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Abstract 

Contreras Duarte, Jhonatan; Feitosa, Raul Queiroz (Advisor). A Comparison 
Between Classical Object Based Methods and Conditional Random 
Fields. Rio de Janeiro, 2016. 87p. Master Dissertation - Departamento de 
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

 

         This dissertation investigates semantic segmentation techniques for the 

analysis of Earth observation data. This study has two main task. The first one is to 

assess the potential of semantic segmentation techniques as an option to traditional 

image segmentation methods that typically ignore the semantic information. The 

second objective is to compare the semantic segmentation with the typical object-

based approach (OBIA). The study is based on an implementation of semantic 

segmentation based on Conditional Random Fields. The object-based approach is 

represented in this study by the segmentation algorithm known as Multiresolution. 

The Random Forests classifier is used to generate the association potentials for the 

conditional random fields and to perform the classification task in a representative 

implementation of the typical object-based approach. Experiments carried out on 

two high spatial resolution images (8 cm) indicated a clear superiority of semantic 

segmentation, both in terms of spatial accuracy and thematic accuracy. Although a 

more extensive analysis is required for the generalization of the aforementioned 

conclusions, the results of this study provide enough evidence to encourage a future 

research on the use of semantic segmentation to compose sophisticated image 

classification models, in particular being part of models inspired in the OBIA 

approach. 

Keywords 
OBIA; Conditional Random Fields; Segmentation. 
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Resumo 

Contreras Duarte, Jhonatan; Feitosa, Raul Queiroz. Uma comparação entre 

Métodos Clássicos Baseados em Objeto e Campos Aleatórios 

Convencionais. Rio de Janeiro, 2016. 87p. Dissertação de Mestrado - 

Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do 

Rio de Janeiro. 

Esta dissertação visa investigar técnicas de segmentação semântica para a 

análise de dados de observação da Terra. Dois são os objetivos perseguidos neste 

estudo. O primeiro é avaliar o potencial de técnicas de segmentação semântica 

como opção aos métodos tradicionais de segmentação de imagens que tipicamente 

ignoram a informação semântica. O segundo objetivo consiste em comparar a 

segmentação semântica com a abordagem típica baseada em objeto (OBIA). O 

estudo apoia-se numa implementação de segmentação semântica baseada em 

Campos Aleatórios Condicionais. A estratégia baseada em objeto é representada 

neste estudo pelo algoritmo de segmentação conhecido como Multiresolução. O 

classificador Florestas Aleatórias (Random Forests) é utilizado para gerar os 

chamados potenciais de associação dos campos aleatórios condicionais, bem como 

para realizar a tarefa de classificação na cadeia de processamento típico da 

abordagem baseada em objeto. Experimentos realizados sobre duas imagens de 

altíssima resolução espacial (8 cm) indicaram uma clara superioridade da 

segmentação semântica, tanto em termos de acurácia espacial quanto de acurácia 

temática. Embora carentes de uma análise mais aprofundada que permita a 

generalização de suas conclusões, os resultados obtidos no presente estudo provêm 

elementos suficientes para encorajar a pesquisa futura sobre a aplicação da 

segmentação semântica na composição de estratégias sofisticadas de classificação 

de imagens, em particular sendo parte de modelos baseadas em objeto. 

 

Palavras-chave 

OBIA; Campos aleatórios condicionais; Segmentação. 
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1 
INTRODUCTION 

The task of segmentation in computer vision consists of dividing an image 

into regions or objects, which are composed of subgroups of pixels (Gonzales & 

Woods, 2008). The segmentation task is one of the most important processing 

steps in the field of image analysis. Its quality is a determining factor for the 

success of the following steps in computer vision such as, recognition and object 

extraction. 

Remote sensing is defined as the acquisition of information about objects or 

phenomena on the Earth’s surface without physical contact through the placement 

of devices on aircrafts or satellites (Rocha, 2007). In remote sensing, image 

classification aims to categorize all pixels of a digital image into one predefined 

land cover classes (Lillesand, et al., 2004). An example of land cover could be a 

forest, a building, farmland or a road among other types of classes. Image 

classification can be divided into two methods: unsupervised and supervised 

classification. The unsupervised classification consists of the generation of 

clusters and the subsequent manual assignment of a type of class to each of them. 

On the other hand, supervised classification involves the uses of a training set, 

which contains samples of the classes of interest, in order to develop a statistical 

characterization of the data and later predict a class for each pixel in an image. 

The traditional techniques of pixel based image analysis for high and very 

high resolution remote sensing were limited, inadequate and insufficient to handle 

the high interclass variation of complex scenes (Schiewe, 2002; Carleer, et al., 

2005; Blaschke, 2010). This insight was the main reason for the emergence of two 

news areas of scientific research in image analysis called Object Based Image 

Analysis (OBIA) and Geographic Object Based Image Analysis (GEOBIA) for 

very high-resolution images (Hay & Castilla., 2006).  

OBIA and GEOBIA have been regarded by many researchers as a trend, 

or even, a paradigm shift (Blaschke, et al., 2014) in the analysis of remotely sensed 

images. Although OBIA concepts have been stablished in the eighties and nineties 
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(McKeown, et al., 1985; Matsuyama, 1987; Matsuyama & Hwang, 1990; 

Clément, et al., 1993; Liedtke, et al., 1997), it was only after the first commercial 

OBIA oriented software came into the marked that this methodology started being 

more extensively exploited by the community of environmental sciences. 

The superiority of object-based over traditional pixel-based approaches for 

the analysis of very high resolution images (VHR) has been attested by many 

publications (Platt & Rapoza, 2008; Im, et al., 2009; Moran, 2010; Myint, et al., 

2011; Vieira, et al., 2012; Pinho, et al., 2012).   

The basic OBIA processing chain comprises two sequential steps: the 

segmentation that partitions the image into homogeneous regions, followed by the 

classification that assigns a class label to each segment produced in the 

segmentation step. Segmentation is the critical step in this scheme, since often its 

outcome is not fully consistent with the object borders (Lübker & Schaab, 2009; 

Smith, et al., 2010).  This is due to the fact that segmentation relies solely on low-

level image features, such as color or texture, and fully ignores semantic, which 

is highly subjective, and depends both on the application and on the user. In the 

basic OBIA processing chain, segmentation errors propagate to the classification 

step, which does not fix them. 

This work is focused in this context and compares two strategies to 

partially alleviate the segmentation problem mentioned above into the basic 

OBIA. Additionally, this work assesses an alternative to the basic OBIA called 

Semantic Segmentation. 

 

1.1. 
Motivation 

In the last several decades, many segmentation algorithms have been 

proposed (Vantaram & Saber, 2012; Dey, et al., 2010; Neubert, et al., 2008; 

Haralick & Shapiro, 1985), which underscore the importance of this process in 

computer vision and remote sensing. Additionally, it is a confirmation of the 

growing interest in this topic, which is far from being fully developed. Three 

strategies to partially improve the segmentation outcomes which are not fully 

consistent with the object borders are described in the following paragraphs. 
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The first strategy, is what we call hereafter supervised segmentation 

parameter tuning (SSPT) (Feitosa, et al., 2006; Pignalberi, et al., 2003; Fourier & 

Shoepfer, 2014). In this strategy segmentation is guided by the semantics 

embedded in manually delineated segment samples. For instance, an optimization 

algorithm searches the parameter space for the set of values that leads to the 

optimum match between samples provided by the user and the segmentation 

outcome, as expressed by an empirical discrepancy metric. 

A second strategy to overcome the aforementioned limitation of OBIA 

basic procedure consist of an iterative segmentation-classification loops (Tiede, et 

al., 2010).  This strategy first over-segments the image into small segments, which 

are preliminary classified. The typically small homogeneous segments produced 

this way rarely extend over more than one object. From then on segments are 

aggregated through multiple iterative segmentation and classification steps. At 

each cycle, errors in the segmentation step might be fixed by the subsequent 

classification step.  

A third approach, called semantic segmentation (SSeg), aims to partition an 

image into semantically homogeneous regions. Instead of performing 

segmentation and classification as independent steps, possibly in an iterative way, 

semantic segmentation does both simultaneously.  

This dissertation investigates SSeg as an alternative to supervised 

segmentation parameter tuning into the basic OBIA approach. SSPT supposed to 

be the best segmentation result obtained for a particular algorithm. Although 

different SSeg techniques have been proposed so far, in this study we focus on a 

technique based on Conditional Random Fields (CRF), which represents the 

approaches most widely investigated in the recent years (Lafferty, et al., 2001; 

Ladicky, et al., 2009; Yang, et al., 2010; Csurka & Perronnin, 2011; Zhu, et al., 

2016).   

 More than merely classifying pixels as isolated entities, CRF allows 

modeling the interaction among neighboring pixels in a class-by-class basis. 

Driven by computational constraints, this approach is often preceded by image 

partitioning into spectrally homogenous image sites called “superpixels”. The 

major difference between superpixels and “small segments”, is that superpixels 

have a nearly regular geometry and their sizes do not vary much over the image, 

for reasons that will be later clarified in this manuscript.  
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The study is organized in two parts. Firstly, SSeg is evaluated as an 

alternative to conventional segmentation from the perspective of the accuracy of 

object delineation. Specifically, the spatial accuracies of SSeg and SSPT 

approaches are experimentally compared. Secondly, the study evaluates SSeg as 

alternative to the basic OBIA approach, i.e., segmentation followed by 

classification, in terms of final thematic accuracy.  

 

1.2. 
Objectives  

The general objective of this dissertation is twofold. First, to compare the 

semantic segmentation (SSeg) and the supervised segmentation parameter tuning 

(SSPT) in terms of spatial accuracy. Second, to compare SSeg and the basic OBIA 

strategy in terms of thematic accuracy. 

Each approach investigated in the present study admits a number of variants. 

An exhaustive analysis of those alternatives would not be possible within the 

scope of this dissertation. Thus, a particular configuration was chosen for each 

analyzed approach. The choices were mostly determined by what has been more 

widely used in the community in recent times. In some cases, a simple solution 

was taken as representative for a given approach. 

In this path, an extension of the Simple Linear Iterative Clustering (SLIC) 

(Achanta, et al., 2012) algorithm was selected for superpixel generation, By far 

the most popular superpixel method is the SLIC algorithm (Achanta, et al., 2012). 

For segmentation the Multiresolution Segmentation (MRS) algorithm (Baatz & 

Schäpe, 2000) was used, MRS is based on region growing methods, which have 

been widely employed especially in the area of remote sensing (Tilton & 

Lawrence, 2000). Segmentation parameters were tuned using the Segmentation 

Parameter Tuner (SPT) tool (Achanccaray, et al., 2015). Random Forest (RF) 

(Breiman, 2001) was elected as the basic classifier both for implementing 

association potentials in CRF as well as for composing the solution that represents 

the OBIA approach in the present dissertation, since for both tasks any local 

classifier with a probabilistic output can be used. 
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1.3. 
Organization of the following chapters 

The next chapter presents a brief survey of the different image segmentation 

approaches. 

Chapter 2 describes succinctly some techniques this study is based upon:  

Object Based Image Analysis, Segmentation Parameter Tuning as well as the 

Multiresolution Segmentation and Conditional Random fields.  

Chapter 3 describes the methodology proposed in this thesis and the set of 

metrics used to assess the thematic and spatial accuracy. 

Chapter 4 presents the dataset used in the experiments as well as the results 

obtained in this study. 

Chapter 5 presents some concluding remarks and points to future extensions 

of this study. 
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2 
Background  

This chapter discusses some important theoretical foundations for the 

understanding of this work. . Section 2.1 reviews image segmentation techniques. 

Section 2.2 reviews the Object-Based Image Analysis (OBIA). Section 2.3 

describes the Multiresolution Segmentation (MRS) algorithm. Section 2.4 

presents a supervised segmentation parameter tuning method as well as a tool that 

implements it, which was used in our experimental analysis. Section 2.5 defines a 

superpixel method used for image site generation for the CRF called Simple 

Linear Iterative Clustering (SLIC). Finally, Section 2.6 addresses the basic 

concepts of the conditional random field (CRF).  

  

2.1. 
Segmentation Approaches 

The task of segmentation in computer vision consists of the division of an 

image into subgroups of pixels called segments. The grouping procedure is guided 

by some properties that the pixels belonging to the same segment are expected to 

share (Gonzalez & Woods, 2008).  

Many techniques of image segmentation have been proposed for about four 

decades. Some of the most widely used algorithms can be divided into five 

methods according to (Zhu, et al., 2016) and (Thoma, 2016). These methods are: 

Bottom up Methods, Superpixels, Interactive methods, Object Proposals and 

Semantic Segmentation or Image Parsing. 

 

2.1.1. 
Bottom Up Methods 

Bottom-up segmentation methods rely entirely on image data and do not 

consider semantic. This class of segmentation methods aims at grouping nearby 

pixels, which share some local characteristics in the feature space, e.g., color, 

texture or curvature. 
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Zhu divides the bottom-up methods into two sub-categories: discrete 

bottom-up and continuous bottom-up (Zhu, et al., 2016).  Discrete bottom-up 

methods regard an image as a fixed discrete grid, whereas continuous methods 

consider an image as a continuous surface (Mumford, et al., 1989; Kass, et al., 

1988).  

Discrete bottom-up approaches are by far the most widely used 

segmentation methods in remote sensing image analysis. In the following we 

briefly describe the most important subgroups of bottom-up segmentation 

algorithms. 

 

K-means 

K- Means (Agarwal, et al., 2002) is perhaps the simplest among all methods 

listed in this short survey. Given 𝑘 initial centers in the feature space, each pixel 

represented by its feature vector is assigned to one of the centers according to their 

distance to 𝑘 centers, where by  𝑘  denotes the number of cluster expected to exist 

in the feature space. Subsequently the centers are updated. These two steps iterate 

until a stopping criterion is satisfied. The segments are then formed by 

agglomerates of pixels belonging to the same cluster. 

 

Mixture of Gaussians 

Another clustering method called mixture of Gaussians –MG (Gupta & 

Sortrakul, 1998) bases on Gaussian Mixture Models. Each image pixel is assumed 

to belong to a class that can be described by a single multivariate Gaussian 

distribution. Thus, feature vectors representing all image pixels are modeled as a 

mixture of Gaussians, whose parameters are determined by the expectation 

maximization (EM) algorithm (Shi & Malik, 1997). A byproduct of EM is the 

assignment of each pixel to one of the Gaussians, what ultimately determines the 

cluster each pixel belongs to. Each spatial cluster of pixels belonging to the same 

Gaussian forms a segment. 

 

Mean-Shift 

The Mean Shift- MS (Comaniciu & Meer, 2002) segmentation is a non-

parametric clustering method, which applies what is known as kernel density 

estimation. The basic Mean Shift algorithm finds the modes, i.e., local maxima, 

DBD
PUC-Rio - Certificação Digital Nº 1413512/CA



Chapter 2. Background  23 
 

of multivariate functions, MS automatically decide the cluster number and modes 

in the feature space. In order for MS to segment images, the feature vector of each 

pixel is extended by the incorporation of its spatial coordinates.  This makes the 

clusters to consist of similar pixels both in terms of their features as well as in 

terms of their location in the image.  

The MS procedure (usually) starts at each pixel, the centroid of its neighbors 

around a fixed window in the extended feature space is computed and the 

procedure moves from the initial pixel to the centroid position (mean shift). This 

procedure is repeated through many iterations making the centroid to move toward 

a mode. The procedure stops when the centroid shift between two consecutive 

iterations is small indicating that a mode has been reached. 

 

Watershed 

Whatershed (Beucher & Meyer, 1993) is a segmentation method that 

considers images as topographic surfaces composed by valleys and mountains, 

where the gradient magnitude on the pixels intensity corresponds to the altitude 

of the topographic surface (Beucher & Meyer, 1993). The watershed process 

simulates the flooding of the surface from the local minima, forming pools. A 

containment line is created when the water of two neighboring basins are about to 

make contact to turn into a single basin. The containment lines obtained this way 

define the final segments borders (Pedrini & Schwartz, 2008). 

 

Graph Based 

Graph Based methods (Felzenszwalb, et al., 2004) map an image into a 

graph with four or eight connectivity nodes. The graph 𝐺 = (𝑉, 𝐸), is composed 

by nodes (𝑉) and edges (𝐸). Nodes correspond to pixels, while edges reflect the 

adjacency among them. Furthermore, each edge is associated to a weight that 

represents the color dissimilarity between nodes connected by that edge. A 

segmentation of a graph is the division of all nodes into segments. Nodes in the 

same segment should be similar to each other and adjacent nodes of different 

segments should be different. So, the sum of the weights related to edges 

connecting pixels within a segment should be low, whereas the sum of weights of 

the edges connecting nodes in different segments should be high. 
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The segmentation process consists in separating groups of neighboring 

pixels (nodes) by eliminating the edges that connect pixels inside each group to 

pixels outside it in a way that a weighted sum of the remaining edges is below a 

given limit. 

 

Region Growing 

The segmentation algorithm most widely used by the OBIA community falls 

in the category called Region Growing. Such methods start from pixels or super-

pixels (see later) and merge adjacent regions based on some homogeneity criterion 

that may take spectral, morphologic and topological features into account. The 

algorithms of this group vary mostly on the adopted homogeneity metric. A better 

insight on how region growing segmentation works is illustrated in the next 

chapter, where the Multiresolution Segmentation algorithm is described with 

some details. 

 

2.1.2. 
Superpixels 

The objective of superpixel methods is to over-segment an image into 

homogeneous regions, which are smaller than an object and have a nearly regular 

geometry. According to (Ren, et al., 2003), superpixels are more natural and 

efficient representations than pixels, because local features extracted from a pixel 

can be ambiguous and more sensitive to noise. 

Pixel-based classification methods imply the use of a large volume of data, 

which hinder the training and the inference procedures. In this research, 

superpixels serve as a basis for a more sophisticated algorithm called conditional 

random fields (CRF) (Lafferty, et al., 2001). The use of superpixels reduces the 

model's complexity and the associated computational cost, improving the 

algorithm's efficiency. 

Most approaches grow superpixels from an initial set of regions determined 

by a regular grid. Then the region boundaries are adjusted iteratively to adhere to 

salient object contours. By far the most popular superpixel method is the SLIC 

algorithm (Achanta, et al., 2012), which is explained in the next chapter.  
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2.1.3. 
Interactive methods 

Interactive methods allow for the user to assist the segmentation. They aim 

at capturing human perception, prior knowledge or constraints provided by the 

user as input to or during the segmentation procedure. Such methods are useful in 

applications where accuracy is of key importance. Examples are medical image 

analysis and image editing. Interactive methods are not commonly used in remote 

sensing image analysis. Surveys of interactive segmentation methods can be found 

in (McKeown, et al., 1985; Yi & Moon, 2012; He, et al., 2013). 

 

2.1.4. 
Object Proposals 

Object proposals segmentation methods aim to divide an image between 

“objects” and “stuffs”, where an “object” has a particular size and shape (e.g. car, 

house) and the homogenous background or non-delineated objects are considered 

as “stuff” (e.g. sky, river). Object proposals can be divided in two groups, class-

specific and class-independent object proposals, according to (Zhu, et al., 2016). 

Class-specific object proposals are tailored for a limited and well defined 

object class (Larlus & Jurie, 2008; Shi & Malik, 1997). In contrast, class-

independent object proposals aim at finding general, non-specific objects that 

emerge from background (Borji, et al., 2014). The underlying idea is that objects-

of-interest differ from background in certain appearance or geometry cues, no 

matter what they are.  

To the knowledge of the author, object proposal segmentation has not been 

used in remote sensing image analysis. 

 

2.1.5. 
Semantic Segmentation 

Semantic segmentation or image parsing aims to divide an image into non-

overlapped segments which correspond to predefined semantic classes (e.g. car, 

grass, building, etc.). Semantic image parsing requires a given information to use 

high-level learned representation and complete its task. The learned models can 
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be used to predict regions that belong to the training semantic classes in new 

images. 

A large number of semantic segmentation methods are formulated as the 

problem to find the most likely labeling on a Markov Random Field (MRF)   (Li, 

et al., 2004; Zhang, et al., 2010) or a Conditional Random Field (CRF) (Lafferty, 

et al., 2001; Ladicky, et al., 2009; Yang, et al., 2010; Csurka & Perronnin, 2011; 

Zhu, et al., 2016). 

This study exploits a CRF based approach as representative of semantic 

segmentation. The theoretical formulation of this approach will be presented in 

chapter 3.  

Besides methods based on CRF or MRF, some new semantic segmentation 

approaches have been proposed recently. In order to assess the relative 

performance of some approaches mentioned in the following paragraphs, a 

benchmark of visual object category recognition and detection called the 

PASCAL Visual Object Classes (VOC) was used. 

Mostajabi introduced in 2015 an algorithm of semantic segmentation based 

on feed-forward architecture. This algorithm extracts local features as color, 

texture, and location from different levels of spatial context around a superpixel. 

That means that, it extracts information from a superpixel, from a small region 

around it, from a larger region around it and from the entire image. Later, this 

algorithm combines all the local features previously found. Thus, the algorithm 

classifies the superpixels in the image by a feedforward multilayer network. This 

algorithm presents accuracy of 64.2% in PASCAL VOC 2012 dataset (Mostajabi, 

et al., 2015). 

Convolutional Neural Networks (CNN) are a variation of multi-layer neural 

networks, trained with a version of the back-propagation algorithm. CNN are 

composed of a set of layers, each of which with a different purpose. In the firsts 

layers occur the features of the extraction of the images, which, consists of 

convolutional neurons and down sampling. On the other hand, at the final layers 

of the network, simple perceptron neurons are responsible for the final 

classification of the extracted features. Many algorithms based on CNN are 

presenting satisfactory results in visual recognition problems, such as face 

recognition (Lawrence, et al., 1997) and semantic segmentation problems 

(Petersen, et al., 2002; Gondra & Xu, 2010; Csurka & Perronnin, 2011; 
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Krizhevsky, et al., 2012; Pinheiro & Collobert, 2014; Simonyan & Zisserman, 

2014).  

Chen (Chen, et al., 2014) presents a semantic segmentation algorithm based 

on CNN. His algorithm combines deep convolutional networks and Fully 

Connected Conditional Random Fields. It shows that it is able to produce 

semantically accurate predictions and detailed segmentation maps. This algorithm 

presents accuracy of 71.6% in PASCAL VOC 2012 dataset. 

An important variant of CNN is called Deconvolutional Networks (DN). 

DN is a framework that allows the unsupervised construction of hierarchical 

image representations providing features for object recognition and semantic 

segmentation approaches (Zeiler, et al., 2010). 

Separately, Noh (Noh, et al., 2015) proposed a pixel-wise semantic 

segmentation algorithm composed by a linked Convolutional and 

Deconvolutional Networks. The convolutional network learns in the same manner 

as CNN (convolutions and down sampling). Moreover, the Deconvolutional 

networks are composed of deconvolutions and up sampling layers. This algorithm 

presents accuracy of 72.5% in PASCAL VOC 2012  

Recently, Long (Long, et al., 2015) proposed a variation of CNN called 

Fully Convolutional Networks (FCN). This algorithm solves a problem that limits 

CNN. The CNN training process is pixels-to-pixels. Thus, the size of the input 

and output image is predefined.  In contrast, a FCN takes any size of input images 

and produces outputs with the respective size of the input. This algorithm presents 

accuracy of 62% in PASCAL VOC 2012 dataset. 

Finally, Liu (Liu, et al., 2015) combines different methods mentioned above 

as CNN and CRF, in which a pre-trained deep CNN generates features to train a 

CRF. The CRF is trained by the deep convolutional features, extracted from 

superpixels, using a structured support vector machine (SSVM). Additionally, this 

approach includes spatial information related to objects that appear side by side in 

the scenes. It influences the labelling of objects frequently co-occurred in the 

training data set. Thus, the objects with certain spatial relationship are labeled 

during the inference (e.g. cars and street) unlike to the objects without 

relationships (computers and trees). 
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2.2. 
Object-Based Image Analysis - OBIA  

 The classical remote sensing image analysis relies on pixel-wise 

classification, whereby spectral features and derivatives, such a texture descriptors 

are used as pixel descriptors. In low spatial resolution imagery, the objects of 

interest are often similar or smaller than the size of the pixels and the spectral 

information might be enough to discriminate the targets (Hay & Castilla, 2006). 

The classical pixel-wise approach includes parameters of the image in 

addition to the spectral information such as tone, texture, shape, context, etc. At 

higher spatial resolutions, objects of interest are composed of many pixels. Thus, 

a paradigm shifts from the pixel-wise to object-based methods, whereby the last 

ones consider the characteristics of an object through spatial, spectral and 

temporal scales. These latest methods became to be known as the object-based 

image analysis (OBIA) (Blaschke, 2010) . 

In OBIA, image-objects are expected to correspond to ‘meaningful’ entities 

that are internally consistent and different from their surroundings (e.g., a 

building, tree or vehicle) (Castilla, et al., 2007).  

In its initial step, OBIA applies some bottom-up segmentation algorithm, 

top-down or even mixed algorithms, in order to obtain the segments or image-

objects. In the next step, segments are classified based on features describing the 

segments’ color, shape, texture and spatial context. Though many different 

approaches can be used in this second step, knowledge base approaches are visibly 

more often applied than in other remote sensing domains. OBIA has been 

successfully applied in many fields such as the biological, habitat mapping, urban 

mapping, medical, mineral exploration, transportation, and security, among 

others.  

This methodology has been referred by many authors as Geographic Object-

Based Image Analysis (GEOBIA) (Hay & Castilla, 2008) instead of OBIA, in 

order to emphasize the objective of generating geographical information. In this 

sense GEOBIA has been defined as a “sub-discipline of the Geographic 

Information Science (GIScience) devoted to developing automated methods to 

partition remote sensing imagery into meaningful image-objects, and to assessing 
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their characteristics through spatial spectral and temporal scales, so as to generate 

new geographic information in GIS-ready format” (Hay & Castilla, 2008). 

How the GEOBIA uses RS data and generates Geographic Information 

Systems (GIS) as output represents a bridge between two ways to represent the 

location component of geographic information: the raster (grid-based) domain of 

RS, and the vector (point-based) domain of GIS. The linking of both domains is 

the generation of polygons (i.e., classified or segmented image-objects) 

representing geographic objects (Castilla, et al., 2007). Finally, the generation and 

use of geographic information (GI) and RS in Computer Vision distinguish 

GEOBIA from OBIA (object-based image analysis).  

 

2.3. 
Multiresolution Segmentation  

The first and crucial step of OBIA/GEOBIA processing chain is image 

segmentation. Many segmentation algorithms have been used for that task. 

Among them, the one proposed by Baatz and Schäpe (Baatz & Schäpe, 2000), so 

called Multiresolution Segmentation (MRS), is beyond a doubt the most widely 

used one within the OBIA community. In our experiments we used an MRS 

implementation developed by Happ and co-workers (Happ, et al., 2013), 

specifically the variant named Local Mutual Best Fitting (LMBF).  

In MRS, firstly, each pixel is considered as a segment. In the later steps any 

two adjoining segments are considered for being merged into one larger segment. 

The merging decision is based on a local homogeneity criterion involving both 

segments. Basically, a merging cost represents the increase of heterogeneity 

resulting from merging two segments. The merging cost can be viewed as a degree 

of fitting between the segments being considered to fuse into a single one.  Only 

if the merging cost is inferior to a user selected threshold, called scale parameter, 

the merge is admissible. The segmentation procedure ends when no additional 

merging can be executed. 

In LMBF variant, a merge only occurs if the best fitting condition is mutual 

between both segments, i.e. if 𝐶1 is the best fit of 𝐶2 among all of the adjacent 

segments of 𝐶2 and simultaneously 𝐶2 is the best fit of 𝐶1among all of the adjacent 

segments of 𝐶1. 
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The merging cost (𝑓) or degree of fitting is composed by a spectral 

(ℎ𝑐𝑜𝑙𝑜𝑟) and a morphological component (ℎ𝑠ℎ𝑎𝑝𝑒). The merging cost is expressed 

by equation 2-1.  

𝑓 = 𝜔𝑐𝑜𝑙𝑜𝑟 ∙ ℎ𝑐𝑜𝑙𝑜𝑟 + (1 − 𝜔𝑐𝑜𝑙𝑜𝑟  ) ∙ ℎ𝑠ℎ𝑎𝑝𝑒 2-1 

 

where 𝜔𝑐𝑜𝑙𝑜𝑟 takes values in the range [0 1] and represents the relative importance 

of color (ℎ𝑐𝑜𝑙𝑜𝑟) and morphologic (ℎ𝑠ℎ𝑎𝑝𝑒) features.  

The spectral component  ℎ𝑐𝑜𝑙𝑜𝑟 is defined by Equation 2-2, where 𝐿 is a 

spectral band and 𝜔𝐿 its respective weight, determined by the user as input 

parameter. 𝐴 is the area in pixels of a given region; 𝜎𝐿
𝐶1 

, 𝜎𝐿
𝐶2 

and 𝜎𝐿
𝐶1∪𝐶2 

are the 

standard deviations of pixels in regions 𝐶1, 𝐶2 and 𝐶1 ∪ 𝐶2 respectively, where 

𝐶1 ∪ 𝐶2 represents the resulting region after the merge. 

ℎ𝑐𝑜𝑙𝑜𝑟 = ∑ 𝜔𝐿 (𝐴𝐶1∪𝐶2
× 𝜎𝐿

𝐶1∪𝐶2 − (𝐴𝐶1
× 𝜎𝐿

𝐶1 + 𝐴𝐶2
× 𝜎𝐿

𝐶2))

𝐿

 2-2 

 

The morphological component (see equation 2-3) has two morphological 

features, Smoothness and Compactness. The compactness weight (𝜔𝑐𝑜𝑚𝑝) is 

defined to control the relative importance of each morphological feature.  

ℎ𝑠ℎ𝑎𝑝𝑒 = ∑ 𝜔𝐿(𝜔𝑐𝑜𝑚𝑝 ∙ ℎ𝑐𝑜𝑚𝑝 + (1 − 𝜔𝑐𝑜𝑚𝑝) ∙ ℎ𝑠𝑜𝑙)

𝐿

 2-3 

 

Smoothness computation requires measuring the border length of the 

resulting segment after the merging of two adjacent segments, an operation that 

might be computationally expensive when performed in GPUs. Happ and co-

authors (Happ, et al., 2013) proposed to take two other morphological features, 

Solidity and Compactness, as alternative to Compactness and Smoothness. 

Solidity is defined by Equation 2-4, where 𝐴 is the area of the segment; and  

𝐴𝑏𝑜𝑥 is the area of its bounding box. This feature is sensitive to the convexity of 

the segment, taking its minimum value for rectangular segments.  

𝑆𝑜𝑙 =
𝐴𝑏𝑜𝑥

𝐴
 2-4 
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Compactness is defined in equation 2-5, where 𝑑𝑚𝑎𝑥 is the length of the 

major axis of the ellipse with identical second order moment. Compactness is 

minimum for circular shapes. 

𝐶𝑜𝑚𝑝 =
𝑑𝑚𝑎𝑥

√4𝐴
𝜋

 
2-5 

 

The implementation of Happ’s algorithm is available on the website of the 

Computer Vision Lab (LVC): http://www.lvc.ele.puc-rio.br/wp/?p=1092#more-

1092. The parameter selection for this algorithm was done automatically using the 

Segmentation Parameter Tuning (SPT), which is presented in section 2.4. Three 

parameters need tuning in this algorithm, they are: the scale parameter, the color 

weight, and the compactness weight. In order to reduce the computational cost 

and taking into account that the information of each band is equally important, the 

weights assigned to each band (𝜔𝐿) were set to 0.33 (Diaz, 2014). 

 

 

2.4. 
Segmentation Parameter Tuning 

All segmentation algorithms have parameters that must be tuned so as to 

obtain good quality segment delineations. Segmentation quality can be assessed 

by empirical methods that compare the segmentation outcome with a set of 

reference (Zhang, 2001). Dragut proposed a tool to tuned scale parameter for 

multiresolution image segmentation of remotely sensed data (Drǎgut, et al., 2010). 

Segmentation Parameter Tuner (SPT) is a tool that finds the local optimal 

segmentation parameters values according to a specified set of segment references 

(Achanccaray, et al., 2015). The optimum set of parameter values maximizes the 

agreement (similarity) between segmentation output and the reference. Different 

metrics can be used to express similarity (Zhang, 2001).  

An optimization procedure searches the parameter space for the optimal set 

of parameter values. Figure 2-1 shows the methodology followed by SPT.  First, 

the input image is segmented using an initial set of parameter values. Later, the 

selected fitness function is calculated by comparing the segmentation result with 

the references provided by the user. This process is repeated iteratively, taking 

http://www.lvc.ele.puc-rio.br/wp/?p=1092#more-1092
http://www.lvc.ele.puc-rio.br/wp/?p=1092#more-1092
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different segmentation parameters, until the minimum value is found or the 

convergence criterion is satisfied.  

 

 

 

The SPT tool includes five segmentation algorithms, four optimization 

algorithms and seven discrepancy metrics. In this research, the MRS algorithm 

was used as the segmentation algorithm (Happ, et al., 2013), the Nelder-Mead 

optimization algorithm as the parameter tuning (Nelder & Mead, 1965), according 

to (Achanccaray Diaz, et al., 2014) Nelder-Mead demonstrated a good 

performance at this task, and F-measure was used as the similarity metric since is 

a combination of precision and recall. 

 

2.5. 
Simple Linear Iterative Clustering (SLIC) 

Simple Linear Iterative Clustering (SLIC) (Achanta, et al., 2012) performs 

K-means in the 5D space [𝑙𝑎𝑏𝑥𝑦]. It combines color information (in CIELAB 

color space with pixel color vector [𝑙𝑎𝑏]) and image location (with pixel position 

vector [𝑥𝑦] ) in order to produce superpixels. 

Achanta, et al. ( 2012) introduces a new 5D distance function or metric, that 

allows the generation of approximately superpixels’ sizes. SLIC has two 

parameters: compactness and number of superpixels (𝐾). The compactness 

parameter defines a balance between color-similarity and spatial proximity.  

Figure 2-1 Optimization methodology taken from (Achancccaray, et al., 2015) 
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The number of superpixels indicates the number of centers for a k-means 

procedure, whose basic steps were described in chapter 2. Then, for an image with 

𝑁 pixels, the initial approximate size of each superpixels is 𝑁/𝐾 pixels. 

Euclidean distances related with CIELAB color space and pixel position are 

showed in equation 2-6 and equation 2-7 respectively. The sum of these distances 

is denoted  𝐷𝑠 in equation 2-8, where cluster centers are 𝐶𝑘 = [𝑙𝑘, 𝑎𝑘, 𝑏𝑘, 𝑥𝑘, 𝑦𝑘], 

with 𝑘 being an integer values, 0 < 𝑘 < 𝐾. 

 

𝑑𝑙𝑎𝑏 = √(𝑙𝑘 − 𝑙𝑖)2 + (𝑎𝑘 − 𝑎𝑖)2 + (𝑏𝑘 − 𝑏𝑖)2 2-6 

𝑑𝑥𝑦 = √(𝑥𝑘 − 𝑥𝑖)2 + (𝑦𝑘 − 𝑦𝑖)2    2-7 

𝐷𝑠 = 𝑑𝑙𝑎𝑏 +
𝑚

𝑆
𝑑𝑥𝑦 2-8 

 

where, 𝑆 represents the distance between centers of adjacent superpixels, 𝑆 =

√(𝑁/𝐾) . A parameter denoted by 𝑚 controls the compactness of a superpixel. 

SLIC starts from an initial regular grid of superpixels separated by 𝑆. The 

initial superpixels deform through a number of iteration as the membership of each 

pixel to nearby superpixels are tested based on its  distance to superpixels’ centers, 

in procedure quite similar to k-means clustering. In this way, SLIC updates 

superpixels delineation and cluster centers repeatedly until convergence (Achanta, 

et al., 2012).  

 

2.6. 
Conditional Random Fields – CRF 

This section describes basic concepts underlying the Conditional Random 

Fields. Conditional Random Fields (CRF), proposed by (Lafferty, et al., 2001), is 

a popular undirected graphical model that describe conditional probability 

distributions to predict a label image in computer vision. 

In many computer vision application, CRF is used to model a scene by a 

graph 𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of nodes and 𝐸 a set of edges. Each 

node 𝑉𝑖 𝜖 𝑉 corresponds to an image site, which might be a pixel, a superpixel, or 

a block of pixels in a regular grid, or segment. Each edge 𝐸𝑖𝑗   𝜖 𝐸 connecting nodes 

𝑉𝑖 and 𝑉𝑗 indicates a conditional dependence between them.  
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In computer vision a graph has the form of a lattice, where each node has 

four neighbors. Alternatively an eight-neighbor lattices can be used (see Figure 

3.2). 

The set of class labels 𝒚 = {𝑦𝑖} denotes a particular class assignment over 𝑉, 

where 𝑦𝑖  refers to site 𝑉𝑖 and may take values within a finite set of classes. 

Similarly, 𝒙 = {𝒙𝑖} denotes the set of observed feature vectors, where 𝒙𝑖 refers to 

site 𝑉𝑖. The set of nodes connected to a site 𝑉𝑖 in G is represented by 𝑁𝑖. 

CRF models the posterior distribution 𝑃(𝒚|𝒙) of a class assignment 𝒚 

conditioned to the set of observations 𝒙 as   

𝑃(𝒚|𝒙) =
1

𝑍(𝒙)
𝑒𝑥𝑝 ( ∑ 𝐴𝑖(𝑦𝑖 , 𝒙)

𝑉𝑖𝜖𝑉

+ ∑ ∑ 𝐼𝑖𝑗(𝑦𝑖 , 𝑦𝑗 , 𝒙)

𝑉𝑗𝜖𝑁𝑖𝑉𝑖𝜖𝑉

) 2-9 

where 𝑍(𝑥) is defined as: 

𝑍(𝒙) =  ∑ 𝑒𝑥𝑝

𝒚

( ∑ 𝐴𝑖(𝑦𝑖 , 𝒙)

𝑉𝑖𝜖𝑉

+ ∑ ∑ 𝐼𝑖𝑗(𝒙, 𝑦𝑖 , 𝑦𝑗)

𝑉𝑗𝜖𝑁𝑖𝑉𝑖𝜖𝑉

) 2-10 

In equation 2-9 𝑍 is called partition function, and it is defined in equation 

2-10.   𝑍 is a normalizing constant that guaranties that 𝑃(𝒚|𝒙) add up to one. 𝐴𝑖 

and 𝐼𝑖𝑗 are called association potential for image site 𝑉𝑖  and the interaction 

potential relative to edge 𝐸𝑖𝑗   that connects nodes 𝑉𝑖  and 𝑉𝑖 , respectively. These 

terms are described in the subsequent sections. 

 

4- Connected 8- Connected 

Figure 2-2 Pixel connectivity, four and eight connected. 

DBD
PUC-Rio - Certificação Digital Nº 1413512/CA



Chapter 2. Background  35 
 

2.6.1.  
Association Potential  

The Association potential links the data to the class labels, and determines 

the most likely label 𝑦𝑖 for a single image site 𝑉𝑖 given an observation 𝑥. The 

Association Potential is modeled to be proportional to the logarithm of this 

posterior probability (see equation 2-11). Therefore, any local classifier with a 

probabilistic output can be used. In this work, the Random Forest classifier (RF) 

(Breiman, 2001) was used.  

𝐴𝑖(𝒙, 𝑦𝑖)  ↔  𝑙𝑜𝑔 𝑃(𝑦𝑖|𝒙) 2-11 

It is common practice to model the association potential by a function whose 

arguments are the observed value (𝒙𝑖) only at node 𝑉𝑖 instead of at all sites (𝒙), 

and the class label (𝑦𝑖) at node 𝑉𝑖.  

 

2.6.2. 
The Interaction Potential 

 The Interaction Potential represents the dependencies of a site 𝑉𝑖 on its 

adjacent image sites  𝑉𝑗 ∈ 𝑁𝑖, which are connected to 𝑉𝑖 by edge 𝐸𝑖𝑗. There are 

different methods to obtain the interaction potential, the simplest method is the 

Simple Potts model, and it was selected to model the spatial interaction potential 

in this work. It is defined as follow. 

 𝐼𝑖𝑗(𝑦𝑖, 𝑦𝑗 , 𝒙) =  𝐼𝑖𝑗(𝑦𝑖, 𝑦𝑗) =  {
0, 𝑖𝑓 𝑦𝑖 = 𝑦𝑗

−𝛽, 𝑖𝑓 𝑦𝑖 ≠ 𝑦𝑗
 2-12 

 This model only depends on the labels: different labels are penalized, 

whereas similar labels are not penalized. The degree of penalization depends on 

the value of the parameter 𝛽. This interaction potential has a smoothing effect on 

the labels since it favors neighboring sites with the same class label. 

Cross validation is the standard way to estimate the value of 𝛽. However, 

would imply in long processing time. For this reason we decided to estimate the 

optimum values of β only upon the training data, we used a metric as an objective 

function, and we compare different outputs generated by different values of 𝛽. In 

section (see section 3.3.2) we come back to this issue.   
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2.6.3. 
Inference 

Inference in CRFs corresponds to determining the optimal label 

configuration �̂�, the one that maximizes 𝑃(𝑦|𝒙), formally 

�̂� = argmax
𝒚

(∑ 𝑙𝑜𝑔 𝑃(𝑦𝑖|𝒙𝑖)

𝑉𝑖𝜖𝑉

+ ∑ ∑ 𝐼𝑖𝑗(𝑦𝑖, 𝑦𝑗)

𝑗𝜖𝑁𝑖𝑉𝑖𝜖𝑉

) 2-13 

 

This graph structure is complex and usually has cycles, no explicit 

computation by message passing algorithms is possible. Thus, exact inference is 

intractable for 2D lattices. According to (Vishwanathan, et al., 2006) approximate 

methods are used for inference, in this study was used an algorithm called Loopy 

Belief Propagation (Frey, et al., 1998), which is a standard iterative message 

passing algorithm used for inference. 
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3 
Methodology 

This chapter presents a general description of the methodology to compare 

semantic segmentation as an alternative to segmentation and as an alternative to 

the typical OBIA approach. Section 3.1 exhibits the metrics used to assess the 

segmentation and the classification task. Section 3.2 exposes the methodology 

used for the Supervised Segmentation Parameter Tuning. Section 3.3 defines the 

methodology used for Conditional Random Field the selected Semantic 

Segmentation method. Section 3.4 explains the methodology adopted for the 

selected Object Based method.  

 

3.1. 
Thematic and Spatial accuracy metrics 

According to (Gao, et al., 2011), the average size of the image sites (segments 

or superpixels) has a significant impact on the classification accuracy.  For this 

reason, we evaluated the sensitivity of OBIA and CRF based approaches to the 

parameter most related to the site size, specifically, the number of superpixels for 

SLIC and the Scale parameter for MRS, both in terms of spatial and thematic 

accuracy. The spatial accuracy metric is used to assess segmentation outcomes 

and the thematic accuracy metrics are used to assess classification outcomes.  

The next section explains the quality metrics we used to assess the spatial and 

thematic accuracies. The Thematic accuracy was evaluated using average 

accuracy (AA) and overall accuracy (OA), where a value of 1 would be a perfect 

classification and a value of 0 would be an unsatisfactory classification. 

 

3.1.1. 
Spatial accuracy - 𝐅-measure 

The Spatial accuracy was quantitatively evaluated using the  𝐹-measure 

(Van Rijsbergen, 1979). A value equal to 1 means a perfect match between 

segmentation result and references, whereas a value of 0 represents a complete 
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mismatch. The 𝐹-measure quantifies a trade-off between Precision (𝑃) and Recall 

(𝑅). Given a reference object 𝑅𝑂 and the segment 𝑆 from the segmentation 

outcome with the largest overlap with 𝑅𝑂, the F1 score is defined by equation 3-1 

𝐹1 =
𝑃 ∙ 𝑅

𝑅 + 𝑃
 3-1 

where Precision (𝑃) and Recall (𝑅) are defined, respectively (see Equation 3-2.) 

as 

𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
                 𝑅 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 3-2. 

 

where 𝑡𝑝, is the true positives and represents the pixels from the reference 

segment (𝑅𝑂) that are also in the segment 𝑆. 𝑓𝑝, so called false positives, 

represents the pixels from the segment 𝑆 that do not belong to the reference (𝑅𝑂). 

𝑓𝑛, the false negatives represent the pixels from the reference segment 𝑅𝑂 that do 

not belong to the segment 𝑆. For an appropriate segmentation, the objective is to 

obtain a segment high related to the reference. It means that it is preferable more 

𝑡𝑝 and less 𝑓𝑛 and 𝑓𝑝. 

Figure 3-1, on the left, shows a segmentation output, the letter 𝑆 in orange 

over the Figure 3-1 on the left, indicates the segment of interest of the 

segmentation outcome. The image on the right shows a reference segment (𝑅𝑂) 

in green. The yellowish intersection between the reference and the segment 𝑆 is 

the true positive 𝑡𝑝. The false negatives 𝑓𝑛 is the blueish region, whereas the false 

positive the 𝑓𝑝 corresponds to the red region 

                    

Figure 3-1 Left segmentation outcome. Right, spatial accuracy result, reference segment 

in green, 𝑡𝑝 = yellow, 𝑓𝑛 = blue and 𝑓𝑝 = red. 

S 
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3.1.2. 
Thematic Accuracy 

There are many metrics for thematic accuracy. The research Comparative 

assessment of the measures of thematic classification accuracy (Liu, et al., 2007), 

summarizes different methods to evaluate thematic accuracy. In this work we 

express thematic accuracy by two of the mostly widely used metrics: Average 

Accuracy (AA) and Overall Accuracy (OA).  

Both metrics derive from the confusion matrix. This is generally a 𝑚𝑥𝑚 

square array where 𝑚 denotes the number of classes in the problem. Each element 

of the confusion matrix expresses the number of samples assigned by the classifier 

to a particular class relative to the actual class. In the confusion matrix (see Figure 

3-2), the position 𝑝𝑖𝑗, represents the proportion of pixels classified as 𝑖 in the 

classification outcome and the reference categorized as 𝑗. 

 

    Reference Data 

    1 2 ... m total 

cl
as

si
fi

e
d

 D
at

a 1 P11  P12 ... P1m P1+ 

2 P21 P22 ... P2m P2+ 

... ... ... ... ... ... 

m Pm1 Pm2 ... Pmm Pm+ 

total P+1 P+2 ... P+M N 

Figure 3-2 Confusion Matrix 

 OA is computed by dividing the total number of pixel correctly classified 

(sum of elements along the diagonal of the confusion matrix) by 𝑁, the total 

number of pixels (Congalton, 1991). OA is defined by equation 3-3.  

AA is defined as the normalized sum of the relation between the numbers 

of pixels classified correctly in each class and the total number of pixels in that 

respective class. It is defined by equation 3-4.  

𝑂𝐴 =
1

𝑁
∑ 𝑝𝑖𝑖

𝑚

𝑖=1

 3-3. 

𝐴𝐴 =
1

𝑚
 ∑

𝑝𝑖𝑖

𝑝𝑖+
 

𝑚

𝑖−𝑚

 3-4. 
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3.2. 
Supervised Segmentation Parameter Tuning Methodology 

The Supervised Segmentation Parameter Tuning approach finds the 

appropriate segmentation parameter values using a tool to tuning the set of 

parameters. In this study the MRS algorithm was used as a representative of most 

used bottom-up segmentation approaches within OBIA.  

Parameter tuning was accomplished by SPT tool. The SPT underlying 

procedure requires that the user provides a set of reference segments that represent 

what should be regarded as a “good segmentation outcome”, the reference 

segments are described in section 4.3 . SPT searches the parameter space so as to 

maximize the similarity between outcome and references (see Section 2.4). Three 

parameters were tuned, the scale, the color weight, and the compactness weight. 

For simplicity, the weights assigned to the bands (𝜔𝐿) were all set to 0.33 (Diaz, 

2014). 

 

3.3. 
Semantic Segmentation Methodology 

This study is focused on a specific SSeg model based on CRF as described 

in chapter 3. The pixel-wise classification through CRF can be intractable for 

medium to large images. For this reason, instead of pixels our SSeg 

implementation classified superpixels generated by the SLIC algorithm. 

 Figure 3-3 shows two examples of sites generated from a scene for different 

superpixel sizes, the superpixel size in the SLIC algorithm is controlled through a 

parameter 𝐾 described in section 2.5. Note that SLIC produces nearly regular sites 

in terms of size and shape compared to Bottom Up methods, this uniformity 

increases according to the number of superpixels in the scene (see Figure 3-3). A 

further characteristic of superpixels that distinguish them from segments produced 

by bottom-up algorithms is that, due to their nearly regular shapes, the number of 

adjacent superpixels is almost constant for all sites. This is convenient because the 

Interaction Potential of CRF considers for each site all its neighbors. 
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3.3.1. 
SSeg Processing Steps 

The Semantic Segmentation methodology consists of six main steps: image 

sites generation, features extraction, training, association potential estimation, 

interaction potential estimation, and CRF inference.  

1. Site generation:  the sites required for the CRF were generated using 

SLIC. 

2. Features extraction: the site descriptors were computed as explained 

in section 4.2. 

3. Training: the Random Forest (RF), which will provide the 

association potentials for CRF, is trained in this step (see section 

4.4).  

4. Computation of association potential: with the RF trained in the 

previous step, the association potential of all sites being classified 

are estimated.  

5. Computation of interaction potential: the optimum value of 

parameter 𝛽 is determined for all sites being classified (see section 

2.6.2).  

6. Inference: the labels of the test sites are determined via CRF using 

Loopy Believe Propagation.  

 

The Conditional Random Field models were implemented using the 

Undirected Graphical Model (UGM) library available on the website: 

\\www.cs.ubc.ca/~schmidtm/Software/UGM.html, (Schmidt, 2007). 

Figure 3-3 Image sites generated by SLIC for few (large) and many (smaller) superpixels. 
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3.3.2. 
Tuning the Interaction Potential 

The central objective of this dissertation is to evaluate semantic 

segmentation (SSeg) under two perspectives, firstly, as an alternative to 

segmentation into the object based image analysis and secondly as an alternative 

to the typical OBIA approach, which involves both segmentation and 

classification, SSeg does both simultaneously. 

The interaction potential must be properly tuned in each case. In the present 

context it involves setting up the parameter 𝛽 (see equation 2-12).   

In some of the experiments reported in Chapter 4 the optimum 𝛽 value was 

computed by searching for the maximum of a given objective function. In the 

comparison of SSeg with bottom-up segmentation, the F1-Score (see section 

4.6.1) was the objective function over the training samples. 

In the comparison of SSeg with OBIA the thematic accuracy was the focus. 

The overall and the average class accuracies were the objective function used for 

the computation of the optimum value for 𝛽, (see section 4.6.1).  

Cross validation is the standard approach to estimate 𝛽. However, it can 

involve large processing time. For this reason in this work the optimum values of 

𝛽 only upon the training data. 

For the first task, we used a variant of Harmony Search algorithm ( (Geem, 

et al., 2001), (Contreras, et al., 2014) ) available in MATLAB, as the optimization 

procedure and for the second task, we used an algorithm based on golden section 

search and parabolic interpolation available in MATLAB. 

 

3.4. 
OBIA Methodology 

In this work, we do not apply potential further improvement steps, which in 

OBIA would follow the initial segmentation and classification. The basic OBIA 

approach can also be divided into four steps: segmentation, feature extraction, 

training and classification.  

In the first step, initial objects are generated by some bottom-up 

segmentation algorithm, in this work was used MRS. The importance of 

segmentation has been emphasized by many authors in the last ten years or even 
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longer (Vantaram & Saber, 2012; Dey, et al., 2010; Neubert, et al., 2008). The 

problem of choosing a segmentation algorithm, and, once it has been selected, 

tuning its parameters so that the image is partitioned in a convenient way, has been 

acknowledged as the critical step of OBIA processing chain. 

A thorough analysis of the alternatives addressing this issue could not be 

accommodated in a dissertation. So, we decided to use in our experiments the 

MRS algorithm, briefly explained in section 2.3, because it is knowingly the most 

widely used algorithm within the OBIA community (Tilton & Lawrence, 2000). 

Among its input parameters, the scale parameter is the critical one, followed 

by the color and compactness weights. In order to render the analysis tractable 

under the dissertation’s constraints, we fixed color and compactness to 0.5 and set 

the band weights to the same value for all bands. The impact of segmentation 

quality over OBIA’s thematic accuracy was assessed by varying the scale 

parameter.   

In the second step of OBIA processing chain, features are extracted from 

each segment to form the so called segments descriptors. Each segment was 

described by a feature vector containing the average feature values of all pixels 

enclosed by that segment. 

Next, a classifier is trained based on a set of labeled sites (supervised 

classification). To select the training segments we used the same strategy adopted 

for the SSeg implementation (see section 4.4). Segments having more than 70% 

overlap with the regions shown Figure 4-5 were taken for training and the 

remaining ones for testing purpose.  

Finally, in the fourth step, segments are classified based on their feature 

values. Even though OBIA allows for very sophisticated classification strategies, 

we decided to use a Random Forest for the classification task, so as to provide a 

common basis for comparison between OBIA and SSeg. 
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4 
Experimental Analysis 

This chapter reports the experiments carried out with the purpose of 

assessing semantic segmentation under different scenarios. The analysis had two 

main objectives. First to compare SSeg with MRS segmentation in terms of spatial 

accuracy, and second, to compare SSeg with a basic OBIA from the perspective 

of thematic accuracy. The sensitivity of CRF to its parameter was also addressed. 

Section 4.1 describes the dataset used for all the experiments. Section 4.2 

presents the Feature set used for classification. Section 4.3 defines the training and 

test procedure for segmentation parameter tuning. Section 4.4 describes the 

training and test data for the classification task. Section 4.5 reports the 

experiments carried out to compare semantic segmentation and the bottom-up 

segmentation in terms of spatial accuracy. Section 4.6 reports the experiments 

carried out to compare semantic segmentation and a basic Object based Image 

analysis strategy in terms of thematic accuracy. 

 

4.1. 
Dataset description. 

The dataset used in these experiments comprises 2 high-resolution remote 

sensing images, with corresponding ground truth. The selected images have 

heterogeneous objects like buildings, streets, trees and cars in very high-resolution 

data, which carry high intra-class variance and, in some cases, low inter-class 

variance.  

 The dataset covers about 7.4 × 4.7 km² of Vaihingen, a neighborhood 25km 

north-west of Stuttgart, Germany. The dataset was provided by the German 

Association of Photogrammetry, Remote Sensing and Geoformation (DGPF) 

(Cramer, 2010): http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html.  

The ground truth was produced by visual interpretation and comprises five 

land cover classes: ‘Building, ‘Low vegetation’, ‘Tree’, ‘Car, and ‘Street’. 
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The images are referred henceforth as Image 1 and Image 2. They 

correspond to Area 13 (Figure 4-1) and the Area 17 (see Figure 4-2) of Vaihingen 

dataset, respectively. Both images cover residential areas mostly characterized by 

small separated houses.  

The images have a spatial resolution of 8 cm and comprise three bands: red, 

blue and near infrared. The Digital Surface Model (DSM) represents the earth's 

surface including all objects on it. A DSM with spatial resolution of 8 cm is also 

available for each area. Image 1 is an array of 2818×2558 pixels, whereas Image 

2 is 2336×1281 pixels large. 

 

 

The false color composition (Red-Blue-NIR) and the corresponding ground 

truth (GT) for both images are presented in Figure 4-1 and Figure 4-2. 

 

 

 

 

 

Figure 4-1: (left) Image 1, Vaihingen Area 13; (right) Ground Truth: ‘Building’ 

(blue), ‘Low vegetation’ (Cian),  ‘Tree’ (Green), ‘Car’ (yellow) and ‘Street’ (white). 

Figure 4-2: (left) Image 2, Vaihingen Area 17; ; (right) Ground Truth: ‘Building’ (blue), 

‘Low vegetation’ (Cian),  ‘Tree’ (Green), ‘Car’ (yellow) and ‘Street’ (white). 
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4.2. 
Features  

Four groups of features were available for the experiments. They were: 

 Three spectral bands corresponding to the near infrared, red and 

green, attribute with dimension 3.  

 Normalized Difference Vegetation Index (NDVI), an index of the 

photosynthetic activity, attribute with dimension 1.  

  Digital surface model (DSM), representing the height data, attribute 

with dimension 1.  

 The outcomes of a set of Gabor filter banks at five scales and eight 

orientations, which represent texture. Attribute with dimension 40.  

 

For classification, each image site was described by a feature vector 

containing the average feature values of all pixels enclosed by that site (segment 

or superpixel). For classification all aforementioned features were exploited, 

building up a 45 dimensional descriptor for each image site. Generally, for 

segmentation using MRS and for superpixels generation using SLIC algorithm 

only the spectral bands are considered.  

 

 

4.3. 
Training and test procedure for segmentation parameter tuning 

As mentioned before, the Segmentation Parameter Tuning (SPT) tool was 

used to tune the parameters of the MRS segmentation algorithm. 

For parameter tuning only segments of the class ‘Building’ were taken as 

reference. The objects of classes ‘Road’, ‘Tree’ and ‘Low vegetation’ can hardly 

be embraced by a single segment, and are consequently improper references for 

the SPT approach. Objects of class ‘Car’, on the other hand, are much smaller than 

‘Buildings’. Consequently, a good scale value for ‘Car’ is normally too small for 

‘Buildings’, or vice-versa.  

Thus, only ‘Building’ samples have been used as references for SPT. In 

Image 1, nine samples were considered for training and forty for testing.  Figure 

4-3 shows the references selected for training (blue) and for testing (green).  
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In Image 2, nine building samples were selected for training (blue polygons 

in Figure 4-4) and ten for testing (green polygons in Figure 4-4). 

 

 

 

4.4. 
 Selecting training and test data for SSeg  

The training data was chosen randomly, it is shown in Figure 4-5. 

Superpixels having at least 70% of its area inside a training region were used for 

training. The remaining superpixels were used for test. 

Figure 4-3 Reference Segment of Image 1 for SPT  

Figure 4-4 Reference Segment of Image 2 for SPT  
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Figure 4-5 labeled training data for Image 1 (left) and Image 2 (right): ‘Building’ (blue), 

‘Low vegetation’ (Cian),  ‘Tree’ (Green), ‘Car’ (yellow) and ‘Street’ (white). 

      Table 4-1 and Table 4-2 present for Image 1 and Image 2, respectively, the 

approximate percentage of pixels of each class used for training and for test.  

 

Class Train Test 

Building 3.6 14.5 

tree  4.3 25.8 

Low vegetation 2.8 32.4 

Car 0.2 0.2 

Road  0.7 15.6 

Table 4-1 percentage of pixels of Image 1 used for training and test 

 

 

Class Train Test 

Building 2.1 14.6 

tree  0.6 25.1 

Low vegetation 0.9 43.5 

Car 0.1 0.3 

Road  0.6 12.2 

Table 4-2 Percentage of pixels of Image 2 used for training and test 
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4.5.  
Spatial accuracy of SSeg and MRS. 

The experiments reported in this section were designed to compare semantic 

segmentation (SSeg) and supervised segmentation parameter tuning (SSPT) in 

terms of spatial accuracy.  

Testing supervised segmentation parameter tuning 

Image 1 and Image 2 were segmented using the MRS algorithm, whose 

parameter values were estimated by the SPT tool based on the bluish references 

shown in Figure 4-3 and Figure 4-4, respectively.  

 Table 4-3 shows the optimal parameter values found by SPT for Image 1. 

Figure 4-6 on the left shows the segmentation outcome produced with these 

parameter values. Some buildings’ segments matched perfectly their references.  

It should be noted that some buildings having half-dark and half bright halves 

were split in two segments (see red circles in Figure 5-5 on the right).  

 

Parameters tuned Value 

Scale. 

Color weight.  

80 

0.2 

Compactness weight. 0.74 

Table 4-3 Parameters tuned for Image 1 

 

 

 

Figure 4-6: Segmentation outcome for Image 1 (left); positive and negatives (yellow=TP, 

red=FP, blue=FN) (right). 
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Figure 4-7 shows a zoom over the region containing the aforementioned red 

circles. Clearly, roofs with a non-uniform surface were divided into multiple 

segments, even two of these buildings were used as reference segments. In this 

experiment the 𝐹- measure was 0.7004. Figure 4-7 (right) also shows many  false 

negatives in the segmentation output (blue), mainly due to non-uniform 

illumination, causing an over-segmented outcome. 

  

 

Testing semantic segmentation and comparison with parameter tuning 

The selected SSeg model is based on CRF. Two alternative approaches have 

been tested to generate image sites:  superpixels (SP) and small segments 

produced by the MRS algorithm. For the CRF using superpixel (𝐶𝑅𝐹 + 𝑆𝑃), 

different superpixels’ sizes in a range of 4000-140000 were tested. 

We have confirmed experimentally that small values of 𝛽  makes CRF 

permissive regarding changes of classes. These class changes appear as a Salt & 

Pepper effect. On the other hand, a high values of 𝛽 produce a smoothing effect. 

Large  𝛽 values may induce over-smoothing as it can be seen in Figure 4-8 for 

Image 1 and Figure 4-11 for Image 2. The objects of classes ‘Road’, ‘Tree’ and 

‘Low vegetation’ can hardly be embraced by a single segment, and are 

consequently improper for segmentation evaluation. Objects of class ‘Car’, on the 

other hand, are much smaller than ‘Buildings’. Therefore, to make a fair 

comparison between SSPT and SSeg, for segmentation assessment only segments 

of the class ‘Building’ were considered.  

Figure 4-8 (a), (b) and (c) show the segmentation of Image 1 produced by 

the SSeg model based on CRF working upon 140.000 superpixels for different  𝛽 

values. In Figure 4-8 (a), a short value of 𝛽 ( 𝛽 = 0.1), produces a large quantity 

of segments (3149), most of them formed by few pixels. Figure 4-8 (b) shows 

Figure 4-7 Zoom over the region with red circles first image. 
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that a large value of 𝛽 (𝛽 = 1.4) may imply in few segments (261), due to the 

fusion of segments that should be separated. With the best value of 𝛽 (𝛽 = 0.7) 

found for this configuration, SSeg produced 551 segments. This was the best 

segmentation result obtained with SSeg and using superpixels as images sites. In 

this case the obtained F-measure was 𝐹1 = 0.8123. The best result obtained with 

SSPT for Image 1 is shown in Figure 4-8 (d) corresponding to 𝐹1 = 0.7004. This 

is clearly inferior to the result achieved by SSeg for the best 𝛽. 

. 

 

 

Figure 4-9 shows the segmentation results for the given references (see 

Figure 4-3). The figure on the left shows the optimum results for the SSeg and on 

the right for supervised segmentation SSPT, both for Image 1. SSeg produced 

(b) (a) 

(c) (d) 

Figure 4-8 CRF using 140.000 superpixels with different values of β, (a) Small value, 

𝛽 = 0.1, (b) Large value, 𝛽 = 1.4, (c) medium value, 𝛽 = 0.7.  (d) Supervised segmentation 

parameter tuning for Image 1. 
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much less false negatives than SSPT, because the semantic information helped to 

merge spectrally inhomogeneous parts of the roofs. SSeg managed to delineate 

most building almost perfectly. 

 

 

Table 4-4 shows the optimal parameter values found by STP for Image 2.  

Figure 4-10 shows the corresponding segmentation outcome.  

The SSPT method did not produce good results, as many roofs were divided 

into multiple segments. In some cases, both the half-dark and half bright roof parts 

were split in several parts. Even the buildings inside the yellow circles in Figure 

4-10 were used as references to train the SPT and were divided into multiple 

segments. These results show clearly the limitations of this method to produce a 

single segment out of a spectrally inhomogeneous object. In this experiment the 

SSPT approach achieved the spatial accuracy 𝐹1 =  0.788. 

 

Parameters tuned Value 

Scale. 

Color weight.  

245 

0.604 

Compactness weight. 0.473 

Table 4-4 Parameters tuned for Image 2 

Figure 4-9 Positive and negatives for Image 1(yellow=TP, red=FP, blue=FN) produced 

by SSeg (left) and SSPT (right).  
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Figure 4-11 (a), (b) and (c) show the segmentation SSeg results for Image 

2. Once again 140.000 superpixels have been used as image sites. Figure 4-11 (a), 

shows the results obtained with a short value of 𝛽 ( 𝛽 = 0.1), which produced 

many segments (1732). Figure 4-11 (b) corresponds to a large value of 𝛽 (𝛽 =

2), where few segments (84) were generated. Figure 4-11 (c) shows the best 

results obtained for this configuration using a value of 𝛽 = 1.45 that led to 117 

segments. In this case, the spatial accuracy F-measure obtained was 𝐹1 = 0.92.  

Figure 4-11 (d) shows the segmentation result for the supervised segmentation 

parameter tuning for Image 2. It obtained a spatial accuracy of 𝐹1 =  0.788 

discussed above, again a result substantially inferior to SSeg. 

 

 

 

Figure 4-10 Segmentation outcome for Image 2 positive and negatives (yellow=TP, 

red=FP, blue=FN) (down). 
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Figure 4-12 shows the segmentation results for the given references (see 

Figure 4-4). The figure on the left shows the results for the SSeg and the figure on 

the right shows the results for SSPT for Image 2. SSeg segmentation has left more 

false negatives than SSPT for the same reason than in Imagen 1. However, it can 

be seen large false positives pixels in the boundaries of the buildings.  

 

 

 

 

(c) 

(a) (b) 

(d) 

Figure 4-11 Results for CRF using 140.000 superpixels for different values of β: (a) small 

𝛽 = 0.1; (b) Large 𝛽 = 2; (c) medium 𝛽 = 1.45;  (d) results for supervised segmentation 

parameter tuning for Image 2. 

Figure 4-12:  Positive and negatives for Image 2 (yellow=TP, red=FP, blue=FN) (left) 

for SSeg; (right) for supervised segmentation PT. 
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4.5.1. 
Sensitivity of CRF to superpixel size 

The objective of this experiment was to assess the sensitivity of the CRF 

approach to the number of superpixels, or equivalently, to the average superpixel 

size. The experiment with CRF reported in the previous section was repeated for 

different number of superpixels. 

Figure 4-13 shows the recorded results in terms of spatial accuracy (𝐹-

measure) as a function of the number of superpixels. Recall that the measurement 

was carried out only on segments of class “Buildings”. For Image 1, all the values 

were close to each other, in a range between 0.7 to 0.82. The best spatial accuracy 

(𝐹 = 0.8123) occurred with tested number of superpixels (140.000), while the 

worst result occurred for 5000 superpixels.  

For Image 2 we observed a similar behavior, although the 𝐹-measure 

dropped for larger (few) superpixels. This behavior is explained with more details 

in the subsequent paragraphs.  

 

 

Figure 4-14 and Figure 4-15 depict the evaluation of the segmentation for 

the SSeg model based on CRF for Image 1 and 2. Figure 4-14 and Figure 4-15 

show the results for different experiments using different values of the parameter 

number of superpixels (SP). For Figure 4-14 and Figure 4-15, the images on the 

right present less false positives (red color) in almost all segments than in the 

images on the left.   
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Figure 4-13 CRF spatial accuracy vs. number of superpixels 
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Figure 4-14 Image 1 results for reference segments (yellow=TP, red=FP, blue=FN). Upper 

left, CRF using 4000 SP. Upper right, CRF using 140000 SP. Bottom left, CRF using 50000 SP. 

Upper right, CRF using 70000 SP. 

Figure 4-15 Image 2 results for reference segments (yellow=TP, red=FP, blue=FN). 

Upper left, CRF using 4000 SP. Upper right, CRF using 140000 SP. Bottom left, CRF using 

50000 SP. Upper right, CRF using 70000 SP. 
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4.5.2. 

Sensitivity of CRF to parameter 𝜷 

Figure 4-16 and Figure 4-17 summarize the results of an experiment that 

aimed at assessing the sensitivity of spatial accuracy to parameter 𝛽 that balances 

the association and the interaction potential in CRF approach for Image 1 and 

Image 2. The number of superpixels was set to three different values. The plots 

lead to the conclusion that in terms of spatial accuracy, CRF might perform worse 

than classifier used by CRF to produce the association potentials. When the 

parameter 𝛽 corresponds to 𝛽 = 0, the Interaction potential term is not 

considered, therefore, only the classifier is taking into account. These results show 

that the proper estimate is critical in the CRF approach, at least in what refers to 

spatial accuracy.  

The curves are different for both images given the distributions of the 

buildings. The gaps between the buildings are smaller for Image 1 than for Image 

2. Consequently, Image 2 requires higher values of 𝛽 than Image 1, on the other 

hand, in some cases the buildings in Image 1 were so close that some values of 𝛽 

induces the fusion of buildings that should be separated.  
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Figure 4-16 Image 1, spatial accuracy F- measure vs. 𝛽 

DBD
PUC-Rio - Certificação Digital Nº 1413512/CA



Chapter 4. Experimental Analysis  58 
 

 

Figure 4-17 Image 2, spatial accuracy F-measure vs. β 

 

 

 

4.6. 
Thematic accuracy of SSeg and OBIA 

The experiments described in this section aimed at comparing Semantic 

Segmentation with the typical OBIA strategy in terms of thematic accuracy. 

 

4.6.1. 
Thematic accuracy of semantic segmentation  

𝐶𝑅𝐹 was tested for the number of superpixels varying in a range 4000 to 

140000. For each of these experiments the best value of 𝛽 was determined using 

the same procedure adopted in the previous experiments. 

 Figure 4-18 shows how the optimum 𝛽 varies with the number of 

superpixels. As discussed in the preceding section, 𝛽 represents the penalty for 

class change. In other words, when 𝛽 has larges values the smoothing effect 

increases. The curves for Image 1 and Image 2 in Figure 4-18 show that the 

optimum 𝛽 tends to increase with the number of superpixels. In other words, the 

smaller the superpixels size the higher is the optimum 𝛽. This can be explained by 
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the following rationale. The number of superpixels that cover a meaningful image 

object increases as the superpixels become smaller. So, 𝛽 must increase so that 

the smoothing effect propagates over mover superpixels to avoid false class 

changes inside the region comprised by said object.  

 

Figure 4-18 optimum 𝛽 for classification vs. number of superpixels 

Figure 4-19 for Image 1 and Figure 4-20 for Image 2, show the classification 

results of the SSeg model for 𝛽 below (a), above (b) and equal(c) to the optimum 

as well as the ground truth (d). In all cases the number of superpixels was set to 

140,000.   

Figure 4-19 (a) and Figure 4-20 (a) show the results for a 𝛽 lower than the 

optimum. The Salt & Pepper effect is visible. Figure 4-19 (b) and Figure 4-20 (b) 

show how a large values of 𝛽 induce an over smooth effect in the outcome, these 

values of 𝛽 produce the merging of regions that should be separated. Good 

examples are the small ‘Grass’ regions of Figure 4-19 (a), which were merged to 

larger regions classified as ‘Tree’ in Figure 4-19 (b). It also occurs in the opposite 

direction: regions classified as ‘Tree’ for small 𝛽 become larger ‘Grass’ by 

increasing 𝛽.  

Figure 4-19 (c) and Figure 4-20 (c) show the results obtained with the 

optimum value of 𝛽.  
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(b) (a) 

(c) (d) 

Figure 4-19 Classification results Image 1 of the SSeg model for β below (a), above (b) 

and equal (c) to the optimum as well as the ground truth (d). In all cases the number of superpixels 

was set to 140,000. 

(c) 

(a) (b) 

(d) 

Figure 4-20 Classification results Image 2 of the SSeg model for β below (a), above (b) 

and equal (c) to the optimum as well as the ground truth (d). In all cases the number of 

superpixels was set to 140,000. 
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Figure 4-21 shows the average accuracy (AA) and overall accuracy (OA) 

obtained using as inputs the Image 1 and 2 for the optimum 𝛽. The OA and AA 

curves are similar. OA initially increases with the number of superpixels until it 

reaches a saturation value.  

For Image 1, the highest overall accuracy was 𝑂𝐴 = 0.7614, using 30000 

superpixels. For Image 2, the highest value was 𝑂𝐴 = 0.849, using 140000 

superpixels. For more superpixels, OA was almost constant around  𝑂𝐴 = 0.75 

and 𝑂𝐴 = 0.84 for the Image 1 and 2, respectively.  

 

Similarly, AA increases with the number of superpixels, achieving the 

highest values 𝐴𝐴 = 0.75 for Image 1 using 30.000 superpixels and 𝐴𝐴 = 0.69  

for Image 2, for about 40000 superpixels. For more/smaller superpixels the 

accuracy does not change considerably. 

Table 4-5 presents the confusion matrix used to calculate the thematic 

accuracy for Image 1 and 140.000 superpixels. In this experiment, the classes 

‘Building’ and ‘Tree’ were the two classes better classified with 93.7% and 81.9% 

accuracy respectively, the classes ‘Grass’ and ‘Car’ achieved  70% and for the 

class ‘Street’ 61% was obtained.  
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Figure 4-21. Average Accuracy and Overall Accuracy for different values of number of 

superpixels for the Image 1 and Image 2. 
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   Reference Data      

   
B T G C S 

Total 

Land Cover 

Categories 

Classified 

Data 

B 21910 221 852 389 13 23385  B = Building 

T 393 34097 6624 320 210 41644  T = Trees 

G 2790 9948 36750 1391 1689 52568  G = Grass 

C 9 0 34 228 57 328  C = Car 

S 3403 934 4565 973 15413 25288  S = Street 

Total 28505 45200 48825 3301 17382 143213   

             

  Average Accuracy  Overall  Accuracy    

  AA = 75.19%   OA = 75.69%    

                      

Table 4-5 Confusion matrix for Image 1 with 140,000 SP 

It can be seen that Building’ was detected accurately. Classification of 

Grass’ was less accurate, mainly, caused by the confusion with Tree’. Being both 

vegetation this is understandable. 

Table 4-6, Table 4-7, Table 4-8 and Table 4-9 show the confusion matrix 

for Image 1 using 4.000, 30.000, 100.000 and 140.000 superpixels respectively. 

As mentioned above the average and overall accuracy increase according to the 

number of superpixels. It can be seen that the classes “building” and “tree” were 

not very affected by the superpixels’ size, because the objects belonging to these 

classes are large and were composed by many superpixels in all the cases. On the 

other hand, the results obtained by classes “car”, “grass” and “Street” improved 

according to the number of superpixels mainly the class which has smaller objects 

(“car”). 

  

                    

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.93 0.02 0.05 0 0  B = Building 

T 0.01 0.89 0.1 0 0  T = Trees 

G 0.06 0.34 0.58 0.01 0.01  G = Grass 

C 0.43 0 .29 0.29 0  C = Car 

S 0.17 0.05 0.29 0.02 0.48  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =63.4%   OA=70.6%   

                    

Table 4-6 Confusion matrix for Image 1 with 4,000 SP 

 

DBD
PUC-Rio - Certificação Digital Nº 1413512/CA



Chapter 4. Experimental Analysis  63 
 

                    

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.96 0.01 0.03 0 0  B = Building 

T 0.01 0.81 0.18 0 0  T = Trees 

G 0.06 0.18 0.75 0 0.01  G = Grass 

C 0.10 0.01 0.34 0.48 0.06  C = Car 

S 0.15 0.04 0.25 0.02 0.54  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =70.6%   OA=76.1%   

                    

Table 4-7 Confusion matrix for Image 1 with 30,000 SP 

 

                    

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.94 0.01 0.04 0.01 0  B = Building 

T 0.01 0.82 0.16 0 0.01  T = Trees 

G 0.06 0.21 0.69 0.02 0.02  G = Grass 

C 0.05 0 0.10 0.60 0.25  C = Car 

S 0.13 0.04 0.17 0.03 0.63  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =73.6%   OA=75.7%   

                    

Table 4-8 Confusion matrix for Image 1 with 100,000 SP 

 

                    

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.94 0.01 0.04 0.02 0  B = Building 

T 0.01 0.82 0.16 0 0.01  T = Trees 

G 0.05 0.19 0.70 0.02 0.03  G = Grass 

C 0.03 0 0.10 0.70 0.17  C = Car 

S 0.13 0.04 0.18 0.04 0.61  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =75.2%   OA=75.7%   

                    

Table 4-9 Confusion matrix for Image 1 with 140,000 SP 

Table 4-10 presents the confusion matrix used to calculate the thematic 

accuracy for Image 2 and 140.000 superpixels. In this experiment, the classes 

‘Building’, ‘Tree’, “grass” and “street” were classified with 95%, 80%, 84% and 

85% of accuracy respectively, on the other hand the class ‘Car’ achieved  0%. 
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   Reference Data      

   
B T G C S 

Total 

Land Cover 

Categories 

Classified 

Data 

B 16740 120 311 0 396 17567  B = Building 

T 526 24153 4843 0 534 30056  T = Trees 

G 1068 5885 43985 0 1124 52062  G = Grass 

C 52 36 28 0 139 255  C = Car 

S 489 686 991 0 12485 14651  S = Street 

Total 18875 30880 50158 0 14678 114591   

             

  Average Accuracy  Overall  Accuracy    

  AA = 79.35%   OA = 84.97%    

                      

Table 4-10 Confusion matrix for Image 2 with 140,000 SP 

Figure 4-21 shows the remarkable difference between AA and OA for Image 

2 due to the misbehavior of the RF classifying car class. Therefore, for Image 2 

using 140.000 SP was obtained 𝐴𝐴 =  0.79 compared with 𝑂𝐴 = 0.84. Figure 

4-22 shows some examples of cars in Image 2. In Image 2 there are few cars and 

high intraclass variance in this class, almost all the cars are different and 

consequently the samples of the car class used for training are not enough to 

discriminate this class. However, the same training data was used for both, SSeg 

and OBIA, affecting both methods in the same manner. 

 

 

Figure 4-22 samples of cars in Image 2. 

 

DBD
PUC-Rio - Certificação Digital Nº 1413512/CA



Chapter 4. Experimental Analysis  65 
 

Table 4-11, Table 4-12 and Table 4-13show the confusion matrix for Image 

2 using 7.000, 40.000 and 140.000 superpixels respectively. As mentioned above 

the average and overall accuracy increase according to the number of superpixels. 

It can be seen that the classes “building” and “grass” were not very affected by 

the superpixels’ size. On the other hand, the results obtained by classes “tree” and 

“Street” improved according to the number of superpixels until 40.000 

superpixels. The confusion matrices for 40.000 and 140.000 superpixels do not 

change considerably. 

                    

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.98 0 0.01 0 0.01  B = Building 

T 0.06 0.60 0.31 0 0.03  T = Trees 

G 0.09 0.06 0.83 0 0.02  G = Grass 

C 0.65 0 0.10 0 0.25  C = Car 

S 0.21 0.01 0.04 0 0.74  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =63.5%   OA=76.5%   

                    

Table 4-11 Confusion matrix for Image 2 with 7,000 SP 

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.95 0.01 0.02 0 0.02  B = Building 

T 0.02 0.80 0.16 0 0.02  T = Trees 

G 0.02 0.12 0.84 0 0.02  G = Grass 

C 0.05 0.25 0.10 0 0.61  C = Car 

S 0.05 0.05 0.06 0 0.84  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =68.5%   OA=84.37%   

                    

Table 4-12 Confusion matrix for Image 2 with 40,000 SP 

   Reference Data     

   B T G C S Land Cover Categories 

Classified 

Data 

B 0.95 0.01 0.02 0 0.02  B = Building 

T 0.02 0.80 0.16 0 0.02  T = Trees 

G 0.02 0.11 0.84 0 0.02  G = Grass 

C 0.20 0.14 0.11 0 0.55  C = Car 

S 0.03 0.05 0.07 0 0.85  S = Street 

            

  Average Accuracy   Overall Accuracy 

  AA =69.0%   OA=84.9%   

                    

Table 4-13 Confusion matrix for Image 2 with 140,000 SP 
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Figure 4-23 and Figure 4-24 present the results from a different perspective. 

It shows how the overall accuracy for the Image 1 and Image 2 varies with  𝛽 for 

different numbers of superpixels. The curves are mostly concave, reaching the 

maximum at different values of 𝛽 depending on the number of superpixels. 

To the left of the maximum the accuracy decreases due to the Salt & Pepper 

effect. To the right, the accuracy decrease due to the over-smoothing effect. The 

maximum OA is obtained in an intermediate value of 𝛽, we call this 𝛽 as the 𝛽 

optimum. 

Figure 4-23 and Figure 4-24 show further that the curve becomes flat as 

superpixels become smaller. This means that the thematic accuracy is more 

sensitive to the proper estimate of 𝛽 when working with fewer/larger superpixels. 

 

 

 

 

 

Figure 4-24 Overall Accuracy vs. β for Image 2 
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Figure 4-23 Overall Accuracy vs. 𝛽 for Image 1 
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4.6.2. 
Thematic accuracy of basic OBIA results. 

 

The experiments described in this section had as objective to assess the 

thematic accuracy of a basic OBIA processing chain for the same dataset used in 

the analysis of CRF. 

The input images were segmented using MRS algorithm. Color and 

compactness parameters were set to 0.5 while the scale parameter took values in 

the range of 5-50. Again in these experiments the band weights were kept constant 

and equal for all bands. 

The segmentation outcome can be seen in Figure 4-25 and Figure 4-26 for 

Image 1 and Image 2, respectively for the scale parameter set to 5 and 50.  

 

Figure 4-25  Segmentation of Image 1 for scale parameter equal to 5 (a) and to 50 (b) 

 

Figure 4-26 Segmentation of Image 2 for scale parameter equal to 5 (a) and to 50 (b) 

  Each segments was described by a vector comprising the average values 

of all features (see section 4.2). 

(b) (a) 

(a) (b) 
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For each scale, segments having more than 50% of its area inside the regions 

selected for training (see Figure 4-5 ) were taken for training. The remaining 

segments were separated for test. The classification step was carried out by a 

Random Forest classifier. 

Figure 4-27 shows the average accuracy and the overall accuracy for Image 

1 and Image 2 as a function of scale.  

For Image 1, AA and OA were nearly constant. The highest value for OA 

was 𝑂𝐴 = 0.63 for scale = 5, and the highest value for AA was 𝐴𝐴 = 0.62 for 

scale= 30. Looking at Figure 4-25 we observe that even for the highest scale the 

segments were mostly smaller than the objects of interest. Although we didn’t test 

it, the OA and AA curves for Image 1 are expected to go down for larger scales, 

due to single segments that spill over object borders. This effect is observed in the 

curves of Image 2, which achieve the highest values for scale 5, the lowest one 

tested in this experiment. 

 

 

Figure 4-27 Average Accuracy and Overall Accuracy for different values of Scale 

parameter, OBIA. 

Figure 4-28 on the left, presents the classification result for Image 2 using 

scale 5, the best results obtained in our experiments in this experiment. Figure 

4-28 on the right, shows the classification results for the Image 2 using scale 20, 

some of the smoothing effect resulting from increasing the scale can be seen by 

comparing both parts of the Figure.  
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4.6.3. 
Comparing thematic accuracies  

In this section the results for SSeg and OBIA reported in the two preceding 

sections are put side-by-side for comparison.  

Figure 4-29 shows the best classification results delivered by SSeg and by 

OBIA for Image 1. SSeg was able to produce softer object contours and is much 

less affect by the Salt & Pepper effect than OBIA, Figure 4 27 shows the results 

for Image 2. The same behavior is observed.  

 

 

 

Figure 4-28 Left, classification result of the Image 2 using Scale 5 (left), classification 

results of the Image 2 using Scale 20 (right) 

(a) (b) 

(c) 

Figure 4-29 Best classification results for Image 1. (a) SSeg using superpixels. OBIA 

using over-segmented input image using (b) MRS.  (c) Ground truth. 
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Figure 4-30 Best classification results for Image 2. (a) SSeg using superpixels. OBIA using 

over-segmented input image using (b) MRS.  (c) Ground truth 

 

The visual superiority of SSeg over OBIA observed in these Figures is 

corroborated by the measured accuracies, as reported in Tables 5-6 and 5-7. 

 

Method OA AA 

OBIA (Scale 5) 0.63 0.61 

SSeg (30,000 SP) 0.76 0.71 

SSeg (140,000 SP) 0.76 0.75 

Table 4-14 Highest values for OA and AA for Image 1 

 

Method OA AA 

OBIA (Scale 5) 0.75 0.59 

SSeg (40,000 SP) 0.842 0.684 

Table 4-15 Highest values for OA and AA for Image 2 

These figures clearly favor SSeg in detriment of OBIA. In all cases, SSeg 

outperformed OBIA in about 0.10, both in terms of overall and average accuracy.  

It should be noted that the present study did not exploit the full OBIA 

potential. Classification strategies more sophisticated than a simple Random 

(a) (a) 

(c) 
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Forest can be designed within the OBIA framework. Indeed, RF makes little or no 

use of explicit prior knowledge, as it is commonly done in OBIA based solutions. 

Besides, as mentioned in chapter 1, OBIA also admits schemes involving iterative 

segmentation + classification circles, a possibility not investigated in this 

dissertation.  

Nevertheless, the results achieved in this work indicated that SSeg is an 

approach worth being considered as an alternative to OBIA for image 

classification or, at least as a building block of more elaborated OBIA based 

solutions. 
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5 
Conclusions 

 

 

This dissertation reports a study with the aim at comparing semantic 

segmentation with the basic workflow Object-Based Image Analysis. Is important 

to mention that SSeg combines two basic OBIA operational steps in just one, 

namely: segmentation and classification. This is an advantage of SSeg compared 

to the usual OBIA workflow steps, that is, an initial segmentation followed by an 

initial classification. The two steps in OBIA are then usually to do iteratively: 

knowledge based segmentation improvement and re-classification. 

First, the study considered semantic segmentation as an alternative to 

bottom-up segmentation. Semantic segmentation was compared with supervised 

segmentation parameter tuning in terms of spatial accuracy. 

Second, semantic segmentation was compared with the typical OBIA 

strategy from the perspective of thematic accuracy. 

Each approach investigated in this study was represented by a particular 

implementation. Specifically, Conditional Random Fields were used to represent 

Semantic Segmentation. The Multiresolution algorithm was chosen to represent 

bottom-up segmentation methods. Random Forest was the basic classifier used to 

produce association potentials for the Conditional Random Fields, as well as to 

perform the classification task in the OBIA approach. 

The experiments conducted upon two very high resolution images indicated 

the superiority of Semantic Segmentation under both criteria, namely spatial and 

thematic accuracy. 

The study still does not allow generalizing the aforesaid conclusion, mainly 

due to two reason. Firstly, because the number of experiments and the data set 

they relied upon are limited. Secondly and more importantly, because the 

spectrum of alternative bottom-up segmentation methods and potential of OBIA 
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of building complex classification strategies were not fully explored in this 

analysis. 

Nevertheless, the results in section 4.5 demonstrated convincingly that 

Semantic Segmentation is at least worth being considered as part of an OBIA 

based solution for many image analysis problems. This could be done by replacing 

bottom-up segmentation by semantic segmentation, or even by using the semantic 

segmentation outcome as a preliminary classification result to be later refined by 

some knowledge based approach implemented as a rule set or any other typical 

OBIA scheme.  

So, we envisage the investigation towards testing this idea on real image 

interpretation applications as a natural extension of this study, therefore SSeg 

could be used as an alternative for existing segmentation methods. 
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