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Abstract 

Bravo, Raissa Zurli Bittencourt; Leiras, Adriana (Advisor). The use of UAVs 

in humanitarian relief: a POMDP based methodology for finding victims. 

Rio de Janeiro, 2016. 89p. MSc. Dissertation – Departamento de Engenharia 

Industrial, Pontifícia Universidade Católica do Rio de Janeiro. 

The use of Unmanned Aerial Vehicles (UAVs) in humanitarian relief has 

been proposed by researchers for searching victims in disaster affected areas. The 

urgency of this type of operation is to find the affected people as soon as possible, 

which means that determining the optimal flight path for UAVs is very important 

to save lifes. Since the UAVs have to search through the entire affected area to find 

victims, the path planning operation becomes equivalent to an area coverage 

problem. In this study, a methodology to solve the coverage problem is proposed, 

based on a Partially Observable Markov Decision Processes (POMDP) heuristic, 

which considers the observations made from UAVs. The formulation of the UAV 

path planning is based on the idea of assigning higher priorities to the areas which 

are more likely to contain victims. The methodology was applied in two illustrative 

examples: a tornado in Xanxerê, Brazil, which was a rapid-onset disaster in April 

2015 and a refugee’s camp in South Sudan, a slow-onset disaster that started in 

2013. After simulations, it is demonstrated that this solution achieves full coverage 

of disaster affected areas in a reasonable time span. The traveled distance and the 

operation’s durations, which are dependent on the number of states, did not have a 

significative standard deviation between the simulations. It means that even if there 

were many possible paths, due to the tied priorities, the algorithm has homogeneous 

results. The time to find groups of victims, and so the success of the search and 

rescue operation, depends on the specialist’s definition of states priorities. A 

comparison with a greedy algorithm showed that POMDP is faster to find victims 

while greedy’s performance focuses on minimizing the traveled distance. Future 

research indicates a practical application of the methodology proposed. 
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Resumo 

Bravo, Raissa Zurli Bittencourt; Leiras, Adriana. O uso de VANTs em ajuda 

humanitária: uma metodologia baseada em POMDP para encontrar 

vítimas. Rio de Janeiro, 2016. 89p. Dissertação de Mestrado – Departamento 

de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro. 

O uso de Veículos Aéreos Não Tripulados (VANTs) na ajuda humanitária 

tem sido proposto por pesquisadores para localizar vítimas em áreas afetadas por 

desastres. A urgência desse tipo de operação é encontrar pessoas afetadas o mais 

rápido possível, o que significa que determinar a roteirização ótima para os VANTs 

é muito importante para salvar vidas. Como os VANTs tem que percorrer toda a 

área afetada para encontrar vítimas, a operação de roteirização se torna equivalente 

a um problema de cobertura. Neste trabalho, uma metodologia para resolver o 

problema de cobertura é proposta, baseada na heurística do Processo de Decisão de 

Markov Parcialmente Observável (POMDP), onde as observações feitas pelos 

VANTs são consideradas. Essa heurística escolhe as ações baseando-se nas 

informações disponíveis, essas informações são as ações e observações anteriores. 

A formulação da roteirização do VANT é baseada na ideia de dar prioridades mais 

altas às áreas mais propensas a terem vítimas. Para aplicar esta técnica em casos 

reais, foi criada uma metodologia que consiste em quatro etapas. Primeiramente, o 

problema é modelado em relação à área afetada, tipo de drone que será utilizado, 

resolução da câmera, altura média do voo, ponto de partida ou decolagem, além do 

tamanho e prioridade dos estados. Em seguida, a fim de testar a eficiência do 

algoritmo através de simulações, grupos de vítimas são distribuídos pela área a ser 

sobrevoada. Então, o algoritmo é iniciado e o drone, a cada iteração, muda de estado 

de acordo com a heurística POMDP, até percorrer toda a área afetada. Por fim, a 

eficiência do algoritmo é testada através de quatro estatísticas: distância percorrida, 

tempo de operação, percentual de cobertura e tempo para encontrar grupos de 

vítimas. Essa metodologia foi aplicada em dois exemplos ilustrativos: um tornado 

em Xanxerê, no Brasil, que foi um desastre de início súbito em Abril de 2015, e em 

um campo de refugiados no Sudão do Sul, um desastre de início lento que começou 

em 2013. Depois de fazer simulações, foi demonstrado que a solução cobre toda a 

área afetada por desastres em um período de tempo razoável. A distância percorrida 

pelo VANT e a duração da operação, que dependem do número de estados, não 
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tiveram um desvio padrão significativo entre as simulações, o que significa que, 

ainda que existam vários caminhos possíveis devido ao empate das prioridades, o 

algoritmo tem resultados homogêneos. O tempo para encontrar grupos de vítimas, 

e portanto o sucesso da operação de resgate, depende da definição das prioridades 

dos estados, estabelecidas por um especialista. Caso as prioridades sejam mal 

definidas, o VANT começará a sobrevoar áreas sem vítimas, o que levará ao 

fracasso da operação de resgate, uma vez que o algoritmo não estará salvando vidas 

o mais rápido possível. Ainda foi feita uma comparação do algoritmo proposto com 

o método guloso. A princípio, esse método não cobriu 100% da área afetada, o que 

tornou a comparação injusta. Para contornar esse problema, o algoritmo guloso foi 

forçado a percorrer 100% da área afetada e os resultados mostram que o POMDP 

tem resultados melhores em relação ao tempo para salvar vítimas. Já em relação a 

distância percorrida e tempo de operação, os resultados são iguais ou melhores para 

o POMDP. Isso ocorre porque o algoritmo guloso tem o viés de otimizar distância 

percorrida e, logo, otimiza o tempo de operação. Já o POMDP tem como objetivo, 

nesta dissertação, salvar vidas e faz isso de forma dinâmica, atualizando sua 

distribuição de probabilidades a cada observação feita. O ineditismo desta 

metodologia é ressaltado no capítulo 3, onde mais de 139 trabalhos foram lidos e 

classificados com o intuito de mostrar quais são as aplicações que drones em 

logística humanitária, como o POMDP é usado em drones e como a técnica de 

simulação é utilizada em logística humanitária. Apenas um artigo propõe o uso de 

POMDP em operações de resgate com drones mas não aplica a técnica a casos reais. 

Pesquisas futuras podem aplicar a metodologia em desastres em áreas maiores, o 

que tornará necessário o uso de mais de um drone, pois a autonomia passará a ser 

uma restrição em termos de distância percorrida e tempo de operação. Outra 

sugestão é a aplicação da metodologia proposta em casos reais já que os pequenos 

VANTs são programáveis. Nesse caso, o experimento deve ocorrer em terrenos 

privados ou em áreas militares, para atender aos requisitos legais. 

 

 

Palavras-chave 

ajuda humanitária; desastre; VANTs; drones; POMDP; simulação 
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1 Introduction 

One of the most significant difficulties facing United Nations (UN) Agencies 

and Non-Governmental Organizations (NGOs) when responding to rapid onset 

disasters, like floods, earthquakes and hurricanes, is to understand the requirements 

of the affected population accurately and swiftly. Current direct assessment 

methods are time consuming and the data captured is often not conducted in a 

systematic way with the locations sampled not being geographically representative 

(too clustered and too few), and the subsequent reports being produced too late 

(TATHAM, 2009).  

Unmanned Aerial Vehicles (UAVs), or drones, have been used in 

humanitarian response since 2001, after the terrorist attack of 9/11. An 

unprecedented number of small and lightweight UAVs were launched in the 

Philippines after Typhoon Haiyan in 2013, in Haiti following Hurricane Sandy in 

2012 and, more recently, they were flown in response to the massive flooding in 

the Balkans and after the earthquake in China (MEIER, 2014). 

UAV refers to a class of aircrafts that can fly without the onboard presence 

of a pilot. They can be flown by an electronic equipment adapted to the vehicle and 

on a GCS (Ground Control Station), or directly from the ground. In this last case, it 

is common to associate the system with the expression RPV (Remotely Piloted 

Vehicle), since the vehicle is remotely piloted and operated by radio-controlled 

devices. In the literature, other terms also indicate such category of vehicles, such 

as: Drone, ROA (Remotely Operated Aircraft), UVS (Unmanned Vehicle System) 

and UAS (Unmanned Aerial System) (BENDEA et al., 2008). 

According to Hall and Coyne (2014), world governments spent more than 

$6.6 billion on “drone” technology in 2012. This number is expected to increase to 

$11.4 billion a year over the next decade for a worldwide UAV market worth more 

than $89 billion.  

The increased demand for drone technology following the Gulf conflict was 

augmented substantially by the post-9/11 conflicts, in Afghanistan and Iraq. These 

conflicts, coupled with the broader Global War on Terror, created an opening for 

http://irevolution.net/2014/06/25/humanitarians-in-the-sky/
http://irevolution.net/2014/06/25/humanitarians-in-the-sky/
http://irevolution.net/2014/06/25/humanitarians-in-the-sky/
http://irevolution.net/2014/07/07/humanitarian-uav-missions-during-balkan-floods/
http://irevolution.net/2014/07/07/humanitarian-uav-missions-during-balkan-floods/
http://irevolution.net/2014/08/25/humanitarian-uav-china-earthquake/
DBD
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Figure 1: DOD spending on UAS: 1995–2013 (in million US$) 

Source: Hall and Coyne (2014) 

 

 

 

Source: Hall and Coyne (2014) 

 

the expanded use of drones on an unprecedented scale. Figure 1 shows the 

Department of Defense spending on UAS (HALL; COYNE, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The UAV view from above is central for humanitarian response as they can 

capture aerial imagery at a far higher resolution, more quickly and at much lower 

cost than the satellite imagery. Unlike satellites, members of the public can actually 

own UAV, which means that disaster-affected communities can respond to a crisis 

(MEIER, 2014). 

In recent years, mobile sensors have been successfully adopted for terrestrial 

and ocean monitoring. The next logical step in their evolution is to enable mobile 

sensors to explore the aerial dimension, i.e., engineering small and medium sized 

UAVs with sensors and wireless radios to form an Aerial Wireless Sensor Network 

(AWSN). AWSNs are being increasingly used in a variety of applications, such as 

search and rescue operations, which can benefit significantly from the use of 

AWSNs to survey the affected area (often very large) and collect evidences about 

the presence and possible victims’ locations. Manned rescue teams can be 

effectively directed to these locations to maximize the possibility of rescuing 

trapped victims (MURTAZA et al., 2013). 

An important step for the success of the search and rescue mission is the 

process of path planning, i.e., designing the autonomous flight path of the UAVs. 

In most practical disaster situations, the number of trapped victims is unknown. As 

such, the path planning operation becomes equivalent to an area coverage problem, 
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since the UAVs have to search through the entire affected area to find the victims. 

Moreover, in typical disaster areas, certain locations are more likely to have 

stranded victims. Hence, if the UAVs are programmed to first visit such locations, 

then it is likely that the stranded victims will be found quickly. In this work, a 

priority based approach is adopted for coverage path planning in UAVs networks. 

Different priorities are assigned to different regions within the target area based on 

a priori knowledge of the terrain (MURTAZA et al., 2013). 

Cormen et al. (2001) study the coverage problem as an optimization problem 

that models many feature selection problems. Their corresponding decision 

problem generalizes the NP-Complete vertex coverage problem and therefore is 

also NP-Hard. A significant work on coverage is also performed by Zheng et al. 

(2010). They first show that weight minimal coverage using K mobile robots is NP-

Complete. Then they provide an approximate solution based on spanning tree. The 

constrained coverage problem is different from weight minimal coverage problem. 

An optimal weight minimal solution can have a path that has minimal weight. 

However, it can be the case that the cell with highest priority is visited at the end. 

To overcome this issue, in this dissertation we propose a Partially Observable 

Markov Decision Process (POMDP) based solution for the constrained coverage 

problem. It has been shown that POMDP can provide an optimal policy to move 

from the starting position to the highest priority area in order to maximize the 

reward (MURTAZA et al., 2013). Motivated by this, a POMDP based solution to 

guide individual UAVs to high priority areas is proposed.  

According to Cassandra (1998b), POMDPs can be used to model problems in 

very different areas: machine maintenance, robots navigation, elevators controllers, 

computer vision, behavior modeling ecosystems, military applications, medical 

diagnosis, education and other areas. Some notable cases of applications are the 

Hauskrecht (1997) work, with the modeling of heart ischemic diseases. Pineau 

(2004) used POMDP for modeling a robot behavior to help old people to remember 

their commitments, follow them and guide (in a limited way) their dialogs. Poupart 

(2005) implemented a system that follows patient’s behavior with dementia, 

monitoring them with a camera and helping them to wash their hands. 

Lots of researchers have proposed using UAVs for assistance in post disasters 

operations. In this type of operation, the path planning task is determinant for saving 

victim’s lifes. There are many techniques proposed for path planning in the 
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literature. Daniel et al. (2011) have proposed different techniques for coverage, 

connectivity and exploration, comparing them. However, they have not used the 

initial belief about the area, at all. A dynamic algorithm based on geometry is 

proposed by Yanmaz and Bettstetter (2010) but they have not done the redundancy 

analysis for their algorithm. They do not assume any prior knowledge, which gives 

the reason for not doing redundancy based analysis. All of these algorithms do not 

consider the partial observability of the images generated from UAVs (Murtaza et 

al., 2013). 

The key contributions of this study can be summarized as: 

 An innovative methodology to find victims in post-disaster affected areas 

with illustrative examples.  A systematic literature review about the 

applications of UAVs in humanitarian relief did not present any study with 

this purpose. Humanitarian relief is a recent and growing area but only one 

author of this area is studying the use of drones in emergency situations. 

 The formulation of a path planning problem for UAVs in humanitarian 

operation as a constrained coverage problem. The constraint is based on the 

idea of assigning higher priorities to the areas that are more likely to contain 

victims. 

 A heuristic method that uses POMDP as basis and solves the problem of 

coverage using UAVs. 

 The application of the proposed solution in two illustrative examples where 

the efficacy of the path planning has been demonstrated. 

The remainder of this text is organized as follows. Chapter 2 presents the 

framework of the POMDP technique, Chapter 3 presents a literature review about 

the applications of UAVs in humanitarian relief, the use of simulation in 

humanitarian logistics and the POMDP’s solution to UAVs. Next, the methodology 

to formulate the path planning problem is presented on chapter 4. Chapter 5 presents 

two illustrative examples using POMDP to generate an UAV path planning. The 

concluding remarks are in chapter 6. 
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2 Partially Observable Markov Decision Process 

This chapter presents the POMDP framework, a technique which will be used 

in the chapters 4 and 5 to generate the path planning for the drones.  

The Markov Decision Process (MDP) framework models a controlled 

stochastic process with perfectly observable states. It represents the situation in 

which a control agent can be uncertain about possible outcomes of its actions, but 

still be able to verify the resulting state once the action is completed. That is, there 

is no uncertainty regarding to the state the agent currently is, though there is an 

uncertainty regarding the location where it can be after the next action (Hauskrecht, 

1997). 

Imagine the situation in which the agent cannot observe the process state 

directly, but only indirectly through a set of noisy or imperfect observations. The 

feature of partial observability can be important in many real world problems. For 

example, a robot planning its route or deciding about what action to take usually 

works with noisy sensory information; in the medical area, the physician often 

needs to decide about the treatment based on available findings and symptoms while 

being uncertain about an underlying disease. In such cases, the perceptual 

information need not to align with and imply the actual world state with certainty. 

Then the agent that acts in environments with imperfect state information may face 

uncertainty from the two sources (Hauskrecht, 1997): 

 uncertainty on the action outcome; 

 uncertainty on the world state due to imperfect (or partial) information. 

Observations may not be costless. Often they can require a special action to 

be taken before they are available and this action might have both cost or 

transitional effect. The actions that enable observations are called investigative 

actions. The main purpose of performing investigative actions is to narrow the 

uncertainty about the world state, for example, by performing a special test 

revealing more information about the ongoing patient’s disease process, or using 

camera surveillance in order to detect the current position of the robot. Therefore, 

when making the decision about an investigative action one needs to carefully 
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consider both benefits and costs associated with performing it. For example, some 

investigative actions in medicine although very helpful in diagnosing underlying 

problems can be very risky and costly due to their invasiveness (Hauskrecht, 1997). 

The presence of partial observability in the environment, as well as the 

capability of an agent to perform investigative actions, have a major impact on how 

the procedure must work. The reason for this is that (Hauskrecht, 1997): 

 in order to find an optimal control one should account for imperfect 

observability now and in future steps; 

 during planning, one must consider the cost and benefits of both control and 

investigative actions. 

The main distinction between fully observable MDPs and POMDPs is in the 

information one uses to select an action. In the MDP case actions are selected using 

process states that are always known with certainty, while for the POMDP, actions 

are based only on the available information that consists of previous observations 

and actions. Note that the observation model as defined makes it possible to 

condition observations on both actions and process states. This allows one to model 

investigative actions in the same way as other control actions (Hauskrecht, 1997). 

Partially observable Markov decision processes (POMDPs) were first 

introduced in the control theory and operations research communities as a 

framework to model stochastic dynamical systems and to make optimal decisions. 

This framework was later considered by the artificial intelligence community as a 

principled approach to planning under uncertainty. Compared to other methods, 

POMDPs have the advantage of a well-founded theory. They can be viewed as a 

special (continuous) case of the well-known fully observable Markov decision 

process (MDP) model, which is rooted in probability theory, decision theory and 

utility theory (Poupart, 2005). 

Hsiao et al. (2007) provide a method for planning under uncertainty for 

robotic manipulation by partitioning the configuration space into a set of regions 

that are close under compliant motions. Hoey et al. (2007) present a real-time 

system to assist people with dementia during handwashing that combines a flexible 

object tracker with monitoring and decision making using a POMDP. Pineau et al. 

(2003) describe a mobile robotic assistant, developed to assist elderly individuals 

with mild cognitive and physical impairments, as well as support nurses in their 

daily activities. Kim et al. (2008) present experiments that investigated the effect 
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of the user model on POMDP-based dialogue systems and showed that POMDP 

strategies significantly outperform MDP strategies. Thomson et al. (2008) present 

the results of a comparative user evaluation of various approaches to dialogue 

management and the major contribution is a comparison of traditional systems 

against a system that uses a Bayesian Update of Dialogue State approach. 

The focus of the following section is the modelling framework that represents 

action under nondeterminism, imperfect observability as well as investigative 

actions. The modelling framework called POMDP is best viewed as a further 

extension of the MDP framework. 

 

2.1  Model Description 

According to Hauskrecht (1997), POMDP is defined as a tuple (𝑆, 𝐴, 𝑇, 𝑅, 

𝛺𝑂, 𝑧, 𝛾) where: 

 𝑆 is a set of possible states for the stochastic process; 

 𝐴 is a set of actions that can be executed in different decision times; 

 𝑇 ∶  𝑆 𝑥 𝐴 𝑥 𝑆  [0, 1] is a function that gives the probability of the system 

to pass to a 𝑠’ state, considering it was in state 𝑠 and action 𝑎 was executed; 

 𝑅 ∶  𝑆 𝑥 𝐴   is a function that gives the cost (or reward) for taking a 

decision 𝑎 when the process is in 𝑠; 

 𝛺is a set of observations obtained in each decision time; 

 𝑂 ∶  𝑆 𝑥 𝐴 𝑥 𝛺  [0, 1] is a function that gives the probability of an 𝑜 

observation be verified, considering a 𝑠 state and an 𝑎 previous executed 

action; 

 𝑧 is the number of time-steps the agent must plan. It is also called “horizon” 

and can be finite, when there is a fixed number of decision to make, or 

infinite, when the decision making is made repeatedly;  

 𝛾 is a discount factor used to indicate how rewards earned at different time-

steps should be weighted. In general, the more lagged a reward is, the 

smaller its weight will be. Therefore, 𝛾 is a constant in [0,1] indicating how 

a reward should be scaled down for every time-step delay. In this thesis, a 

reward earned 𝑘 steps in the future is scaled down by 𝛾𝑘 (Poupart, 2005). 
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Unless otherwise indicated, this thesis assumes infinite horizon POMDPs 

with a discount factor strictly less than 1. 

The major difference between MDP and POMDP models is that in the 

POMDP model the underlying process state is not known with certainty and can be 

only guessed based on past observations, actions and any prior information 

available. Therefore, one needs to differentiate between the true process state and 

the information (or perceived) state that captures all things important and known 

about the process (Hauskrecht, 1997). 

 

2.2  Information State 

An information state 𝐼𝑡 represents all information available to the agent at the 

decision time that is relevant for the selection of the optimal action. The information 

state consists of either a complete historical series of actions and observations or its 

sufficient statistic. The main reason to use sufficient information states is that they 

can be significantly smaller and of non-expanding dimension and still allow one to 

compute optimal value and control functions (Hauskrecht, 1997).  

A sequence of information states defines a Markov controlled process in 

which every new information state is computed as a function of the previous 

information state, step action and new observations. The equation (1) describes the 

information state: 

 𝐼𝑡 = 𝜏(𝐼𝑡−1, 𝑜𝑡, 𝑎𝑡−1) (1) 

where 𝐼𝑡 and 𝐼𝑡−1 denote new and previous information states, and 𝜏 is the 

information state estimator. The process defined over information states is also 

called the information-state Markov decision process or information-state MDP. In 

principle, one can always reduce the original POMDP into the information-state 

MDP (Hauskrecht, 1997). 

 

2.3  Belief States as Sufficient Information States 

The quantity often used as a sufficient statistic for planning and control in 

POMDPs is the belief state (or belief vector), 𝑏𝑡(𝑠). The belief state assigns 

probability to every process state and reflects the extent to which states are believed 
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to be present. The belief vector 𝑏𝑡(𝑠) represents the probabilities of the process to 

be in the state 𝑠, at time 𝑡, given the information state, as shown in equation (2): 

 𝑏𝑡(𝑠) = 𝑃(𝑠|𝐼𝑡
𝑐) (2) 

where 𝐼𝑡
𝑐 is a complete information vector at time 𝑡. 

The major advantages of a belief information state are that it is defined over 

a finite number of process states and that it is relatively easy to work with. Although 

one cannot guarantee that a belief state corresponds to the sufficient information 

vector for an arbitrary POMDP model, a large number of POMDP models used in 

practice (including standard POMDPs) falls into the class of belief space POMDPs 

(Hauskrecht, 1997). 

 

2.4  POMDP Models 

A POMDP model can be converted into an information state MDP. 

Information states can be represented by complete historical data or appropriate 

sufficient statistics. In POMDPs, observations are always associated with states and 

actions. According to Hauskrecht (1997), there are many different ways to define 

how this relation occurs: 

 POMDP with standard (forward triggered) observations – an observation 

depends solely on the current process state and the previous action. 

 POMDP with backward triggered observations – an action 𝑎𝑡 performed at 

time 𝑡 causes an observation about the process state 𝑠𝑡 to be made. That is, 

the action performed at time 𝑡 enables the observation that refers to the 

“before action” state. 

 POMDP with delayed observations – an action issued by an agent at time 

𝑡 will be performed at time 𝑡 +  𝑘 and an observation made at time 𝑡 will 

become available to the agent at time 𝑡 +  𝑘. 

In this thesis, we will focus on explore how one can construct appropriate 

sufficient information states for standard (forward triggered) observations. 
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2.5  POMDPs as Belief State about MDPs 

According to Cassandra (1998a), an information state, 𝑏, is simply a 

probability distribution over the set of states, 𝑆, with 𝑏(𝑠) being the probability of 

occupying state 𝑠. We define 𝐵 =  𝑃(𝑆) to be the space of all probability 

distributions over 𝑆. A single information state can capture the relevant aspects of 

the entire previous history of the process, and more importantly can be updated after 

each state transition to incorporate one additional step into the historical data set. 

The information state estimator 𝜏 ∶  𝐵 𝑥 𝐴 𝑥 𝛺 𝐵 defines the next belief 

state, given the previous belief state (𝑏), the previous action (𝑎) and the previous 

observation (𝑜). If the observations are always caused by the previous action, the 

current state is 𝑏, the previous action is 𝑎 and the resulting observation is 𝑜, then 

the state estimator can calculate the next belief state 𝑏’ from the previous state 𝑏 

using Bayes rule. Equation (3) defines 𝑏𝑎(𝑠′), the probability of the new state to be 

𝑠′ given the 𝑎 executed action: 

 
𝑏𝑎(𝑠′) = ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)

𝑠′ ∈ 𝑆

 
(3) 

Equation (4) describes 𝑏𝑎(𝑜), the probability of the next observation to be 𝑜 

given the 𝑎 executed action. 

 
𝑏𝑎(𝑜) = ∑ 𝑂(𝑜|𝑠′, 𝑎)𝑏𝑎(𝑠′)

𝑠′ ∈ 𝑆

 
(4) 

The new belief state 𝑏’ is composed by the probabilities 𝑏’(𝑠′), according to 

equation (5): 

 𝑏′(𝑠′) =
𝑂(𝑜|𝑠′, 𝑎)𝑏𝑎(𝑠′)

𝑏𝑎(𝑜)
=

𝑂(𝑜|𝑠′, 𝑎) ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)𝑠′∈𝑆

∑ [𝑂(𝑜|𝑠′, 𝑎) ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)]𝑠′∈𝑆𝑠′∈𝑆
 (5) 

In equations (6) and (7), the function 𝑇’ gives the probability of the system to 

pass from a belief state 𝑏 to another, 𝑏’, after executing an action 𝑎: 

 𝑇′(𝑏′|𝑏, 𝑎) = 𝑃(𝑏′|𝑏, 𝑎) = ∑ 𝑃(𝑏′|𝑏, 𝑎, 𝑜)𝑃(𝑜|𝑏, 𝑎)

𝑜 ∈ Ѳ 

 (6) 

where 

 𝑃(𝑏′|𝑏, 𝑎, 𝑜) = {
1 𝑖𝑓 𝜏(𝑏, 𝑎, 𝑜) = 𝑏′

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 
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The reward function 𝜌presented in equation (8) is defined for the belief states 

and gives the expected reward of each action, given the probabilities of the system 

to be in each state: 

 𝜌(𝑏, 𝑎) = ∑ 𝑏(𝑠)𝑅(𝑠, 𝑎)

𝑠∈𝑆

 (8) 

The solution to the MDP of continuous state space (𝐵, 𝐴, 𝑇’, 𝜌) is the solution 

to POMDP used to build it (a detailed explanation of this section is in 

https://dl.dropboxusercontent.com/u/105316427/Reference%20List.docx).  

 

2.6  Policies 

Given a tuple (𝑆, 𝐴, 𝑇, 𝑅, 𝛺, 𝑂) specifying a POMDP, what action should an 

agent execute at each time-step to earn as much reward as possible over time? Let 

us define ∏ to be the set of all policies 𝜋 (action strategies) that an agent can 

execute. Roughly speaking, a policy is some strategy that dictates which action ɑ 

to execute (at each time-step) based on some information previously gathered. The 

relevant information available to the agent consists of some belief 𝑏0 about the 

initial state of the world and the history (sequence) of actions and observations 

experienced up to the current time-step 𝑡 (ℎ𝑖𝑠𝑡𝑡 = (𝑎0, 𝑜1, 𝑎1, 𝑜2, … , 𝑎𝑡−1, 𝑜𝑡)). 

Since the agent may not have complete knowledge of the initial state of the world, 

we use 𝑏0 to denote a probability distribution over all possible states that 

corresponds to his belief about the initial state. Hence, a policy 𝜋 is a mapping from 

initial beliefs and histories to actions (Poupart, 2005). 

A policy for a belief POMDP can be viewed as a policy for an information 

state MDP. The POMDP policy definition above is Markovian regarding the 

information states but not Markovian regarding the POMDP states as originally 

described. 

2.7  Value Function 

Given the set of all policies ∏, we need a mechanism to evaluate and compare 

policies. Roughly speaking, the goal of an agent is to maximize the amount of 

reward earned over time. This loosely defined criterion can be formalized in many 

ways: one may wish to maximize total (accumulated) or average reward, expected 

or worst-case reward, discounted or undiscounted reward. Unless otherwise stated, 
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this thesis assumes an expected total discounted reward criterion, since it is by far 

the most popular in the literature. Mathematically, we define the value 𝑉𝜋(𝑏0) of 

executing some policy 𝜋 starting at belief state 𝑏0 to be the expected sum of the 

discounted rewards earned at each time-step (Poupart, 2005). Equation (9) presents 

this behavior: 

 𝑉𝜋(𝑏0) = ∑ 𝛾𝑡 ∑ 𝑏𝑡(𝑠)𝑅(𝑠, 𝜋(𝑏𝑡)).

𝑠∈𝑆

ℎ

𝑡=0

 (9) 

 

Here, 𝑏𝑡(𝑠) denotes the probability of 𝑠 according to belief state 𝑏𝑡 and 𝜋(𝑏𝑡) 

denotes the action prescribed by policy 𝜋 at belief state 𝑏𝑡. 

Using value functions 𝑉, we are now in a position to order policies. A decision 

theoretic agent prefers 𝜋 to 𝜋′ when 𝑉𝜋(𝑏) ≥ 𝑉𝜋′(𝑏) for all belief states 𝑏. This 

preference ordering is a partial order because there are pairs of policies for which 

neither policy has a value function greater than the other one for all belief states. 

On the other hand, there always exists an optimal policy 𝜋∗ such that its value 

function 𝑉𝜋∗
dominates all other policies (𝑉𝜋∗

(𝑏) ≥ 𝑉𝜋(𝑏) ∀𝜋, 𝑏) (Poupart, 2005). 

A detailed explanation of this section is in 

https://dl.dropboxusercontent.com/u/105316427/Reference%20List.docx. 

 

2.8  Representation in Hyperplanes 

The representation in hyperplanes as shown in Figure 2 is commonly used in 

exact algorithms. There is a set of vectors associated with each action, where each 

vector defines a hyperplane giving the expected reward for taking that action, given 

the belief state (i.e., there remains a value function). When multiplied by a state of 

belief 𝑏, each vector will give the expected reward as long as the action associated 

with it is taken and an optimal policy is followed until the last time decision. This 

hyperplanes set is usually denoted by Г and Г𝑖 is the policy of the 𝑖𝑡ℎ time decision. 

Figure 2 shows an example of policy where the belief state is represented as 

𝑃(𝑠0) from 0 to 1. Each hyperplane represents the expected value of an action, the 

stretch where a hyperplane dominates all others is the one where the action 

represented by it is optimal. In the figure below, the action 𝛼4 is useless because it 

is dominated by the other. The action represented by the vector 𝛼1 is optimal 
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whenever the belief state have 𝑝(𝑠0) ≥ 0.7. The action of vector 𝛼2 is optimal when 

0.4 ≥ 𝑝(𝑠0) ≥ 0.7 and the action of vector 𝛼3 when 𝑝(𝑠0) ≤ 0.4. 

 

 

 

 

 

 

 

 

Figure 2: Policy for a POMDP represented as a hyperplane set 

Source: Pellegrini and Wainer (2007) 

 

2.9  Solution Algorithms 

Over the years, many algorithms have been proposed to find optimal POMDP 

policies. In the 1960s, the Operations Research community developed the POMDP 

framework that was first formalized by Drake (1962). Then, in the 1970s, 

Smallwood and Sondik (1973, 1971) discovered the piecewise-linear and convex 

properties of optimal value function. This discovery enabled the formulation of 

several dynamic programming (DP) algorithms. 

In this thesis, the POMDP-Solve developed by Cassandra (2015) will be used. 

According to Cassandra (2015), the pomdp-solve program (written in C language) 

solves problems that are formulated as POMDPs. It uses the basic dynamic 

programming approach for all algorithms, solving one stage at a time but working 

backwards in time. It solves finite horizon problems with or without discounting. It 

will stop solving if the answer is within a tolerable range of the infinite horizon 

answer, and there are a couple of different stopping conditions (requires a discount 

factor less than 1.0). Alternatively, it solves a finite horizon problem for some fixed 

horizon length. The code actually implements a number of POMDP solution 

algorithms (Cassandra, 2015): 
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 Enumeration 

The idea is to generate all the possible vectors the computer could 

build. To build a vector the computer requires selecting an action and a 

vector in 𝑉 for each observation. Thus, it must generate a large number of 

vectors. Many of these are not useful, since they are completely dominated 

by other vectors over the entire belief space. It is possible to eliminate the 

useless ones at the expense of some computing time, but regardless, just 

enumerating the vectors takes a long time even for some small problems. 

 Two Pass 

This algorithm starts with an arbitrary belief point, builds the vector 

for that point and then defines a set of constraints over the belief space where 

this vector is guaranteed to be dominant. 

The region defined is actually the intersection of three easier to 

describe regions. When a vector is built from a belief point 𝑏 it is known 

which strategy that vector represents. This strategy is the best one for that 

belief point and some nearby belief points. However, it might not be the best 

strategy for all belief points. There are two ways that this strategy might not 

be the best: either the immediate action does not change and the future 

strategy changes; or another action might become better. 

 Linear Support 

Linear support algorithm forgets about focusing on actions and future 

courses of actions. It simply picks a point, generates the vector for that point 

and then checks the region of that vectors to see if it is the correct one at all 

corners of the region. If not, it adds the vector at that point and checks its 

region. 

 Witness 

This algorithm defines regions for a vector and looks for a point where 

that vector is not dominant. Unlike the previous algorithms, it does not 

worry about all the actions all the time. It concentrates on finding the best 
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value function for each of the actions separately. Once it is found, it will be 

combined into the final 𝑉′ value function. 

 Incremental Pruning 

The incremental pruning algorithm combines elements of 

Enumeration and Witness algorithms. Like Witness, it considers building 

sets of vectors for each action individually and then focusing on each 

observation at a time. The basic idea is to eliminate doing all this region 

business. Since the main problem is finding all the different combinations 

of future strategies, it focuses on this specific aspect. Ater that, adding the 

immediate rewards is an easy step. 

Lots of researchers have proposed using UAVs for assistance in 

Search and Rescue operations. Merino et al. (2012) propose a system to use 

UAVs for forest fire monitoring. Maza et al. (2010) have proposed a 

distributed architecture for disaster management as part of AWARE project. 

Daniel et al. (2011) have discussed the use of UAVs to track the plume 

clouds. 

In the next chapter, some applications of POMDP in UAVs are 

presented through a systematic literature review, which also considers the 

use of UAVs in humanitarian relief.  
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3 Literature Review 

This chapter presents the literature review about the use of POMDP technique 

in drones for rescue operations from three aspects: the applications of UAV’s in 

humanitarian relief, the applications of the POMDP technique in UAVs and the use 

of simulation processes in humanitarian logistics. 

Liu et al. (2014) give an overview of the state of UAV developments and their 

possible applications in civil engineering, like seismic risk assessment, 

transportation, and disaster response. Roahcs et al. (2006) also summarize the 

civilian application of the UAVs with focusing on their application in emergency 

management. Ezequiel et al. (2014) present various applications of UAV aerial 

imagery, in the post-disaster assessment and recovery, in the Philippines. Camara 

(2015) discusses some possible applications of drones over disaster scenarios. 

Zhang and Wu (2014) study UAVs applications in the field of disaster prevention 

and mitigation, search and rescue operations, land resources monitoring, and forest 

fire prevention. Zheng et al. (2013) analyze methods of accessing and processing 

digital image data in mountainous area and its application to emergency response 

management of geological hazard. 

On the previous review papers, the authors did not present the research 

methodology neither the statistical results about the considered papers. Given the 

growing trend of works published in this field, it is important to expose the research 

methodology used in the literature review to allow other authors to update the 

review in the future. This research presents a systematic literature review about the 

applications of UAVs in humanitarian relief with the purpose of helping researchers 

to understand what can still be explored in this area. This section aims to identify 

trends and suggests directions for future research.  

 

3.1  Defining Humanitarian Logistics 

According to the International Federation of the Red Cross and Red Crescent 

Societies (IFRC), disasters can be defined as sudden, calamitous events which 
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disrupt the activities of a society or a community and cause human, material, 

economic, or environmental losses that exceed the recovery capacity of the affected 

community or society using only its own resources (NATARAJARATHINAM et 

al., 2009). 

Van Wassenhove (2006) proposed a classification of natural and man-made 

disasters according to the speed with which the disaster strikes: slow-onset or 

sudden-onset. Famine, drought, political, and refugee crises are examples of the 

former category, whereas the latter includes, for example, earthquakes, hurricanes, 

technological failures, and terrorist attacks. 

There are four primary stages of a disaster: mitigation, preparedness, 

response, and recovery. Mitigation is assessing possible sources of crisis and 

identifying sets of activities to reduce and/or eliminate those sources so that crisis 

never happens or its impact is reduced. Preparedness is developing a crisis response 

plan and training all the involved parties so that in the case of a crisis people know 

their roles and will effectively be able to deal with it. Response constitutes the set 

of immediate actions taken after a crisis occurs, and it aims to reduce the impact by 

utilizing the plans created during the preparedness stage. Recovery is the final set 

of activities in which the objective is to support all involved parties until they 

resume their normal operations (NATARAJARATHINAM et al., 2009). 

Humanitarian logistics is the processes and systems involved in mobilizing 

people, resources, skills and knowledge to help vulnerable people affected by 

disaster (VAN WASSENHOVE, 2006).  

 

3.2  Research Methodology 

The research methodology adopted in this research consists of three steps: 

1. Select databases: Scopus, Web of Science, ProQuest, Scielo 

International, Emerald and Science Direct; 

2. Filter the databases with the following terms in their topic, title, 

abstract or keywords.  

a) "UAV OR Drone" and "Humanitarian OR Disaster OR Relief OR 

Emergency OR Crisis" (in section 3.2.1). There are others synonyms 

for UAVs but they were not considered due to the fact that the only 
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6 papers found with these keywords were not relevant. Time 

restriction filters were not used;  

b) “Humanitarian Logistics” AND “Simulat*” (in section 3.2.2); 

c) “UAV OR Drone” AND “POMDP OR Partially Observable Markov 

Decision Process” (in section 3.2.3). 

3. Read the abstract to confirm the relevance of the papers.  

 

3.3  Results 

3.3.1 Applications of UAVs in Humanitarian Relief  

After applying the methodology above, 117 relevant papers were found (see 

https://dl.dropboxusercontent.com/u/105316427/Reference%20List.docx for the 

complete reference list). Conference proceedings address 77% of the relevant 

papers and journals represent 23% of them. The 26 papers from journals were 

published each one in a different journal.  

In addition to the filters mentioned in section 3.2, the articles in this section 

were classified as follows: 

 Type of disaster (VAN WASSENHOVE, 2006);  

 Phase of the disaster in which the application of UAV was used 

(NATARAJARATHINAM et al., 2009);  

 Year of publication; 

 Approach – it can be a theorical application or a practical case study; 

 Purpose of the applications: 

o 3D Mapping; 

o Mapping of Affected Areas; 

o Image Analysis; 

o UAV’s Network; 

o UAV’s with Sensor in Detection Operations; 

o Cooperation between UAV’s and others vehicles; 

o Review Papers; 

o Route Planning Algorithm;  

o Optimization Problem; 

o Security; 
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o Medical Surgery. 

The categorization approach, year of publication and purpose are suggested 

by the author of this thesis. The purpose categorization was created based on the 

author's experience over the reading of the relevant papers and each paper was 

categorized in only one type of purpose. There are 29 papers that were classified 

just by their abstract because they were not available. 

With the categorizations proposed, some statistic information about the 

application of UAVs in humanitarian relief is presented. 

 

Type of disaster 

Table 1 shows the papers categorized by origin and speed of disaster. 

 

Table 1: Papers categorized by origin and speed of disaster 

 

 Sudden-onset Slow-onset ND Total 

Natural 62 0 8 70 

Man-made 3 5 1 9 

ND 18 0 20 38 

Total 83 5 29  
 

Source: Author 

 

Only 4,3% of the papers address slow-onset disasters, where the use of 

UAV’s occurs mostly in the military context, such as demining of battlefields 

(Kruijff et al., 2013). 7,7% of the papers address man-made disasters, such as 

hazardous chemicals (Wang et al., 2013), atmospheric environmental emergency 

(Xie et al., 2013) and battlefield’s demining (Moussally and Breiter, 2004). The 

natural sudden-onset disasters account for 53% of the papers, where the use of 

UAV’s consists mostly in the mapping of affected areas. 40% of the papers were 

not classified (ND), in both classes (origin and speed). 10% are review papers.  

 

Phase of disaster 

Figure 3 shows the papers categorized by phase of disaster. There were some 

papers where UAV application occurs in the response and/or recovery phases. 
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Four papers consider pre and post disaster phase and 3 papers are Not 

Defined. Figure 3 shows that 94% of papers focused on post disaster phase. It can 

be concluded that research on the post-disaster stages, such as response and 

recovery, is more widespread than research on the pre-disaster stages, such as 

mitigation and preparedness. As the number of disaster is still increasing, it 

indicates that there is a need for research on UAV applications on the pre-disaster 

phases.  

Year of publications 

It is important to reinforce that 73% of the papers were written after 2009 (last 

5 years), as presented in Figure 4, which means that the literature review reflects 

recent applications of UAVs. 
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Approach 

In the Figure 5, it is possible to see that 65% of the papers showed a case 

study, which means that UAV’s were actually used to validate the methodologies, 

algorithms and models proposed. This finding represent that UAV use in 

humanitarian logistics can already be seen as a highly feasible possibility, besides 

being an efficient and effective implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Purpose of the applications 

Figure 6 shows the papers categorized by the purpose of the application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 6, it can be concluded that 60% of the papers address the first 

three classes: 3D mapping, mapping of affected areas and image analysis, which 

are very related topics. This relation occurs because the main objective of early 

30

76

1126%

65%

9%
0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

Theorical Practical Not Defined

2

2

2

3

5

6

7

8

12

16

25

29

0 5 10 15 20 25 30 35

ND

Medical surgery

Security

Optimization problem

Route planning algorithm

Review paper

Cooperation between UAV's and other vehicles

UAV's with sensor in detection operations

UAV's network

Image analysis

Mapping of affected areas

3D mapping

Figure 5: Papers categorized by approach 

Source: Author 

 

Figure 6: Papers categorized by purpose of the application 

Source: Author 

 

DBD
PUC-Rio - Certificação Digital Nº 1412693/CA



33 

 

 

 

impact analysis after a disaster is to define the damages of infrastructure, facilities 

and human life/health/integrity, and that requires suitable data, such as high-

resolution satellite images. The 3D mapping and the image analysis provide more 

clear views of the affected areas as input data for early impact analysis in medium 

and large-scale map. 

Nex and Remondino (2014) report the state of the art of UAV for geomatics 

applications (3D mapping), giving an overview of different UAV platforms, 

applications, and case studies, showing also the latest developments of UAV image 

processing. 

Tsai et al. (2011) use the 3D mapping technique to collect spatial information 

for disaster assessment after devastating Typhoon Morakot that hardly hit southern 

Taiwan during summer 2009. 

Xu et al. (2014) present an example of UAS developed for rapidly obtaining 

disaster information mapping affected areas. Tests showed that the system plays an 

important role in the work of investigating and gathering information about disaster 

in epicentral areas of the Lushan Earthquake, Sichuan, China, such as road 

detection, secondary disaster investigation, and rapid disaster evaluation.  

Tatham (2009) use a case study of the 2005 Pakistan earthquake to illustrate 

how a UAV might be employed and its potential effectiveness.  

Patterson et al. (2014) present novel work on autonomously identifying Safe 

Landing Zones (SLZs) through image analysis which can be utilized upon 

occurrence of a safety critical event.  

Gong et al. (2010), taking Beichuan as the study area, construct the 

hierarchical stripping classification (HSC) framework, a human-computer 

interactive interpretation framework, to detect the geological hazards produced by 

the Wenchuan earthquake. Change detection was performed by overlaying the 

classification maps before and after the earthquake. 

Ueyama et al. (2014) outline a solution that employ UAVs to reduce the 

problems arising from faults in a sensor network when monitoring natural disasters 

like floods and landslides. In the solution put forward, UAVs can be transported to 

the site of the disaster to mitigate problems caused by faults (e.g., by serving as 

routers or even acting as a data mule). Experiments conducted with real UAVs and 
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with our WSN-based prototype for flood detection (already deployed in São Carlos, 

State of São Paulo, Brazil) have proven that this is a viable approach. 

Delle Fave et al. (2012) present a case study whereby the max-sum algorithm 

is applied to coordinate a team of UAVs to provide live aerial imagery to the first 

responders operating in the area of a disaster.  

Regarding UAV’s with sensor in detection operations, Xie et al. (2013) 

present a design framework of the UAV platform based atmospheric environmental 

emergency monitoring system with regard to the components, functions and 

procedures. The application of UAV’s in atmospheric environment emergency 

monitoring system has been one of the important future developmental directions. 

Towler et al. (2012) developed a remote sensing system for radiation 

detection and aerial imaging using a 90 kg autonomous helicopter and sensing 

payloads for the radiation detection and imaging operations. 

Lindemuth et al. (2011) describe a novel marsupial (one robot deploys 

another robot) unmanned surface-aerial team for littoral environments as an 

alternative to a solo UAV or unmanned underwater vehicle (UUV). By itself, a 

UAV can provide above the waterline sensing but cannot provide details below the 

surface. 

Artemenko et al. (2014) develop an UAV that moves around buildings and 

localizes “survived” devices inside a building. This can help to detect victims and 

to accelerate the rescue process – in which fast and accurate localization is essential. 

A LMAT (Localization algorithm with a Mobile Anchor node based on 

Trilateration) path planning algorithm is being validated using simulations and 

evaluated in experiments using a real UAV.  

When a disaster occurs, the UAV of each household should work 

collaboratively in order to collect information in an efficient manner. To achieve 

the purpose, UAVs may exchange information through intermittently connected 

mobile ad hoc networks. Nishikawa et al. (2014) propose a planning-based routing 

protocol for area sensing. The proposed protocol exploits planned route of each 

node to collect information efficiently. 

Quaritsch et al. (2010) deploy an aerial sensor network with small-scale, 

battery-powered and wirelessly connected UAVs carrying cameras for disaster 
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management applications. The UAVs fly in formations and cooperate to achieve a 

certain mission. This paper focus on the optimal placement of sensors formulating 

the coverage problem as integer linear program (ILP). 

Murtaza et al. (2013) solve the coverage problem while optimizing the time 

to find victim when number of victims in the disaster area is unknown. The authors 

formulate the path-planning problem for aerial wireless sensor networks involved 

in search and rescue operation as a constrained coverage problem. The constraint is 

based on the idea of assigning higher priorities to the areas, which are more 

probable to contain victims. 

UAVs must be reliable and have the ability to take appropriate action when 

some functionality is lost due to failure. Fast system reliability assessment 

techniques such as the Binary Decision Diagram (BDD) technique can be used as 

part of the decision making process to decide when the likelihood of the 

autonomous vehicle successfully performing its intended task becomes 

unacceptably low and what action needs to be taken to mitigate this situation. 

Brazenaite et al. (2010) present a reconfiguration process, which is based on 

optimizing the mission reliability under its current conditions and environment. 

This is demonstrated using a UAV carrying out a search and rescue operation.  

Harnett et al. (2008) demonstrate an experimental surgical robot using an 

UAV as a network topology. For the first time, a mobile surgical robotic system 

was deployed to an austere environment and surgeons were able to remotely operate 

the systems wirelessly using a UAV. The network topology demonstrated a highly 

portable, quickly deployable, bandwidth-sufficient and low latency wireless 

network required for battlefield use. 

Lum et al. (2007) present an experiment in the area of Mobile Robotic 

Telesurgery (MRT). The experiment demonstrated that under minimal or low visual 

feedback and network time delay, surgeons are still able to perform surgical tasks. 

Discussion 

The applications discussed in this paper have shown that UAV aerial imagery 

provides domain experts and decision makers essential data for analysis and 

effective action.  
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Earth observation can significantly contribute to improving efforts in 

developing proper disaster mitigation strategies, and providing relevant agencies 

with very important information for alleviating impacts of a disaster and relief 

management. However, technical and financial issues have challenged the 

traditional use of satellite and aerial images for this task (TATHAM, 2009). 

According to Meier (2014), very small and lightweight UAVs are already 

being used in disaster response, currently to capture high-resolution imagery, but 

soon for micro-transportation too. Google has already built and tested autonomous 

aerial vehicles, and believes they could be used for goods deliveries. They could be 

used after earthquakes, floods, or extreme weather events, the company suggested, 

to take small items such as medicines or batteries to people in areas that 

conventional vehicles cannot reach (STEWART, 2014). 

In the military context, armed UAVs pose ethical issues not only with respect 

to their use in armed conflict, but also concerning the prevention of war. In order to 

prevent dangers for arms control, international humanitarian law, for military 

stability as well as for society, armed UAVs should be limited (ALTMANN, 2013).  

From a social acceptance perspective, it is extremely important that concerns 

of privacy are addressed appropriately. Public concerns of insufficient safeguards 

to ensure that UAVs are not used to spy on citizens and unduly infringe upon their 

fundamental privacy, need to be thoughtfully addressed before allowing UAVs to 

fly in the national airspace. The guiding principles for Federal Aviation 

Administration (FAA) policies include mainly the safety of people in the air and on 

the ground (NAMADURI et al., 2013). 

Another challenge that needs to be considered, for practical applications, is 

related to the access of airspace. According to Namuduri et al. (2013), after 

Hurricane Katrina, Joint Terminal Air Controller (JTAC), located in New Orleans, 

deployed their Evolution Tactical UAVs. Their attempts to use these UAVs were 

restricted due to FAA regulations on accessing airspace. The workaround was to 

attach small Evolution UAV to the bottom of a UH-60 helicopter. In response to 

the growing demand for civilian use of UAVs, FAA has been rigorously pursuing 

policies for safe and secure use of UAVs in the national airspace. 

http://irevolution.net/2014/08/27/who-using-uavs/
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Given that the cost of building and operating a UAVs is reducing whilst its 

operational capabilities are increasing, it would seem likely (if not inevitable) that 

UAVs would perform an useful and cost-effective function within the overall post-

disaster needs assessment process and, thereby, assist in the mitigation of the risk 

in the response to such disasters (TATHAM, 2009). 

Innovations in UAVs become valuable tools in capturing and assessing the 

extents and amount of damages (XU et al., 2014). Their UAS is becoming 

increasingly popular for civilian use due to their relatively low cost, ease of 

operation and the emergence of low cost navigation and imaging sensors, with 

performances comparable to higher priced sensors. The operational nature and cost 

factors make this technology applicable to build a low cost mapping system 

(TATHAM, 2009). 

 This increasing use of UAVs for humanitarian purposes explains why the 

United Nations (UN) recently published an official policy brief on the topic. A 

number of UN groups like the Office for the Coordination of Humanitarian Affairs 

(OCHA) are actively exploring the use of UAVs for disaster response. These 

organizations have also joined the Humanitarian UAV Network (UAViators, 2014) 

to promote the safe and responsible use of UAVs in humanitarian settings (MEIER, 

2014). 

 

3.3.2 Simulation process in humanitarian logistics 

Simulation processes are frequently used in the validation of optimization 

models. In humanitarian logistics, these models aim to minimize the transportation 

costs or the time to deliver the supplies. 

Diaz et al. (2013) present an overview of some of the most relevant modeling 

efforts discussed in the literature. They also present opportunities for the application 

of modeling and simulation (M&S) in specific areas of humanitarian logistics and 

emergency management. 

Camacho-Vallejo et al. (2014) validate a model for humanitarian logistics to 

optimize decisions related to the distribution of international aid after a catastrophic 

disaster. Their case study address the earthquake in Chile in 2010. 

http://irevolution.net/2014/08/26/official-un-brief-on-humanitarian-uavs/
http://uaviators.org/
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Mulyono and Ishida (2014) simulate a volcanic eruption disaster to validate 

their method of improving the performance of lateral transshipment operations 

through cluster formation of shelters before the disaster event occurs. 

Gibbons and Samaddar (2009) use fully factorial computer simulation to 

identify referral network attributes and referral decision rules that streamline the 

routing of people to urgent, limited services. As an example of a scenario, the model 

represents vaccine delivery in a city of 100.000 people during the first 30 days of a 

pandemic. 

Mohan et al. (2013) present a detailed simulation model of the warehouse 

operations where food is processed which serve as a framework for making changes 

that improve the efficiency of the operations in terms of handling extra volume 

without investing in additional warehouse space. 

Altay and Pal (2014) use agent-based modeling and simulations to show that 

clusters, if properly utilized, encourage better information flow and thus facilitate 

effective response to disasters. 

Lau et al. (2012) analyze the simulation results to evaluate the performance 

of an optimization model for post-disaster response. Their model aims to automate 

the coordination of scarces resources that minimizes the loss of human lives. 

Ertem et al. (2012) use a genetic algorithm, a simulated annealing algorithm 

and an integer program to analyze the bid construction phase of procurement actions 

in disaster relief and humanitarian logistics. 

Uchida (2012) proposes a model that clarifies how disaster warning issuance 

conditions affect “cry wolf” syndrome and develops a simulation model that 

expresses the behavior of local authority and the residents.  

 

3.3.3 Applications of POMDP technique in UAVs 

The Partially Observable Markov Decision Process (POMDP) model is 

usually explored for high level decision making for Unmanned Air Vehicles 

(UAVs) because of its imperfect sensors and uncertainties due to the stochastic 

nature of the problem. 
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Ragi and Chong (2012, 2013a) present a path-planning algorithm to guide 

unmanned aerial vehicles for tracking multiple ground targets based on the theory 

of POMDP. More recently, Ragi and Chong (2013b, 2014), design a decentralized 

guidance control method for autonomous UAVs tracking multiple targets. They 

incorporate the cost of communication into the objective function of the POMDP, 

i.e., they explicitly optimize the communication among the UAVs at the network 

level along with the kinematic control commands for the UAVs. 

Chanel et al. (2012, 2013) present a case study about the multi-target 

detection and recognition mission by autonomous UAV. The POMDP model deals 

in a single framework with both perception actions (controlling the camera’s view 

angle), and mission actions (moving between zones and flight levels, landing) 

needed to achieve the goal of the mission, i.e., landing in a zone containing a car 

whose model is recognized as a desired target model with sufficient belief. 

An application of UAVs of military importance is that of using a team of 

UAVs carrying passive sensors to detect and track enemy emitters, e.g., radars. 

Sarunic (2009a, 2009b) present an algorithm for trajectory optimization of 

autonomous aerial vehicle performing multiple target tracking. The problem is 

approached by formulating it as a POMDP and developing a moving-horizon 

solution taking into account short and long term costs. 

Miller et al. (2009a, 2009b) describes a principle framework for designing a 

planning and coordination algorithm to control a fleet of UAVs for the purpose of 

tracking ground targets. The algorithm runs on a central fusion node that collects 

measurements generated by sensors on-board the UAVs, constructs tracks from 

those measurements, plans the future motion of the UAVs to maximize tracking 

performance, and sends motion commands back to the UAVs based on the plan. 

Hanselmann et al. (2008) propose an algorithm for scheduling and control of 

passive sensors. This algorithm is based on a POMDP and an expected short or 

long-term reward given by the sum of Rényi information divergences between 

Gaussian densities. This approach allows effective and efficient implementations 

and the algorithm is demonstrated on simulations of situation scenarios of practical 

interest. 
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Nowak and Lamont (2008) present an innovative new paradigm for 

developing SO-based (Self-Organized-based) autonomous vehicles providing a 

structured approach to organizing a Self-Organized (SO) development technique 

that can be crossed utilized in multiple disciplines. 

Balaban and Alonso (2013) describe a general modeling approach for a class 

of prognostic decision making (PDM) problems with non-linear system degradation 

processes and uncertainties in state estimation, action effects, and future operating 

conditions. The approach is based on continuous POMDP used in conjunction with 

“black box” system simulations. The approach is illustrated with a mission planning 

case study where a PDM system is tasked with optimizing the vehicle route after an 

in-flight component fault is detected. 

Schesvold et al. (2003) present two models in their paper: one uses planning 

horizon to model the fuel level, while the other models the fuel level explicitly in 

the states. 

 

3.3.4 Conclusion 

This chapter presented a systematic literature review about the applications 

of UAVs in humanitarian relief and showed an increase in the number of 

publications on the subject over the past ten years. Although humanitarian relief is 

a recent and growing area, it should be noted that only one author of this area is 

studying the use of drones in emergency situations (Tatham, 2009). The most part 

of contributions in this area, which comes from robotic and mechanical engineering, 

are focused on improving the equipment’s performance. In section 3.3.1, 117 papers 

were surveyed, classified, and some gaps were identified, allowing suggestions for 

future research. The conclusions are the need for more studies about mitigation and 

preparedness and the small number of papers on man-made and slow-onset 

disasters. It should be noted that UAV is a promising technology, which continues 

to be technically developed, that have positive impact in humanitarian settings and 

is already being used by universities and private organizations, such as Google, to 

test and improve their methodologies, algorithms and models.  

This chapter has also showed that the use of the POMDP technique applied 

to drones involves optimization of the communication among UAVs, multi-target 
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detection and recognition, and SO-based (Self-Organized-based) autonomous 

vehicles. Simulation applications in Humanitarian Logistics has the bias to test the 

models and algorithms developed. Although these solutions are used in very 

specific ways, they together have a potential application for humanitarian relief. In 

the next chapter, a methodology is proposed where UAVs cover the disaster 

affected area based on partial knowledge of the terrain before hand. This 

methodology prioritises the cell according to their location and proposes a solution 

to this constrained coverage problem based on POMDP. 
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4 Methodology  

This chapter presents a methodology to model the constrained coverage 

problem, solve it based on the POMDP technique and test it through simulation 

process. This methodology consists of four steps: modeling, simulating, solving, 

and analyzing statistics. The flowchart resuming these processes is presented in 

Figure 7. 
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Figure 7: Methodology’s Flowchart 

Source: Author 
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4.1 Modeling 

1. Define the affected region to be flown 

It should be defined by a specialist who can identify which are the most 

affected areas. 

2. Calculate the area of the affected region 

In this thesis, Daftlogic (2015) will be used to calculate the area of the 

affected region, but any tool that can find the distance between two or 

more points on a map can be used. 

3. Choose the type of UAV 

The type of UAV depends on the take off weight, flight altitude, flight 

time (endurance), flight distance (data link range) and type of mission. 

Bento (2008) classified the types of UAVs according to Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Classification of types of UAVs 

Source: Bento (2008) 
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4. Define the average flight height 

The average flight height depends on the type of UAV, which was 

already defined in the last step of the process. For example, a special task 

UAV can fly above 30.000 meters.  

5. Define the camera to be used 

The camera should have a High Definition (HD) to capture images with 

sufficient resolution to identify affected people. 

6. Calculate the area representing the states of the process 

The size of each state, 𝑒² square meters, as shown in Figure 8, should 

represent the area from which the UAV can capture images with 

sufficient resolution to identify affected people. This area depends on the 

camera resolution and the flight altitude, which were already defined in 

the last steps. Let ℎ be the flight height, ɑ the camera angle and 𝑒² the 

area representing the states of the process. 𝑒 can be calculated according 

to equation (10): 

 

 

 

 

 

 

 

 

 

 

 𝑒 = 2 ∗ ℎ ∗ tan (
ɑ

2
) (10) 

 

7. Divide the region to be flown in the states of the process 

The affected area will be visualized as a 2D grid, denoted by 𝐴. The grid 

is divided into square cells, with 𝑒² square meters, denoted by 𝑎𝑖𝑗where 

𝑖 and 𝑗 refer to the 𝑥 and 𝑦 axis of the grid. 

h 

e  

ɑ 

Figure 8: Area representing the states of the process 

Source: Author 
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All the disaster victims to be rescued, referred as 𝑋, reside within 𝐴. The 

individual victims are referred as 𝑥𝑖 and a cell 𝑎𝑖𝑗 can have more than 

one victim. 

Some part of the area of interest might be unobservable due to obstacles. 

For the purpose of this research, it is assumed that these obstacles can be 

viewed as individual cells. The set of cells containing obstacles are 

referred to as 𝐶. In this thesis, it is assumed that there are no victims 

located in the cells with obstacles. 

8. Define the starting point 

The starting point should be an open area so the UAV can take off safely. 

9. Define states priorities 

Firstly, a criteria should be adopted to prioritise the states of the process. 

It can be from 0 to 10, for example, where 0 is the state with less 

probability of having affected people and 10 is the state with more 

probability. After that, each state should be classified according to this 

criteria. For the states with obstacles, a priority -1 is used to discourage 

the drone to go there. It is also used to delimitate the area to be flown. 

 

4.2 Simulating 

1. Define the states with victims 

The reason to define some states with victims is to test the solver in terms 

of time to find victims, distance travelled and coverage percentage. In 

each cell it is possible to find multiple victims.  

 

4.3 Solving 

1. Define the discount factor 

The discount factor depends on the horizon of the POMDP. In this thesis, 

infinite horizon POMDPs are assumed with a discount factor strictly less 

than 1. 

2. Define the states 

The definition of states is a number indicating each state, from 0 to 𝑛, or 

a list of strings, from a to 𝑧, for example. 
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3. Define the actions 

The definition of actions can be also a number indicating the actions or a 

list of strings, one for each entry. These mnemonics strings can not begin 

with a digit. 

4. Define the observations 

The definition of observations follows the same rule as definition of states 

and actions, they can be either numbers or strings. 

5. Calculate the transition probabilities 

The transition probabilities depend on the start state, the final state and 

the actions. They can be represented as the example below: 

If the UAV is in the state 𝑠0 and takes the action 𝐴, it will be on the state 

𝑠1 with 100% (or 1.0) of probability. So 𝑇: 𝑠1 ∶  𝑠0 ∶  𝐴 1.0 (see appendix 

I).  

The purpose of these probabilities is to define to which state the UAV can 

move. 

6. Define the reward 

The reward (or cost) should be defined according to each observation and 

should represent the benefits of finding victims. 

7. Define actual state 𝒃(𝒔) 

The specification of the actual state is optional. There are many different 

formats for the actual state (starting state) in Appendix I. 

8. Calculate belief map 

The initial belief map is defined as 𝐵. Belief 𝑏𝑖𝑗 is the belief for victim 

being in cell 𝑎𝑖𝑗 and is a probability between 0 and 1. The initial belief 

map is defined based on the terrain information. 

Once a priority was assigned to each cell, these priorities can be 

converted into probabilities for initializing the belief map, simply 

dividing the priority of each cell by the sum of priorities of all the cells. 

The result becomes the initial belief map for the proposed heuristic. 

9. Write the input file 

The input file should contain the discount factor, states, actions, 

observations, transition probabilities, actual state (starting state), the 

DBD
PUC-Rio - Certificação Digital Nº 1412693/CA



48 

 

 

 

belief map (represented as the observation probabilities) and the rewards. 

The input file format is presented in Appendix I. 

10. Execute the solver 

The step-by-step to execute the solver is described in the POMDP ORG 

(Cassandra, 2015). 

In this thesis only 1 UAV with WiFi connection will be used, which 

means that in each iteration the solver should be executed only once. 

11. Handle output file 𝑹(𝒔, 𝒂) 

The solver output, which is presented in Appendix II, is a set of vectors 

𝑅(𝑠, 𝑎) which need to be handled (in Excel, for example, change points 

to commas). These vectors represent the reward for executing the action 

𝑎 if the UAV is in the state 𝑠. 

12. Calculate 𝒑(𝒔, 𝒂) 

We should calculate 𝑝(𝑠, 𝑎) multiplying 𝑅(𝑠, 𝑎) and 𝑏(𝑠) vectors. The 

𝑝(𝑠, 𝑎) vector also represents the reward for executing the action 𝑎 if the 

UAV is in the state 𝑠, however it considers the probability of the UAV 

be in the state 𝑠. 

13. Calculate max 𝒑(𝒔, 𝒂) 

We can calculate max 𝑝(𝑠, 𝑎) with Excel functions. 

14. Act as max 𝒑(𝒔, 𝒂) 

Execute the a action associated with max 𝑝(𝑠, 𝑎). If max 𝑝(𝑠, 𝑎) = 0 it 

means that the neighbour cells have already been visited so the UAV 

should go, through a straight line, to the highest priority state (not 

traveled), starting with the closest ones. There is no need to go to states 

which 𝑏𝑖𝑗 = 0. 

15. Update the traveled cell’s priority to ZERO 

The reason to update the traveled cell’s priority to zero is to discourage 

the UAV to travel there again. 

16. If the UAV found victims, increase not-traveled-neighbour-cells 

priority 1 unit until the sum of belief map be ZERO. 

 

The dotted orange line in Figure 7 represents the algorithm below (steps 3.7 

to 3.16): 
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Begin 

  While ∑ 𝑏𝑖𝑗 ≠ 0 

   Ask the solver for an action a 

   If s, 𝑎𝑖) = 0, for every i = 0, 1, 2, …, 7 

Go, through a straight line, to the highest priority 

state (not traveled), starting with the closest ones. 

   If not 

    Go to the s’ state which corresponds to the a action 

End 

 

4.4 Analyzing Statistics 

The analysis of coverage percentage and the time to find groups of victims 

are proposed in Murtaza et al. (2013) to show that POMDP can achieve 100% 

coverage and can locate victims very fast. In this dissertation, the states have the 

same area, so the coverage percentage by iteration would be a linear curve. In this 

thesis, the coverage percentage was calculated based on the total traveled distance 

instead of the total area.  

The traveled distance and operation’s duration statistics are also calculated to 

show that search and rescue operations with drones are viable in terms of mechanic 

specification. 

1. Calculate traveled distance 

The traveled distance can be calculated according to the actions, for 

example, if the UAV can go to only 4 directions (north, south, east, west), 

the traveled distance in each iteration will be 𝑥, but if the UAV can go to 

8 directions (including north-east, north-west, south-east, south-west), 

the traveled distance can be 𝑥 or 𝑥√2. 

2. Calculate operation’s duration 

As the traveled distance is already known, the operation’s duration can 

be calculated by dividing the traveled distance by the average speed of 

the drone. 

3. Calculate coverage percentage 

The coverage percentage can be calculated, in each iteration, by 

summarizing the accumulated traveled distance and dividing it by the 
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total traveled distance. Equation (11) describes 𝑑𝑖 as the traveled distance 

in iteration 𝑖, 𝐷 as total traveled distance and the coverage percentage in 

iteration 𝑛 can be calculated as: 

 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 %𝑛 =
∑ 𝑑𝑖

𝑛
𝑖=0

𝐷
 (11) 

4. Calculate time to find groups of victims 

The time to find groups of victims can be calculated dividing the traveled 

distance to find groups of victims 𝐺𝑖 by the average speed of the UAV. 

For example, if the UAV traveled 150m until finding the first group of 

victims and the UAV average speed is 15 m/s, the time to find the first 

group of victims is 10 seconds. 

 

These statistics are used to measure the POMDP performance but they can 

also be used to compare the POMDP with the greedy algorithm. According to 

Roughgarden et al. (2013), greedy algorithms are often used to solve optimization 

problems: you want to maximize or minimize some quantity subject to a set of 

constraints.  

According to Cormen et al. (2001), a greedy algorithm always makes the 

choice that looks best at the moment, based on the greed. That is, it makes a locally 

optimal choice in the hope that this choice will lead to a globally optimal solution. 

If a 𝑢𝑖 is in cell 𝑎𝑖𝑗, it selects the neighbouring cell 𝑎𝑘𝑙 based on the greed to 

find the victim. This leads the 𝑢𝑖 to move to a cell with highest belief probability. 

If there is a set of neighbours 𝑁𝑖𝑗 which have same belief to have the victim, the 

UAV choose one cell among 𝑁𝑖𝑗 at random (Murtaza et al., 2013).  
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5 Examples 

This chapter applies the methodology proposed in Chapter 4 in two 

illustrative examples, a tornado in Brasil and a refugee’s camp in South Sudan, and 

compares the results with a greedy algorithm.  

 

5.1 Tornado in Xanxerê, Santa Catarina, Brazil 

A tornado hit Xanxerê in Brazil's southern Santa Catarina province on April 

21st, 2015. Dozens of houses had roofs torn off by the wind, which may have 

reached 330 km/h, according to the National Institute of Meteorology (Inmet). In 

the city, two people were killed and about 120 people were taken to hospitals, 

according to the military police. About 2600 homes were affected according to the 

balance sheet of the military police, and about a thousand people were left 

homeless. The electric central of Santa Catarina (Celesc) reported that 200,000 

consumer units were left without light in 20 cities in the region, after 11 

transmission towers fell or became inclined. 

The main affected neighbours were: Pinheiros, Primo Tacca, Bortolon, 

Esportes, São Jorge and Colatto. See Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

SÃO JORGE 

Figure 9: Xanxerê Neighbours 

Source: Adapted from Google Maps (2015) 
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Once the disaster was geographicaly defined, the methodology proposed in 

chapter 4 will be applied in order to create the drone path planning. 

 

Modeling 

1. Define the affected area to be flown 

Esportes – the most affected area in Xanxerê, Santa Catarina. 

2. Calculate the area of affected region 

To calculate the area of Esportes the Daftlogic (2015) was used, which 

resulted an area of 843.379,38 m² or 0,84 km². See Figure 10.   

 

 

 

 

 

 

 

 

 

 

 

3. Choose the type of UAV 

 

Accordingly to Bento (2008), tactical UAVs are recommended for search 

and rescue operations. However the mini/micro UAVs will be used 

because it has a sufficient data link range for Esportes and it has a lower 

operation cost. 

4. Define the average flight height 

This example will work with an average flight height of 250m. 

5. Define the camera to be used 

In this example, a Nikon D7000 camera was considered. 

6. Calculate the area representing the states of the process 

As the average flight height is 250m and a Nikon D7000 is the camera - 

it has a 36,8º angle – we can calculate the area from which the UAV can 

Figure 10: Esportes Area 

Source: Adapted from Daftlogic (2015) 
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capture images with sufficient resolution to identify affected people. See 

Figure 11. 

 

 

 

 

 

 

 

 

 

 

To be conservative, it will be used an area of 150m x 150m instead of 

166,5m x 166,5m. Then, the area representing each state is 22.500m². 

 

7. Divide the region to be flown in the states of the process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

250m 

x = 166,5m 

36,8°  

Figure 11: Nikon D7000 Image Resolution 

Source: Author 

 

Figure 12: States of the Process 

Source: Adapted from Google (2015) 

 

DBD
PUC-Rio - Certificação Digital Nº 1412693/CA



54 

 

 

 

As the affected area (in green in Figure 12) is not perfectly rectangular and 

the representation of states is a square, the mapped area (red set) become 

bigger than 0,84km². The total mapped area is 1,03km² instead of 0,84km². 

8. Define the starting point 

The starting point is the red cell above due to the fact that there is a soccer 

field over there. It is better to start a flight in an outdoor region with no 

obstacles than an urban area with many buildings.  

9. Define states priorities 

The criteria used to define the states priorities in Figure 13 was: priority 

1 to the cells with more than 70% of green area (small probability to find 

victims), priority 2 to cells with half green half occupied area, and 

priority 3 to cells with more than 70% occupied area (high probability to 

find victims). We assign a priority class of -1 to the cells which are 

classified as obstacles. This is to discourage the UAVs from visiting such 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: States Priorities 

Source: Adapted from Google (2015) 
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Simulating 

1. Define the states with victims 

The states will be named from 0 to 45 as shown in Figure 14. The state 

46 was created as a obstacle cell to delimitate the area to be flown. 

 

 

 

 

 

 

 

 

 

 

There are victims in cells 5, 6, 14, 20, 26, 27, 31, 32, 37, 38, 39, 41 and 45. 

These cells have priorities 2 and 3. 

 

Solver 

1. Define the discount factor 

In this thesis, a 0.95 discount factor will be used (Cassandra, 2015). 

2. Define the states 

The states will be named from 0 to 45 according to the input file format 

(see Appendix I). 

3. Define the actions 

The actions are: go north (N), go south (S), go east (E), go west (W), go 

north-east (NE), go north-west (NW), go south-east (SE) or go south-

west (SW). 

4. Define the observations 

An observation can be y (yes, there is a victmin in the observed area) or 

n (no, there is not a victmin in the observed area). If it is a “yes” 

  46 46 46 46 46 46 

46 46 46 0 1 2 3 46 

46 4 5 6 7 8 9 46 

46 10 11 12 13 14 15 46 

46 16 17 18 19 20 21 46 

46 22 23 24 25 26 27 46 

46 28 29 30 31 32 33 46 

46 34 35 36 37 38 39 46 

46 40 41 42 43 44 45 46 

46 46 46 46 46 46 46 46 

Figure 14: States with victims 

Source: Author 
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observation, then the UAV reports the location (GPS coordinates) via 

wifi to the ground rescue teams. 

5. Calculate the transition probabilities 

The transition probabilities for the state 0 are: 

T: n : s0 : s46 1 

T: s : s0 : s6 1 

T: e : s0 : s1 1 

T: w : s0 : s46 1 

T: ne : s0 : s46 1 

T: nw : s0 : s46 1 

T: se : s0 : s7 1 

T: sw : s0 : s5 1 

See https://dl.dropboxusercontent.com/u/105316427/Anexos.docx for 

the other states. 

6. Define the reward 

The reward is 1 if the UAV finds a state with victims (y observations) and 

0 if not (n observation). 

7. Define actual state 𝒃(𝒔) 

𝑏(𝑠) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 𝟏, 0, 0, 0, 0, 0, … 0]  

Which means that the probability of the system to be in the state 13 is 1 

(or 100%) and the probability of the system to be in any other state is 0 

(or 0%). 
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8. Calculate belief map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Write the input file 

The input file (see 

https://dl.dropboxusercontent.com/u/105316427/Anexos.docx) should 

be written according to Appendix I. 

10. Execute the solver 

The step-by-step to execute the solver is described in the POMDP ORG 

(Cassandra, 2015). 

11. Handle output file 𝑹(𝒔, 𝒂) 

The solver output, a set of vectors 𝑅(𝑠, 𝑎), was handled in Excel to 

replace dots with commas and to paste the values vertically. The figures 

16 and 17 below show the first output treatment. 

 

5   

0.00 0.00 0.00 

 

Figure 16: Solver output for the first 3 states before handle in Excel 

Source: Author 

Figure 15: Belief Map 

Source: Author 
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R(s,5) 

0,00 

0,00 

0,00 

 

Figure 17: Solver output for the first 3 states after handle in Excel 

Source: Author 

 

12. Calculate 𝒑(𝒔, 𝒂) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13. Calculate max 𝒑(𝒔, 𝒂) 

In the example above (Figure 18), the max 𝒑(𝒔, 𝒂) is 0,06. 

14. Act as max 𝒑(𝒔, 𝒂) 

Execute the action 2 or 6. 

 

 

 

 

 

 

 

 

Figure 18: Calculating reward function of each action multiplying the state probability by 

the reward vector of each action 

Source: Author 
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15. Update the traveled cell’s priority to ZERO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16. If the UAV found victims (y observation), increase not-traveled-

neighbour-cells priority 1 unit until the sum of belief map be 

ZERO. 

After repeating steps 8 to 15 of the Solver process above (until the sum of 

belief map is zero), some statistics can present the efficiency of the algorithm. The 

simulation was repeated 5 times, with the same simulation scenario, and the rounds 

will be named as S1, S2, S3, S4 e S5. The figures 20, 21, 22 and 23 show the results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Belief map updated 

Source: Author 
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Statistics 

 Calculate traveled distance 

 

 

 

 

 

 

 

 

 

 

 

 

 Calculate operation’s duration 
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Figure 20: Traveled Distance (km) 

Source: Author 

 

Figure 21: Duration (min) 

Source: Author 
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 Calculate coverage percentage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Calculate time to find groups of victims (G1, G2, …, G13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing with Greedy Algorithm 

In the first simulation of the greedy algorithm, the coverage percentage 

achieved 52% of the total area which means that the UAV traveled only through 24 

of the 46 states. Once a UAV misses some cell near the start location to move 

towards high priority areas, it is very hard for it to come back to cover it later.  
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Figure 22: % Coverage 

Source: Author 

 

Figure 23: Time to Find Groups of Victims (min) 

Source: Author 
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Forcing the greedy algorithm to travel the entire area, the results showed that 

the average traveled distance of the greedy is 0.3 km more than POMDP (Figure 

24), the average operation’s duration is 0.33 minutes more than POMDP (Figure 

25) and the average time to find groups of victims is 2 minutes more than POMDP 

(Figure 26).  
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9,13
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8,25
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Average Traveled Distance

Figure 24: Average Traveled Distance (POMDP x Greedy) 

Source: Author 
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10,14
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Figure 25: Average Operation's Duration (POMDP x Greedy) 

Source: Author 
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The most significant difference is in the time to find groups of victims, where 

POMDP has a 20% faster performance than greedy, due to the fact that the POMDP 

has the bias to save lifes, updating its belief at each iteration through observations 

while the greedy focuses on minimizing the traveled distance.  

These 2 minutes, which represent 25% of total operation’s duration, can realy 

make difference in saving lives. If the victim suffers from a cardiac arrest, for 

example, one minute can increase chance of survival from 8% to 80% (Momont, 

2014). 

In this section, the Xanxerê’s coverage problem was defined based on partial 

knowledge of terrain beforehand. We prioritize the cells according to probability of 

having victims and propose a solution to this constrained coverage problem based 

on POMDP. The results showed that the mapping of the affected region can be 

made in less than 10,5 minutes and the coverage is 100% in every simulation. A 

comparison with greedy algorithm showed that POMDP has a better performance 

mostly in terms of time to find groups of victims.  
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Figure 26: Average Time to Find Groups of Victims (POMDP x Greedy) 

Source: Author 
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5.2 BOR PoC – Refugee’s Camp, South Sudan 

According to UNHCR (2015), since the outbreak of the conflict in South 

Sudan in December 2013, continuing insecurity, and logistical constraints owing to 

heavy rains, have hampered the delivery of food and other essential items. Access 

to displaced people has been restricted, and refugees have faced serious protection 

concerns. At the same time, humanitarian workers have been at heightened risk. Six 

humanitarian workers were killed in a refugee-hosting area of Maban County in 

August 2014. 

The multiplicity of armed elements throughout South Sudan greatly 

exacerbated the challenge of re-establishing the civilian character of refugee’s 

camps in the north and north-east of the country. This also affected the protection 

of the environment with the erosion of law and order in refugee settlements and 

camps, as well as in surrounding communities (UNHCR, 2015). 

Competition over scarce resources has in some places caused tensions and 

fighting between refugees and host communities. Greater attention must be paid to 

the needs of host communities in order to foster peaceful coexistence. This is 

important in order to minimize the risk of secondary displacement of refugees and 

further instability in the border regions (UNHCR, 2015). 

Insecurity and access constraints have required the use of air transport for 

goods and humanitarian personnel, driving up the costs of delivering assistance and 

services to refugees and the internally displaced people (IDPs). The crisis has also 

stymied plans to improve camp-based refugees' living conditions through the 

upgrading of emergency structures into more organized, sustainable constructions 

(UNHCR, 2015). 

The South Sudanese civilian population at large is bearing the brunt of the 

conflict, with some 1.4 million people uprooted by the end of September 2014. The 

continuing violence could also precipitate famine in the country, where millions 

suffer from food insecurity and varying degrees of malnutrition as they cannot 

plant, grow and harvest crops due to their forced displacement (UNHCR, 2015).. 

According to Reach (2015), the Bor protection of civilian (PoC) site was 

established in December 2013 following outbreaks of violence which forced people 

into the UNMISS base for refuge. The PoC was relocated to the new Bor PoC Site 

in September 2014. 
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After defining the disaster area, the methodology proposed in chapter 4 will 

be applied to create the drone path planning. 

 

Modeling 

1. Define the affected area to be flown 

BOR PoC – a refugee’s camp in South Sudan. 

2. Calculate the area of affected region 

According to Reach (2015), the area of BOR PoC refugee’s camp is 

80905 m² or 0,080905 km². See Figure 27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Choose the type of UAV 

Accordingly to Bento (2008), tactical UAVs are recommended for search 

and rescue operations. However the mini/micro UAVs will be used 

Figure 27: BOR PoC Area 

Source: Adapted from Reach (2015) 
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because it has a sufficient data link range for BOR PoC area and it has a 

lower operation cost. 

4. Define the average flight height 

This example will work with an average flight height of 150m. 

5. Define the camera to be used 

In this example, a Nikon D7000 camera was considered. 

6. Calculate the area representing the states of the process 

As the average flight height is 150m and a Nikon D7000 is the camera - 

it has a 36,8º angle – we can calculate the area from which the UAV can 

capture images with sufficient resolution to identify affected people. See 

Figure 28. 

 

 

 

 

 

 

 

 

 

To be conservative, it will be used an area of 90m x 90m instead of 

99,79m x 99,79m. Then, the area representing each state is 1.800m². 

7. Divide the region to be flown in the states of the process 

 

 

 

 

 

 

 

 

 

 

 

150m 

x = 99,79 m 

36,8°  

Figure 28: Nikon D7000 Image Resolution 

Source: Author 

 

Figure 29 States of the Process 

Source: Adapted from Reach (2015) 
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8. Define the starting point 

The starting point is the red cell above (Figure 29) due to the fact that 

there is a football pitch over there.  

9. Define states priorities 

The criteria used to define the states priorities in Figure 30 was: priority 

1 to the cells with contingency area or with volleyball field (small 

probability to find victims), priority 2 to cells with half contingency half 

occupied area or to cells with clinics, WFP center, pharmacy, labs, and 

priority 3 to cells with occupied area (high probability to find victims). 

We assign a priority class of -1 to the cells which are classified as 

obstacles. This is to discourage the UAVs from visiting such cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulating 

1. Define the states with victims 

The states will be named from 0 to 35 as shown in Figure 31. The state 

36 was created as a obstacle cell to delimitate the area to be flown. 

1 

1 

1 

1 

1 

1 1 

1 1 

1 

1 1 

2 

2 

2 2 

2 

3 

2 

2 3 

3 3 

3 3 

3 3 

3 

3 3 

3 3 3 
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Figure 30: States Priorities 

Source: Adapted from Google 
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There are victims in cells 56, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 24, 25, 

26, 30, 31 and 32. These cells have priorities 2 and 3. 

 

Solver 

1. Define the discount factor 

In this thesis, a 0.95 discount factor will be used (Cassandra, 2015). 

2. Define the states 

The states will be named from 0 to 35 according to input file format (see 

Appendix I). 

3. Define the actions 

The actions are: go north (N), go south (S), go east (E), go west (W), go 

north-east (NE), go north-west (NW), go south-east (SE) or go south-

west (SW). 

4. Define the observations 

An observation can be y (yes, there is a victmin in the observed area) or 

n (no, there is not a victmin in the observed area). If it is a “yes” 

observation, then the UAV reports the location (GPS coordinates) via 

wifi to the ground rescue teams. 

5. Calculate the transition probabilities 

The transition probabilities for the state 0 are: 

T: n : s0 : s46 1 

T: s : s0 : s6 1 

36 36 36 36 36 36 36 36 

36 0 1 2 3 4 5 36 

36 6 7 8 9 10 11 36 

36 12 13 14 15 16 17 36 

36 18 19 20 21 22 23 36 

36 24 25 26 27 28 29 36 

36 30 31 32 33 34 35 36 

36 36 36 36 36 36 36 36 

Figure 31: States with victims 

Source: Author 
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T: e : s0 : s1 1 

T: w : s0 : s46 1 

T: ne : s0 : s46 1 

T: nw : s0 : s46 1 

T: se : s0 : s7 1 

T: sw : s0 : s46 1 

See https://dl.dropboxusercontent.com/u/105316427/Anexos.docx for 

the other states. 

6. Define the reward 

The reward is 1 if the UAV finds a state with victims (y observations) and 

0 if not (n observation). 

7. Define actual state 𝒃(𝒔) 

𝑏(𝑠) = [0, 0, 0, 0, 0, 𝟏, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … 0]  

Which means that the probability of the system to be in the state 5 is 1 

(or 100%) and the probability of the system to be in any other state is 0 

(or 0%).  

8. Calculate belief map 

 

 

 

 

 

 

 

 

 

 

 

 

The values presented in Figure 32 are rounded. 

9. Write the input file 

The input file (see 

https://dl.dropboxusercontent.com/u/105316427/Anexos.docx) should be 

written according to Appendix I. 

Figure 32: Belief Map 

Source: Author 
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10. Execute the solver 

The step-by-step to execute the solver is described in the POMDP ORG 

(Cassandra, 2015). 

11. Handle output file 𝑹(𝒔, 𝒂) 

The solver output, a set of vectors 𝑅(𝑠, 𝑎), was handled in Excel to 

replace dots with commas and to paste the values vertically. The figures 

33 and 34 below show the first output treatment. 

5   

0.00 0.00 0.00 

 

Figure 33: Solver output for the first 3 states before handle in Excel 

Source: Author 

 

R(s,5) 

0,00 

0,00 

0,00 

 

Figure 34: Solver output for the first 3 states after handle in Excel 

Source: Author 

 

12. Calculate 𝒑(𝒔, 𝒂) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Calculating reward function of each action multiplying the state probability by 

the reward vector of each action 

Source: Author 

Estado (s) P(s) = b(s)  R(s, 0)  R(s, 1)  R(s, 2)  R(s, 3)  R(s, 4)  R(s, 5)  R(s, 6)  R(s, 7)  R(s, 0)  R(s, 1)  R(s, 2)  R(s, 3)  R(s, 4)  R(s, 5)  R(s, 6)  R(s, 7)

0 0 0,00 0,04 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

1 0 0,00 0,04 0,03 0,03 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

2 0 0,00 0,04 0,01 0,03 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

3 0 0,00 0,04 0,01 0,03 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

4 0 0,00 0,03 0,01 0,01 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

5 1 0,00 0,01 0,00 0,01 0,00 0,00 0,00 0,03 0,00 0,01 0,00 0,01 0,00 0,00 0,00 0,03

6 0 0,03 0,04 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

7 0 0,03 0,04 0,04 0,04 0,00 0,03 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

8 0 0,03 0,04 0,04 0,04 0,00 0,03 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

9 0 0,01 0,04 0,03 0,04 0,00 0,03 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

10 0 0,01 0,03 0,01 0,04 0,00 0,01 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

11 0 0,01 0,01 0,00 0,03 0,00 0,01 0,00 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

12 0 0,04 0,04 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

13 0 0,04 0,04 0,04 0,04 0,00 0,04 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

14 0 0,04 0,03 0,04 0,04 0,00 0,04 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

15 0 0,04 0,03 0,03 0,04 0,00 0,04 0,00 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

30 0 0,04 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

31 0 0,04 0,00 0,03 0,04 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

32 0 0,03 0,00 0,01 0,04 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

33 0 0,01 0,00 0,01 0,03 0,00 0,03 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

34 0 0,01 0,00 0,01 0,01 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

35 0 0,01 0,00 0,00 0,01 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

36 0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Sum 0,00 0,01 0,00 0,01 0,00 0,00 0,00 0,03

State Probabilities Reward vector of each action Reward function of each action
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13. Calculate max 𝒑(𝒔, 𝒂) 

In the example above (Figure 35), the max 𝒑(𝒔, 𝒂) is 0,03. 

14. Act as max 𝒑(𝒔, 𝒂) 

Execute the action 7. 

15. Update the traveled cell’s priority to ZERO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16. If the UAV found victims (y observation), increase not-traveled-

neighbour-cells priority 1 unit until the sum of belief map be ZERO. 

After repeating steps 8 to 15 of the Solver process above (until the sum of 

belief map is zero), some statistics can present the efficiency of the algorithm. The 

simulation was repeated 5 times and the rounds will be named as S1, S2, S3, S4 e 

S5. Figures 37, 38, 39 and 40 show the results. 

 

 

 

 

 

 

 

 

Figure 36: Belief map updated 

Source: Author 
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Statistics 

 Calculate traveled distance 

 

 

 

 

 

 

 

 

 

 

 

 

 Calculate operation’s duration 
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Figure 37: Traveled Distance (km) 

Source: Author 

Figure 38: Duration (min) 

Source: Author 
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 Calculate coverage percentage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Calculate time to find groups of victims (G1, G2, …, G13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing with Greedy Algorithm 

As the area of Bor PoC is ten times smaller than Xanxerê, the difference 

between the POMDP and the greedy was not significant in terms of travaled 

distance and operation’s duration. The average time to find groups of victims with 

greedy took 1 minute more than POMDP which means that POMDP performed 

25% better. See Figure 41. 
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Figure 39: % Coverage 

Source: Author 

Figure 40: Time to Find Groups of Victims (min) 

Source: Author 
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In this section, the Bor PoC coverage problem was defined based on partial 

knowledge of terrain beforehand. We prioritize the cells according to probability of 

having victims and propose a solution to this constrained coverage problem based 

on POMDP. The results showed that the mapping of the affected region can be 

made in less than 5,5 minutes and the coverage is 100% in every simulation. 

Comparing with greedy algorithm, POMDP has no significantly better results in 

traveled distance and operation’s duration because of the small area, differently of 

Xanxerê’s example. The larger the area, the greater the difference in performance 

of these statistics. On the other hand, the average time to find groups of victims was 

25% faster in POMDP heuristic. 

 

5.3 Discussion 

After applying the proposed methodology in two illustrative examples, the 

statistics presented a 100% coverage percentage in both cases, which means that 

the algorithm has been successfully implemented in a rapid-onset and in a slow-

onset disaster.  

The traveled distance and the operation’s durations did not have a 

significative standard deviation between the five simulations in each example, even 

if the paths were different (each path is available at 

(https://dl.dropboxusercontent.com/u/105316427/Anexos.docx). It means that even 

3,0

4,0

2,5

3,0

3,5

4,0

4,5

POMDP Greedy

Average Time to Find Groups of Victims

Figure 41: Average Time to Find Groups of Victims (POMDP x Greedy) 

Source: Author 

DBD
PUC-Rio - Certificação Digital Nº 1412693/CA



75 

 

 

 

if there were many possible paths, due to the tied priorities, the algorithm has 

homogeneous results. See Figure 42 and 43. The entire affected area was traveled 

in less than 10 minutes, in the Xanxerê’s example, and in less than 5 minutes, in 

Bor PoC example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the time to find groups of victims is completely variable 

and susceptible to the state’s priorities. If the priorities were set by a non-specialist, 

the algorithm can firstly direct the UAV to areas with no victims. In this case, the 

search and rescue operation will not be successfully implemented, because it is not 

saving lifes as soon as possible. 

Figure 42: Xanxerê’s Path Planning (Simulation 1) 

Source: Author 

Figure 43: Xanxerê’s Path Planning (Simulation 5) 

Source: Author 
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The affected area of Bor PoC was ten times smaller than Xanxerê’s but the 

average traveled distance and the average operation’s duration were just two times 

smaller than Xanxerê’s, which means that they are not directly proportional to the 

affected area only, it also depends on the number of states. If the flight height in 

Bor PoC example was the same as Xanxerê example, the number of states would 

be 10 instead of 37 and then the traveled distance and operation’s duration would 

be smaller.  

Murtaza et al. (2013) has also compared the POMDP algorithm with the 

greedy but the simulations included three scenarios: a practical placement scenario, 

a mixed placement scenario and a worst placement scenario. The results, in all of 

them, which were measured as percentual coverage and time to find groups of 

victims, showed that POMDP achieved 100% of the affected area while greedy did 

not. The time to find groups of victims was just a few seconds less in POMDP but 

their theorical application has just 225m². There is no percentage of performance 

improvement because the paper just shows comparative graphics, without numbers. 

Meier (2014) affirms that very small and lightweight UAVs will be used in 

disaster response for micro-transportation soon. As the POMDP algorithm identify 

the areas with victims, it could be used as a micro-transport delivering emergency 

materials such as medicines and supplies for the affected people. 
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6 Conclusions 

This dissertation provides a POMDP based methodology for finding victims 

in disaster affectd areas with UAVs. In a disaster situation, the number of victims 

is unknown, so the UAV path planning becomes similar to an area coverage 

problem, since it has to search through the entire affected area to find the victims. 

Given this consideration, the UAV path planning is a very important task for saving 

victim’s lifes.  

In this study, the coverage problem is based on partial knowledge of the 

terrain before hand. The cells were prioritised according to their location and the 

solution to this constrained coverage problem was based on a Markov decision 

process. The POMDP considers that actions are based only on the available 

information, that consists of previous observations and actions, and can provide an 

optimal path planning for UAVs to move from a starting position to the highest 

priority area in order to maximize the reward. Motivated by this, a methodology to 

guide UAVs through the entire affected area is proposed. 

This methodology has an innovative character, as the systematic literature 

review did not present any study with this purpose. An increase in the number of 

publications about the applications of UAVs in humanitarian relief over the past ten 

years was presented on a systematic literature review on chapter 3. Only one author 

of this area is studying the use of drones in emergency situations although 

humanitarian relief is a recent and growing area. Mostly contributions in this area 

are to improve the equipment’s performance and comes from robotic and 

mechanical engineering. In the section 3.3.1, 117 papers were surveyed, classified, 

and some gaps were identified, allowing suggestions for future research. The 

conclusions are the need for more studies about mitigation and preparedness and 

the small number of papers on man-made and slow-onset disasters. It is important 

to reinforce that UAV is a promising technology, which is still being technically 

developed, that have positive impact in humanitarian settings and is already being 

used by private organizations, such as Google, to test and improve their 

methodologies, algorithms and models. 
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Chapter 3 has also showed that the use of the POMDP technique applied to 

drones involves optimization of the communication among UAVs, multi-target 

detection and recognition, and SO-based (Self-Organized-based) autonomous 

vehicles. Simulation applications in Humanitarian Logistics has the bias to test the 

models and algorithms developed. Although these solutions are used in very 

specific ways, they together have a potential application for humanitarian relief.  

The methodology proposed in this disseration consists of four steps. The first 

step is to model the problem defining the affected area, the type of UAV, the camera 

resolution, the starting point, the states priorities and the area of the states. The 

simulation is the second step where victims need to be addressed in order to test the 

efficiency of the algorithm. Then, the solver can be initialized and the UAV will 

travel the entire affected area looking forward to finding victims. Finally, the last 

step measures the results through the following statistics: traveled distance, 

operation’s duration, coverage percentage and time to find groups of victims.  

In order to test the efficiency of the POMDP solution, Chapter 5 presents two 

illustrative examples: Xanxerê’s tornado, which is a rapid-onset disaster, and Bor 

PoC refugee’s camp, in South Sudan, a slow-onset disaster. After five simulations 

in each example, it was shown that the proposed solution achieves 100% coverage 

while optimizing the time to find victims as well. The conclusions included the need 

of a specialist to set the state’s priorities, so the algorithm can firstly direct the UAV 

to areas with victims, and be successfully implemented saving lifes as soon as 

possible. It was reinforced that the number os states is crucial for determing the 

UAV’s traveled distance and operation’s duration, which should be realistic and 

mechanically viable statistics.  

Future research should implement the proposed methodology in disasters 

with a large area such as hurricane Sandy and typhoon Haiyan. In this cases, the 

POMDP output file and the excel sheets should be integrated and automated, and 

more than one UAV should be used, as the autonomy will become a constraint to 

the algorithm in terms of traveled distance and operation’s duration. A sensitivity 

analysis is also recommended in order to measure the variation in the statistics from 

the number of states, for example. A practical application is also a possible future 

research as the UAVs nowadays are programmable, so the algorithm can be 

implemented in a real UAV. The area to be flown for practical applications should 
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attend its regional legal questions, so the recommendation would be using a private 

terrain or a military area. 
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Appendix I: POMDP Solve – Input File Format 

 

According to Cassandra (2015), there are 5 lines that must appear at the 

beginning of the .pomdp input file. They may appear in any order as long as they 

precede all specifications of transition probabilities, observation probabilities and 

rewards.  

discount: %f 

values: [ reward, cost ] 

states: [ %d, <list-of-states> ] 

actions: [ %d, <list-of-actions> ] 

observations: [ %d, <list-of-observations> ] 

The definition of states, actions and/or observations can be either a number 

indicating how many there are or it can be a list of strings, one for each entry. These 

mnemonics cannot begin with a digit. For instance, both: 

actions: 4 

actions: north south east west 

will result in 4 actions being defined. The only difference is that, in the latter, the 

actions can then be referenced in this file by the mnemonic name. Even when 

mnemonic names are used, later references can use a number as well, though it must 

correspond to the positional numbering starting with 0 in the list of strings. The 

numbers are assigned consecutively from left to right in the listing starting with 

zero. 

When listing states, actions or observations one or more whitespace 

characters are the delimiters (space, tab or newline). When a number is given 

instead of an enumeration, the individual elements will be referred to by 

consecutive integers starting at 0. 

After the preamble, there is the optional specification of the starting state. 

There are a number of different formats for the starting state. You can either: 
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 enumerate the probabilities for each state, 

 specify a single starting state, 

 give a uniform distribution over states, or 

 give a uniform distribution over a subset of states. 

For the last one, you can either specific a list of states too be included, or a 

list of states to be excluded. Examples of this are: 

start: 0.3 0.1 0.0 0.2 0.5 

 

start: uniform 

 

start: first-state 

 

start: 5 

 

start include: first-state third state 

 

start include: 1 3 

 

start exclude: fifth-state seventh-state 

After the initial five lines and optional starting state, the specifications of 

transition probabilities, observation probabilities and rewards appear. These 

specifications may appear in any order and can be intermixed. Any probabilities or 

rewards not specified in the file are assumed to be zero. 

You may also specify a particular probability or reward more than once. The 

definition that appears last in the file is the one that will take effect. This is 

convenient for specifying exceptions to a more general specification. 

To specify a single, individual transition probability: 

T: <action> : <start-state> : <end-state> %f 

The observational probabilities are specified in a manner similar to the 

transition probabilities. To specify individual observation probabilities: 

O : <action> : <end-state> : <observation> %f 
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To specify an individual reward: 

R: <action> : <start-state> : <end-state> : <observation> %f 

After execute the POMDP-Solve with the .pomdp file format, the solver will 

generate a .alpha file (or value function file) as an output. 
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Appendix II: POMDP Solve – Output File Format 

The format is simply: 

A 

V1 V2 V3 ... VN 

 

A 

V1 V2 V3 ... VN 

 

... 

Where A is an action number and the V1 through VN are real values 

representing the components of a particular vector that has the associated 

action. Note that the length of the lists needs to be equal to the number of states in 

the POMDP. 

To find which action is the "best" for a given set of alpha vectors, the belief 

state probabilities would be use in a dot product against each alpha vectors 

coefficients. The vector with the highest value is the winner and the action 

associated with that vector is the best action to take for that belief state given that 

value function. 

In the chapter 4, we will see an experiment using this POMDP-solver and 

these file formats, where the POMDP technique will be used as a route algorithm 

for a drone to find victims after a disaster. 
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