos de pressão para $\beta/\alpha=1,5$ com tempos $t_0 = 10,$	
100, 500 e 1000 μ s para atingir a pressão de pico de 100 MPa.	117
Figura 5.19 - Distribuição da tensão principal máxima e propagação	
de fraturas para: (a) $t_0 = 10 \ \mu s$; (b) $t_0 = 100 \ \mu s$; (c) $t_0 = 500 \ \mu s e$ (d) $t_0 =$	
1000 μs.	119
Figura 5.20 - Distribuição da tensão principal mínima e propagação de	
fraturas para: (a) $t_0 = 10 \ \mu s$; (b) $t_0 = 100 \ \mu s$; (c) $t_0 = 500 \ \mu s \ e$ (d) $t_0 =$	
1000 μs.	120
Figura 5.21 - Comparação entre padrões de distribuição da tensão	
principal máxima considerando resultados numéricos obtidos por Cho	
e Kaneko (2004a) e a presente pesquisa para diferentes pulsos de	
pressão: (a) t₀=10 μs; (b) t₀=100 μs; (c) t₀=500 μs e (d) t₀=1000 μs.	121
Figura 5.22 - Influência da fase de decaimento do pulso de pressão:	
(a) $\beta/\alpha = 1.5 \text{ e t}_0 = 100 \mu\text{s}$; (a') $\beta/\alpha = 100 \text{ e t}_0 = 100 \mu\text{s}$; (b) $\beta/\alpha = 1.5 \text{ e}$	
$t_0 = 500 \ \mu s$; (b') $\beta / \alpha = 100 \ e \ t_0 = 500 \ \mu s$.	122
Figura 5.23 - (a) Geometria do modelo; (b) Malha de elementos finitos	
e infinitos.	123
Figura 5.24 - Distribuição da tensão principal máxima e propagação	
de fraturas considerando furo de detonação sem fissuras	
preexistentes para: (a) $t_0=10 \ \mu s$; (b) $t_0=100 \ \mu s$; (c) $t_0=500 \ \mu s \ e$ (d)	
<i>t</i> σ=1000 μs.	126
Figura 5.25 - Distribuição da tensão principal mínima e propagação de	
fraturas considerando furo de detonação sem fissuras preexistentes	
para: (a) t₀=10 μs; (b) t₀=100 μs; (c) t₀=500 μs e (d) t₀=1000 μs.	127
Figura 5.26 - Distribuição da tensão principal máxima e propagação	
de fraturas em um furo de detonação com uma face livre para oito	
fissuras radiais preexistentes para: (a) $t_0=10 \ \mu s$; (b) $t_0=100 \ \mu s$; (c)	
<i>t</i> o=500 μs e (d) <i>t</i> o=1000 μs.	128

Figura 5.27 - Distribuição da tensão principal mínima e propagação de	
fraturas em um furo de detonação com uma face livre para oito	
fissuras radiais preexistentes para: (a) $t_0=10 \ \mu s$; (b) $t_0=100 \ \mu s$; (c)	
to=500 μs e (d) to=1000 μs.	129
Figura 5.28 - Campo de deslocamentos (x 20) em um furo de	
detonação com oito fissuras preexistentes para o caso t_0 =1000 µs no	
instante $t = 2000 \ \mu s$.	130
Figura 5.29 - Distribuição da tensão principal máxima e padrão de	
fraturamento em diversos modelos para: (a) $t_0=10 \ \mu s$; (b) $t_0=100 \ \mu s$;	
(c) to=500 μs; (d) to=1000 μs.	130
Figura 5.30 - Pulso de pressão aplicado nas paredes do furo de	
detonação.	131
Figura 5.31 - Malha de elementos finitos para o modelo XFEM.	132
Figura 5.32 - (a) Distribuição de tensões principais (Pa) e malha de	
elementos finitos nas vizinhanças do furo e da fratura 1; (b) grau de	
fraturamento em um elemento enriquecido, identificado pela variável	
STATUSXFEM no instante $t = 15 \ \mu s$.	133
Figura 5.33 - Distribuição de tensões principais (MPa) e malha de	
elementos finitos nas vizinhanças do furo e da fratura 1 no instante t	
= 15.7 μs (Lima, 2001).	133
Figura 5.34 - Distribuição dos deslocamentos horizontais sem controle	
de penetração: (a) no tempo $t = 145.6 \ \mu s \ XFEM$; (b) no tempo $t = 523$	
μs Lima (2001).	134
Figura 5.35 - Malha de elementos finitos junto ao furo negligenciando	
o controle de penetração: a) no tempo $t = 145,6 \ \mu s$ (XFEM) com	
status variando de 1 (elemento fraturado) a 0 (elemento intacto); b) no	
tempo $t = 523 \ \mu s$ (Lima, 2001).	134
Figura 5.36 - Distribuição dos deslocamentos horizontais no tempo $t =$	
523 μ s com controle de penetração: (a) XFEM; (b) Lima (2001).	135

Figura 5.37 - Malha de elementos finitos junto ao furo no tempo $t =$	
523 µs considerando controle de penetração: a) XFEM com status	
variando de 1 (elemento fraturado) a 0 (elemento intacto); b) Lima	
(2001).	136
Figura 5.38 - Resultados experimentais obtidos por Porter (1970) em	
placa de vidro.	136
Figura 5.39 - Malha de elementos finitos utilizado no modelo TEE.	137
Figura 5.40 - Evolução do padrão de fraturas e fragmentação da	
rocha na técnica de eliminação de elementos.	138
Figura 5.41 - Influência da malha de elementos finitos na técnica de	
eliminação de elementos.	139
Figura 5.42 - Pulso de pressão nas paredes do furo de detonação.	140
Figura 5.43 - Caso base: propagação de fraturas a partir de furo de	
detonação sem entalhes radiais.	141
Figura 5.44 - Relação entre o coeficiente de incremento do	
comprimento (<i>IC</i>) e taxa de pressão λ .	142
Figura 5.45 - Caso 1: propagação de fraturas no furo de detonação	
com dois entalhes a 180° para λ = 0,4.	142
Figura 5.46 - Caso 2: padrão de fraturas com dois entalhes a 90° no t	
= 1000 μs para λ = 0,1.	143
Figura 5.47 - Comparação do padrão de fraturas nos seguintes casos:	
a) sem entalhes; b) 2 entalhes a 90°; c) 2 entalhes a 180° (Ma e An,	
2008)	143
Figura 5.48 - Propagação de fraturas em furo de detonação sem	
entalhes próximo à face livre.	144
Figura 5.49 - Comparação do padrão de fraturas considerando: (a) 8	
entalhes radiais; (b) 8 fissuras preexistentes.	145
Figura 5.50 - Comparação do padrão de fraturas considerando: (a) 4	
entalhes radiais; (b) 4 fissuras preexistentes.	145
Figura 5.51 - Comparação do padrão de fraturas considerando: (a) 2	
entalhes radiais; (b) 2 fissuras preexistentes.	145
Figura 5.52 - Padrão de fraturas com a variação do módulo de	
elasticidade no caso de furo sem fissuras preexistentes.	147

Figura 5.53 - Padrão de fraturas com a variação do módulo de	
elasticidade no caso de furo com oito fissuras preexistentes.	147
Figura 5.54 - Distribuição das densidades de probabilidade de	
Weibull do módulo de elasticidade da rocha para: (a) $m = 5$; (b) $m =$	
20.	149
Figura 5.55 - Distribuição espacial do módulo de elasticidade da	
rocha no domínio do modelo numérico para: (a) $m = 5$; (b) $m = 20$.	149
Figura 5.56 - Padrão de fraturas no modelo de furo de detonação com	
oito fissuras preexistentes considerando distribuição espacial dos	
módulos de elasticidade para: (a) $m = 5$; (b) $m = 20$.	150
Figura 5.57 - Padrão de fraturamento com variação da resistência à	
tração máxima.	151
Figura 5.58 - Distribuição espacial da resistência à tração máxima no	
domínio do modelo numérico para: (a) $m = 5$; (b) $m = 20$.	151
Figura 5.59 - Distribuição dos deslocamentos horizontais (x 200)	
considerando distribuição espacial da resistência à tração máxima	
para: (a) <i>m</i> = 5; (b) <i>m</i> = 20.	152
Figura 5.60 - Localização dos furos de detonação.	152
Figura 5.61 - Malha de elementos finitos / infinitos do modelo com	
dois furos de detonação.	153
Figura 5.62 - Variação no tempo da pressão de explosão nas paredes	
dos furos.	153
Figura 5.63 - Distribuição das tensões principais ao redor do furo (Pa)	
em $t = 13,1 \ \mu s$.	154
Figura 5.64 - Encontro das fraturas 1 e 13 em $t = 60,7 \mu s$.	154
Figura 5.65 - Distribuição das tensões principais (Pa) em $t = 60,7 \mu$ s.	154
Figura 5.66 - Propagação de fraturas no instante $t = 138,6 \ \mu s$ quando	
as fraturas 7 e 15 atingem a face livre.	155
Figura 5.67 - Distribuição das tensões principais (Pa) no instante $t =$	
138,6 μs.	155
Figura 5.68 - Propagação de fraturas quando a pressão nos furos de	
detonação atinge a pressão de pico no tempo $t = 450 \mu s$.	156

Figura 5.69 - Distribuição das tensões principais (Pa) quando a	
pressão nos furos de detonação atinge a pressão de pico em $t =$	
467μs.	156
Figura 5.70 - Comparação da propagação das fraturas computadas	
com: (a) XFEM; (b) método convencional dos elementos finitos (Lima,	
2001) no tempo <i>t</i> = 538µs	157
Figura 5.71 - Propagação das fraturas no tempo t = 90,7µs (sem	
fissuras preexistentes).	157
Figura 5.72 - Propagação de fraturas sem fissuras preexistentes nos	
furos de detonação, no tempo $t = 404 \ \mu s$, instante de interrupção da	
análise.	158
Figura 5.73 - Evolução da fragmentação da rocha na técnica de	
eliminação de elementos.	159
Figura 5.74 - Localização dos furos de detonação no maciço de	
granito.	160
Figura 5.75 - Padrão de fraturas ao redor do furo 1 no tempo $t = 124$	
μs pelo XFEM.	160
Figura 5.76 - Padrão de fraturas ao redor do furo 1 no tempo $t = 124$	
μs por Lima (2001).	161
Figura 5.77 - Padrão de fragmentação ao redor do furo 1 no tempo $t =$	
124 µs pela técnica de eliminação de elementos.	161
Figura 5.78 - Propagação das fraturas no modelo XFEM.	162
Figura 5.79 - Padrão das fraturas dominantes obtido por: (a) XFEM;	
(b) Lima (2001).	163
Figura 5.80 - Parte da malha de elementos finitos modelada por: (a)	
XFEM; (b) Lima (2001).	163
Figura 5.81 - Evolução da fragmentação de rocha pela técnica de	
eliminação de elementos.	164
Figura 5.82 - Ligação em uma bancada que apresente: (a) apenas	
uma face livre; (b) duas faces livres; e (c) em "V" utilizada para se	
obter uma pilha mais alta e uma melhor fragmentação.	165
Figura 5.83 - Configuração de um plano de fogo (furos com 8 fissuras	
prescritas).	166

Figura 5.84 - Discretização da malha de elementos finitos e infinitos.	166
Figura 5.85 - Pulso de pressão nas paredes dos furos de detonação.	167
Figura 5.86 - Caso Base: propagação de fraturas no tempo $t = 162 \ \mu s$	
(x 100).	167
Figura 5.87 - Detalhe da malha de elementos finitos ao redor do furo 1	
no tempo $t = 13 \ \mu s$.	168
Figura 5.88 - Caso Base: detalhe da malha de elementos finitos em t	
= 162 μs.	168
Figura 5.89 - Padrão da propagação das fraturas para o Caso 1 no	
tempo 581 μs (x 100).	169
Figura 5.90 - Detalhe da malha de elementos finitos do furo de	
detonação 4 do "Caso 1". Detalhe do fechamento da fratura "A", mas	
que deixa de convergir pela distorção do elemento.	169
Figura 5.91 - Propagação de fratura para o "Caso 2" no tempo 706 μs	
(x 100).	170
Figura 5.92 - Propagação de fratura para o "Caso 3" no tempo final da	
simulação 2000 μ s: (a) sem deformação e (b) deformada x 100.	171
Figura B.7.1 - Roseta de elementos singulares na ponta da fratura	
(Araújo, 1999).	194
Figura B.7.2 - Trajetória para avaliação da integral J.	195
Figura B.7.3 - Distribuição da tensão normal na frente da trinca e do	
deslocamento de abertura atrás da trinca (Araújo, 1999).	197
Figura B.7.4 - Forças nodais aplicadas nos elementos triangulares	
singulares (Araújo, 1999).	198

Lista de tabelas

Tabela 2.1: Mecanismos de fragmentação por explosão (Saharan e	
Mitri, 2008).	54
Tabela 2.2: Representação da pressão de pulso aplicada nas paredes	
do furo de detonação.	56
Tabela 2.3: Constantes de decaimento para granito Lithonia e arenito	
Homewood (Dowding e Aimone, 1985).	59
Tabela 5.1: Parâmetros do método implícito de Hilbert-Hughes-Taylor	103
Tabela 5.2: Parâmetros que controlam os critérios de convergência no	
programa ABAQUS.	105
Tabela 5.3: Número de elementos finitos nas malhas utilizadas com a	
técnica de eliminação de elementos.	139

Lista de símbolos

А	constante característica do explosivo JWL
a 0	raio do furo de detonação
a^m_i	grau de liberdade do enriquecimento m do nó i
В	constante característica do explosivo JWL
b	vetor de força do corpo
С	vetor de grau de liberdade associado ao salto de deslocamento nodal
С	matriz de amortecimento
d	vetor de deslocamento nodal
D	taxa de degradação
D^{II}_{nt}	rigidez que depende da abertura da fratura
Ε	modulo de elasticidade
e ^{ck} nn	deformação do material fraturado na direção n
f coh	força coesiva
f ^{ext}	força externa
f ^{int}	força interna
f_c	frequência de corte
G	modulo de cisalhamento
G_{f}	energia de fratura
G_{II}	energia de fratura no modo I
G_{II}	energia de fratura no modo II
Н	função Heaviside

10	
Ι	número de nós do elemento associados ao deslocamento nodal d
I^{*_m}	subconjunto de nós do enriquecimento m
J	número de nós do elemento associados ao salto de deslocamento c
KIC	tenacidade à fratura ou fator de intensidade de tensão crítica
$M^{m}{}_{i}$	função de enriquecimento local do nó i pertencente ao enriquecimento
Ν	função de interpolação do elemento
Р	onda longitudinal ou irrotacional
Р	variação com o tempo da pressão aplicada nas paredes do furo
Р	tensor de tensão nominal
р	parâmetros do material do modelo de lei potencial do MFD
$\mathbf{P}_{\mathbf{b}}$	pressão real sobre o contorno do furo
\mathbf{P}_{d}	pressão de detonação
Pe	pressão de explosão
Q	calor de explosão
R	ondas de superfície
\mathbf{R}_1	constante característica do explosivo JWL
\mathbf{R}_2	constante característica do explosivo JWL
S	onda cisalhante ou transversal
Т	tensão de tração
t	tensão de tração nominal

- tensão de tração aplicada to
- tempo para atingir a pressão de pico t_0
- tensão principal máxima permissível ou a resistência à tração da rocha T_{max}

comprimento característico h

- o *m*

tn	tensão normal fornecido pelo comportamento elástico de tração-abertura
ts	tensão cisalhante fornecido pelo comportamento elástico de tração-abertura
t _{nt}	tensão total de cisalhamento
и	vetor de deslocamento
Un	deslocamento na direção local n
u^{ck} n	deslocamento da parte fraturada
$u^{el}{}_n$	deslocamento da parte elástica
u^h	aproximação do deslocamento
VOD	velocidade de detonação
Vs	velocidade da onda de cisalhamento
Ω	domínio considerado
$W0^+$	nó que pertencem a Ω_0^+
Xi	coordenadas do nó i
<i>x</i> *	coordenadas de um nó na interface
α	constante de decaimento
α	parâmetro em função da deformação da fratura
α	constante de amortecimento proporcional à massa
β	constante de decaimento
β	fator de retenção ao cisalhamento
β	constante de amortecimento proporcional à rigidez
γ	exponente adiabático
ν	coeficiente de Poisson
Γ	conjunto de todos os nós x^* na interface
Γ_{12}	contorno da interface

σ_{max}	tensão principal máxima
$ au^{0c}$	tensão de tração coesiva sobre a fratura
δ	separação
δ_c	separação crítica
δ_m	deslocamento efetivo da abertura da fratura
$\delta^{0}{}_{m}$	deslocamento inicial da abertura da fratura
δm	deslocamento final da abertura da fratura
$\delta^{max}{}_m$	deslocamento efetivo máximo atingido durante a história de carregamento
Δl	tamanho máximo do elemento finito
η	exponente que define a forma da envoltória
λ	comprimento de onda
$ ho_0$	massa específica do explosivo
$ ho_0$	massa específica do material
Φ	valor da função level set
$\Phi^{\rm h}$	valor da função level-set aproximada
Φ	função que interpola o grau de liberdade associado ao salto de deslocamento
$\Phi(\mathbf{x})$	função calcula a distância entre a descontinuidade de um determinado ponto
Ψ	valor da função level set
$\Psi^m(x)$	função enriquecida global do enriquecimento m
Гс	superfície da trinca
ω	constante característica do explosivo JWL

 ∂W^{int} trabalho interno

 σ_c tração máxima

 ∂W^{ext} trabalho externo realizado por cargas aplicadas ∂W^{kin} trabalho realizado pela inércia cinética ∂W^{coh} trabalho realizado pela tração coesiva

Abreviatura

ANFO	Ammonium Nitrate / Fuel Oil
EFEM	Embedded Finite Element Method
M-DLSM	Multi-scale Distinct Lattice Spring Model
MED	Método dos Elementos Discretos
MEF	Método dos Elementos Finitos
MFLE	Mecânica da Fratura Linear Elástica
MZC	Modelo da Zona Coesiva
NMM	Numerical Manifold Method
SPH	Smoothing Particle Hidrodynamics
TEE	Técnica de Eliminação de Elementos
TNT	Trinitrotolueno
XFEM	Método Estendido dos Elementos Finitos