
Daniel Salles Chevitarese

Neuronal circuit specification language and
tools for modelling the virtual fly brain

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-graduação em
Engenharia Elétrica of the Departamento de Engenharia Elétrica,
PUC-Rio as partial fullfilment of the requirement for the degree
of Doutor em Engenharia Elétrica.

Advisor : Prof. Marley Maria Bernardes Rebuzzi Vellasco

Co–Advisor: Prof. Dilza de Mattos Szwarcman

Rio de Janeiro
February 2015.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Daniel Salles Chevitarese

Neuronal circuit specification language and
tools for modelling the virtual fly brain

Thesis presented to the Programa de Pós-graduação em
Engenharia Elétrica of the Departamento de Engenharia Elétrica,
PUC-Rio as partial fullfilment of the requirement for the degree
of Doutor em Engenharia Elétrica. Approved by the following
commission:

Prof. Marley Maria Bernardes Rebuzzi Vellasco
Advisor

Departamento de Engenharia Elétrica — PUC–Rio

Prof. Dilza de Mattos Szwarcman
Co–Advisor

Departamento de Engenharia Elétrica — PUC–Rio

Prof. Leonardo Alfredo Forero Mendoza
PUC-Rio

Prof. Noemi de La Rocque Rodriguez
PUC-Rio

Prof. Alexandre Loureiro Madureira
LNCC

Prof. Antônio Pereira Júnior
UFRN

Prof. Karla Tereza Figueiredo Leite
UEZO

Prof. José Eugenio Leal
Coordenador do Centro Técnico Cient́ıfico da PUC–Rio

Rio de Janeiro — February 27th, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

All rights reserved.

Daniel Salles Chevitarese
graduated in Computating Engineering at PUC-Rio and
finished his MA in Electrical Engineering at the same
institution in 2010. Since then I am a PhD student at
PUC-Rio and a Visiting Scholar at Bionet Group in Electrical
Engineering Department of Columbia University. In addition,
I am working as consultant in some research and development
projects of ICA in Electrical Engineering Department of
PUC-Rio. I have experience in modeling and development
of decision support systems / business intelligence, working
mainly in Research and Development projects in energy and
energy distribution areas.

Bibliographic data

Salles Chevitarese, Daniel

Neuronal circuit specification language and tools
for modelling the virtual fly brain / Daniel Salles
Chevitarese; advisor: Marley Maria Bernardes Rebuzzi
Vellasco; co–advisor: Dilza de Mattos Szwarcman. —
Rio de Janeiro : PUC–Rio, Departamento de Engenharia
Elétrica, 2015..

v., 110 f: il. ; 29,7 cm

1. Tese de Doutorado - Pontif́ıcia Universidade
Católica do Rio de Janeiro, Departamento de Engenharia
Elétrica.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Neurociência.
3. Drosophila Melanogaster. 4. Modelagem. 5. XML. 6.
Padronização. 7. API. 8. Python. 9. CUDA. 10. NeuroML.
I. Bernardes Rebuzzi Vellasco, Marley Maria. II. de Mattos
Szwarcman, Dilza. III. Pontif́ıcia Universidade Católica do
Rio de Janeiro. Departamento de Engenharia Elétrica. IV.
T́ıtulo.

CDD: 510

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Acknowledgments

To God.

To my advisers Marley Maria Vellasco and Dilza Szwarcman for the

support, the everyday kindness and the incentive for the realisation of this

work.

To CAPES and PUC–Rio, for the financial support, without which this

work would not have been realized.

To my family, who suffered the most of my expatriation. To my daughter

who endured months without contact with her father.

To my colleagues of the PUC–Rio and Columbia University, who have

me loved both places.

To professor Aurel A. Lazar who offered me the opportunity of this

cooperation.

To the people of the Electrical Engineering department for the constant

help.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Abstract

Salles Chevitarese, Daniel; Bernardes Rebuzzi Vellasco, Marley
Maria; de Mattos Szwarcman, Dilza. Neuronal circuit
specification language and tools for modelling the virtual fly
brain. Rio de Janeiro, 2015.. 110p. PhD Thesis — Departamento de
Engenharia Elétrica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

The brain of the fruit fly Drosophila Melanogaster is an attractive model

system for studying the logic of neural circuit function because it implements

complex sensory-driven behavior with a nervous system comprising a

number of neural components that is five orders of magnitude smaller than

that of vertebrates. Analysis of the fly’s connectome, or neural connectivity

map, using the extensive toolbox of genetic manipulation techniques

developed for Drosophila, has revealed that its brain comprises about 40

distinct modular subdivisions called Local Processing Units (LPUs), each of

which is characterized by a unique internal information processing circuitry.

LPUs can be regarded as the functional building blocks of the fly, since

almost all identified LPUs have been found to correspond to anatomical

regions of the fly brain associated with specific functional subsystems such

as sensation and locomotion. We can therefore emulate the entire fly brain

by integrating its constituent LPUs. Although our knowledge of the internal

circuitry of many LPUs is far from complete, analyses of those LPUs

comprised by the fly’s olfactory and vision systems suggest the existence

of repeated canonical sub-circuits that are integral to the information

processing functions provided by each LPU. The development of plausible

LPU models therefore requires the ability to specify and instantiate

sub-circuits without explicit reference to their constituent neurons and

internal connections. To this end, this work presents a framework to model

and specify the circuit of the brain, providing a neural circuit specification

language called CircuitML, a Python API to better handler CircuitML

files and an optimized connector to neurokernel for the simulation of those

LPUs on GPU. CircuitML has been designed as an extension to NeuroML

(NML), which is an XML-based neural model description language that

provides constructs for defining sub-circuits that comprise neural primitives.

Sub-circuits are endowed with interface ports that enable their connection

to other sub-circuits via neural connectivity patterns.

Keywords
Neuroscience; Drosophila Melanogaster; Model Specification; XML;

Standardization; API; Python; CUDA; NeuroML;

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Resumo

Salles Chevitarese, Daniel; Bernardes Rebuzzi Vellasco,
Marley Maria; de Mattos Szwarcman, Dilza. Linguagem de
Especificação de Circuito Neuronal e Ferramentas para
Modelagem do Cérebro Virtual da Mosca da Fruta. Rio
de Janeiro, 2015.. 110p. Tese de Doutorado — Departamento de
Engenharia Elétrica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

O cérebro da Drosophila é um sistema atrativo para o estudo da lógica do

circuito neural, porque implementa o comportamento sensorial complexo

com um sistema nervoso que compreende um número de componentes

neurais que é de cinco ordens de grandeza menor do que o de vertebrados.

A análise do conectoma da mosca, revelou que o seu cérebro compreende

cerca de 40 subdivisões distintas chamadas unidades de processamento local

(LPUs), cada uma das quais é caracterizada por circuitos de processamento

únicos. As LPUs podem ser consideradas os blocos de construção funcionais

da cérebro, uma vez que quase todas LPUs identificadas correspondem

a regiões anatómicas do cérebro associadas com subsistemas funcionais

espećıficos tais como a sensação e locomoção. Podemos, portanto, emular

todo o cérebro da mosca, integrando suas LPUs constituintes. Embora

o nosso conhecimento do circuito interno de muitas LPUs está longe de

ser completa, análises dessas LPUs compostas pelos sistemas olfativos e

visuais da mosca sugerem a existência de repetidos sub-circuitos que são

essenciais para as funções de processamento de informações fornecidas por

cada LPU. O desenvolvimento de modelos LPU plauśıveis, portanto, requer

a habilidade de especificar e instanciar sub-circuitos, sem referência expĺıcita

a seus neurônios constituintes ou ligações internas. Para este fim, este

trabalho apresenta um arcabouço para modelar e especificar circuitos do

cérebro, proporcionando uma linguagem de especificação neural chamada

CircuitML, uma API Python para melhor manipular arquivos CircuitML

e um conector otimizado para neurokernel para a simulação desses LPUs

em GPU. A CircuitML foi concebida como uma extensão para NeuroML

(NML), que é uma linguagem para de descrição de redes neurais biológicas

baseada em XML que fornece primitivas para a definição de sub-circuitos

neurais. Sub-circuitos são dotados de portas de interface que permitem a sua

ligação a outros sub-circuitos através de padrões de conectividade neural.

Palavras–chave
Neurociência; Drosophila Melanogaster; Modelagem; XML;

Padronização; API; Python; CUDA; NeuroML;

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Contents

1 Introduction 15

1.1 Objectives 17

1.2 Contributions 17

1.3 Work organization 18

2 Theoretical Background 19

2.1 Introduction to neuroscience 19

2.2 Modelling neurons and synapses 23

2.3 The connectome and the local processing units 28

2.4 Existing computational tools 32

3 Specifying neural circuits as functional blocks 39

3.1 CircuitML language 40

3.2 Translating process 59

3.3 Computing the virtual brain 68

4 Results 73

4.1 Olfactory organs of adult flies 73

4.2 Visual system of the fly 83

5 Conclusions 99

5.1 CircuitML 99

5.2 libCircuitML 100

5.3 The fruit fly virtual brain 100

5.4 Future plans 101

A List of abbreviations 103

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

List of Figures

2.1 A: Gap cell junction that connects the cytoplasm of two cells
directly. Ions and electrical impulses are directly transmitted
through a regulated gate between cells. B: In a chemical
synapse, an action potential from the membrane of the
pre-synaptic cell reaches the synapse causing a release of
calcium ions, which activates a set of calcium-sensitive proteins
attached to vesicles that releases neurotransmitters into the
synaptic cleft. Both figures are licensed under Public Domain
via Wikimedia Commons. 26

2.2 A: post-synaptic conductance generated by an alpha function
with τs = 3ms (straight line) and τs = 20ms (dashed line). B:
Possible sites of regulation of the synaptic decay. 27

2.3 Model of synaptic transmission from a chemical synapse of a
non-spiking neuron. The model takes the delayed membrane
potential of the pre-synaptic neuron and maps it to a
post-synaptic conductance. The function can be characterized
based on the threshold, saturation, a scale variable, the power
and the time delay. 28

2.4 Characterization of an LPU: (A) Diversity of AL local neurons;
(B) diversity of AL commissural projection neurons; (C)
stereotyped monoglomerular local neurons and commissural
projection neurons; (D) steps for defining an LPU. 31

2.5 A neuronal network visualization generated by neuroConstruct. 35
2.6 A neuronal network grown in the framework CX3D. Some

of the cells including their neurites are shown red for better
visualization of the growing process. 35

3.1 Overall structure of CircuitML. The top-level element of
CircuitML, circuitml, contains a number of child elements
of various types The hierarchical structure is depicted in
colors: the circuitml element can comprise lpu and subcircuit
elements; in turn, lpu elements has an interface and may
ecapsulate network elements, which may have populations
of cells (population) and its local connectivity (projection).
Finally, the connectivity element can encapsulates projection
elements used to connect lpu elements. 41

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

List of Figures

3.2 Abstraction levels in CircuitML and their relationship with
the biological scale in neural systems, where MorphML,
ChannelML and NetworkML are, respectively, levels 1, 2 and
3 of NeuroML’s abstraction stack. In the middle: fruit-fly
brain with many neuropils depicted, where arrows represent
projections from one LPU to another and the red, white
and blue balls regard one of the three components in level
4 (connectivity, LPU and subcircuit). Blue box: lamina LPU
in the visual system that comprises hundreds of cartridge
structures. Yellow box: antenna lobe LPU with two cartridges,
blue and red lines. 42

3.3 Listings 3.1 rendered using neuroConstruct. 46
3.4 Visualization of Listing 3.3 (left) and Listing 3.4 (right). Note

that, on the right example, cells are represented only by the
regions they are in, and the connectivity between PopA and
PopB is represented by the thick arrow, due the number of
cells and synapses. 48

3.5 Hierarchical structure of CircuitML components. 54
3.6 Example of a fictitious LPU (yellow box) that detects if some

input matches the type expected. The blue boxes comprise
circuits with some function associated and the gray ellipse
represents a population of cells that sends some info to
the LPU output. Green and red bolls stand for projections
between interface ports and inner circuits, and between inner
circuits, respectively. 55

3.7 Two LPUs inter-connected by a connectivity element. Inner
circuits are depicted with dashed borders, because they are
not visible from the outside of the LPUs. 58

3.8 Hodgkin-Huxley model cell specified in CircuitML. Left)
A network specifies that it contains a single population
containing an instance of a hodgkinhuxleyCell. The definition
for the behavior of this Component is contained in a
ComponentClass. This graph has been automatically
generated from the XML definition of the ComponentClass
(not shown) and the network definition creating the
Component instance, shown on the top-right. Top-right)
The XML corresponding to the Component and network. C)
The model after being executed by the interpreter, showing
behavior of the state variables V (red), n (blue), m (green)
and h (orange). 60

3.9 libCircuitML class diagram. 62
3.10 How libCircuitML stores cell components in Python CPU

memory. 64

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

List of Figures

3.11 Spike container: a circular dynamic array x (outer ring) stores
the indices of all neurons that spiked in previous time steps,
where the cursor indicates the current time step. Another
circular array (inner ring) stores the location of the previous
time steps in the dynamic array. Extracted from (BRETTE;
GOODMAN, 2011). 65

3.12 Circular array is implemented as an array with a cursor
indicating the current position. A cylindrical array is
implemented as a two-dimensional array with a cursor
indicating the current position. Insertion can be easily
vectorized. Extracted from (BRETTE; GOODMAN, 2011). 66

3.13 Matrix structures for synaptic connectivity. (A) dense
representation of the local connectivity matrix, (B)
connectivity with many parameters, (C) coordinate list
format of the connectivity. 67

3.14 Reallocation example (right): Consider a system with two
GPUs that can store up to 5000 neurons and run them at once.
Three LPUs are specified with some connectivity between
them. When one calls run from the emulator passing all three
LPUs, libCircuitML will allocate them (left picture), because
LPUs 2 and 3 have more interconnections and the emulator
will always try to put more interconnected LPUs together. 70

3.15 Reallocation example (part 2): Now, a new LPU (LPU 4) is
added to the system specified in in Figure 3.14, but because it
has many connections with LPU 2, the system will put it on
the second GPU. 70

3.16 Local connectivity of regional network. 71

4.1 Neuroanatomy of the peripheral fly olfactory and gustatory
systems. Right: scanning electron micrograph of a fly head,
indicating the major chemosensory organs. Image extracted
from Rochester University Website. Left: schematic of the
exterior surface of the olfactory organs. Part of an image
extracted from (VOSSHALL; STOCKER, 2007) 74

4.2 Parallels in olfactory processing between mammals and
insects. Odorants emitted from a stimulus activate distinct
subsets of ORNs, which converge on glomeruli in either
the olfactory bulb or the AL. From here information is
relayed to higher brain centers, which have functional and
neuroanatomical parallels in mammals and insects. Image
extracted from (VOSSHALL; STOCKER, 2007) 76

4.3 Circuit of adult olfactory system. The adult olfactory pathway
is characterized by converging and diverging connectivity in
the AL (ratios indicated refer to the preceding line). Here, each
line that goes from one ORN to one AL is encapsulated into a
structure called channel. Image extracted from (VOSSHALL;
STOCKER, 2007) 77

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

List of Figures

4.4 Odorant concentration profile and the spikes produced by the
25 OSNs and 3 PNs associated with glomerulus DA1 in the
model. 83

4.5 The anatomy of the fly visual system. See chapter 4.2 for more
information about each part of this figure. Image based on
(PAULK; MILLARD; SWINDEREN, 2013). 85

4.6 Hexagonal grid organization of a cross section of the Lamina
cartridges on a 2D plane (right eye). Each circle represents
a cartridge. Anterior and Dorsal direction are indicated, and
distal direction is into the paper sheet. Figure extracted from
(LAZAR; UKANI; ZHOU, 2014). 87

4.7 Neural superposition rule of the fruit flys eye. A hexagonal grid
of ommatidia/cartridges is shown with circles. Dashed circles
indicate cartridges and solid circles indicate ommatidia. Note
that ommatidia and cartridges are shown on the same plane
only for compactness of illustration. Individual photoreceptors
R1−6 are numbered and their relative position highlighted in
some of the ommatidia. Cartridge A receives 6 photoreceptor
inputs, each from a different ommatidium. The arrows indicate
the 6 photoreceptors that project to the target cartridge A. On
the right, 6 photoreceptors from a single ommatidium each
projects to a different cartridge. It is clear from the color code
that the relative position between the ommatidia is always
the same. For example, the location where the R3 cell (blue)
resides and the cartridge where R3 projects to is locally always
the same. Figure extracted from (LAZAR; UKANI; ZHOU,
2014). 91

4.8 Cartridge elements in a cross section of a single cartridge.
α-profiles from Amacrine cells and β-profiles from a T1 neuron
can be seen in between each pair of adjacent photoreceptor
axons. Copied from (MEINERTZHAGEN; O’NEIL, 1991)
Copyright c©1991 Wiley-Liss. 92

4.9 Inter-cartridge connectivity between cartridge output neurons,
which are mediated by L4 collaterals from two adjacent
cartridges. Figure extracted from (LAZAR; UKANI; ZHOU,
2014). 93

4.10 Simulation results for the motion detection circuit in the visual
system. On the top-left side, the pattern presented to the fly;
on the right, one second of output recorded from one random
neuron in the lamina (blue) and another random one from the
medulla (red). 98

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

List of Tables

3.1 Simple cell morphology demo 45
3.2 Simple leak channel demo 47
3.3 NetworkML simple code snippet - explicit list 50
3.4 NetworkML simple code snippet - algorithmic template 51

4.1 Cell parameters in the lamina 88
4.2 Cartridge input connectivity (per cartridge) 89
4.3 Cartridge local connectivity matrix 90
4.4 Inter-cartridge connectivity 91

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Pequenos passos podem não fazer muita
diferença numa jornada curta, mas na longa
jornada da vida são capazes de colocar você num
lugar completamente diferente.

James Hunter, The servant.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

1
Introduction

The brain is the most amazing system that men are aware of, and

understanding this incredible machine is one of the most challenging and

fascinating tasks the mankind has ever had. Some say that it is not even

feasible, but there are many efforts in different fields, with different techniques

and subjects, to accomplish this task. For example, with the convergence

of modern cognitive psychology and the brain sciences, scientists started to

appreciate that all mental functions are divisible into sub functions (KANDEL

et al., 2000). However, in a system of the size of a human brain - actually, any

mammal brain - it is almost impossible to demonstrate which components of a

mental operation are represented by a particular pathway or brain region. One

difficulty is that our cognitive experience consists of instantaneous, smooth

operations (KANDEL et al., 2000), each of which is composed of many

independent components, where every task requires coordination of several

distinct brain areas.

One strategy that may help scientists and has been investigated since

last century, is to create a simpler model, for example a model of an insect

brain, specifically of the fruit fly Drosophila Melanogaster that is widely used

in laboratory research (ARMSTRONG et al., 2009). Such organism started to

be studied in 1915 in a review by Sturtevant (STURTEVANT, 1915). Since

then, the research of the fruit fly transformed this tiny insect into one of the

most powerful genetic model organisms (ARMSTRONG et al., 2009), which

uncovers many developmental principles, genetic regulation and cell signaling.

One example of genetic techniques for manipulation of the fly’s neural circuitry

is the GAL4 driver system (DUFFY, 2002; RISTER et al., 2007; SONG et

al., 2012; WARDILL et al., 2012; MAISAK et al., 2013). Principles, such as

developmental processes, genetic regulation and cell signaling, are conserved

across species and can explain some inherited diseases (ARMSTRONG et al.,

2009).

In addition to the genetic toolkit, recent advances in experimental

methods for precise recordings of the fly’s neuronal responses to stimuli (KIM;

LAZAR; YEVGENIY, 2010; KIM; LAZAR; SLUTSKIY, 2010; KIM; LAZAR;

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 1. Introduction 16

SLUTSKIY, 2011a; KIM; LAZAR; SLUTSKIY, 2011b; WILSON, 2011),

techniques for analyzing the fly’s behavioral responses to stimuli (BUDICK;

DICKINSON, 2006; KATSOV; CLANDININ, 2008; MAIMON; STRAW;

DICKINSON, 2008; CHIAPPE et al., 2010), and progress in reconstruction

of the fly connectome (CHKLOVSKII; VITALADEVUNI; SCHEFFER, 2010;

TAKEMURA et al., 2013) by using identified neurons, which are stereotyped

neurons that can be located in every fly (OLSEN; WILSON, 2008), facilitates

shaping circuits, as they can be easily recognized among flies. One advantage on

the engineering perspective is the reasonable compromise between tractability

and richness, since flies have an interesting behavioral repertoire and possess,

approximately, 150,000 neurons (CHIANG et al., 2011), which means five

orders of magnitude smaller than that of vertebrates.

Although the fly does represent a very interesting model for studying,

the limitations of this organism are important to mention. Besides its very

complete and well-studied genetic toolkit, which can be defined as a set

of methodologies, processes and tools that have the ability to modify the

animal behavior by changing its genes, the small size of the brain makes

electrophysiology in a live subject a challenging task. In addition, there is

no clear answer to whether the fly is a good model for studying how neural

activity sculpts neural circuits (OLSEN; WILSON, 2008) or if the “hard-wired”

nature of the drosophila brain would limit our ability to generalize to bigger

systems (OLSEN; WILSON, 2008). In the end, pondering the pros and cons,

the knowledge about the fly genes, the sharing of biological principles among

species and a balance between tractability and richness, lead many scientists to

conclude that the brain of the fruit fly can be considered an attractive model

system for studying the logic of neural circuit function.

Analyses of the fly’s connectome (SPORNS; GIULIO; ROLF, 2005),

which is the map of all neural elements and connections between them,

have revealed that its brain comprises about 40 distinct modular subdivisions

called Local Processing Units (LPUs) (CHIANG et al., 2011), each of which

can be regarded as a functional building block of the fly brain. Almost all

identified LPUs have been found to correspond to anatomical regions of the

fly brain associated with specific functional subsystems, for example, sensation

and locomotion. Such modularity makes easier the virtualization of the fly

brain, proposed by Armstrong (ARMSTRONG et al., 2009), that may help

scientists to better understand the animal brain. However, the first step on

this virtualization process is to collect, save and share data.

Allowing scientists, from different fields and areas, to save and share data

collected from electrophysiology, imaging or any other method that collects

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 1. Introduction 17

neural information, is very hard, since they have different levels of familiarity

with computer tools and programing languages. Also, the availability of so

many tools and formats to save neural data makes information sharing painful,

since, in order to do so, scientists must convert from one format to another.

NeuroML project (GLEESON et al., 2010), which will be presented in more

details on the next chapter, is the most prominent effort to standardize

neural data among scientists. NeuroML is a meta-language, based on XML

(Extensible Markup Language), that is very simple and easy to use, but very

powerful by allowing detailed models and their components to be defined in a

standalone form to be used across multiple simulators and to be archived in

a standardized format (GLEESON et al., 2012). Although NeuroML already

offers many advantages, it was intended to address the variety of neurological

systems in a general manner. In addition, entities are grouped according to

biological characteristics only based on biology, i.e., by chemical elements,

by cell types, etc. It is missing a way to organize this massive data by its

functionality.

1.1.
Objectives

In order to arrange entities by their functionality, this work presents a

layer over NeuroML that changes the perspective on brain specification, where

neural networks are organized into LPUs, each of which is responsible for one

particular task. Then, by combining LPUs, it is possible to perform the entire

behavioral repertoire of one specie.

The main objective of this work is, therefore, to provide a methodology

and a toolkit for specifying and simulating neural circuits and sub-circuits in

a structured fashion, where the circuit functionality can be highlighted from

the biological circuit.

1.2.
Contributions

This work presents a toolkit that inherits all benefits from NeuroML

and extends its functionality by providing a circuit perspective in a modular

framework, where each module or block, is a functional entity. Since the brain

is a big entangled system, where all behavior comes from serial and parallel

processes (KANDEL et al., 2000), such approach may allow scientists to expose

small circuits in the brain that have a specific functionality i.e., perform a

specific process, and use those circuits repeatedly inside other processes, or

together with them. The main contributions of this work are:

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 1. Introduction 18

• proposal of CircuitML, a declarative language, which provides a circuit

perspective on the brain modeling;

• proposal of libCircuitML, a Python API that can be imported into a

Python script allowing:

– to load and validate XML files in their respective formats;

– to parse and to edit circuit models, which closely follows the

structure of the XML language;

– to save valid XML files either on NeuroML format or on CircuitML

format;

– to use additional functionality, such as Python object model and

new components (LPU, subcircuit, etc.) that makes easier to create

large models;

• the specification of the following fly sensory systems using CircuitML,

demonstrating how new components make possible to create more

complex neural networks:

– the visual system;

– the olfactory system.

1.3.
Work organization

The work comprises four additional chapters, as described below.

Chapter 2 reviews the theoretical background needed to follow the entire

work. Some principles in computational neuroscience, such as the abstractions

commonly used, neuron and synapse models and the stimulus representation,

are shortly explained. In addition, the state of the art in Neuroinformatics is

discussed and the existing literature is linked with the current work.

In Chapter 3, the framework proposed is presented in detail, where

the toolkit comprising the CircuitML specification language, the CircuitML

interpreter and the GPU emulator are described.

Chapter 4 presents the simulation results of vision, olfactory and auditory

systems, including circuit diagrams and specifications. By comparing the

specification of all three systems it is possible to notice how CircuitML can

facilitate such task, and how flexible the framework can be.

Finally, in Chapter 5, conclusions are discussed, in addition to the future

directions.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

2
Theoretical Background

This chapter presents all necessary background to follow the work

proposed in Chapter 3. It also introduces the neural science field as it is

crucial to understand the importance of this work and how it facilitates the

modeling of neural systems. This chapter is divided into 4 main parts: (1)

introduction to neuroscience, (2) modelling neurons and synapses (page 23),

(3) The connectome and the local processing units (page 28), and (4) Existing

computational tools (page 32).

2.1.
Introduction to neuroscience

The goal of neural science is to understand the brain and the mind

running on it; how we perceive, move, think, and remember. Unlike the

short and simple answer, understanding the mind comprises the answer of

a huge number of questions, such as: How does the brain develop? How do

nerve cells in the brain communicate with one another? How do different

patterns of interconnections give rise to different perceptions and motor acts?

How is communication between neurons modified by experience? How is that

communication altered by diseases? (KANDEL et al., 2000).

During the last two decades, a lot of effort was made towards identifying

the link between genes and cells functionality. Such effort resulted in a

general plan that provides a common conceptual framework for all cell biology,

including neurobiology. After the uncovering of this link, the current challenge

is to understand which genes affect what specific behavior. The given approach

depends on the view that all behavior is the result of brain function, which

is commonly referred as “the mind is a set of operations carried out by the

brain” (KANDEL et al., 2000). The result of brain actions range from relatively

simple motor behaviors, such as walking or eating, to more complex cognitive

actions, such as thinking, speaking or creating.

To prove that all behavior raises from brain operations, it is necessary

to verify if particular mental processes are restrained to specific regions of

the brain, or if the mind represents a collective and emergent property of the

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 20

whole brain. Also, if specific mental processes can be localized at certain brain

regions, what is the relationship between the anatomy and physiology of one

region and its specific function in perception, thought, or movement? Finally,

it is important to know if such relationship, between anatomy and function, is

more likely to be revealed by examining the region as a whole or by studying

its individual nerve cells. However, regardless the answer for this question,

in order to answer it, its crucial study the brain in parts, given its size and

its complexity. In the next sections, the basic aspects of neural processing is

presented: the processing itself, the perception and the development.

2.1.1.
Mental Processes and the Elementary Processing Operations

The evidence of a brain as a multi-block system, where each block is

responsible for a particular function, has been rejected in the past, because it

was believed that the cerebral cortex consisted of many independent organs,

each dedicated to a complete and distinct mental function. In the aftermath of

Wernicke’s discovery (WERNICKE, 1969), he proposes that there is a modular

organization for language in the brain consisting of a complex of serial and

parallel processing centers with more or less independent functions. Now it

is appreciated that all cognitive abilities result from the interaction of many

simple processing mechanisms distributed in many different regions of the brain

(KANDEL et al., 2000). Specific brain regions are not concerned with faculties

of the mind, but with elementary processing operations. Perception, movement,

language, thought, and memory are all made possible by the serial and parallel

interlinking of several brain regions, each with specific functions. As a result,

damage to a single area need not result in the loss of an entire faculty as many

earlier neurologists predicted. Even if a behavior initially disappears, it may

partially return as undamaged parts of the brain reorganize their linkages.

Identifying and localizing specific functions in the brain is very hard,

because it is enormously difficult to demonstrate which components of a

mental operation are represented by a particular pathway or brain region. It

requires analyses of mental operations in a cellular level, which is not feasible

even today. The idea of splitting functions into sub-functions seems to be

one good attempt. However, breaking down mental processes into analytical

categories or steps is also challenging since our cognitive experience consists

of instantaneous, smooth operations. Actually, these processes are composed

of numerous independent information-processing components, and even the

simplest task requires coordination of several distinct brain areas.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 21

2.1.2.
Perception - the input of the brain

Every brain perceives its environment through receptor cells that are

sensitive to one or another kind of stimuli. The philosophy called Positivism

(MACIONIS; CLARKE; GERBER, 1994) states that sensation and perception

are the origin of all our knowledge, which is obtained by sensory experience.

Although nowadays it is known that a newborn’s mind is not empty and, even

a grown brain extracts only an amount of information from each stimulus,

while ignoring others and interpreting such data in the context of the brain’s

previous experience, it is possible to realize how much of our knowledge comes

from our senses.

For neuroscientists, perception, studied in sensory physiology and

psychophysics, was the starting point to study mental processes, since it is

a natural input for the neural system. Animal species share three common

steps (KANDEL et al., 2000), which are different from each other:

1. Physical Stimulus, which is the stimulus itself - the input signal, e.g.:

the light that activates photoreceptors in the retina or the sound wave

that makes the parts of the auditory system vibrate;

2. Process (or a set of processes) that transforms the stimulus into nerve

impulses;

3. Response to this signal in the form of a perception or conscious

experience of sensation.

2.1.3.
Brain Development

The development of the nervous system is influenced by internal and

external factors. Internally, such development depends on the expression of

particular genes at particular places and times during the process. Both spatial

and temporal patterns are regulated by hard-wired molecular programs and

epigenetic processes (KANDEL et al., 2000). Externally, social experience,

sensory stimuli and nutrients are the influencing elements. Many advances

in defining the mechanisms that control development of the nervous system

have emerged from studies on molecular biology and from the analysis of

simpler systems, such as the fruit fly Drosophila and the nematode worm

Caenhorabitis elegans. Actually, most of the key molecules that control the

formation of the nervous system are found in most species, a fact that reinforces

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 22

the expectation that simpler brains can teach scientists about circuits in a

bigger brain (ARMSTRONG et al., 2009).

Other than the development process of the brain, in order to understand

perception, communication and information processing, a common language

is required to describe efficiently the building blocks of a neural system, in

addition to characterize the structural foundation that underlies input-output

electrophysiology. In addition, a methodology different from that of Biology,

which classify elements either by behavioral observation or by changing it, may

be necessary.

Up to this point, this chapter has presented many aspects from the

biological side, showing what are the questions that drive neural scientists,

how the brain is divided into its morphology, what are the main functions

of each part and a general idea on how the brain perceives and computes

information. From now on, this chapter will now focus on the engineering

perspective, i.e., the Computational Neuroscience field, where scientists are

working on mathematical models that imitate the actual brain.

2.1.4.
Computational Neuroscience

Computational Neuroscience is the study of brain circuits using

mathematical models. It trails the goal of neural science, as discussed in the

beginning of this chapter, i.e., to understand the principles and the mechanisms

behind development, perception, communication and information processing.

In the end, the objective is to develop tools that allow scientists to answer

how information is represented in the brain, and how this representation is

processed. It is important to notice that Computational Neuroscience field

is different from psychological connectionism and from learning theories of

disciplines such as machine learning, neural networks and computational

learning theory, since the field emphasizes descriptions of functional and

biologically realistic neurons and their physiology and dynamics.

The term “computational neuroscience” was introduced by Eric L.

Schwartz, who organized a conference, held in 1985 in Carmel, California,

at the request of the Systems Development Foundation, to provide a summary

of the current status of a field which until that point was referred to by a

variety of names, such as neural modeling, brain theory and neural networks.

The proceedings of this definitional meeting were published in 1990s as the

book Computational Neuroscience (SCHWARTZ, 1993).

The field of computational neuroscience can be roughly categorized into

several lines of inquiry. Most computational neuroscientists collaborate closely

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 23

with experimentalists in analyzing novel data and synthesizing new models of

biological phenomena, but the major topics are:

• Neuron Modelling - studies neural cells and creates mathematical models

to mimic them;

• Development of Neural Systems - studies how brain develops during its

life: how networks are formed and how they change through time;

• Perception or Sensory Processing - studies the inputs of the brain and

how it processes them;

• Memory and Synaptic Plasticity - studies how the brain learns, how it

modifies itself and what is the role of external and internal environments

on this task;

• Information Processing or Behaviors of Networks - studies how neurons

interact with other neurons and what is the relationship between input

and output of multi-neuron systems;

• Cognition, Discrimination, and Learning - studies how the brain

learns, i.e., how environment or different responses to different stimuli

(discrimination) sculpt new behaviors;

• Consciousness - studies the correlation between the information in the

brain and the consciousness of this information.

The objective of this work is on better modelling of the brain and the

chosen subject is the fruit fly brain, for the reasons presented in Chapter 1.

From all topics presented above, this thesis will focus on modeling perception

and information processing. The first step to model both perception and the

information processing, is to define the primitives used, i.e., neurons and

synapses. Next section, presents all neuron and synapses models used in this

work, respectively, integrate-and-fire (IAF) and Morris-Lecar neurons, and

gradded-potential and alpha synapses.

2.2.
Modelling neurons and synapses

The neuron is the fundamental unit for analysis. Its input-output

membrane electrophysiology defines its function, and this arises from the

detailed, precise structure of the neurons somatic morphology, dendrite

morphology and synapse-channel locations. These specific neuronal structures

are essentially structurally fixed, and are located in functionally specific

connectional circuit architectures.

The core of the brain’s functional organization is grounded in three

principles:

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 24

• Neuron Doctrine → as mentioned before, the nerve cell or neuron is the

fundamental building block and elementary signaling unit in the brain;

• Ionic Hypothesis → since individual nerve cells generate electrical

signals, called action potentials, neurons can propagate over considerable

distances with very precise destinations (very different from other

communication channels - e.g.: hormones);

• The chemical theory of synaptic transmission → a nerve cell

communicates with another by releasing a chemical signals called

neurotransmitters, and the second cell recognizes the signals and

responds by means of a specific molecules in its surface membrane called

receptors.

All three principles affects how neurons behave, encode information

and communicate. However, the form of the spikes generated by stereotyped

neurons does not play a dominant role in the nervous system. The underlying

assumption is that only the influence of the pre-synaptic spike on the

post-synaptic membrane potential, which is also stereotyped, is essential for

the firing times. Thus, the detailed ion-channel dynamics during the generation

of the spikes will be neglected to concentrate the effort entirely on the dynamics

leading up to their generation. The next section describes the mathematical

models of neurons and synapses used in this work.

2.2.1.
Integrate-and-fire neuron model

The first model to be presented here is the integrate-and-fire (IAF)

neuron model. The IAF neuron model consists of a capacitor C in parallel

with a resistor R driven by a current I = I (t). The output of the model is the

membrane voltage V = V (t), as shown on Equation 2.1; when the resistance

R 6=∞, the model is said to be leaky (Equation 2.1).

dV

dt
= −V (t)

RC
+

1

C
I (t) (2.1)

In IAF models the form of the action potential is not explicitly described

and the “firing times” tk, k ∈ Z, are defined by the threshold criterion

V (tk) = δ, for all k ∈ Z, where δ is the threshold.

Immediately after time tk the potential is reset to the resting value

V0 and V is assumed to obey Equation 2.1. Thus, the combination of leaky

integration given in Equation 2.1 and reset defines the basic IAF model. The

IAF neuron with an absolute refractory period exhibits a dead time ∆ just

after the occurrence of tk, during which no integration occurs; the integration

process restarts at time tk + ∆.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 25

2.2.2.
Morris-Lecar neuron model

The second and last neuron model presented in this thesis is the

conductance based model Morris-Lecar (MORRIS; LECAR, 1981). This model

was named after Cathy Morris and Harold Lecar, who derived it in 1981.

Because it is two-dimensional, the Morris-Lecar model is one of the favorite

conductance-based models in computational neuroscience. For simplicity, this

work uses a two-dimensional system that resembles the Morris-Lecar neuron

model with parameters that do not generate spikes. This decision was made

since it will be used in one of the study cases presented in Chapter 4 as a

non-spiking neuron. Equation 2.2 presents the description of the model in a

the systems of differential equations.

dV

dt
= b− Isyn − gL (V − EL)− 0.5gCaX − gKn (V − EK)

X =

(
1 + tanh

(
V − V1
V2

))
(V − ECa)

dn

dt
=

(
0.5

(
1 + tanh

(
V − V3
V4

))
− n

)(
φ · cosh

(
V − V3

2V4

))
(2.2)

In Equation 2.2, V is the membrane potential, b is a preset constant bias

current, and Isyn = Isyn(t) is the input synaptic current. EL, ECa and EK

are reverse potential values, and gL, gCa and gK are maximum conductance

values. Finally, V1, V2, V3, V4 and φ are the parameters to be adjusted in order

to change the response of the neuron.

2.2.3.
Synapses

Synapses are specialized structures that have evolved to pass information

from one neuron to another. The origin of the name synapses is from the Greek

syn (together) and haptein (to fasten). They can be electrical or chemical.

Electrical synapses or gap junctions (Figure 2.1-A) are suitable for

high-speed transfer of information and for synchronization purposes. An

example of electrical synapses is the signal processing in the retina. Chemical

synapses (Figure 2.1-B) convert a pre-synaptic electrical signal into a chemical

signal (neurotransmitters) and back into a post-synaptic electrical signal.

Neurotransmitters are molecules released from the pre-synaptic terminal of

a chemical synapse into the synaptic cleft. Chemical synapses are divided into

two types:

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 26

• Excitatory - synaptic action that increases the probability that an

action potential will occur in the post-synaptic neuron;

• Inhibitory - synaptic action that decreases the likelihood of a

post-synaptic action potential occur.

Figure 2.1: A: Gap cell junction that connects the cytoplasm of two cells
directly. Ions and electrical impulses are directly transmitted through a
regulated gate between cells. B: In a chemical synapse, an action potential from
the membrane of the pre-synaptic cell reaches the synapse causing a release
of calcium ions, which activates a set of calcium-sensitive proteins attached
to vesicles that releases neurotransmitters into the synaptic cleft. Both figures
are licensed under Public Domain via Wikimedia Commons.

In the simulations on Chapter 4, there are two main types of synapses

used: (1) chemical between spiking neurons and (2) chemical between

non-spiking neurons. For chemical synapses between spiking neurons, the

model used in this work assumes that synapses are simple excitatory or

inhibitory connections between neurons, ignoring the complexity and diversity

of synapses for simplicity. However, the synapse function, used here to model

post-synaptic conductance changes, is the more realistic α-function that takes

in account the decay over time. Equation 2.3 and Figure 2.2-A shows the

relation between the conductance and the time that a spike was released.

gs (t) =
t

τs
e−

t
τs (2.3)

where τs specifies the duration of the response as shown in Figure 2.2.

For the chemical synapses that are activated by the graded potentials

of non-spiking neurons, a simple model is used to capture the tonic release of

neurotransmitter and its effect on the post-synaptic conductance. Equation 2.4

defines a function that maps the pre-synaptic membrane potential to the

post-synaptic conductance:

g (t) = min (gsat, k (max (Vpre (t− tdelay)− Vth)n , 0)) (2.4)

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 27

Figure 2.2: A: post-synaptic conductance generated by an alpha function with
τs = 3ms (straight line) and τs = 20ms (dashed line). B: Possible sites of
regulation of the synaptic decay.

where Vpre is the membrane potential of the pre-synaptic neuron and gsat, Vth,

k, n are parameters representing the saturation of conductance, threshold,

scale and power, respectively, each of which can be modified in order to

configure the model. A configurable synaptic delay tdelay is added to each

synapse to approximate the disparate time scales involved in the synaptic

release of various neurotransmitters.

In addition to the the pre-synaptic membrane potential and the

post-synaptic conductance relationship, the synaptic current between

non-spiking neurons can then be determined by Equation 2.5.

Isyn (t) = g (t) (Vpost (t)− Vrev) (2.5)

where Vpost and Vrev are the membrane potential of the post-synaptic neuron

and the reverse potential associated with the neurotransmitter. Whether the

synapse is excitatory or inhibitory can be determined by the difference between

Vpost and Vrev. Since the synaptic current will affect the first equation of the

neuron, if Vpost is smaller than Vrev, the synapse is excitatory, and vice-versa.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 28

Figure 2.3: Model of synaptic transmission from a chemical synapse of a
non-spiking neuron. The model takes the delayed membrane potential of the
pre-synaptic neuron and maps it to a post-synaptic conductance. The function
can be characterized based on the threshold, saturation, a scale variable, the
power and the time delay.

2.3.
The connectome and the local processing units

The connectome is the complete wiring diagram of the brain, neuron

by neuron, synapse by synapse (SPORNS; TONONI; KÖTTER, 2005;

LICHTMAN; LIVET; SANES, 2008). Connectomics is an emerging discipline

that aims to determine the connectome of all animal species. The connectome

of the fruit fly Drosophila can be represented by a matrix with, approximately,

1018 elements, which means many orders of magnitude smaller than that

of vertebrates. Equation 2.6 shows how the matrix size is calculated. On

the engineering perspective, the reasonable compromise between tractability

(connectome size) and behavioral richness is one advantage of using fruit flies

as a study subject.

(
105

neurons × 104
synapses

)
lines
×
(
105

neurons × 104
synapses

)
columns

(2.6)

Also, as mentioned before, the research on the fruit fly transformed

this tiny insect into one of the most powerful genetic model organisms

(ARMSTRONG et al., 2009), which uncovers many developmental principles,

genetic regulation and cell signaling. Such principles are conserved across

species (ARMSTRONG et al., 2009) and may help scientists understand more

complex brains and explain some inherited diseases.

In addition to the genetic toolkit, recent advances in experimental

methods for precise recordings of the fly’s neuronal responses to stimuli

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 29

(KIM; LAZAR; YEVGENIY, 2010; KIM; LAZAR; SLUTSKIY, 2010; KIM;

LAZAR; SLUTSKIY, 2011a; KIM; LAZAR; SLUTSKIY, 2011b; WILSON,

2011) and in techniques for analyzing the fly’s behavioral responses to stimuli

(BUDICK; DICKINSON, 2006; KATSOV; CLANDININ, 2008; MAIMON;

STRAW; DICKINSON, 2008; CHIAPPE et al., 2010) have been facilitating the

shaping of circuits. Also, progress in the reconstruction of the fly connectome

(CHKLOVSKII; VITALADEVUNI; SCHEFFER, 2010; TAKEMURA et al.,

2013), by using identified neurons - stereotyped neurons that can be located in

every fly (OLSEN; WILSON, 2008) - has contributed much to circuit modeling.

Although the size of the fruit fly connectome is much smaller than the

vertebrates counterparts, there are many difficulties regarding gathering

the connectome information (OLSEN; WILSON, 2008; ARMSTRONG

et al., 2009). Electrophysiological recordings, imaging techniques and

pharmacological methods are very hard to implement in a such small brain.

However, the Drosophila connectome may uncover all behavior of the fly,

which can help explain (ARMSTRONG et al., 2009) the behavior of other

species, including our own.

Studies on the brain of the Drosophila Melanogaster have revealed that

it comprises about 40 distinct modular subdivisions, most of which correspond

to anatomical regions in the brain associated with specific sensory modalities

and locomotion. These modules are referred as Local Processing Units (LPUs),

because they possess a characteristic population of local neurons. Given that

many LPUs are associated with specific stimulus processing that controls

behavior, they can be regarded as the functional building blocks of the fly brain.

Also, many LPUs’ local synaptic connectivity is organized into distinctive

and repeated canonical subcircuits that appear integral to their respective

functions. To model these LPUs, it is then highly desirable to be able to

specify and connect multiple instances of subcircuit models without having

to explicitly refer to their contents.

2.3.1.
Local Processing Units

Brain regions are traditionally defined by anatomically distinct

boundaries not necessarily representative of functional subdivisions (CHIANG

et al., 2011). Neurons in the fly brain can be categorized into two functionally

distinct populations: local neurons (LNs), whose processes are restricted

within a single brain region; and projection neurons (PNs), whose dendrites

and axons connect between two or more brain regions.

To develop a strategy for identifying basic brain building blocks, essential

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 30

for analyzing network characteristics, Chiang and his group (CHIANG et al.,

2011) began with the well-characterized local processing unit, the antennal lobe

(AL). The AL comprises four classes of neurons: (1) input olfactory sensory

neurons, (2) LNs, (3) output PNs, and (4) centrifugal neurons. With a semi

automated search algorithm, Chiang and his group identified all local neurons

in the AL and presented at http://www.flycircuit.tw.

Assuming that an LPU is equal or smaller than a neuropil (an

anatomically demarcated 3D region), Chiang and his group implemented a

method to detect whether a neuropil can be further subdivided into smaller

LPUs, each containing its own population of LNs. Such method allowed one to

specify a candidate LPU based on a mathematical definition of spatial features

of LN branches that entangle with each other. Seven steps are employed for

the detection and validation of candidate LPUs: (1) calculate the density of

local neurons in a voxel, (2) identify hot spots by statistics, (3) determine

subdivisions by cluster analysis, (4) list local neurons into each subdivision,

(5) define boundaries for each candidate LPU from local neurons clusters, (6)

calculate the spatial distributions of local neurons fibers inside each candidate

LPU, and (7) validate an LPU to see whether the region has its own long-range

tracts (CHIANG et al., 2011).

In order to facilitate the understand in LPU identification process,

Chiang and his group partitioned the ventrolateral protocerebrum (VLP)

region of the Drosophila brain into two LPUs, as depicted in Figure 2.4 (D.a).

Three criteria suggest that the dorsal and ventral VLPs may be two separate

functional units Figure 2.4 (D.b): (1) each unit has its own population of local

neurons with segregated cell body locations - Figure 2.4 (D.d), (2) neural fibers

projected from the two local neurons clusters are segregated Figure 2.4 (D.e),

and (3) each unit has its own characteristic long-range tracts communicating

with different partners - Figure 2.4 (D.g). Therefore, an LPU is defined as a

brain region consisting of its own local neurons population whose nerve fibers

are completely restricted to that region. Further, each LPU is contacted by at

least one neural tract. In contrast, a brain region, as defined by morphologically

distinct boundaries, may or may not have its own population of local neurons

and neural tract. (CHIANG et al., 2011).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 31

Figure 2.4: Characterization of an LPU: (A) Diversity of AL local neurons;
(B) diversity of AL commissural projection neurons; (C) stereotyped
monoglomerular local neurons and commissural projection neurons; (D) steps
for defining an LPU.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 32

2.4.
Existing computational tools

2.4.1.
The specification language NeuroML

An important tool that is available for the specification of neural circuitry

is NeuroML, a meta-language, based on XML (Extensible Markup Language).

Although very simple and easy to use, it is very powerful because it allows

detailed models and their components to be defined in a standalone form

to be used across multiple simulators (NEURON (CARNEVALE; HINES,

2006), GENESIS (BEEMAN, 2005), MOOSE (CUBERT; FISHWICK, 1997),

NEST (GEWALTIG; DIESMANN, 2007)) and to be archived in a standardized

format (GLEESON et al., 2010). NeuroML addresses many compatibility

issues between software tools, facilitating the reproduction of published models

descriptions and results. It also allows the sharing and reuse of model

components and the development of new tools for detailed computational

modeling (GLEESON et al., 2010).

NeuroML is a declarative, XML-based model description language for

computational neuroscience. Currently, NeuroML is in its second version,

where the structure and behavior of ion channel, synapse, cell, and network

model descriptions are based on underlying definitions provided in LEMS (Low

Entropy Model Specification) language, which is a new XML-based language

for expressing hierarchical mathematical models of physical entities (CANNON

et al., 2012).

Before this second version, NeuroML focussed on conductance-based

cell models, often with a corresponding multicompartmental representation of

neuronal morphology, which means that every neuron should be extensively

described. The current scope of NeuroML covers abstract, point neuron

models, conductance based neuron models, morphologically detailed,

multicompartmental neuron models, voltage, and calcium dependent ion

channel models, both fixed and plastic synapse models, and models for

networks of neurons positioned in 3D with synaptic connections among

populations of cells. In addition, NeuroML v2 was designed in conjunction

with LEMS, which can be used for creating fully machine-readable definitions

of the structure and behavior of neuron model components (VELLA et al.,

2014).

The LEMS language is used to formally describe the components of

models of physical systems, which may contain hierarchical relationships. In

addition, LEMS has two important keys for NeuroML: (1) the containment

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 33

of components, which encodes the concept that one model element is part

of another, and (2) the ability to declare a prototype ComponentType, which

defines the generic structure and dynamics for a broad class of models.

However, although NeuroML addresses the compatibility problem in

many ways, it has its limitations regarding the specification of local processing

units, since it was intended to address the variety of neurological systems

organized in a biological fashion. In order to have specifications of functional

units with their canonical subcircuits abstractions, it is necessary to have a

tool that offers both a standardized language and support to components that

abstract new blocks on the engineering perspective.

Besides the NeuroML specification language, there are other

computational tools available for data analyses, visualization, simulation,

etc. In the next sub-sections, many different tools will be discussed. Notice

that, every application mentioned in this section, either understands NeuroML

or has an interface to translate NeuroML to its proprietary format, which

makes NeuroML a common language between them (GLEESON et al., 2010).

2.4.2.
Public databases

Public databases, such as FlyCircuit (CHIANG et al., 2011)

and NeuroMorpho (ASCOLI; DONOHUE; HALAVI, 2007) and others

(MARKRAM, 2006), were the answer to decentralized information. Before

those initiatives, research groups used to record data from the organism and

store it in a private base without contact with other groups, hindering a cross

validation and analysis of those recordings. FlyCircuit is a public database

for online archiving, cell type inventory, browsing, searching, analysis and

3D visualization of individual neurons in the Drosophila brain, which people

are encouraged to support by uploading their own recordings. NeuroMorpho

is another public database accessible through any web browser. Its entire

repository of neuronal morphologies can be browsed by cell type, brain region,

animal species, or by the contributing laboratory.

2.4.3.
Visualization tools

Regardless of the database being used, visualization tools are one of

the first efforts usually done to help understand some systems, (DAVISON

et al., 2008), allowing the creation of groups, recurring elements or structures,

and, additionally, making it easier to represent the problem in focus. In the

Biology area, it is not different, even because many inputs are images generated

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 34

from the studied organism. In neuroscience, there are many 3D structures

inside brain regions that may play a key role in information processing

at network level: cerebellum, hippocampus and the complex connectivity

between. It can be shown that the shapes of the dendritic trees can affect the

electrical behavior of cells and that the spatial pattern of synaptic contacts

can influence how signals are integrated (GLEESON; STEUBER; SILVER,

2007). Among many visualization tools, it is noteworthy to examine two

programs: neuroConstruct (GLEESON; STEUBER; SILVER, 2007) and

CX3D (ZUBLER; DOUGLAS, 2009).

The neuroConstruct software tool is written in Java and aims to

facilitate the creation, visualization (Figure 2.5), and analysis of networks of

multicompartmental neurons in 3D space (GLEESON; STEUBER; SILVER,

2007). It provides a GUI for configuration and visualization of neural

structures, and import/export mechanisms for two other simulators: NEURON

(HINES; CARNEVALE, 1997) and GENESIS (BEEMAN, 2005). The

functionalities of neuroConstruct can be grouped into five main areas:

• import and validation of Morphologies, where reconstructed neuronal

morphologies can be imported and automatically checked for errors;

• creation of conductance-based cell models that models detailed

cellular mechanism essential for reproducing the complex behavior of

real neurons;

• network generation, where cell models can be placed within a region of

3D space at a specified density and synaptic connections can be generated

according to specified sets of rules;

• simulation management for generating script files for the simulator

packages NEURON or GENESIS and storing the results in text files;

• network analysis for post simulation examination.

CX3D (ZUBLER; DOUGLAS, 2009) is both a development simulator

and a visualization tool, where the second functionality is powered by a free

software called Blender (blender.org). In CX3D, neurons are represented by

spherical (for the soma) and cylindrical (for neurites) elements that have

appropriate mechanical properties - Figure 2.6. The CX3D simulator can run

neural development either by construction algorithms or biologically-inspired

growth processes.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 35

Figure 2.5: A neuronal network visualization generated by neuroConstruct.

Figure 2.6: A neuronal network grown in the framework CX3D. Some of the
cells including their neurites are shown red for better visualization of the
growing process.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 36

2.4.4.
Simulation tools

Computational models are increasingly being used in neuroscience to

assist the exploration and interpretation of complex phenomena (CANNON

et al., 2007). However, computational problems related to spiking neurons are

numerous and diverse, resulting in solution requirements that range from the

use of detailed biophysical representations of the neurons, such as the Hodgkin

and Huxley model, to, in other cases where it is not crucial to realistically

capture the spike generating mechanisms, simpler models, for example, the

integrate-and-fire model (IAF) (BRETTE et al., 2007). IAF cells are also faster

to simulate than conductance ones, and their use is justifiable in a real-time

simulation or in large-scale network simulations.

Simulation tools can be divided into 3 main groups: (1) neuronal

branching simulators, (2) detailed channels simulators, (3) synapses, neurons

and network simulators. The principles governing axonal and dendritic

branching are considered essential for unravelling the functionality of single

neurons and the way in which they connect (CUNTZ et al., 2010). Channel

models are used to regard the neuronal activity that is mediated through

changes in the probability of stochastic transitions between open and closed

states of ion channels (CANNON; O’DONNELL; NOLAN, 2010). Synapses,

neurons and network simulators are more common and, usually, they balance

the level of details and large scale simulation. Right now, it is not possible

to have a full network simulation, with thousands of neurons, and a complete

modelled system, with all channels and every morphological detail in a cell,

even because this information is not yet available.

One of the first spiking neurons simulators and also the most used one

is NEURON (CARNEVALE; HINES, 2006). It was published in (HINES;

CARNEVALE, 1997) as a powerful and flexible environment for implementing

biologically realistic models of electrical and chemical signaling in neurons

and networks of neurons. In its presentation the authors state that biologically

realistic model does not mean infinitely detailed, but a choice of the investigator

who is free to construct the model not limited by the simulator. Thus, instead

of having cells or synapses implementations, NEURON offers a set of equations

describing phenomena ranging from the relation between current and voltage

in a one-dimensional cable to integrators.

NEURON would eventually be improved to work in distributed

infrastructures (HINES; CARNEVALE, 2008), but newer simulators already

offer GPU-based code. The latest one is (THIBEAULT; HOANG; Harris Jr,

2011), which is a parallel modelling environment, written for large-scale neural

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 37

simulations, which aims to prove that a generalized simulation architecture

can have both extensibility and high-performance, an issue also discussed in

(CHEVITARESE; SZWARCMAN; VELLASCO, 2012). Thibeault et al., in

(THIBEAULT; HOANG; Harris Jr, 2011), chose a “lighter” neuron model from

(IZHIKEVICH, 2003) for a reasonable compromise between execution time

and biophysical plausibility. However, because of this choice, it only simulates

spiking neurons.

The workflow of the (THIBEAULT; HOANG; Harris Jr, 2011) simulator

is basically made up of the processing of a simple input file, which describes a

neuronal net in a proprietary format, and the distribution of the constituents

neurons amongst available GPUs for simulation. The process starts by forming

a local index and representation of the neurons that will be shared on device

threads forming a local neuron structure array. After building this and other

memory structures, the simulation itself begins by updating (numerically

integrating by Euler method) the neurons, and then pre and post synaptic

currents. The results presented by the authors show that a simulation of

100,000 neurons, with 50 connections per neuron, can run in about 1.2 times

real time.

All simulators cited before focus either on cells dynamics, on chemical

reaction or in network development/organization in a general brain. Although

brains seem to compute information on the same way (OLSEN; WILSON,

2008), on the engineering perspective, different brains have different sizes,

different cells and connection densities, in addition to different behavioral

repertoires. These factors might impact on how the code is implemented. In

order to have a fine-tuned application, it is necessary to opt for an organism

specific simulator, such as Neurokernel (GIVON; LAZAR, 2012) and Geppetto

(openworm.org).

Neurokernel is an open software architecture, developed at Columbia

University, for emulating neural circuit modules in the fly brain and their

responses to recorded or simulated input stimuli on multiple Graphics

Processing Units. The key feature of this architecture is its support

for integrating instances of different neural circuit models developed by

independent researchers by requiring that the models’ implementations provide

interoperable interfaces that adhere to the specification prescribed by the

architecture (GIVON; LAZAR, 2012).

Geppetto is another simulation platform engineered to support

simulation of biological systems and their environment. This software is

the effort that is closest to the work proposed here, but it is being developed

specifically for the C. Elegans organism. Geppetto architecture is divided into

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 2. Theoretical Background 38

5 levels: Entity, the basic building block of the simulated world; Model,

which describes a specific aspect of an entity; Simulation, which is its top

level controller; Simulator, which is directly responsible for the simulation

of a class of models, by employing one or more solvers; and Solver, which

is the lowest level component of the simulation stack and is in charge of

mathematical computation.

2.4.5.
Additional existing tools

In addition to the tools presented in this section, there other software

envisioned to address the various types of problems regarding the virtualization

of the brain.

• translators → converts one language to another (JORDAN; PERRY;

NARALA, 2012);

• data analysers → are used to process the output of recordings

(RODRIGUEZ et al., 2008; CARDONA et al., 2012; WEARNE et al.,

2005; RODRIGUEZ et al., 2008);

• neuron set generators → creates populations of cells based in some

pre-defined grown pattern (EBERHARD; WANNER; WITTUM, 2006);

Finally, to allow a virtual fly brain to be constructed and then used

afterwards, it is necessary to put together and specialize many of those

tools mentioned in this chapter: image processing and analysis, public data

resources, efficient simulators and some kind of representation to support

annotation and modelling (ARMSTRONG et al., 2009). On the next chapter,

we propose a set of tools and methods to address both annotation and

modeling.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

3
Specifying neural circuits as functional blocks

As an innovative contribution to the computational neuroscience research

area, this thesis presents CircuitML (CML), a framework for modeling the

virtual brain as a set of functional building blocks, instead of representing

them as networks of neurons interconnected by synapses. Each building

block comprises smaller components, allowing one to study, for example,

consequences of targeted brain disruption in a “IF-THEN” manner, as

proposed by (ARMSTRONG et al., 2009): “if I remove this neuron, what

behavior would be affected?” or “if someone changes the motion detection

system, then...”, or even “if one adds more channels to the olfactory system,

then...”. It also allows scientists to share new discoveries with other research

groups, and share those new circuits with the scientific community.

In order to achieve this new level of abstraction, this work presents the

design and implementation of CircuitML, a structured description language,

which first version was published in (CHEVITARESE et al., 2013). CML

can describe neuronal circuits at a level above NeuroML (NML), inheriting

its support to many tools and simulators, and allowing scientists to share

and validate their discoveries (GLEESON et al., 2010). In addition, such

inheritance gives to CircuitML a great variety of elements, ranging from

neuronal morphologies, with MorphML (GLEESON et al., 2010), to an entire

brain comprised by LPUs.

As a companion tool for CircuitML, a Python API is also developed,

called libCircuitML, which can be imported into a Python script allowing

users to:

• load and validate CircuitML and NeuroML files;

• parse and edit circuit models, which closely follow the structure of the

XML language;

• save valid XML files either on NeuroML format or on CircuitML format;

• use additional functionalities that make it easier to create large models;

• connect to neurokernel for simulation purposes.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 40

The main goal of libCircuitML is to provide easy-to-use utilities for the

manipulation of CircuitML using pythonic tools familiar to programmers, but

also easy to use by less experienced ones. This chapter is divided in three main

sections: (1) CircuitML language, (2) translating process and (3) computing

the virtual brain.

3.1.
CircuitML language

3.1.1.
Technical description on XML specification

A CircuitML document consists of XML elements describing the circuit

components of the neuronal system. The structure of a valid CircuitML

document is defined using XML Schema Definition (XSD) files and, therefore,

standard XML handling libraries can be used to check its validity. An error will

be generated if, for example, the name attribute is missing from the sub-circuit

element.

Once an XML file is known to be in accordance to the CircuitML format,

the contents of the file can be transformed into other formats in a number

of different ways, such as SAX (Simple API for XML) or DOM (Document

Object Model). It is also possible to convert the original file onto other text

or script formats with Extensible Stylesheet Language (XSL) files, which

makes CircuitML accessible from simulators including NEURON, GENESIS

and PSICS. This approach has the advantage that applications need not be

reimplemented to natively support CircuitML, but can still have access to

models in the format.

3.1.2.
CircuitML Overview

Before starting to describe CircuitML, it is important to understand the

its advantages, since NeuroML can describe every single detail that CircuitML

does. The most important advantage is that CircuitML makes scientists to look

to neural systems as a big circuit with “chips” (LPUs) interconnected with each

other. Each “chip” has its own and unique functionality and a well-defined

interface. Such aspect of CircuitML takes us back to the very beginning of

object-oriented paradigm:

“... serves to help manage the complexity of massive

software-intensive systems” (BOOCH, 1986).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 41

NeuroML provides all primitives and functionality declarations, but

CircuitML provides all data abstraction and information hiding needed to

make the entire specification process simpler. The advantages of CircuitML

over NeuroML are:

• minimum-to-zero coupling between circuit elements (“chips”);

• clearly defined interfaces allowing the abstraction of data and circuit

details inside elements;

• reuse and code clearness.

The current scope of CircuitML covers the definition of functional

modules (LPUs) with interfaces, smaller modules, called sub-circuits and the

connectivity module that glues all modules together. Figure 3.1 shows the

overview of the structure of CircuitML

Figure 3.1: Overall structure of CircuitML. The top-level element of CircuitML,
circuitml, contains a number of child elements of various types The hierarchical
structure is depicted in colors: the circuitml element can comprise lpu
and subcircuit elements; in turn, lpu elements has an interface and may
ecapsulate network elements, which may have populations of cells (population)
and its local connectivity (projection). Finally, the connectivity element can
encapsulates projection elements used to connect lpu elements.

3.1.3.
Levels in CircuitML

Figure 3.2 shows the relationship between biological scale of information

processing in neural systems and CircuiML. The very first level is MorphML

followed by ChannelML (level 2) and, then, NetworkML (level 3); all three

levels are defined in the NeuroML’s abstraction stack. This work introduces

a fourth level (CircuitML) over the other ones, which adds a functional

modularity to the specification.

Figure 3.2 shows some examples of those levels on the fly brain. The

yellow box represents a simple demo of the antenna lobe (AL) with multiple

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 42

Figure 3.2: Abstraction levels in CircuitML and their relationship with
the biological scale in neural systems, where MorphML, ChannelML and
NetworkML are, respectively, levels 1, 2 and 3 of NeuroML’s abstraction
stack. In the middle: fruit-fly brain with many neuropils depicted, where
arrows represent projections from one LPU to another and the red, white and
blue balls regard one of the three components in level 4 (connectivity, LPU
and subcircuit). Blue box: lamina LPU in the visual system that comprises
hundreds of cartridge structures. Yellow box: antenna lobe LPU with two
cartridges, blue and red lines.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 43

olfactory channels. Each channel comprises olfactory sensory neurons (OSNs)

and projection neurons (PNs). In this case, there are three layers: (1) AL,

which can be specified as an lpu element; (2) channels that can be specified

as sub-circuits (subcircuit element); and (3) sets of neurons, where each

set can be represented by a population element. On the blue box, lamina

(lpu) comprises multiple cartridges (subcircuit), each of which receives 8

photoreceptors (population of photoreceptors).

Level 1: Morphologies and metadata

The first Level of CircuitML uses NeuroML Level 1 and has two

main purposes: to define neuronal morphologies (MorphML) and metadata,

which provides additional information about model components at this and

subsequent levels. At this level, cells are specified in the XML cell element and

are described by lists of segment elements, each containing the 3D location

and diameter of its proximal and distal ends (GLEESON et al., 2010).

Listing 3.1 shows an example of a simple cell with 6 segments. There is

also a user-friendly view of the code on Table 3.1 and a neuroConstruct render

of it on Figure 3.3. By looking to the code, it is possible to notice that, at this

level, the specification is a list of segments and a synapse occurs when two

segments touch each other. Although this is useful to describe very detailed

morphologies, because of its simplicity, a network with many neurons would

be hard to be described only by MorphML.

Listing 3.1: MorphML code snippet for a simple cell

1 <morphml length_units="micrometer">

2 <cells>

3 <cell name="SimpleCell">

4 <meta:notes>A Simple cell example.</meta:notes>

5 <mml:segments>

6 <mml:segment id="0" name="Soma" cable="0">

7 <mml:proximal x="0.0" y="0.0" z="0.0" diameter="16.0"/>

8 <mml:distal x="0.0" y="0.0" z="0.0" diameter="16.0"/>

9 </mml:segment>

10 <mml:segment id="1" name="mainDend" parent="0"

11 cable="1">

12 <mml:proximal x="0.0" y="0.0" z="0.0" diameter="2.0"/>

13 <mml:distal x="20.0" y="0.0" z="0.0" diameter="2.0"/>

14 </mml:segment>

15 <mml:segment id="2" name="subDend1" parent="1"

16 cable="2">

17 <mml:proximal x="20.0" y="0.0" z="0.0" diameter="2.0"/>

18 <mml:distal x="40.0" y="15.0" z="0.0" diameter="2.0"/>

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 44

19 </mml:segment>

20 <mml:segment id="3" name="subDend2" parent="1"

21 cable="3">

22 <mml:proximal x="20.0" y="0.0" z="0.0" diameter="2.0"/>

23 <mml:distal x="45.0" y="0.0" z="0.0" diameter="2.0"/>

24 </mml:segment>

25 <mml:segment id="4" name="subDend3" parent="1"

26 cable="4">

27 <mml:proximal x="20.0" y="0.0" z="0.0" diameter="2.0"/>

28 <mml:distal x="40.0" y="-15.0" z="0.0" diameter="2.0"/>

29 </mml:segment>

30 <mml:segment id="5" name="mainAxon" parent="0"

31 cable="5">

32 <mml:proximal x="0.0" y="0.0" z="0.0" diameter="1.0"/>

33 <mml:distal x="-30.0" y="0.0" z="0.0" diameter="1.0"/>

34 </mml:segment>

35 </mml:segments>

36 <mml:cables>

37 <mml:cable id="0" name="Soma">

38 <meta:group>all</meta:group>

39 <meta:group>soma_group</meta:group>

40 </mml:cable>

41 <mml:cable id="1" name="mainDendSec"

42 fract_along_parent="0.5">

43 <meta:group>all</meta:group>

44 <meta:group>dendrite_group</meta:group>

45 </mml:cable>

46 <mml:cable id="2" name="subDendSec1">

47 <meta:group>all</meta:group>

48 <meta:group>dendrite_group</meta:group>

49 </mml:cable>

50 <mml:cable id="3" name="subDendSec2">

51 <meta:group>all</meta:group>

52 <meta:group>dendrite_group</meta:group>

53 </mml:cable>

54 <mml:cable id="4" name="subDendSec3">

55 <meta:group>all</meta:group>

56 <meta:group>dendrite_group</meta:group>

57 </mml:cable>

58 <mml:cable id="5" name="mainAxonSec"

59 fract_along_parent="0.5">

60 <meta:group>all</meta:group>

61 <meta:group>axon_group</meta:group>

62 </mml:cable>

63 </mml:cables>

64 </cell>

65 </cells>

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 45

66 </morphml>

Table 3.1: Simple cell morphology demo

Name SimpleCell

Description A Simple cell for demonstration purposes.

Number of segments 6

Number of cables 1 soma cable, 4 dendritic cables and 1 axonal cable

Cable details

Soma (id:0), number of segments in cable: 1
Groups: all; soma group

mainDendSec (id:1), fraction along parent cable:
0.5, number of segments in cable: 1
Groups: all; dendrite group

mainDendSec1 (id:2), number of segments in
cable: 1
Groups: all; dendrite group

mainDendSec2 (id:3), number of segments in
cable: 1
Groups: all; dendrite group

mainDendSec3 (id:4), number of segments in
cable: 1
Groups: all; dendrite group

mainAxonSec (id:5), fraction along parent cable:
0.5, number of segments in cable: 1
Groups: all; dendrite group

MorphML also implements metadata specification, which is important

for tracking all information other than the expected one for the model

components, which provides background information about the model. Many

elements are already defined to provide structured information on the author

list (authorList), publications associated with the model (publication)

and other semi-structured information (properties , annotation), as well as

general text based comments (notes). In addition to those elements, an status

element (status) is also included to allow a record of any known limitations

of the model.

MorphML provides two types of unit system: SI units (cm, mV, ms, etc.)

and physiological units (g, CM, RM, Ra, etc.), which are better explained on

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 46

Figure 3.3: Listings 3.1 rendered using neuroConstruct.

GENESIS documentation (BEEMAN, 2005).

Level 2: Channels, synapses and channel distribution

The second Level of CircuitML uses ChannelML language, which

describes the electrical properties of the membranes that underlie rapid

signaling in the brain. The two main parts of this Level are: an extension

of the morphological descriptions from Level 1, which includes details of the

passive electrical properties and channel densities on various parts of the

cell, and ChannelML, which allows descriptions of the individual conductance

mechanisms.

ChannelML supports two main types of conductances:

• electrical synapses (channel type) that arise from channels distributed

over the plasma membrane, i.e., voltage-gated conductances or

conductances gated by intracellular ions;

• chemical synapses (synapse type), which are conductances arising at

synaptic contacts. An example of a channel definition can be found on

Listing 3.2.

At this level, the specification describes how cell channels work adding

the electrical properties over MorphML specifications. Listings 3.2 describes

a leak channel with the current-voltage relationship, with a simpler view on

Table 3.2.

Listing 3.2: ChannelML example

1 <channelml units="Physiological Units">

2 <meta:notes>

3 ChannelML file containing a single Channel description

4 </meta:notes>

5 <channel_type name="leak" density="yes">

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 47

6 <status value="stable"/>

7 <meta:notes>

8 Simple example of a leak/passive conductance. Note: for

9 GENESIS cells with a single leak conductance, it is better

10 to use the Rm and Em variables for a passive current.

11 </meta:notes>

12 <current_voltage_relation cond_law="ohmic"

13 ion="non_specific" default_erev="-54.3"

14 default_gmax="0.3"/>

15 </channel_type>

16 </channelml>

Table 3.2: Simple leak channel demo

Name leak

General notes ChannelML file containing a single Channel
description

Unit system of
ChannelML file

Physiological Units

Status Stable

Description Simple example of a leak/passive conductance.
Note: for GENESIS cells with a single leak
conductance, it is better to use the Rm and Em
variables for a passive current.

Current voltage
relationship

ohmic

Ion involved in channel non specific (default Enon specific = −54.3mV)

Default maximum
conductance density

Gmax = 0.3mScm−2

Conductance
expression

Gnon specific (v, t) = Gmax

Current due to channel Inon specific (v, t) = Gnon specific (v, t) ∗
(v − Enon specific)

Level 3: Network connectivity

The third Level of CircuitML extends NetworkML Level 3 (CANNON

et al., 2012), which allows specification of the 3D anatomical structure and

synaptic connectivity of a network of neurons, together with the properties

of the external input used to drive the network. This level has two main

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 48

purposes: (1) to define NetworkML and (2) to allow extension of Level 2 cells by

specifying regions of the cell membrane to which specific synaptic connections

are limited. This means that from this level up, there is no need to define

channels in order to specify the electrical properties of neurons, which instead,

is specified by point-to-point connections.

At this level, neural networks can be specified by an explicit list of

instances of cell positions and synaptic connections, or as an algorithmic

template for describing how instances of the network should be generated, for

example to place 200 cells randomly in a certain 3D region. Figure 3.4 shows

both networks. The network on the left (Listings 3.3 and Table 3.3) have 2

populations of neurons, PopA and PopB, which have, respectively, 2 and 3

neurons each with their 3D positions written near them. PopA is specified on

Listings 3.3 (ln3), where the population name, the type of cell it will contain

and the number of neurons are declared. PopB is specified on Listings 3.3 (ln4)

with the same parameters. The connectivity between those two populations are

depicted as arrows.

In this first example, the synapses are explicitly defined inside a

projection - Listings 3.3 (ln7-ln14). Projections have a list of connections

with pre and post synaptic neuron ids that will be connected. Taking the first

connection as an example (Listings 3.3 (ln10)), it connects the first neuron of

PopA to the second neuron on PopB. Notice that at this level, there is no need

to inform which segments of the cell will “touch” each other, since this level

already supports point-to-point connectivity.

Figure 3.4: Visualization of Listing 3.3 (left) and Listing 3.4 (right). Note that,
on the right example, cells are represented only by the regions they are in, and
the connectivity between PopA and PopB is represented by the thick arrow,
due the number of cells and synapses.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 49

Listing 3.3: NetworkML simple code snippet - explicit list

1 <networkml id="simple_net" length_units="micrometer">

2 <populations>

3 <population name="CellGroupA" cell_type="CellA" size="2"/>

4 <population name="CellGroupB" cell_type="CellB" size="3"/>

5 </populations>

6 <projections units="Physiological Units">

7 <projection name="NetworkConnection" source="CellGroupA"

8 target="CellGroupA">

9 <synapse_props synapse_type="DoubExpSynA"

10 internal_delay="5" weight="1" threshold="-20"/>

11 <connections>

12 <connection id="0" pre_cell_id="0" post_cell_id="1"/>

13 <connection id="1" pre_cell_id="1" post_cell_id="1"/>

14 <connection id="2" pre_cell_id="1" post_cell_id="2"/>

15 </connections>

16 </projection>

17 </projections>

18 </networkml>

On the second network example (Figure 3.4 - right), there are two

populations of neurons randomly distributed in the volume of the two spheres.

The first population is defined on Listings 3.4 (ln4-ln12), where the user

specifies how cells will be distributed in space, the population size and the

region in which cells will be placed. In this demo, cells of PopA are randomly

distributed (Listings 3.4 (ln6)) in a spherical region (ln8), which has its center

at position (x, y, z) = (0, 0, 0) and its diameter of 100µm (ln9). Length units

are defined at the begining of every document.

Figure 3.4 (right) also shows an arrow from PopA to PopB representing

connections between them. As mentioned before, a projection encapsulates a

set of connections between populations of neurons. However, in this second

example, not only neurons are placed following an algorithmic template, but

also the connectivity between them. In this demo, Listings 3.4 defines a

projection from line 29 to line 34, where the source population is PopA and the

target population is PopB. Such projection follows a pattern defined at line 32,

where the direction of the generated connectivity goes from pre (synaptic) to

post (synaptic) populations; some cells from source population send signals by

3 connections and some target cells receives signals from up to 2 connections.

All elements that was previously shown in leves 1, 2 and 3, can be

compiled into three main elements:

1. population → specifies a set of cells, of a specific type. Optionally, it is

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 50

Table 3.3: NetworkML simple code snippet - explicit list

Name simple net

Populations

Name PopA

Cell Type CellA

2 Instances
0: (0, 0, 0)

1: (10, 0, 0)

Name PopB

Cell Type CellA

3 Instances

0: (0, 100, 0)

1: (10, 100, 0)

2: (20, 100, 0)

Projections

Units Physiological Units

Projection NetworkConnection

From PopA

To PopB

Synaptic properties

Type: DoubExpSynA

Delay: 5 ms (internal)

Weight: 1

Threshold: -20 mV

3 connection instances

0: From segment 0 on source cell 0 to segment 1
on target cell 1

1: From segment 0 on source cell 1 to segment 0
on target cell 1

2: From segment 0 on source cell 2 to segment 1
on target cell 1

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 51

Table 3.4: NetworkML simple code snippet - algorithmic template

Name simple net

Populations

Name PopA

Cell Type CellA

200 Instances

0: (-1, -15, -20)

...

199: (20, 49, 23)

Name PopB

Cell Type CellA

100 Instances

0: (58, -15, -20)

...

99: (142, 20, 3)

Projections

Units Physiological Units

Projection NetworkConnection

From PopA

To PopB

Synaptic properties

Type: DoubExpSynA

Delay: 5 ms (internal)

Weight: 1

Threshold: -20 mV

N connection instances Considering the pattern, 0 <= N <= 200.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 52

possible to define their locations in a 3D space and a template for auto

generation;

2. projection → defines the set of synaptic connections between two

populations or within a single population. Optionally, it is possible to

define a generation pattern;

3. network → encapsulates populations and projections into a single unit

with simulation input and output.

All other elements and parameters that were not described here, can

be found at NeuroML documentation (CANNON et al., 2012), but are not

mandatory for defining functional entities that will be presented next.

Listing 3.4: NetworkML simple code snippet - algorithmic template

1 <networkml id="simple_net" length_units="micrometer">

2 <populations>

3 <population name="PopA" cell_type="CellA">

4 <pop_location>

5 <!-- A number of cells are arranged randomly in 3D space

6 in a spherical region-->

7 <random_arrangement>

8 <population_size>200</population_size>

9 <spherical_location>

10 <meta:center x="0" y="0" z="0" diameter="100"/>

11 </spherical_location>

12 </random_arrangement>

13 </pop_location>

14 </population>

15

16 <population name="PopB" cell_type="CellB">

17 <pop_location>

18 <!-- A number of cells are arranged in 3D space in a

19 spherical region-->

20 <random_arrangement>

21 <population_size>50</population_size>

22 <spherical_location>

23 <meta:center x="100" y="0" z="0" diameter="100"/>

24 </spherical_location>

25 </random_arrangement>

26 </pop_location>

27 </population>

28 </populations>

29

30 <projections units="Physiological Units">

31 <projection name="NetworkConnection" source="PopA"

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 53

32 target="PopB">

33 <synapse_props synapse_type="DoubExpSynA"

34 internal_delay="5" weight="1" threshold="-20"/>

35 <connectivity_pattern>

36 <per_cell_connection direction = "PreToPost"

37 num_per_source="3" max_per_target = "2"/>

38 </connectivity_pattern>

39 </projection>

40 </projections>

41 </networkml>

Level 4: Functional entities and connectivity

The fourth level of CircuitML defines new components to allow the

specification of system modules and the connectivity between them. This level

has two main purposes: (1) to define CircuitML, and (2) to extend NetworkML

providing mecanisms to encapsulate networks and their connectivities into

functional modules with standardized interfaces. At this level, brain areas can

be specified by local processing units (LPU), where each unit stands for a

particular function.

Local processing units can be compared to chips in a circuit. Each chip

has its own internal functionality, which is independent of the external circuit,

and has its own standardized interface. Although chips can be very simple

either in its internal circuits or in its functionality, with a small number of

elementary kinds of chips combined, its possible to create complex systems

with a great variety of functions.

CircuitML implements four core elements, which are depicted in

Figure 3.5:

1. lpu → encapsulates a functional unit with an interface exposing input

and output neurons;

2. subcircuit → encapsulates smaller circuit parts for reuse inside an LPU.

Subcircuits may contain other nested subcircuits, neurons, synapses, and

other NeuroML elements;

3. interface → generates externally accessible names for neurons

comprised by constituent sub-circuits;

4. connectivity → describes synaptic connections between two LPUs.

Figure 3.5 depicts CircuitML new components and its hierarchical

structure. At the top level (excluding the circuitml) lie the lpu element,

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 54

circuitml

lpu

subcircuit

connectivity

<circuitml xmlns="..." xmlns:xsi="..."
 xsi:schemaLocation="..." id="myExample">

<lpu id="myLpu" input="240" output="144">...</lpu>

<subcircuit id="mySubcircuit"
input="3" output="8">...</subcircuit>

<connectivity id="lpu1_to_lpu2">...</connectivity>
 <projection id="lpu1out"
 preSynapticPopulation="lpu1"
 postSynapticPopulation="lpu2">
 <connection preCellId="2"
 postCellId="3" />
 <connection preCellId="0"
 postCellId="7" />
 </projection>

projection

(NeuroML elements)
..........

connection

interface
<interface id="myLpuInterface">...</interface>

subcircuit

..........
(NeuroML elements)

<subcircuit id="myNestedSubcircuit"
input="2" output="4">...</subcircuit>

Figure 3.5: Hierarchical structure of CircuitML components.

which encapsulates all circuitry, and the conectivity element that wraps the

connectivity between two LPUs. In order to create such link, LPUs have to

comprise an interface element containing a list of internal neurons that will

be handled by the system as “public” and visible to other LPUs.

The interface element can be understood as a map between the outside

of an LPU and its inner circuits. Listings 3.5 shows an example of an interface

exposing 4 neurons, respectively, 2 input ports and 2 output ports. In line 4,

input 0 exposes neuron 0 from population “my pop”, and in line 6, neuron 3

output is exposed by the interface port 2. Notice that, in this example, neuron 2

of the same population is inaccessible from the outside, because it is not listed

in “my interface”.

Listing 3.5: Example of an interface

1 <circuitml id="my_example">

2 ...

3 <interface id="my_interface">

4 <port id="in_0" in="0", out="my_pop/0"/>

5 <port id="in_1" in="1", out="my_pop/1"/>

6 <port id="out_0" in="my_pop/3" out="2"/>

7 <port id="out_1" in="my_pop/4" out="3"/>

8 </interface>

9 ...

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 55

10 </circuitml>

LPUs may comprise not only networks of neurons, but also smaller

functional structures, containing or not neurons, called subcircuit . They are

very similar to a network element except that they can encapsulate external

components, such as filters, pre and post processors, etc. Right now, the

subcircuit supports the same kind of elements that lpu does, but in future

releases, it will be possible to add inner elements other than neurons or

synapses. This is an important feature for designing a sensory system, for

example, that needs pre-processing of analogue inputs or some special spiking

encoding.

Notice that subcircuit elements are not LPUs, either because they have

to expose all inner elements (removing the data abstraction), or because they

have no complete functionality (disregarding the main point of an LPU).

A simple example of an lpu, is depicted in Figure 3.6, which shows a basic

module called partner detector, containing three main blocks: (1) TEM (Time

Encoding Machine) that encodes the input analogue signal to spikes, (2) an

analyser, that processes the encoded signal from TEM and (3) a pre motor

unit that sends information to the outside of the LPU. In this example, the

“partner detector” LPU classifies inputs into two classes: valid and invalid. An

input is considered valid if it was generated by an animal of the same species,

and an invalid if otherwise.

LPU: partner_detector output

1

input

4
4

3

3

4

pre_motor
5

Analiser

2

TEM

2

Figure 3.6: Example of a fictitious LPU (yellow box) that detects if some
input matches the type expected. The blue boxes comprise circuits with
some function associated and the gray ellipse represents a population of
cells that sends some info to the LPU output. Green and red bolls stand
for projections between interface ports and inner circuits, and between inner
circuits, respectively.

The first block (Figure 3.6 - TEM blue box) contains a Time Encoding

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 56

Machine (TEM) (LAZAR; PNEVMATIKAKIS; ZHOU, 2010) that convert

analogue signal coming from sensors, for example, to spikes that is the same

language that neurons inside this LPU understand. Considering that there is

an element called tem that implements a Time Encoding Machine, the TEM

block could be represented as in Listings 3.6, where the “tem block” comprises

a “my tem” element with 1 input and 1 output.

The output of “my tem” goes to the “Analyser” block (Figure 3.6

- Analyser blue box), which is a network of IAF cells that processes the

signal and classifies if the input signal belongs to a valid partner or not. In

Listings 3.7, the analyser block comprises, respectively, two populations of IAF

cells: first step and second step (lines 6-7). In line 9, a projection connects both

populations following a full connected pattern.

Listing 3.6: Example of a TEM block

1 <circuitml id="tem_block">

2 <subcircuit id="tem_block">

3 <tem id="my_tem">

4 <inputs>

5 <port id="in_0" />

6 </inputs>

7 <outputs>

8 <port id="out_0" />

9 </outputs>

10 </tem>

11 </subcircuit>

12 </circuitml>

Listing 3.7: Example of the Analyser block

1 <circuitml id="ana_block">

2 <refractiaf id="cell_A" threshold="-40mV"

3 refractoryPeriod="5ms" capacitance="1nF" vleak="-80mV"

4 gleak="100pS" vreset="-70mV" v0="-70mV" deltaV="10mV" />

5 <refractiaf id="cell_B" threshold="-35mV"

6 refractoryPeriod="6ms" capacitance="2nF" vleak="-80mV"

7 gleak="89pS" vreset="-70mV" v0="-70mV" deltaV="10mV" />

8 <expOneSynapse id="syn_1" gbase="0.5nS" erev="0mV"

9 tauDecay="3ms" >

10 <network id="analyser">

11 <population id="first_step" cell="cell_A" size="50">

12 <population id="second_step" cell="cell_B" size="2">

13 <!-- Since there is no connectivity info inside this

14 projection, it will be assumed a full connected pattern -->

15 <projection id="first_to_second"

16 presynapticPopulation="first_step"

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 57

17 postsynapticPopulation="second_step" synapse="syn_1" />

18 </network>

19 </circuitml>

The last block (Figure 3.6 - gray ellipse) comprises a population of

neurons that will send their output signals to the interface of LPU. Listings 3.8

show all elements instantiated inside the LPU “partner detector”. In lines 3

and 4 of Listing 3.8 there is a new element, called Include, that substitutes

the regular include. This new element indicates to libCircuitML parser that

the included code must be preprocessed and all internal connectivity must be

merged with the code that is importing it. In the end of this process, each

LPU will comprise a single internal connectivity matrix.

Listing 3.8: Example of the lpu depicted in Figure 3.6

1 <circuitml id="partner_detector">

2 <!-- Including external references -->

3 <Include href="tem_block.xml" />

4 <Include href="ana_block.xml" />

5 <!-- NeuroML elements -->

6 <iafCell id="pm_cell" reset="-50mV" C="0.03nF" thresh="-25mV"

7 leakConductance="1uS" leakReversal="-50mV" />

8 <expOneSynapse id="pm_syn" erev="20mV" gbase="65nS"

9 tauDecay="3ms" />

10 <expOneSynapse id="ana_syn" erev="15mV" gbase="85nS"

11 tauDecay="2ms" />

12 <!-- LPU specification -->

13 <lpu id="partner_detector">

14 <!-- Interface -->

15 <interface id="my_interface">

16 <port id="analogue_input" in="0",

17 out="tem_block/tem_block/0"/>

18 <port id="valid_out" in="ana_block/analyser/second_step/0"

19 out="1"/>

20 <port id="invalid_out"

21 in="ana_block/analyser/second_step/1" out="2"/>

22 <port id="pm_out_0" in="pre_motor/0" out="3"/>

23 <port id="pm_out_1" in="pre_motor/1" out="4"/>

24 ...

25 <port id="pm_out_28" in="pre_motor/28" out="31"/>

26 <port id="pm_out_29" in="pre_motor/29" out="32"/>

27 </interface>

28 <!-- Populations -->

29 <population id="tem" structure="tem_block" size="1"/>

30 <population id="analiser" structure ="ana_block" size="1" />

31 <population id="pre_motor" component="pm_cell" size="30" />

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 58

32 <!-- Projections -->

33 <projection id="tem_analyser"

34 presynapticPopulation="tem_block/tem_block"

35 postsynapticPopulation="ana_block/analyser/first_step"

36 synapse="ana_syn" />

37 <projection id="analyser_pm"

38 presynapticPopulation="tem_block/tem_block"

39 postsynapticPopulation="ana_block/analyser/first_step"

40 synapse="ana_syn" />

41 </projection>

42 </lpu>

43 </circuitml>

The last component presented here is the connectivity element, which

can be understood as the glue between LPUs. Since elements such as

projections and connections are not able to exist outside the LPU, the

connectivity element acts as a wrapper for projections and connections that

will link not cells or synapses, but interface ports. In order to understand how

such element works, let’s consider a new system, depicted in Figure 3.7, where

the “partner detector” (Figure 3.6 and Listings 3.8) receives an analogue signal

from an external sensor (Figure 3.7 - top box) and it sends the valid/invalid

signals to another LPU that will somehow convert it into a True/False result.

Figure 3.7: Two LPUs inter-connected by a connectivity element. Inner circuits
are depicted with dashed borders, because they are not visible from the outside
of the LPUs.

The connectivity on lines 5 to 8 specifies how both LPUs,

“partner detector” and “decode lpu”, will be connected, i.e., the synapse

of each connection and which port to link.

Listing 3.9: Example of two LPUs inter-connected (Figure 3.7)

1 <circuitml id="lpus">

2 <include href="partner_detector.xml" />

3 <include href="decode_lpu.xml" />

4 <expOneSynapse id="my_syn" erev="20mV" gbase="65nS"

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 59

5 tauDecay="3ms" />

6 <connectivity id="pd_to_decoder" lpu1="partner_detector"

7 lpu2="decode_lpu">

8 <connection from="partner_detector/valid_out"

9 to="decode_lpu/valid" synapse="my_syn"/>

10 <connection from="partner_detector/invalid_out"

11 to="decode_lpu/nvalid" synapse="my_syn"/>

12 </connectivity>

13 </circuitml>

3.2.
Translating process

The main reason to extend NeuroML instead of creating a complete

new language is the fact that, as mentioned in Chapter 2, there are

many tools available that support it, which makes the introduction of

new applications painless, since people are familiar with the environment.

CircuitML translating process uses some tools and concepts developed and

implemented for NeuroML, such as LEMS and libNeuroML (GLEESON et al.,

2012). This new proposed tool also shares the same goals of NeuroML initiative,

which are exchangeable components, simulator independent and accessible to

as many researchers as possible. Thus, CML translator and its simulator (next

section) can be replaced by any other simulator that supports NeuroML 2; in

Chapter 2 there is a list of some simulators. However, the simulator presented

in the next section, is part of a bigger project called neurokernel (GIVON;

LAZAR, 2012), which uses GPUs to run neural circuits in real-time.

CircuitML is designed to have machine readable definitions of the core

model components, to facilitate unambiguous interpretations of the model

behavior across implementations. On the implementation side, it means

that all CircuitML elements are described explicitly in a ComponentClass

(instantiations of which are referred to as Components).

Component classes provide a programmatic layer of abstraction, where

each element can be inherited. In this way the language can be easily extended,

with simulators knowing that any new ComponentClass extending synapse,

for instance, exposes a current and receives spike events, etc. CircuitML

provides LEMS primitives for defining neural circuits and sub-circuits that are

endowed with interface ports that enable their connection to other sub-circuits

via neural connectivity patterns. CML primitives (Figure 3.5) are written

in Python and CUDA, and glued together using PyCUDA (KLÖCKNER et

al., 2012), which allows one to access CUDA parallel computation API from

Python.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 60

Figure 3.8 illustrates an example of how explicit definitions of a cell model

is specified in CircuitML. The behavior of the model component (in this case a

simple Hodgkin-Huxley cell model (HODGKIN; HUXLEY, 1952)) is specified

in a ComponentClass (pink, bottom), with the state variable (V , n, m and h)

specified along with their dynamics in time in terms of the fixed parameters

of the model.

Hodgkin-Huxley Neuron Simulation

V
(m

V)
n

m
h

t(s)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.8
0.7
0.6
0.5
0.4
0.3

60
40
20

0
-20
-40
-60
-80

1.0
0.8
0.6
0.4
0.2
0.0

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

<hodgkinHuxleyCell id="my_cell" g_K="36.0" g_Na="120.0"
 g_L="0.3" E_K="-77.0" E_Na="50.0" E_L="-54.387"/>

<network id="my_net">
 <population id="my_pop" component="my_cell" size="1" />
</network>

Components

hodgkinHuxleyCell(...)

Network to be simulated

my_pop

my_net

ComponentClass
hodgkinHuxleyCell
C*V=I-g_Na*m^3*h*(V-E_Na)-
 g_K*n^4*(V-E_K)-g_L*
 (V-E_L)
m=a_m*(1-m)-b_m*m
n=a_n*(1-n)-b_n*n
h=a_h*(1-h)-b_h*h

abstractCell

Figure 3.8: Hodgkin-Huxley model cell specified in CircuitML. Left) A network
specifies that it contains a single population containing an instance of a
hodgkinhuxleyCell. The definition for the behavior of this Component is
contained in a ComponentClass. This graph has been automatically generated
from the XML definition of the ComponentClass (not shown) and the network
definition creating the Component instance, shown on the top-right. Top-right)
The XML corresponding to the Component and network. C) The model after
being executed by the interpreter, showing behavior of the state variables V
(red), n (blue), m (green) and h (orange).

The definition of the hodgkinhuxleyCell ComponentClass is inherited from

NeuroML and the XML used to create a simple network of one cell is shown

in Figure 3.8 (top-right). Other abstract neuron models such as Integrate and

Fire (IAF) neurons, and two state variable extensions of this, such as the

Morris-Lecar neuron model (morrisLecarCell) (MORRIS; LECAR, 1981), are

also currently supported (Figure 3.1).

With CML’s programmatic layer, called libCircuitML, it is possible to

instantiate elements, such as the one defined in Listing 3.10, directly in Python

as displayed in Listing 3.11. It is also feasible to call the CML translator in a

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 61

Python interactive console and get all XML specification processed into Python

elements - Listing 3.12.

Listing 3.10: Example of a cell instantiation in Python

1 <iafCell id="my_iaf", C="1.0 nF", thresh="-50mV", reset="-65mV",

2 leak_conductance="10 nS", leak_reversal="-65mV" />

3 <expOneSynapse id="my_syn", gbase="65nS", erev="0mV",

4 tau_decay="3ms" />

Listing 3.11: Example of a cell instantiation in Python

1 my_iaf = IafCell(id="my_iaf", C="1.0 nF", thresh="-50mV",

2 reset="-65mV", leak_conductance="10 nS",

3 leak_reversal="-65mV")

4 my_syn = ExpOneSynapse(id="my_syn", gbase="65nS", erev="0mV",

5 tau_decay="3ms")

Listing 3.12: How to call CML’s translating process in Python

1 myLpu = LPU("myExample.xml")

libCircuitML components and their relationship are depicted in

Figure 3.9, where each box represent a specific component with its respective

parameters and lines characterize a relationship between two elements. This

connection can be one-to-one, when both interconnected elements can only be

connected to each other, or one-to-n, when an element can connect to one or

more elements.

3.2.1.
Why Python and CUDA

The reasons for implementing the libCircuitML in Python and CUDA is,

mainly, to have both portability and performance on the same application.

Python is a scripting language that has been used by many years among

the scientific community (DAVISON; HINES; MULLER, 2009), having a vast

number of open-source and well kept libraries, which facilitate the application

development and allows it to run on different systems. On the other hand,

because Python code are interpreted scripts, it can be considered a bad idea

for high performance computing, since this characteristics adds an overhead

on the execution stack and the developer has less control over the compiled

objects.

In order to address the performance issue, libCircuitML uses CUDA

code wrapped by PyCUDA for simulation purposes. By sending time-critical

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 62








































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Figure 3.9: libCircuitML class diagram.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 63

functions to the GPU, the most costly portions of the code are processed in

parallel by thousands of GPU processing elements. Also, because CUDA part

is written in C code, the developer has total control of the compilation process.

3.2.2.
Translating steps: from XML to CUDA

The entire translation process is divided into 3 parts: (1) parse the XML

file and create Python structures in CPU memory; (2) prepare some of those

structures to be loaded into GPU; (3) create the simulation environment in

order to run the simulation. Listing 3.12 shows an example of how the parser

is called.

The translation process starts by parsing the XML file using an open

source XML toolkit called lxml (http://lxml.de/), which is a Python binding

for the C libraries libxml2 and libxslt. After checking that everything is

correctly spelt and the XML file is well formed, the parsing step will fully

validate the input file’s correctness against the CML schema, which means

that the validator will check if all components needed are present in order to

proper run everything. In general, the most common verifications are:

1. Do all cited components exist? (includes, schemas, cells, sub-circuits,

LPUs, etc.)

2. Are all components declared in the correct place?

3. Are all synapses making correct connection?

(a) Are these cells visible?

(b) Are these cells inside the same LPU?

4. For each declaration, are all attributes specified with the correct unit

(mV , µS, etc.)?

The product of this parser is a flag informing if the document is valid.

From an OK flag, the translator will read the specification file and start to

instantiate Python objects in CPU memory. Assuming a top-bottom approach,

the first elements created are the LPUs, each of which are populated following

the same approach, i.e., sub-circuits, populations, projections, etc. After all

structures are populated, each module (LPU) comprises the following:

• a list for each type of cell, where each element is a respective cell object

with all parameters read from the XML file;

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 64

• a spiking storage for the output spikes on the last n dt, where n and

dt are, respectively, number of times and time-step size, both simulation

parameters;

• a graded potential queue for the output voltages on the last n dt;

• the local connectivity.

Cell lists are basic Python lists, where elements are pointers to cell

components, each of which is configured with their own parameters specified

on the XML file. Figure 3.10 shows how cells are stored into Python CPU

memory.

[0]
att1 = 2.4
att2 = 0.03
...

[1]
att1 = 1.8
att2 = 0.025
...

[n-1]
att1 = 1.98
att2 = 0.035
...

...

cell_type_1

[0]
att1 = 4.8
att2 = 1.23
...

[1]
att1 = 5.8
att2 = 1.025
...

[n-1]
att1 = 4.5
att2 = 1.225
...

...

cell_type_2

Figure 3.10: How libCircuitML stores cell components in Python CPU memory.

The spiking storage presented here is based on spike container

from (BRETTE; GOODMAN, 2011) that minimizes memory usage. In

Figure 3.11-A, a dynamic array is an array with unused space (gray squares),

which is resized by a fixed factor (in this case, 2). The structure used in

this work is the circular array (Figure 3.11-B and Listing 3.13). On this

structure, the simulator inserts every time step the indices of all neurons that

have spiked (Listing 3.13-ln36), and shift the cursor by the number of spikes

(Listing 3.13-ln37). On one hand, the spike container reduces memory usage,

since it saves only the indexes of neurons that have spiked, but on the other

hand, the algorithm is vectorised over spikes and the length of the circular

array depends a priori on the number of spikes produced, which is unknown

before the simulation, that is the reason to define a growth policy.

Listing 3.13: Implementation of the circular array and the spike container.

1 class CircularVector(object):

2 def __init__(self, n):

3 self.X = zeros(n, dtype=int)

4 self.cursor = 0

5 self.n = n

6

7 def __getitem__(self, i):

8 return self.X[(self.cursor + i) % self.n]

9 def __setitem__(self, i, x):

10 self.X[(self.cursor + i) % self.n] = x

11

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 65

Insert

Insert

Insert

Insert

Dynamic array Circular array Cylindrical array

Insert

A B C

Figure 3.11: Spike container: a circular dynamic array x (outer ring) stores the
indices of all neurons that spiked in previous time steps, where the cursor
indicates the current time step. Another circular array (inner ring) stores
the location of the previous time steps in the dynamic array. Extracted from
(BRETTE; GOODMAN, 2011).

12 def endpoints(self, i, j):

13 return (self.cursor + i) % self.n, (self.cursor + j) % self.n

14

15 def __getslice__(self, i, j):

16 i0, j0 = self.endpoints(i, j)

17 if j0 >= i0:

18 return self.X[i0:j0]

19 else:

20 return hstack((self.X[i0:], self.X[:j0]))

21

22 def __setslice__(self, i, j, W):

23 i0, j0 = self.endpoints(i, j)

24 if j0 > i0:

25 self.X[i0:j0] = W

26 elif j0 < i0:

27 self.X[i0:] = W[:self.n - i0]

28 self.X[:j0] = W[self.n - i0:]

29

30 class SpikeContainer(object):

31 def __init__(self, n, m):

32 self.S = CircularVector(n + 1)

33 self.ind = CircularVector(m + 1)

34

35 def push(self, spikes):

36 ns = len(spikes)

37 self.S[0:ns] = spikes

38 self.S.cursor = (self.S.cursor + ns) % self.S.n

39 self.ind.cursor = (self.ind.cursor + 1) % self.ind.n

40 self.ind[0] = self.S.cursor

41

42 def __getitem__(self, i):

43 j = self.ind[-i - 1] - self.S.cursor

44 k = self.ind[-i]-self.S.cursor + self.S.n

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 66

45 return self.S[j:k]

46

47 def __getslice__(self, i, j):

48 k = self.ind[-j] - self.S.cursor

49 l = self.ind[-i] - self.S.cursor + self.S.n

50 return self.S[k:l]

The graded potential queue is based on (BRETTE; GOODMAN, 2011)’s

cylindrical array (Figure 3.12), which is a two dimensional array that wraps

around at the end, and which can be rotated at essentially no cost. It has the

property that X[t + M, i] = X[t, i], where i is a neuron index, t is the time

index, and M is the size of the circular dimension. The difference between

(BRETTE; GOODMAN, 2011)’s implementation and the one in libCircuitML

is the fact that here the cylinder is not used to vectorize the insertion, but to

store the output voltage of all non-spiking cells. Therefore, the cylinder height

in libCircuitML is the number of non-spiking neurons.

? ?
?

?
?

?
03

4

9

0

0

0

1

1

1

1

2

2

2

2

2

3

3

4

4

5

55

5

7

77

8

8
9

4

10

13
13 15 20

21

22

22

22

25
26

0 ms

1 ms
2 ms

3 ms

4 ms

5 ms

6 ms 7 ms 8 ms

9 ms

10 ms
11 ms
12 ms

13 ms

14 ms

Unused

cursor

Figure 3.12: Circular array is implemented as an array with a cursor indicating
the current position. A cylindrical array is implemented as a two-dimensional
array with a cursor indicating the current position. Insertion can be easily
vectorized. Extracted from (BRETTE; GOODMAN, 2011).

The local connectivity matrix (M) must store, for each neuron, the list

of target neurons, synaptic weights, transmission delays and other parameters

that depend on the synapse type. In order to increase the reading speed, each

parameter must be stored as contiguous vectors in memory. Figure 3.13(A)

depicts a dense representation of M where columns are the pre-synaptic

neurons, the rows are the post-synaptic neurons and each element is the

synaptic weight. In order to extend such representation to a greater number of

parameters, each element in M was replaced by a list of parameters creating

a n-dimensional matrix, where n > 1, n ∈ N is the number of parameters for a

specific type of neuron, as depicted in Figure 3.13(B).

Usually, neurons respect some kind of connectivity pattern among

them (MASUDA-NAKAGAWA; TANAKA; O’KANE, 2005; VOSSHALL;

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 67

A
10 3 8

00 05

0 0 0 0

0

0

0

620 0 0 0

0

0

4

000 0 0 7

10 3 8 0 0

0

1

1

10 6 2

00 05

0 0 0 0

0

0

0

620 0 0

0

0

000 0 0 7

10 3 8 0
8

1

10 1 7

00 05

0 0 0 0

0

0

0

620 0 0

0

0

4

000 0 0 7

10 3 8 0

0

1

1

10 5 8

00 05

0 0 0 0

0

0

0

620 0 0

0

0

000 0 0 7

10 3 8 0

w
gbase

tau
erev

B C
13 8

00 0

0 0 0

0

0

0

62 0 0 0

0

0

4

000 0 7

1

0

5

0

0

0

0 3 8 0 0

pre-synaptic
p
o
st
-s
y
n
a
p
ti
c

411 0 9

000 6 0

212 7 6

03

5

7

9

4 3 0 7

11 2 9 4 0post
10 3 8 0 3

pre

w

gbase

tau

erev

Figure 3.13: Matrix structures for synaptic connectivity. (A) dense
representation of the local connectivity matrix, (B) connectivity with many
parameters, (C) coordinate list format of the connectivity.

STOCKER, 2007), but they rarely are densely interconnected, and the matrix

representation can be sparse. To reduce memory usage and improve random

access times in GPU, libCircuitML creates a coordinate list from M dense

format - Figure 3.13(C). On Python environment, coordinated lists stores

synaptic objects.

The last step for the translator is to prepare cells, connectivity and

additional processes to be transferred to GPU before the simulation, since all of

them are objects on Python environment making them easier to modify, replace

and visualize (regarding the modeler perspective). Although objects have many

advantages, in general, object-oriented programming paradigm introduces

computational overhead, which is not desirable in a heavy simulation process.

The libCircuitML GPU structures are organized the same way as the

Python ones are, but they are stored in memory differently, as follows:

• one structure per cell type, where each structure’s attribute is a list as

shown in Listing 3.14;

• a spiking storage array (Figure 3.11);

• a graded potential queue as described before;

• the local connectivity as depicted in Figure 3.13(C).

Listing 3.14 shows an example of a cell definition in GPU memory as a C

struct with arrays as attributes instead of an array of structures. This last one

would be the most direct conversion from an array of cells objects, however,

because of reading pattern during the simulation, such choice would generate

not coalesced1 accesses.

1Coalesced memory access or memory coalescing refers to combining multiple memory
accesses into a single transaction.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 68

Listing 3.14: Example of a GPU cell structure

1 struct IafCell{

2 double* conductance;

3 double* c;

4 double* vth;

5 double* resetV;

6 double* leakReversal;};

3.3.
Computing the virtual brain

The emulator presented here is only a proof-of-concept application that

allows testing during the development of CircuitML. There is no compromise

to create a fully functional simulator or the fastest one, since there are many

other initiatives to do so, as mentioned in Chapter 2. Although there are many

other simulators available, the only one that is focused on the simulation of

flies is Neurokernel, which is not fully implemented yet, and that is the main

reason to build one here. Because the focus here is the simulation of a fruit

fly brain, the constraints at the architectural level are related to the fly brain,

which are:

• 105 neurons to be emulated;

• Up to 1010 synapses - based in mammalian cells;

• 8 neurotransmitters;

• Brain divided in Neuropils with up to 6× 104 neurons each.

The Drosophila brain comprises approximately 150,000 neurons divided,

until now, into two neuron models: (1) integrate-and-fire and (2) Morris-Lecar.

Both models are described as differential equations and discrete events (spikes

or V (t) for non-spiking neurons), so that the simulation time cost (CT) can

be divided into the cost of updating neuron states (U) and the propagation of

information (P) (spikes or V (t)), as shown in Equation 3.1 for spiking neurons

and in Equation 3.2 for non-spiking neurons (BRETTE; GOODMAN, 2011).

It is important to mention that cU and cP is related, respectively, to the neuron

and the synapse type for both equations. Neurotransmitters do not affect these

costs, but only synapse parameters.

Cspk
T =

[
cspkU × N spk

dt

]
update

+
[
cspkP × F ×N spk × pspk

]
propagation

(3.1)

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 69

where cspkU is the cost of one update and cspkP is the cost of one spike propagation,

N spk is the number of spiking neurons, pspk is the number of synapses per

neuron, F is the average firing rate and dt is the time step (the cost is for one

second of biological time).

Cgp
T =

[
cgpU ×

N gp

dt

]
update

+ [cgpP ×N
gp × pgp]propagation (3.2)

where cgpU is the cost of one update of a non-spiking cell and cgpP is the cost of

one V (t) propagation, N gp is the number of non-spiking neurons and pgp is the

number of synapses per neuron. So the total cost (CT) for the simulation of

all neurons in a non parallel environment is:

CT = Cspk
T + Cgp

T (3.3)

In addition to the update and the propagation times, there is also the

interpretation time (cI), since libCircuitML is written in Python. To address

this issue, (BRETTE; GOODMAN, 2011) proposes vectorized operations so

that cI could be hidden. Vectorized calculations for both neurons and synapses

produces a new function cost (Equation 3.4), where N and p are directly

proportional to how cI impacts on simulation speed.

C =

[
cU ×N + cI

dt

]
update

+ [F ×N × (cP × p+ cI)]propagation (3.4)

Although the emulator presented in this work is only for testing purposes,

it still has some design goals: (1) scalable, (2) fast, (3) efficient and (4) portable.

Since it was written in Python, the emulator can be executed in Windows,

Apple OS and Linux machines, what answers the last goal.

In order to be scalable, the internal structure of the emulator has to

address some aspects of memory and execution, such as memory availability

and massive parallel execution synchronized among computational nodes.

Since the subject being emulated in this work is, by definition, a multi-core

computer, the brain can be easily split into smaller portions and distributed

among computer nodes. CUDA was the first choice considering that the

architecture allows developers to dispatch multiple executions synchronized

among thousands of processors. If the brain becomes bigger, the emulator can

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 70

LPU 1
1500 neurons

LPU 2
3500 neurons

LPU 3
1000 neurons

5.000
synapses

20.000
synapses

GPU 1

LPU 1
1500 Neurons

GPU 2
LPU 2

3500 Neurons

LPU 3
1000 Neurons

Figure 3.14: Reallocation example (right): Consider a system with two GPUs
that can store up to 5000 neurons and run them at once. Three LPUs are
specified with some connectivity between them. When one calls run from the
emulator passing all three LPUs, libCircuitML will allocate them (left picture),
because LPUs 2 and 3 have more interconnections and the emulator will always
try to put more interconnected LPUs together.

allocate new brain parts (LPUs) into new hardware transparently by the user

perspective. Figure 3.14 and Figure 3.15 show how the emulator reallocate the

data among new resources.

One advantage of this approach is the fact that fly brain is divided

into functional bocks (LPUs), and those LPUs are usually less densely

interconnected than the local connectivity inside them. This characteristic

allows the system to have a tip on how the specification would be eventually

partitioned, if the input file had more than one LPU (CHIANG et al., 2011).

Figure 3.15: Reallocation example (part 2): Now, a new LPU (LPU 4) is added
to the system specified in in Figure 3.14, but because it has many connections
with LPU 2, the system will put it on the second GPU.

By choosing GPUs as computer nodes, both design goals (2) and (3) are

addressed. For problems where many parts are independent, as the emulation

of many cells, GPUs can run much faster than CPUs (CHEVITARESE;

SZWARCMAN; VELLASCO, 2012; SILVA et al., 2010).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 71

The two lists with libCircuitML functional and non-functional

requirements are:

Functional requirements

1. Visualization of brain module network and the modules associated with

different sensory subsystems;

2. Simulation of sensory system modules on a single GPU;

3. Automated resource allocation into CUDA streams;

4. Reading/writing of arbitrarily long inputs/outputs from/to disk

Non-Functional requirements

1. Concurrent emulation of multiple modules on a single-GPU ecosystem

The visualization is partially addressed with neuroConstruct

(GLEESON; STEUBER; SILVER, 2007), since it provides a good

visualization features, as mentioned on Chapter 2. Although

neuroContruct does have a rich graphical support, Neuroptikon

(http://openwiki.janelia.org/wiki/display/neuroptikon/Home) offers a circuit

format view that allows the visualization of LPUs and inner structures

as shown in Figure 3.16. Functional requirements 2, 3 and 4, and the

non-functional one are discussed on the next chapter.

Figure 3.16: Local connectivity of regional network.

GPU emulation process

The emulation part is not the main focus of this work, since it was

envisioned to work with Neurokernel, which was discussed before. However,

because Neurokernel has been developed in parallel with CircuitML and its

parser, in order to test some features of CircuitML, it was implemented a very

simple emulator. The emulator presented here is written in Python and CUDA

using a wrapper package called PyCUDA. The reason for using CUDA is easy

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 3. Specifying neural circuits as functional blocks 72

to understand, since it is very efficient to run all neurons and synapses in

parallel.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

4
Results

At this point, it is crucial to understand how interconnected LPU can

facilitate the specification of complex systems. In order to be able to model

an entire fly brain and then simulate such system, it is imperative to have

a good representation to support annotation and modeling (ARMSTRONG

et al., 2009). Furthermore, recent progress in neuroinformatics confirmed

that comprehensive brain wiring maps are needed to formulate hypotheses

about how information flows and is processed inside a brain (CHIANG et al.,

2011). These are the two main motifs behind the development of CircuitML:

functional modularity and connectivity.

To illustrate how functional structures work, this chapter discusses the

modeling of the sensory systems of the fruit fly: (1) the olfactory system and

(2) the visual system. The sensory system of the fruit fly have been studied by

various groups (FISCHBACH; DITTRICH, 1989; ZHU et al., 2009; CARON et

al., 2013; VOSSHALL; STOCKER, 2007), but both the visual and the olfactory

systems in this chapter are specified from Bionet (Columbia University) data.

In order to better understand those systems, in the beginning of each chapter

there is an introduction about the related system.

Notice that, since the focus here is on how to better model neural circuits,

it is hard to compare the results of a circuit simulation, for example. Because

of this, at the end of each section of this chapter, there will be a discussion on

how CircuitML can make the modeling process easier, simpler, or even clearer.

4.1.
Olfactory organs of adult flies

Like all other higher animals, flies sense odors with olfactory organs

located exclusively on the head, and all fly ORNs (Olfactory Receptor Neurons

or OSN as Olfactory Sensory Neurons) are housed in the third segment of

the antenna and in the maxillary palp (Figure 4.1 right). These two organs

are covered with specialized hairs, called sensilla, which protect the ORNs

from the insults of the external environment. The morphology of neurons that

underlies fly’s olfactory system is quite similar to the ones underlying ORNs

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 74

in a mammalian nose (VOSSHALL; STOCKER, 2007).

2nd
segment

Antenna

Arista

3rd segment

Maxillary
palp

Sensilla

Large basiconic

Small basiconic

Coeloconic

Trichoid

Taste

Antenna

Maxillary palp

Proboscis
100 µm

Figure 4.1: Neuroanatomy of the peripheral fly olfactory and gustatory
systems. Right: scanning electron micrograph of a fly head, indicating the
major chemosensory organs. Image extracted from Rochester University
Website. Left: schematic of the exterior surface of the olfactory organs. Part
of an image extracted from (VOSSHALL; STOCKER, 2007)

At the architectural side, each ORN extends a sensory dendrite ending

in ciliated projections into the shaft of the sensillum, which houses between

one and four ORNs that are surrounded by support cells. Such configuration

makes electrophysiology possible for a given sensillum, since it allows a sharp

electrode to be inserted into the base of the sensillum that can measure

extracellular activity of the ORNs in response to a panel of odorous stimuli.

A measurement technique can be found in details in (GOLDMAN et al., 2005;

BRUYNE; CLYNE; CARLSON, 1999), where they examine odor coding in

the fly’s maxillary palp and construct a receptor-to-neuron map for an entire

olfactory organ in Drosophila.

The antenna is covered with three different types of sensilla: (1) basiconic,

(2) trichoid, and (3) coeloconic. They differ in size, morphology (Figure 4.1 left)

and the types of substances detected by the underlying neurons (Figure 4.1

left/below). Those types of sensilla are distributed in a stereotyped and

bilaterally symmetric pattern, with large basiconic sensilla clustered at the

medial-proximal side of the antenna and trichoid sensilla clustered at the

lateral-distal edge. In total, there are between 1100-1250 ORNs in each antenna

that extends its dendrites in the AL (VOSSHALL; STOCKER, 2007).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 75

4.1.1.
Adult olfactory pathway

Drosophila has 39 ORs projecting to 43 morphologically defined glomeruli

in the AL in a 1 OR to 1 glomerolus rule (approximately) (VOSSHALL;

STOCKER, 2007). OR projections converges onto a common AL glomerulus

and defines the input properties of the glomeruli (Figure 4.2). The two

major target neurons of the ORNs are local neurons (LNs), which provide

“horizontal” connections among glomeruli (primary center - Figure 4.2),

and cholinergic projection neurons (PNs) (primary to secondary centers -

Figure 4.2) most of which link individual glomeruli “vertically” with two

higher olfactory centers (secondary centers - Figure 4.2), the mushroom body

(MB) and the lateral horn, as shown in Figure 4.2. The MBs are integrative

centers controlling various functions such as olfactory learning, other forms of

learning, locomotor activity, male courtship behavior, and sleep (VOSSHALL;

STOCKER, 2007). In contrast, the lateral horn seems to be involved in

experience-independent odor recognition (VOSSHALL; STOCKER, 2007).

However, those higher centers are not covered in this chapter, since our focus

here is on how the fly senses odors.

Exactly functions performed by LNs and PNs are unclear, but whole-cell

patch recordings demonstrated that PNs are more broadly tuned and display

more complex firing patterns in terms of temporal structure than do the

ORNs, which is believed to provide the substrate PNs’ tasks (VOSSHALL;

STOCKER, 2007). Some LNs (GABAergic) receive excitatory input from

ORNs and PNs and establish inhibitory synapses with both afferents and PNs.

However, the major role that seems to be accomplished by this intricate LN

network is to synchronize PN activity, either within a given glomerulus or

between PNs innervating different glomeruli (VOSSHALL; STOCKER, 2007).

Many of these anatomical and functional features are shared by the

mammalian olfactory system, apart from the glomerular convergence principle

of ORNs (Figure 4.2). Both the insect AL and the mammalian olfactory bulb

are characterized by inhibitory LNs whose main task seems to be the extraction

of behaviorally relevant information from the incoming signals by changing

their temporal structure. Given this surprising conservation, the advantage of

the numerically much-reduced insect olfactory system as a model is evident.

(VOSSHALL; STOCKER, 2007)

Summarizing, the olfactory systems of Drosophila flies is useful model

because of its reduced cell numbers and its similar design with the

mammalian olfactory system, which may reflect common functional constraints

(VOSSHALL; STOCKER, 2007); the olfactory sensory map in those 43 ALs is

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 76

PN

PNORN

ORN

GL

mammals:

insects:

olfactory
receptor neurons

primary
center

secondary
centers

olfactory
epithelium olfactory bulb

piriform cortex
olfactory tubercle
entorhinal cortex

antenna
maxillary

palp

antennal lobe
MB calyx

first order
neurons

second order
neurons

third order
neurons

lateral hom

Figure 4.2: Parallels in olfactory processing between mammals and insects.
Odorants emitted from a stimulus activate distinct subsets of ORNs, which
converge on glomeruli in either the olfactory bulb or the AL. From here
information is relayed to higher brain centers, which have functional and
neuroanatomical parallels in mammals and insects. Image extracted from
(VOSSHALL; STOCKER, 2007)

formed by convergent projections that segregate input from the antenna and

maxillary palp according to the type of OR expressed, such that all 1,300

ORNs expressing a given OR target a unique and stereotyped glomerulus

(VOSSHALL; STOCKER, 2007), as depicted in Figure 4.3.

4.1.2.
Olfactory system in CircuitML

The olfactory model presented here, in CircuitML, is the specification

of the olfactory receptors and part of the Antenna Lobe, witch comprises 49

channels - Listing 4.1. It is important to know that this is an early model that

is being investigated on the Bionet group (KIM; LAZAR; SLUTSKIY, 2011b)

and many aspects of this model is still under development.

In this example, each channel, depicted by lines on different colors in

Figure 4.3, encapsulates 3 to 5 projection neurons that receive axons from

about 50 ORNs. In addition to PNs, which send olfactory information to higher

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 77

Adult

1,300 OSNs 43 AL glomeruli ≈150 PNs
≈ 2,500

MB neurons

30:1 convergence30:1 convergence 1:3 divergence PNs:MB neurons: ≈ 1:15 divergence

hundreds of
calyx glomeruli

lateral horn

Figure 4.3: Circuit of adult olfactory system. The adult olfactory pathway
is characterized by converging and diverging connectivity in the AL (ratios
indicated refer to the preceding line). Here, each line that goes from one ORN
to one AL is encapsulated into a structure called channel. Image extracted
from (VOSSHALL; STOCKER, 2007)

regions of the brain, the antenna lobe contains local neurons (LNs), whose

connections are restricted to the lobes; inter-glomeruli connectivity therefore

includes synaptic connections between ORNs and PNs, ORNs and LNs, LNs

and PNs, and feedback from PNs to LNs. The current specification does not

include local neurons, but future specifications will. By encapsulating some of

those neurons into channels, it becomes easier to provide mechanisms by which

the activation of different sets of ORNs is transformed into an odor perception

in the fly brain that produce a given behavioral output. Eventually, with a good

AL specification in the future, it would be possible to abstract such module

and focus on gathering more information about secondary centers’ input and

how this data is processed.

The entire model comprises 2,800 neurons, or 70% of the fly’s entire

antenna lobe. All neurons in the system are modeled using the Leaky

Integrate-and-Fire (LIF) model and all synaptic currents elicited by spikes are

modeled using alpha functions. Parameters for 24 of the glomerular channels

are based upon currently available ORN type data (HALLEM; CARLSON,

2006); all other parameters are configured with artificial data by Bionet.

In Listing 4.1, some of the lines were removed to reduce space. From line 5

to line 28 antenna left is specified with 1375 inputs and 147 outputs, where the

connectivity pattern between I/O and the neurons inside the LPU is defined

from line 7 to line 23 by using the component interface. Since all projection

neurons comprised by the glomeruli may emit output visible to other LPUs,

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 78

their connectivity to outside is defined inside interface, where every port will

be exposed by the LPU. Local neurons or OSNs that connect glomeruli do not

emit any output to other LPUs and their connectivity is defined inside an LPU

component, where they are not exposed by the LPU.

Listing 4.1: Demo version of the olfactory system.

1 <circuitml id="antenna_demo">

2 <!-- Including external specification -->

3 <Include href="channel_demo.xml" />

4 <!-- First LPU: left antenna -->

5 <lpu id="antenna_left" input="1375" output="147">

6 <!-- LPU I/O -->

7 <interface id="io">

8 <port id="Or2a_ch0" in="0" out="channel/0/OSN/0"/>

9 <port id="Or7a_ch0" in="1" out="channel/0/OSN/1"/>

10 <!-- ... -->

11 <port id="Or98a_ch0" in="23" out="channel/0/OSN/23"/>

12 <!-- ... -->

13 <port id="Or2a_ch49" in="1350" out="channel/49/OSN/0"/>

14 <port id="Or7a_ch49" in="1" out="channel/49/OSN/1"/>

15 <!-- ... -->

16 <port id="Or98a_ch49" in="1374" out="channel/49/OSN/23"/>

17 <!-- output -->

18 <port id="gl_0_0" in="channel/0/GL/0" out="0"/>

19 <port id="gl_0_1" in="channel/0/GL/1" out="1"/>

20 <!-- ... -->

21 <port id="gl_48_2" in="channel/48/GL/2" out="146"/>

22 </interface>

23 <!-- Network specification -->

24 <network id="antenna">

25 <!-- Channels instantiation -->

26 <population id="channels" structure_type="channel"

27 size="49"/>

28 </network>

29 </lpu>

30 <!-- Second LPU: right antenna -->

31 <lpu id="antenna_right" input="1375" output="147">

32 <!-- SAME AS ABOVE -->

33 </lpu>

34 </circuitml>

The inner network of neurons is specified using channels, which is defined

on Listing 4.2. Synapses and neurons are defined in synapses.xml (ln3) and

iafcells.xml (ln5), respectively, as shown in Chapter 3. Also, some of the lines

were hidden to reduce space. From line 8 to line 39, channel’s inner circuit is

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 79

specified, where all neurons and synapses, once declared on external files, are

instantiated by populations (for neurons) and projections (synapses).

Listing 4.2: Demo version of the channel sub-circuit.

1 <subcircuit id="channel_demo">

2 <!-- Synapses types -->

3 <Include href="synapses.xml" />

4 <!-- Neuron cells -->

5 <Include href="iafcells.xml" />

6 <iafCell id="pn" V="-0.0716137080262" reset="-0.0725377214812"

7 thresh="-0.024302993706" leakConductance="1.01628888072"

8 C="0.0691989436227"/>

9 <!-- Channel definition -->

10 <network id="channel">

11 <population id="GL" cell_type="pn" size="3"/>

12 <population id="Osn_default" cell_type="osn_default"

13 size="1"/>

14 <population id="Osn_Or43b" cell_type="osn_Or43b" size="1"/>

15 <population id="Osn_Or9a" cell_type="osn_Or9a" size="1"/>

16 <population id="Osn_Or47b" cell_type="osn_Or47b" size="1"/>

17 <population id="Osn_Or85b" cell_type="osn_Or85b" size="1"/>

18 <population id="Osn_Or98a" cell_type="osn_Or98a" size="1"/>

19 <population id="Osn_Or82a" cell_type="osn_Or82a" size="1"/>

20 <population id="Osn_Or49b" cell_type="osn_Or49b" size="1"/>

21 <population id="Osn_Or2a" cell_type="osn_Or2a" size="1"/>

22 <population id="Osn_Or43a" cell_type="osn_Or43a" size="1"/>

23 <population id="Osn_Or19a" cell_type="osn_Or19a" size="1"/>

24 <population id="Osn_Or65a" cell_type="osn_Or65a" size="1"/>

25 <population id="Osn_Or10a" cell_type="osn_Or10a" size="1"/>

26 <population id="Osn_Or35a" cell_type="osn_Or35a" size="1"/>

27 <population id="Osn_Or67c" cell_type="osn_Or67c" size="1"/>

28 <population id="Osn_Or7a" cell_type="osn_Or7a" size="1"/>

29 <population id="Osn_Or85f" cell_type="osn_Or85f" size="1"/>

30 <population id="Osn_Or88a" cell_type="osn_Or88a" size="1"/>

31 <population id="Osn_Or23a" cell_type="osn_Or23a" size="1"/>

32 <population id="Osn_Or22a" cell_type="osn_Or22a" size="1"/>

33 <population id="Osn_Or47a" cell_type="osn_Or47a" size="1"/>

34 <population id="Osn_Or59b" cell_type="osn_Or59b" size="1"/>

35 <population id="Osn_Or85a" cell_type="osn_Or85a" size="1"/>

36 <population id="Osn_Or67a" cell_type="osn_Or67a" size="1"/>

37 <!-- Conectivity -->

38 <projection id="proj_osn_glomerulus"

39 presynapticPopulation="OSN" postsynapticPopulation="GL"

40 synapse="syn_osn" />

41 <projection id="Osn_default-DA1"

42 presynapticPopulation="Osn_default"

43 postsynapticPopulation="GL" synapse="osn_default-DA1" />

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 80

44 <!-- ... -->

45 <projection id="Osn_Or67a_24-DM6"

46 presynapticPopulation="Osn_default"

47 postsynapticPopulation="GL" synapse="osn_Or67a_24-DM6" />

48 </network>

49 </subcircuit>

Before CircuitML, the way many scientists used to specify such system,

would be using graphs, where nodes are neurons and edges are synapses.

Using graphs to represent those systems have many advantages on the

engineering perspective, but not for the scientist who is specifying the system

with thousands, or even, millions of nodes and edges. In order to show the

difference between both approaches, Listing 4.3 show the same demo in a

graph representation, where cells are defined from line 31 to line 21590 (21559

lines) and synapses are defined from line 21592 to line 71092 (49500 lines).

More important than the huge difference between the number of lines

necessary to specify the system, what you can extract looking to both

specifications is what matters most. CircuitML was also envisioned to make

much clearer the specification. In Listing 4.1 and Listing 4.2 it is easy

to understand the big picture of the entire system: the LPUs with input

and output, how to circuits are organized and interconnected. Also, using

CircuitML, the amount of memory used to save the same specification. The

graph version uses 3MB not compressed and 210KB compressed, whereas the

CircuitML version uses 790KB not compressed and 171KB compressed.

Listing 4.3: Snippet version of the olfactory system (graph).

1 <?xml version=’1.0’ encoding=’UTF-8’?>

2 <gexf version="1.2" xmlns="http://www.gexf.net/1.2draft">

3 <graph defaultedgetype="directed">

4 <attributes class="node">

5 <attribute id="0" title="model" type="string">

6 <default>LeakyIAF</default>

7 </attribute>

8 <attribute id="1" title="name" type="string"/>

9 <attribute id="2" title="V" type="float"/>

10 <attribute id="3" title="Vr" type="float"/>

11 <attribute id="4" title="Vt" type="float"/>

12 <attribute id="5" title="R" type="float"/>

13 <attribute id="6" title="C" type="float"/>

14 <attribute id="7" title="spiking" type="boolean"/>

15 <attribute id="8" title="public" type="boolean"/>

16 <attribute id="9" title="extern" type="boolean"/>

17 </attributes>

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 81

18 <attributes class="edge">

19 <attribute id="0" title="model" type="string">

20 <default>AlphaSynapse</default>

21 </attribute>

22 <attribute id="1" title="name" type="string"/>

23 <attribute id="2" title="reverse" type="float"/>

24 <attribute id="3" title="ar" type="float"/>

25 <attribute id="4" title="ad" type="float"/>

26 <attribute id="5" title="gmax" type="float"/>

27 <attribute id="6" title="class" type="integer"/>

28 <attribute id="7" title="conductance" type="boolean"/>

29 </attributes>

30 <nodes>

31 <node id="0">

32 <attvalues>

33 <attvalue for="0" value="LeakyIAF"/>

34 <attvalue for="1" value="osn_default_0"/>

35 <attvalue for="2" value="-0.064215272382"/>

36 <attvalue for="3" value="-0.0675489770451"/>

37 <attvalue for="4" value="-0.0251355161007"/>

38 <attvalue for="5" value="1.02445570216"/>

39 <attvalue for="6" value="0.0669810502993"/>

40 <attvalue for="7" value="true"/>

41 <attvalue for="8" value="true"/>

42 <attvalue for="9" value="true"/>

43 </attvalues>

44 </node>

45 <!-- ˜21500 lines -->

46 <node id="1539">

47 <attvalues>

48 <attvalue for="0" value="LeakyIAF"/>

49 <attvalue for="1" value="VL2p_pn_2"/>

50 <attvalue for="2" value="-0.0622911499237"/>

51 <attvalue for="3" value="-0.0704026495474"/>

52 <attvalue for="4" value="-0.0250364665111"/>

53 <attvalue for="5" value="0.974394566901"/>

54 <attvalue for="6" value="0.0717119870296"/>

55 <attvalue for="7" value="true"/>

56 <attvalue for="8" value="true"/>

57 <attvalue for="9" value="false"/>

58 </attvalues>

59 </node>

60 </nodes>

61 <edges>

62 <edge id="0" source="0" target="1375">

63 <attvalues>

64 <attvalue for="0" value="AlphaSynapse"/>

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 82

65 <attvalue for="1" value="osn_default_0-VM6_pn_0"/>

66 <attvalue for="2" value="0.0"/>

67 <attvalue for="3" value="385.455225163"/>

68 <attvalue for="4" value="101.949722443"/>

69 <attvalue for="5" value="0.00503075744033"/>

70 <attvalue for="6" value="0"/>

71 <attvalue for="7" value="true"/>

72 </attvalues>

73 </edge>

74 <!-- ˜50000 lines -->

75 <edge id="4124" source="1374" target="1539">

76 <attvalues>

77 <attvalue for="0" value="AlphaSynapse"/>

78 <attvalue for="1" value="osn_default_24-VL2p_pn_2"/>

79 <attvalue for="2" value="0.0"/>

80 <attvalue for="3" value="417.450869326"/>

81 <attvalue for="4" value="104.596640555"/>

82 <attvalue for="5" value="0.00506945769919"/>

83 <attvalue for="6" value="0"/>

84 <attvalue for="7" value="true"/>

85 </attvalues>

86 </edge>

87 </edges>

88 </graph>

89 </gexf>

4.1.3.
Olfactory system simulation results

For the simulation of the olfactory system, this study has used, as input,

the configuration and odorant waveforms from (HALLEM; CARLSON, 2006).

The waveforms database consist of the spontaneous firing rate of 24 ORNs (2a,

7a, 9a, 10a, 22a, 23a, 33b, 35a, 43a, 43b, 47a, 49b, 59b, 65a, 67a, 67c, 82a, 85a,

85b, 85f, 88a and 98a) and the response to the onset of 110 odorant stimuli,

which means, for example, if one presents E2-hexenal to neuron 7a, it will

produce more than 200 spikes per second. The spontaneous firing rate is used

to model the time constant of IAF neurons, and the odorant response is used

to define the equivalent input current for the IAF neuron. Using the previous

example, to model neuron 7a to respond to odorant E2-hexenal with a firing

rate R, which here is greater than 200 sikes per second, the input current is

computed such that the IAF exhibits constant firing rate R.

Figure 4.4 shows the input stimulus at the top graph, the spikes produced

by the 25 OSNs and 3 PNs associated with glomerulus DA1 in the model. Just

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 83

Figure 4.4: Odorant concentration profile and the spikes produced by the 25
OSNs and 3 PNs associated with glomerulus DA1 in the model.

by looking to Figure 4.4, it is possible to notice that during the time the odor

was presented, the spikes from OSN increased and, as result, the neurons that

received the output from them, also increased their spike rate. This model was

simulated using the last version of neurokernel and the circuit developed by

Bionet as in November of 2014.

4.2.
Visual system of the fly

Drosophila Melanogaster visual system is more complex than its olfactory

system and it is organized into modules: retina, lamina, medulla and lobula

plate (Figure 4.5) (CHIANG et al., 2011; PAULK; MILLARD; SWINDEREN,

2013), which affects most aspects of visual processing. Figure 4.5 shows the

anatomy of the fly’s visual system: (a) visual system location on the fly’s head

and visual information data flow. Visual information enters the eye via the

retina, which contains photoreceptors R1−8 in individual ommatidium. Each

ommatidium contains a structure called cartridge from retina to medulla; (c)

R1−6 (b) photoreceptors input to the lamina, where neurons L1, L2, and L4 also

send output synapses of the motion circuit into the medulla. L4 receives input

from neighboring cartridges, including L5 neurons, and outputs to multiple

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 84

medulla neurons; (d) medulla, like the lamina, is organized into reiterated

units. Transmedulla (Tm2) neurons are postsynaptic to lamina neurons and

presynaptic to cells in the lobula complex; (d) motion information flows from

the lobula to the lobula plate (e) via T5 cells where vertical and horizontal

lobula plate tangential cells (LPTCs) respond to specific motion stimuli; (f)

further information on patterns such as elevation (top) or orientation (bottom)

is discriminated at different levels of the fan-shaped body (green and blue

layers) in the central complex, a central brain structure.

4.2.1.
Visual organs of adult flies

The first module, considering the direction from input to output,

retina comprises 750 individual facets, called ommatidia, make up each

compound eye. Each ommatidium is physically separated from its neighbor

and contains one each of eight different photoreceptor (R) cells called R1−8

(PAULK; MILLARD; SWINDEREN, 2013). Retina is followed by lamina,

which maintain the same neurons organization of its predecessor, where R1−6

cells target to approximately 750 independent units, called cartridges, and form

the first connections with downstream neurons involved in motion processing

(PAULK; MILLARD; SWINDEREN, 2013). The next module is called medulla

that comprises 750 columns, and the first synapses for color vision (receptor

cells R7 and R8) and the second synapses of the motion circuit assemble at

distinct vertical positions in each column. The projections of photoreceptors

and that of the majority of neurons in the optic lobe are retinotopic, meaning

that the spatial relationship between neurons activated by the visual stimulus

at the retina is preserved when this information is mapped onto the optic lobe

(PAULK; MILLARD; SWINDEREN, 2013). Neurons from medulla project

into lobula and lobula plate and a retinotopic map is loosely maintained in

these brain regions as well. One of the major challenges the fly visual system

faces in terms of organization is in the specificity of the connections within a

unit; even though compatible neurons are available close by (just 5-10 microns

away), connections with neurons in neighboring columns are prevented in

order to preserve the modularity required for efficient visual processing. The

mechanisms used to achieve these boundaries within and between columns

have only recently begun to be revealed (PAULK; MILLARD; SWINDEREN,

2013).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 85

medulla
lamina

lobula plate

eye facets

vertical lobula plate
tangential cell

fr
o

m
 m

ed
u

lla

Tm 2
cells

T5 cells
e

fan-shaped
 body

ellipsoid
body

vs.

vs.

f

lamina

L1

d

to medulla

L2L4

eye

a

L1
L2
L4

Tm2

from lamina

to lobula

medulla

optic lobe

central brain

eye

c R1-6
from eye

R1-6

R7

R8

b

Figure 4.5: The anatomy of the fly visual system. See chapter 4.2 for
more information about each part of this figure. Image based on (PAULK;
MILLARD; SWINDEREN, 2013).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 86

4.2.2.
Abstractions in the visual system

A Lamina circuit model is being proposed by Bionet group at

Columbia University (LAZAR; UKANI; ZHOU, 2014), which is based in

(RIVERA-ALBA et al., 2011; FISCHBACH; DITTRICH, 1989), and has

been previously written in Matlab, it is presented here in CircuitML

(Listing 4.5) with some examples comparing both implementations. The

Lamina neural circuit consists of approximately 750 cartridges, which are

defined as independent sub-circuits (Listing 4.5) interconnected following

a repetitive pattern (Listing 4.6). By defining cartridges as atomic and

independent sub-circuits has some advantages (LAZAR; UKANI; ZHOU,

2014), such as:

• complexity reduction, since it makes the big lamina’s circuit as a set of

much smaller sub-circuits;

• simplification of input processing by assigning each cartridge to a pixel

of the input image, a univariate signal;

• functionality isolation when considering the cartridge as a fundamental

computational unit

Cartridges are defined on a hexagonal grid on a 2D plane, as shown on

Figure 4.6. Each cartridge then has a coordinate associated with it. Adjacent

cartridges can be easily located with their unique coordinates.

The cartridge’s input comes from 6 retina photo receptors, which are

represented by neurons R1 to R6 that have no sensitivity to color and

are located at ommatidium. Each input connection is associated to one

ommatidium adjacent following a pattern illustrated in Figure 4.7, where each

solid circle is one ommatidium and each dashed circle represents a cartridge.

That structure creates an overlaid hexagonal grid, in Figure 4.7 depicted in

2D (see Figure 4.5(b-c) for a 3D representation).

Also, in Figure 4.7, the target cartridge A receives inputs from one of

the photoreceptors in each of the six ommatidia that are highlighted with

individual photoreceptors R1 to R6 (black dots) and R7 to R8 (green dots).

From the ommatidia perspective, each ommatidium projects its signal to its

six neighbor cartridges (LAZAR; UKANI; ZHOU, 2014).

The following tables shows the parameters of cells and synapses in the

visual system. As a quick reference, Equation 4.1 show the synapse model used,

and Equation 4.2 shows the neuron model used (Both were presented in more

details in Chapter 2). All cells defined in the Lamina LPU are listed Table 4.1

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 87

Figure 4.6: Hexagonal grid organization of a cross section of the Lamina
cartridges on a 2D plane (right eye). Each circle represents a cartridge. Anterior
and Dorsal direction are indicated, and distal direction is into the paper sheet.
Figure extracted from (LAZAR; UKANI; ZHOU, 2014).

(LAZAR; UKANI; ZHOU, 2014), which includes the output neurons L1-L5,

T1, C2 and C3 neurons and local neuron Am.

g = min (gsat, k (max ((Vpre (t− tdelay)− Vth)n , 0)))

Isyn (t) = g (Vpost (t)− Vrev) (4.1)

where Vpre is the membrane potential of the pre-synaptic neuron and gsat,

Vth, k and n are, respectively, the saturation of conductance, threshold,

scale and power. There is also a tdelay added to each synapse regarding the

transmission time. In addition, Vpost and Vrev are the membrane potential of

the post-synaptic neuron.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 88

dV

dt
= b− Isyn − gL (V − EL)− 0.5gCaX − gKn (V − EK)

X =

(
1 + tanh

(
V − V1
V2

))
(V − ECa)

dn

dt
=

(
0.5

(
1 + tanh

(
V − V3
V4

))
− n

)(
φ · cosh

(
V − V3

2V4

))
(4.2)

where b is a preset constant bias current, Isyn = Isyn(t) is the input

synaptic current, EL = 50mV , ECa = 100mV and EK = 70mV are reverse

potential values, and gL = 0.5, gCa = 2.0 and gK = 1.1 are maximum

conductance values. The other parameters can be modified in order to adjust

the simulation; for this demo, the variables are in Table 4.1.

Table 4.1: Cell parameters in the lamina

Type V1 V2 V3 V4 φ V (0) n(0) b

L1 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

L2 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

L3 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

L4 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

L5 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

T1 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

C2 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

C3 -0.001 0.015 -0.05 0.001 0.0025 -0.05 0.5 0.02

Am -0.001 0.015 0 0.03 0.2 -0.05184 0.0306 0

α1 -0.001 0.015 -0.05 0.001 0.0025 0 0 0

α2 -0.001 0.015 -0.05 0.001 0.0025 0 0 0

α3 -0.001 0.015 -0.05 0.001 0.0025 0 0 0

α4 -0.001 0.015 -0.05 0.001 0.0025 0 0 0

α5 -0.001 0.015 -0.05 0.001 0.0025 0 0 0

α6 -0.001 0.015 -0.05 0.001 0.0025 0 0 0

Cartridge input connectivity is presented in Table 4.2, where Cartridge

regards which neighbour cartridge receives the connection (Figure 4.6), and

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 89

Vrev(V), tdelay(ms), Vth(V), k, n and gsat are the synaptic parameters (LAZAR;

UKANI; ZHOU, 2014).

Table 4.2: Cartridge input connectivity (per cartridge)

Pre Post Vrev tdelay Vth k n gsat # mode

R1 L1 -0.08 1 -0.05214 0.02 1 0.0008 40 0

R2 L1 -0.08 1 -0.05214 0.02 1 0.0008 43 0

R3 L1 -0.08 1 -0.05214 0.02 1 0.0008 37 0

R4 L1 -0.08 1 -0.05214 0.02 1 0.0008 38 0

R5 L1 -0.08 1 -0.05214 0.02 1 0.0008 38 0

R6 L1 -0.08 1 -0.05214 0.02 1 0.0008 45 0

L2 R1 0 1 -0.0505 1 1 0.02 1 1

α5 L3 -0.7 1 -0.5284 0.05 1 0.01 5 0

The output of each cartridge, which is sent to medulla neurons, comes

from five L1 to L5 neurons, one T1 neuron and two centrifugal neurons, C2 and

C3 (As in 2013, centrifugal neurons were not specified yet).

Other than Ln neurons, Cn neurons and T1 neuron, there are a repetitive

element in cartridges called α-profiles and β-profiles as well; they are “light”

processes, also known as neurites1, that are generated by the Am cells. Each

cartridge has, in general, 6 α-profiles, each of which may innervate to up to

12 other cartridges. β-profiles receives input from α-profiles and are generated

by the T1 neurons (Figure 4.8). In this circuit model, there are 6 α-profiles,

α1 to α6, represented as neurons for simplification. They connect Am cells to

other cartridge cells and provide feedback onto the photoreceptor input axons

(LAZAR; UKANI; ZHOU, 2014). The circuit connectivity of each cartridge in

this demo is summarized on Table 4.3, where each table cell show the number

of connectivity between two neurons. If one neuron has more than one synaptic

contact with another, it is registered as a single synapse, but the weight of the

synapse is multiplied by the number of actual synaptic contacts.

The connectivity between cartridges are intermediated by L4 cells with

direct synapses (Table 4.4), but the majority of connections are made by other

types of neurons. Although these connections may perform many functions, in

this demo, only connections from L4 cells will be considered. Figure 4.9 shows

how L4 neurons are connected to neighbour cartridges.

1A thin tube extending from a neuronal cell body. (WOOD, 1996)

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 90
T

ab
le

4.
3:

C
ar

tr
id

ge
lo

ca
l

co
n
n
ec

ti
v
it

y
m

at
ri

x

P
re

/
P

o
st

R
1

R
2

R
3

R
4

R
5

R
6

L
1

L
2

L
3

L
4

L
5

T
1

C
2

C
3

α
1

α
2

α
3

α
4

α
5

α
6

R
1

1

R
2

1
1

R
3

R
4

1
1

R
5

1
1

1

R
6

L
1

40
43

37
38

38
45

3
3

L
2

46
45

39
41

39
47

2
3

5

L
3

11
10

4
8

6
12

1
1

1
3

5
1

L
4

2
4

L
5

1
1

3

T
1

2
2

2
8

6
7

12
3

13

C
2

1
5

1

C
3

2
3

1

α
1

19
16

1
1

α
2

22
18

3

α
3

20
16

2
2

α
4

17
26

2

α
5

10
14

1
2

α
6

17
22

1
3

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 91

1

2

3
4

5

67/8

1

2

3
4

5

67/8

1

2

3
4

5

67/8

1

2

3
4

5

67/8

1

2

3
4

5

67/8

1

2

3
4

5

67/8

1

2

3
4

5

67/8

A

Figure 4.7: Neural superposition rule of the fruit flys eye. A hexagonal grid of
ommatidia/cartridges is shown with circles. Dashed circles indicate cartridges
and solid circles indicate ommatidia. Note that ommatidia and cartridges
are shown on the same plane only for compactness of illustration. Individual
photoreceptors R1−6 are numbered and their relative position highlighted in
some of the ommatidia. Cartridge A receives 6 photoreceptor inputs, each
from a different ommatidium. The arrows indicate the 6 photoreceptors that
project to the target cartridge A. On the right, 6 photoreceptors from a single
ommatidium each projects to a different cartridge. It is clear from the color
code that the relative position between the ommatidia is always the same. For
example, the location where the R3 cell (blue) resides and the cartridge where
R3 projects to is locally always the same. Figure extracted from (LAZAR;
UKANI; ZHOU, 2014).

Table 4.4: Inter-cartridge connectivity

Pre Post Cartridge Vrev tdelay Vth k n gsat # mode

L2 L4 2 0 1 -0.0505 2 1 0.03 4 0

L2 L4 3 0 1 -0.0505 2 1 0.03 2 0

L4 L4 4 0 1 -0.0505 2 1 0.05 2 0

L4 R3 5 0 1 -0.0505 2 1 0.1 2 1

L4 L4 5 0 1 -0.0505 2 1 0.05 1 0

L4 L2 6 0 1 -0.0505 0.5 1 0.2 3 0

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 92

R8
R7

L2

L1

R1 R6

R5

R4R3

R2

Am

C2

C3
L5

β

α

α

α

α

α

α

β
β

β

β

β

L4

P
V

+y+x
E

Figure 4.8: Cartridge elements in a cross section of a single cartridge. α-profiles
from Amacrine cells and β-profiles from a T1 neuron can be seen in between
each pair of adjacent photoreceptor axons. Copied from (MEINERTZHAGEN;
O’NEIL, 1991) Copyright c©1991 Wiley-Liss.

4.2.3.
Visual system in CircuitML

The demo code presented here is divided into three main parts: (1)

cartridge abstraction (Listings 4.4), (2) lamina specification (Listings 4.5)

and the connectivity pattern among cartridges (Listings 4.6). In this version of

libCircuitML, there is no support to repetitive connectivity patterns between

components other than LPUs, but in future releases it will be possible to reuse

the connectivity as presented in Listings 4.6.

Listing 4.4: Demo version of cartridge specification.

1 <circuitml id="cart_demo">

2 <!-- Synapses types -->

3 <gpSynapse id="R_L_syn" reverse="-0.8" threshold="-0.5214"

4 delay="1" slope=".002" power="1" saturation=".0008"/>

5 <gpSynapse id="R_a_syn" reverse="0" threshold="-0.5214"

6 delay="1" slope=".001" power="1" saturation=".0002"/>

7 <gpSynapse id="R_TC_syn" reverse="-0.7" threshold="-0.5214"

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 93

L5

R

L3

L2 L4

L5

R

L3

L2 L4

L5

R

L3

L2 L4

L5

R

L2 L4

L3

L5

R

L2 L4

L3

L5

R

L2 L4

L3

L5

R

L2 L4

L3

dorsal

anterior

Figure 4.9: Inter-cartridge connectivity between cartridge output neurons,
which are mediated by L4 collaterals from two adjacent cartridges. Figure
extracted from (LAZAR; UKANI; ZHOU, 2014).

8 delay="1" slope=".001" power="1" saturation=".0002"/>

9 <gpSynapse id="a_L_syn" reverse="-0.7" threshold="-0.5284"

10 delay="1" slope=".05" power="1" saturation=".01"/>

11 <gpSynapse id="L_R_syn" reverse="-0.7" threshold="-0.5284"

12 delay="1" slope=".05" power="1" saturation=".01"/>

13 <!-- For simplification, some parameters of the synapses

14 between L cells were condensed into one type of synapse. In

15 the future, these parameters will be generated by the system.

16 -->

17 <gpSynapse id="L_syn" reverse="-0.7" threshold="-0.505"

18 delay="1" slope=".05" power="1" saturation=".06"/>

19 <gpSynapse id="a_TC_syn" reverse="-0.7" threshold="-0.05"

20 delay="1" slope=".05" power="1" saturation=".06"/>

21 <!-- Neuron cells -->

22 <morrisLecarCell id="R" EL="50" I="65" ECa="100" EK="70"

23 gL="0.5" gCa="2.0" gK="1.1" V1=".3" V2=".15" V3="0" V4=".3"

24 phi="0.025" b="0.02" n0="0.5" V0="0.05"/>

25 <morrisLecarCell id="L" EL="50" I="65" ECa="100" EK="70"

26 gL="0.5" gCa="2.0" gK="1.1" V1="-0.01" V2="0.15" V3="-0.5"

27 V4="0.01" phi="0.0025" b="0.02" n0="0.5" V0="0.05"/>

28 <morrisLecarCell id="T_and_C" EL="50" I="65" ECa="100" EK="70"

29 gL="0.5" gCa="2.0" gK="1.1" V1="-0.01" V2=".15" V3="-0.5"

30 V4=".01" phi=".0025" b="0.02" n0="0.5" V0="0.05"/>

31 <morrisLecarCell id="a" EL="50" I="65" ECa="100" EK="70"

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 94

32 gL="0.5" gCa="2.0" gK="1.1" V1="-0.01" V2=".15" V3="-0.05"

33 V4=".01" phi=".0025" n0="0" V0="0"/>

34 <morrisLecarCell id="Am" EL="50" I="65" ECa="100" EK="70"

35 gL="0.5" gCa="2.0" gK="1.1" V1="-0.01" V2="0.15" V3="0"

36 V4="0.03" phi=".0025" b="0" n0="0.0306" V0="-0.05184"/>

37 <!-- Cartridge definition -->

38 <subcircuit id="cartridge">

39 <!-- Interface definition -->

40 <population id="R_pop" component="R" size="6"/>

41 <population id="a_pop" component="a" size="6"/>

42 <population id="L_pop" component="L" size="5"/>

43 <population id="T_and_C_pop" component="T_and_C" size="3"/>

44 <!-- Local connectivity - based on Nikul’s and Yiyin’s

45 specification. -->

46 <projection id="R_L" presynapticPopulation="R_pop"

47 postsynapticPopulation="L_pop" synapse="R_L_syn"/>

48 <connection from="0" to="0"/>

49 <connection from="1" to="0"/>

50 <connection from="2" to="0"/>

51 <connection from="3" to="0"/>

52 <connection from="4" to="0"/>

53 <connection from="5" to="0"/>

54 <connection from="0" to="1"/>

55 <connection from="1" to="1"/>

56 <connection from="2" to="1"/>

57 <connection from="3" to="1"/>

58 <connection from="4" to="1"/>

59 <connection from="5" to="1"/>

60 <connection from="0" to="2"/>

61 <connection from="1" to="2"/>

62 <connection from="2" to="2"/>

63 <connection from="3" to="2"/>

64 <connection from="4" to="2"/>

65 <connection from="5" to="2"/>

66 </projeciton>

67 <projection id="R_a" presynapticPopulation="R_pop"

68 postsynapticPopulation="a_pop" synapse="R_a_syn"/>

69 <connection from="0" to="0"/>

70 <connection from="1" to="0"/>

71 <connection from="1" to="1"/>

72 <connection from="2" to="1"/>

73 <connection from="2" to="2"/>

74 <connection from="3" to="2"/>

75 <connection from="3" to="3"/>

76 <connection from="4" to="3"/>

77 <connection from="4" to="4"/>

78 <connection from="5" to="4"/>

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 95

79 <connection from="5" to="5"/>

80 <connection from="0" to="5"/>

81 </projeciton>

82 <projection id="R_T" presynapticPopulation="R_pop"

83 postsynapticPopulation="T_and_C_pop" synapse="R_TC_syn"/>

84 <connection from="1" to="0"/>

85 <connection from="2" to="0"/>

86 <connection from="3" to="0"/>

87 </projeciton>

88 <projection id="a_L" presynapticPopulation="a_pop"

89 postsynapticPopulation="L_pop" synapse="a_L_syn"/>

90 <connection from="5" to="1"/>

91 <connection from="0" to="2"/>

92 <connection from="1" to="2"/>

93 <connection from="2" to="2"/>

94 <connection from="3" to="2"/>

95 <connection from="4" to="2"/>

96 <connection from="5" to="2"/>

97 </projeciton>

98 <projection id="a_T" presynapticPopulation="a_pop"

99 postsynapticPopulation="T_and_C_pop" synapse="a_TC_syn"/>

100 <connection from="0" to="0"/>

101 <connection from="1" to="0"/>

102 <connection from="2" to="0"/>

103 <connection from="3" to="0"/>

104 <connection from="4" to="0"/>

105 <connection from="5" to="0"/>

106 </projeciton>

107 <projection id="L_L" presynapticPopulation="L_pop"

108 postsynapticPopulation="L_pop" synapse="L_syn"/>

109 <connection from="1" to="3"/>

110 <connection from="1" to="4"/>

111 <connection from="0" to="4"/>

112 <connection from="1" to="0"/>

113 <connection from="3" to="1"/>

114 <connection from="3" to="4"/>

115 <connection from="4" to="0"/>

116 </projeciton>

117 <projection id="L_R" presynapticPopulation="L_pop"

118 postsynapticPopulation="R_pop" synapse="L_R_syn"/>

119 <connection from="1" to="0"/>

120 <connection from="1" to="1"/>

121 <connection from="3" to="4"/>

122 </projeciton>

123 </subcircuit>

124 </circuitml>

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 96

Listing 4.5: Demo version of lamina.

1 <circuitml id="lamina_demo">

2 <Include href="cart_demo.xml" />

3 <lpu id="lamina">

4 <interface>

5 <!-- Since there is no specification of which element in

6 cartrigdes population, a full-connected fashion is

7 set. -->

8 <port id="R1" in="0" out="cartrigdes/R/0"/>

9 <port id="R2" in="768" out="cartrigdes/R/1"/>

10 <port id="R3" in="1536" out="cartrigdes/R/2"/>

11 <port id="R4" in="2304" out="cartrigdes/R/3"/>

12 <port id="R5" in="3072" out="cartrigdes/R/4"/>

13 <port id="R6" in="3840" out="cartrigdes/R/5"/>

14 </interface>

15 <gpSynapse id="R_L_syn" reverse="-0.8" threshold="-0.5214"

16 delay="1" slope=".002" power="1" saturation=".0008"/>

17 <morrisLecarCell id="am" C="20" I="65" gL="2" gCa="4"

18 gK="8" VL="-50" VCa="100" VK="-70" V1="-0.01" V2=".15"

19 V3="0" V4=".3" phi=".2"/>

20 <population id="cartrigdes" subcircuit="cart_demo">

21 <!-- The space is a hexagonal tiling like {6,3} in

22 Schl fli symbol. See

23 http://en.wikipedia.org/wiki/Hexagonal_tiling -->

24 <layout space="Hexagonal">

25 <grid xSize="32" ySize="24" />

26 </layout>

27 </population>

28 <population id="amacrine_cells" component="amacrine">

29 <layout>

30 <random size="300" />

31 </layout>

32 </population>

33 <projection id="North_west_connectivity"

34 source="cartrigdes/0" target="cartrigdes/1" />

35 ...

36 </lpu>

37 </circuitml>

Listing 4.6: Demo version of the connectivity among cartridges.

1 <circuitml id="lpus">

2 <include href="partner_detector.xml" />

3 <include href="decode_lpu.xml" />

4 <expOneSynapse id="my_syn" erev="20mV" gbase="65nS"

5 tauDecay="3ms" />

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 97

6 <connectivity id="pd_to_decoder" lpu1="partner_detector"

7 lpu2="decode_lpu">

8 <connection from="partner_detector/valid_out"

9 to="decode_lpu/valid" synapse="my_syn"/>

10 <connection from="partner_detector/invalid_out"

11 to="decode_lpu/nvalid" synapse="my_syn"/>

12 </connectivity>

13 </circuitml>

4.2.4.
Visual system simulation results

The neuron and synapse models were implemented as part of a

Neurokernel LPU class and libCircuitML process CircuitML files and

instantiate those elements using neurokernel own components. The neurokernel

LPU class implements GPU-level execution of the LPU models. Consequently,

the main point in this results is to compare how this new language can make

the design process easier.

To simulate the visual system, we have presented a striped video to the

virtual eye, in order to stimulate neurons in the retina (Figure 4.10). The

simulation of this video shows an interesting relationship between retina (blue

plot) and lamina (red plot), in which it is possible to notice the information

propagating from one to another, in a derivative-like form and with a small

time difference, which can be modified in a future version that consider the

propagation time. Also, from results similar to these, scientists can start to

understand functional relations between brain parts.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 4. Results 98

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0 .4

0 .6

T im e

V
ol

ta
ge

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
−0.504

−0.502

−0.5

−0.498

−0.496

−0.494

−0.492

−0.49

−0.488

−0.486

−0.484

T im e

V
ol

ta
ge

<morrisLecarCell id="L" C="20" I="65" gL="2" gCa="4" gK="8"
 VL="-50" VCa="100" VK="-70" V1="0" V2="15" V3="10" V4="10"
 phi="0.1" />

Figure 4.10: Simulation results for the motion detection circuit in the visual
system. On the top-left side, the pattern presented to the fly; on the right, one
second of output recorded from one random neuron in the lamina (blue) and
another random one from the medulla (red).

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

5
Conclusions

In this thesis, we proposed a toolkit comprising both the specification

language CircuitML, and libCircuitML, a Python API that can be imported

into a Python script in order to have programmatic functionality over

CircuitML. This was motivated by the difficulty in creating models of complex

neural networks with their functionality clearly grouped in smaller units. In

addition, we specified the fly’s olfactory and visual systems in CircuitML

to show how the language manages the various parts of those systems. The

Drosophila Melanogaster was chosen because it represents a good model for

studying LPUs.

5.1.
CircuitML

The language of CircuitML extends NeuroML in order to have neuronal

systems designed as functional building blocks. Each of those building blocks,

also presented as an LPU, may comprise elements ranging from single

populations of cells to complex circuitry with many layers of abstractions.

Although LPUs can be very complex in the inside, they are endowed with

interface ports, which hide such complexity by exposing only necessary parts

to be interconnected via neural connectivity patterns, which makes CircuitML

a very powerful specification language for neuronal circuitry.

During the development of CircuitML, the language proved to be a

powerful ally by encapsulating the many parts of demonstration circuits, each

of which could be specified gradually, where each part could be validated

without the necessity of having the entire system. As any other object-oriented

language, the beginning of the specification takes more time because the

modeler have to organize which parts will be encapsulated and which parts will

be exposed via interface ports, although the definition of LPUs are easier, since

they are already delineated by the biological system into neuropils. However,

after having all parts defined, it is much easier to add or remove pieces without

affecting other parts of the specification.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 5. Conclusions 100

5.2.
libCircuitML

The companion tool for CircuitML, libCircuitML, was mainly developed

to load, validate, parse and save CircuitML files. In addition, libCircuitML was

envisioned to provide additional functionality, such as Python object model

and other programmatic tools (loops, conditional clauses, etc.) that makes

easier to create large models.

During the development of libCircuitML, the hardest part was the

processing of the connectivity of the various levels of components and external

resources added with the new Include element. In order to create one single

neural network, grouped by neuron type, from an entire LPU circuitry, the

library has to take into account how many cells exists in each group, what

type of output that each type generates (continuous or spikes) to create the

memory structures, what type of synapse and how long it takes to a signal to

reach the other neuron, etc. Also, if there is more than one GPU card available,

libCircuitML may, not only send some networks to another GPU cards, but

split bigger ones into two or more GPU cards.

As libCircuitML uses DOM (Document Object Model) to transform the

XML file in structures both in Python and CUDA, even not being simple it is

easier to process the entire LPU connectivity. However, the translation of very

big LPUs may take a long time and consume a huge amount of memory. In our

examples, the maximum number of neurons was around 15,000 and there was

no memory issue nor elapsed time above 2-3 minutes. Actually, there is also a

discussion on whether bigger LPUs should not be split into smaller ones.

5.3.
The fruit fly virtual brain

As the Drosophila Melanogaster represents a good model for studying

LPUs, for many reasons, the specification of the Antenna Lobe and of the

Lamina LPUs has shown to be an interesting case study for CircuitML.

The first case study presented in this thesis, describing the early olfactory

system comprising two Antenna Lobes encapsulating 49 glomerular channels

with full intraglomerular connectivity, shows that the specification of neuronal

systems as circuits with interconnected chips that have their own functionality,

makes the resulting code cleaner and more systematically delineated.

The second study case is the Lamina LPU model, which is based upon

available connectome data gathered by researchers at Bionet Group. The LPU

model contains 9516 neurons (about 90% of the cells) in the retina and lamina

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 5. Conclusions 101

that were modeled using the Morris-Lecar model with parameters selected to

not elicit spiking activity.

Despite the fact that the visual system is much more complex than the

olfactory system, and that many peculiarities have not yet been implemented,

the CircuitML version of the model makes the specification much cleaner by

hiding the complex connectivity between cartridges.

The contributions of this work not only provide new tools for the

specification of virtual brains, but it also offers the first two real system

specifications in CircuitML. Although far from a complete model, both

olfactory and visual systems may be the start point for a complete virtual

Drosophila and, after that, more complex organisms.

5.4.
Future plans

5.4.1.
The sensory system of the fruit fly

Albeit the fact that most of the Drosophila connectome is still missing, it

is already possible to create a draft of all sensory systems of the fly, including

the auditory systems, which was not included in this thesis.

The specification of the entire sensory system of the fruit fly with its

individual interconnections and its singularities, may prove that CircuitML

is able to address the entire system and also will point to possible issues,

such as missing connectivity patterns. In addition, since many parts of those

systems are still missing, CircuitML may help scientists to reconstruct the fly

brain by providing support to functional building blocks that can be tested

and validated independently. By sharing their discoveries, research groups will

be able to focus on single LPUs, disregarding other parts that are already

encapsulated into other LPUs.

The specification of the auditory system seems to be meaningful, since

it will complete the entire fruit fly sensory system, and a step forward to a

complete virtual fly brain. The auditory system will comprise 250 Johnston’s

organ neurons (JONs) (TOOTOONIAN et al., 2012) covering the entire

frequency range of the sound wave that a fly can hear, and classifying the

input into “match”/“not match”. This system is used for coupling among

flies, being crucial to avoid copulation between flies from different species.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Chapter 5. Conclusions 102

5.4.2.
System integration

After implementing the three different sensory systems of the Drosophila

fly, in order to move towards a virtual brain, it is imperative to interconnect

those systems and validate against the real fly. For example, how both natural

and artificial systems would behave if it had two kinds of contradictory inputs:

a good smell and a predator approaching on its visual field. For us, this example

seems to be naive, but for a computer, it may be not.

5.4.3.
Tools for automatic growth of circuits in CircuitML

As mentioned before, one problem for the scientists when specifying a

circuit, is the lack of information about cells (positioning and parameters)

and connectivity. A system that could autonomously develop itself, i.e. grow

from a newborn form, connectivity patterns based on some development rules,

statistical inference or even some machine learning mechanism, might serve as

temporary solution until the real data become available.

There are some tools (BAUER et al., 2012; KOENE et al., 2009;

ZUBLER; DOUGLAS, 2009; ZUBLER et al., 2013; ZUBLER et al., 2011) that

already provide many functionality in self-generating networks. Some of them

already have NeuroML support, such as CX3D that uses a translator NeuroML

to CX3D (ZUBLER; DOUGLAS, 2009; ZUBLER et al., 2013; ZUBLER et al.,

2011). However, none of them has a native support neither to NeuroML nor to

CircuitML. If libCircuitML could embed such function, it would help scientists

to work with less different tools.

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

A
List of abbreviations

AL Antenna Lobe

API Application Programming Interface

CML CircuitML

CUDA Compute Unified Device Architecture

DOM Document Object Model

XML Extensible Markup Language

GUI Graphical User Interface

GPU Graphics Processing Unit

IAF Integrate-and-fire

JON Johnston’s organ neuron

LN Local Neuron

LEMS Low Entropy Model Specification

LPU Local Processing Unit

MB Mushroom Body

NML NeuroML

ORN Olfactory Receptor Neurons

OSN Olfactory Sensory Neuron

PN Projection Neuron

SAX Simple API for XML

TEM Time Encoding Machine

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography

ARMSTRONG, J. D. et al. Towards a virtual fly brain. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, The Royal Society, v. 367, n. 1896, p. 2387–2397, 2009. 1, 2.1.3, 2.3,
2.4.5, 3, 4

ASCOLI, G. A.; DONOHUE, D. E.; HALAVI, M. NeuroMorpho. Org: a
central resource for neuronal morphologies. The Journal of Neuroscience, Soc
Neuroscience, v. 27, n. 35, p. 9247–9251, 2007. 2.4.2

BAUER, R. et al. Developmental origin of patchy axonal connectivity in the
neocortex: a computational model. Cerebral Cortex, Oxford Univ Press, p.
bhs327, 2012. 5.4.3

BEEMAN, D. GENESIS Modeling Tutorial. Brains, Minds, and Media, v. 1,
2005. 2.4.1, 2.4.3, 3.1.3

BOOCH, G. Object-oriented development. Software Engineering, IEEE
Transactions on, SE-12, n. 2, p. 211–221, Feb 1986. ISSN 0098-5589. 3.1.2

BRETTE, R.; GOODMAN, D. F. Vectorized algorithms for spiking neural
network simulation. Neural computation, MIT Press, v. 23, n. 6, p. 1503–1535,
2011. (document), 3.2.2, 3.11, 3.2.2, 3.12, 3.3, 3.3

BRETTE, R. et al. Simulation of networks of spiking neurons: a review of
tools and strategies. Journal of computational neuroscience, Springer, v. 23,
n. 3, p. 349–398, 2007. 2.4.4

BRUYNE, M. de; CLYNE, P. J.; CARLSON, J. R. Odor coding in a model
olfactory organ: theDrosophila maxillary palp. The Journal of neuroscience,
Soc Neuroscience, v. 19, n. 11, p. 4520–4532, 1999. 4.1

BUDICK, S. A.; DICKINSON, M. H. Free-flight responses of drosophila
melanogaster to attractive odors. Journal of experimental biology, The
Company of Biologists Ltd, v. 209, n. 15, p. 3001–3017, 2006. 1, 2.3

CANNON, R. et al. A declarative model specification system allowing
NeuroML to be extended with user-defined component types. BMC
Neuroscience, BioMed Central Ltd, v. 13, n. Suppl 1, p. P42, 2012. 2.4.1,
3.1.3, 3.1.3

CANNON, R. C. et al. Interoperability of neuroscience modeling software:
current status and future directions. Neuroinformatics, Springer-Verlag, v. 5,
n. 2, p. 127–138, 2007. 2.4.4

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography 105

CANNON, R. C.; O’DONNELL, C.; NOLAN, M. F. Stochastic ion channel
gating in dendritic neurons: morphology dependence and probabilistic
synaptic activation of dendritic spikes. PLoS computational biology, Public
Library of Science, v. 6, n. 8, p. e1000886, 2010. 2.4.4

CARDONA, A. et al. TrakEM2 software for neural circuit reconstruction.
PLoS One, Public Library of Science, v. 7, n. 6, p. e38011, 2012. 2.4.5

CARNEVALE, N. T.; HINES, M. L. The NEURON book. [S.l.]: Cambridge
University Press, 2006. 2.4.1, 2.4.4

CARON, S. J. et al. Random convergence of olfactory inputs in the Drosophila
mushroom body. Nature, Nature Publishing Group, 2013. 4

CHEVITARESE, D. S. et al. CircuitML: a Modular Language for
Modeling Local Processing Units in the Drosophila Brain. In: Frontiers
Neuroinformatics. [S.l.]: Frontiers Research Foundation, 2013. p. 80–81. 3

CHEVITARESE, D. S.; SZWARCMAN, D.; VELLASCO, M. Speeding up
the training of neural networks with CUDA technology. In: SPRINGER.
Artificial Intelligence and Soft Computing. [S.l.], 2012. p. 30–38. 2.4.4, 3.3

CHIANG, A.-S. et al. Three-Dimensional Reconstruction of Brain-wide
Wiring Networks in Drosophila at Single-Cell Resolution. Current Biology,
Elsevier, v. 21, n. 1, p. 1–11, 2011. 1, 2.3.1, 2.4.2, 3.3, 4, 4.2

CHIAPPE, M. E. et al. Walking modulates speed sensitivity in¡ i¿
drosophila¡/i¿ motion vision. Current Biology, Elsevier, v. 20, n. 16, p.
1470–1475, 2010. 1, 2.3

CHKLOVSKII, D. B.; VITALADEVUNI, S.; SCHEFFER, L. K.
Semi-automated reconstruction of neural circuits using electron microscopy.
Current opinion in neurobiology, Elsevier, v. 20, n. 5, p. 667–675, 2010. 1, 2.3

CUBERT, R. M.; FISHWICK, P. A. MOOSE: an object-oriented
multimodeling and simulation application framework. Simulation, DTIC
Document, v. 6, 1997. 2.4.1

CUNTZ, H. et al. One rule to grow them all: a general theory of neuronal
branching and its practical application. PLoS computational biology, Public
Library of Science, v. 6, n. 8, p. e1000877, 2010. 2.4.4

DAVISON, A. P. et al. PyNN: a common interface for neuronal network
simulators. Frontiers in neuroinformatics, Frontiers Research Foundation,
v. 2, 2008. 2.4.3

DAVISON, A. P.; HINES, M. L.; MULLER, E. Trends in programming
languages for neuroscience simulations. Frontiers in neuroscience, Frontiers
Research Foundation, v. 3, n. 3, p. 374, 2009. 3.2.1

DUFFY, J. B. Gal4 system in drosophila: a fly geneticist’s swiss army knife.
genesis, Wiley Online Library, v. 34, n. 1-2, p. 1–15, 2002. 1

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography 106

EBERHARD, J.; WANNER, A.; WITTUM, G. NeuGen: A tool for the
generation of realistic morphology of cortical neurons and neural networks in
3D. Neurocomputing, Elsevier, v. 70, n. 1, p. 327–342, 2006. 2.4.5

FISCHBACH, K.-F.; DITTRICH, A. The optic lobe of drosophila
melanogaster. i. a golgi analysis of wild-type structure. Cell and tissue
research, Springer, v. 258, n. 3, p. 441–475, 1989. 4, 4.2.2

GEWALTIG, M.-O.; DIESMANN, M. Nest (neural simulation tool).
Scholarpedia, v. 2, n. 4, p. 1430, 2007. 2.4.1

GIVON, L. E.; LAZAR, A. A. An open architecture for the massively parallel
emulation of the Drosophila brain on multiple GPUs. BMC Neuroscience,
Springer, v. 13, p. 1–2, 2012. 2.4.4, 3.2

GLEESON, P. et al. NeuroML: a language for describing data driven models
of neurons and networks with a high degree of biological detail. PLoS
computational biology, Public Library of Science, v. 6, n. 6, p. e1000815, 2010.
1, 2.4.1, 3, 3.1.3

GLEESON, P.; STEUBER, V.; SILVER, R. neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron, Elsevier, v. 54, n. 2,
p. 219, 2007. 2.4.3, 3.3

GLEESON, P. et al. NeuroML. In: Le Novère, N. (Ed.).
Computational Systems Neurobiology. Springer Netherlands,
2012. p. 489–517. ISBN 978-94-007-3857-7. Dispońıvel em:
〈http://dx.doi.org/10.1007/978-94-007-3858-4 16〉. 1, 3.2

GOLDMAN, A. L. et al. Coexpression of two functional odor receptors in one
neuron. Neuron, Elsevier, v. 45, n. 5, p. 661–666, 2005. 4.1

HALLEM, E. A.; CARLSON, J. R. Coding of odors by a receptor repertoire.
Cell, Elsevier, v. 125, n. 1, p. 143–160, 2006. 4.1.2, 4.1.3

HINES, M.; CARNEVALE, N. Translating network models to parallel
hardware in NEURON. Journal of neuroscience methods, Elsevier, v. 169,
n. 2, p. 425–455, 2008. 2.4.4

HINES, M. L.; CARNEVALE, N. T. The NEURON simulation environment.
Neural computation, MIT Press, v. 9, n. 6, p. 1179–1209, 1997. 2.4.3, 2.4.4

HODGKIN, A. L.; HUXLEY, A. F. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of physiology, Blackwell Publishing, v. 117, n. 4, p. 500, 1952. 3.2

IZHIKEVICH, E. M. Simple model of spiking neurons. Neural Networks,
IEEE Transactions on, IEEE, v. 14, n. 6, p. 1569–1572, 2003. 2.4.4

JORDAN, N. M.; PERRY, K. B.; NARALA, N. Design and Implementation
of an NCS-NeuroML Translator. -, 2012. 2.4.5

KANDEL, E. R. et al. Principles of neural science. [S.l.]: McGraw-Hill New
York, 2000. v. 4. 1, 1.2, 2.1, 2.1.1, 2.1.2, 2.1.3

http://dx.doi.org/10.1007/978-94-007-3858-4_16
DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography 107

KATSOV, A. Y.; CLANDININ, T. R. Motion processing streams in¡ i¿
drosophila¡/i¿ are behaviorally specialized. Neuron, Elsevier, v. 59, n. 2, p.
322–335, 2008. 1, 2.3

KIM, A. J.; LAZAR, A. A.; SLUTSKIY, Y. System identification of
dm4 glomerulus in the drosophila antennal lobe using stationary and
non-stationary odor stimuli. BMC Neuroscience, BioMed Central Ltd, v. 11,
n. Suppl 1, p. P174, 2010. 1, 2.3

KIM, A. J.; LAZAR, A. A.; SLUTSKIY, Y. Drosophila projection neurons
encode the acceleration of time-varying odor waveforms. In: Computational
and Systems Neuroscience Meeting. [S.l.: s.n.], 2011. p. 2. 1, 2.3

KIM, A. J.; LAZAR, A. A.; SLUTSKIY, Y. B. System identification of
drosophila olfactory sensory neurons. Journal of computational neuroscience,
Springer, v. 30, n. 1, p. 143–161, 2011. 1, 2.3, 4.1.2

KIM, A. J.; LAZAR, A. A.; YEVGENIY, B. S. 2d encoding of concentration
and concentration gradient in drosophila orns. In: Computational and Systems
Neuroscience Meeting, Salt Lake City, Utah. [S.l.: s.n.], 2010. 1, 2.3

KLÖCKNER, A. et al. PyCUDA and PyOpenCL: A scripting-based approach
to GPU run-time code generation. Parallel Computing, Elsevier, v. 38, n. 3,
p. 157–174, 2012. 3.2

KOENE, R. A. et al. NETMORPH: a framework for the stochastic generation
of large scale neuronal networks with realistic neuron morphologies.
Neuroinformatics, Springer, v. 7, n. 3, p. 195–210, 2009. 5.4.3

LAZAR, A. A.; PNEVMATIKAKIS, E. A.; ZHOU, Y. Encoding natural
scenes with neural circuits with random thresholds. Vision research, Elsevier,
v. 50, n. 22, p. 2200–2212, 2010. 3.1.3

LAZAR, A. A.; UKANI, N. H.; ZHOU, Y. The cartridge: A canonical neural
circuit abstraction of the lamina neuropil construction and composition rules.
2014. (document), 4.2.2, 4.2.2, 4.6, 4.2.2, 4.2.2, 4.7, 4.9

LICHTMAN, J. W.; LIVET, J.; SANES, J. R. A technicolour approach to
the connectome. Nature Reviews Neuroscience, Nature Publishing Group,
v. 9, n. 6, p. 417–422, 2008. 2.3

MACIONIS, J.; CLARKE, J. N.; GERBER, L. M. Sociology: Canadian
Edition. [S.l.]: Prentice Hall Canada Inc.: Scarborough, Ontario, 1994. 2.1.2

MAIMON, G.; STRAW, A. D.; DICKINSON, M. H. A simple vision-based
algorithm for decision making in flying¡ i¿ drosophila¡/i¿. Current Biology,
Elsevier, v. 18, n. 6, p. 464–470, 2008. 1, 2.3

MAISAK, M. S. et al. A directional tuning map of drosophila elementary
motion detectors. Nature, Nature Publishing Group, v. 500, n. 7461, p.
212–216, 2013. 1

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography 108

MARKRAM, H. The blue brain project. Nature Reviews Neuroscience,
Nature Publishing Group, v. 7, n. 2, p. 153–160, 2006. 2.4.2

MASUDA-NAKAGAWA, L. M.; TANAKA, N. K.; O’KANE, C. J. Stereotypic
and random patterns of connectivity in the larval mushroom body calyx of
Drosophila. Proceedings of the National Academy of Sciences of the United
States of America, National Acad Sciences, v. 102, n. 52, p. 19027–19032,
2005. 3.2.2

MEINERTZHAGEN, I.; O’NEIL, S. Synaptic organization of columnar
elements in the lamina of the wild type in drosophila melanogaster. Journal
of comparative neurology, Wiley Online Library, v. 305, n. 2, p. 232–263,
1991. (document), 4.8

MORRIS, C.; LECAR, H. Voltage oscillations in the barnacle giant muscle
fiber. Biophysical journal, Elsevier, v. 35, n. 1, p. 193–213, 1981. 2.2.2, 3.2

OLSEN, S. R.; WILSON, R. I. Cracking neural circuits in a tiny brain: new
approaches for understanding the neural circuitry of¡ i¿ Drosophila. Trends in
neurosciences, Elsevier, v. 31, n. 10, p. 512–520, 2008. 1, 2.3, 2.4.4

PAULK, A.; MILLARD, S. S.; SWINDEREN, B. van. Vision in Drosophila:
Seeing the World Through a Model’s Eyes. Annual review of entomology,
Annual Reviews, v. 58, p. 313–332, 2013. (document), 4.2, 4.2.1, 4.5

RISTER, J. et al. Dissection of the peripheral motion channel in the visual
system of¡ i¿ drosophila melanogaster¡/i¿. Neuron, Elsevier, v. 56, n. 1, p.
155–170, 2007. 1

RIVERA-ALBA, M. et al. Wiring economy and volume exclusion determine
neuronal placement in the¡ i¿ drosophila¡/i¿ brain. Current Biology, Elsevier,
v. 21, n. 23, p. 2000–2005, 2011. 4.2.2

RODRIGUEZ, A. et al. Automated three-dimensional detection and shape
classification of dendritic spines from fluorescence microscopy images. PLoS
One, Public Library of Science, v. 3, n. 4, p. e1997, 2008. 2.4.5

SCHWARTZ, E. L. Computational neuroscience. [S.l.]: The MIT Press, 1993.
2.1.4

SILVA, C. P. da et al. Exploring data streaming to improve 3d fft
implementation on multiple gpus. In: IEEE. Computer Architecture and
High Performance Computing Workshops (SBAC-PADW), 2010 22nd
International Symposium on. [S.l.], 2010. p. 13–18. 3.3

SONG, Z. et al. Stochastic, adaptive sampling of information by microvilli in
fly photoreceptors. Current Biology, Elsevier, v. 22, n. 15, p. 1371–1380, 2012.
1

SPORNS, O.; GIULIO, T.; ROLF, K. The Human Connectome:
A Structural Description of the Human Brain. PLoS Comput Biol,
Public Library of Science, v. 1, n. 4, p. e42, 09 2005. Dispońıvel em:
〈http://dx.plos.org/10.1371%2Fjournal.pcbi.0010042〉. 1

http://dx.plos.org/10.1371%2Fjournal.pcbi.0010042
DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography 109

SPORNS, O.; TONONI, G.; KÖTTER, R. The human connectome: a
structural description of the human brain. PLoS computational biology, Public
Library of Science, v. 1, n. 4, p. e42, 2005. 2.3

STURTEVANT, A. Experiments on sex recognition and the problem of
sexual selection in Drosoophilia. Journal of Animal Behavior, Henry Holt and
Company, Inc., v. 5, n. 5, p. 351, 1915. 1

TAKEMURA, S.-y. et al. A visual motion detection circuit suggested by
drosophila connectomics. Nature, Nature Publishing Group, v. 500, n. 7461,
p. 175–181, 2013. 1, 2.3

THIBEAULT, C.; HOANG, R.; Harris Jr, F. A Novel Multi-GPU Neural
Simulator. [S.l.]: BICoB, 2011. 2.4.4

TOOTOONIAN, S. et al. Neural representations of courtship song in the
drosophila brain. The Journal of Neuroscience, Soc Neuroscience, v. 32, n. 3,
p. 787–798, 2012. 5.4.1

VELLA, M. et al. libneuroml and pylems: using python to combine procedural
and declarative modeling approaches in computational neuroscience. Frontiers
in Neuroinformatics, Frontiers Media SA, v. 8, 2014. 2.4.1

VOSSHALL, L. B.; STOCKER, R. F. Molecular architecture of smell and
taste in Drosophila. Annu. Rev. Neurosci., Annual Reviews, v. 30, p. 505–533,
2007. (document), 3.2.2, 4, 4.1, 4.1, 4.1.1, 4.1.1, 4.2, 4.3

WARDILL, T. J. et al. Multiple spectral inputs improve motion discrimination
in the drosophila visual system. Science, American Association for the
Advancement of Science, v. 336, n. 6083, p. 925–931, 2012. 1

WEARNE, S. et al. New techniques for imaging, digitization and analysis
of three-dimensional neural morphology on multiple scales. Neuroscience,
Oxford; New York: Pergamon Press, 1976-, v. 136, n. 3, p. 661–680, 2005.
2.4.5

WERNICKE, C. The symptom complex of aphasia. In: SPRINGER.
Proceedings of the Boston Colloquium for the Philosophy of Science
1966/1968. [S.l.], 1969. p. 34–97. 2.1.1

WILSON, R. I. Understanding the functional consequences of synaptic
specialization: insight from the¡ i¿ drosophila¡/i¿ antennal lobe. Current
opinion in neurobiology, Elsevier, v. 21, n. 2, p. 254–260, 2011. 1, 2.3

WOOD, I. K. Neuroscience: Exploring the brain. Journal of Child and Family
Studies, Springer, v. 5, n. 3, p. 377–379, 1996. 1

ZHU, Y. et al. Peripheral visual circuits functionally segregate motion and
phototaxis behaviors in the fly. Current Biology, Elsevier, v. 19, n. 7, p.
613–619, 2009. 4

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

Bibliography 110

ZUBLER, F.; DOUGLAS, R. A framework for modeling the growth
and development of neurons and networks. Frontiers in computational
neuroscience, Frontiers Research Foundation, v. 3, 2009. 2.4.3, 2.4.3, 5.4.3

ZUBLER, F. et al. An instruction language for self-construction in the
context of neural networks. Frontiers in computational neuroscience, Frontiers
Media SA, v. 5, 2011. 5.4.3

ZUBLER, F. et al. Simulating cortical development as a self constructing
process: a novel multi-scale approach combining molecular and physical
aspects. PLoS computational biology, Public Library of Science, v. 9, n. 8, p.
e1003173, 2013. 5.4.3

DBD
PUC-Rio - Certificação Digital Nº 1012108/CA

	output-2.pdf
	Linguagem de Especificação de Circuito Neuronal e Ferramentas para Modelagem do Cérebro Virtual da Mosca da Fruta
	Resumo
	Contents
	Introduction
	Objectives
	Contributions
	Work organization

	Theoretical Background
	Introduction to neuroscience
	Modelling neurons and synapses
	The connectome and the local processing units
	Existing computational tools

	Specifying neural circuits as functional blocks
	CircuitML language
	Translating process
	Computing the virtual brain

	Results
	Olfactory organs of adult flies
	Visual system of the fly

	Conclusions
	CircuitML
	libCircuitML
	The fruit fly virtual brain
	Future plans

	List of abbreviations

	1012108_2015_Completo.pdf
	Neuronal circuit specification language and tools for modelling the virtual fly brain
	Resumo
	Contents
	Introduction
	Objectives
	Contributions
	Work organization

	Theoretical Background
	Introduction to neuroscience
	Modelling neurons and synapses
	The connectome and the local processing units
	Existing computational tools

	Specifying neural circuits as functional blocks
	CircuitML language
	Translating process
	Computing the virtual brain

	Results
	Olfactory organs of adult flies
	Visual system of the fly

	Conclusions
	CircuitML
	libCircuitML
	The fruit fly virtual brain
	Future plans

	List of abbreviations

