
Marcos Paulino Roriz Junior

DG2CEP: An On-line Algorithm for Real-time
Detection of Spatial Clusters from Large Data
Streams through Complex Event Processing

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Informá-
tica of PUC-Rio in partial fulfillment of the requirements for the
degree of Doutor em Ciências - Informática.

Advisor: Prof. Markus Endler

Rio de Janeiro
March 2017

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Marcos Paulino Roriz Junior

DG2CEP: An On-line Algorithm for Real-time
Detection of Spatial Clusters from Large Data
Streams through Complex Event Processing

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências - Informática. Approved by the
undersigned Examination Committee.

Prof. Markus Endler
Advisor

Departamento de Informática – PUC-Rio

Prof. Marco Antonio Casanova
Departamento de Informática – PUC-Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática – PUC-Rio

Prof. Francisco José da Silva e Silva
Departamento de Informática – UFMA

Prof.a Flávia Coimbra Delicato
Departamento de Ciência da Computação – UFRJ

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, March 22nd, 2017

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

All rights reserved.

Marcos Paulino Roriz Junior
The author received his Bachelor degree in Computer Science
from the Instituto de Informática (INF) of Universidade
Federal de Goiás (UFG) in 2011. He also received his Master
degree in Computer Science from INF – UFG in 2013. During
his academic career, he participated in several research projects
from private and public agencies, such as Microsoft Research,
Dell, RNP, and FAPERJ. During his PhD at PUC-Rio
he received the prestigious FAPERJ “Nota 10” scholarship.
Currently, he is a professor at Instituto Federal de Goiás.

Bibliographic data
Roriz Junior, Marcos Paulino

DG2CEP: An On-line Algorithm for Real-time Detection
of Spatial Clusters from Large Data Streams through Complex
Event Processing / Marcos Paulino Roriz Junior; advisor:
Markus Endler. – 2017.

v., 121 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2017.

Inclui bibliografia

1. Informática – Teses. 2. Aglomeração Espacial. 3. Aglo-
meração em Fluxo de Dados. 4. Aglomeração em Tempo Real.
5. Detecção On-line de Aglomerados. 6. Processamento de
Fluxo de Dados. I. Endler, Markus. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

For my beloved grandmother Rosalha Maria Borges.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Acknowledments

First, I would like to thank my family: my grandmother Rosalha Borges, my
mother Luciane Borges, my aunt Crisitiane Borges, and my brother Diogo
Borges, for always being there for me and supporting me in life, especially in
difficult moments such as this one where I had to absent from their presence to
accomplish this work. Without them I would not be able to fulfill this work.

I would like to thank my adviser, Prof. Markus Endler, to whom I have
an immense gratitude and admiration for his excellent guidance, availability,
patience and for having given me the honor of working with him. His research
vision has inspired and shaped me into becoming a better researcher. I’m sure
our research partnership will continue after the end of my PhD.

I would also like to thank Prof. Francisco Silva. His critical view guided
and shaped numerous parts of this thesis. I learned a lot from him. In the same
way, I would also like to thank Prof. Marco Casanova and Prof. Hélio Lopes for
encouraging me to work with this topic and providing numerous suggestions,
especially the insight for the density heuristic.

I would like to thank my roommates during the PhD journey: Àlan Guedes,
Eduardo Araújo, Derlyane Simão, Katia Vega, and Thais Abreu. I learned a lot
living with them and they made the PhD journey with more joy and happiness.
I will miss you all. In addition to my funny roommates, I would also like to
thank all my friends (1801!) in Rio during this journey, especially: Aline Saettler,
André Brandão, André Moreira, Andy Alvarez, Daniel Pires, Guilherme Lima,
Hugo Gualandi, Lisseth Saavedra, Lívia Ruback, Luis Talavera, Paula Ceccon,
Patrícia Carrion, Rodrigo Santos, and Roberto Azevedo. In addition, I would
also like to thank my friends from Goiânia: Ivahy Santos, João Guilherme, and
Marco Aurélio Lino Massarani.

I would also like to thank everyone from LAC, especially André Mac
Dowell, Bruno Olivieri, Luis Talavera, Igor Vasconcelos, and Rafael Vasconcelos.
I would like to deeply thank Prof. Luiz Fernando Soares (in memoriam) and all
the Telemídia members. I am proud to be an honorary member of Telemídia.

I would like to thank all professors and staff from PUC-Rio that taught
and helped me a lot during the PhD. More specifically, Regina Maria Zanon
da Silva, for her patience and availability throughout the PhD. Thank you for
helping me with all the numerous bureaucratic questions and procedures!

Finally, I would like to thank CNPQ, FAPERJ (even with the late
payments!), and Microsoft Research for their financial aid.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Abstract

Roriz Junior, Marcos Paulino; Endler, Markus (Advisor).DG2CEP:
An On-line Algorithm for Real-time Detection of Spatial
Clusters from Large Data Streams through Complex Event
Processing. Rio de Janeiro, 2017. 121p. PhD Thesis – Departa-
mento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Spatial concentrations (or spatial clusters) of moving objects, such
as vehicles and humans, is a mobility pattern that is relevant to many
applications. A fast detection of this pattern and its evolution, e.g., if
the cluster is shrinking or growing, is useful in numerous scenarios, such as
detecting the formation of traffic jams or detecting a fast dispersion of people
in a music concert. An on-line detection of this pattern is a challenging
task because it requires algorithms that are capable of continuously and
efficiently processing the high volume of position updates in a timely manner.
Currently, the majority of approaches for spatial cluster detection operate in
batch mode, where moving objects location updates are recorded during time
periods of certain length and then batch-processed by an external routine,
thus delaying the result of the cluster detection until the end of the time
period. Further, they extensively use spatial data structures and operators,
which can be troublesome to maintain or parallelize in on-line scenarios. To
address these issues, in this thesis we propose DG2CEP, an algorithm that
combines the well-known density-based clustering algorithm DBSCAN with
the data stream processing paradigm Complex Event Processing (CEP) to
achieve continuous and timely detection of spatial clusters. Our experiments
with real world data streams indicate that DG2CEP is able to detect the
formation and dispersion of clusters with small latency while having a higher
similarity to DBSCAN than batch-based approaches.

Keywords
Spatial Clustering Stream Clustering Real-time Clustering On-line

Clustering Complex Event Processing

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Resumo

Roriz Junior, Marcos Paulino; Endler, Markus. DG2CEP: Um
Algoritmo On-line para Detecção em Tempo Real de Aglo-
merados Espaciais em Grandes Fluxos de Dados através
de Processamento de Fluxo de Dados. Rio de Janeiro, 2017.
121p. Tese de Doutorado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.
Clusters (ou concentrações) de objetos móveis, como veículos e seres

humanos, é um padrão de mobilidade relevante para muitas aplicações. Uma
detecção rápida deste padrão e de sua evolução, por exemplo, se o cluster
está encolhendo ou crescendo, é útil em vários cenários, como detectar a
formação de engarrafamentos ou detectar uma rápida dispersão de pessoas
em um show de música. A detecção on-line deste padrão é uma tarefa
desafiadora porque requer algoritmos que sejam capazes de processar de
forma contínua e eficiente o alto volume de dados enviados pelos objetos
móveis em tempo hábil. Atualmente, a maioria das abordagens para a
detecção destes clusters operam em lote. As localizações dos objetos móveis
são armazenadas durante um determinado período e depois processadas em
lote por uma rotina externa, atrasando o resultado da detecção do cluster até
o final do período ou do próximo lote. Além disso, essas abordagem utilizam
extensivamente estruturas de dados e operadores espaciais, o que pode ser
problemático em cenários de grande fluxos de dados. Com intuito de abordar
estes problemas, propomos nesta tese o DG2CEP, um algoritmo que combina
o conhecido algoritmo de aglomeração por densidade (DBSCAN) com o
paradigma de processamento de fluxos de dados (Complex Event Processing)
para a detecção contínua e rápida dos aglomerados. Nossos experimentos
com dados reais indicam que o DG2CEP é capaz de detectar a formação
e dispersão de clusters rapidamente, em menos de alguns segundos, para
milhares de objetos móveis. Além disso, os resultados obtidos indicam que
o DG2CEP possui maior similaridade com DBSCAN do que abordagens
baseadas em lote.

Palavras-chave
Aglomeração Espacial Aglomeração em Fluxo de Dados Aglomeração

em Tempo Real Detecção On-line de Aglomerados Processamento de Fluxo
de Dados

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Table of contents

1 Introduction 14
1.1 Motivation 15
1.2 Problem Setting 16
1.3 Research Questions 17
1.4 Goals and Proposed Approach 18
1.5 Contributions 19
1.6 Organization 19

2 Fundamental Concepts 20
2.1 Spatial Clustering 21
2.1.1 Density-Based Spatial Clustering of Applications with Noise 23
2.1.2 Clustering Large Position Data Streams 26
2.2 Complex Event Processing 28
2.2.1 CEP Engine and Continuous Queries Languages 30
2.2.2 CEP Primitives 33
2.2.3 CEP Context and Time Windows 35
2.3 Summary 37

3 Related Work 39
3.1 Sampling 39
3.2 Micro-Clustering 40
3.3 Grid-based 42
3.4 Complex Event Processing 44
3.5 Summary 45

4 Density-Grid Clustering using Complex Event Processing 47
4.1 Stream Receiver EPN 49
4.2 Cell EPN 52
4.2.1 Dense Cell Discovery 52
4.2.2 Sparse Cell Discovery 56
4.3 Grid EPN 58
4.3.1 Grid Cluster Representation 59
4.3.2 Grid Add, Update, and Merge 60
4.3.3 Grid Disperse 66
4.4 Discussion 69
4.5 Limitations 71
4.6 Summary 72

5 Answer Loss Heuristic 74
5.1 Transient Heuristic 74
5.2 Usage and Limitations 78
5.3 Related Work 79
5.4 Summary 80

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

6 Evaluation 82
6.1 Implementation 83
6.2 Data Stream 84
6.3 Answer Loss 85
6.3.1 Experiment Parameters 86
6.3.2 Experiment Setup 87
6.3.3 Result and Analysis 87
6.4 Elapsed Time 91
6.4.1 Experiment Parameters 92
6.4.2 Experiment Setup 92
6.4.3 Results and Analysis 93
6.5 Similarity 100
6.5.1 Experiment Parameters 101
6.5.2 Experiment Setup 102
6.5.3 Results and Analysis 102

7 Conclusion 108
7.1 Research Questions 109
7.2 Limitations 111
7.3 Contributions 112
7.4 Future Work 113

Bibliography 114

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

List of figures

2.1 Spatial clustering of moving objects in an urban scenario. 21
2.2 Overall difference between k-Means and DBSCAN clustering results. 22
2.3 Example of core (E), border (F), and noise (G) moving objects. 24
2.4 Data Stream Clustering Framework. 27
2.5 Scenario where spatially and timely close moving object are located

in different batches. 28
2.6 An overview of an Event Processing Network (EPN) workflow. 30
2.7 Classification of CEP real-time primitives. 33
2.8 An overview of a context partition, SameObjectLU, that subdivides

the LocationUpdate event stream using each event’s uuid value. 35
2.9 Example of Landmark and Sliding Time Windows. 36

3.1 Regions represented by tokens. Patterns can be extracted using
“regex”. 44

4.1 Overview of DG2CEP distributed event processing architecture. 48
4.2 Example of DG2CEP ε√

2 ×
ε√
2 grid cell division. 49

4.3 Stream Receiver EPN and Translation EPA. 51
4.4 Overview of DG2CEP Cell EPN. 52
4.5 Cell Event Processing Network. 58
4.6 Overview of Grid EPN. 59
4.7 An example of the Clusters streaming window. 60
4.8 Sample scenario of merging grid clusters in DG2CEP. 65
4.9 Grid Event Processing Network. 68
4.10 Blind Spot Scenario in DG2CEP, for minPts = 4. 71
4.11 DG2CEP result as a superset of DBSCAN one. 72

5.1 Density neighborhood of a given cell. Note that the neighbor’s n
closer inner slots ns is relative to the position of Gij. 76

5.2 Linear and exponential weights for the heuristic inner slots (S = 4). 77
5.3 Cell configuration scenarios. In (a) the scenario forms a cluster,

while in (b) it does not. 78

6.1 Second-by-second DBSCAN ground truth result (second t). 85
6.2 Percentage of Incorrectly Detected (FP) and Undetected Clusters

(FN) in heuristic-enhanced DG2CEP (for ε = 100, minPts = 20,
and S = 10). 87
(a) Linear Weight 87
(b) Exponential Weight 87

6.3 Relationship between heuristic results and the total number of cell
slots subdivisions S for linear weights. 88
(a) False Positive 88
(b) False Negative 88

6.4 Graphical comparison between the off-line DBSCAN clustering result
and DG2CEP on-line clustering result. 89

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

6.5 Relationship between heuristic results and the total number of cell
slots subdivisions S for exponential weights. 90
(a) False Positive 90
(b) False Negative 90

6.6 Elapsed time to detect a cluster formation w.r.t. DBSCAN. 95
(a) DG2CEP Single Instance 95
(b) D-STREAM Single Instance (ε = 100 m) 95
(c) DG2CEP 2–2 95
(d) DG2CEP 4–4 95

6.7 Elapsed time to detect a cluster dispersion w.r.t. DBSCAN. 97
(a) DG2CEP Single Instance 97
(b) D-STREAM Single Instance (ε = 100 m) 97
(c) DG2CEP 2–2 97
(d) DG2CEP 4–4 97

6.8 Elapsed time to detect a cluster evolution w.r.t. DBSCAN. 99
(a) DG2CEP Single Instance 99
(b) D-STREAM Single Instance (ε = 100 m) 99
(c) DG2CEP 2–2 99
(d) DG2CEP 4–4 99

6.9 Similarity of detect clusters with their counterpart in DBSCAN. 103
(a) DG2CEP Single Instance 103
(b) DG2CEP 4–4 103
(c) D-STREAM (ε = 50m) 103
(d) D-STREAM (ε = 100m) 103

6.10 Evolution of the Detected Rand Index (“similarity”) of DG2CEP
and D-STREAM with DBSCAN. 105
(a) DG2CEP (ε = 50 m) 105
(b) D-STREAM (ε = 50 m) 105

6.11 Evolution of the Complete Rand Index (“similarity”) of DG2CEP
and D-STREAM with DBSCAN. 105
(a) DG2CEP (ε = 50 m) 105
(b) D-STREAM (ε = 50 m) 105

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

List of tables

3.1 Comparison of related works 45

6.1 Parameters for DG2CEP’s Heuristic Experiment 86
6.2 Parameters for DG2CEP’s Elapsed Detection Experiment 92
6.3 Parameters for DG2CEP’s Similarity Detection Experiment 101
6.4 Detected and Complete Rand Index of DG2CEP and D-STREAM

with DBSCAN for ε = 50m and a throughput of 5 000 lu/s. 106

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

List of codes

2.1 Sample continuous query written in Esper’s stream-oriented language. 31
2.2 Sample continuous query written in Drools’ rule-base language. 32
4.1 DG2CEP grid as a context partition (in EPL). 51
4.2 Translation EPA (in EPL). 51
4.3 Cell Density EPA (in EPL). 54
4.4 Cell Density EPA (in EPL). 54
4.5 Cell Cluster EPA (in EPL). 55
4.6 Cell Changed EPA (in EPL). 56
4.7 Cell Disperse EPA (in EPL). 57
4.8 Cell Disperse by Time EPA (in EPL). 57
4.9 Grid Cell Check EPA (in EPL). 62
4.10 Grid Check Merge EPA (in EPL). 63
4.11 Grid Merge EPA (in EPL). 64
4.12 Grid Output EPA (in EPL). 66
4.13 Grid Discover EPA (in EPL). 66
4.14 Grid Discover EPA (in EPL). 68
5.1 Cell Transient EPA (in EPL). 75
5.2 Cell Transient Enrich EPA (in EPL). 75
5.3 Cell Transient Heuristic EPA (in EPL). 77

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

1
Introduction

This thesis investigates the possibility and limitations of an on-line1 and
near real-time (few seconds) detection of spatial clusters from large position
data streams generated by moving objects (e.g., humans, vehicles, drones).
Spatial clusters [2] are concentrations of moving objects in some region, for
example, a massive street protest, a music concert, a traffic jam, etc. A fast
detection of this pattern and its evolution, e.g., if the cluster is shrinking or
growing, is useful in numerous scenarios, such as detecting the formation of
traffic jams or detecting a fast dispersion of people in a music concert [3, 4, 5].

On-line detection of such clusters and its evolution is a complex task
because it requires algorithms that are capable of continuously and efficiently
processing the high volume of position data in a timely manner [3, 6]. Currently,
the majority of approaches for cluster detection in position data streams use
spatial data structures [7, 8, 9], which can be troublesome to maintain for on-
line detection. Further, they operate in batch [10, 11], where position updates
are stored during time periods of certain length and then batch processed by
an external routine, thus delaying the result of the cluster detection until the
end of the time period.

To address these issues, in this thesis, we investigate if it is possible to
perform an on-line detection of spatial cluster from large position data streams
and monitor its evolution in near real-time. Furthermore, we investigate if this
process is scalable, that is, if on-line and near real-time results can be obtained as
the data stream volume increases. As a response to these questions, we propose
DG2CEP, a grid-based algorithm that combines the well-known density-based
clustering algorithm DBSCAN [12] with the data stream processing paradigm
Complex Event Processing (CEP) [13, 14] to achieve scalable, on-line, and near
real-time detection of spatial clusters.

The remainder of the chapter provides an overview of the thesis motivation,
followed by the main challenges of current data stream clustering algorithms.
Furthermore, it presents the main research questions, the goals and the thesis
contributions. Finally, we present how the thesis chapters are organized.

1On-line algorithms are those that can compute without having the complete input, i.e.,
it can start processing and receive the remaining input piece-by-piece as it compute. Contrary
to that, off-line algorithms are those that assume and require a complete input to process [1].

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 1. Introduction 15

1.1
Motivation

Advances in mobile computing enabled the popularization of portable
devices, such as smartphones and tablets, with internet connectivity and location
sensing. Collectively, these devices can produce large position data streams while
using mobile location-based applications and services [15, 16], such as location-
based games (e.g., Pokémon GO [17]), exploration services (e.g., Foursquare
[18]), dating applications (e.g., Tinder [19]), public transport services (e.g.,
data.rio2 [20]), and intelligent transportation services (e.g., Waze [21]).

An interesting question is how large and how fast the position data
stream produced by the portable devices while using such application systems
can become. Precisely, what is the throughput, i.e., number of data items
per second, of the data stream? There is no consensus for this answer in the
literature [22]. Thus, in this thesis, we consider a large position data stream as
one that produces thousands of data items per second. This definition is based
on the throughput of real-world citywide application and services data streams
[23, 24, 25, 26]. For example, thousands of buses in Rio de Janeiro contain a
portable device that continuously send their position updates to the data.rio
service.

Location-based applications and services can explore their user’s data
stream to identify mobility patterns, i.e., if the moving objects (e.g., vehicles,
humans, drones) are located in some region or moving in a given pattern.
For instance, when numerous buses are moving slowly on a given road, this
may indicate that there might be an accident or a traffic jam in that place.
Applications can also benefit from early detection of such situations, i.e., by
receiving timely notifications when several nearby moving objects present a
specific mobility pattern, to enable the application to act as soon as possible
[6]. For instance, it may be important to rapidly detect that many buses are
moving slowly to enable and plan a timely reaction as soon as possible, e.g.,
change route, or open additional traffic lanes.

A mobility pattern that is particularly relevant to many applications is
a spatial cluster [2, 27, 28], a concentration of moving objects in some area,
e.g., a massive street protest, a music concert, or a traffic jam. Similarly, a
rapid (near real-time) and on-line (continuous) detection of spatial clusters
from position data streams is desirable in numerous applications and scenarios
[3, 15], such as for optimizing traffic flows and ensuring users’ safety.

2data.rio is an open data service that continuously provides public urban data from the
city of Rio de Janeiro, such as its buses location and car accident statistics.

http://data.rio
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 1. Introduction 16

For metropolitan traffic control, for example, it is useful and important to
detect in near real-time traffic accidents, e.g., represented by a quick formation
of a cluster of vehicles, so to remove the corresponding obstruction as fast
as possible. On the other hand, it may also be important to early detect the
dispersion of a cluster, e.g., a crowd rushing away from some specific spot in
a live or disaster scenario [29]. This information can be useful for dispatching
additional rescue personal to the place of the disaster emergency. Finally, in
various situations it is important to detect and monitor the evolution of such
clusters, that is, how a cluster changes over time. More specifically, if a cluster
is growing/shrinking or if it is merging/splitting to/from other clusters. For
example, in a traffic control application, it is important to known if a traffic
jam is growing or shrinking over time. In a security and surveillance application,
e.g., in a carnival music concert, it is important to rapidly detect the location
and period of a cluster dispersion or split.

1.2
Problem Setting

As can be seen from these examples, an on-line detection of spatial clusters
and monitoring its evolution in near real-time is a recurrent mobility pattern
of interest in many applications. However, implementing timely spatial cluster
detection from large position data streams poses several challenges to those
applications [10, 30]. First, it has to employ efficient algorithms and data
structures to cope with the high arrival rate of the position data (location
updates) stream and intrinsic complexity of mutually comparing the location
updates of all moving objects. Second, it must be able to detect arbitrary clusters
shapes, for example, a traffic jam that reaches over several neighborhoods or
a human crowd that spans across the seashore of a city. Third, it has to
provide timely results that reflect the current clustering scenario to enable a
fast reaction by managing applications. Finally, it must be able to track the
evolution of clusters, for example, providing a continuous view on how clusters
are growing, shrinking, merging, or splitting.

The majority of data stream clustering algorithms found in literature
[31, 32, 33, 34] do not address, or solve only partially, these problems. For
example, they use spatial data structures, such as R-Trees and Quad-Trees,
which provide efficient indexes and query functions for spatial data. However,
for continuous-mode cluster detection in data streams, these data structures
can become troublesome due to the difficulty in accessing and modifying the
spatial tree in parallel [7, 8, 9], i.e., to process several location updates at once.
Further, due to frequent spatial tree modifications, there is an additional cost of

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 1. Introduction 17

frequently balancing the tree in order to reduce its height. For example, to avoid
inconsistencies in the spatial tree index, these algorithms process each location
update sequentially, which can lead to scalability issues when considering a
data stream with thousands of data items per second.

Another major issue with existing spatial data stream clustering algo-
rithms is that they operate in an on/off-line batch framework [10, 11], where
position data is first accumulated during a given time period (on-line phase)
and then are processed in batch by a specific cluster detection function (off-
line phase). The main problem with this approach is that this function only
processes the data items within each batch separately and defers the cluster
detection process until the end of the off-line phase. Thus, since it delivers
results only at discrete points of time it is complicated to provide fresh results
and a continuous view of the clusters’ evolution.

Furthermore, if the batch interval is large enough to include more than
one consecutive instances of position data from a same moving object, then
it may happen that spatial clusters which have been formed and immediately
dispersed by follow-up location updates, may not be detected. On the other
hand, if the batch interval is so small that it holds at most one location update
per moving object, it can happen that temporally and spatially close location
updates end up in different batches, possibly preventing a cluster to be detected.

1.3
Research Questions

Motivated by the problem setting and the limitations of current spatial
data stream clustering algorithms, this thesis explores means of achieving
on-line (continuously) and rapidly (near real-time) detection of spatial clusters
from large position data streams. This problem has the following three sub
questions:

1. How similar is the on-line and near real-time clustering result to the
ground-truth result, i.e., the one obtained using the traditional DBSCAN’s
[12] off-line algorithm? Precisely, how accurate, w.r.t. the moving objects,
are the spatial clusters discovered in on-line/real-time to the ones obtained
through DBSCAN.

2. How scalable is this approach w.r.t the data stream volume? More specific,
we want to answer if is it possible to provide or maintain the result quality
(similarity with ground-truth) when increasing the throughput of the data
stream. In essence, we want to discover and understand the scalability
limits of an on-line and near real-time spatial clustering approach.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 1. Introduction 18

3. Finally, can this approach continuously monitor, in near real-time, the
spatial cluster’s evolution? Specifically, is it able to react and detect in
less than few seconds if and how the spatial cluster is changing, e.g., if
it is growing, shrinking, merging or splitting with/from another spatial
cluster.

1.4
Goals and Proposed Approach

The goal of this thesis is to investigate the main and its sub research
questions presented in the previous section. To reach this goal, this thesis
proposes DG2CEP (Density-Grid Clustering using Complex Event Processing),
a grid-based (counting) algorithm that combines the traditional density-based
clustering algorithm DBSCAN [12] with Complex Event Processing (CEP)
[13, 14] to achieve a scalable, on-line, and near real-time detection of spatial
clusters and its evolution.

One of the main ideas in DG2CEP is to change the problem semantic
from distance computations (between the moving objects location) to counting.
To do this, we subdivide the spatial domain into a grid, an efficient index data
structure for spatial data. Then, rather than measuring the distance between
each pair of moving objects, we count the number of objects mapped to each cell.
Cells that contain more than a given threshold of moving objects are further
analyzed. This process triggers an expansion step that recursively merges a
dense cell with its adjacent neighbor. Since cells are aligned in a grid, the
expansion step is straightforward. With this method, the main performance
bottleneck is no longer the distance comparison between moving objects, but
the number of grid cells.

This entire approach, grid and cell discovery and transformations, is
described using the CEP data stream processing paradigm. CEP provides a
set of real-time data stream analytics and pattern primitives [35, 36] through
continuous queries, such as filter, join, enrich, negation, and sequence. Each
continuous query is performed by a CEP processing stage known as Event
Processing Agent (EPA). An EPA continuously receives incoming events,
analyzes, manipulates them, and outputs derived (complex) events that are
further delivered to event consumers, e.g., other EPAs processing stages or
endpoint users’ applications. By interconnecting each processing stage (EPA),
DG2CEP builds an Event Processing Network (EPN) that works together to
continuously and timely detect the spatial cluster and monitor their evolution
from analyzing the incoming moving objects’ position data event stream.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 1. Introduction 19

1.5
Contributions

The main contributions of this thesis are:

– A novel on-line counting algorithm based on grid-density clustering,
designed as a network of CEP continuous query and pattern primitives,
that is able to continuously and timely detect (near real-time) spatial
clusters and its evolution from large position data streams.

– A counting heuristic that mitigates the collateral effects of the answer
loss (blind spot) problem [37, 38] that appears due to the usage of a grid
data structure to index and cluster spatial data.

– A scalable event processing network architecture that can process data
in parallel and be distributed to process higher data stream throughputs.

– An extensive discussion about the experimental results and tradeoffs of
using an on-line and real-time spatial clustering approach with real-world
position data streams.

1.6
Organization

This thesis is organized as follows. In the next chapter, Chapter 2, we
further elaborate the thesis problem and present the two fundamental topics
used in the thesis to address it: Spatial Clustering algorithms and the Complex
Event Processing data stream processing paradigm. After that, Chapter 3
presents and discusses the main related-works and the employed techniques to
address the aforementioned problems.

Chapter 4 presents the proposed algorithm, DG2CEP. In that chapter, we
discuss the algorithm steps and how they can be translated to CEP’s continuous
query and real-time primitives. In Chapter 5, we present a counting heuristic
that mitigate some of the collateral effects of transforming the problem from
distance comparison to counting.

Chapter 6 presents the evaluation experiment used to validate the
proposed algorithm. The experiment is based on the real-world position data
stream generated by the bus fleet of the city of Rio de Janeiro. We discuss the
experiment results and show how they respond the raised research questions.
Finally, Chapter 7 presents the concluding remarks, and the limitations of
our approach. It also points to future works that can address or explore these
issues.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

2
Fundamental Concepts

To investigate if it is possible to on-line detect spatial clusters and
monitor its evolution in near real-time, this thesis explores two main topics:
Spatial Clustering and Complex Event Processing. This thesis argues that the
combination of concepts from these two topics can enable the construction of
an algorithm (DG2CEP) that address this problem. Aiming at providing the
basis for the next chapters’ discussions, this chapter briefly reviews those topics

In Section 2.1, we present and discuss spatial clustering algorithms and
how they can be applied to position data streams [39, 40]. First, we discuss
the different ways that algorithms defines a cluster and how they detect them.
Particularly, we focus the discussion on the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm [12] due to its ability to discover
clusters with arbitrary shapes, e.g., a traffic jam that ranges over several streets.
In essence, DBSCAN’s density-based cluster is a dense concentration of points,
in our case, moving objects location updates, that are within a given distance.
Following that, we discuss a data streaming framework [11] that can be used
to cluster position data streams. This framework operates on batch and is
divided in an on-line and an off-line phase. In the on-line phase, the data
stream is summarized. Then, the off-line phase executes from time to time and
batch processes the summarized data using an off-line clustering algorithm.
We discuss the key problems with this approach when considering on-line and
real-time scenarios.

Section 2.2 describes Complex Event Processing (CEP) [13, 14], a data
stream processing paradigm. The basic unit in CEP is an event, an entity that
represents something that happened [41], e.g., a location update of a moving
object. CEP provides real-time stream primitives, such as filter and enrich,
that are able to react, process, and output complex (derived) events based on
the incoming event stream. Other primitives can further consume the output
events. Using these primitives, it is possible to build a network of real-time
primitives to continuously process the event stream.

Finally, the last section of this chapter summarize the main points of
these two concepts and discuss how they can be used to define the DG2CEP
algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 21

2.1
Spatial Clustering

Clustering is the process of grouping objects into one or more sets (cluster),
such that objects in the same set are highly similar to each other than to those
objects located in other sets [39, 42]. For example, group students in a university
that are spatially close to each or to a given building location. Another example
of clustering, in a medical scenario, is to group concentration of stains that
appears in a medical exam.

Spatial clustering is the process of clustering a specific type of object:
spatial data [39]. Spatial data objects are have geometric coordinates in a
given referential space referential, such as GPS position data objects (latitude,
longitude) that refers to the earth’s surface, or a 2D medical image that refers
to a spatial model of a human brain. In this thesis, we are interested in on-line
clustering the geographic position data stream produced by moving objects,
e.g., vehicles, humans, and drones, in near real-time. Note that the term moving
object is interchangeably used to refer to the entity current spatial location.

The primary similarity factors used to group position data into spatial
clusters are the density and distance between the moving objects. Roughly
speaking, a spatial cluster is a dense concentration of connected spatial data in
some area [2, 27], e.g., a massive street protest, a music concert event, a traffic
jam, etc. To exemplify this concept, consider the urban scenario of spatial
position data produced by moving objects (e.g., vehicles) in Figure 2.1. This
figure shows an urban scenario with three moving object clusters. Each cluster
contains at least five moving objects, which need to be close and connected to
one another. Note that moving objects that are not close to other objects and
are isolated are considered noise.

Figure 2.1: Spatial clustering of moving objects in an urban scenario.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 22

There is an extensive set of clustering algorithms that can be used to
cluster position data [3]. Many of them are variants of the k-Means [40]
algorithm, which divides the entire position dataset into k clusters. However,
since in many cases it is impossible to know the number k of clusters in advance,
we need to use a different approach. Furthermore, k-Means-based algorithms
require several passes over the data to converge and discover the clusters.

On the other hand, the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [12] cluster definition uses density thresholds to discover
the clusters of position data rather than a fixed set of cluster k defined a
priori. We decided to follow this definition for two reasons. First, by using a
density approach, it is able to discover arbitrary cluster shapes, e.g., a cluster
represented by a complex polygon such as a traffic jam that spans several
different streets. Second, DBSCAN only requires a single pass over the position
data to converge, i.e., to identify the clusters.

Figure 2.2, adapted from [43], illustrates the main difference between
k-Means and DBSCAN clustering results. DBSCAN results use the density of
position data as the cluster-forming criteria, while k-Means use the parameter
k to split the set of position data into k clusters. Note that DBSCAN clustering
results shape follows the position data shape, which is useful in numerous
scenarios, for example, to discover a cluster of persons waiting in line for
a music concert [44]. Due to its highest accuracy, DBSCAN is considered a
benchmark of clustering algorithms. In the following subsection, we present
and discuss the DBSCAN algorithm.

Figure 2.2: Overall difference between k-Means and DBSCAN clustering results.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 23

2.1.1
Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
is a clustering algorithm [12] based on the concept of density, i.e., it does not
requires the user to specify a priori the number of cluster to be found. Instead,
the algorithm searches for concentrations of spatial data points, in our case,
moving objects current location updates, to detect clusters. To do that, the
algorithm uses two density parameters, an ε radius and the minimum density
minPts of spatial points, to specify the density-based cluster definition.

A moving object p that has more than minPts other moving objects in its
ε–Neighborhood is known as a core moving object, where the ε–Neighborhood
of p is the set Nε(p) = {q ∈ D | distance(p, q) ≤ ε} and D is the set of all
current moving objects location updates. Moving objects in the Nε(p) set of a
core moving object p are said to be directly density reachable from p [12, 45].
Neighboring moving objects, in an ε of a core object p, but whose core object,
but whose density is less than minPts are classified as border objects.

Intuitively, a spatial cluster is composed of a several core moving objects
that are close to one another. Hence, to connect core and border moving
objects, DBSCAN extends the direct reachability concept. DBSCAN defines
that a moving object q is density reachable from a moving object p if there is a
chain of moving objects o1, o2, . . . , on, such that o1 = p and on = q, where each
oi+1 is directly density reachable from oi, with the possible exception of on(q)
that can be a border object.

To illustrate these definitions consider the cluster scenario in Figure 2.3,
with ε being the circle radius and minPts = 3. Moving objects C, D, and F are
all directly density reachable from the core moving object E, since they are in
its ε–Neighborhood . Further, the border moving object A is density reachable
from E, since there is chain (E → C 99K B 99K A) of core moving objects
that connect them. However, this relationship is not symmetric. Although A is
density reachable from E, the contrary is not valid since A is not a core moving
object.

To include border moving objects in the resulting cluster elements,
DBSCAN introduces the density connectivity relation. A moving object p
is density connected to a moving object q if there is a moving object o such
that both, p and q, are density-reachable from o. For example, considering the
scenario in Figure 2.3, the moving object A is density connected to E because
they both are density reachable from B. This relation is symmetric since it
uses a moving object o to reach the input moving objects p and q.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 24

Figure 2.3: Example of core (E), border (F), and noise (G) moving objects.

Based on these concepts, DBSCAN gives the definition of density-based
cluster [12]. A spatial cluster is defined as following. Let D be the snapshot of
current moving objects’ location. A spatial cluster C is, w.r.t. ε and minPts is
a non-empty subset of D that satisfy the following conditions:

1. ∀p, q ∈ D: if p ∈ C and q is density-reachable from p, then q ∈ C;

2. ∀p, q ∈ C: p is density-connected to q.

This definition expresses the connectivity and reachability of moving objects
included in a cluster. In essence, a density-based spatial cluster is a reachable
chain of one or more core moving objects delimited by border objects.

The first step to detect a new cluster is to identify a core moving object p.
From that, the main idea of the DBSCAN algorithm, shown in Algorithm 1, is
to recursively visit each moving object q in the ε–Neighborhood of p, in order
to check if q is also a core moving object, i.e., if it contains at least minPts
neighbors in its neighborhood. If it does, q neighbors’ (Nε(q)) are added to the
cluster and further visited in the next round. By such, the cluster is recursively
expanded until no further moving objects are added to the cluster, that is, all
objects checked in the recursion step have less than minPts neighbors or have
been previously visited.

When applied to large numbers of moving objects, the main bottleneck of
DBSCAN becomes the GetNeighbors function [39], which computes theNε(p)
set, i.e., the ε–Neighborhood of a given moving object p. Specifically, DBSCAN
needs to compare the pairwise distance between the moving object p and all
the remaining moving objects in order to select those that are within ε distance.
This pairwise evaluation of inter-objects distances makes the computational
complexity of DBSCAN be O(n2).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 25

Algorithm 1: DBSCAN
Input: A dataset of moving objects D, the ε distance threshold, and

the minimum number of points minPts
Output: A set of clusters K

1 K ← ∅
2 foreach moving object p ∈ D do
3 if p has not been visited then
4 mark p as visited
5 Nε(p)← GetNeighbors(p)
6 if |Nε(p)| < minPts then
7 mark p as noise
8 else p is a core moving object
9 C ← ExpandCluster(p, Nε(p))

10 K ← K ∪ {C}
11 end
12 end
13 return K

14 end
15 procedure ExpandCluster(p,Nε(p)):
16 C ← {p} . Initiate a new cluster with the core moving object
17 N ← Nε(p) . Neighbors to visit
18 foreach neighbor q ∈ N do
19 N ← N \ {q}
20 if q has not been visited then
21 mark q as visited
22 Nε(q)← GetNeighbors(q)
23 if |Nε(q)| ≥ minPts then q is a core moving object
24 N ← N ∪Nε(q) . Add q’s neighbors to be visited
25 end
26 end
27 if q is not part of any cluster then
28 C ← C ∪ {q}
29 end
30 end
31 return C
32 end

Since DBSCAN has been designed for processing of complete - and static
- datasets, one can optimize it by storing the moving objects position data in
a spatial data structures (e.g., R-Tree or Quad-Tree). These data structures
provides efficient indexes and spatial query functions, which can optimize the
computation of moving objects’ ε–Neighborhood significantly. More specifically,
this optimization reduce the computation of the GetNeighbors function to
O(lg n) per moving object, and hence the overall complexity of DBSCAN to
O(n× lg n).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 26

However, for on-line position data stream clustering scenarios, the usage
of these data structures can become troublesome. It is difficult to access and
modify the spatial tree in parallel when handling thousands of position data at
once [7, 8, 9]. Further, due to frequent spatial tree modifications, there is an
additional cost of frequently balancing the tree height. For example, to avoid
inconsistencies in the spatial tree index, these algorithms process each location
update sequentially, which can lead to scalability issues when considering a
data stream with thousands of position data items per second. With that said,
the next subsection presents the main issues and approaches of applying or
adapting DBSCAN to a data stream scenario.

2.1.2
Clustering Large Position Data Streams

Applying DBSCAN to discover spatial clusters in large position data
streams is not a straightforward task, primarily because moving objects
location update arrive continuously and the data stream size is unbound [10].
Further, due to its unbound nature, the data stream throughput can evolve and
dynamically increase or decrease along time. Indexing and processing such data
streams in near real-time thus require efficient data structures and methods [3].
As previously mentioned – and mainly due to the difficulty of accessing and
modifying data items in parallel [7, 8, 9] – using spatial tree data structures
(e.g., R-Tree and Quad-Tree) is also costly. Aside from providing on-line and
near real-time spatial clustering results, another issue is the ability to rapidly
adapt and detect changes in the data streams. For example, detect that a new
spatial cluster appeared or that it is, in fact, the result of the split of an existing
cluster.

The main method for clustering large position data streams is the on/off-
line framework [10], proposed by Aggarwal et al. [11]. This two phases framework
operates on batch, as illustrated in Figure 2.4. The overall idea is to use batching
to provide results at discrete and specific periods, rather than continue (on-
line) and real-time results. The on-line phase, also known as abstraction step,
summarizes the data stream in a given data structure, e.g., buffer, sampling,
grid, etc. During this step, the incoming location update stream is continuously
inserted into the summary data structure. For example, keep up only the latest
moving objects location update or discard moving objects that are too far from
the remaining ones.

From time to time, the framework switch from the on-line phase to the
off-line. In the off-line phase, it receives as input the buffered and summarized
spatial data from the on-line phase. Then, it executes a classic off-line

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 27

Figure 2.4: Data Stream Clustering Framework.

clustering algorithm, e.g., k-Means or DBSCAN. Since the input data has
been summarized, the algorithm can timely execute and detect the spatial
clusters. Following this model, the framework is able to handle the data stream
and provide a discrete view of the spatial clusters.

One of the main issue of the above two-step approach is that it is not
able to on-line detect or monitor the spatial clusters evolution in real-time,
since the clustering step happens at specific periods. Hence, the detection of
spatial clusters that happened in the on-line phase is delayed until the end of
the next off-line phase. By providing results only at discrete time periods it
is complicated to provide fresh results or a continuous view of the cluster’s
evolution. For time critical scenarios, such as the detection of a traffic accident
or a rapid dispersion of a crowd in a public event, such delay can be a problem
since the earlier a situation is detected the fastest it is addressed.

The main problem with this framework is that it only processes the data
items within each batch separately and defers the cluster detection process
until the end of the off-line phase. Thus, since it delivers results only at discrete
points in time it is complicated to provide fresh results or provide a continuous
view of the clusters’ evolution.

One way to address this issue is to decrease the batch period. However,
by reducing the batch interval it can happen that temporally and spatially
close moving objects are placed in different batches. Since the off-line phase
only considers data items that are within the summarized batch, the algorithm
may fail to detect a spatial cluster even though there are moving object that
are spatially and timely close. To exemplify this, consider the illustration in
Figure 2.5. Although the moving objects identified by 35 and 49 are spatially
and temporally close to the ones identified by 2 and 15, the off-line clustering

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 28

Figure 2.5: Scenario where spatially and timely close moving object are located
in different batches.

algorithm will not consider them because they are placed in different batches.
Similar situations can potentially lead to a failure in detecting a cluster.

On the other hand, if the batch interval is increased, the off-line phase
is further delayed and the time to react to the appearance or dispersion of
a spatial cluster is also increased. In addition, if the batch interval is large
enough to include more than one consecutive instances of position data from
the same moving object, then it may happen that spatial clusters, which have
been formed and immediately dispersed by follow-up location updates, may
not be detected.

To address these issues, we have decided to explore the Complex Event
Processing (CEP) real-time data stream processing paradigm. This decision
is based on CEP providing temporal window (e.g., sliding, batch) and real-
time processing primitives as first-class function to process the event data
stream. Precisely, the CEP programming model was designed to provide such
abstractions. Our idea is to design a DBSCAN-like data stream clustering
algorithm using CEP primitives instead of relying on a traditional off-line
algorithm. By doing so, we aim at taking advantage of CEP real-time nature
to build an on-line and near real-time detection algorithm.

2.2
Complex Event Processing

Complex Event Processing (CEP) is a programming paradigm that
supports reactions to a stream of event data in real time [35, 41]. In contrast
to DBMSs, in which data is first stored and then queried later, CEP stores
continuous queries and runs data through them, i.e., rather than storing the
data, CEP focuses on continuously analyzing and processing the data whiles
it passes, using the stored queries. Each continuously query implement one or
more CEP real-time primitives, such as filter, and negation.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 29

Event streams are the main input source of a continuous query. The
continuous query combines CEP real-time primitives to react, process, and
derive other higher-level (complex) events. In CEP, events are created through
producers, which are entities (e.g., sensors, client applications) that encode
interesting occurrences of the application domain. Events are characterized
by a type, a timestamp, and a payload [41]. The event type defines the
payload schema, i.e., the corresponding attributes name and domain that
represent the given event occurrence. For example, we can define the event
type LocationUpdate to represent a moving object position update using the
following payload schema: uuid, latitude, longitude, and timestamp.

An event data stream is the resulting sequence of events created and sent
by producers [14, 13]. Precisely, events in a data stream follow the same type
and their order are based on the timestamp tag of each event. A continuous
query uses its real-time primitives, such as filter, split, project, sequence, and
negation, to react and to process the incoming event data stream as it passes.
For instance, filter the LocationUpdate event stream to discover moving objects
that are close to a given point of interest.

Continuous queries output events are known as complex event since they
represent higher-level information [41]. Both, normal (raw) events and complex
events, can be used as part of the definition of another complex event. Precisely,
it is possible to create hierarchies of events, in which intermediate events can
be used to define other higher-level complex events. As an example, a complex
TrafficJam event can be built by combining multiple LocationUpdate events in
the same area and period.

Each continuous query is executed by a CEP processing stage known
as Event Processing Agent (EPA) [14]. An EPA stage continuously: reacts to
incoming events; analyzes and manipulates them; and outputs derived events
to event consumers, other EPAs processing stages or endpoint applications. By
interconnecting EPAs, it is possible to build an Event Processing Network
(EPN), a topology workflow that analyzes the input event stream as it
passes. Further, the EPN topology structure, a directed graph, facilitates
the distribution of EPAs into different machines. Each EPA in this network is
responsible for receiving events, processing the continuous query (CEP real-time
primitive), and if there is a derivative step, output the complex events to the
next EPA or endpoint applications.

Figure 2.6 exemplifies a CEP workflow. In the depicted scenario, event
producers (buses and metro) frequently generate and transmit two types of
location update events. EPAs in the EPN border continuously receive and
process these events. If the analyzed event satisfies the processing primitive

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 30

Figure 2.6: An overview of an Event Processing Network (EPN) workflow.

logic, the EPA emits a complex (higher-level) event as output. Such events are
delivered to interested (connected) EPAs to be further processed. By using
a network of EPAs continuous queries (real-time primitives) it is possible to
further analyze, refine, combine, and process the input events to detect a
given situation. In the end of this chain, there are border EPAs that send
complex events (e.g. a detected situation) to interested endpoint applications
or resources, such as a dashboard and database systems.

2.2.1
CEP Engine and Continuous Queries Languages

A CEP engine instantiates the presented CEP concepts. It provides
operations for defining event types (payload schema) and real-time primitives
to express the continuous queries (EPAs) and to interconnect them (EPN).
There are several CEP engines implementation, for example, Esper [46], Sase
[47], Microsoft StreamInsight [48], Apache Flink [49], Red Hat Drools [50],
and TelegraphCQ [51]. The main difference between such engines are the
language constructs used to define the event types and the supported real-time
primitives. In general, CEP’s language constructs can be divided into two
models: stream-oriented and rule-oriented [14, 36, 52].

The stream-oriented language model follows the Continuous Query
Language (CQL) [53] formal design. CQL is an SQL extension to support stream
operators. Several CEP engines uses a CQL-like language due to its formalism
and its similarity with the SQL language. To illustrate the expressiveness of
CEP’s stream-oriented language model, consider the continuous query written
in Esper’s Event Processing Language (EPL) [46] in Code 2.1. The EPL
continuously count the number of filtered LocationUpdate events in a latitude
and longitude interval within a sliding window of 10 seconds.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 31

1 INSERT INTO FilterLocationUpdate

2 SELECT COUNT(*)

3 FROM LocationUpdate.TIME(10 s)

4 WHERE (lat > −21 AND lat < −23 AND

5 lng > −42 AND lng < −43)

Code 2.1: Sample continuous query written in Esper’s stream-oriented language.

To implement this EPA, the CEP engine does the following. When the
continuous query receives the incoming event it first retrieves the events in the
specified sliding window, i.e., all LocationUpdate events received in the past
10 seconds w.r.t. the analyzed event timestamp. This subset event stream is
transformed into a temporary relation. Using this relation the continuous query
filters the events whose payload values are within the latitude and longitude
intervals. Then, the continuous query counts the number of filtered tuples and
wrap this value into a new FilterLocationUpdate complex event.

Note that an EPA’s continuous queries, written in a stream-oriented
language, can implement one or more CEP real-time primitives. In the
illustrated case, the EPL query implements the filter, aggregate count, and
project primitives. In addition, as said, note that the CQL syntax is very
similar to an SQL query. One of the differences is that the output stream of a
continuous query can be streamed into another event stream to be consumed
by other continuous queries. In this case, the continuous query continuously
produce FilterLocationUpdate events. Another difference from standard SQL is
the ability to use time windows, i.e., to analyze and correlate incoming events
with a temporal subset of the event streams. We will cover time window in a
later subsection of this chapter.

In contrast to SQL-like languages, CEP engines that employs rule-oriented
languages are based on inference and event-condition-action (ECA) clauses
[36]. Inference and ECA rules separates event handling, condition checking and
action into different clauses. First, the EPA’s continuous query is triggered when
the given event happens. Then, a constraint or condition is verified. Finally, if
the condition is satisfied the rules executes the action clause.

To exemplify a rule-oriented language consider the rule illustrated in
Code 2.2. It is a continuous query similar to the previous CQL example, but
now written in Red Hat Drools [50] rule language. The ECA rule is triggered
when a LocationUpdate event arrives. Then the condition clause is verified, i.e.,
it checks if the event is within the specified latitude and longitude interval.
Further, it accumulates all LocationUpdate events within the spatial interval

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 32

for a period of 10 seconds. Finally, it counts the number of events received
and wraps this value into a new FilterLocationUpdate complex event, which is
delivered to other CEP rules through the insert statement.

1 RULE "Count Filtered Position During a Given Period"

2 WHEN

3 LocationUpdate (lat > -21 AND lat < -23 AND

4 lng > -42 AND lng < -43)

5 ACCUMULATE (

6 $lus = LocationUpdate (lat > −21 AND lat < −23 AND

7 lng > −42 AND lng < −43)
8 OVER WINDOW:TIME(10 s),

9 $cnt = COUNT($lus)
10)

11 THEN

12 INSERT(FilterLocationUpdate($cnt))
13 END

Code 2.2: Sample continuous query written in Drools’ rule-base language.

The primary difference between stream-oriented and rule-oriented lan-
guages is the syntax used to build continuous queries. Precisely, stream-oriented
languages extends existing SQL queries with other primitives and stream
operators (e.g., time windows), whereas rule-oriented languages uses the event-
condition-action (ECA) clauses to process the incoming events. Both language
models, can implement the same CEP real-time primitives. For instance, con-
sider the sample continuous query described by Code 2.1 and Code 2.2. In both
cases, the query languages implements the filter primitive.

Nevertheless, in practice, CEP engines support a different set of processing
primitives [52]. In general, engines that employs stream-oriented language focus
on supporting transformation primitives (e.g., filter, split, combine), while those
that are based on rule-oriented languages concentrate on supporting CEP’s
pattern detection primitives (e.g., sequence, negation). Figure 2.7 illustrates
a classification of CEP primitives, adapted from [14, 52], that are usually
supported in each language model. However, it is important to note that some
CEP engines, e.g., Esper [46] and Microsoft StreamInsight [48], support both
types of language models. Hence, they usually contain both type of primitives.
In the following subsection, we define these class of CEP primitives and briefly
discuss the function of each one of them.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 33

Figure 2.7: Classification of CEP real-time primitives.

2.2.2
CEP Primitives

Transformation primitives are those that either filter, modify, or correlate
the incoming events. For example, translate primitives can convert the input
event into another derived event using its attributes or an external data source.
As in relational algebra, the project primitive creates a derived event using
a subset of its attributes, while the enrich primitive uses an external data
source (e.g., in-memory data table, or a database) to create a derived event
that contains new or modified information from the original input event. For
instance, a LocationUpdate event can be enriched with existing Point of Interest
of a database to generate a complex LocationUpdateNearPoI event to express
that a moving object is in the vicinity of a point of interest.

Aggregate primitives combines multiple input events in a single output
event, e.g., multiple LocationUpdate of a given region in a complex TrafficJam
event. In addition, this primitive can employs conventional SQL aggregate
functions, such as avg, collapse, count, min, max, and sum. Compose joins
two or more input event streams, looks for match using a given criteria, and
creates derived events using the match result. As an example, correlate the
TrafficJam event stream with CarAccident events, using the location distance
as matching criteria, to discover if there is a relationship between them. Finally,

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 34

the split primitive divides an input event into multiple events, e.g., divide the
complex CarAccident event into two or more LocationUpdate events to retrieve
the driver’s information (uuid).

On the other hand, pattern detection primitives are based on an event
pattern template [14]. Event patterns use logic operators – such as conjunction,
disjunction, repetition, negation, and sequence – to define a template of events
that continuous query should look for [52, 54]. For example, the conjunction
primitive defines an event pattern that uses the following template: E1 AND E2

AND . . . AND En. This primitive continuously analyzes the event streams and is
satisfied when every event in the template definition, E1, E2, . . ., En, is detected.
Note that the template definition is independent of the event order, i.e., it does
not depend on the timing or ordering of detected participant events. To illustrate
this primitive, consider the following event pattern: TrafficJam(|lu| > 50) AND
CarAccident (|lu| ≥ 3). This continuous query is triggered when there is at least
one TrafficJam event with more than 1000 location updates and a CarAccident
event that involves at least three vehicles (location updates). As result, pattern
primitives outputs the detected events in a complex event, e.g., both events,
TrafficJam and CarAccident.

Similar to the conjunction primitive, the disjunction primitive defines an
event pattern using the OR logic operator, e.g., E1 OR E2 OR . . . OR En. This
primitive is satisfied when the continuous query detects one of the events
specified in the template. CEP also uses other relation operators, such as
negation. The negation primitive defines an event pattern that detects the
absence of a given event. For instance, the event pattern ¬E [10min] means that
the continuous query should be triggered if no event E is detected within 10
minutes. To exemplify the negation primitive, consider the following continuous
query: ¬TrafficJam(|lu| ≥ 5) [30min]. This continuous query will be triggered
if it does not receive any TrafficJam event, whose payload includes a total of 5
moving objects, in a period of 30 minutes.

CEP also provides primitives for detecting events that happen in a given
order. The sequence primitive defines an event pattern template that can
capture the specified orders, e.g., E1 → E2 → E1 → E3 is triggered when
the continuous query receives the following events in order E1, E2, another
E1, and E3. For instance, in the sample scenario, the sequence event pattern
CarAccident(|lu| ≥ 2) → TrafficJam [1 hour] → ¬TrafficJam [60 min], detects
the situation that a CarAccident event with at least two location updates is
followed by a TrafficJam event within one hour. After that, the pattern looks
for the absence of a TrafficJam event in 60 minutes. This situation can indicate
that the traffic jam generated by a car accident has disappeared.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 35

The repetition primitive uses an event pattern that detects when a given
event type repeats at least n times within a given window (e.g., time, length).
For instance, consider the repetition primitive with the following event pattern
E [n] [3 minutes]. This primitive continuously consume and process events
until it founds at least n events of type E within 3 minutes. The event pattern
LocationUpdate(lat > −23, lat < −21, lng > −43, lng < −42) [100] [5 minutes]
detect the occurrence of 100 location in a time period of 5 minutes within the
latitude [−23,−21] and longitude [−43,−42] intervals.

2.2.3
CEP Context and Time Windows

Several presented primitives requires the concept of a window (e.g., a
time window) to process the incoming event stream. For instance, the aggregate
primitive combines correlated events that occurs within a given time window
in a single complex event. CEP provides means for grouping related events in
a context (window) to enable them to be processed in a related way. A CEP
context subdivides the event stream into one or more partitions [14, 13] using
logical and/or temporal predicates. Further, each context partition represents
a subset of the partitioned event stream.

As an example, consider the SameObjectLU context partition declaration
and illustrated in Figure 2.8. This context subdivides the LocationUpdate
event stream according to the uuid attribute value. The resulting context
partition is a subset stream of LocationUpdate, such that all events located in

Figure 2.8: An overview of a context partition, SameObjectLU, that subdivides
the LocationUpdate event stream using each event’s uuid value.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 36

a given partition contains the same uuid, that is, the events emitted from the
same moving object. Since context partition are event streams (a subset), all
CEP real-time primitives works on them. For example, the following sequence
primitive, SameObjectLU → SameObjectLU [60 s] can be applied to detect
a situation in which the delay between location updates of a specific moving
object is larger than 60 seconds.

Time windows are also context partition. Precisely, a time window is a
temporal context [14, 13] that subdivides an event stream into time intervals
using the timestamp attribute. A time window partitions the event stream using
the timestamp tag of each event, such that it includes only events that are
within the given interval, e.g., (now−∆, now) [3, 22], where now is the current
timestamp. For example, the LocationUpdate [SLIDE 30 second] time window
declaration automatically creates a temporal context partition that retains the
latest (∆ = 30 seconds) LocationUpdate events. When an EPA process an event
with timestamp t in such window, the real-time primitives will only consider
events received in the previous (t − 30, t) interval. This concept is useful to
ensure that only the latest events from the data stream are considered.

The two primary kinds of time windows in CEP are Landmark and
[22, 53], as illustrated in Figure 2.9. Landmark time windows provides the
ability to process the event stream in batch. It buffers all event produced during
a ∆ time interval and then applies the continuous queries to the whole set of
events. Precisely, there can be a delay between the event’s arrival time and its
processing time. For example, in Figure 2.9 (a), while events E1 and E2 have
arrived at time t = 1, they will only be processed when the batch period is over
(t = 2).

Figure 2.9: Example of Landmark and Sliding Time Windows.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 37

By buffering the events, it is possible to use aggregate primitives’ functions,
such as min and max, to summarize the entire batch content in a complex
event. However, if events that are meant to be processed together, e.g. by a
sequence primitive, are placed in adjacent batches the primitive will fail to
detect the correlation between the events’. One way to mitigate this issue is to
increase the ∆ batch period, but this causes an additional delay overhead to
process an event.

Sliding windows handle this problem by moving the time window along
with received events. Thus, instead of having predefined batch periods, the time
window boundaries slide to the current event timestamp. More specifically, a
sliding window is a moving landmark window that contain events in the past ∆
time units. To illustrate this scenario, consider the event stream with a sliding
time window of 1 second in Figure 2.9 (b). For instance, when t = 3, the time
window includes the events from the past second (t = 2) to the current time.
This sliding movement, adjusting the time window bounds referential to the
current event being analyzed, mitigates the issue of having correlated adjacent
events in different landmark (batch) periods. By sliding the time window it
is possible to include the previous adjacent events that would be placed in
different batches. By using sliding time window with real-time primitives it
is possible to glimpse in the pasts events and provide continuous and near
real-time event processing.

Finally, there are fading windows. A fading window is a sliding window
where a decay factor λ is applied to the events according to their age to
differentiate their importance for the event processing, i.e. more recent events
have higher importance than older events. It is very useful and provider a
richer information that sliding window. However, the continuous computation
of each event weights using the decay factor is too costly for on-line processing
of streams [3].

2.3
Summary

This chapter presented the two fundamental topics that underpins this
thesis, Spatial Clustering algorithms and the Complex Event Processing (CEP)
data stream processing paradigm.

First, we presented the density-based DBSCAN off-line clustering algo-
rithm [12]. We discussed how DBSCAN’s bottleneck is the computation of
the distance between moving objects to discover the neighbors that are within
an ε radius. To speed up this computation, some approaches employ spatial
data structures, which are able to efficiently retrieve a moving object neigh-

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 2. Fundamental Concepts 38

bors through a series of range queries. However, this computation can become
troublesome in data stream scenarios, due to the difficulty of accessing and
modifying the spatial tree in parallel alongside the constant cost or balancing
the tree [7, 8, 9].

To mitigate these problems, the main framework for clustering position
data streams operates in batch [10, 11]. One of the main problem with this
approach is that it only processes spatial data when the batch finishes. Thus, it
delays the clustering results until the next batch. In addition, the batch-based
nature provides a discrete view of the spatial clusters instead of a fresh or
continuous view of its evolution. Further, if the batch interval is reduced, it
can happen that temporally and spatially close moving objects being placed in
different batches, which can potentially lead to a failure in detecting a spatial
cluster. Contrary to that, if we increase the batch period it will take longer to
react to a discovery or disappearance of a given spatial cluster.

We also presented the Complex Event Processing (CEP) real-time data
stream processing paradigm [35, 41]. CEP provides logical operators, primitives,
and time windows to react and process event streams in real time. These
concepts are used to specify continuous queries, that analyze data stream as it
passes rather than afterward. Each continuous query is executed by a processing
stage known as Event Processing Agent (EPA). Each EPA continuously receives
incoming events, analyzes, manipulates them, and outputs derived events that
are delivered to event consumers, other EPAs processing stages or endpoint
applications. EPAs can be interconnected to build a network of continuous
queries, which in turn can be used to detect a higher-level situation.

In the next chapter, Chapter 3, we continue to present the main benefits
and limitations of how current approaches handle large position data streams in
on-line and/or in near real-time. After that, in Chapter 4, we present DG2CEP,
our approach for processing such scenario.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

3
Related Work

In this chapter, we present several recent approaches for clustering large
position data streams in on-line and/or in near real-time. Overall, they can
be classified according to the applied technique: sampling, micro-clustering,
grid, and CEP-based. Respectively, Sections 3.1 to 3.4, present and briefly
discuss the advantages and limitations of these approaches. Finally, Section 3.5
summarizes their main limitations.

3.1
Sampling

DENSE [55] is an algorithm that uses sampling to cluster large position
data streams. By reducing the data stream size through sampling, it aims
to speed up the clustering process for on-line and real-time scenarios. It uses
a sampling function to define which moving objects from the collected data
will be sampled. To build this function, every ∆ time units, it collects all
the moving objects’ position data. Then, using the collected data it computes
the spatial clusters using an off-line DBSCAN-like algorithm. After that, it
selects the k most representative moving objects from the resulting clusters.
Such representatives are picked using two factors: highest number of neighbors
and distance to already picked representative. To do so, DENSE uses kernel
estimation [56] to effectively pick the kth most representative moving objects
. After defining the sampling set, DENSE will only process the position data
from moving objects located in this set. Precisely, during the next data stream
∆ time interval, DENSE will update the detected cluster using only the position
data of the kth representatives. At the end of this period, DENSE receives all
moving objects, recomputes the new set of clusters, and elects a new set of k
representatives from them.

Although the sampling approach is interesting, it may delay the detection
of emerging clusters since DENSE only processes the position data of the
kth moving object that are already in a given cluster. Clusters that rapidly
appear and disappear during the sampling process may not be detected since
its moving objects are not within the kth most representative moving objects.
More specifically, before electing a new set of kth representatives, DENSE only

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 40

update the existing clusters. Hence, similar to batch-based approaches, it does
not address the situations where spatially and temporally close position data
fall into different batches. Finally, this approach cannot provide a continuous
view of the clusters’ evolution, e.g., if an existing cluster has merged with
another one, since cluster will only be recomputed at discrete ∆ periods.

3.2
Micro-Clustering

Micro-Clustering is a summarization technique for clustering based on
cluster features [31], a characteristic vector. The overall idea is to summarize
the cluster characteristics, such as its centroid, the number of moving objects,
its radius, rather than the data points itself. The algorithms using this concept
associate each new data point with some neighboring micro-cluster. If no such
micro-clusters exists, i.e., if a new incoming data is not within range of an
existing micro-cluster centroid (w.r.t. ε) a new micro-cluster is created with
the single data point.

Many works following this approach [33, 57] limit the number of position
data represented by a micro-cluster, that is, a micro-cluster is split when the
number of summarized position data exceed a given value. The summarization
of an incoming position data into a micro-cluster may be costly, since it requires
to compute the distance between the new position data and all existing micro-
clusters. Specially in scenarios with many micro-clusters this may incur in
much processing. In fact, the size of a micro-cluster is a recurring trade-off in
these approaches. If the micro-cluster size is large, it requires less comparison,
which in turn makes the algorithm faster. However, in such cases, the clustering
results may become inaccurate, since it may group a large number of moving
objects that are not close to each other in the same micro-cluster. On the other
hand, if the micro-cluster size is small, the algorithm must do more comparison,
but the result will be more accurate since there is less discrepancy within the
moving objects located in the same micro-cluster.

By using the micro-cluster’s centroid as a “virtual position data” those
algorithms can further cluster these data points using a standard algorithm,
such as DBSCAN, instead of the original position data. Usually, micro-cluster
approaches also operate in an on/off-line mode, where the on-line phase
summarizes the incoming data points into the micro-cluster feature vector, and
an off-line phase that clusters the data points of the micro-clusters itself using
DBSCAN.

Based on this concept, Forestiero et al. [58] propose FlockStream, a bio-
inspired [28] and micro-cluster method for data streams that follows Aggarwal

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 41

et al. [10, 11] two phase batch-based framework. Their approach is based on
the multi agent paradigm and is able to perform clustering on any kind of data
(not just spatial data), including high-dimension. In FlockStream, each moving
object denotes an agent. It maps the moving objects high-dimensional data (e.g.,
latitude, longitude, altitude, velocity) to 2D agents (x, y) in a grid-like structure.
Each agent is responsible for discovering its ε–Neighborhood by communicating
with neighboring agents in its radius. By doing that FlockStream is able to
speed up the distance computation, since it is performed independently by each
agent. Then, a central agent communicate and retrieve, from time to time, the
ε–Neighborhood of each agent (moving object) to compute the spatial clusters.

The primary contribution of FlockStream is the significant reduction and
parallelization of distance computation of incoming and existing position data
to neighboring agents in a visibility radius (a distance threshold). However, to
reduce the distance comparison FlockStream assumes that each agent knows
each other and is able to communicate with one another, which is not feasible for
many application scenarios. For instance, in a city wide monitoring application,
a city bus may not known or have means to communicate with a vehicle that is
passing by. In fact, to enable this approach, one needs to employ a scalable peer
discovery mechanism in each moving objects. In addition, the central agent
concept is similar to the batch-based approach discussed before and inherits all
its limitations.

Kranen et al. [33] tackle a specific problem related to clustering large data
streams, where a data stream throughput can vary over time and no assumption
can be made about minimal times between consecutive items in the stream (e.g.
at peak times). To handle this problem the authors present ClusTree an index
structure for storing a compact view of the current clustering result and an
anytime clustering algorithm that adapts its update process to the arrival rate
of the items in the data stream, delivering a fast but coarse/unprecise result
for very fast streams, and more refined results for slower stream flows. Their
approach proposes a hierarchical organization of micro-clusters in a balanced
multidimensional index structure, (similar to an R-tree) where higher-level
entries in the tree represent aggregated information about the micro-clusters of
their sub-trees. When updating the structure for each newly arrived item, due
to the current stream flow there might not always be sufficient time to reach
the leaf node (i.e. closest micro-cluster). So the work proposes interrupting
the insertion process and temporarily storing the item in a local aggregate
(some temporary micro-cluster) that is also buffered in the tree entries and is
piggybacked in future descends of the tree, when there is sufficient time.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 42

ClusTree inserts a position data by finding its closest micro-cluster (tree
node). Precisely, it navigates the tree by comparing the incoming position
data location to the closest intermediary micro-cluster centroid. However, it is
difficult to ensure that the position data is in fact closer to this micro-cluster
since its centroid is essentially an estimate of the underlying micro-cluster
centroid locations. Thus, this approach can lead to a new position data being
inserted in a wrong micro-cluster. In fact, ClusTree provides several insertion
traversal heuristic for dealing with this issue.

ClusTree provides the on-line phase (summarizing) of micro-clusters
clustering. However, as mentioned before, to discover the clusters boundary it
still need to cluster the indexed micro-cluster in an off-line phase. While the
number of distance computations of incoming data point in ClusTree is reduced,
due to the tree-like data structure, the algorithm needs to maintain the tree
balance, which can be troublesome for high speed data streams. Further, since
ClusTree is based on micro-clusters, and those record only summary information
about the data points, such as the cluster centroid, the information of the data
points (i.e. the moving objects that form the cluster) is not preserved. As a
consequence, it is no able to identify the moving objects that are placed in
such cluster. This can be an issue in numerous scenarios, for instance, it is
interesting to known the buses lines located in a traffic jam or to known the
vehicles involved in a given accident to activate their insurance.

Jensen et al. [57] propose an interesting and novel approach for on-line
clustering of moving objects. Similar to ClusTree, it combines a micro-cluster
approach with spatial index. But, by assuming that cluster shapes are circular
it is able to predict when a cluster will split. It does that by using a maximum
radius and the moving object’s velocity. One of the main contribution of their
work is the ability to predict cluster splits or merges by using the moving object’s
velocity direction and speed vectors and assuming a linear movement from
them. However, it also imposes a restriction over the cluster shape (circular),
which may not be feasible for many applications. More specifically, they are only
able to detect that have a circular shape. In addition, like other micro-cluster
approaches, it requires an off-line phase to compute and detect the cluster.

3.3
Grid-based

Grid-based clustering algorithms have been proposed as a means of scaling
the clustering process [3, 10, 59]. In this approach, moving objects are mapped
to rectangular grid cells (a.k.a. grid partitions), and the cost of this mapping is
only proportional to the number of cells [3] since grids provide a static reference

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 43

for the moving objects. Thus, each grid partition only “holds” the objects whose
position data falls into the cell’s geographic area. If we assume that position
data density is a good metric for clustering, then the density of each cell would
be the number of position data mapped into to the cell divided by the size of
the cells. Note that this approach gives a slightly different density semantics
than DBSCAN’s notion of density. Here, clusters are detected based on the
density of cells rather than the density of the neighborhood of a core node, as
in DBSCAN.

D-STREAM [59] and DENGRIS-STREAM [60] are two well-known
representatives of grid-based algorithms for clustering that are generic and not
focused on any particular application domain. As with other approaches, both
algorithms follow Aggarwal et al. [10, 11] on/off-line two-phase batch framework.
At regular time intervals, e.g. every 30 seconds, the on-line phase collects
streamed data, maps them to the grid cells and makes some summarization
process, while in the off-line phase the clustering function is executed over the set
of data accumulated during the on-line phase. This on/off-line operation mode
has the disadvantage that clusters which occur during the off-line processing
phase are only detected at the following time period. Furthermore, such
approaches do not address the issue of spatially and temporally close moving
objects being placed in different batches and/or to different (adjacent) grid
cells. In the former case, if the algorithm aims to consider the location data
placed in previous batches it needs to implement and maintain a time window
for each location update. This process is costly and further complicates the
algorithm logic, since it is mixed with the clustering part. In the latter case,
it can happen that spatially close objects with the same batch (w.r.t. ε) are
mapped to adjacent grid cells. Thus, although they are spatially and temporally
close, they would not contribute to the density of the grid cell which may lead
to failing to detect a spatial cluster.

Moreover, in both algorithms the clustering function does a global search
for all dense and modified cells of the grid, which involves high processing cost
over the streamed data, specially for large grids. This function also updates the
summarization of all cells individually, which further increases the processing
cost. Finally, both approaches are only able to provide a discrete view of
the spatial cluster evolution. Thus, not being able to provide a smooth and
continuous view of its evolution, nor detect the rapid formation and dispersion
of spatial clusters within the same batch.

Several approaches, such as MR-DBSCAN [8] and DBCURE-MR [61],
have tackled the problem of modeling large clustering datasets to the MapRe-
duce programming model by also subdividing the space as grid. By using a

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 44

sequence of Map and Reduce phases they are able to correctly identify the
spatial clusters. While MapReduce is a powerful paradigm for highly parallel
processing, both work does not handle streaming data, only large datasets,
and also operate in batch due to the stateless nature of the map and reduce
primitives. Reduce primitives needs to wait for the MapReduce coordinator to
send its input entries, which in turn needs to wait for all the corresponding map
functions to finish it. Further, because of the stateless nature of the program-
ming model and the clustering recursive nature, there is a high communication
and data transfer cost between each MapReduce phase and intermediary data
need to be saved and accessed in the distributed file system.

3.4
Complex Event Processing

Considering CEP-based solutions for clustering position data stream, the
majority of works encountered [62, 63, 64, 65] provide generic range-query
based primitives for detecting when a region is dense. For example, Mouza
and Rigaux [62] reduce the problem of mobility pattern detection to regular
expression. They assume that the space is divided into a set of continuous
regions, each one represented by a token. For example, Figure 3.1 illustrates a
spatial domain divided into six regions: a, b, c, d, and e.

Their model map a given moving object location (latitude, longitude) to
the region it falls into. Then, the mobility model of a given moving object is
represented by a string containing a sequence of region tokens. Enter events add
a token to the object mobility string, while leave events add a time quantifier
to that region. For example, the sequence “[a{4}.c{2}.f{1}]”, means that
the moving object stayed four minutes in region a, two in region c and in the
f region. LIFT [63] and Mobiiscape [65] extend these primitives with other

Figure 3.1: Regions represented by tokens. Patterns can be extracted using
“regex”.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 45

operations. For example, they add an additional primitive called visit, that
combines the enter, stay, and leave primitives. Nevertheless, since these works
are all based on these primitives, they are limited to patterns that associate
the movement of a mobile object with a specific region.

Although these primitives can be used to detect dense regions, they
require developers to specify a priori information of the possible locations of
clusters, which is not feasible in many systems. In addition, since the user need
to specify the possible clustering regions, they are not able to detect clusters
with arbitrary shapes, such as a traffic jams in a road/avenue that crosses
several regions, since the cluster boundary is already predefined in the range
pattern query. Contrary to that, this thesis aims to detect both the formation
and dispersion of arbitrary clusters (in a given domain) without the need of
specifying the clustering region a priori.

3.5
Summary

This chapter presented several current approaches for clustering large
position data stream in real-time or in an on-line manner. Overall, the primary
problem with such approaches is that they follow Aggarwal et al. two phases
data stream framework [10, 11], as illustrated in Table 3.1. One of the major
issue with this framework is that the detection process is delayed until the next
batch period. Precisely, it will only provide clustering results at discrete times.
Thus, it is not able to provide a continuous view of the cluster evolution neither
able to detect cluster that rapidly emerge and then dissipate within the batch
period.

Table 3.1: Comparison of related works
Algorithm Technique Inspiration Phases Window

DENSE [55] Sampling OPTICS 2 phases Batch
FlockStream [58] Agents k-Means 2 phases Batch
ClusTree [33] Micro k-Means 2 phases Batch
Jensen et al. [57] Micro DBSCAN 2 phases Batch
D-Stream [59] Grid DBSCAN 2 phases Fading
DENGRIS-Stream [60] Grid DBSCAN 2 phases Sliding
MR-DBSCAN [8] Grid + MR DBSCAN 2 phases Batch
DBCURE-MR [61] Grid + MR DBSCAN 2 phases Batch

To address these issues, in the next chapter we present DG2CEP. Our
idea is to design a DBSCAN-like data stream clustering algorithm using CEP
primitives and contextual time windows instead of relying on a traditional

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 3. Related Work 46

off-line algorithm. By doing so, we aim to take advantage of CEP real-time
primitives and sliding time window concepts to build an on-line and near
real-time detection algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

4
Density-Grid Clustering using Complex Event Processing

In this chapter, we present Density-Grid Clustering using Complex Event
Processing (DG2CEP) a density-grid data stream clustering algorithm expressed
as a network of CEP primitives. DG2CEP combines the grid index [3, 39] with
CEP’s data stream processing primitives [14, 13] to enable the continuous
detection of spatial clusters and monitor their evolution from large streams of
position data in near real-time.

Contrary to DBSCAN, which computes a pairwise distance between
moving object positions, DG2CEP employs a counting based semantic. To do
so, it divides the spatial domain into a context partition grid. Then, each moving
object position data is mapped into one grid cell (a.k.a. context partition).
When one context partition cell contains more than minPts unique location
updates – within a sliding window of a ∆ period – a core cell event is derived.
This event is enriched with the adjacent cell border events to form a Cell Cluster
event (core plus border cells’ content). On the other hand, a Cell Disperse event
is generated to indicate that the cell cluster has become sparse, that is, when
it no longer contains minPts location updates.

Grid cluster events are composed of one or more adjacent Cell Cluster
events. Precisely, they contain a set of adjacent core cells and their corresponding
border cells. Incoming cell cluster and cell disperse events are correlated existing
grid clusters to either create, destroy, update, merge, or split them. As a result,
this process produces as output the resulting grid cluster and its corresponding
semantic, e.g., add, merge, split, disperse.

Overall, DG2CEP, illustrated in Figure 4.1, can be expressed as a network
of CEP primitives and is divided in three parts:

– Fetching and mapping the moving object’s position data and building a
stream of location updates (Stream Receiver EPN);

– Mapping and identification of grid cells which have become dense or
sparse over time (Cell EPN);

– Correlate dense and sparse cells with existing grid clusters to create new,
update, augment, or split them (Grid EPN).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 48

Figure 4.1: Overview of DG2CEP distributed event processing architecture.

Each stage of the algorithm, which expresses a subset of the EPN, can be
deployed in parallel on different machines in a cloud or cluster, so as to distribute
the workload. Distributed instances within DG2CEP EPN are interconnected
through a message-oriented middleware, such as publish/subscribe, that
provides an uncoupled communication channel between each stages. For
example, a Cell EPN subscribe to a topic containing Location Updates events
and publishes as output to the DenseCellCluster and DispersedCellCluster
topics.

To distribute the workload, DG2CEP subdivides the event stream topics
into different spatial ranges using spatial filters. Then, each deployed instance
subscribes to position data of a spatial range to only handle events from that
region, as suggested by Figure 4.1, where each of the CELL EPNs only consume
events from one of the previous squares (top). In addition, the CEP network
design also facilitates parallel processing, since multiple events can be processed
in parallel by different EPA continuous queries. For instance, while DG2CEP
is filtering dense cells, it can detect in parallel cells that have become sparse.
Overall, with the exception of the final stage (GRID), the parallelization factor
of DG2CEP is the number of grid cells.

In the remainder of this chapter, we present each DG2CEP algorithm
stage. Section 4.1 addresses the Stream EPN, which is responsible for receiving
and publishing the position data to distributed instances. Section 4.2 presents
the Cell EPN, which is responsible for detecting cell cluster and disperse events.
Section 4.3 presents the Grid EPN, which combines the cell cluster and disperse
event to either create, merge, update, or destroy grid cluster events. Section 4.4
discusses DG2CEP’s computational complexity and trade-offs in the choice of
its parameters, while Section 4.5 addresses some of its limitations. Finally, the
last section of this chapter summarizes DG2CEP workflow.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 49

4.1
Stream Receiver EPN

DG2CEP’s first algorithm stage, Stream Receiver, is responsible for
continuously receiving, mapping and publishing the incoming moving objects
positions data as a LocationUpdate event stream. Moving objects periodically
inform their location by sending the following position data: 〈id, lat, lng, t〉,
where id is the moving object’s identifier, lat and lng are their current position
(latitude and longitude values, respectively), and t is the timestamp the data
was sampled.

Incoming moving objects position data stream tuples are mapped to a
grid cell 〈i, j〉 to avoid the pairwise distance comparison between them. The
overall idea is to reduce the problem semantic to counting – instead of pairwise
comparison – the location updates mapped to each cell. By doing so, the
algorithm can rely only on counting the number of location updates in each grid
cell to discover dense and sparse cells, that will constitute the spatial clusters.

Thus, the entire monitored spatial domain, a rectangular region defined
by [latmin, latmax] and [lngmin, lngmax], is divided into a grid G of grid cell size

ε√
2 ×

ε√
2 . The choice for this respectively grid cell size is to guarantee that the

maximum distance between any two location updates within the grid cell is
ε, similar to DBSCAN ε–Neighborhood , as shown in Figure 4.2. Thus, G is
segmented in the following intervals:

– i→ [lngmin, lngmin + i× ε√
2 , lngmin + (i+ 1)× ε√

2 , . . . , lngmax] and

– j → [latmin, latmin + j × ε√
2 , latmin + (j + 1)× ε√

2 , . . . , latmax]

for longitude and latitude respectively. To calculate each interval of the domain
DG2CEP uses a spatial offset function1, which receives as input a latitude and
longitude coordinate alongside an ε√

2 distance, in meters, and returns the offset
latitude and longitude coordinates.

Figure 4.2: Example of DG2CEP ε√
2 ×

ε√
2 grid cell division.

1See Ed. Willlians Aviation Formulary http://www.williams.best.vwh.net/avform.htm

for a sample implementation of an offset spatial function.

http://www.williams.best.vwh.net/avform.htm
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 50

Algorithm 2 describes the required steps to translate the incoming moving
object positions data to LocationUpdate events. The incoming data stream is
first mapped to a grid cell Gij by mapping its latitude and longitude attribute to
the grid intervals. DG2CEP stores the domain latitude and longitude intervals
in a static data structure, such as a segment tree or a binary tree, which allows
efficient retrieval of the corresponding cell grid index. It is worth mentioning
that DG2CEP needs to build this interval data structure only once, since the
scope of the monitored domain is immutable, i.e., its intervals’ boundary do
not change over time.

As an alternative, it is possible to directly compute the position data cell
index using an approximation formula: b lat−latmin

ε
√

2 c and b lng−lngmin

ε
√

2 c, where lat
and lng are the position data location, and latmin and lngmin are the domain
region’s lower boundaries. This formula represents the roughly, rounded, number
of ε√

2 units required to index the moving object’s incoming position data. Finally,
DG2CEP emit a LocationUpdate event that enriches the incoming position
data 〈id, lat, lng, t〉 with its corresponding grid cell i and j index.

The Stream Receiver stage of DG2CEP (see Figure 4.1) can be expressed
in CEP primitives as following. First, the concept of a grid cell is translated to a
CEP context partition by dividing the LocationUpdate event stream in a series
of partitions according which causes the splitting of the entire LocationUpdate
event stream into i× j context partitions. For example, Code 4.1, written in
Esper Event Processing Language (EPL) [46], creates such context partition
(CellContext) following this definition. By doing so, continuous queries that
use the CellContext partition will only consider events that are in the same
grid cell, i.e., those that have the same i and j index.

Algorithm 2: DG2CEP (Stream Receiver)
Input: An input stream of position data D, the ε distance threshold,

the minimum number of moving objects minPts, and the
latitude [latmin, latmax] and longitude [lngmin, lngmax] intervals

Output: An out. stream of LocationUpdate 〈id, lat, lng, t, i, j〉 events
1 latintervals ← segment the latitude interval by ε√

2
2 lngintervals ← segment the longitude interval by ε√

2

3 while data stream D is active do
4 rawlu← read position data 〈id, lat, lng, t〉 from D
5 i← FindIndex(lat, latintervals) . ≈ b lat−latmin

ε
√

2 c
6 j ← FindIndex(lng, lngintervals) . ≈ b lng−lngmin

ε
√

2 c
7 emit LocationUpdate(〈rawlu, i, j〉)
8 end

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 51

1 CREATE CONTEXT CellContext

2 PARTITION BY i AND j

3 FROM LocationUpdate

Code 4.1: DG2CEP grid as a context partition (in EPL).

Also the translation of incoming moving object positions data to Loca-
tionUpdate events can be done with CEP’s primitives, as shown in Code 4.2. The
difference between an incoming position data tuple and a LocationUpdate event
is that the latter includes the mapped i and j cell indexes in addition to all the
position data tuples attributes (〈id, lat, lng, t, i, j〉). By using the project and
enrich primitive it is possible to continuously translate the incoming position
data tuple streams into LocationUpdate events, as illustrated in Figure 4.3.
Here, first, the EPA project the incoming position data values to the Location
Update event. Then, it enriches this output by computing two additional values,
i and j, using the incoming position data latitude and longitude position, lat
and lng respectively. As output, it generate the complex LocationUpdate event
that contains the original position data values and its mapped cell index (i, j).

An EPA with this continuous query can be deployed and executed in
parallel, i.e., without any collateral effects due to the stateless nature of the
used CEP primitives. Both, project and enrich, which computation is solely
based on the analyzed data. In the following section, we present and discuss
how the received LocationUpdate events can be used to detect dense and sparse
grid cells.

1 INSERT INTO LocationUpdate

2 SELECT id, lat, lng, t, b lng−lngmin

ε
√

2 c AS i, b lat−latmin

ε
√

2 c AS j

3 FROM PositionData

Code 4.2: Translation EPA (in EPL).

Figure 4.3: Stream Receiver EPN and Translation EPA.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 52

4.2
Cell EPN

DG2CEP second algorithm part, Cell, is responsible for receiving the
incoming LocationUpdate event stream to discover dense and sparse grid
cells. Thus, first it uses the communication middleware to subscribe to all
LocationUpdate events that are within a given latitude and longitude range. By
subdividing the spatial domain into different regions, it is possible to distribute
the workload between the Cell EPN instances, as shown in Figure 4.4. This
scenario configuration contains four deployed instances, which reflect the domain
division. Note that the spatial domain can be subdivided in smaller regions to
further distribute the workload of the system.

Figure 4.4: Overview of DG2CEP Cell EPN.

4.2.1
Dense Cell Discovery

Algorithm 3 procedurally describes how DG2CEP detects the formation
and dispersion of dense and sparse cells. As mentioned previously, such
algorithm is based on counting the density of each grid cell (context partition)
rather than computing the distance between moving object location updates.
Therefore, each grid cell gets assigned a density value, which is the number
of unique LocationUpdate events mapped to the cell within a given ∆ time
window. LocationUpdate events assigned to a cell are all within ε distance
(ε-Neighborhood) apart from each other since the cell length is ε√

2 , which means
that the maximum distance between two moving objects in the same grid cell
is ε√

2 ×
√

2 = ε.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 53

Algorithm 3: DG2CEP (Dense and Disperse Cells)
Input: A stream D of LocationUpdate events, the ε and minPts

thresholds, ∆ period, and the latitude and longitude intervals
Output: A stream of DenseCellCluster 〈Cell, Neighbors〉 events,

and a stream of DispersedCellCluster 〈Cell〉
1 G← create a grid dividing the lng (i) and lat (j) intervals by ε

√
2

2 L ← create a map to store the latest cell of each moving object
3 while data stream D is active do
4 lu← read location update 〈id, lat, lng, t, i, j〉 from D
5 update lu in Gij

6 C ← all unique location updates in Gij in the past ∆ period
7 . Verify the cell density
8 if |C| ≥ minPts then Gij is a dense cell
9 . Retrieve the core’s neighboring (adjacent) cells

10 N ← ∅
11 for a← i− 1 to i+ 1 do
12 for b← j − 1 to j + 1 do
13 if a 6= i and b 6= j then
14 N ← N ∪ {Gab}
15 end
16 end
17 end
18 emit DenseCellCluster (〈C,N〉) event
19 end
20 . Now we check if the update generated a sparse cell
21 if L(id) 6= 〈i, j〉 and L(id) 6= ∅ then mov. obj. changed cell
22 . Verify if previous cell will become sparse when removing lu
23 remove lu from GL(id)
24 P ← location updates in GL(id) in the past ∆ period
25 if |P| = minPts− 1 then previous cell has dispersed
26 emit DispersedCellCluster (〈P 〉) event
27 end
28 end
29 . Update the last cell of the moving object
30 L(lu.id)← 〈lui, luj〉
31 end

To detect a dense grid cell the algorithm retrieves all unique LocationUp-
date events in the data stream, within a ∆ period, that are in the incoming event
grid cell index (e.g., Gij). This value can be easily computed through CEP, since
DG2CEP can take advantage of the CellContext partition. Thus, whenever
CEP receives a LocationUpdate event it can use its (i, j) index to select the
appropriate context partition sub-stream, which contains only LocationUpdate
events from that specific cell index. Using the incoming LocationUpdate event

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 54

timestamp t, CEP can provide a sliding window abstraction to only consider
events whose timestamp are within the [t−∆, t] period in the sub-stream. By
taking advantage of CEP’s sliding window concept, DG2CEP mitigate the
issues related to batching, such as spatially close location updates being place
in different batches, since it’s time window slide (moves) based on the analyzed
event. The resulting sliding window sub-stream can potentially have more than
one LocationUpdate event from the same moving object. CEP is able to further
filter the sub-stream, using the moving object id value, to retain only the latest
LocationUpdate event per moving object.

Then, it can use the aggregate collapse and count primitives, to group and
count all unique LocationUpdates that are in such context partition sub-stream
in the past ∆ time interval, as shown in Code 4.4. Collapse puts the grouped
events into a single set, while the count primitive is used to compute the cell
density, i.e., the number of unique LocationUpdate events in that specific grid
cell. Finally, as a result, this continuous query creates a complex CellContent
event that summarizes the grid cell information, including its (i, j) index,
its density value, and a set that contains all unique LocationUpdate events
witnessed during the last ∆ time interval.

1 CONTEXT CellContext

2 INSERT INTO CellContent

3 SELECT i, j, COLLAPSE(*) AS locationUpdates, COUNT(*) AS density

4 FROM LocationUpdate [SLIDING ∆ period, LAST UNIQUE id]

Code 4.3: Cell Density EPA (in EPL).

Likewise core moving objects in DBSCAN, grid cells whose density value
is greater than or equal to minPts are considered dense and are classified
as core, since the maximum distance between moving objects inside such cell
is ε. Therefore, to discover core cells, DG2CEP filter the CellContent event
stream to identify events whose density value is equal or higher than minPts.
This simple task can be continuously and timely done in CEP through the
usage of the filter and project primitives, as shown in Code 4. If the analyzed
CellContent event density surpass the minPts threshold, the EPA produces a
derived complex CellCore event to indicate that the grid cell is dense.

1 INSERT INTO CellCore

2 SELECT i, j, locationUpdates, density

3 FROM CellContent

4 WHERE |density| ≥ minPts

Code 4.4: Cell Density EPA (in EPL).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 55

Analogously to DBSCAN, in DG2CEP, the simplest cluster is formed by
the combination of a core grid cell (C) and its neighboring border cells (N),
which are then further visited in a later part of the algorithm. Thus, DG2CEP
needs to enrich the CellCore events with its adjacent border cells to create a
complex event named DenseCellCluster, to be further analyzed and expanded
in DG2CEP. This task can be designed as an EPA continuous query that joins
the incoming CoreCell event with existing CellContent events received in the
past ∆ period. It produces an intermediary result that pairs the core cell C with
the existing Gij cells. Then, it filters the pairs that contain neighboring cells,
i.e., those that are in the border of the incoming core cell index. A neighboring
border cell is one that has both cell index (i, j) different, but each index differs
by one value, at most. Finally, DG2CEP uses the aggregate collapse primitive
to collect all the neighboring cells in a set N . As a result, the continuous query
produces the complex DenseCellCluster event, which contains the CellCore
event (C) and the resulting collection set containing its neighboring cells (N).
A description of this EPA in EPL is shown in Code 4.5.

1 INSERT INTO CellCluster

2 SELECT C, COLLAPSE(OtherCell.*) AS N
3 FROM CellCore AS C
4 CellContent [SLIDING ∆ period, UNIQUE (i, j)] AS OtherCell

5 WHERE (C.i 6= OtherCell.i OR C.j 6= OtherCell.j)

6 AND (|C.i−OtherCell.i| ≤ 1 AND |C.j −OtherCell.j| ≤ 1)

Code 4.5: Cell Cluster EPA (in EPL).

The degree of parallelism of the Cell processing stage is associated with
the number of grid cells, that is, this stage can process in parallel one event for
each grid cell index since its computation is based on each grid cell. Specifically,
they can process an event of each grid cell at the same time. This upper limit
is used to avoid inconsistency. For example, consider that two LocationUpdate
events from different moving objects, but mapped to the same grid cell 〈i, j〉
index, are being processed in parallel. In this scenario, due to the stateful
nature of the aggregate count primitive, it may miss the count of the other
LocationUpdate that is being processed in parallel. However, it is important
to note that this degree of parallelism refer to each EPA and not the entire
EPN, that is, several events with the same cell index can coexist in the EPN,
but at different EPAs stages, in the pipeline. Precisely, once an event with grid
cell index i and j leaves a given EPA, other event with the same index can be
processed in that stage.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 56

4.2.2
Sparse Cell Discovery

It is important to detect when a dense cell becomes sparse, that is, when
the density of the corresponding cell drops below the minPts parameter. Such
situation happens whenever moving objects changes grid cell or if they stop
sending their position.

To detect when a moving object changes its grid cell, DG2CEP stores
their latest grid cell in a map L, as shown in line 30 of Algorithm 3. For
instance, if the latest location update of a moving object with id equal to 7
was placed in grid cell (4, 9), then L(7) = (4, 9). DG2CEP checks if a moving
object has changed it cell by comparing if its incoming LocationUpdate event
cell index differs from its than its previous LocationUpdate, more specifically,
if L(id) 6= 〈i, j〉, where i and j are the current location update cell indexes.
This situation can be timely verified by an EPA continuous query using the
CEP sequence and filter primitives, as shown in Code 4.6. To do that, first the
EPA employs the select primitive to extract consecutive LocationUpdate events.
Then, it filters the event if their grid cell index differs. As output, the EPA
produces a complex CellRecheck event containing the moving object previous
grid cell index (i, j). This event is further analyzed with the intent to verify if
the cell is dense w.r.t. minPts.

1 INSERT INTO CellRecheck

2 SELECT prev.i AS i, previous.j AS j

3 FROM PATTERN [prev = LocationUpdate→ current = LocationUpdate]

4 WHERE (prev.id = current.id)

5 AND (prev.i 6= prev.i OR prev.j 6= current.j)

Code 4.6: Cell Changed EPA (in EPL).

Whenever DG2CEP detects that a moving object changed from its
previous grid cell P to a new one it rechecks the density of the previous
cell. If the cell density is equal to minPts, it indicates that the P grid cell
cluster will disperse after removing the LocationUpdate event. This scenario
can be detected in CEP through the usage of the join, filter, and project
primitives, as shown in Code 4.7. It joins the incoming CellRecheck event with
the CellContent event stream producing an intermediary result that pairs the
cell index to be rechecked with the existing CellContent events. Then, the
EPA uses the filter primitive to correlate and extract the corresponding cell
density using the CellRecheck indexes. Finally, if P density value is equal to
minPts the continuous query generates a complex DispersedCellCluster event
to indicate that the cell will become sparse.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 57

1 INSERT INTO DispersedCellCluster

2 SELECT CellDensity

3 FROM CellRecheck AS P

4 CellContent [SLIDING ∆ period, LAST UNIQUE (i, j)]
5 WHERE (P.i = CellContent.i AND P.j = CellContent.j)

6 AND (|P.density| = minPts)

Code 4.7: Cell Disperse EPA (in EPL).

Moving objects can also stop sending LocationUpdate events, which can
lead to a cell cluster becoming invalid even though they have not changed
cells. DG2CEP is able to timely detect such situation through the usage of
CEP sequence, negation, and absence pattern primitives combined with a ∆
sliding window period, as shown in Code 4.8. This EPA verifies if a previous
DenseCellCluster event in a grid cell (i, j) is not followed by another such
event, i.e., in the same grid cell index, during a ∆ period. The absence of this
event throughout this period indicates that the number of location updates
mapped to the cell (context partition) dropped to less than minPts, and that
it is no longer a cell cluster. By setting up a ∆ time window value equal to
the moving objects’ location update frequency, DG2CEP makes sure that all
location updates have been considered. Finally, the continuous query produces
a complex DisperseCellCluster event containing the analyzed cell to indicate
that it is no longer dense.

1 INSERT INTO DispersedCellCluster

2 SELECT PrevCellCluster.core

3 FROM PATTERN [

4 DenseCellCluster AS PrevCellCluster →
5 (∆ period AND NOT DenseCellCluster AS FollowCellCluster)
6]

7 WHERE PrevCellCluster.x 6= FollowCellCluster.x AND

8 PrevCellCluster.y 6= FollowCellCluster.y

Code 4.8: Cell Disperse by Time EPA (in EPL).

Similar to the dense cell discovery, the degree of parallelism for the sparse
detection phase is associated with the number of context partitions (grid cells).
It can process an event for each grid cell in parallel without having collateral
effects. Further, the sparse detection algorithm can be processed in parallel
with the dense cell discovery one, that is, both algorithms can be processed

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 58

Figure 4.5: Cell Event Processing Network.

at the same time. Figure 4.5, express this relationship, where both, density
and disperse EPAs, are executed in parallel in the Cell Event Processing
Network. In addition, it illustrates the Cell EPN and how the described EPAs
are interconnected to continuously and timely detect the formation of dense
and disperse cells.

4.3
Grid EPN

With the EPAs presented so far, DG2CEP is only detecting the formation
and dispersion of individual cell clusters. However, in order to detect spatial
clusters of arbitrary shapes, DG2CEP also needs to implement the successive
merge and unmerge of cells, similar to DBSCAN expansion step. Figure 4.9,
illustrates an overview of the Grid EPN structure with cell cluster and disperse
events as input, while having grid formation, merge, update, split, and destroy
events as output.

The Grid EPN is responsible for receiving and handling cell cluster and
disperse events to create, destroy, and evolve spatial grid clusters. In terms of
CEP workflow this boils down to merging and expanding grid clusters when
receiving DenseCellCluster events, while removing cells from, and occasionally
splitting, existing grid clusters when receiving DisperseCellCluster events.

Analogous to DBSCAN, where clusters are collections of density-connected
core and border moving objects, in DG2CEP, grid clusters are the resulting
combination of one or more adjacent DenseCellCluster events. In turn, each
DenseCellCluster event contains a core grid cell and its corresponding neighbors.
Thus, a grid cluster contains core cells (from the cell cluster events) and border
cells (the core cells neighbors). Finally, each cell contain the individual moving
objects location update. The remaining subsections will discuss how to build
and manage such clusters.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 59

Figure 4.6: Overview of Grid EPN.

4.3.1
Grid Cluster Representation

To represent a grid cluster in CEP, DG2CEP uses a streaming relation.
In CEP this concept is known as stream windows and implemented as an
in-memory table. The difference between a streaming relation (stream window)
and a conventional database relation is the distinctive capability of referencing
and manipulating the relation content within continuous queries and usage of
context windows, e.g., time and partition. Thus, by storing the current grid
cluster list in a stream relation DG2CEP is able to search, add, update, and
remove clusters within its other continuous queries.

The cluster streaming window schema is defined as follow: 〈cid, x, y〉,
where cid is the cluster identifier and x and y are the core cell cluster index2.
To exemplify this schema, consider the cluster streaming window illustrated
in Figure 4.7. Here, a grid cluster with cid = 15 contains two core cells, with
indexes (5, 9) and (5, 10), while the cluster with cid = 16 contains three core
cells: (3, 3), (4, 2) and (4, 1). The name window only index the grid clusters
core cells, since its border ones can be easily retrieved through the core cells
adjacency.

The following subsection will discuss how such structure can be managed
in parallel. Further we also discuss how to correlate incoming DenseCellCluster
and DispersedCellCluster events with the Clusters streaming window.

2We use x and y to represent a cluster core cell in the streaming window to avoid
confusion with the incoming grid cell i and j indexes

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 60

Figure 4.7: An example of the Clusters streaming window.

4.3.2
Grid Add, Update, and Merge

Algorithm 4 describes how DG2CEP expands DenseCellCluster events to
create and evolve grid clusters. First, DG2CEP unwrap the complex event and
adds its core and border cells to a grid G. Then, before further processing the
event, it has to verify if it is creating, augmenting, merging, or just updating
an existing grid cluster. We decide to untangle these different cases by checking
for a cluster update since it is the most frequent situation, i.e., when a cell
cluster belongs to a grid cluster and updates its content, e.g., the number or
location of moving objects.

DG2CEP updates an existing cluster if it contains a core cell which index
is equal to the incoming event cell This can be computed by evaluating if
σ(x=i,y=j)(Clusters) 6= ∅, that is, using the relational algebra select operator
over the Clusters streaming window. In the case that result is non empty, it
means that Gij is contained and is a core cell in the given cluster. Thus, an
OutputGridCluster event is emitted with the cluster ID alongside an UPDATE

tag to indicate that it has updated. An output EPA, which is discussed later,
consume this event to produce the resulting cluster.

However, when no existing clusters contains the incoming cell event index,
σ(x=i,y=j)(Clusters) = ∅, it means that either the core cell can form a cluster
or can be merged to an existing one. Nevertheless, in both cases, the conclusion
of such operation is a new cluster, either one with this single cell or the result
of the merged one. Thus, DG2CEP insert a new grid cluster in the streaming
window containing the incoming cell indexes and a new cluster id. Subsequent
EPAs will process the input event in the Clusters streaming window to filter
out each case, either add or merge.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 61

Algorithm 4: DG2CEP (Grid Add/Merge/Update)
Input: A stream D of DenseCellCluster 〈C,N〉, the ε threshold, and

the latitude and longitude intervals
Output: Continuously output pairs 〈G,S〉 of grid clusters G and

their corresponding semantic S
1 G← create a grid dividing the lng (i) and lat (j) intervals by ε

√
2

2 Clusters← create a relation 〈cid, x, y〉 to store the grid clusters cells
3 while data stream D is active do
4 DenseCellCluster ← read dense cell cluster 〈C,N〉 event from D
5 add the dense core cell C and its neighbors N cells to G
6 i, j ← the dense core cell index 〈Ci, Cj〉
7 . Now we check if the core cell belong to a grid cluster in Clusters
8 if σx=i,y=j(Clusters) 6= ∅ then Gij is in a grid cluster
9 ClusterID← πcid(σx=i,y=j(Clusters))

10 S ← UPDATE

11 else Gij is not in any existing grid cluster
12 ClusterID← generate a new cluster ID
13 Clusters← Clusters ∪ {〈ClusterID, i, j〉}
14 N ′ ← ∅ . Check if it is neighbor of an existing grid cluster
15 foreach adjacent cell 〈i′, j′〉 from Gij do
16 N ′ ← N ′ ∪ πcid(σx=i′,y=j′(Clusters))
17 end
18 if N ′ = ∅ then there are no grid clusters adjacent to Gij

19 S ← ADD

20 else
21 S ← MERGE

22 foreach neighboring cluster id ncid in N ′ do
23 GridClusterCoreCells← σcid=ncid(Clusters)
24 foreach gric cell gc in GridClusterCoreCells do
25 . Update the tuple cid to the new ClusterID
26 Clusters← Clusters− {〈ncid, gcx, gcy〉}
27 Clusters← Clusters ∪ {〈ClusterID, gcx, gcy〉}
28 end
29 end
30 end
31 end
32 . Retrieve the grid cluster core and border cells using ClusterID
33 G ← ∅ . Grid cluster cells
34 GridClusterCells← σcid=ClusterID(Clusters)
35 foreach core grid cell gc in GridClusterCoreCells do
36 G ← G ∪ {Ggci,gcj

}
37 foreach adjacent cell 〈i′, j′〉 from gc do
38 G ← G ∪ {Gi′,j′}
39 end
40 end
41 end
42 emit GridCluster (〈G,S〉) event

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 62

To avoid having inconsistency issues when processing parallel events, we
decided to apply a lock for this rule for each cell index. This means that the
degree of parallelism associated with this EPA is also the number of cells. While
an event with cell index Gij is being processed, subsequent events with index
i and j are queued, while events with different cell indexes can be process in
parallel.

Now to continuously and timely express this decision, to either update or
add/augment an existing cluster, DG2CEP uses EPA described in Code 4.9.
This EPA uses the SQL MERGE primitive which atomically update or insert a
tuple in a relation depending on a given criteria, in our case, if the incoming
core cell exists in the Clusters streaming window, that is, if there is a Clusters
tuple with index x and y equal to the incoming core cell i and j index.

1 ON DenseCellClluster AS denseCell

2 MERGE INTO Clusters

3 WHERE denseCell.x = Clusters.x AND denseCell.y = Clusters.y

4 WHEN MATCHED

5 THEN INSERT INTO OutputGridCluster

6 SELECT Clusters.cid, "UPDATE"

7 WHEN NOT MATCHED

8 THEN INSERT INTO Clusters, HandleNewGridCluster

9 SELECT nextClusterID++ AS cid,

10 denseCell.i AS x, denseCell.j AS y

Code 4.9: Grid Cell Check EPA (in EPL).

This EPA can be expressed using the join, filter, and project. Precisely, it
joins the incoming DenseCellCluster events with the Clusters streaming window
using the core cell indexes. If there is a match, that is, if the core cell indexes
is already in a give grid cluster the EPA outputs a complex OutputGridCluster
update event by using the corresponding grid cluster id. As said, this event
is later consumed by other EPA to build the grid cluster output. However, if
there is no match, then the EPA insert a new entry to the Clusters streaming
window containing the incoming core cell indexes and a newly generated cluster
id. It also generates a complex HandleNewGridCluster event with the same
content to handle and process the new grid cluster, i.e. to either add or merge
it with existing clusters.

To completely either add or merge a cluster and avoid inconsistency it
is necessary to lock the Clusters streaming window. During this period the
remaining EPAs will only be able to read entries from the streaming window. It

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 63

is important to note that this lock only happens when modifying the structure
of the clusters, e.g., merging a cluster, which usually does not happen frequently.

Now, DG2CEP needs to process the newly created grid cluster, i.e., the one
inserted in the Clusters streaming window using the incoming DenseCellCluster
event indexes. Thus, first, DG2CEP identify if there are adjacent grid clusters
to the newly created one. This task can be done by querying the Clusters
streaming window using each border cell index (i′, j′), e.g., using the relational
algebra selection and project primitives πcid(σ(x=i′,j′)(Clusters)).

This can be easily expressed in CEP through the usage of a join, filter,
and project primitive, as shown in Code 4.10. The continuous query joins the
incoming HandleNewGridCluster events with the Clusters named window using
the cell indexes. The intermediary result of this join is a set of pairs containing
the newly dense cell cluster with the existing grid clusters core cells. Then, the
EPA use the filter primitive to extract that pairs whose cell indexes are different
and differ at most by one. Such pairs, i.e., grid clusters are considered merge
candidate. For each merge candidate, i.e., neighboring grid cluster, the EPA
uses a project primitive to extract its current cluster ID and the newly created
cluster ID. Then, it emits a complex MergeCluster event with these two IDs
for each merge candidate. However, if there is no match, that is, there are no
border grid cluster, then CEP creates and emits a complex OutputGridCluster
event with the newly created cluster ID indicating that the grid cluster has
been added.

1 INSERT INTO MergeCluster

2 SELECT cellCluster.cid AS newClusterID, gc.cid AS oldClusterID

3 FROM HandleNewGridCluster AS cellCluster, Clusters AS gc

4 WHERE (|cellCluster.x− gc.x| ≤ 1 AND |cellCluster.y − gc.y| ≤ 1)
5 AND (|cellCluster.x− gc.x| 6= 1 AND |cellCluster.y − gc.y| 6= 1)

Code 4.10: Grid Check Merge EPA (in EPL).

If the EPA returns an empty set N ′ of neighbors, that is, if there are
no grid clusters in the streaming window which are neighbors of the incoming
dense cell, then there is no need to merge the recently created cluster. However,
if the N ′ set is non-empty, DG2CEP will merge the neighboring grid clusters
in N ′ to the newly created cluster. The result of this merge is a grid cluster
composed by the newly created cluster and the union of all its neighboring
grid clusters. This is due to the newly created grid cluster serving as a link to
connect all its neighboring grid clusters.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 64

To efficiently merge the cluster, DG2CEP needs to update up all core
cells of adjacent grid clusters to the cluster id of the newly created one (from
the DenseCellCluster event). Hence, the algorithm removes from the Clusters
streaming window the old grid cluster core cells and add it using the new
cluster ID. This task can be continuous and timely done in CEP through the
usage of the join, update, and project primitive, as described in Code 4.11. The
continuous query reacts to the incoming MergeCluster event by updating the
Clusters streaming window to its new cluster ID.

1 ON MergeCluster AS mergedCluster

2 INSERT INTO OutputGridCluster

3 UPDATE Clusters

4 SET cid = mergedCluster.newClusterID

5 WHERE cid = mergedCluster.oldClusterID

Code 4.11: Grid Merge EPA (in EPL).

To exemplify this process, consider the scenario illustrated by Figure 4.8.
In this case, the Clusters streaming window contains tree grid clusters. Further,
consider that the incoming DenseCellCluster event is the hashed cell, with cell
index equal to (4, 4). According to the described EPAs, DG2CEP first verifies
if the incoming DenseCellCluster event is already contained within a given
grid cluster. In this case, the incoming dense cells is not located in any grid
cluster. Thus, DG2CEP creates a new grid cluster using the incoming event
cell and a new cluster ID, e.g. 17. Then, it looks for adjacent grid clusters in
its neighboring cells. In this case, there are three adjacent grid clusters. Thus,
DG2CEP produces three MergeCluster events pairing the new cluster ID (17)
with adjacent grid cluster IDs (12, 14, and 16). The resulting of this merge is a
single grid cluster with ID 17 and composed by the union of all adjacent grid
clusters (12, 14, and 16), since the incoming core cell interconnect them. To do
this change, DG2CEP only needs to swap the grid clusters IDs, as shown in
the EPA described in Code 4.11.

Finally, in addition to the event semantics (e.g., add, update, merge), the
grid cluster output should also include the core and border cell contents. This
can be done through querying the Clusters streaming window using the old
cluster ID, in case of an update, or its new one, in the case of an add or merge
occurrence. After that, DG2CEP build the grid cluster by retrieving each core
cell and border contents. The resulting grid cell set is wrapped alongside the
event semantic in a complex GridClusterOutput event. This event is intended
to be consumed by endpoint applications or to be further processed by other
EPAs continuous queries.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 65

Figure 4.8: Sample scenario of merging grid clusters in DG2CEP.

The construction of the GridClusterOutput can be expressed in CEP
through the usage of the join, filter, aggregate, and project primitives, as
described in Code 4.12. An EPA joins the incoming GridCluster event with
the Clusters relation with a sliding window of the CellContent event stream.
This sliding window only includes unique CellContent events in the past ∆
period. Then, the filter primitive matches the incoming GridCluster cluster ID
with the Clusters core cells cluster ID. In turn, all CellContent events whose
cell indexes are within a maximum distance of one, w.r.t. the core cells index,
are selected. Then, the aggregate collapse function group the selected cells in a
single set. Such set is projected alongside the clustering semantic into the final
complex GridClusterOutput event. This event can be consumed by endpoint
applications or be further processed by other EPAs.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 66

1 INSERT INTO GridCluster

2 SELECT COLLAPSE(cell.*) AS Cells, gridCuster.semantic AS Semantic

3 FROM OutputGridCluster AS gridCuster,

4 Clusters AS cw,

5 CellContent [SLIDING ∆ period, LAST UNIQUE (i, j)] AS cell,

6 WHERE cw.cid = gridCluster.cid

7 AND |cw.x− cell.i| ≤ 1 AND |cw.y − cell.y| ≤ 1

Code 4.12: Grid Output EPA (in EPL).

4.3.3
Grid Disperse

When a cell cluster disperses, i.e., when receiving a DisperseCellCluster
event, it is necessary to timely reflect this change in the Clusters streaming
window, as described in Algorithm 5. To do so, DG2CEP needs to identify
the cluster that contains the dispersed cell. Since this change will alter the
Clusters window, it is necessary to lock it during this timely operation to avoid
inconsistencies.

After locking the streaming window an EPA extracts the grid cluster
id of the cell represented in the DisperseCellCluster event. This is done by
comparing the incoming disperse cell index to the grid clusters’ core cells
indexes in the Clusters streaming window. This operation can be continuous
and timely processed in CEP through the usage of the join, filter, and project
primitives, as shown in Code 4.13.

1 INSERT INTO DisperseCluster

2 SELECT cluster.cid AS ClusterID

3 FROM DisperseCellCluster AS disperse,

4 Cluster AS cluster

5 WHERE |disperse.x− cluster.x| = 0 AND |disperse.y − cluster.y| = 0

Code 4.13: Grid Discover EPA (in EPL).

Incoming DisperseCellCluster events are joined with the Clusters window
by correlating the disperse cell index with existing grid cluster core cells indexes.
Then, the output of such continuous query is the id of the grid cluster that
contains the dispersed cell. The EPA computation is equivalent to the following
relational algebra equation: ClusterID = πcid(σx=i,y=j(Clusters)). Using the
dispersed grid cluster id, DG2CEP selects all its core cells. This is done to verify
if the cluster in question will be completely removed or split when removing
the dispersed cell. The EPA described in Code 4.14 does this task.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 67

Algorithm 5: DG2CEP (Disperse)
Input: A stream D of DispersedCellCluster 〈C〉, the ε and minPts

thresholds, ∆ period, and the latitude and longitude intervals
Output: Continuously output zero or more pairs 〈G,S〉 of residual

grid clusters G and their corresponding semantic S
1 G← create a grid dividing the lng (i) and lat (j) intervals by ε

√
2

2 Clusters← create a relation 〈cid, x, y〉 to store the grid clusters cells
3 while data stream D is active do
4 DispersedCellCluster ← read dispersed cell 〈C〉 event from D
5 i, j ← the dispersed cell index 〈Ci, Cj〉
6 . Now we check if the dispersed cell belong to a grid cluster
7 if σx=i,y=j(Clusters) 6= ∅ then Gij is in a grid cluster
8 ClusterID ← πcid(σx=i,y=j(Clusters))
9 . Remove the dispersed cell from the given grid cluster

10 Clusters← Clusters− {〈ClusterID, i, j〉}
11 . Retrieve the residual core cells
12 CoreCells← σcid=ClusterID(Clusters)
13 . Compute the residual grid clusters
14 R ← ∅
15 foreach residual core cell c from CoreCells do
16 foreach residual grid cluster r in R do
17 if r contain a grid cell adjacent to c then
18 . Add c to the residual grid cluster
19 r ← r ∪ {c}
20 end
21 end
22 if no residual grid cluster contain c then
23 . Create a new residual grid cluster with c
24 R ← R∪ {r}
25 end
26 end
27 if R = ∅ then there are no residual grid clusters
28 emit OutputGridCluster 〈C, DESTROYED〉
29 else there are residual grid clusters
30 delete all residual core cells in the Clusters relation
31 foreach residual grid cluster r from R do
32 newClusterID ← generate a new cluster ID
33 foreach core cell c in r do
34 Clusters← Clusters ∪ 〈newClusterID, ci, cj〉
35 end
36 emit OutputGridCluster 〈r, SPLIT〉
37 end
38 end
39 end
40 end

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 68

1 SELECT *

2 FROM DisperseCluster AS disperse,

3 Cluster AS cluster

4 WHERE disperse.disperseClusterID = cluster.cid

Code 4.14: Grid Discover EPA (in EPL).

After extracting the cluster core cell, DG2CEP only needs to identify and
handle possible residual (e.g., split) clusters. This is done by first removing the
dispersed cell and then scanning through the remainder core cells to group them
into disjoint sets, as shown in the algorithm. A list of clusters R is created to
hold the residual clusters. Each member of this list is a set r (residual cluster)
whose elements are the core cell. To verify if a core cell belongs to a residual
cluster, DG2CEP check if a residual cluster contains an adjacent cell to the one
being analyzed. If it does the remainder core cell is added to the residual cluster,
otherwise a new residual cluster is created with this cluster. After this step, the
cluster containing the dispersed cluster is deleted. Then, each of the residual
clusters are reinserted in the streaming window. This is done by generating a
new cluster id with the combination of the core cells belonging to this residual
cluster. If there are no residual grid cluster, i.e., R = ∅, a destroyed semantic
is emitted to indicate that grid cluster has faded. Otherwise, the remainder
grid clusters are reinserted into Clusters and semantically considered a split,
i.e., a sub-set of the original grid cluster.

Figure 4.9: Grid Event Processing Network.

This last algorithm and EPA cannot be easily paralyzed since it modifies
the grid cluster structure, i.e., the Clusters streaming window. During the EPA
processing, it is required to lock the streaming window for removing the grid
cluster that contains the dispersed cell. This operation can be quickly done since
it is based on comparing the cell indexes, from the dispersed cell and current
grid clusters. Similarly, residual grid clusters can be quickly computed since it,

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 69

also, only uses the cell indexes. It is important to note that the lock duration
only impacts EPAs responsible for adding or merging new grid clusters to
existing ones, which usually does not happens frequently. One way to mitigate
the locking issue is to deploy the Grid EPN, illustrated in Figure 4.9, in different
machines. By restricting the deploy instance to a subset of the spatial domain
the disperse cell lock duration will only affect the grid cluster add/merge EPAs
of that instance.

4.4
Discussion

A primary benefit of DG2CEP when compared to DBSCAN is that
it substitutes the distance comparison problem to counting. The DBSCAN
clustering approach requires, for every location update, a pairwise comparison
between all the moving objects, which has quadratic complexity. By using an

ε√
2×

ε√
2 square shaped grid cells, DG2CEP reduces the problem to counting the

number of moving objects that fall into each partition. Similar to DBSCAN, in
DG2CEP still needs to expand the core grid cells, i.e., those that are dense w.r.t.
the minPts parameter, but this process is much simpler and more efficient as
they are disposed in a grid. Hence, the main performance factor is not anymore
the number of moving objects location updates but instead the number of grid
cells g, or context partitions, which solely depends on ε.

The tuning of the ε parameter and the frequency of location updates
sent by moving objects for a concrete application (in terms of the objects size
and speed) is very complex, and requires deep knowledge and expertise in
the application domain [3, 10]. Since DG2CEP is not focused on a specific
application scenario, we assume that such information is well known in advance.
Regarding the sliding window size (∆), it has a direct relation with the expected
frequency/periodicity of the moving objects location update. Ideally, ∆ should
be large enough to ensure that the latest location updates of every mobile node
are being considered. Unfortunately, for real-world applications it is usually
impossible to know the largest update period, since each moving object has a
specific location update frequency. In practical terms, it is usually sufficient
to choose the size of ∆ such that a large enough percentage of moving objects
(e.g., 75%) generate location updates in periods smaller than ∆.

Regarding algorithmic complexity, it is hard to calculate DG2CEP
complete computational cost given the reactive and its event-based nature.
Considering that most CEP real-time primitives and context operations
can be implemented in near real-time [14, 66], the DG2CEP computational
cost is determined by its longest event path. In worst case, a moving

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 70

object location update will pass through all EPAs that detect a grid cluster
formation/dispersion. Thus, in this case, the computational cost of DG2CEP
per location update, would be:

DG2CEP = O(StreamReceiver) +O(Cell) +O(Grid)
= O(lg g) +O(1) +O(g)
= O(g)

where g is the number of grid cells (“context partitions”).

The Stream Receiver cost is associated with g, the number of grid cells
(or context partitions). Using a data structure that holds intervals, such as
Segment Tree or Binary Tree, DG2CEP can identify the grid cell indexes of a
location update in O(lg g). The computation of an approximation cell index
can be done in constant time, O(1), since it can be directly computed through
the location update latitude and longitude values, roughly the number of ε√

2
units required to index this position.

After mapping the moving objects location update to a grid cell, DG2CEP
checks if that specific cell forms a cluster, that is, if it the number of unique
location updates events mapped to the given cell within a ∆ period is bigger
or equal to minPts. When this happen, the algorithm retrieve its adjacent
neighbors and builds a complex DenseCellCluster event to be further expanded.
Further, it also checks if the previous grid cell of the moving object location
update will dispersed, that is, the cell density will drop below the minPts
threshold. It verifies that whenever the moving object change its cell. In both
cases, for detecting dense and sparse grid cells, the computation can be done
in constant time since it involves basic operators.

Finally, the last algorithm part, Grid, consumes the dense and disperse cell
events. The DenseCellCluster event triggers the EPA to check if the incoming
dense cell will form a new grid cluster or is part of an existing one. This process
requires an iteration over the existing grid clusters cells. In the worst case, each
cluster could be a single cell in the grid, which would require an iteration over
all g grid cells. Hence, its computational cost is O(g). For DisperseCellCluster
events the process is similar. Here, the worst case scenario is that a cell becomes
sparse in a grid cluster composed of every cell. In this case, the algorithm would
need to iterate over all the g grid cluster cells to discover residual clusters. Thus,
its computational cost is also O(g). Considering therefore all the aforementioned
steps, the total computational cost for the entire DG2CEP algorithm is O(g).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 71

However, it is important to note that the DG2CEP worst-case scenario
is unlikely to occur for all events in the stream. It would require all location
updates in the ∆ time window to have their corresponding moving objects
located in dense cells. In most cases, most location update events will pass only
through the Stream Receiver and stop at the Cell part, which have a constant
cost, O(1) +O(1) if using the approximate index, or an O(lg g) +O(1) when
using a data structure to compute the location update cell index. It is also
important to note that DG2CEP’s space complexity is O(n) since all location
updates are held only for a ∆ period under the assumption that the maximum
update frequency of the n moving objects is ∆.

4.5
Limitations

Complementing the previous discussion, in the following we discuss some
limitations of DG2CEP, which in fact, are common to all grid-based clustering
approaches.

While the DG2CEP counting approach of grid cells (context partitions)
gives a performance advantage over DBSCAN, it also entails what we call
the blind spot or answer loss problem: the difficulty to detect a dense grid
cluster when spatially and temporally close location updates are mapped to
adjacent grid cells [37, 38, 67]. The blind spot problem happens in any grid-
based approach because the spatial domain is segmented in ε square shaped
grid cells, and moving objects that are ε distance apart from each other may
be mapped to different cells, not contributing to the required minPts density
in a specific grid cell. For example, suppose that minPts = 4 and the grid cells
have the following location updates illustrated in Figure 4.10. In this case, no
grid cell would be considered dense since their density is below the minPts
threshold even though there is a clear high density of location updates in the
picture close to the borders of all 4 cells.

Figure 4.10: Blind Spot Scenario in DG2CEP, for minPts = 4.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 72

For a i× j grid, in worst case there would be (i− 1)× (j − 1) blind spots,
when all location updates would be distributed to the corners, and all grid
cells would contain less than minPts. However, this worst case is very unlikely
to happen since it would require a very specific, and regular, location update
distribution of location updates, that would have to have, so to say, knowledge
of the underlying grid.

It is possible to compare DG2CEP’s and DBSCAN’s clustering results.
Considering that there are no blind spots, DG2CEP clustering results are a
superset of DBSCAN one. Suppose that a grid cluster in DG2CEP has c core
and b border grid cells. Hence, all location updates in the c core grid cells would
also be included in DBSCAN result since they are all within the ε distance.
DG2CEP default expansion includes all the border grid cells. Therefore, in
the worst-case scenario, the neighbor grid cells should not be included, since
their content is beyond the ε distance. To illustrate this scenario, consider
the following scenario illustrated in Figure 4.11, with minPts = 4 and a grid
cluster with two core and eight border cells.

The number of location updates detected by DG2CEP in this cluster
would be |c|+ |b| = 12, where |c| and |b| are the number of location updates
placed in the cluster’s core and border cells respectively. This result is a superset
of DBSCAN’s outcome, which is 9 location updates. This clustering error is
limited by following equation: |b| × (minPts − 1). This means that, since
DG2CEP includes all the content of neighbors partitions, in the worst-case
scenario, all moving objects in the neighbor partitions are not within ε distance
of the DBSCAN. However, these partitions are limited by minPts, otherwise
they would have been included as core partitions.

Figure 4.11: DG2CEP result as a superset of DBSCAN one.

4.6
Summary

This chapter presented DG2CEP, a grid/density-based clustering algo-
rithm designed for large position data stream. The algorithm is expressed as

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 4. Density-Grid Clustering using Complex Event Processing 73

a network of CEP real-time processing primitives and employs a counting ap-
proach instead of using distance comparisons between moving objects’ location
updates to reduce the computational cost. In general, the overall idea is to
first map the location updates to grid cells (or context partitions, i.e., CEP
sub-streams) instead of comparing each individual location update with the
remainder ones. Then, similar to core point in DBSCAN, the algorithm filter
the grid cells whose density is equal or higher than the minPts threshold.
These core cells form a grid cluster. Further, like DBSCAN, it expands these
core grid cells to augment or split the grid cluster. During this chapter, we
explained step-by-step how these tasks can be expressed as a CEP real-time
primitives.

Although the counting semantics enables grid-based approaches to scale
and provides faster results over other approaches, they may fail to identify some
spatial clusters, a problem known as answer loss (or blind spot) [37, 38, 67],
that was briefly presented in Section 4.5. Answer loss is a problem that happens
due to the discrete division of the space domain into grid cells, which can lead
to spatial and temporally close moving objects being mapped to different cells
and, thus, not contributing for a cell density that exceeds the minPts even
though the objects are closer than ε to each other, as illustrated in Figure 4.10.
Next chapter, will present a counting heuristic that is able to mitigate this
problem and increase DG2CEP ability to detect the grid clusters that contains
this situation.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

5
Answer Loss Heuristic

In this chapter, we present a heuristic to address the answer loss or blind
spot subproblem [37, 38, 67]. Answer loss is a subproblem that happens in
DG2CEP, and other grid-based approaches, due to the discrete division of the
space domain into grid cells, which can lead to spatial and temporally close
moving objects locations updates being mapped to different cells. Although
the moving objects are close w.r.t. ε, such cluster will not be detected since no
grid cell is dense w.r.t. minPts, as illustrated in Figure 4.10.

The remainder of the chapter is structured as follows. Section 5.1 presents
the heuristic approach, a density heuristic that is sensible to location updates
in adjacent grid cells. Section 5.2 shows the usage of the heuristic in two
example scenarios and discusses its effectiveness, tradeoff, and limitations.
Finally, Section 5.3 discusses some related work to address this subproblem,
while Section 5.4 makes the concluding remarks and summarizes the main
concepts of the proposed heuristic.

5.1
Transient Heuristic

To address the answer loss subproblem, while retaining DG2CEP counting
semantic, we propose a density heuristic that logically divides each grid cell
into S inner slots (strips), in both directions, horizontal and vertical. Then, the
density function counts the number of mapped location updates in those inner
slots in a way that slots closer to Gij have higher weight than those that are
more distant. The exact process is detailed below.

Each location update mapped to a grid cell Gij is also mapped to a
horizontal and vertical slot index s, such that s varies from 0 to S − 1, the first
and last slot respectively. This operation can be effectively done in constant
time during DG2CEP Stream Receiver phase by comparing the location update
position with the width and length size of each slot.

After that, the heuristic need to detect the transient grid cells, i.e., those
whose density is less than the minPts parameter, but higher than a lower-
bound lowerP ts value. This can be continuously and timely verified in CEP
through the usage of the filter and project primitives, as described in Code 5.1.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 75

The continuous query reacts to the CellContent event produced by an incoming
LocationUpdate event. If the density value is within the transient threshold
interval a new complex CellTransient event is generated with the corresponding
grid cell values.

1 INSERT INTO CellTransient

2 SELECT i, j, lu, density

3 FROM CellContent

4 WHERE |density| ≥ lowerP ts AND |density| < minPts

Code 5.1: Cell Transient EPA (in EPL).

To apply the heuristic, DG2CEP needs to analyze the neighborhood of
the transient grid cell. Therefore, it needs to enrich the CellTransient event
(e.g., Gij) with its adjacent grid cells (e.g., Nε(Gij)). Similar to what DG2CEP
does to enrich CellCore events into CellCluster, this task can be timely done
by joining the incoming CellTransient event with the existing CellContent
events received in the past ∆ time window. Then, DG2CEP can correlate
the paired cell indexes to filter and group the neighboring grid cells. Finally,
DG2CEP enriches the original transient grid cell event with its neighboring
grid producing a complex CellTransientCheck event. A description of an EPA
performing this task is shown in Code 5.2.

1 INSERT INTO CellTransientCheck

2 SELECT Gij, COLLAPSE(Cell.*) AS Nε(Gij)
3 FROM CellTransient AS Gij,

4 CellContent [SLIDING ∆ period, UNIQUE (i, j)] AS Cell

5 WHERE (Gi 6= Celli OR Gj 6= Cellj)

6 AND (|Gi − Celli| ≤ 1 AND |Gj − Cellj| ≤ 1)

Code 5.2: Cell Transient Enrich EPA (in EPL).

The next step is to update the clustering density function by considering
the inner density of its neighboring grid cells, as illustrated by Figure 5.1. Not
only the number of location updates in a grid cell Gij is considered, but also
the distribution of moving objects in the inner slots of each neighboring cell in
Nε(Gij). To do this, we propose a discrete decay weight function that counts the
number of location updates inside each inner slots of each neighboring grid cell
in such way that slots closer to Gij receive a higher weight. The heuristic density
is the sum of the location updates’ placed in each neighboring close slot with
their corresponding weight. However, the closer slots indexes vary according to

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 76

the position of the neighboring cell, as shown by darker tones in Figure 5.1.
Thus, to avoid handling the different neighboring position when computing the
density function, DG2CEP “normalize” their inner slots distribution. To do
so, DG2CEP reorder the neighbor cells n ∈ Nε(Gij) inner slots ns in such a
way that the first slot, s = 0, is closer to the evaluated cell, while the last slot,
s = S − 1, is the farthest one, to enable them to be handled as if they were
aligned in the same position.

Figure 5.1: Density neighborhood of a given cell. Note that the neighbor’s n
closer inner slots ns is relative to the position of Gij.

After normalization, the density function can be described as:

density(Gij, Nε(Gij)) = |Gij|+
∑

n∈Nε(Gij)

(S−1∑
s=0

ns × ws

)
,

where |Gij| is the number of location updates contained in Gij, n ∈ Nε(Gij) is
a adjacent cell neighbor, S is the total number of inner slots, ns is the number
of location updates in the sth slot index of a neighboring grid cell n, and ws is
the sth decay weight.

CEP engines implementations commonly provide the ability to encapsulate
external and user defined functions as continuous query primitives1,2. DG2CEP
makes use of this to compute and provide the density heuristic as an external
filter function density(Gij, Nε(Gij)). Then, it can refer to the heuristic function
in the continuous query, as illustrated in the EPA written in Code 5.3. If
the analyzed grid cell density, using the heuristic, is larger or equal to the
minPts parameter, DG2CEP produces a DenseCellCluster event. To enable
compatibility to EPAs that consume the dense cell cluster events, the EPA emits
the same DenseCellCluster event type regardless if the grid cell is considered
dense w.r.t minPts or the heuristic.

1Esper Functions: http://www.espertech.com/esper/release-5.3.0/esper-reference/

html/functionreference.html#epl-function-user-defined.
2Apache Flink UDF: https://ci.apache.org/projects/flink/flink-docs-release-1.2/

dev/api_concepts.html .

http://www.espertech.com/esper/release-5.3.0/esper-reference/html/functionreference.html#epl-function-user-defined
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/functionreference.html#epl-function-user-defined
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/api_concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/api_concepts.html
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 77

1 INSERT INTO DenseCellCluster

2 SELECT Gij, Nε(Gij)
3 FROM CellTransientCheck

4 WHERE density(Gij, Nε(Gij)) ≥ minPts

Code 5.3: Cell Transient Heuristic EPA (in EPL).

We propose two discrete weight decay functions, a linear and an expo-
nential one, illustrated by Figure 5.2 (for S = 4 inner slots). The linear decay
weights can be computed as ws = −s

S +1, where s is the given grid cell inner slot
index. For example, considering S = 4, the slots weights are w0 = 1, w1 = 0.75,
w2 = 0.50, and w3 = 0.25. This means, that the weight of location updates
placed in the closest inner slot w0 is 1, while location updates placed in the
last inner slot is 0.25. Thus, when computing the grid cell density, the number
(count) of location updates in the first slot contribute directly, since they are
multiplied by 1, while the sum of those placed in the last slot only contribute
by 0.25 to the grid cell density.

Likewise the linear weight, the exponential decay weights can be computed
as ws = ks, where k is a number between 0 and 1 such that kS ≈ 0. Based
on this definition, k varies accordingly to the number of inner slots S. For
example, considering that cells have S = 4 inner slots, k value is approximately
0.3162, i.e., 0.31624 ≈ 0, while for grid cells that have S = 10 inner slots, k
is approximately 0.6309, since 0.630910 ≈ 0. To discover k, one can assume
kS = 0.01, then ln kS = ln 0.01, which yields k = e(ln 0.01

S). For example, as
said, for S = 4, k is approximately 0.3162 and the slot weights are w0 = 1,
w1 = 0.3162, w2 ≈ 0.31622 ≈ 0.099 and w3 ≈ 0.31623 ≈ 0.0312.

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Slot s

W
ei
gh

t
w

0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

Slot s

W
ei
gh

t
w

Figure 5.2: Linear and exponential weights for the heuristic inner slots (S = 4).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 78

5.2
Usage and Limitations

By applying the discrete weight function to the neighboring cells inner
slots, the proposed heuristic can detect several answer loss clustering scenarios.
For example, consider the clustering scenario of Figure 5.3 (a) and parameters
S = 4 and minPts = 4. Since the analyzed grid cell density is 2, thus less than
minPts, DG2CEP would not detect the cluster. Using the proposed heuristic,
with a linear weight decay, the computed density will be 2+(1×1)+(4×0.75) =
5 ≥ minPts, thus, the cluster would be detected. An exponential decay
weight will also detect this cluster, since the computed density would be
2 + (1× 0.31620) + (4× 0.31621) = 4.26 ≥ minPts.

On the other hand, as a collateral effect of considering moving objects of
neighboring cells when calculating the cell density, the proposed heuristic would
detect a non-existing cluster (a false positive) in some situations, as illustrated
in the cell configuration of Figure 5.3 (b), for S = 4 and minPts = 4. In this
scenario, DG2CEP would correctly not detect the cluster, since the cell density
is 1. However, the linear weight decay would wrongly detect the cluster, since the
cell density in this case would be 1+(1×1)+(1×0.75)+(2×0.5)+(1×0.25) =
4 ≥ minPts. Nevertheless, in this scenario, the exponential weight decay
would correctly not detect such cluster, since the computed density would be
1+(1×0.31620)+(1×0.31621)+(2×0.31622)+(1×0.31623) = 2.54 ≤ minPts.

To mitigate the heuristic collateral effect of detecting non-existing clusters,
we propose to only apply the method when evaluating transient cells, that is,
cells whose density are lower than minPts, but higher than a lower-bound
lowerP ts threshold, where lowerP ts ≤ minPts. By using a lower-bound
threshold, we can restrict the heuristic application to specific scenarios, e.g., to

Figure 5.3: Cell configuration scenarios. In (a) the scenario forms a cluster,
while in (b) it does not.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 79

almost dense grid cells. For example, consider a lowerP ts = 2 threshold in the
clustering scenario of Figure 5.3 (b). In this configuration, the linear weight
heuristic will correctly not detect the cluster, since the cell density would be 2.

In addition to mitigating false positive answers, transient cells also reduce
the overall heuristic computational cost, since the heuristic will only apply to
grid cells whose density are within the transient interval lowerP ts ≤ minPts.
For example, a lowerP ts = 0 means that the heuristic is applied to every
moving objects location update not placed in a dense grid cell. However, using
a high lowerP ts threshold value may again raise the answer loss problem,
since the heuristic would only apply to values close to minPts. For example, in
Figure 5.3 (a), for lowerP ts = 3, the cluster would not be detected, since the
heuristic density would not be applied.

5.3
Related Work

This section compares the proposed heuristic with other solutions that
address the Answer Loss subproblem. In general, these approaches are aimed
at off-line scenarios and extensively use spatial index and operators, contrarily
to DG2CEP’s and the proposed heuristic’s counting semantic.

Ni et al. [38] presented two techniques, an exact and an approximate
method that solve the answer loss subproblem in spatial dense queries. Both
methods rely on a spatial index TPR-Tree, an R*-tree variant, to index the
moving object trajectories. Furthermore, they extended the cell density concept
to dense points, as if each point in the cell had its own ε–Neighborhood radius.
The first method uses a filtering and refinement strategy. Cells that contain less
than minPts location updates, but when combined with their neighborhood
cells surpass this threshold, are filtered to be further analyzed. The refinement
step applies a detailed plane-sweep algorithm to count the number of location
updates in the grid cell’s neighborhood. To do so, it executes a sequence of
spatial-temporal range queries in the TPR-tree. Then, by combining the queries
answers, they are able to discover the moving objects that are within the
cell radius. Although interesting, the approach requires a sequence of range-
queries and spatial index operations, during the plane-sweep step, which can
be troublesome to guarantee in data streams scenarios that requires timely
responses. Hence, this approach is better suited to off-line scenarios where
response time is not the primary concern, but correctness.

Their second technique is an approximation method that provides a
function to represent the density distribution of moving objects location updates.
Contrary to their first method, this function represents the entire grid density,

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 80

rather than considering each individual cells. More precisely, the function returns
all dense regions (clusters) of the grid, w.r.t. minPts, in a given timestamp.
The function is based on Chebyshev polynomials, a recursive function that
uses several geometric primitives such as cos and arccos. While using a single
function to discover any dense cluster is appealing, the computational cost
of such function is higher than counting the number of location updates. In
addition, the function can cause an overhead or delay the response since it
calculates all dense regions at once, even those that do not suffer from the
answer loss subproblem.

Jeung et al. [67, 68] proposed an interesting supervised solution, which
combines off-line processing and hidden Markov chains, for solving the answer
loss problem in trajectory clustering. Their overall goal is to extract clusters
from trajectories datasets. To do so, first, they preprocess a trajectory dataset
using DBSCAN to discover the clusters location and their moving objects.
Using the clustering result and hidden Markov chains, they create a trajectory
model by discovering the set of cells and their probability to be associated with
the cluster location, where the probability of each cells expresses the percentage
of moving objects of such cluster in that cell. Based on this model, they can
correlate the clusters location to the respective moving object cells. There are
two main differences between their approach and ours. First, our proposed
heuristic does not need to do any a priori processing. Second, their approach
is focused on clusters solely from the a priori trajectory dataset, while our
approach can dynamically discover and detect clusters from data streams.

5.4
Summary

This chapter presented a counting density heuristic that is sensitive to
the number of location updates in adjacent cells. The overall idea is to further
subdivide internally each grid cell into “logical” horizontal and vertical slots.
Then, when computing a cell density, we consider the distribution of location
updates inside the slots of adjacent grid cells. We consider two discrete functions
(linear and exponential) to weight the adjacent cells inner slot distributions
and to combine it with the cell’s own density value.

However, since the heuristic considers moving objects in adjacent cells
when calculating the cell density, it can wrongly detect a cluster that does not
exists as a collateral effect. Thus, we proposed that the heuristic should be used
only when the evaluated cell has a transient density, i.e., the number of its
objects is less than the required parameter, but larger than a lower threshold
lowerP ts.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 5. Answer Loss Heuristic 81

The following chapter presents a complete evaluation of DG2CEP with and
without the proposed heuristic. Overall, the evaluation investigates the elapsed
time required by DG2CEP to react and detect a cluster formation/dispersion
and how close this result is to the DBSCAN ground-truth result. In addition to
these experiments, we discuss the tradeoff between the transient cell threshold
and the similarity of the clusters found in DG2CEP to the ones in DBSCAN.
We also discuss how the heuristic impacts the DG2CEP performance.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

6
Evaluation

DG2CEP was evaluated using a real world data stream of position data
generated by the bus fleet of the city of Rio de Janeiro1. With the intent to
answering the thesis research questions, the evaluation had the following goals:
First, measure the elapsed time required by DG2CEP to detect the formation,
dispersion, and evolution of spatial clusters when compared to the baseline
DBSCAN off-line algorithm. We also measure the elapsed time required by
the well-known grid and batch-based D-STREAM [59] algorithm to indirectly
compare it to DG2CEP. Further, we intend to measure how does the elapsed
time varies according to the number of moving objects and the partition size ε.

The evaluation also measured how similar DG2CEP’s clustering result is
to DBSCAN results throughout the entire data stream using a second-by-second
analysis. By doing that, we aim to verify if DG2CEP’s clustering result is able to
“keep up” to DBSCAN by measuring how their similarity evolves throughout the
data stream. For this we used the Rand Index [69], which measures the similarity
between clusters, considering the number of true positive, true negative, false
positive, and false negative moving objects placed in a given cluster.

We also evaluated the proposed heuristic under different transient
thresholds. Here, the goal was to compare the heuristic-enhanced DG2CEP
similarity index with the original DG2CEP and DBSCAN. In addition, we
evaluate if the number of inner slots impacts the number of clusters found.

The remainder of this chapter is organized as follows. Section 6.1 briefly
present the main technologies and implementation aspects of DG2CEP. Section
6.2 describes the input data stream used throughout the experiments. Then,
Section 6.3 presents and analyzes an experiment that evaluates the proposed
heuristic effectiveness. After that, Section 6.4 presents the experiment used to
compute the elapsed time required by DG2CEP to discover the spatial clusters.
Following, Section 6.5 discusses the experiment used to discover the similarity
index between DG2CEP, DBSCAN, and D-STREAM clustering results.

1The resulting dataset is available to be downloaded and reproduced at http://www.lac.
inf.puc-rio.br/dg2cep/.

http://www.lac.inf.puc-rio.br/dg2cep/
http://www.lac.inf.puc-rio.br/dg2cep/
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 83

6.1
Implementation

DG2CEP was implemented using the Java programming language and
several open source libraries. The reason for using Java is due to the numerous
open source libraries, framework, and middleware platforms available in this
language. For example, we opted to use the Esper CEP Engine [46], one of the
leading open source CEP engines, which is available as a Java library. Esper
provides a continuous query CQL-like declarative language that supports CEP’s
transformation and pattern-based primitives. We implemented DG2CEP event
processing network as a network of Esper’s continuous query.

DG2CEP also uses the SDDL communication middleware [70] to inter-
connect the different parts of the event processing network. SDDL provides
publish/subscribe communication with real-time guarantees for local, mobile,
and cloud services, and is based on the OMG DDS standard. SDDL is also
written in Java and uses OpenSplice, an open source implementation of the
DDS standard.

A central element of the DG2CEP implementation is a configuration
manager that runs on each distributed instance as a daemon. This manager
component implements the command pattern and can receive local and remote
configuration commands such as reading and applying parameters, deploying
and destroying EPAs, or creating publish/subscribe topics. This strategy enables
DG2CEP to be extended by implementing new commands.

Each DG2CEP distributed instance also implements a wrapper for life-
cycle management and interaction with the Esper CEP Engine, to dynamically
create and destroy EPAs. All these functions are also implemented as commands.
Exposing such CEP functions as commands enable EPAs to be deployed and
interconnected locally or remotely, dynamically creating the necessary listener
and subscriber routines to receive or route input/output events. This strategy
enables DG2CEP instances to be as flexible as needed. For example, one can
deploy the entire EPN in a single machine, or subdivide into different machines.

In this evaluation we also decided to implement the D-STREAM batch-
based algorithm [59] with the intent to indirectly compare it to DG2CEP
through their clustering result w.r.t. DBSCAN ground-truth. D-STREAM is
a grid-based batch on/off-line clustering algorithm, which also maintains a
grid that summarizes the moving object densities for each grid cell (context
partition). Similar to DG2CEP, during the on-line phase, the algorithm identifies
and maps each location update to a grid cell index.

During the on-line period, modified grid cells are added to a grid list data-
structure. In the off-line phase, after the waiting period exceeds a threshold,

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 84

D-STREAM updates the grid density of modified grid cells (grid list) and cells
that are in a grid cluster. After that, the algorithm analyzes both, modified and
grid clusters cells, using a iterative routine. The idea is to identify grid cells
that have become dense (new clusters) or sparse (dispersed) and iteratively
merge or remove them from clusters. Finally, at every round the algorithm
output the cell content of the current grid clusters. It is important to note that
during D-STREAM’s off-line phase, the entire on-line phase is blocked, since it
needs to iterate through the grid state. Thus, the time required by the off-line
routine delays the beginning of the next on-line phase.

6.2
Data Stream

The experiments used a real world data stream produced by the bus fleet
of the city of Rio de Janeiro, Brazil. We crawled the data stream from the
data.rio open platform and produced a dataset containing the trajectory data
for the city’s 11 324 buses for an one hour (from 17:30 to 18:30) for the week of
July 12th to 19th of 2016. We choose the rush hour period because it contained
the largest throughput, and probably the largest number of spatial clusters.

While crawling the data stream, we learned that, in average, each bus
update its location every 60 seconds. Hence, considering 11,234 buses, each
second contains in average 187 location updates. With the intent to increase
the volume and provide a real-time aspect to the data stream, we augmented
the data stream using linear interpolation between buses location updates in
such a way that a location update is emitted every second for every bus. More
precisely, between two consecutive buses location update points we generated
(interpolated) additional location updates on the direct line between these two
points. Using this method, we produced four resulting data streams with 2500,
5000, 7500, and 10000 location updates events per second.

We established the data stream ground truth clustering results by
computing DBSCAN2 at every second of the one hour period, as illustrated
by Figure 6.1. For example, at time t, DBSCAN found cluster C1, C2, and
C3. Each one with its own moving object’s location updates. As a result, we
have a snapshot of the spatial clusters and its content (moving object’s location
updates) that appears at every second of the data stream. This is an expensive
computing task. In fact, it took more than 24 hours to compute the second-by-
second ground truth results. Using this information, we are able to evaluate
how close DG2CEP is to the optimal off-line result.

2For this, we adapted the Apache Math implementation of DBSCAN, for more information
see: http://commons.apache.org/proper/commons-math/.

http://commons.apache.org/proper/commons-math/
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 85

Figure 6.1: Second-by-second DBSCAN ground truth result (second t).

6.3
Answer Loss

The first experiment evaluates the proposed heuristic impact in the
DG2CEP performance with respect to similarity and number of wrongly
detected and undetected clusters. We start by evaluating the proposed heuristic
since the later experiments will utilize the heuristic. Using the heuristic-
enhanced DG2CEP, the evaluation had two goals:

– Measure the percentage and similarity of the on-line cluster results found,
when compared with the original DG2CEP and the baseline DBSCAN
off-line algorithm. Furthermore, investigate how these results vary with
different lowerP ts values that define transient cells.

– Investigate if the number of correct and incorrect clusters found and their
similarity with the baseline DBSCAN algorithm vary when using different
number of inner slots s.

The second-by-second DBSCAN ground-truth result enabled us to
compare and measure the result of the proposed heuristic clustering with
the original grid-based DG2CEP and DBSCAN output. Whenever he enhanced-
heuristic DG2CEP discovers a cluster we take a snapshot of its content (moving
objects’ location updates) to analyze at a later time. Using this information, we

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 86

compare the discovered clusters with their counterparts in the ground-truth log.
A cluster C is discovered in DG2CEP at timestamp t if in the DBSCAN ground-
truth log in the same timestamp t exists a cluster D such that the overlap
between them is higher or equal to 50% (C ∩D ≥ 0.5), that is, the discovered
cluster in DG2CEP contain at least 50% of the content of the ground-truth
cluster. If the heuristic wrongly detects a cluster, i.e., no similar cluster exists in
the ground-truth log, that is (C∩D < 0.5), then this detected cluster is marked
as false positive (FP). All clusters not detected by the heuristic but present
in the ground-truth log are marked as false negatives (FN). By comparing
these metrics, the percentage of incorrectly detected clusters (FP) and missed
clusters (FN), to the total number of clusters in the ground-truth log, we can
measure DG2CEP effectiveness of handling the answer loss problem.

6.3.1
Experiment Parameters

Since the primary interest of this experiment is to measure the heuristic
impact in DG2CEP we fixed a set of values. First, we used a data stream
throughput of 5 000 location updates per second, a grid size of ε = 100 meters,
and minPts = 20. We also set DG2CEP’s sliding window to be ∆ = 60 seconds,
that is, we consider the location updates received within the last 60 seconds.

To measure the impact of the proposed heuristic, we considered lowerP ts
thresholds ranging from 90% to 30% of the minPts density threshold. For
example, since minPts = 20, we evaluate the following lowerP ts thresholds:
18, 16, 14, 12, 10, 8, and 6. We chose to vary the lowerP ts threshold until
it is 30%, because lower threshold values tend to produce more false positive
clusters due to the heuristic collateral effects.

Finally, for investigating the transient threshold experiment we subdivide
the grid cells into ten slots (S = 10). Hence, since ε = 100 m, each inner
slot s = 100

S width is 10 meters. We choose these values considering that the
GPS accuracy is approximately between 10 to 20 meters. However, in this
experiment we also evaluate if the total number of slots S impact the number
and similarity of the detected clusters. For this test, we have considered the
following number of slots: 10, 50, and 100. As a result, we have the experiment
configuration shown in Table 6.1.

Table 6.1: Parameters for DG2CEP’s Heuristic Experiment
lowerP ts Total # Slots S Fixed

18, 16, 14, 12, 10, 8, 6 10, 50, 100 ε, minPts, ∆, Throughput

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 87

6.3.2
Experiment Setup

We executed these experiments in the Microsoft Azure Cloud platform
using two virtual machines running Ubuntu GNU/Linux 14.04.3 64-bit and the
OpenJDK 1.7.91 64-bit Java runtime. One of the virtual machines replayed
the data stream, while the second one contained an instance of DG2CEP with
its entire EPN. The virtual machines were interconnected through a Gigabit
link/bus and had the following hardware configuration:

– Intel® Xeon CPU E5-2673 v3 @ 2.40 GHz

– 28 GiB Memory RAM

6.3.3
Result and Analysis

In this subsection, we present and discuss the evaluation results. Each
experiment was run 10 times and the error bars in the graphs represent a 95%
confidence interval. As said, each test run replayed the rush-hour data stream
(17:00–18:00) for the heuristic-enhanced DG2CEP.

Figure 6.2 illustrates the average percentage of missed clusters (False
Negative – FN) and incorrectly detected clusters (False Positive – FP) of
the proposed heuristic in DG2CEP at a given second, when compared with
the ground-truth clustering results in the specified second for a one-hour test
period and parameters ε = 100, minPts = 20, and S = 10. The two line
graphs illustrated by Figure 6.2 (a) and (b) represent the values obtained when
evaluating the heuristic with linear and exponential weights respectively.

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0%
20%
40%
60%
80%

100%

lowerP ts

FP FN

(a) Linear Weight

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0%
20%
40%
60%
80%

100%

lowerP ts

FP FN

(b) Exponential Weight

Figure 6.2: Percentage of Incorrectly Detected (FP) and Undetected Clusters
(FN) in heuristic-enhanced DG2CEP (for ε = 100, minPts = 20, and S = 10).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 88

In both cases (linear and exponential), due to the answer loss problem,
the graph shows that lowerP ts equal or close to minPts (100% and 90%) will
fail to detect some clusters (false negatives). However, since the threshold is
closer to minPts, the original density, there will be few collateral effects, hence,
the low percentage of incorrect detected clusters (false positives).

According to the linear weight graph, Figure 6.2 (a), the lowerP ts

thresholds that yielded the best tradeoff results were 60% and 50% of minPts.
These thresholds reduced the number of missed clusters from 80% to 23.57% and
15.32%, respectively, with a collateral effect of incorrect clusters of 13.51% and
19.05%, respectively. More specifically, using such parameters (e.g. a lowerPts
of 50%), a single heuristic-enhanced DG2CEP instance was able to provide in
real-time at a given second a clustering result that is 84.68% similar to the
off-line DBSCAN result at that second.

To exemplify such results consider the graphic comparison illustrated
by Figure 6.4, which shows the similarity between the detected clusters of
DBSCAN and DG2CEP, using a linear heuristic and lowerP ts = 50%, in a
given second. Each marker (in red) represent a cluster centroid. As can be
seen, the clusters found in real-time by the on-line DG2CEP algorithm are very
similar to their ground-truth off-line DBSCAN counterparts.

The heuristic exponential weight graph, Figure 6.2 (b), presented better
results as lowerP ts decreases. This illustrates that, when using the exponential
weight, the heuristic is more tolerant to collateral effects. For example, the
number of incorrect clusters (false negative) results is 4.47% for a lowerP ts
equal to 30% of minPts. However, for this parameter, the heuristic reduced
the number of cluster not detected due to the answer loss problem, from 80%
to 31.51%, instead to 13.51% when using linear weights.

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0%
20%
40%
60%
80%

100%

lowerP ts

S = 10 S = 50 S = 100

(a) False Positive

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0%
20%
40%
60%
80%

100%

lowerP ts

S = 10 S = 50 S = 100

(b) False Negative

Figure 6.3: Relationship between heuristic results and the total number of cell
slots subdivisions S for linear weights.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter6.
Evaluation

89

Figure 6.4: Graphical comparison between the off-line DBSCAN clustering result and DG2CEP on-line clustering result.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 90

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0%
20%
40%
60%
80%

100%

lowerP ts

S = 10 S = 50 S = 100

(a) False Positive

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0%
20%
40%
60%
80%

100%

lowerP ts

S = 10 S = 50 S = 100

(b) False Negative

Figure 6.5: Relationship between heuristic results and the total number of cell
slots subdivisions S for exponential weights.

With respect to the relationship between the total number of cell
subdivisions S and the heuristic results, Figure 6.3 and Figure 6.5 shows
how the number of undetected clusters (false negative) and incorrectly detected
clusters (false positive) vary for different number of cell slots when using the
heuristic linear and exponential weight respectively for parameters ε = 100 and
minPts = 20.

Overall, the results presented a similar behavior. Intuitively, we expected
that the heuristic would present a better result as the number of slots increased.
However, this was not the case. It seems that the high number of cell slots
combined with the GPS error failed to grasp the correct distribution of objects
within the cell. For example, when using a linear weight, subdividing the cells
in a total of 10 slots, and a transient threshold of 50%, throughout the entire
experiment run DG2CEP only failed to detect in a given second t 15% of
the spatial clusters that appears in the same second t in DBSCAN. When
subdividing the cell into 50 and 100 slots for the same transient threshold of
50%, the number of missed clusters in the given second increased to 16% for
both cases.

In conclusion, the experiments indicate a heuristic-enhanced DG2CEP
yields betters results that without it. Further, it shows that when using a linear
weight, a smaller number of subdivision slots S, and a transient threshold of
50%, DG2CEP produced in real-time the most similar clustering result to its
off-line DBSCAN counterpart when compared to the other parameters. Hence,
for the next experiments we use a heuristic-enhanced DG2CEP with such
parameters (lowerP ts = 0.5×minPts, S = 10, and linear weights).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 91

6.4
Elapsed Time

For this experiment, we first distinguish where new clusters appears in
DBSCAN’s ground truth result. A cluster C is said to appear at time t if there
is no cluster B in the previous timestamp t − 1 whose intersection B ∩ C is
higher than 0, w.r.t the moving objects in each set. We log the timestamp and
the content of such cluster. We use this information to compare to DG2CEP
second-by-second clustering results to discover the elapsed time it took to find
it. Precisely, the elapsed time required by DG2CEP to detect a cluster C that
appeared in timestamp t in DBSCAN is the minimum timestamp q ≥ t that
contains a cluster D who contains at least 50% of C elements (C ∩D ≥ 0.5).

We apply a similar logic to establish which and where the clusters from
DBSCAN results dispersed. For instance, a cluster C from timestamp t− 1 is
said to have dispersed at timestamp t if there is no cluster B in t such that
the intersection between C ∩B is higher than 0, w.r.t their content (moving
objects). This means that DBSCAN results show that timestamp t no longer
contains a cluster that was in the previous second. Similar to the formation
approach, the elapsed time required by DG2CEP to detect the dispersion of
C at timestamp t is the minimum timestamp q ≥ t that no longer contains a
cluster D whose intersection with C is higher than 0 (C ∩D > 0).

Finally, we do the same for cluster evolution. A cluster C evolves in
DBSCAN at timestamp t when its content changes over 50% within the
previous second, that is, if exists a cluster B in timestamp t− 1 where they
contain elements in common, B ∩ C > 0, but their intersection B ∩ C ≤ 0.5 is
less than or equal to 50%. Hence, the elapsed time required by DG2CEP to
detect this evolution is a timestamp q ≥ t whose contain a cluster D whose
intersection with C is higher or equal to 50% (C ∩D ≥ 0.5).

To measure these values we need to compute DG2CEP and D-STREAM
second-by-second clustering result. Hence, whenever these two algorithms detect
a cluster we save its content into an output file. However, there are gaps between
the clustering entries since the algorithms output in discrete periods, that is,
DG2CEP only yield results when a cluster is discovered, dispersed, or updated,
while D-STREAM only output in specific periods (batch). To address this issue,
and compare second-by-second, we need to fill these gaps intervals. We do this
in the following way: suppose DG2CEP detects a cluster C at timestamp t and
in timestamp t′ = t+ 20 it detects an update of C. This mean that from time
t to t′ DG2CEP clustering result is C, hence, we fill the missing intervals with
C entries. The same logic is used to fill D-STREAM cluster entries.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 92

6.4.1
Experiment Parameters

The primary goal of the experiment is to discover the elapsed time required
by DG2CEP and D-STREAM to detect the distinguished clusters and how
this time varies under different data stream volumes. To do so, we executed
the experiment using three data stream throughputs: of 2500, 5000, and 7500
moving object’s location updates per second, as described in Section 6.2.

A primary parameter of our algorithm is the size of ε-squared grid cells
(context partitions). To verify the impact of ε in the measured elapsed time,
we further tested the experiments using three grid cell sizes: 50, 100, and 150
meters. In addition, in all test runs we set the sliding window ∆ to be 60
seconds, to reflect the maximum interval used by the bus fleet to send their
location update. Further, we fixed the value of minPts to be 20. Also, based on
the previous experiment, we use the proposed heuristic with linear weights, a
transient lowerP ts = 0.5× 20 = 10 density, and S = 10 subdivision slots. As a
result, we have the experiment configuration shown in Table 6.2. We executed
each experiment scenario 10 times, totalizing 90 executions.

Table 6.2: Parameters for DG2CEP’s Elapsed Detection Experiment
ε Data Stream Throughput minPts ∆

50 m 2500 lu/s, 5000 lu/s, 7500 lu/s 20 60s
100 m 2500 lu/s, 5000 lu/s, 7500 lu/s 20 60s
150 m 2500 lu/s, 5000 lu/s, 7500 lu/s 20 60s

To compare D-STREAM results to DG2CEP, through DBSCAN ground-
truth, we also executed the experiment configurations using D-STREAM with
the following batch periods: 30, 45, and 60 seconds with a ∆ = 60 second fading
time window. We choose these values because to understand the relationship
between a lower, medium, and higher batch period.

6.4.2
Experiment Setup

We executed all experiments in the DigitalOcean Cloud, where we used
virtual machines running the Ubuntu GNU/Linux 14.04.5 64-bit operating
system. All virtual machines were interconnected through a Gigabit link/bus
and had the following hardware configuration:

– 4 × Intel Xeon CPU E5-2660 @ 2.20GHz

– 8 GiB Memory RAM

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 93

For this experiment, we used four different setup configurations. The
first experiment setup configuration, which we called DG2CEP Single Instance,
contains two virtual machines. One of the virtual machines replayed the data
stream, while the second one contained an instance of DG2CEP with its entire
EPN. Similarly, we created a D-STREAM Single Instance setup. On this
case, instead of DG2CEP, the second virtual machine contains an instance of
D-STREAM.

We also interested in measuring how the number of deploy instances
impacts the experiment. For this, aside for a virtual machine to replays the
data stream, we also executed the experiment with four and eight distributed
DG2CEP instances. In the first case, here called DG2CEP 2–2, we subdivided
the spatial domain into two parts and used a total of four virtual machines
(two for the CELL EPN and the remaining two for the GRID EPN). In the
second case, called DG2CEP 4–4, we subdivided the spatial domain into four
parts. Similarly, we use four virtual machines for the CELL EPN and the other
four to the GRID EPN instances.

6.4.3
Results and Analysis

This subsection presents the experiment results. Each experiment run
was tested 10 times and error bars represent a confidence interval of 95%.

6.4.3.1
Formation

Figure 6.6 shows the elapsed time, in seconds, that DG2CEP and D-
STREAM required to detect a cluster formation when compared to DBSCAN
second-by-second ground-truth information. The graph indicates that the size
of ε has some impact on the detection time. As expected, a smaller ε yields a
smaller detection time when compared to the one with a large ε. A smaller ε
divides the spatial domain into a larger number of context partitions, which
in turn increases the cost of identifying the context partition index for each
location update. In addition, the CEP engine will also have to manage a larger
number of context partitions. However, a larger ε can also increase the detection
time for cluster formation when compared to a lower ε value. The primary
reason is the increase of workload in the processing network. Since more moving
objects are mapped to the same grid cell, which in turn generate more events
that pass through the processing network, this additional load is reflected in
the detection time.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 94

The experimental results show that a single instance of DG2CEP can
detect cluster’s formation in few seconds, as illustrated in Figure 6.6 (a). For
example, in the scenario of 5 000 moving objects sending their position every
second, DG2CEP detected the cluster formation in 3.80 s, 2.55 s, and 2.13 s
for ε = 50, ε = 100, and ε = 150 respectively. The experiments also indicate
that the algorithm scales with the number of moving objects, showing a linear
increase in the cluster formation and dispersion detection times when increasing
the data stream throughput.

With respect to scalability, the experiment results, illustrated in Fig-
ure 6.6 (c) and (d), indicates that the elapsed time required by DG2CEP to
detect the cluster’s formation reduced significantly when increasing the number
of distributed instances. For instance, considering ε = 100m in a data stream
scenario of 7 500 location updates per second, the detected time reduced from
6.46 s (single machine) to 4.40 s for DG2CEP 2–2 configuration and to 1.83 s
for its 4–4 configuration.

Although more instances speed up DG2CEP process, in some cases it
can lead to an increase on the elapsed time due to the overhead involved
in communicating and transferring data between instances. For example, for
ε = 50m and a data stream of 2 500 location updates per second, a DGCEP
2–2 setup configuration was able to detect the cluster formation faster (1.66 s)
than a 4–4 configuration (2.11 s). However, this difference disappears as the
data stream volume, and consequently the workload, increases.

With respect to batch-based approaches, D-STREAM required more time
to detect the cluster formation than any DG2CEP configuration under all batch
periods. For example, for ε = 100m and a data stream throughput of 5 000
location updates per second, it required approximately 60.38 s, 51.48 s, and
61.79 seconds to detect the cluster formation for batch periods of 30, 60, and
90 seconds respectively.

As expected, a smaller and higher batch period required more time to
detect the cluster formation that a median one. With a smaller batch period the
costly off-line processing is done more frequently than for the other periods, and
thus more frequently D-STREAM will have to stop and compute the clusters
while halting the on-line phase. Although a larger batch period also considers a
higher number of moving objects in its buffer, the large waiting period between
batches means that the cluster result is usually outdated. Thus, the medium
batch period of 45 seconds made a better balance between batch size and
off-line processing, yielding a better but slower detection time to DBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter6.
Evaluation

95

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(a) DG2CEP Single Instance

2500 5000 750030
40
50
60
70
80
90

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

@30 s
@45 s
@60 s

(b) D-STREAM Single Instance (ε = 100 m)

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(c) DG2CEP 2–2

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(d) DG2CEP 4–4

Figure 6.6: Elapsed time to detect a cluster formation w.r.t. DBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 96

6.4.3.2
Dispersion

The elapsed time to detect a cluster dispersion by DG2CEP and by
D-STREAM for all tested scenarios is illustrated in Figure 6.7. All values are
higher than the ones required to detect a cluster formation. The reason is the
way that dispersion of a cluster is detected in DG2CEP: a dispersion event is
triggered when a moving object changes its cell or if DG2CEP does not receive
a DenseCellCluster event within a ∆ period. Hence, we expected that the time
to detect a cluster dispersion to be higher than the time required to detect its
formation due to being dependent on additional information (grid cell change
or absence of location updates).

The results also indicate a direct correlation between the grid cell ε size
and the elapsed time required to detect a dispersed cluster. A larger ε takes
more time to detect a cluster dispersion since moving objects’ location updates
are mapped to fewer grid cells. In particular, those moving objects help to
maintain the grid cell denser for a longer period. For example, the larger a grid
cell is the more it takes a moving object location update to change it cell which
in turn delay the event that triggers the dispersion.

Although the elapsed times to detect a cluster dispersion is higher than to
detect its formation, a single DG2CEP instance is still able to detect it in few
seconds as illustrated in Figure 6.7 (a). For example, for a throughput of 2 500
location updates per second, DG2CEP was able to detect a cluster dispersion
in 3.50 s, 3.33 s, and 2.46 s for ε = 50, ε = 100, and ε = 150 respectively. Under
a higher data stream throughput, a single DG2CEP instance was still able to
detect a cluster dispersion in a few seconds. When doubling the data stream
throughput, from 2 500 to 5 000 location updates per second, the elapsed time
required by DG2CEP to detect the cluster dispersion increased linearly. More
specifically, it took in average 5.98 s, 4.50 s, and 3.25 s for ε = 50, ε = 100, and
ε = 150 respectively. More specifically, it took in average 5.98 s, 4.50 s, and
3.25 s for ε = 50, ε = 100, and ε = 150 respectively.

Similar to the experiment with cluster formation, the results indicate that
the elapsed time to detect cluster dispersion also reduced when increasing the
number of DG2CEP instances, as shown in Figure 6.7 (c) and (d). For example,
consider DG2CEP’s 4–4 distributed configuration. Considering ε = 50m in a
data stream scenario of 5 000 location updates per second, the detected time
reduced from 5.98 s (single machine) to 2.55 s. Such reduction also appear under
a higher data stream throughput (of 7 500 location updates per second). In this
case, the detection time reduced from 9.66 s (single machine) to 5.76 s.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter6.
Evaluation

97

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(a) DG2CEP Single Instance

2500 5000 750050
60
70
80
90

100
110
120
130
140
150

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

@30 s
@45 s
@60 s

(b) D-STREAM Single Instance (ε = 100 m)

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(c) DG2CEP 2–2

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(d) DG2CEP 4–4

Figure 6.7: Elapsed time to detect a cluster dispersion w.r.t. DBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 98

D-STREAM’s batch-based approach presented significantly worst results
for detecting cluster dispersion when compared to detecting its formation. The
primary reason for this is that D-STREAM does not handle moving object that
changes grid cells. Thus, it may retain the moving object’s location update
in multiple cells. Hence, since D-STREAM triggers a cluster dispersion only
based on a cell density, the dispersion process will take more time since more
moving objects are contributing to the cell density.

As expected, D-STREAM required expressively more time to detect the
cluster dispersion than any DG2CEP configuration for all batch periods. For
example, for ε = 100m and a data stream throughput of 7 500 location updates
per second, it required approximately 133.41 s, 117.17 s, and 141.55 seconds to
detect the cluster formation for periods of 30, 60, and 90 seconds respectively.
Likewise the experiment with cluster formation, the smaller and higher batch
period required more time to detect the cluster dispersion that a median one.

6.4.3.3
Evolution

Figure 6.8 shows the elapsed time, in seconds, that DG2CEP and D-
STREAM required to detect a cluster evolution when compared to DBSCAN
second-by-second ground-truth log. The graph results indicate that DG2CEP
was able react and detect the cluster evolution under a few seconds. Furthermore,
under all scenarios, the elapsed time required to detect a cluster evolution were
lower than the required time to detect its formation and dispersion.

One of the reasons for a faster detection time for evolution is that DG2CEP
only needs to update the cluster content instead of either adding or merging
to an existing one, which add as overhead to the elapsed time. For example,
considering ε = 100m and a data stream throughput of 5 000 location updates
per second, a 2–2 DG2CEP configuration required approximately 2.1 seconds
to detect a cluster evolution instead of 3 seconds for its formation.

Likewise with cluster formation and dispersion, a single instance of
DG2CEP was able to detect cluster evolutions within few seconds, as illustrated
in Figure 6.8 (a). For example, considering ε = 100m, a single DG2CEP instance
detected in average that a cluster has changed 50% of its element within 1.9 s,
2.3 s, and 5.28 s seconds for respectively the data stream throughput of 2 500,
5 000, and 7 500 location updates per second.

When adding new DG2CEP instances these numbers dropped w.r.t a
single instance, as illustrated in Figure 6.8 (c) and (d). For instance, in all data
stream throughputs, the 4–4 DG2CEP configuration was able to reflect the
off-line DBSCAN second-by-second cluster evolution result within 1.5 seconds.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter6.
Evaluation

99

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(a) DG2CEP Single Instance

2500 5000 75003030
40
50
60
70
80
90

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

@30 s
@45 s
@60 s

(b) D-STREAM Single Instance (ε = 100 m)

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(c) DG2CEP 2–2

2500 5000 75000

2

4

6

8

10

Throughput [lu/s]

El
ap

se
d
T
im

e
[s]

ε = 50m
ε = 100m
ε = 150m

(d) DG2CEP 4–4

Figure 6.8: Elapsed time to detect a cluster evolution w.r.t. DBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 100

Similar to the previous experiments, D-STREAM required more time to
detect the cluster evolution than any DG2CEP configuration under all batch
periods. Nevertheless, the results indicates that such results are significantly
faster than the required time to compute the formation and dispersion with
D-STREAM. For example, consider the scenario with ε = 100m, a batch period
of 30 seconds, and a data stream throughput of 5 000 location updates per
second. In this case, D-STREAM required in average 51.48 seconds to detect
a cluster evolution, contrary to a requiring 60.38 and 92.01 seconds to detect
its formation and dispersion respectively. In a nutshell, the findings in this
experiment support the idea that a cluster evolution is detected faster than its
formation or dispersion.

6.5
Similarity

The second portion of experiments had two goals. First, measure how
similar (accurate) DG2CEP real-time clustering results are to DBSCAN’s
second-by-second ground-truth results. The second goal is to indirectly compare
DG2CEP with D-STREAM, through their continuous similarity (second-by-
second) to DBSCAN.

We measured the similarity for a detected cluster entry and for the entire
cluster results. By detected cluster entry we mean how similar a given cluster
found in DG2CEP is to its counterpart in DBSCAN. In order to measure this
value, we proceeded as follows: whenever DG2CEP detects a cluster we take a
snapshot of its content (moving objects’ location updates) and compare it to
DBSCAN second-by-second ground-truth log. To measure similarity we used
the Rand Index [69] metric, which express the percentage of similarity between
two clusters. Rand Index is a number between 0 and 1, where 1 means that
the clusters are identical and 0 means that they are totally different, (i.e. that
have no common moving object. Rand Index is expressed as T P +T N

T P +F P +F N+T N
,

where TP , TN , FP , FN , are the number of true positive, true negative, false
positive, and false negative cases respectively, w.r.t. the moving objects location
updates’ outputted by DG2CEP and DBSCAN.

DG2CEP and DBSCAN may identify several clusters in the same snapshot.
Thus, to identify the cluster D in DBSCAN that is the counterpart to C , the
one discovered by DG2CEP, we need to compare C with all cluster found by
DBSCAN in the snapshot. Precisely, we use C timestamp to retrieve all clusters
found S in that given second. Then, we choose the cluster D with the highest
Rand Index since it is the one in DBSCAN’s output closer to the cluster found
with DG2CEP, that is, the counterpart cluster D is computed as a cluster

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 101

that has the higher Rand Index value D = max((RandIndex(d, C) | ∀d ∈ S)).
We call this metric Detected Rand Index, as it represents the Rand Index of a
detected cluster.

We also measured how similar are the DG2CEP complete second-by-
second clustering result to DBSCAN second-by-second ground-truth infor-
mation. This measurement metric, which we called Complete Rand Index,
represents the similarity between two sets of clustering results, i.e., it is a
comparison between the entire set of detected cluster of DG2CEP or d-stream
with those found by DBSCAN in a given second, not just the similarity of the
detected ones. Thus, at every second, in addition to the Detected Rand Index
we consider the number of undetected clusters in the total number of clusters.

For example, suppose in a given timestamp that DG2CEP detected 3
clusters (c1,c2, and c3), while DBSCAN yields 4 clusters. Then the Complete
Rand Index is calculated as dri(c1)+dri(c2)+dri(c3)+0

4 , where dri is the Detected
Rand Index of the clusters detected by DG2CEP. Undetected clusters have
dri = 0, since the algorithm did not detect them, thus, contributing to the
decrease of this similarity index.

6.5.1
Experiment Parameters

Analogous to the elapsed time experiment, the goal here is to discover
how similar DG2CEP and D-STREAM results are to DBSCAN one and how
they vary under different data stream volumes. To measure the data stream
volume influence, the experiment was executed using two different throughputs:
2500 and 5000 moving object’s location updates per second, as described in
Section 6.2.

The experiment also measured the influence of different ε-squared grid
cells (context partitions) sizes. Since this is a time consuming experiment, we
limited the parameter variation to 50 and 100 meters. In addition, in all test
runs we set the sliding window ∆ to be 60 seconds, to reflect the maximum
interval used by the bus fleet to send their location update. Further, we fixed
the value of minPts to be 20. As a result, we have the experiment configuration
shown in Table 6.3. We executed each experiment scenario 10 times, totalizing
40 executions.

Table 6.3: Parameters for DG2CEP’s Similarity Detection Experiment
ε Data Stream Throughput minPts ∆

50 m 2500 lu/s and 5000 lu/s 20 60s
100 m 2500 lu/s and 5000 lu/s 20 60s

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 102

6.5.2
Experiment Setup

We executed all experiments in the DigitalOceal Cloud with the same
four setup configurations that were described in Subsection 6.4.1. Recalling, the
first experiment setup configuration, which we called DG2CEP Single Instance,
encapsulates the entire EPN into a single machine.

A second and third setup configuration tests the influence of a distributed
DG2CEP deploy in the experiment performance. Particularly, the second
configuration, called DG2CEP 2–2, subdivides the spatial domain into two
parts and used a total of four virtual machines (two for the CELL EPN and
the remaining two for the GRID EPN). The third configuration setup, called
DG2CEP 4–4, subdivides the spatial domain into four parts (four to the CELL
EPN and the other four to the GRID EPN).

Finally, we setup a D-STREAM instance to compute the batch-based
results. For this configuration, we tested the experiment with three different
batch periods: 30, 45, and 60 seconds with a ∆ = 60 second fading time window.
We choose these values because to understand the relationship between a lower,
medium, and higher batch period.

6.5.3
Results and Analysis

In this subsection, the results for the similarity experiment are presented.
As done previously, we used a confidence interval of 95%. The results are further
discussed in this subsection.

6.5.3.1
Detected Cluster’s Similarity

Figure 6.9 shows the Detected Rand Index for each experiment scenario,
that is, the similarity of the detected clusters with their counterpart in DBSCAN.
The graph indicates that DG2CEP’s real-time clustering result is highly similar
to DBSCAN. For example, in the scenario with a throughput of 5 000 location
updates per second, the detected clusters in real-time by a single DG2CEP
instance (a) achieves a similarity of 93.61% and 86.54% with their second-
by-second offline counterpart in DBSCAN’s output for ε = 50 and ε = 100
respectively. When using a distributed deploy, for instance a 4–4 DG2CEP
configuration (b), the similarity increase to 98.66% and 94.11% for ε = 50 and
ε = 100 respectively.

These results suggest that there is a relationship between the encountered
similarity and the size of the grid cell. For instance, the scenarios that used

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter6.
Evaluation

103

2500 50000

0,2

0,4

0,6

0,8

1

Throughput [lu/s]

R
an

d
In
de
x

ε = 50m
ε = 100m

(a) DG2CEP Single Instance

2500 50000

0,2

0,4

0,6

0,8

1

Throughput [lu/s]

R
an

d
In
de
x

ε = 50m
ε = 100m

(b) DG2CEP 4–4

2500 50000

0,2

0,4

0,6

0,8

1

Throughput [lu/s]

R
an

d
In
de
x

@30 s
@45 s
@60 s

(c) D-STREAM (ε = 50 m)

2500 50000

0,2

0,4

0,6

0,8

1

Throughput [lu/s]

R
an

d
In
de
x

@30 s
@45 s
@60 s

(d) D-STREAM (ε = 100 m)

Figure 6.9: Similarity of detect clusters with their counterpart in DBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 104

ε = 50 were the ones that presented highest similarity. The primary reason
is that smaller values of ε yield smaller grid cells, which in turn have smaller
areas close to the cell’s borders. Thus moving objects placed in such clusters
are more likely to be mutually within an ε distance.

If we look at the previously elapsed time results, a smaller ε subdivides
the domain into a larger number of grid cells, which in turn increases the cost
of identifying the grid cell index for each moving object’s location update. In
addition, the CEP engine will also need to manage a larger number of grid
cells. Thus, a small ε requires more time for the cluster detection than a larger
one. Therefore, there is a trade-off when using DG2CEP: the smaller ε is, more
similar will be the results of DG2CEP and DBSCAN at the cost of increasing
the required computational effort and processing time. Hence, the user has to
consider his/her application’s requirements against the availability of processing
resources and the expected rate of location updates to be processed.

As expected, D-STREAM results were lower than DG2CEP. For the
scenario with ε = 50m and a throughput of 5 000 location updates per second,
the clusters found in D-STREAM had a similarity of 64.20%, 66.11%, and
62.57% for batch periods of 30, 45, and 60 seconds respectively. Confirming
the previous experiments, the medium batch period of 45 seconds

This graph also indicates that the similarity of detected clusters in
DG2CEP and D-STREAM scales with the data stream throughput, showing a
linear decrease in the similarity when increasing the data stream volume. For
example, considering ε = 50m, the similarity of detected clusters in real-time
by a single DG2CEP instance were 97.88% and 93.61% for a data stream
throughputs of 2 500 and 5 000 location updates per second. D-STREAM also
presented a linear behavior. For the same scenario, the similarity of the cluster
detected by D-STREAM to DBSCAN were 69.41% and 66.11% for throughputs
2 500 and 5 000 using a batch period of 45 seconds.

6.5.3.2
Similarity Evolution

Figure 6.10 illustrates how the similarity of detected clusters by DG2CEP
in real-time and D-STREAM in batch evolve and compare to DBSCAN
throughout 30 minutes of the test period for a data stream throughput of
5 000 location updates per second and ε = 50 meters. Confirming our previous
findings, clusters detected by DG2CEP in real-time presented a high similarity
with their off-line DBSCAN counterpart. More specifically, for a data stream
throughput of 5 000 location updates per second and ε = 50m, the clusters
detected by a single DG2CEP instance (a) presented in average a similarity of

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter6.
Evaluation

105

17
:0
0

17
:0
5

17
:1
0

17
:1
5

17
:2
0

17
:2
5

17
:3
00

0.2
0.4
0.6
0.8

1
R
an

d
In
de
x

Single
2–2
4–4

(a) DG2CEP (ε = 50 m)

17
:0
0

17
:0
5

17
:1
0

17
:1
5

17
:2
0

17
:2
5

17
:3
00

0.2
0.4
0.6
0.8

1

R
an

d
In
de
x

@ 30 s
@ 45 s
@ 60 s

(b) D-STREAM (ε = 50 m)

Figure 6.10: Evolution of the Detected Rand Index (“similarity”) of DG2CEP and D-STREAM with DBSCAN.

17
:0
0

17
:0
5

17
:1
0

17
:1
5

17
:2
0

17
:2
5

17
:3
00

0.2
0.4
0.6
0.8

1

R
an

d
In
de
x

Single
2–2
4–4

(a) DG2CEP (ε = 50 m)
17
:0
0

17
:0
5

17
:1
0

17
:1
5

17
:2
0

17
:2
5

17
:3
00

0.2
0.4
0.6
0.8

1

R
an

d
In
de
x

@ 30 s
@ 45 s
@ 60 s

(b) D-STREAM (ε = 50 m)

Figure 6.11: Evolution of the Complete Rand Index (“similarity”) of DG2CEP and D-STREAM with DBSCAN.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 106

Table 6.4: Detected and Complete Rand Index of DG2CEP and D-STREAM
with DBSCAN for ε = 50m and a throughput of 5 000 lu/s.
Algorithm Detected Rand Index Complete Rand Index CI
DG2CEP Single 0.9361 0.7158 ±0.04
DG2CEP 2–2 0.9588 0.7997 ±0.02
DG2CEP 4–4 0.9866 0.7879 ±0.02
D-STREAM @ 30s 0.6420 0.4131 ±0.03
D-STREAM @ 60s 0.6611 0.4606 ±0.02
D-STREAM @ 90s 0.6257 0.4039 ±0.03

93.61% with DBSCAN results. Further, based on the line graph, we observe
that DG2CEP was able to detect the clusters’ evolution throughout the entire
experiment. Table 6.4 details the average Detected and Complete Rand Index
for DG2CEP and D-STREAM when compared to DBSCAN for this period.

Throughout the experiment, detected clusters in D-STREAM presented
a lower similarity to their DBSCAN counterpart than the ones detected by
DG2CEP. Precisely, in average, a 64.20%, 66.11%, and 62.57% similarity for
batch periods of 30, 60, and 90 seconds respectively. As expected, a smaller
and higher batch period presented lower similarity than one with a medium
one. With a smaller batch period the costly off-line processing is done more
frequently than for the other periods, and thus more frequently D-STREAM
will not produce any update of clusters. Although a larger batch period also
considers a higher number of mobile nodes in its buffer, the large waiting period
between batches means that the cluster result is usually outdated. Thus, the
medium batch period of 45 seconds made a better balance between batch size
and off-line processing, yielding a 66.11% similarity with DBSCAN result. It is
interesting to note that the resulting graph lines of all figures for D-STREAM
contain periodic sharp edges, representing the on-line phase of the algorithm.
During this phase, the algorithm similarity constantly degrades until the next
off-line phase. Finally, the graph indicates that D-STREAM was also able to
maintain such index throughout the rush-hour period.

The Complete Rand Index metric expresses how similar DG2CEP and
D-STREAM clustering results, as a whole, are and to DBSCAN for every
second of the test period. As illustrated in Figure 6.11, the results indicate
that in average in a given second a single DG2CEP instance clustering result is
approximately equal to 71.58% of DBSCAN’s off-line result. When considering
a distributed DG2CEP instance, its real-time similarity factor to the same
given second in DBSCAN optimal results increases to approximately 80%. In
addition, the graph shows that DG2CEP was able to maintain such index
throughout the test period.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 6. Evaluation 107

DG2CEP presented a higher similarity to DBSCAN results than all D-
STREAM batch periods. In fact, the Complete Rand Index of a DG2CEP
single instance is higher than all of D-STREAM individual Detected Rand
Index, that is, then the similarity of the detected cluster by D-STREAM to
DBSCAN. With respect to D-STREAM, as expected, the medium batch period
(45 seconds) presented a higher similarity with DBSCAN when compared to
the other batch periods. For the tested scenario, it presented a similarity of
46.06% to DBSCAN, followed closely by the smallest period (30 seconds), while
the largest batch period (60 seconds) presented a similarity of only 40.39%.

An interesting result from the Complete Rand Index tests are the suddenly
appearance of sharply regions in the graph, such as the one from 17:10 to 17:15
in DG2CEP graph. We investigated these regions and discovered that the
decrease in the similarity is due to undetected clusters by DG2CEP. Since
the Complete Rand Index metric compare the set of discovered clusters of
DG2CEP with DBSCAN, an undetected cluster will decrease the similarity
since its Detected Rand Index is 0 and the Complete Rand Index is the average
of detected rand index in that second.

Nevertheless, with the exception of the answer loss scenarios, the
experimental results shows that DG2CEP provides better continuous clustering
result than D-STREAM for all tested batch periods (30, 45, and 60 seconds).
The results also indicate that DG2CEP was able to monitor cluster evolution,
that is, its clustering result was able to keep up with DBSCAN second-by-
second result. The same cannot be said for D-STREAM due to its batch-based
processing. In fact, smaller and largest batch periods (30 s and 60 s) had worse
result than the medium ones (45 s) in both Rand Index variations (Detected
and Complete).

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

7
Conclusion

To address the research questions stated in Section 1.3, precisely if is
it possible to provide an on-line clustering result in near real-time from large
position data streams, this thesis presented DG2CEP. DG2CEP is an on-
line clustering algorithm that uses Complex Event Processing (CEP) [13, 14]
stream-processing concepts to leverage and attain near real-time DBSCAN-like
density clustering, in form of a network (EPN) of CEP declarative rules, from
large position data streams. It is able to continuously monitor the formation,
dispersion, and evolution of clusters of arbitrary size and shape. In a nutshell,
DG2CEP combines density- and grid-based data stream clustering approaches
and represents them as a network of CEP real-time primitives.

The algorithm performs a DBSCAN-like [12] cluster expansion procedure
but using the on-line and real-time declarative CEP primitives. The main idea
behind DG2CEP is to mitigate the clustering process by first mapping the
location updates to a grid, with context partitions of size ε√

2 ×
ε√
2 , and then

successively clustering the context partitions (grid cells) rather than the moving
objects’ location updates. Throughout this thesis we presented the overall
EPN structure of DG2CEP, the specific CEP rules and primitives used in each
processing phase, and discussed some problems related to the adaptation of
the density-based cluster detection of DBSCAN to a grid of context partitions.

A primary contribution of DG2CEP is that it reduces the data stream
clustering problem from pairwise distance measurements to counting the number
of location updates that are mapped into each grid cell. The algorithm then has
to cluster grid cells with high density of moving objects, but this process is less
costly due to the trivial evaluation of the distance and adjacency between two
context partitions. This enables DG2CEP to provide a continuous and rapid
clustering result, since the computation now depends on the number of context
partitions, instead of the number of moving objects. Further, the clustering
cost is mitigated (smoothed) in relation to batch-based processing approaches
since data is clustered as it flows through the EPN, rather than accumulating
the data and doing the processing at once.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 7. Conclusion 109

7.1
Research Questions

Experimental results (see Chapter 6) indicate that DG2CEP addresses the
thesis main and sub research questions. The results shows that DG2CEP is able
to provide an on-line and near real-time result from large position data stream
w.r.t. a second-by-second off-line and optimal DBSCAN ground-truth clustering
result. For example, as illustrated in Figure 6.6, in a data stream scenario of
2 500 moving objects sending their position every second, a single DG2CEP
instance setup detected the cluster formation in 3.33 s, 2.50 s, and 1.98 s for
ε = 50, ε = 100, and ε = 150 respectively. When employing a distributed
DG2CEP version, the elapsed time to detect the cluster formation significantly
reduced to 2.11 s, 1.48 s, 1.01 s for the same parameters. This means that within
few seconds, DG2CEP reacted and detected a cluster that appears in the off-line
DBSCAN second-by-second ground-truth results.

Similar results were obtained for dispersion detection. For instance, as
shown in Figure 6.7, for a data stream throughout of 2 500 location updates
per second, the elapsed time required by a single DG2CEP instance to detect a
cluster dispersion was 3.50 s, 3.33 s, and 2.46 s for ε = 50, ε = 100, and ε = 150
respectively. A distributed DG2CEP setup significantly reduced this elapsed
time to 2.33 s, 2.14 s, and 1.99 s for the same parameters.

DG2CEP experiments results also indicate that it can rapidly react and
detect cluster’s evolution, thus, addressing the sub research question that asks if
such approach can continuously monitor the cluster evolution in near real-time.
For example, considering ε = 150 meters, a single DG2CEP instance was
able to detected a cluster evolution within 1.78 s, 2.00 s, and 3.84 s seconds
for respectively the data stream throughput of 2 500, 5 000, and 7 500 location
updates per second.

One of the sub research questions asked how scalable is this approach
w.r.t the data stream volume. The experimental results indicate that DG2CEP
was able to provide and maintain the results quality within seconds to the
off-line DBSCAN ground-truth when increasing the position data stream
throughput. For example, considering ε = 100 meters, a single DG2CEP
instance detected in average a cluster evolution within 1.9 s, 2.3 s, and 5.28 s
seconds for respectively the data stream throughput of 2 500, 5 000, and 7 500
location updates per second. When adding new DG2CEP instances these
numbers dropped significantly, as illustrated in Figure 6.8 (c) and (d). For
instance, a 4–4 DG2CEP setup was able to react and detect such cluster
evolution within 1.40 s, 1.41 s, and 1.53 s for the same respectively data stream
throughputs.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 7. Conclusion 110

Finally, to answer how similar is the on-line and near real-time clustering
result to the ground-truth result sub research question this thesis used two
similarity metrics: Detected and Complete Rand Index. Detected Rand Index is
a measure that express how similar a detected cluster found by DG2CEP is to
its counterpart in DBSCAN in the same second. Its values is a number between
0 and 1, where 1 means that the clusters are identical and 0 means that they
are totally different, (i.e. that have no common moving object. Rand Index is
expressed as T P +T N

T P +F P +F N+T N
, where TP , TN , FP , FN , are the number of true

positive, true negative, false positive, and false negative cases respectively, w.r.t.
the moving objects location updates’ outputted by the cluster in DG2CEP and
in DBSCAN.

On the other hand, Complete Rand Index, represents the similarity
between two sets of clustering results, i.e., it is a comparison between the
entire set of detected cluster of DG2CEP with those found by DBSCAN in a
given second, not just the similarity of the detected ones. Thus, at every second,
in addition to the Detected Rand Index we consider the number of undetected
clusters in the total number of clusters. Its values also range from 0 to 1, where
1 means that both sets contains the same number of clusters with the same
moving objects location updates, while 0 means that they are totally different
(no common entry).

The experiments indicate that that DG2CEP’s real-time clustering result
is highly similar to DBSCAN, as illustrated in Figure 6.9. For example, in the
scenario with a throughput of 5 000 location updates per second, the detected
clusters in real-time by a single DG2CEP instance achieves a similarity of 93.61%
and 86.54% with their second-by-second offline counterpart in DBSCAN’s
output for ε = 50 and ε = 100 respectively. When using a distributed deploy,
for instance a 4–4 DG2CEP configuration (b), the similarity increase to 98.66%
and 94.11% for ε = 50 and ε = 100 respectively.

With respect to the Complete Rand Index metric, the results illustrated
by Figure 6.11 indicate that in average in a given second a single DG2CEP
instance clustering result is approximately equal to 71.58% of DBSCAN’s off-
line result. When considering a distributed DG2CEP instance, its real-time
similarity factor to the same given second in DBSCAN optimal results increases
to approximately 80%. This means, that DG2CEP can provide in real-time a
clustering result that is approximately equal to 80% in the same second. Such
index increases as time passes, as show in the elapsed detection experiments.
In addition, the graph shows that DG2CEP was able to maintain such index
throughout the entire test period.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 7. Conclusion 111

In conclusion, if we look at the previously elapsed time results, a smaller
ε subdivides the domain into a larger number of grid cells, which in turn
increases the cost of identifying the grid cell index for each moving object’s
location update. In addition, the CEP engine will also need to manage a larger
number of grid cells. Thus, a small ε requires more time for the cluster detection
than a larger one. Therefore, there is a trade-off when using DG2CEP: the
smaller ε is, more similar will be the results of DG2CEP and DBSCAN at
the cost of increasing the required computational effort and processing time.
Hence, the user has to consider his/her application’s requirements against the
availability of processing resources and the expected rate of location updates
to be processed.

7.2
Limitations

The DG2CEP counting semantic, aligned with CEP primitives, enables it
to provide scalable and faster results over using DBSCAN distance comparisons
approach. However, it may fail to identify some spatial clusters, a problem known
as answer loss (or blind spot) [37, 38, 67], described and discussed in Chapter 5.
Although, the heuristic significantly reduce the number of undetected clusters,
it may still miss the detection of some clusters. For instance, considering a data
stream scenario of 5 000 location updates per second and ε = 50 meters, in a
given second a distributed DG2CEP setup clustering result is approximately
equal to 80% of DBSCAN off-line result at the same second, as illustrated in
Figure 6.11. Part of the remainder clusters are detected by DG2CEP in the
next seconds.

However, there is a part that is not detected by DG2CEP. For instance,
the heuristic results, using linear weights, indicate that DG2CEP provided a
clustering result that is 84.68% similar to the off-line DBSCAN for a throughput
of 5 000 location updates per second and ε = 100 meters, as illustrated in
Figure 6.2. Hence, one of the limitations of DG2CEP on-line approach is the
inability to provide an identical result to DBSCAN. By reducing the clustering
problem from distance comparison, in an ε radius, to counting the number of a
moving objects, in a squared ε grid cell, we are losing this precision.

Another limitation of DG2CEP is that it is not able to dynamically change
its parameters, that is, its parameter does not change after deployment. This
can be an issue in some scenarios. For example, considering a downtown spatial
region, the clustering minPts threshold may vary accordingly to the given
hour of the day. During rush-hours, the minPts parameters should be higher
than in midnight. This is a not an easy task, since a change in the parameters

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 7. Conclusion 112

requires a change throughout the entire EPN. For example, when changing the
grid cell ε size, DG2CEP need to rebuild and recompute the grid structure.
This should be done without losing, discarding, or duplicating incoming and
existing events.

7.3
Contributions

To summarize, the main contributions of this thesis are:

– A novel on-line counting algorithm based on grid-density clustering,
designed as a network of CEP continuous query and pattern primitives,
that is able to continuously and timely detect (near real-time) spatial
clusters and its evolution from large position data streams.

– A counting heuristic that mitigates the collateral effects of the answer
loss (blind spot) problem [37, 38] that appears due to the usage of a grid
data structure to index and cluster spatial data.

– A scalable event processing network architecture that can process data
in parallel and be distributed to process higher data stream throughputs.

– An extensive discussion about the experimental results and tradeoffs of
using an on-line and real-time spatial clustering approach with real-world
position data streams.

In addition to this thesis, such contributions were published in the
following journal and conference papers.

– [71]: RORIZ JUNIOR, M.; ENDLER, M.; SILVA E SILVA, F.. An
on-line algorithm for cluster detection of mobile nodes through
complex event processing. Information Systems, 64:303 – 320, 2017.

– [72]: RORIZ JUNIOR, M.; ENDLER, M.; CASANOVA, M. A.; LOPES,
H.; SILVA E SILVA, F.. A Heuristic Approach for On-line Discov-
ery of Unidentified Spatial Clusters from Grid-Based Streaming
Algorithms, p. 128–142. Springer International Publishing, Cham, 2016.

– [73]: RORIZ JUNIOR, M.; ENDLER, M.. DG2CEP: A density-grid
stream clustering algorithm based on complex event processing
for cluster detection. In: VI SIMPÓSIO BRASILEIRO DE COM-
PUTAÇÃO UBÍQUA E PERVASIVA, Brasília, Brazil, 2014. SBC.

– [74]: BAPTISTA, G. L. B.; RORIZ, M.; VASCONCELOS, R.; OLIVIERI,
B.; VASCONCELOS, I.; ENDLER, M.. On-line Detection of Col-
lective Mobility Patterns through Distributed Complex Event
Processing. Pontifícia Universidade Católica do Rio de Janeiro, Techni-
cal Report MCC-06/13, ISSN 0103-9741, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Chapter 7. Conclusion 113

7.4
Future Work

As future work, we plan to address the following issues. By default, each
DG2CEP processing stage can be deployed in a different machine, forming a
pipeline workflow. However, if an stage is overloaded it can impact the entire
system. For example, in rush hours, the stream input stage can receive high
volume of data, thus, possibly becoming a bottleneck. It is important to note
that such overloads can vary unexpectedly, e.g., an accident, a mass protest,
etc. Motivated by this, we intend to investigate and propose an autonomous
and elastic architecture to scale DG2CEP, with respect to the number of
events received, by dynamically expanding and contracting the processing
topology. Although the autonomous architecture target DG2CEP, the lessons
and discussions presented can be applied to other autonomous data streaming
systems and framework.

In addition, in its current version, DG2CEP requires the setting of several
parameters, such as the grid size ε, the minimum number of moving objects
minPts, and the sliding window ∆. It can be complicated for the user to
specify these parameters, specially because they can change over time and/or in
given regions. For example, the minimum number of moving objects to form a
cluster may be different based on the specified time (e.g., workhours, midnight)
or in different regions (e.g., downtown, home neighborhood’s. Hence, we are
interested in investigating if it is possible to have a parameter free version of
DG2CEP. Such version would automatically adapt and change the parameters
based on some information, its surrounding, historical, etc. The major issue
here is how to dynamically realign or resize the grid cells without losing or
duplicating events.

In addition, we are interested in investigating a hybrid weight function,
which combines the benefits of linear and resilience of exponential weights. We
are confident that with some small changes in the proposed heuristic we may
obtain better results, and consequently, enhance even further the similarity
between DG2CEP and DBSCAN.

Finally, we also intend to verify if DG2CEP can be generalized for other
type of event streams, such as finance and temperature stream. More specifically,
it is possible to reuse or adapt DG2CEP to other types of event streams? To
examine this question, in future works we aim to investigate functions that can
map the different type of event streams to DG2CEP grid cells, similarly to how
we map the moving object positions.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography

[1] KARP, R. M.. On-Line Algorithms Versus Off-Line Algorithms:
How Much is It Worth to Know the Future? In: PROCEEDINGS
OF THE IFIP 12TH WORLD COMPUTER CONGRESS ON ALGORITHMS,
SOFTWARE, ARCHITECTURE - INFORMATION PROCESSING ’92, VOL-
UME 1, p. 416–429, Amsterdam, The Netherlands, 1992. North-Holland
Publishing Co.

[2] DODGE, S.; WEIBEL, R.; LAUTENSCHÜTZ, A.-K.. Towards a Taxonomy
of Movement Patterns. Information Visualization, 7(3):240–252, 2008.

[3] AMINI, A.; WAH, T.; SABOOHI, H.. On Density-Based Data Streams
Clustering Algorithms: A Survey. Journal of Computer Science and
Technology, 29(1):116–141, 2014.

[4] KARGUPTA, H.; SARKAR, K.; GILLIGAN, M.. MineFleet: An Overview
of a Widely Adopted Distributed Vehicle Performance Data
Mining System. In: PROCEEDINGS OF THE 16TH ACM SIGKDD
INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND
DATA MINING, KDD ’10, p. 37–46, New York, New York, USA, 2010. ACM.

[5] ANANTHANARAYANAN, G.; HARIDASAN, M.; MOHOMED, I.; TERRY, D.;
THEKKATH, C. A.. StarTrack: A Framework for Enabling Track-
based Applications. In: PROCEEDINGS OF THE 7TH INTERNATIONAL
CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND SERVICES,
MobiSys ’09, p. 207–220, New York, NY, USA, 2009. ACM.

[6] MITSCH, S.; MÜLLER, A.; RETSCHITZEGGER, W.; SALFINGER, A.;
SCHWINGER, W.. A Survey on Clustering Techniques for Situation
Awareness, p. 815–826. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[7] GAROFALAKIS, M.; GEHRKE, J.; RASTOGI, R.. Querying and Mining
Data Streams: You Only Get One Look a Tutorial. In: PROCEED-
INGS OF THE 2002 ACM SIGMOD INTERNATIONAL CONFERENCE ON
MANAGEMENT OF DATA, SIGMOD ’02, p. 635, New York, NY, USA, 2002.
ACM.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 115

[8] HE, Y.; TAN, H.; LUO, W.; MAO, H.; MA, D.; FENG, S.; FAN, J..
MR-DBSCAN: An Efficient Parallel Density-Based Clustering
Algorithm Using MapReduce. In: PARALLEL AND DISTRIBUTED
SYSTEMS (ICPADS), 2011 IEEE 17TH INTERNATIONAL CONFERENCE
ON, p. 473–480, 2011.

[9] ZHENG, K.; ZHENG, Y.; JING YUAN, N.; SHANG, S.; ZHOU, X.. Online
Discovery of Gathering Patterns over Trajectories. IEEE Transac-
tion on Knowledge Discovery and Data Engineering, 26(8):1974–1988, 2014.

[10] SILVA, J. A.; FARIA, E. R.; BARROS, R. C.; HRUSCHKA, E. R.; DE CAR-
VALHO, A. C. P. L. F.; GAMA, J.. Data Stream Clustering: A Survey.
ACM Comput. Surv., 46(1):13:1–13:31, 2013.

[11] AGGARWAL, C.; HAN, J.; WANG, J.; YU, P.. A framework for
clustering evolving data streams. In: PROCEEDINGS OF THE
29TH INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES -
VOLUME 29, p. 81–92. VLDB Endowment, 2003.

[12] ESTER, M.; KRIEGEL, H.; SANDER, J.; XU, X.. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In: PROCEEDINGS OF THE SECOND INTERNATIONAL
CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, p.
226–231, 1996.

[13] LUCKHAM, D. C.. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[14] ETZION, O.; NIBLETT, P.. Event Processing in Action. Manning
Publications Co., Greenwich, CT, USA, 1st edition, 2010.

[15] ZHENG, Y.; CAPRA, L.; WOLFSON, O.; YANG, H.. Urban Computing.
ACM Transactions on Intelligent Systems and Technology, 5(3):1–55, sep
2014.

[16] MCAFEE, A.; BRYNJOLFSSON, E.. Big data: the management
revolution. Harvard business review, 90(10):61–68, 2012.

[17] NIANTIC INCORPORATION. Pokémon Go. https://www.pokemongo.com,
2016. [Online: accessed on 12/10/2016].

[18] CROWLEY, D.; SELVADURAI, N.. Foursquare. https://www.foursquare.
com, 2016. [Online: accessed on 12/10/2016].

https://www.pokemongo.com
https://www.foursquare.com
https://www.foursquare.com
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 116

[19] INTERACTIVECORP. Tinder. https://www.gotinder.com, 2016. [Online:
accessed on 12/10/2016].

[20] IPLANRIO – EMPRESA MUNICIPAL DE INFORMÁTICA DA CIDADE DO
RIO DE JANEIRO. data.rio. https://data.rio, 2016. [Online: accessed
on 12/10/2016].

[21] WAZE MOBILE. Waze. https://www.waze.com, 2016. [Online: accessed
on 12/10/2016].

[22] MATYSIAK, M.. Data Stream Mining: Basic Methods and Tech-
niques. Technical report, Rheinisch-Westfälische Technische Hochschule
Aachen, 2012.

[23] YUAN, J.; ZHENG, Y.; ZHANG, C.; XIE, W.; XIE, X.; HUANG, Y.. T-
Drive: Driving Directions Based on Taxi Trajectories. In: ACM
SIGSPATIAL GIS 2010. Association for Computing Machinery, Inc., 2010.

[24] AMARAL, B. G. D.; NASSER, R.; CASANOVA, M. A.; LOPES, H.. Busesin-
rio: Buses as mobile traffic sensors: Managing the bus gps data
in the city of rio de janeiro. In: 2016 17TH IEEE INTERNATIONAL
CONFERENCE ON MOBILE DATA MANAGEMENT (MDM), volumen 1, p.
369–372, June 2016.

[25] GULISANO, V.; JIMENEZ-PERIS, R.; PATINO-MARTINEZ, M.; VALDURIEZ,
P.. StreamCloud: A large scale data streaming system. In:
PROCEEDINGS - INTERNATIONAL CONFERENCE ON DISTRIBUTED
COMPUTING SYSTEMS, p. 126–137, 2010.

[26] VIEIRA, M. R.; FRIAS-MARTINEZ, V.; OLIVER, N.; FRIAS-MARTINEZ,
E.. Characterizing Dense Urban Areas from Mobile Phone-
Call Data: Discovery and Social Dynamics. In: IEEE SECOND
INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING, p. 241–248.
IEEE, aug 2010.

[27] LAUBE, P.; VAN KREVELD, M.; IMFELD, S.. Finding remo — de-
tecting relative motion patterns in geospatial lifelines. In: DE-
VELOPMENTS IN SPATIAL DATA HANDLING: 11TH INTERNATIONAL
SYMPOSIUM ON SPATIAL DATA HANDLING, p. 201–215. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[28] VICSEK, T.; ZAFEIRIS, A.. Collective motion. Physics Reports,
517(3–4):71–140, 2012.

https://www.gotinder.com
https://data.rio
https://www.waze.com
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 117

[29] MOUSSAÏD, M.; HELBING, D.; THERAULAZ, G.. How simple rules
determine pedestrian behavior and crowd disasters. Proceedings
of the National Academy of Sciences, 108(17):6884–6888, 2011.

[30] KHALILIAN, M.; MUSTAPHA, N.. Data Stream Clustering: Chal-
lenges and Issues. In: PROCEEDINGS OF INTERNATIONAL MULTI
CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, p. 566–
569, 2010.

[31] CAO, F.; ESTER, M.; QIAN, W.; ZHOU, A.. Density-Based Clustering
over an Evolving Data Stream with Noise. In: PROCEEDINGS OF
THE 2006 SIAM CONFERENCE ON DATA MINING, p. 326–337, 2006.

[32] TU, L.; CHEN, Y.. Stream Data Clustering Based on Grid Density
and Attraction. ACM Transactions on Knowledge Discovery from Data,
3(3):12:1–12:27, jul 2009.

[33] KRANEN, P.; ASSENT, I.; BALDAUF, C.; SEIDL, T.. The ClusTree:
indexing micro-clusters for anytime stream mining. Knowledge
and Information Systems, 29(2):249–272, nov 2011.

[34] YU, Y.; WANG, Q.; WANG, X.. Continuous clustering trajectory
stream of moving objects. China Communications, 10(9):120–129, sep
2013.

[35] FLOURIS, I.; GIATRAKOS, N.; DELIGIANNAKIS, A.; GAROFALAKIS, M.;
KAMP, M.; MOCK, M.. Issues in complex event processing: Status
and prospects in the Big Data era. Journal of Systems and Software,
p. 1–20, 2016.

[36] KUDYBA, S.. Big Data, Mining, and Analytics. Auerbach Publications,
Boca Raton, Florida, 1st edition, 2014.

[37] JENSEN, C.; LIN, D.; BENG CHIN OOI; RUI ZHANG. Effective Den-
sity Queries on Continuously Moving Objects. In: 22ND INTER-
NATIONAL CONFERENCE ON DATA ENGINEERING (ICDE’06), p. 71–71.
IEEE, 2006.

[38] NI, J.; RAVISHANKAR, C. V.. Pointwise-Dense Region Queries in
Spatio-temporal Databases. In: DATA ENGINEERING, 2007. ICDE 2007.
IEEE 23RD INTERNATIONAL CONFERENCE ON, p. 1066–1075, 2007.

[39] HAN, J.; KAMBER, M.; PEI, J.. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd
edition, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 118

[40] JAIN, A. K.. Data clustering: 50 years beyond K-means. Pattern
Recognition Letters, 31(8):651–666, jun 2010.

[41] LUCKHAM, D.; SCHULTE, R.. Event Processing Glossary
- Version 2.0. http://www.complexevents.com/2011/08/23/

event-processing-glossary-version-2/, 2011. [Online: accessed
on 12/08/2016].

[42] BRAMER, M.. Principles of data mining. Springer, second edi edition,
2013.

[43] PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.;
THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS,
R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.;
BRUCHER, M.; PERROT, M.; DUCHESNAY, E.. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[44] LIN, M.; HSU, W.-J.. Mining GPS data for mobility patterns: A
survey. Pervasive and Mobile Computing, 12:1–16, jun 2014.

[45] REHMAN, S. U.; ASGHAR, S.; FONG, S.; SARASVADY, S.. DBSCAN:
Past, present and future. The Fifth International Conference on the
Applications of Digital Information and Web Technologies (ICADIWT 2014),
(FEBRUARY 2014):232–238, 2014.

[46] ESPERTECH. Esper - Complex Event Processing, 2014.

[47] YANLEI DIAO NEIL IMMERMAN; GYLLSTROM, D.. SASE+: An Agile
Language for Kleene Closure over Event Streams. Technical Report
UM-CS-07-03, Department of Computer Science, University of Massachusetts
Amherst, 2007.

[48] MICROSOFT. Microsoft StreamInsight, 2015.

[49] CARBONE, P.; EWEN, S.; HARIDI, S.; KATSIFODIMOS, A.; MARKL,
V.; TZOUMAS, K.. Apache Flink: Unified Stream and Batch
Processing in a Single Engine. Data Engineering, p. 28–38, 2015.

[50] PROCTOR, M.. Drools: A Rule Engine for Complex Event Process-
ing. In: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE
ON APPLICATIONS OF GRAPH TRANSFORMATIONS WITH INDUSTRIAL
RELEVANCE, AGTIVE’11, p. 2, Berlin, Heidelberg, 2012. Springer-Verlag.

http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 119

[51] CHANDRASEKARAN, S.; COOPER, O.; DESHPANDE, A.; FRANKLIN,
M. J.; HELLERSTEIN, J. M.; HONG, W.; KRISHNAMURTHY, S.; MADDEN,
S. R.; REISS, F.; SHAH, M. A.. TelegraphCQ: Continuous Dataflow
Processing. In: PROCEEDINGS OF THE 2003 ACM SIGMOD INTERNA-
TIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD ’03, p.
668, New York, NY, USA, 2003. ACM.

[52] CUGOLA, G.; MARGARA, A.. Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM Computing Surveys,
44(3):1–62, jun 2012.

[53] ARASU, A.; BABU, S.; WIDOM, J.. The CQL continuous query
language: semantic foundations and query execution. The VLDB
Journal, 15(2):121–142, jul 2005.

[54] SAGIROGLU, S.; SINANC, D.. Big data: A review. International
Conference on Collaboration Technologies and Systems (CTS), p. 42–47,
2013.

[55] BOUTSIS, I.; KALOGERAKI, V.; GUNOPULOS, D.. Efficient Event
Detection by Exploiting Crowds. In: PROCEEDINGS OF THE 7TH
ACM INTERNATIONAL CONFERENCE ON DISTRIBUTED EVENT-BASED
SYSTEMS, DEBS ’13, p. 123–134, New York, NY, USA, 2013. ACM.

[56] WAND, M. P.; JONES, M. C.. Kernel Smoothing. Monographs on
Statistics and Applied Probability. Chapman and Hall, London, 1994.

[57] JENSEN, C. S.; LIN, D.; OOI, B. C.. Continuous Clustering of
Moving Objects. Knowledge and Data Engineering, IEEE Transactions on,
19(9):1161–1174, 2007.

[58] FORESTIERO, A.; PIZZUTI, C.; SPEZZANO, G.. A single pass algorithm
for clustering evolving data streams based on swarm intelligence.
Data Mining and Knowledge Discovery, 26(1):1–26, 2013.

[59] CHEN, Y.; TU, L.. Density-based Clustering for Real-time Stream
Data. In: PROCEEDINGS OF THE 13TH ACM SIGKDD INTERNATIONAL
CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD
’07, p. 133–142, New York, NY, USA, 2007. ACM.

[60] AMINI, A.; YING, W.. DENGRIS-Stream: A density-grid based
clustering algorithm for evolving data streams over sliding win-
dow. In: PROC. INTERNATIONAL CONFERENCE ON DATA MINING AND
COMPUTER ENGINEERING, p. 206–210, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 120

[61] KIM, Y.; SHIM, K.; KIM, M.-S.; SUP LEE, J.. DBCURE-MR: An
efficient density-based clustering algorithm for large data using
MapReduce. Information Systems, 42(0):15–35, jun 2014.

[62] MOUZA, C.; RIGAUX, P.. Mobility Patterns. GeoInformatica, 9(4):297–
319, 2005.

[63] FLORESCU, S.-C.; MOCK, M.; KÖRNER, C.; MAY, M.. Efficient mobility
pattern stream matching on mobile devices. In: 2ND WORKSHOP
ON UBIQUITOUS DATA MINING, UDM 2012 : IN CONJUNCTION WITH
THE 20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE
(ECAI 2012), MONTPELLIER, número Ecai, p. 23–27. ECCAI, 2012.

[64] BAROUNI, F.; MOULIN, B.. An extended complex event processing
engine to qualitatively determine spatiotemporal patterns. In:
PROCEEDINGS OF GLOBAL GEOSPATIAL CONFERENCE 2012, p. 201,
Quebec City, 2012.

[65] KIM, B.; LEE, S.; LEE, Y.; HWANG, I.; RHEE, Y.; SONG, J.. Mobiiscape:
Middleware support for scalable mobility pattern monitoring of
moving objects in a large-scale city. Journal of Systems and Software,
84(11):1852–1870, 2011.

[66] SUHOTHAYAN, S.; GAJASINGHE, K.; LOKU NARANGODA, I.; CHATU-
RANGA, S.; PERERA, S.; NANAYAKKARA, V.. Siddhi: A Second Look
at Complex Event Processing Architectures. In: PROCEEDINGS
OF THE 2011 ACM WORKSHOP ON GATEWAY COMPUTING ENVIRON-
MENTS - GCE ’11, p. 43, New York, New York, USA, 2011. ACM Press.

[67] JEUNG, H.; SHEN, H. T.; ZHOU, X.. Mining Trajectory Patterns
Using Hidden Markov Models. In: Song, I. Y.; Eder, J.; Nguyen, T. M.,
editors, DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, chapter
Mining Tra, p. 470–480. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[68] JEUNG, H.; YIU, M. L.; ZHOU, X.; JENSEN, C. S.; SHEN, H. T.. Discovery
of convoys in trajectory databases. Proc. VLDB Endow., 1(1):1068–
1080, Aug. 2008.

[69] MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H.. Introduction to
Information Retrieval. Cambridge University Press, New York, NY, USA,
2008.

[70] DAVID, L.; VASCONCELOS, R.; ALVES, L.; ANDRÉ, R.; ENDLER, M..
A DDS-based middleware for scalable tracking, communication

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

Bibliography 121

and collaboration of mobile nodes. Journal of Internet Services and
Applications (JISA), 4(1):1–15, 2013.

[71] RORIZ JUNIOR, M.; ENDLER, M.; SILVA E SILVA, F.. An on-line
algorithm for cluster detection of mobile nodes through complex
event processing. Information Systems, 64:303 – 320, 2017.

[72] RORIZ JUNIOR, M.; ENDLER, M.; CASANOVA, M. A.; LOPES, H.;
SILVA E SILVA, F.. A Heuristic Approach for On-line Discovery
of Unidentified Spatial Clusters from Grid-Based Streaming
Algorithms, p. 128–142. Springer International Publishing, Cham, 2016.

[73] RORIZ JUNIOR, M.; ENDLER, M.. DG2CEP: A density-grid stream
clustering algorithm based on complex event processing for
cluster detection. In: VI SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO
UBÍQUA E PERVASIVA, Brasília, Brazil, 2014. SBC.

[74] BAPTISTA, G. L. B.; RORIZ, M.; VASCONCELOS, R.; OLIVIERI, B.; VAS-
CONCELOS, I.; ENDLER, M.. On-line Detection of Collective Mo-
bility Patterns through Distributed Complex Event Processing.
Pontifícia Universidade Católica do Rio de Janeiro, Technical Report MCC-
06/13, ISSN 0103-9741, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1312420/CA

	DG2CEP: An On-line Algorithm for Real-time Detection of Spatial Clusters from Large Data Streams through Complex Event Processing
	Resumo
	Table of contents
	Introduction
	Motivation
	Problem Setting
	Research Questions
	Goals and Proposed Approach
	Contributions
	Organization

	Fundamental Concepts
	Spatial Clustering
	Density-Based Spatial Clustering of Applications with Noise
	Clustering Large Position Data Streams

	Complex Event Processing
	CEP Engine and Continuous Queries Languages
	CEP Primitives
	CEP Context and Time Windows

	Summary

	Related Work
	Sampling
	Micro-Clustering
	Grid-based
	Complex Event Processing
	Summary

	Density-Grid Clustering using Complex Event Processing
	Stream Receiver EPN
	Cell EPN
	Dense Cell Discovery
	Sparse Cell Discovery

	Grid EPN
	Grid Cluster Representation
	Grid Add, Update, and Merge
	Grid Disperse

	Discussion
	Limitations
	Summary

	Answer Loss Heuristic
	Transient Heuristic
	Usage and Limitations
	Related Work
	Summary

	Evaluation
	Implementation
	Data Stream
	Answer Loss
	Experiment Parameters
	Experiment Setup
	Result and Analysis

	Elapsed Time
	Experiment Parameters
	Experiment Setup
	Results and Analysis

	Similarity
	Experiment Parameters
	Experiment Setup
	Results and Analysis

	Conclusion
	Research Questions
	Limitations
	Contributions
	Future Work

	Bibliography

