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Abstract 

 

 

Santamarina Maciá, Abel Sebastián; Feitosa, Raul Queiroz (advisor); An 

Evaluation of Bimodal Recognition Systems Based on Voice and Facial 

Images. Rio de Janeiro, 92p. Master Dissertation - Departamento de 

Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro. 

 

The main objective of this dissertation is to compare the most important 

approaches for score-level fusion of two unimodal systems consisting of facial and 

independent speaker recognition systems. Two classification methods for each 

biometric modality were implemented: a GMM/UBM and an I-Vector/GPLDA 

classifiers for speaker independent recognition and a GMM/UBM and LBP-based 

classifiers for facial recognition, resulting in four different multimodal combination 

of fusion explored. The score-level fusion methods investigated are divided in 

Density-based, Transformation-based and Classifier-based groups and few variants 

on each group are tested. The fusion methods were tested in verification mode, 

using two different databases, one virtual database and a bimodal database. The 

results of each bimodal fusion technique implemented were compared with the 

unimodal systems, which showed significant recognition performance gains. 

Density-based techniques of fusion presented the best results among all fusion 

approaches, at the expense of higher computational complexity due to the density 

estimation process. 

 

 

 

 

 

 

 

 

Keywords 

Density-based Score fusion; Transformation-based Score fusion; Classifier-

based Score fusion; GMM/UBM; I-Vector; LBP. 
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Resumo 

 

Santamarina Maciá, Abel Sebastián; Feitosa, Raul Queiroz (orientador); 

Uma Avaliação de Métodos de Fusão para Sistemas Bimodais de 

Reconhecimento Baseados em Voz e Imagens Faciais. Rio de Janeiro, 92p. 

Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

Esta dissertação tem como objetivo avaliar os métodos de fusão de escores 

mais importantes na combinação de dois sistemas uni-modais de reconhecimento 

em voz e imagens faciais. Para cada sistema uni-modal foram implementadas duas 

técnicas de classificação: o GMM/UBM e o I-Vetor/GPLDA para voz e o 

GMM/UBM e um classificador baseado em LBP para imagens faciais. Estes 

sistemas foram combinados entre eles, sendo 4 combinações testadas. Os métodos 

de fusão de escores escolhidos se dividem em três grupos: Fusão baseada em 

densidade, fusão baseada em transformação e fusão baseada em classificadores, e 

foram testadas algumas variantes para cada grupo. Os métodos foram avaliados em 

modo de verificação, usando duas bases de dados, uma base virtual formada por 

duas bases uni-modais e outra base bimodal. O resultado de cada técnica bimodal 

empregada foi comparado com os resultados das técnicas uni-modais, percebendo-

se ganhos significativos na acurácia de reconhecimento. As técnicas de fusão 

baseadas em densidade mostraram os melhores resultados entre todas as outras 

técnicas, mais apresentaram uma maior complexidade computacional por causa do 

processo de estimação da densidade. 
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INTRODUCTION 

1.1.  
Overview 

In recent years, biometric recognition has gained a lot of attention due to the 

growing necessity for security in our interconnected society. Fingerprint readers, 

voice recognition and facial identification technologies are now customary in 

today’s personal devices while other techniques like iris scanners, gait tracking and 

even palm veins scanners are emerging as well in a broad range of applications.  

Traditional knowledge-based (passwords, PIN numbers, etc.) or token-based 

methods (ID-cards, physical keys, etc.) for creating and verifying a person identity, 

have evidenced to be insufficient for the security standards existing nowadays. 

Anything “we know” or “we owns” can be lost, manipulated, shared or stolen, 

presenting a high risk of security breach for the identity. Moreover, these 

mechanisms cannot provide vital functions like non-repudiation, or multiple 

instances detection. 

With the revolution of personal computing (tablets, smartphones, wearables, 

Internet of Things (IoT) devices, etc.), it has become increasingly important to 

develop more reliable identification systems that can provide higher degrees of 

security and stronger authentication schemes. In this context, biometric recognition 

has proven to be an excellent solution to the problem of identity determination, 

since the biometric attributes are inherent to an individual, expressing “who we 

are”, and thus making it very difficult to forget, manipulate or share.  

From a general perspective, biometric recognition is the process of 

identifying a person identity by means of physiological and behavioral 

characteristics.  Examples of those characteristics include face, voice, fingerprint, 

iris, gait and others, which are referred in the biometric literature as traits, 

indicators, identifiers or modalities.  
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Although biometric systems have been successfully implemented in a large 

amount of applications, with several advantages over the traditional passwords and 

tokens methods, they also have some limitations, like accuracy, scalability and 

usability [1]. In this sense, no single biometric is expected to effectively satisfy the 

requirements of all verification or identification applications.  

Most of the current implemented systems are based on one single biometric 

modality, which are called unimodal biometric systems. Often they have to contend 

with noisy data (because of the deformable nature of biometric traits, environmental 

noise, defective sensors, user’s accessories occlusions, etc.), non-universality 

(impossibility to collect meaningful biometric data from a subset of users), inter-

user similarity (lack of uniqueness between features of different individuals), intra-

user variations (large variations on samples from the same individual making 

difficult an invariant representation), spoof attacks (deliberate manipulation of one's 

biometric traits in order to avoid recognition) and unacceptable error rates, factors 

that make them unsuitable in more constrained scenarios.  

Some of these limitations can be overcome by deploying multimodal 

biometric systems that integrate the evidence presented by multiple sources of 

information. Using different biometric traits from an individual in a multibiometric 

system has several advantages. In a first place, there is a clear positive impact on 

the overall accuracy of the biometric system, as the individuals can be more 

discriminative in a larger feature space. These systems can also address the problem 

of non-universality when it is impossible to enroll a person in the system using a 

specific biometric but can be enrolled using another one. They can also provide 

certain level of flexibility in specific applications as the users can authenticate using 

any of their registered biometrics. Other advantage is the reduction of the noise 

effect in the system, because the lack of quality of one biometric can be 

compensated with another biometric instance that provides sufficient 

discriminatory information to make a decision. They are also more robust against 

spoof attacks because it is more difficult to mimic multiple biometrics 

simultaneously. 

However, multibiometric systems have some drawbacks as well, like a higher 

computational and storage cost, the additional time required to enroll the users and 

higher concerns for protecting the biometric models in databases. Therefore it is 
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important to study these systems in detail before implementing them in real 

applications.  

 

1.2.  
Motivation 

Research works in the area of classifier combination and specifically in 

multibiometrics systems are vast [2-13]. Efforts have been oriented in different 

directions according to the level where the fusion is performed. Among all fusion 

techniques available, the score-level fusion offers the best trade-off in terms of the 

information content and the ease in fusion [1]. For these reasons, in this work, it is 

investigated the score-level fusion in a multimodal biometric system, using voice 

and face biometrics.  

Although bimodal speaker and facial identification systems have been studied 

in previous works with satisfactory results in the late 1990’s and at the early 2000’s, 

in recent days new algorithms for feature extraction and classification of these 

biometric modalities have emerged, that further improve their accuracy. In this 

regard, state-of-the-art techniques like Factor Analysis (FA) and I-Vector 

framework has gained great popularity in the speaker and language recognition 

community. For face recognition, on the other hand, texture-based methods like 

Local Binary Patterns (LBP) has become standardized in automatic face 

recognition applications when high accuracies are pursued. 

Other aspect worth mentioning is the availability of more datasets that 

contains multibiometric data. In the early studies of multibiometric fusion, there 

were only few databases containing more than one biometric modality, but 

nowadays there are available several databases with high amounts of data from 

diverse biometric traits. Few examples of these datasets are the XM2VTS [14] and 

BANCA [15] databases, which combine face and speech, BIOMET [16] database 

that consists of five different modalities (speech, face, hand, fingerprint and 

signature), BiosecurID [17] that combines eight unimodal biometric traits (speech, 

iris, face, handwritten signature and handwritten text, fingerprints, hand and 

keystroking), MOBIO [18] dataset, which is a bi-modal face and speech dataset 

took from mobile devices, among others.  
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Finally, techniques and algorithms used for biometric fusion have also 

developed as well, with a wide list of well-studied and advanced methods of fusion 

based on density estimation, normalization and classification techniques. These 

methods will be the subject of study in this dissertation. 

 

1.3.  
Objectives of the dissertation 

The general objective of this research is to compare the most important 

algorithms for score-level fusion in the development of a multimodal biometric 

system that combines an independent speaker and a facial recognition systems.  

Other important specific objectives in this work are the following: 

 Develop a Text-Independent Automatic Speaker Recognition System 

(SRS) that provides state-of-the-art performance.  

 Compare different speaker and facial recognition algorithms for 

identification and verification tasks.  

 

One final goal in this dissertation is to create and test a Graphical User 

Interface (GUI) tool for testing the developed systems and algorithms used in this 

work. 

 

1.4.   
Organization of the reminder parts 

The following parts of this document are structured as follows: 

 Chapter 2 presents an overview of the state of the art in the area of 

multibiometric fusion, with an emphasis in the score-level fusion in 

multimodal systems. 

 Chapter 3 details the algorithms used in the implementation of the speaker 

and facial recognition classifiers, as well as for the fusion of biometrics. 

 Chapter 4 presents the configuration scheme for both unimodal systems, 

describing the datasets used, the metrics considered for evaluating the 

accuracy of independent classifiers and the methodology followed for 

finding the best unimodal systems configurations. They are presented the 
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results obtained in the assessment of the individual biometrics classifiers 

separately.  

 Chapter 5 presents the experimental analysis for the biometric 

combination step and shows the results for each scheme of fusion 

implemented. The results are discussed in the last part of the chapter.  

 Chapter 6 presents the final conclusions of this work, and discusses the 

future directions that could be taken for further development in this 

research area
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RELATED WORKS 

This chapter introduces some important concepts in multibiometric systems, 

such as their main functionalities and the levels and categories of fusion. In 

addition, examples of the most relevant works of data fusion and combination of 

classifiers are presented, with emphasis in those related to the score-level fusion.  

 

2.1.  
Biometric functionalities 

The functionalities or operating scenarios of a biometric system can be 

classified as verification (authentication) and identification. In verification mode, a 

user claims for an enrolled identity and the system determines if the claim is true or 

false, so the query is compared only with the template corresponding to the claimed 

identity [1]. In practical terms, the biometric classifier provides a match/non-match 

decision for each verification trial, based on a specified operational threshold. If a 

claim is accepted it is said to be a “genuine” individual, otherwise it is considered 

an “impostor”.  

The identification functionality on the other hand can be subdivided as open-

set identification or closed-set identification. In a closed-set identification scheme, 

for each test sample presented at the input, the system is forced to make a decision 

in favor to one of the individual identities enrolled in the gallery, based on a 

similarity or dissimilarity metric. In an open-set identification scheme, an extra 

option exists, in which the probe sample could not pertain to any of the enrolled 

identities in the system, and in that case the probe is rejected (i.e., no suitable 

identification is found on the system) [1].  

In Figure 2-1 it is illustrated the structure of a biometric system, consisting of 

enrollment and authentication stages, for both verification and identification modes. 
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Figure 2-1: Structure of a Biometric System showing the Enrollment and Recognition 

phases. Here, T represent the sample in the enrollment, Q the query biometric sample 

during recognition, XI and XQ represent the template and query feature sets respectively, 

S represents the score and N is the number of users enrolled in the gallery. (Figure modified 

from [1]). 

 

2.2.  
Categories and levels of fusion in Multibiometric Systems 

According to the literature, multibiometric fusion can be implemented at 

different levels (levels of fusion) and with different sources of information 

(categories of fusion) [19]. The categories of fusion define what inputs or processes 

are being used for fusion, whereas the levels of fusion define how the fusion is 

performed.  

The categories can be divided in six major groups: (1) Multi-sample, when 

the fusion is made among samples from the same source (e.g. face images from a 

video sequence, different recordings of a speaker, etc.); (2) Multi-instance, when 

multiple instances of the same biometric trait are fused (e.g. fingerprints from 
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multiple fingers, iris from left and right eyes, etc.); (3) Multi-modal, when the fusion 

is using different biometric modalities (e.g. face, voice, fingerprints, etc.); (4) Multi-

algorithm, when the results from multiple algorithms that process each individual 

sample are fused (e.g. Gaussian Mixture Models (GMM), Probabilistic Linear 

Discriminant Analysis (PLDA), etc.); (5) Multi-sensor, when information of the 

same biometric trait, captured by different sensor types is fused (e.g. optical and 

capacitive fingerprint sensors); (6) Metadata, when external non-biometric 

information is used to enhance the biometric recognition (e.g. measurement of 

sample quality, demographic information, etc.)[19]. 

The levels of fusion are divided in the following groups: (1) Sensor-level, the 

raw information captured by the biometric sensors is fused; requires the biometric 

sensor to provide compatible inputs (e.g. mean of sequence of images); (2) 

Template/feature-level, multiple features or representations of the biometric data 

are fused to form a single feature; (3) Score-level, multiple samples, instances or 

modalities are compared and the resulting similarity or distance scores are 

combined into a single fused score; (4) Rank-level, the scores of the system in 

identification mode are viewed as a ranking of the enrolled identities, ordered in 

decreasing order of confidence and they are fused using a consensus rank; (5) 

Decision-level, similar to score-level but the scores are converted to match/non-

match decisions and then fused; typically, in this mode, a consensus strategy is used, 

like majority voting, logical combination rules, etc. [19]. 

 

2.3.  
Multibiometric fusion 

The idea of consolidating biometrical information from multiple sources is 

not new and it has been extensively studied in the literature [2-13]. Examples of 

fusion performed at each level and using the categories mentioned before are vast, 

and it is important to remark that this work does not intend to make an extensive 

review, but rather cover only the most relevant works related to the objectives of 

this dissertation. 

In the next sections, the two broad classes of fusion, i.e. fusion prior to 

matching and fusion after matching, are covered. The sensor-level and feature-level 
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fusion schemes belong to the first class, while score-level, rank-level and decision-

level fusion schemes belong to the second.  

 

2.3.1.  
Fusion prior to matching 

Sensor-level Fusion 

The first stage in designing a multibiometric system is to determine the 

information to be combined. In a typical biometric system, the amount of 

information available to the system gets compressed as one proceeds from the 

sensor module to the decision module. One initial choice is raw data captured by 

the sensors, which contains the highest information because no process has been 

applied to the signal (e.g., the record of an utterance, a face image, a fingerprint, 

etc.). However, it is probable that the data is contaminated by noise or contains 

other nuisance effects on it (e.g. reverberation in the speech, non-uniform 

illumination in facial images, etc.), and therefore in some cases it is necessary to 

apply filtering or some sort of pre-processing technique to clean the biometric 

samples before fusion.  

One issue with this level of fusion is that, in order to combine the biometric 

raw data directly from various sensors, they have to be compatible. In other words, 

this fusion is only applicable if the multiple sources represent samples of the same 

biometric trait, obtained either using a single sensor or different compatible sensors.   

Examples of this approach of fusion can be found in [20] in which multiple 

2D face images obtained from different viewpoints were stitched together to form 

a 3D model of the face. In [21] the authors followed a similar method to perform 

mosaicking of five views of a face at different angles to create a panoramic face 

construction in real time.  

Another typical application of sensor level fusion is the mosaicking of various 

partial fingerprints impressions of a person in order to create a better fingerprint 

image. Examples of this technique have been studied in [22-25] with satisfactory 

results in terms of performance gains. 

Other useful examples of sensor level fusion are discussed in [26-28], where 

visible and thermal infrared face images at sensor level are fused. By using IR 

images in conjunction with visible images, illumination challenges in facial 
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recognition applications can be properly addressed as the IR images are relatively 

insensitive to illumination changes.  

 

Feature-level Fusion 

In this level of fusion there exist two alternatives for combining the features 

sets extracted from multiple biometric sources, depending on whether they are 

homogeneous or non-homogeneous. The feature sets are homogeneous when they 

are obtained by applying the same feature extraction algorithm to multiple samples 

of the same biometric trait (e.g. minutia sets from two impressions of the same 

finger). In this case the resulting feature set can be formed as a weighted average of 

individual feature sets. In contrast, the feature sets are non-homogeneous when they 

originate from different feature extraction algorithms or from samples of different 

biometric modalities (e.g. face and hand geometry). In this case the feature sets can 

be concatenated to form a single feature set, if the feature sets are compatible. 

Typically, dimensionality reduction schemes based on feature selection or feature 

extraction mechanisms are applied to obtain a minimal feature set. The key benefit 

of this is that it enables detection/removal of correlated feature values improving 

recognition accuracy.  

Some works have been published using this fusion scheme. In [29], the 

authors studied the feature-level fusion applied to three different scenarios: (i) 

multi-algorithm, combining PCA and LDA coefficients of face, (ii) multi-sensor, 

where different color channels of the facial image were integrated using LDA 

features and (iii) multimodal, in which facial and hand features were combined. For 

each scheme, the feature sets were firstly normalized and then concatenated, 

forming a high dimensional feature vector. Then the sequential forward floating 

selection (SFFS) feature selection technique was employed to eliminate redundancy 

and correlated feature values, thus reducing the dimensionality of the feature vector. 

The results indicated that feature-level fusion is advantageous in some cases.  

In [30, 31], Chibelushi et al. combined voice and outer lip-margin features for 

person identification, using feature sets concatenation, as well as linear 

transformation PCA and LDA techniques. In this case, the authors demonstrated 

that the use of feature level fusion in their system is equivalent to increasing the 

signal-to-noise ratio (SNR) of the audio signal, under adverse acoustic conditions.  
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A similar idea was used in [32], in which the performance of a system using 

the correlation between audio-visual features during speech was evaluated. On this 

work a concatenation of voice and facial features was employed, and the authors 

reported lower error rates and higher robustness against replay attacks when 

compared to audio-only, video-only and audio-visual systems which assume audio 

and visual data to be independent. 

Other works includes fusion of face and iris features [33-36], hand geometry 

and palmprint [37], face and palmprint [38], face and gait to recognize individuals 

at distance in video [39], among others.  

Integration at the feature level has proved in the literature to be challenging 

for some reasons, specifically: (1) incompatibility in the feature vectors extracted 

from different modalities, (2) high dimensionality when the concatenation of 

multiple vectors is carried out, causing the curse-of-dimensionality problem [40], 

where the classification accuracy actually degrades with the addition of new 

features due to the limited number of training samples, (3) the relationship between 

the feature spaces of different biometric systems may be unknown and sometimes 

the features sets can be highly correlated, (4) most commercial biometric system 

vendors do not provide access to the feature sets. These constraints have led this 

fusion scheme to limited success and relatively less attractiveness versus other 

fusion schemes, like score-level fusion. 

 

2.3.2.  
Fusion after matching 

Score-level Fusion 

This is the most commonly used method for integrating information in 

multibiometric systems. The fusion at this level is also known as measurement level 

or confidence level, and it combines the match scores output by the classifiers in 

order to make a recognition decision. The match scores can represent a similarity 

or dissimilarity (distance) metric between the input and the template biometric 

feature vectors, and they can have different ranges and different probability 

distributions. These and other difficulties have motivated the research on this fusion 

scheme.  
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The related works in this level of fusion can be broadly classified into three 

groups: transformation-based score fusion, density-based score fusion and 

classifier-based score fusion, although there are other variations, including the 

combination of these groups. The study of these schemes of fusion are the center of 

this work, and they will be explained in detail in subsequent chapters.  

The first works using score level fusion were proposed at mid ‘90s, and they 

focused mainly in the fusion of voice and facial biometric traits. In [6], Brunelli and 

Falavigna proposed two fusion approaches for combining scores from acoustic and 

visual features from a non-public database. In the first approach, they fused the 

outputs of two speech classifiers and three face classifiers, using a Tanh 

normalization, which relies on a robust estimation of location and scale parameters 

of score distributions, in combination with a geometric average. For the second 

approach, they proposed a hybrid rank/score fusion using a HyperBF network in a 

classification-based scheme.  

In [41], Duc et al. proposed a bimodal fusion of face and speech experts from 

M2VTS dataset [42], for person authentication using simple averaging of scores 

and a more sophisticated Bayesian integration scheme presented by Bigün et al. in 

[2].  

In [4], Kittler et al. developed a theoretical framework considering the 

biometric multimodality as a classifier combination problem. In this work, the 

authors compared fusion schemes like sum rule, product rule, max rule, min rule, 

median rule and majority voting under a probability Bayesian perspective. The 

scores of frontal face, face profile, and voice experts from M2VTS dataset, were 

converted into posterior probabilities and then fused using the aforementioned 

fusion schemes. They concluded that the best combination method was the simple 

sum rule of posterior probabilities after testing the sensitivity of all fusion methods 

to estimation errors. In [43], Verlinde et al. also used the Bayesian approach with 

the same biometric modalities and the same database. The scores in this case were 

converted into posterior probabilities assuming they follow a Gaussian distribution 

and the mean and variance were estimated from the training data. They also 

considered a Logistic Regression technique for inferring the posterior probabilities. 

Finally the scores were fused using the product, assuming they were independent 

from one another.   
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Following the Bayesian approach presented in [4] and [43], the National 

Institute of Standards and Technology (NIST) conducted an study [44] where eight 

biometric fusion techniques were compared. They concluded that the Product of 

Likelihood Ratios gives consistently the most accurate results for score-level 

fusion, but it is the most complex method to implement as it requires the explicit 

estimation of the match score densities; moreover, the fusion heavily depended on 

the reliability of the density estimation process, in this case the kernel density 

estimator (KDE) used. Nandakumar et al. proposed in [45] the use of Gaussian 

Mixture Models (GMM) for estimating the probability density functions, which is 

easier to implement than KDE and models quite effectively the scores densities. 

They also showed that quality measurements of the biometric samples improved 

the accuracy and this inclusion should be evaluated in the fusion process whenever 

this information is available.  

In relation to classifier-based approaches, Verlinde and Chollet in [11, 46], 

considered the multimodal fusion as a pattern classification problem. Under this 

point of view, the scores given by individual expert modalities are considered as 

input patterns to a classifier. They compared the following pattern classification 

techniques with the results from [43]: Maximum a Posteriori Probability (MAP), k-

Nearest Neighbors classifiers, Multilayer Perceptrons, Binary Decision Trees, 

Maximum Likelihood (ML), Quadratic classifiers and Linear classifiers. They 

concluded that every fusion method improved the performance over the best single 

expert and the Logistic Regression offered the best results.  

Another classification-based approach was studied in [47], involving Support 

Vector Machines (SVM) to combine face, fingerprint and on-line signature 

biometric modalities from MCYT [48] and XM2VTS [14] datasets. A similar SVM 

classification scheme was used in [49] for fusing iris and face biometric traits from 

ORL [50] face image and UBIRIS [51] iris databases respectively, using a double 

sigmoid function to normalize the scores after the matcher’s outputs. In [52], an 

ensemble of classification trees called Random Forests [53] was used for combining 

fingerprint, face and hand geometry biometrics from a non-public database. In [54], 

three methods of fusion were employed: (1) a weighted sum of scores, (2) a Fisher’s 

discriminant analysis and (3) a neural network with radial basis function (RBFNN), 

in a multimodal system consisting of face and iris modalities from a composite of 

databases.  
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Other works addresses the transformation-based approach, such as [55], in 

which several normalization and fusion techniques were tested to fuse the scores 

from face, fingerprint and hand geometric matchers. Specifically the Min-Max, 

Decimal Scaling, Z-Score, Median and Median Absolute Deviation (MAD), 

Double Sigmoid, Tanh estimators and Parzen normalization techniques were used, 

along with the sum, min and max of normalized scores for fusion. The experiments 

showed that the Min-Max, Z-Score and Tanh normalization schemes followed by a 

simple sum of scores results in better recognition performance compared to other 

methods. They also compared user-specific weights versus common weights to 

multiple biometric traits of all users, revealing that the former approach is 

advantageous over the latter. 

Another extensive work comparing several normalization and fusion 

schemes, was proposed in [56], using fingerprint and face biometrics. The authors 

also concluded that Min-Max normalization with a simple sum offered the best 

results when dealing with open populations (e.g. airports), whereas for closed 

populations (e.g. office environments) an adaptive normalization scheme proposed 

called Quadric-Line-Quadric (QLQ) with user-specific weighted sum provides the 

best accuracy. 

 

Rank-level Fusion 

This level of fusion is used in identification systems, where the scores are 

sorted in a ranking form and then fused using consensus strategies.  

Ho et al. in [9] describe three methods to combine the ranks assigned by 

different matchers, specifically, the highest rank method, the Borda count method 

and the logistic regression method.  

 

Decision-level Fusion 

The Decision-level fusion is also known as abstract fusion because it is used 

when there is access only to the decisions taken by the individual classifiers. It is 

the easiest fusion level among the others and is the less studied in literature, as it is 

often considered inferior to matching score-level fusion, on the basis that decisions 

are too ‘‘hard’’ and have less information content compared to ‘‘soft’’ matching 

scores [57]. 
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The methods proposed in the literature for this level of fusion include logical 

combination rules, like “AND” and “OR” rules [58], majority voting [59], weighted 

majority voting [60], Bayesian decision fusion [61], the Dempster-Shafer theory of 

evidence [61] and behavioral knowledge space [62].
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THEORETICAL FUNDAMENTALS 

In this chapter, it is presented the general structure of the multimodal system 

build in this study, describing the algorithms used in the unimodal systems as well 

as the techniques used in the biometric fusion.  

 

3.1.  
General Dataflow Scheme 

In the figure below (Figure 3-1), it is shown the proposed bimodal fusion 

scheme for combining the unimodal biometric systems.  

 

Figure 3-1: Unimodal systems schemes and algorithms. 

 

As it can be observed, each biometric system has in common a feature 

extraction step, where salient characteristics of voice and face biometrics are 

summarized by compact representations. This step is followed by a classification 

stage, where two different methods for each biometric modality are tested. At the 

end, a vector of scores is generated at each matcher output for the defined test 

individuals in the dataset.  
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In the speaker recognition system, we used the Mel Frequency Cepstral 

Coefficient (MFCC) features, widely adopted in speaker recognition tasks [63, 64]. 

Next, for the back-end, two different approaches were implemented: i) the well-

known GMM/UBM classifier [65] and ii) the I-Vector/GPLDA classifier 

framework.  

For the face recognition system, two different approaches were tested as well. 

Initially, a similar structure to the first speaker system was used, using as the front-

end the 2D Discrete Cosine Transformation (DCT) and the GMM/UBM matcher 

for the back-end. The other method of interest, as shown in Figure 3-1 was the Local 

Binary Patterns (LBP), which is a well-known texture-based technique that has 

become increasingly popular for face recognition. This “package” is completed 

with the Chi Square Distance Classifier.  

In the following sections each of these algorithms and approaches will be 

covered in detail.  

 

3.2.    
Closed-Set Text-Independent Speaker Recognition System 

In this work, a closed-set text-independent speaker recognition system was 

implemented. A closed-set system assumes that every test user claims for an 

identity that is already in the set of enrolled speakers. Text-independent recognition 

means that the users are not compelled to speak any particular text or speech, so the 

system does not pose any constraint to the linguistic content of the speeches. In 

addition, two modes of operation were tested, this is, identification and verification.   

 

3.2.1.  
Data Acquisition and Preprocessing 

This subsection describes superficially the procedures adopted in this work 

for data acquisition and preprocessing of speech in the process of feature extraction. 

A more detailed description of the algorithms described hereafter can be found in 

[63, 64]. 

In Figure 3-2 it is shown the processing chain to transform the speech 

utterances into MFCC feature vectors. The first step involves a high-pass pre-
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emphasis filter to emphasize the high frequencies and compensate the human 

speech production process which tends to attenuate the high frequencies. 

Following, the temporal signal is divided in “chunks” (called frames) of 25ms of 

duration with 10ms of increment. Each frame is multiplied by a windowing 

Hamming function that smooths the borders. A Fast Fourier Transform operation is 

then applied to each frame, yielding complex spectral values. The phase of the FFT 

is discarded and only the magnitude is considered. Later, a filterbank of 40 

triangular filters (K=40) is constructed in the Mel-Scale, which is a logarithmic 

scale  in frequency domain that is perceptually more meaningful for humans [63, 

64], and then these filters are multiplied by the FFT coefficients, reducing the total 

FFT magnitude coefficients to a more compact representation. The output of the 

Mel-filters is transformed into the logarithmic domain, and then projected into an 

orthogonal Discrete Cosine Transformation (DCT) basis. In practice, the first 13 

DCT coefficients are preserved. 

 

Figure 3-2: Speech signal processing chain for MFCCs computation. 

 

Next, the coefficients are mean and variance normalized (Cepstral Mean and 

Variance Normalization – CMV Norm), and then they are concatenated with the 

delta and delta-delta temporal derivatives computed over adjacent frames (normally 

a span of 2 frames from the left and right). Thus, it ends up with a vector of 

dimension 39 (13 Cepstral coeff. + 13 Delta coeff. + 13 Delta-Delta coeff.). 

 

3.2.2.  
Classification 

Gaussian Mixture Models (GMM) and GMM/UBM. 

 Gaussian mixture models (GMMs) were first introduced as a method for 

speaker recognition in the early 1990’s and have since then become the de-facto 

reference method in speaker recognition [65, 66]. A Gaussian Mixture Model 
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(GMM) is a parametric probability density function represented as a weighted sum 

of Gaussian component densities. GMMs are commonly used as a parametric model 

of the probability distribution of continuous measurements or features in a 

biometric system. Its parameters are estimated from training data using the iterative 

Expectation-Maximization (EM) algorithm [67] or Maximum A-Posteriori 

Probability estimation (MAP) from a well-trained prior model. 

The weighted sum of M-component Gaussian densities is given by the 

equation: 

𝑝(𝐱|λ) =  ∑ 𝑤𝑖 𝑔(𝒙|𝝁𝑖, 𝜮𝑖)

𝑀

𝑖=1

 ( 3-1 ) 

where 𝐱 is a D-dimensional continuous-valued data vector (i.e. measurement or 

features), 𝑤𝑖, 𝑖 = 1,2, … , 𝑀, are the mixture weights, and 𝑔(𝐱|𝝁𝑖, 𝚺𝑖), 𝑖 =

1,2, … , 𝑀, are the component Gaussian densities. Each component density is a D-

variate Gaussian function of the form: 

𝑔(𝐱|𝝁𝑖, 𝚺𝑖) =
1

(2𝜋)𝐷/2|𝜮𝑖|1/2
 exp {−

1

2
(𝐱 − 𝝁𝑖)′ 𝜮𝑖

−1(𝐱 − 𝝁𝑖)} ( 3-2 ) 

with mean vector 𝝁𝑖 and covariance matrix 𝚺𝑖. The mixture weights satisfy the 

constraint ∑ 𝑤𝑖
𝑀
𝑖=1 = 1, being all non-negative.  

The mean vectors, covariance matrices and mixture weights from all 

component densities parameterize the complete Gaussian mixture model, 

represented by the notation: 

λ = {𝑤𝑖, 𝝁𝑖, 𝚺𝑖} , 𝑖 = 1, … , 𝑀 ( 3-3 ) 

The classification using this method can be seen as a likelihood ratio (LR) 

detector [65] between a GMM model of a given speaker and a model that describes 

the entire space of possible alternatives to that speaker. Formally, 

Λ(𝐱) = log 𝑝(𝐱|𝜆ℎ𝑦𝑝) − log 𝑝(𝐱|𝜆ℎ𝑦𝑝̅̅ ̅̅ ̅̅ ) ( 3-4 ) 

where the likelihood ratio is converted into a difference of log-likelihoods between 

the models.  

In practice, this alternative model 𝑝(𝐱|𝜆ℎ𝑦𝑝̅̅ ̅̅ ̅̅ ), common to each hypothesized 

speaker, is constructed by pooling data from several speakers and then training a 

single model, called Universal Background Model (UBM), using the Expectation-

Maximization algorithm [67]. Once trained the UBM, the GMM speaker models 

are constructed with a form of Bayesian adaptation, called Maximum A-Posteriori 
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Probability (MAP) estimation. Although it is possible to adapt all the parameters of 

the UBM, it is customary only to adapt the means, as it has been empirically proven 

to offer the best results [65]. Figure 3-3 shows this idea in a synthetic 2-dimensional 

space. 

 

Figure 3-3: MAP algorithm used to adapt the means of the UBM based on the observed 

data from speaker. 

 

I-Vector framework 

In order to create a better model for the speakers, that takes into account the 

session variabilities and other nuisances existing in the speaker phones, a new 

framework was developed by Kenny et al. in [68], with the use of Factor Analysis 

techniques. This new framework is based on the concept of “supervector” and 

provides a new fixed-length representation of the variable-length utterances from 

the users. Formally speaking, given a sequence of 𝑁 MFCC frames, 𝑂 =

{𝑜𝑡}𝑡=1
𝑁  with 𝑜𝑡 ∈ ℝ𝐷 and a UBM model λ𝑈𝐵𝑀 = ({𝑤𝑘}, {𝝁𝑘}, {𝚺𝑘}) with 𝐾 

components, the zero and first-order Baum-Welch statistics are extracted, and the 

supervector 𝜃 = {𝜃1
𝑇 , … , 𝜃𝐾

𝑇}𝑇 is constructed by appending the zero and centered 

first-order statistics for each component mixture to form a high dimensional vector 

of dimension 𝐾𝐷 x 1, as described in [69].  

This supervector, which can be perceived as the container for the main 

differences between users, is assumed to obey an affine linear model of the form: 

𝜃 = 𝑚 + T𝑥 ( 3-5 ) 

where 𝑚 ∈ ℝ𝐾𝐷 is the mean supervector coming from the UBM, T ∈ ℝ𝐾𝐷 x 𝐹 is a 

rectangular matrix of low rank called Total Variability Space, representing the 

speaker-specific information along with the session variabilities, and 𝑥 ∈ ℝ𝐹 is a 

Speaker model adapted from UBM 

 

Universal Background Model 
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standard normally distributed latent variable called total factors, used to compute 

the i-vectors. Their dimension can be chosen by the user, being F = 400 a typical 

value which has empirically offered good results for the speaker recognition 

problem.  

The T matrix is obtained from a set of training feature vectors as described in 

[70], using the UBM model to compute the required statistics over the training 

vectors. Once calculated the matrix T, they are computed the total factors for every 

utterance, and the i-vectors are obtained, following a procedure detailed in [69].  

After obtaining the i-vectors for every speaker utterance, a Linear 

Discriminant Analysis (LDA) algorithm is used to annihilate undesired variabilities 

and to increase the discrimination between speaker subspaces[69]. This new 

algorithm further reduces the dimensionality of the data, up to 200. Finally, and 

before the classification using the GPLDA probabilistic generative model, the data 

is centered (mean normalized), and length normalized.  

 

Gaussian Probabilistic Linear Discriminant Analysis (GPLDA) 

classifier 

Probabilistic Linear Discriminant Analysis (PLDA) was firstly introduced in 

face recognition in [71] as a technique for separating the within-individual and 

between individual variations, and then it was successfully adapted to speaker 

recognition tasks, representing nowadays the state-of-the-art in the field. Two basic 

assumptions are taken into consideration in this version of the model: i) the speaker 

and channel components are statistically independent and ii) they are Gaussian 

distributed. By making these assumptions, the likelihood ratios can be obtained in 

a closed-form.  

 The GPLDA model used in the speaker recognition context assumes that the 

descriptors, in our case the i-vectors, are made of speaker-specific components and 

undesired variability components (session variabilities or channel components). 

Formally, given 𝑅 utterances from speaker 𝑖, and denoting the collection of i-

vectors as {𝜂𝑖,𝑟}, with 𝑟 = 1, … , 𝑅, the observed i-vector 𝜂𝑖,𝑟 can be decomposed 

as: 

𝜂𝑖,𝑟 = 𝑚 + ϕ𝛽𝑖 + Γ𝛼𝑖,𝑟 + 𝜖𝑖,𝑟 ( 3-6 ) 
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where, 𝑚 + ϕ𝛽𝑖 describes the between-speaker variability, and Γ𝛼𝑖,𝑟 + 𝜖𝑖,𝑟 

describe the channel components. In particular, the columns of ϕ and Γ provide the 

basis for the speaker-specific subspace (eigenvoice) and the channel dependent 

subspace (eigenchannel) respectively; the vectors 𝛽 and 𝛼 are the latent vectors of 

these subspaces respectively; 𝜖 represents the residual components not described by 

the previous terms, assumed to follow a Gaussian distribution with zero-mean and 

diagonal covariance 𝚺.  

A further simplification is commonly applied, proposed in [72, 73], in which 

the eigenchannels are discarded and a full covariance matrix is considered on the 

residual term. In this way, the modified GPLDA is simplified as follows: 

𝜂𝑟 = 𝑚 + ϕ𝛽 + 𝜖𝑟 ( 3-7 ) 

The model parameters {𝑚, ϕ, 𝚺} are obtained from a large collection of 

development data using the EM algorithm, as described in [71]. 

For classification using the PLDA mechanism, two i-vectors 𝜂1 and 𝜂2 are 

presented to the system and the objective is to determine whether both i-vectors 

share the same latent variable 𝛽 (hypotheses ℋ𝑠) or they were generated using 

different latent variables 𝛽1 and 𝛽2 (hypotheses ℋ𝑑). The score is computed as the 

log-likelihood ratio of posterior probabilities between the hypotheses, as follows: 

𝑠𝑐𝑜𝑟𝑒 = log
𝑝(𝜂1, 𝜂2| ℋ𝑠)

𝑝(𝜂1| ℋ𝑑)𝑝(𝜂2|ℋ𝑑)
 ( 3-8 ) 

This score is computed between each test-gallery pair of users defined in the 

testing process. 

The general workflows for the two classification methods presented so far are 

depicted in Figure 3-4 and Figure 3-5. Common to both models is the initial step of 

training the UBM, in which a training feature set is used, called development in the 

figure. For the GMM approach, once the UBM is trained, a new set of features 

called enrollment set is used to create the gallery models (Adapted speakers), using 

MAP adaptation.  
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Figure 3-4: Signal flow in the GMM/UBM classification approach. 

Finally, every test sample in the test set is scored with the likelihood ratio 

detector with all gallery models in identification mode and with the claimed identity 

model in verification mode.  

 

Figure 3-5: Signal flow in the I-Vector/GPLDA classification approach. 

For I-Vector/GPLDA scheme, once the UBM is created, the Baum-Welsh 

statistics are extracted from the training set, and they are used to train the Total 

Variability Space. Once this space is trained, the I-Vectors are extracted and the 

Gaussian PLDA Model is created from the training set. The hyperparameters of the 
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GPLDA model, as well as the variability matrix for the LDA are learned from these 

training I-Vectors.  

Finally, every new user that is to be enrolled to the system has its utterance 

converted to an I-Vector and stored. Every new test sample repeats the same 

enrollment process, but it is not saved, just scored with each existing model.   

 

3.3.  
Facial Recognition System 

This section describes the front-end and back-end algorithms used in this 

work for facial recognition.  

 

3.3.1. Data Acquisition and Preprocessing 

For classifying faces the first step is to normalize the images in the database, 

in order to extract the main characteristics in form of feature vectors. The 

normalization is composed of two step: a geometric normalization and a 

photometric normalization. In the present dissertation, the geometric normalization 

frame the faces to fixed sized boxes of 80x64 pixels, with the eyes coordinates in 

fixed locations. Then, the photometric normalization compensates for the 

illumination, contrast, gamma and other effects. This procedure is illustrated in 

Figure 3-6. 

 

Figure 3-6: Face Geometric and Photometric Normalization. 

  

Two different feature extraction techniques were used, once the images were 

normalized. In first place, for the GMM/UBM classifier, the normalized images 

were divided in patches of 16x16 pixels with 50% of overlap between consecutive 

patches. Then a Discrete Cosine Transformation (DCT-mod2 presented in [74]) was 

applied to each patch, selecting the first 64 components corresponding to the lowest 
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frequencies. Finally, the DCT components extracted from each patch are stacked 

together forming the feature vector of the images. The other approach followed is 

the Local Binary Patterns (LBP) proposed in [75], and it will be explained in detail 

below.  

 

Local Binary Patterns 

The LBP operator is one of the most used texture-based descriptors in facial 

recognition applications involving frontal images with minor variations of facial 

expressions[76]. It is computationally efficient and highly discriminative. 

The descriptor is formed by thresholding each pixel intensity of an image at 

location 𝐱 = {𝑥, 𝑦} with its neighbors at a distance R, as indicated in Figure 3-7. If 

the sampling point doesn’t fall in the pixel’s center, a bilinear interpolation is used. 

The LBP code is formed from the concatenation of the m 0’s and 1’s in an arbitrary 

but fixed order.  

Once obtained the labeled LBP image, it is divided in equally-sized non-

overlapping blocks or regions, and a histogram of 59 bins is computed over each 

block. Each histogram is weighted according to the region it belongs to, so relative 

importance can be given to some regions in the face over others. The resulting 

histograms are concatenated in a feature vector that represents the image.  

 

Figure 3-7: The basic LBP operator (taken from [77]). 

 

3.3.2.  
Classification 

The GMM/UBM approach followed in the Facial Recognition System was 

the same used for the Speaker Recognition counterpart (refer to section 3.2.2). 

R = 2, m = 8 
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The matching procedure followed in the LBP approach is based on a 

dissimilarity measure between weighted histograms from two given images, using 

a Chi-Square distance function, ruled by the following equation: 

𝜒𝜔
2 (𝐒, 𝐌) = ∑ 𝜔𝑗

(𝐒𝑖,𝑗 − 𝐌𝑖,𝑗)2

𝐒𝑖,𝑗 + 𝐌𝑖,𝑗
𝑖,𝑗

 ( 3-9 ) 

where 𝜔𝑗 is the weight associated with region 𝑗; 𝐒𝑖,𝑗 and 𝐌𝑖,𝑗 represent the feature 

vectors extracted from a pair of test and gallery images respectively. 

3.4.  
Multibiometric Fusion 

In the following sections we describe the algorithms applied in this study for 

biometric fusion. In the following text we use the word “matcher” to denote a 

unimodal biometric scheme comprising a feature extraction and a classification 

model. 

 

3.4.1.  
Score Fusion Techniques 

The Score Fusion methods integrate the information coming from the 

matcher’s outputs in form of scores. The available techniques are commonly 

divided in three categories: 1) Transformation-Based Score Fusion, 2) Density-

Based Score Fusion and Classifier-Based Score Fusion. In the following sections 

they will be explained in detail. 

It is worth pointing out that a gallery-aggregated score convention will be 

used. It states as follows: given a database, let 𝐺 be any enrolled user in the gallery 

and 𝑄 be an identity in the probe set, a score is said to be a genuine score if 𝑄 = 𝐺, 

otherwise it is an impostor score. In other words, any comparison between an 

individual sample in the test set and a model of himself in the gallery is labeled as 

a genuine score and otherwise it is labeled as impostor.  
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Transformation-Based Score Fusion 

This method of fusion is based on the combination of scores by simple 

arithmetic operations like the average sum, product, min and max of the scores.  

 

Fusion 

Let’s denote 𝑠𝑗
𝑖 the 𝑖𝑡ℎ score output by the 𝑗𝑡ℎ matcher (𝑖 = 1, … , 𝑁, 𝑗 =

1, … , 𝑅, 𝑁 is the number of users enrolled in the gallery at each matcher and 𝑅 is 

the number of matchers) and let 𝑓𝑖 be the fused score, which can be calculated in a 

number of different ways, for instance: 

 The average sum of scores: 

𝑓𝑖 =
1

𝑅
∑ 𝑠𝑗

𝑖

𝑅

𝑗=1

 ( 3-10 ) 

 The product of scores: 

𝑓𝑖 = ∏ 𝑠𝑗
𝑖

𝑅

𝑗=1

 ( 3-11 ) 

 The minimum of scores: 

𝑓𝑖 = min (𝑠1
𝑖 , 𝑠2

𝑖 , … , 𝑠𝑅
𝑖 ) ( 3-12 ) 

 The maximum of scores: 

𝑓𝑖 = max (𝑠1
𝑖 , 𝑠2

𝑖 , … , 𝑠𝑅
𝑖 ) ( 3-13 ) 

 

The direct fusion of scores is not suitable when the scores are not compatible, 

i.e. the scores can be either measures of similarity or distance, or have different 

scales. In this case, a normalization step is needed to transform the scores into a 

common domain before the fusion. The normalization schemes studied in this work 

are the Min-Max, the Z-Score and the Tanh normalization.  

 

Normalization 

Let’s denote 𝑛𝑠𝑗
𝑖 the normalized score, 𝜇𝑗 and 𝜎𝑗 the arithmetic mean and 

standard deviation of the training scores respectively: 

 The Min-Max normalization is defined as: 
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𝑛𝑠𝑗
𝑖 =

𝑠𝑗
𝑖 − min𝑖=1

𝑁 𝑠𝑗
𝑖

max𝑖=1
𝑁 𝑠𝑗

𝑖 − min𝑖=1
𝑁 𝑠𝑗

𝑖
 ( 3-14 ) 

 The Z-Score normalization is defined as: 

𝑛𝑠𝑗
𝑖 =

𝑠𝑗
𝑖 − 𝜇𝑗

𝜎𝑗
 ( 3-15 ) 

 The Tanh normalization is defined as: 

𝑛𝑠𝑗
𝑖 =

1

2
{tanh (0.01

𝑠𝑗
𝑖 − 𝜇𝑗

𝜎𝑗
) + 1} ( 3-16 ) 

The Min-Max and Tanh normalization methods transform the scores into a 

common range {0,1}. Using these methods, the scores from the distance classifiers 

can be converted into similarity scores by subtracting the normalized score from 1. 

Moreover, the Z-Score method centers the distribution of the normalized scores and 

equals the variance to 1. These methods have in common that they require a training 

set to compute their parameters.  

 

  
Density-Based Score Level Fusion 

This is the most principled approach for biometric fusion [1] and it is based 

on estimating the probability density functions of the scores of each class, as 

explained in the course of this section.  

According to the Bayesian decision theory, given an input pattern 𝑋 

composed by the feature vectors derived from 𝑅 biometric modalities (𝑋 =

(𝑥1, … , 𝑥𝑅)), and {𝜔1, … , 𝜔𝑀}, being the possible classes for classification, the 

input pattern should be assigned to the class 𝜔𝑟 that maximizes the posterior 

probability, i.e., 

Assign 𝑋 → 𝜔𝑟 if 

𝑃(𝜔𝑟|𝑥1, … , 𝑥𝑅) ≥ 𝑃(𝜔𝑘|𝑥1, … , 𝑥𝑅) 
( 3-17 ) 

This rule is called the minimum error-rate decision rule and it assigns no cost 

to a correct decision and a unit cost to a misclassification error, or in other words, 

all the errors are equally costly. In real applications, different costs are assigned to 

the errors. Specifically, if 𝜂 = 𝜆1/𝜆2 is the ratio between the costs associated with 

false acceptance (𝜆1) and false rejection (𝜆2) errors respectively, the Bayesian 

decision rule takes the form: 
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Assign 𝑋 → 𝜔𝑟 if 

𝑃(𝜔𝑟|𝑥1, … , 𝑥𝑅)

𝑃(𝜔𝑘|𝑥1, … , 𝑥𝑅)
≥ 𝜂 

( 3-18 ) 

The output of the biometric matchers are scores and not joint posterior 

probabilities, so in order to apply the Bayesian approach in equation ( 3-18), it is 

necessary to transform the independent scores at the matcher’s outputs into joint 

posterior probabilities, or using Bayes Rule, into a joint likelihood ratio, as it will 

be seen subsequently.  

In [43], Verlinde et al. proposed that the match score 𝑠𝑘 of the 𝑘𝑡ℎ matcher is 

related to its marginal posterior probability by the equation: 

𝑠𝑘 = 𝑓{𝑃(𝜔𝑘|𝑥𝑗)} + 𝛽(𝑥𝑗) ( 3-19 ) 

where 𝑓{} is a monotonic function and 𝛽(𝑥𝑗) is the estimation error, which depends 

on the feature vectors. 

In this formula, assuming 𝛽 is zero, it is reasonable to approximate  𝑃(𝜔𝑘|𝑥𝑗) 

by 𝑃(𝜔𝑘|𝑠𝑗), which is the posterior probability of class 𝜔𝑘 given the score 𝑠𝑗. Using 

the Bayes Rule, and assuming that all classes are equally probable, the posterior 

probability ratio between classes 𝜔𝑖 and 𝜔𝑘 can be stated as follows (also known 

as density function ratio or likelihood ratio): 

𝑃(𝜔𝑖|𝑠𝑗)

𝑃(𝜔𝑘|𝑠𝑗)
=

𝑝(𝑠𝑗|𝜔𝑖)

𝑝(𝑠𝑗|𝜔𝑘)
 ( 3-20 ) 

This formula can be extended to joint densities of 𝑅 matchers, following the 

same considerations as with previous equation, which yields the Neyman-Pearson 

theorem, described in [78]: 

Assign 𝑋 → 𝜔𝑖 if 

( 3-21 ) 𝑃(𝜔𝑖|𝑠1, … , 𝑠𝑅)

𝑃(𝜔𝑘|𝑠1, … , 𝑠𝑅)
=

𝑝(𝑠1, … , 𝑠𝑅|𝜔𝑖)

𝑝(𝑠1, … , 𝑠𝑅|𝜔𝑘)
≥ 𝜂 

where 𝜂 is the ratio of error costs described in equation ( 3-18). 

Finally, as it can be seen in the equation ( 3-21), the idea is to estimate the 

joint density functions of all matchers for each class and then apply the Neyman-

Pearson rule. This problem can be addressed in two ways:  

1) Estimate the marginal densities functions 𝑝(𝑠𝑗|𝜔𝑖) of the scores of each 

individual matcher 𝑠𝑗, 𝑗 = 1 … , 𝑅 for every class 𝜔𝑖, 𝑖 = 1 … , 𝑀, and then use the 

methods proposed in [4] by Kittler et al. to combine the marginals. These methods 

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



45 
Chapter 3. THEORETICAL FUNDAMENTALS 
 

consist on the sum, product, min, max and median of the density functions based 

on the assumption of statistical independence between them (i.e. the biometric 

matchers). In this work, only the product and sum of marginal densities were 

evaluated. 

2) Directly estimate the joint density functions of the scores of all matchers 

that pertain to a given class 𝜔𝑘 (i.e. 𝑝(𝑠1, … , 𝑠𝑅|𝜔𝑘)). 

In the case of verification, only the classes genuine and impostor exist. 

Therefore, the equation ( 3-21) can be simplified as follows:  

Assign 𝑋 → 𝑔𝑒𝑛𝑢𝑖𝑛𝑒𝑠 if 

( 3-22 ) 𝑝(𝑠1, … , 𝑠𝑅|𝑔𝑒𝑛𝑢𝑖𝑛𝑒𝑠)

𝑝(𝑠1, … , 𝑠𝑅|𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟𝑠)
≥ 𝜂 

Density estimation can be also divided in two categories: parametrical or non-

parametrical. In the first case, the scores are assumed to follow a known density 

function (e.g. Gaussian) and the parameters are estimated from the training scores. 

For the second case, no prior assumption is made about the form of the density 

function, and the estimation is data-driven. In this work, two non-parametric 

methods were used. For the approach in 1), the Kernel Density Estimation 

algorithm was employed, whereas for the approach in 2), the Mixture of Gaussians 

algorithm was used.  

 

Kernel Density Estimation 

The KDE algorithm is a well-known non-parametric technique for estimating 

the probability density function followed by a set of data. It is ruled by the following 

equation (also known as Parzen window estimator): 

𝑓(𝑠) =
1

ℎ𝑁
∑ 𝐾(

𝑠 − 𝑠𝑖

ℎ
)

𝑁

𝑖=1

 ( 3-23 ) 

where 𝐾 is the kernel function, which satisfies ∫ 𝐾(𝑥)𝑑𝑥 = 1
∞

−∞
; 𝑠𝑖 is the observed 

score vector, 𝑖 =  1: 𝑁 (𝑁 being the vector size); ℎ is the bandwidth of the kernel. 

It is common to select a kernel symmetrical about zero, and for this work, it was 

selected a Gaussian kernel. The other critical parameter is the bandwidth, which 

was chosen empirically according to the expression:  

ℎ =
𝜎

𝑙𝑜𝑔 (𝑁)
 ( 3-24 ) 

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



46 
Chapter 3. THEORETICAL FUNDAMENTALS 
 

where 𝜎 is the standard deviation of the training match score vector for a given 

class. 

 

GMM-based Density Estimation 

The GMM algorithm presented in 3.2.2 can be used as well for estimating the 

multivariate conditional density function of scores of 𝑅 matchers. For genuine and 

impostor classes in verification mode, the estimates of the density functions 𝑓𝑔𝑒𝑛(𝒔) 

and 𝑓𝑖𝑚𝑝(𝒔) are obtained as a mixture of Gaussians as follows: 

𝑓𝑔𝑒𝑛(𝒔) =  ∑ 𝑤𝑔𝑒𝑛,𝑖 𝑔
𝐾(𝒔, 𝝁𝑔𝑒𝑛,𝑖, 𝜮𝑔𝑒𝑛,𝑖)

𝑀𝑔𝑒𝑛

𝑖=1

 ( 3-25 ) 

𝑓𝑖𝑚𝑝(𝒔) =  ∑ 𝑤𝑖𝑚𝑝,𝑖 𝑔
𝐾(𝒔, 𝝁𝑖𝑚𝑝,𝑖, 𝜮𝑖𝑚𝑝,𝑖)

𝑀𝑖𝑚𝑝

𝑖=1

 ( 3-26 ) 

where 𝑀𝑔𝑒𝑛 and 𝑀𝑖𝑚𝑝 are the number of mixture components used to model the 

density functions of genuine and impostor scores respectively;  𝑔𝐾(𝒔, 𝝁𝑔𝑒𝑛,𝑖, 𝜮𝑔𝑒𝑛,𝑖) 

and 𝑔𝐾(𝒔, 𝝁𝑖𝑚𝑝,𝑖, 𝜮𝑖𝑚𝑝,𝑖) are the K-variate Gaussian density functions with mean 

vectors 𝝁𝑔𝑒𝑛,𝑖 and 𝝁𝑖𝑚𝑝,𝑖 and covariance matrices 𝜮𝑔𝑒𝑛,𝑖 and 𝜮𝑖𝑚𝑝,𝑖 of the 𝑖𝑡ℎ 

mixture component respectively; 𝑤𝑔𝑒𝑛,𝑖 and 𝑤𝑖𝑚𝑝,𝑖 are the weights assigned to the 

𝑖𝑡ℎ mixture component. 

The number of Gaussian components was selected using the algorithm 

proposed in [79], which automatically estimates the number of components and its 

parameters using an EM algorithm and the Minimum Message Length (MML) 

criterion. This algorithm is also robust to initialization of parameter values (mean 

vectors and covariance matrices) and it can handle discrete components in the match 

score distribution by modeling the discrete scores as a mixture component with very 

small variance. 

 

  
Classifier-Based Score Fusion 

Finally, this last approach for combining matcher’s scores is based on the idea 

of using classifiers for finding the decision boundary between the classes, 

specifically, for the verification task, between genuine and impostor classes. In this 
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methodology, every score vector is treated as a feature vector in a classification 

scheme.  

Because the classifiers treat the scores as features, it is irrelevant the form of 

the scores, i.e. they can be non-homogeneous, have different scales, etc. In this 

work, the probabilistic versions of two popular classifiers were used: 1) the Support 

Vector Machine (SVM) and 2) Random Forest (RF). These versions of algorithms 

are called probabilistic because they provide the posterior probability of each class 

for every input test pattern classified. In the following lines, they are succinctly 

explained.    

 

Support Vector Machines 

Support vector machines (SVM) are a set of supervised learning algorithms, 

introduced by Vapnik et al. in 1995 [80], used for classification and regression 

problems. It was firstly introduced for binary classification, but eventually it was 

extended to be used in multiclass classification too. It is based on the idea of seeking 

a decision boundary between two classes that maximizes the margin between them, 

and therefore minimizes the classification error.  

Formally, given 𝑁 training samples of dimension 𝐷, 𝐱𝒊, 𝑖 = 1, … , 𝑁 with 𝐱 ∈

ℝ𝑫 that pertain to one of two classes 𝑦𝑖 ∈ {−1,1}𝑁, it is desired to separate the 

classes with the hyperplane: 

𝐰 ∗ 𝐱 + 𝑏 = 0 ( 3-27 ) 

where 𝐰 is the vector normal to the hyperplane and 𝑏 is the bias.  

If the data is linearly separable, there exist an infinite number of planes that 

divide the classes, but obtaining the one that maximizes the margin can be shown 

to be equivalent to a minimization problem of the form: 

arg min
𝐰,𝑏

 
𝟏

𝟐
‖𝐰‖𝟐       subject to    𝑦𝑖(𝐰𝑻𝐱𝑖 + 𝑏) ≥ 1   ∀𝑖 ( 3-28 ) 

If the data is not linearly separable, it is needed a transformation onto a high-

dimensional feature space in which the data is linearly separable, by using a non-

linear mapping function 𝜙(∙). Since only the inner product of two vectors in that 

new space matters, the problem boils down to finding a function, called kernel 

function, that computes the inner product in that space, with no need to explicitly 

mapping from the low to the high dimensional space. Typical used kernels are the 
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Polynomial kernel, Sigmoidal kernel and Radial Basis Function (RBF), the latter 

used in this work, with the form: 

𝑘(𝐱𝑖, 𝐱𝑗) = exp (−𝛾‖𝐱𝑖 − 𝐱𝑗‖
2

) ( 3-29 ) 

where 𝛾 is a modulating constant. 

When it is allowed some points to violate the margin, opening the possibility 

for some errors to occur, the margin is called soft margin. Considering this case, 

and using a kernel in a non-linearly separable problem, the minimization equation 

( 3-28) can be extended in a general form as follows: 

arg min
𝐰,𝑏,𝜉

 
𝟏

𝟐
‖𝐰‖𝟐 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1     

subject to    𝑦𝑖(𝐰𝑻𝜙(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖   ∀𝑖 , 𝜉𝑖 ≥ 0 

( 3-30 ) 

where 𝐶 > 0 is a penalty parameter of the error 𝜉. 

The solution to this problem is given after finding the Lagrangian multipliers 

𝛂 in the equation: 

arg min
𝛂

 
𝟏

𝟐
𝛂𝑻𝓗 𝛂 − ∑ 𝛼𝑖

𝑵
𝒊=𝟏       

subject to   0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖  and ∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖 = 0  

( 3-31 ) 

where 𝓗 is the matrix formed with the elements 𝐻𝑖𝑗 = 𝑦𝑖𝑦𝑗𝜙(𝐱𝑖)𝜙(𝐱𝑗). 

Using a Quadratic Programming optimization tool, the 𝓗 matrix is passed as 

input, and the 𝛂 values are returned. The values of 𝛂 different to zero are called the 

support vectors. With these values, 𝐰 and 𝑏 are computed following this procedure: 

 compute 𝐰 =  ∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖  𝜙(𝒙𝑖)  

 find the indices of 𝛼𝑖  such as 0 ≤ 𝛼𝑖 ≤

𝐶 (the support vectors) 

 solve for b using any 𝛼 > 0:    𝑏 = 𝑦𝑚 −

∑ 𝛼𝑛𝛼𝑛>0 𝑦𝑛 𝑘(𝐱𝑛, 𝐱𝑚)  

( 3-32 ) 

Each new point 𝐱′ is finally classified by evaluating 𝑦′ = 𝑠𝑔𝑛(𝐰 𝐱′ + 𝑏). The 

parameters 𝐶 and 𝛾 should be estimated using cross validation in the training data. 

 

Random Forests 

The random forest algorithm was proposed by L. Breiman in 2001 [53], and 

it has become a very popular method for general-purpose classification and 

regression because of its simplicity to train and tune. In essence, it is an ensemble 
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of randomly trained decision trees, where each tree is constructed using a random 

subset of the data, and the features in the data, and then their results are averaged. 

This principle is called bagging, and it is the essential idea behind random forest. 

By averaging many noisy models, such as decision trees, the intrinsic variance of 

the trees is reduced, giving good generalization performance. 

The algorithm pseudo code is as follows:  

1. For 𝑏 =  1 to 𝐵: 

(a) Draw a bootstrap samples 𝐙 of size 𝑁 from the training data. 

(b) Grow a random-forest tree 𝑇𝑏 to the bootstrapped data, by recursively 

repeating the following steps for each terminal node of the tree, until the 

minimum node size 𝑛𝑚𝑖𝑛 is reached. 

i. Select 𝑚 variables at random from the 𝑝 variables.  

ii. Pick the best variable/split-point among the 𝑚. 

iii. Split the node into two daughter nodes.  

2. Output the ensemble of the trees {𝑇𝑏}1
𝐵. 

When used for classification, each tree outputs a class prediction, and the 

decision is made using majority voting from all trees. When posterior probabilities 

are required, they are given by the ratio between the number of trees that selected a 

given class and the total number of trees in the ensemble. In contrast, if the 

algorithm is used for regression, the predictions from each tree at a target point 𝑥 

are averaged. A recommended values for 𝑚 and for the minimum node size 𝑛𝑚𝑖𝑛 

are  √𝑝 and 1 respectively [81].  
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UNIMODAL BIOMETRIC SYSTEMS SETUP 

In this chapter it is detailed the experimental setup designed to seek the 

optimal parameters for the unimodal biometric systems, and their performance is 

evaluated using two different datasets, which are also described in the course of this 

section. In addition, are presented the metrics used in the evaluation, the outlines of 

the experimental procedures, the protocols for configuring the unimodal 

recognition systems and the results of the experiments conducted for each 

configuration.  

 

4.1.  
Datasets 

In this work, two bi-modal datasets comprising voices and faces were used to 

assess the performance of the unimodal systems. The first  was artificially 

constructed from two individual unimodal datasets, specifically the TIMIT speech 

corpus [82] and the Facial Recognition Technology (FERET) dataset [83] (Virtual 

Database hereinafter). The other dataset used was the MOBIO database [18], which 

is a truly bi-modal dataset (MOBIO Database hereinafter).  

It is worth remarking that the parameter tuning methodology that is presented 

in this chapter was conducted using only the Virtual database, this is, the composite 

of TIMIT and FERET databases, whereas the performance evaluation was 

completed for both databases. For the MOBIO database, the parameters were fixed 

using the best configuration obtained from the experimental analysis of the Virtual 

database. 

 

Virtual Database 

The virtual bimodal database was constructed using the TIMIT and FERET 

databases which are going to be explained in detail in the course of this section.  
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The Speaker Recognition System (SRS hereinafter) was tuned using the 

TIMIT corpus. The corpus consists of native American English speakers from 8 

dialect regions. It contains in total 630 speakers, of which 438 are males (70 %) and 

192 females (30 %), according to the distribution shown in the table below (Table 

4-1).  

 

Dialect Region Males Females Total 

1 31 (63%) 18 (27%) 49 (8%) 

2 71 (70%) 31 (30%) 102 (16%) 

3 79 (67%) 23 (23%) 102 (16%) 

4 69 (69%) 31 (31%) 100 (16%) 

5 62 (63%) 36 (37%) 98 (16%) 

6 30 (65%) 16 (35%) 46 (7%) 

7 74 (74%) 26 (26%) 100 (16%) 

8 22 (67%) 11 (33%) 33 (5%) 

Total 438 (70%) 192 (30%) 630 (100%) 

Table 4-1: Dialect distribution of speakers in TIMIT database. 

 

There are 10 speech files for each speaker (hereinafter, samples per person). 

Two of the files have the same linguistic content for all speakers, whereas the 

remaining 8 files are phonetically diverse. The corpus has been recorded in a 

soundproof environment with a high-quality microphone. Speech files are stored in 

NIST/Sphere “wav”-file format with a sampling frequency of 16 kHz and a 

quantization resolution of 16 bits per sample. 

In order to reproduce a real operation scenario, the utterances were mixed 

with artificial noise at different Signal to Noise Ratios (SNR). For this purpose, in 

addition to the TIMIT corpus, noise samples from the Noisex-92 database were 

used [84-86]. Specifically, white noise, pink noise, speech babble, factory noise, 

car noise and f16 noises were chosen to mix with the speaker voices. The noises 

were randomly added to the speech data, before the feature extraction, as described 

in the Section 4.4.1.   

For the configuration of the Facial Recognition System (FRS hereinafter), it 

was used the FERET (Facial Recognition Technology) dataset [83]. It contains a 

total of 14,126 images that includes 1199 individuals.  
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Images of individuals are in sets of 5 to 11 images, so different quantity of 

images are available from some persons. Common to all sets, there are two frontal 

views, fa and fb, the first being a neutral pose while the second was taken using a 

different facial expression. The rest of images in the sets have variations in scale, 

pose, facial expression, illumination, facial accessories (i.e. glasses) and rotation, 

as can be seen in the sample below (see Figure 4-1) [87].  

 

Figure 4-1: Sample of Images from FERET database. 

The facial images were geometrically and photometrically normalized using 

the coordinates of the eyes, provided as metadata in the FERET database. Not every 

person in the database had that information, so only 866 individuals of the total 

were normalized, ending with 366 females and 500 males after normalization. Also 

the number of normalized frontal images per person varies, depending on the set of 

images.  

   The construction of this combined database was accomplished by creating 

virtual persons (or chimeras1), randomly pairing a user from one unimodal database 

with a user from the other database. Because the FERET dataset is larger than the 

TIMIT, some users were randomly discarded, ending up with the same number of 

individuals and the same proportion of males and females, i.e., 192 females and 438 

males.  

The composite of data between the datasets implicitly assumes that the two 

biometrics (face and speech) are independent, which has been studied to be a valid 

approximation, from prior related works. It was considered the gender in the pairing 

of both databases as well. 

                                                 
1 Chimeras are composites of data representing virtual “individuals” that combine biometrics 

from multiple individuals (selected at random). 
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MOBIO Database 

The MOBIO database is a truly bi-modal database of audio and video 

captured by mobile phones and laptops. It comprises 150 individuals, of which 99 

are males and the rest females. The data was recorded in 6 different locations in 5 

different countries, and in 12 different sessions, with people speaking English. 

Samples of this database are shown in Figure 4-2. This database is challenging 

because the images and utterances were extracted under adverse conditions, i.e. 

uncontrolled illumination, background noise, facial expressions, occlusion, and 

other effects, as it can be seen in the figure.  

 

Figure 4-2: Samples of Images from MOBIO database. It shows two individual under 

different session conditions, where occlusion, illumination and pose effects are present. 

 

For this dataset, the International Conference on Biometrics (ICB-2013) opened a 

competition in which two evaluation protocols for speaker and face recognition 

systems were defined [88, 89]. In those, an identical partitioning of the database 

was set on each case, as shown in Table 4-2.  

 

 Training Development Evaluation 

   Enrollment Probe Enrollment Probe 

 Clients Files Clients Files Files Scores Clients Files Files Scores 

male 37 7104 24 120 2520 60480 38 190 3990 151620 

female 13 2496 18 90 1890 34020 20 100 2100 42000 

Total 50 9600 42 210 4410 94500 58 290 6090 193620 

Table 4-2: Partitioning of the MOBIO database in Training, Development and Evaluation 

sets for the ICB-2013 evaluation competition. 

 

In this work, we used the same partitioning for our experiments, with the 

difference that we discarded the evaluation set because the probe samples were not 

labeled, so we only worked with the training and development sets. Therefore, the 

total number of persons we used was 92.  

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



54 
Chapter 4. UNIMODAL BIOMETRIC SYSTEMS SETUP 
 

4.2.  
Metrics 

For assessing the performance of the biometric classifiers in identification 

and verification modes, we used the CMC (Cumulative Match Characteristic) 

curves and the ROC (Receiver Operating Characteristic) curves respectively.  

The CMC curve describes the proportion of times in which the correct 

classification of probe samples is observed within the top k ranks. In other words, 

a rank-1 outcome for a given probe is considered a correct identification and a rank-

5 result means the correct identity is within the top 5 ranks of the score set. The 

ranking process is repeated for every probe individual and at the end, the percentage 

of correct matches is computed for each rank value.  

The ROC curve on the other hand describes the behavior of classifiers 

operating in verification mode, based on the metrics of False Acceptance Rate 

(FAR) or False Positive Rate (FPR) and False Rejection Rate (FRR) or False 

Negative Rate (FNR). Two types of errors can occur: (1) false rejection, that is, 

falsely rejecting a genuine user’s claim, or (2) false acceptance, that is, falsely 

accepting the claim to be from a genuine user when the actual person is an impostor. 

These curves are constructed varying a threshold 𝑡 at which an individual is 

accepted or rejected. The error rates can be computed as follows: 

𝐹𝑅𝑅(𝑡) = 𝐹𝑁𝑅(𝑡)  =  
|{𝑠𝑔𝑒𝑛|𝑠𝑔𝑒𝑛 < 𝑡}|

|{𝑠𝑔𝑒𝑛}|
 ( 4-1 ) 

𝐹𝐴𝑅(𝑡) = 𝐹𝑃𝑅(𝑡)  =  
|{𝑠𝑖𝑚𝑝|𝑠𝑖𝑚𝑝 ≥ 𝑡}|

|{𝑠𝑖𝑚𝑝}|
 

( 4-2 )  

 

The 𝐹𝑅𝑅 represents the percentage of genuine scores that are below the 

threshold and are incorrectly classified as impostors whereas the 𝐹𝐴𝑅 denotes the 

percentage of impostor scores that exceed the threshold and are incorrectly 

classified as genuines. The term 𝑠𝑔𝑒𝑛 refers to the genuine scores and 𝑠𝑖𝑚𝑝 refers to 

the impostors.  

Other metrics used throughout this work are the Genuine Acceptance Rate or 

True Positive Rate (GAR = TPR = 1-FRR), the equal error rate (EER), which is 

the point where 𝐹𝐴𝑅 equals 𝐹𝑅𝑅, and it is a measure of the authentication accuracy 

at the decision threshold of the classification system, the Area under ROC Curve 

(AUC), which is a measure of discrimination between genuine from impostors.  
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4.3.  
Outline of the Experimental Setup 

Since there is a large number of adjustable parameters to be evaluated, the 

assessment of all possible parameter combinations is not possible. Therefore it is 

applied a simple line search strategy, in which one parameter is varied at a time 

while keeping the rest fixed. Although this procedure does not guarantee a globally 

optimal parameter combination, it gives an idea what are the most critical 

parameters that need to be adjusted in a real application scenario. 

 

4.4.  
Unimodal Biometrics Evaluation 

 In this section, they are described the experiments designed to find the 

optimal parameters for both SRS and FRS. 

 

4.4.1.   
Speaker Recognition System Evaluation Protocol 

For the SRS, it was used the Mel-Frequency Cepstral Coefficients (MFCC) 

as the voice features in the front-end and the Gaussian Mixture Model with 

Universal Background Model (GMM/UBM) and the I-Vector Model with Gaussian 

Probabilistic Linear Discriminant Analysis (GPLDA) as the back-end. The 

parameters of the front-end (MFCC) were fixed in order to provide the state-of-the-

art performance in this application, according to the literature [63]. In this case, it 

was configured as detailed in Table 4-3. Thus, the voice features has dimension 39 

(13 Cepstral Coeff. + 13 Delta features + 13 Delta-Delta features). It is important 

to point out that the length of the utterances are variable, so the matrix that describe 

the voice features have a variable size in one of its dimensions.  

 

Frame Duration = 25mseg # Filter Bank Channels = 30 

Frame Shift = 10mseg # Cepstral Coeff. = 13 

Preemphasis Coeff. (𝛼) = 0.97 Energy Value  = Yes 

Windowing Function = Hamming Delta & Delta-Delta Coeff. = Yes 

Table 4-3: MFCC Parameters for Speaker Recognition System 
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For the I-Vector Model, a total variability space T with 400 total factors was 

learned from the GMM models supervector, which is formed by concatenating the 

mean components of the GMM models into a high and fixed dimensional single 

vector, (see Section 3.2.2). This dimension of T has been found to be good for the 

speaker recognition problem, according to the literature [69].  

For the back-end, the performance of the classifiers was evaluated varying 

the number of samples per person in Gallery and the number of Gaussian 

components to be used in the GMM/UBM and the GPLDA. Also, it was important 

to measure the performance of the system with the addition of noise in the data by 

changing the Signal to Noise Ratio (SNR).  

To start with all possible combinations in the system performance evaluation, 

it was created a base configuration with the following parameters: 

 No Noise 

 1 Sample per Person in Gallery 

 128 Gaussian Components 

 80% Training Set and 20% Test Set 

 

The training and test sets represent the percentage of all speakers that were 

used for creating the Universal Background Model (UBM) and for testing the 

system respectively. The gender information was used to balance the training step, 

so the same percentage of females and males were used, and not to create two 

UBMs, as it is reported in other related works (e.g., [65]). In addition, every 

utterance of each training speaker (10 utterances per speaker in TIMIT) was used 

for training the UBM. The reason for this was to pool the maximum amount of 

speech data to create the UBM, in an effort to universally represent the person-

independent feature characteristics. For gallery enrollment, the persons not used in 

the training process were used with the configured number of samples per person 

in gallery in the adaptation stage. In the test step, only one sample per person was 

used, different from those used in gallery enrollment.  

Using the base configuration described above, three experiments were 

defined and are presented in Table 4-4. Each experiment took in consideration the 

best result from the previous one. 

For every experiment, the dataset was divided in 5 equally populated and 

disjoint groups (i.e., folds). It was used 80% of the database to train the UBM (4 
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folds) and 20% to test the performance of the system (1 fold). The experiments were 

run 5 times, choosing a different test set each time, until 5 different combinations 

were covered. Finally, the resulting CMC and ROC curves were averaged among 

all groups, obtaining cross-validating results. 

 

Experiment 

Number 
Target Parameter Procedure 

1 Noise 

Using the base configuration, test the system 

performance using No Noise and different 

levels of SNRs (24dB, 12dB, 0dB 

respectively). 

2 

Number of samples 

per person in 

gallery 

Using the base configuration, test the system 

performance using 1, 5 and 9 samples per 

individual in gallery. 

3 

Number of 

Gaussian 

Components 

Using the base configuration, test the system 

performance using 32, 64, 128, 256 and 512 

Gaussian Components. 

Table 4-4: Experimental Configuration for Speaker Recognition System Evaluation 

   

4.4.2.  
Results 

For the Experiment 1, Figure 4-3 and Figure 4-4 show the CMC and ROC 

curves of the SRS under different noise conditions.  

 

Figure 4-3: CMC curves for Noise Evaluation in Speaker Recognition System using 

GMM/UBM and I-Vector techniques. 
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Figure 4-4: ROC curves for Noise Evaluation in Speaker Recognition System using 

GMM/UBM and I-Vector techniques. 

 

It can be observed how the recognition accuracy degrades with higher SNRs, 

with the I-Vector framework offering the most robust behavior of both techniques 

under noise.  

The results of Experiment 2 can be seen in Figure 4-5 and Figure 4-6.  

 

Figure 4-5: CMC curves for different number of samples per person in gallery (SiG) for 

GMM/UBM and I-Vector techniques. 
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Figure 4-6: ROC curves for different number of samples per person in gallery (SiG) for 

GMM/UBM and I-Vector techniques. 

 

As expected, as the number of samples for enrollment grows, the recognition 

accuracy increases, reaching high Recognition Rates, near 85% in the I-Vector 

approach. The reason for this behavior is that using more data of every user, the 

system can create better models.  

Figure 4-7 and Figure 4-8 show the results for the last experiment 

(Experiment 3), varying the number of Gaussian Components in the models.  

 

Figure 4-7: CMC curves for different number of Gaussian Components (GC) for GMM/UBM 

and I-Vector techniques. 
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Figure 4-8: ROC curves for different number of Gaussian Components (GC) for GMM/UBM 

and I-Vector techniques. 

 

For GMM/UBM approach, the best performance was obtained with the 

highest Gaussian components, i.e. 512, whereas for the I-Vector framework, 256 

Gaussians provided the best result. 
 

 

 

 

4.4.3.  
Facial Recognition System Evaluation Protocol 

For the FRS, two different feature extraction techniques were implemented: 

(1) the DCT-based feature extractor seen in Section 3.3.1 for the GMM/UBM 

classifier and (2) the LBP operator with the square-chi distance classifier 

(hereinafter LBP-based classifier).  

In order to find which algorithm provides the best recognition performance, 

it was also necessary to adjust the parameters for the GMM/UBM classifier, in a 

similar manner as with SRS. The feature extraction parameters for the GMM/UBM 

and for the LBP-based classifier were fixed, according to reference values taken 

from other related works [76, 90, 91], and they are shown in the Table 4-5 below: 

Features for GMM/UBM Features for LBP-based classifier 

Block Size = 16 x 16 pixels Number of equally spaced pixels = 8 

Overlap = 50% Radius = 2 

Illumination Compensation = Yes Block Size = 8 x 8 pixels 

Dimension of the feature vectors = 63 Number of Bins in Histogram = 59 

Table 4-5: Features used for GMM/UBM and LBP-based classifiers. 

 

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



61 
Chapter 4. UNIMODAL BIOMETRIC SYSTEMS SETUP 
 

The parameters of the GMM/UBM classifier used in the FRS were tuned in 

the same way as in SRS. In this case, the performance was measured with different 

number of Gaussian components using 80% of the total amount of users as training 

set and 20% as test set. 

It is important to point out that due to the arrangement of the FERET dataset 

where only few individuals have a duplicate set of images, a considerable amount 

of persons in the database had only a pair of useful frontal images available for 

training and testing, after the database normalization. For this reason, it was used 

only one image per person for gallery adaptation and only one image for testing, 

specifically the FERET database’s fa image for gallery and fb for testing 

respectively. However in the training process of the UBM, all available images were 

used. 

Using the aforementioned configuration, the experiment presented in Table 

4-6 was defined.  

Experiment 

Number 

Target 

Parameter 
Procedure 

4 

Number of 

Gaussian 

Components 

Test the system performance using 32, 64, 

128, 256 and 512 Gaussian Components and 

compare with LBP approach. 

Table 4-6: Experimental Configuration for Facial Recognition System Evaluation 

 

Like the SRS experiments, an analogous procedure was followed for the FRS 

evaluation, dividing the dataset in 5 equally populated and disjoint groups: 4 groups 

used for training the UBM and 1 group for testing. The experiments were run 5 

times, choosing a different test set each time, covering 5 different combinations. 

The resulting CMC and ROC curves were averaged among all groups, as in the 

SRS. Finally, the best GMM/UBM configuration was compared with the LBP-

based classifier. 

   

4.4.4.  
Results 

The results of experiment 4 are shown in Figure 4-9 and Figure 4-10. As it 

can be noted, the LBP-based approach provided the best rank recognition accuracy, 

managing to reach almost 90% in rank-1 recognition rate. The best configuration 
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of GMM/UBM was obtained using 512 Gaussian Components, for a rank-1 

recognition rate of near 83%. The ROC curves showed similar performance 

between the two approaches.  

 

Figure 4-9: CMC curves comparing GMM/UBM with different Gaussian Components and 

LBP-based Classifier. 

 

Figure 4-10: ROC curves comparing GMM/UBM with different Gaussian Components and 

LBP-based Classifier. 

 

4.5.  
MOBIO Evaluation 

To evaluate the performance of the unimodal systems using the MOBIO 

dataset, we selected the same feature extraction parameters chosen for the other 

database. The selection of the training and test sets followed the protocols defined 

in ICB-2013 for face and voice [92], where the number of samples per individual 
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for gallery enrollment was identical for both face and speaker protocols, being 5 

samples per individual, and 105 the number of samples used as probe. The entire 

training set defined in the aforementioned protocol was used to create the UBMs in 

the SRS and FRS systems and was also used to train the GPLDA hyperparameters 

in the I-Vector algorithm. For the LBP scheme, the scores generated by each of the 

five gallery samples were averaged for each algorithm. 

One modification in our procedure with respect to the ICB protocol is that we 

tested each probe file with all the persons in the gallery, and we made no distinction 

between females and males. This generated 4410*42 (185220) scores instead of 

94500 that is reported in the original protocol.   

 

4.5.1.  
Results 

SRS Evaluation 

Figure 4-11 Figure 4-12 show the Rank Recognition and the ROC curves 

respectively of the SRS when tested using the MOBIO database. With this database, 

the SRS obtained a Rank-1 recognition rate lower than that of the other database. 

As an example, in the results of the Experiment 3, the SRS system reached a Rank-

1 recognition rate of almost 82% in both GMM/UBM and I-Vector approaches, 

whereas for this database it managed to obtain only 66% of recognition accuracy 

for the same algorithms. This difference in the results were expected, because the 

MOBIO audio is far noisier than the TIMIT corpus used in the first database, and 

also because it was acquired using different microphones and locations, whereas 

the TIMIT data was recorded in a controlled environment with one high-quality 

microphone.  

Between the two algorithms, we can see that the I-Vector provides the best 

result for both identification and verification tasks.  
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 Figure 4-11: CMC curves comparing GMM/UBM and I-Vector approaches for the SRS 

using the MOBIO dataset. 

 

Figure 4-12:  ROC curves comparing GMM/UBM and I-Vector approaches for the SRS 

using the MOBIO dataset. 

 

FSR Evaluation 

In Figure 4-13 and Figure 4-14 are shown the results of the Rank Recognition 

rates and ROC curves for the FRS using MOBIO database. It can be noted, similar 

to the SRS evaluation, that the results are not great for either algorithm tested, as 

the images in this database contain several nuisance effects, such as occlusions, 

illumination problems, pose variations and others. Between GMM/UBM and LBP-

based Classifier approaches, the former obtained better results than the latter. The 

LBP obtained low recognition rates because it relies heavily on the frontal pose of 

the facial images, and any significant variation may affect dramatically the accuracy 
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of this algorithm. In contrast, the GMM/UBM, as it is a probabilistic approach, 

obtained better results, as it managed to model more efficiently these variations. 

 
Figure 4-13: CMC curves comparing GMM/UBM and LBP-based Classifier approaches for 

the FRS using the MOBIO dataset. 

 

Figure 4-14: ROC curves comparing GMM/UBM and LBP-based Classifier approaches for 

the FRS using the MOBIO dataset. 

 

4.6.  
Summary 

In this chapter, we followed an experimental methodology for configuring the 

unimodal biometric systems that are to be fused. For this purpose, we tested the 

algorithms developed using two very different databases, one formed by two 

independent unimodal databases, and the other a truly bi-modal database.  
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The results obtained here confirmed that when the unimodal biometrics are 

restricted to application environments with high variations and disturbance effects, 

such as noise, pose variations, occlusions and location changes, the recognition and 

authentication performance of these systems degrades considerably. This motivated 

the use of multimodal biometric fusion, described in the next chapter, in an effort 

to overcome these difficulties.   
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MULTIMODAL FUSION 

This chapter describes the experimental framework developed for comparing 

the fusion schemes proposed in this dissertation, applied to the fusion of the face 

and speaker recognition systems presented. It is described the methodology used, 

the implementation details of techniques and algorithms used and finally they are 

presented the results of the experiments.  

 

5.1.  
Multimodal Training/Test Sets Setup 

The experiments conducted in this chapter are based on the scores generated 

by the speaker and facial unimodal biometric systems, using the databases 

described in Chapter 4, specifically the Virtual database and the MOBIO database. 

Two different groups of experiments are presented, one for each database.  

For the MOBIO database, the scores for the fusion were generated using the 

same dataset partitioning described in the previous chapter, i.e., 50 users for training 

the models and 42 for gallery enrollment and test. A total of 110 samples for each 

of these 42 individuals are available, and we used 5 samples for gallery enrollment 

and 105 samples for test. Since 42 individuals were enrolled in gallery, the probes 

samples added up to 42*105 (4410) in total. Each of these probe samples was 

compared with each model in the gallery, yielding 185220 scores, with 4410 

genuines and the remaining impostors.    

For the Virtual database, a different partition of the dataset was used to 

generate the scores for the fusion. In this case, the database was divided in two 

halves, one half used for training the individual classifiers and the other half to 

generate the scores. For generating the scores, each sample of every test user was 

matched with the rest of the identity models enrolled in gallery. In this work, with 

a database of 630 users, 50% of users were used for training and 50% for test, and 

one sample per test user was used, which yielded 315 genuine scores and 98910 
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impostor scores. For this dataset, this procedure was repeated two times, switching 

the training and test sets. Finally, the results of the fusion stage were averaged for 

each execution.  

 

5.2.  
Multimodal Verification Evaluation 

In this section, it is described the methodology used to combine the matcher 

scores from both unimodal systems. The experiments carried out evaluated the 

performance of the multimodal fusion in verification mode. Three main approaches 

were implemented: 1) Density-Based Score Fusion, 2) Transformation-Based Score 

Fusion and 3) Classifier-Based Score Fusion.  

For every fusion approach tested, the scores were divided in five disjoint 

groups, where four groups (4 folds) were used for training the parameters of each 

fusion scheme, and the remaining group was used to test the performance of the 

system (1 fold). The experiments were run 5 times, choosing a different test set each 

time and averaging the metric used at each case (i.e. ROC curves, Classification 

Accuracy, EER, etc.). 

In Table 5-1 are summarized the techniques implemented in this operational 

mode.  

Approach Main Technique Fusion 

Density-Based 

Score Fusion 

Kernel Density 

Estimation (KDE) 

Sum and Product of Marginal 

Densities and Likelihood Ratio 

Mixture of Gaussians 

(MoG) Joint density 

estimation 

Likelihood Ratio 

Classifier-Based 

Score Fusion 

Support Vector 

Machine (SVM) Joint Scores Classification 

Random Forest (RF) 

Transformation-

Based Score 

Fusion 

Minmax Normalization 
Average Sum and Product of 

Normalized Scores 
Z-Score Normalization 

Tanh Normalization 

Table 5-1: Score Fusion Scheme for Experimental Evaluation in Verification Mode 

 

Having two classifiers implemented for speaker recognition and two for facial 

recognition, four different fusion combinations were explored: a) GMM/UBM 
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Voice and GMM/UBM Face; b) GMM/UBM Voice and LBP-based Face; c) I-

Vector Voice and GMM/UBM Face; d) I-Vector Voice and LBP-based Face.  

 

5.2.1.  
Transformation-based Fusion 

The first approach tested was the Transformation-Based Score Fusion 

because it is the simplest one and also because there are several combinations 

available for normalization and fusion.  

The scores generated by the LBP-based classifier represent a distance 

measure while the rest of the scores corresponding to the other algorithms have a 

similarity meaning. Therefore the LBP scores had to be converted to a similarity 

metric using a simple distance-to-similarity transformation, subtracting the highest 

score from the rest. 

 

  
Virtual Database Results 

In  Figure 5-1 are presented the resulting ROC curves of the experiments using 

the Virtual database for the unimodal and multimodal systems using the 

transformation-based fusion approach. In all figures presented hereinafter, MM, Z 

and Th stand for Minmax, z-score and tanh normalization schemes, whereas Sum 

and Prod represent the Sum and Product fusion schemes.  

From the figure, it can be observed that using this database, a multimodal 

system employing the average sum and product of normalized scores provides in 

general a better performance than the best unimodal system for all normalization 

techniques except the product of z-score in the last combination. As an example, at 

a FAR of 0.1%, the best unimodal module is the LBP-based matcher with a Genuine 

Acceptance Rate (GAR) of about 70%, while the Sum of Minmax normalized 

scores in that configuration generated a GAR close to 86%. This improvement in 

performance is significant and it underscores the benefit of multimodal systems. 
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Figure 5-1: ROC Curves for Transformation-based Score Fusion in Virtual database. (a) 

Fusion of GMM/UBM Voice and GMM/UBM Face. (b) Fusion of GMM/UBM Voice and LBP 

Face. (c) Fusion of I-Vector Voice and GMM/UBM Face. (d) Fusion of I-Vector Voice and 

LBP Face. 

 

In Table 5-2 are summarized the Equal Error Rate (EER), the Area under the 

ROC Curve (AUC) and GAR for this experiment. In yellow they are highlighted 

the techniques that provided the minimum EER for every combination of 

classifiers.  

In general, the Minmax normalization technique provided the best results for 

the configurations b), c) and d), whereas the tanh normalization was better in 

configuration a). With respect to the fusion rules, the sum rule proved to get 

consistently lower EERs in all configurations than the product rule.   

 

(a) (b) 

(d) (c) 
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Normalization 

Technique 

Fusion Technique 

Average Sum Product 

GAR2 AUC EER GAR2 AUC EER 

GMM Voice - 

GMM Face 

Minmax 85,24 0,998 1,678 84,62 0,998 1,886 

Z-Score 86,05 0,999 1,515 87,14 0,986 3,499 

Tanh 86,05 0,999 1,514 86,21 0,999 1,506 

GMM Voice - 

LBP Face 

Minmax 90,02 0,998 1,476 71,52 0,998 1,310 

Z-Score 70,32 0,999 1,408 77,62 0,993 2,545 

Tanh 70,32 0,999 1,408 70,41 0,999 1,405 

IV Voice - 

GMM Face 

Minmax 91,59 0,998 1,908 91,36 0,992 4,139 

Z-Score 91,45 0,995 3,33 89,84 0,982 4,842 

Tanh 91,45 0,995 3,33 91,52 0,995 3,366 

IV Voice - LBP 

Face 

Minmax 85,71 0,996 3,179 83,65 0,994 4,075 

Z-Score 84,46 0,995 3,492 39,23 0,984 5,178 

Tanh 84,46 0,995 3,492 84,60 0,995 3,492 

Table 5-2: Genuine Acceptance Rate (GAR), Area under ROC Curve (AUR) and Equal 

Error Rate (EER) of different normalization and fusion techniques for all classifiers 

combinations using the Virtual database. 

 

  
MOBIO Database Results 

Figure 5-2 shows the results of this fusion scheme for the MOBIO database. 

Similar to the previous experimental example, it can be noted the bi-modal fusion 

provided better results than the best unimodal system individually, for every 

configuration tested.  

The higher gains in recognition accuracy were obtained in configurations a) 

and d), where the use of the facial biometric made possible to alleviate the inferior 

recognition rates offered by the I-Vector algorithm used in the speaker recognition 

system in this case. 

                                                 
2 At FAR = 0.1% 
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Figure 5-2: ROC Curves for Transformation-based Score Fusion in MOBIO database. (a) 

Fusion of GMM/UBM Voice and GMM/UBM Face. (b) Fusion of GMM/UBM Voice and LBP 

Face. (c) Fusion of I-Vector Voice and GMM/UBM Face. (d) Fusion of I-Vector Voice and 

LBP Face. 

Comparing the normalization and fusion rules for this database, all of them 

showed similar results, except for the product of z-normalized scores, which 

showed poor performance. A more detailed view of the results is summarized in 

Table 5-3. Here the Average Sum rule with the Minmax normalization scheme 

dominated in every configuration tested, in relation to the EER. 

 

 

 

 

 

(a) (b) 

(d) (c) 
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Normalization 

Technique 

Fusion Technique 

Average Sum Product 

GAR AUC EER GAR AUC EER 

GMM Voice - 

GMM Face 

Minmax 48,98 0,982 6,984 53,01 0,980 7,193 

Z-Score 52,10 0,981 7,073 51,03 0,890 15,00 

Tanh 52,12 0,981 7,073 52,33 0,981 7,095 

GMM Voice - 

LBP Face 

Minmax 43,19 0,984 6,361 37,94 0,980 7,188 

Z-Score 44,95 0,984 6,433 42,57 0,923 12,29 

Tanh 44,98 0,984 6,433 45,06 0,984 6,434 

IV Voice - 

GMM Face 

Minmax 50,64 0,987 5,639 43,90 0,972 8,503 

Z-Score 42,20 0,978 7,570 43,19 0,900 14,86 

Tanh 42,21 0,978 7,571 42,44 0,977 7,585 

IV Voice - LBP 

Face 

Minmax 50,34 0,989 5,319 51,15 0,988 5,599 

Z-Score 49,76 0,980 7,237 8,15 0,930 11,59 

Tanh 49,76 0,980 7,237 49,89 0,980 7,236 

Table 5-3: Genuine Acceptance Rate (GAR), Area under ROC Curve (AUR) and Equal 

Error Rate (EER) of different normalization and fusion techniques for all classifiers 

combinations using the MOBIO database. 

 

5.2.2.  
Density-based Fusion 

Next, it was evaluated the Density-Based Score Fusion. These methods are 

based on the Likelihood Ratio and the Neyman-Pearson rule described in Section 

3.4.1.2. The standard deviation for computing the kernel bandwidth in KDE 

technique was estimated from the training scores, as well as the number of 

Gaussians in the MoG scheme, using the Minimum Message Length criterion 

described in [79].   

 

  
Virtual Database Results 

Figure 5-3 shows the ROC curves for both unimodal systems and multimodal 

fusion using the Virtual database. At first glance, it can be observed that among all 

density-estimation-based techniques tested, the KDE-Prod and the MoG provided 

the best results in all experiments. 
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Figure 5-3: ROC Curves for Density-based Score Fusion in Virtual database. (a) Fusion of 

GMM/UBM Voice and GMM/UBM Face. (b) Fusion of GMM/UBM Voice and LBP Face. (c) 

Fusion of I-Vector Voice and GMM/UBM Face. (d) Fusion of I-Vector Voice and LBP Face. 

 

More specifically, the Product of marginal density estimates using KDE 

delivered the lowest EER in three out of four combinations, although when 

compared with the MoG results, they  are very similar, as it can be observed from 

the ROC Curves and Table 5-4, which summarizes the results for this fusion 

technique using the Virtual database. 

 

 

 

 

 

(a) (b) 

(d) (c) 
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Fusion Technique 

KDE Sum KDE Product MoG 

GAR AUC EER GAR AUC EER GAR AUC EER 

GMM Voice - 

GMM Face 
79,52 0,991 4,919 90,32 0,999 1,317 89,86 0,999 1,371 

GMM Voice - 

LBP Face 
74,44 0,995 3,858 91,61 0,998 1,526 91,59 0,999 1,392 

IV Voice - 

GMM Face 
65,01 0,974 6,647 89,37 0,998 1,789 90,11 0,998 1,817 

IV Voice - LBP 

Face 
74,92 0,987 6,595 91,59 0,997 2,247 90,95 0,998 2,363 

Table 5-4: Genuine Acceptance Rate (GAR), Area under ROC Curve (AUR) and Equal 

Error Rate (EER) of the density-based fusion methods for all classifiers combinations using 

the Virtual database. 

 

  
MOBIO Database Results 

In the MOBIO evaluation using the density-based methods, the results of the 

fusion are also better than the unimodal systems individually, as can be observed in 

Figure 5-4.  

Fusion Technique 

KDE Sum KDE Product MoG 

GAR AUC EER GAR AUC EER GAR AUC EER 

GMM Voice - 

GMM Face 
43,32 0,955 12,456 52,64 0,983 6,737 52,83 0,983 6,779 

GMM Voice  - 

LBP Face 
34,70 0,956 11,412 50,56 0,985 6,230 50,05 0,985 6,288 

IV Voice - 

GMM Face 
34,01 0,911 16,774 51,23 0,988 5,622 51,87 0,988 5,590 

IV Voice - 

LBP Face 
35,60 0,943 14,899 52,21 0,990 4,939 52,42 0,990 4,929 

Table 5-5: Genuine Acceptance Rate (GAR), Area under ROC Curve (AUR) and Equal 

Error Rate (EER) of the density-based fusion methods for all classifiers combinations using 

the MOBIO database. 

 

Here, the KDE-Prod and MOG showed again the best result, with almost the 

same recognition performance between them.  

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



76 
Chapter 5. MULTIMODAL FUSION 
 

In Table 5-5 are summarized the results for this fusion method using the 

MOBIO database. Here once again, it can be observed the similarity between the 

results obtained from the Product of KDE estimates and the MoG methods. 

 

Figure 5-4: ROC Curves for Density-based Score Fusion in MOBIO database. (a) Fusion 

of GMM/UBM Voice and GMM/UBM Face. (b) Fusion of GMM/UBM Voice and LBP Face. 

(c) Fusion of I-Vector Voice and GMM/UBM Face. (d) Fusion of I-Vector Voice and LBP 

Face. 

 

  
Classifier-based Fusion 

Finally, the Classifier-Based Score Fusion approach was tested, using the 

output scores from the individual biometric systems as new features to train a 

probabilistic Support Vector Machine (SVM) and a probabilistic Random Forest 

(a) (b) 

(d) (c) 
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(RF) classifiers. The implementation of the SVM algorithm was based on the 

LibSVM public library [92].  

One downside of classifier-based methods is that it is difficult to compute 

GAR values at specific desired FAR values, and thus it becomes hard to construct 

the ROC curves, because the classifiers are typically based on fixed thresholds in 

order to make the binary decisions. In our case for instance, for probabilistic 

versions, the class that has a posterior probability higher than 0.5 results in the 

predicted class. For that reason, in this work, we only computed the average GAR 

and average FAR on the five executions, instead of plotting the entire ROC curve, 

as in the previous experimental methods.  

The parameters for the SVM classifier were selected following the 

configuration in [92], using a RBF kernel. The C and 𝛾 values are estimated using 

3-fold cross-validation over the training set. In the case of the RF classifier, an 

ensemble of 500 trees was used in the forest, and the square root of the number of 

variables was used as the random variable subset. 

To train the classifiers, some impostor scores were randomly discarded in 

order to balance the training process with the same amount of genuines and 

impostors.  

 

  
Virtual Database Results 

The results of this approach using the Virtual database are summarized in 

Table 5-6. Both methods of classification achieved very similar results, each of 

them obtaining the best EERs in two out of four configurations. Besides, the 

recognition accuracies for both are good in all combinations. Comparing the GAR 

values of this approach of fusion with GARs from the previous approaches in the 

ROC figures at the corresponding FAR values, it can be noted that the 

classification-based methods offers excellent performance. For instance, the GMM 

Voice and GMM Face configuration using MoG method achieved an average GAR 

of 98,57% at a FAR of 1.66%, while the SVM obtained 98.41%. In addition, at a 

FAR of 2%, the MoG provided 98.73% whereas the RF obtained 98.57%. 
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Fusion Technique 

 SVM RF 

 OA EER 
Avg 
FAR 

Avg 
GAR 

OA EER 
Avg 
FAR 

Avg 
GAR 

GMM Voice -  

GMM Face 
98,34 1,435 1,66 98,41 98,00 1,552 2,00 98,57 

GMM Voice -  

LBP Face 
98,61 1,714 1,39 97,94 98,03 2,138 1,97 98,10 

IV Voice -  

GMM Face 
96,04 4,152 3,95 94,13 98,06 2,056 1,94 97,46 

IV Voice -  

LBP Face 
97,82 2,613 2,17 96,51 97,65 2,055 2,35 98,25 

Table 5-6: Classification Overall Accuracy (OA), Equal Error Rate (EER), Average FAR 

(Avg FAR) and Average GAR (Avg GAR) of SVM and RF methods for each configuration 

using Virtual database. 

 

  
MOBIO Database Results 

For this database, the results of the classifier-based scores fusion method are 

presented in Table 5-7. Here the SVM classifier obtained the minimum EER for 

every configuration, being the last configuration the one with the lowest value. 

Compared with the other database, the Overall Accuracy is not as good, but in 

general the classifiers obtained good classification accuracies, above 90% in all 

cases.  

 Fusion Technique 

 SVM RF 

 OA EER 
Avg 
FAR 

Avg 
GAR 

OA EER 
Avg 
FAR 

Avg 
GAR 

GMM Voice -  

GMM Face 
93,37 6,854 6,62 92,77 92,51 8,044 7,46 91,47 

GMM Voice -  

LBP Face 
93,37 6,385 6,64 93,76 92,54 7,237 7,47 92,97 

IV Voice -  

GMM Face 
93,16 6,128 6,88 94,88 92,94 6,260 7,09 94,26 

IV Voice -  

LBP Face 
94,20 5,049 5,84 95,83 93,91 5,634 6,12 95,06 

Table 5-7: Classification Overall Accuracy (OA), Equal Error Rate (EER), Average FAR 

(Avg FAR) and Average GAR (Avg GAR) of SVM and RF methods for each configuration 

using MOBIO database. 
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5.3.  
Discussion 

After evaluating the fusion approaches proposed in this work with all possible 

combination of matchers, some conclusions can be extracted.  

In general, every proposed multimodal fusion technique yielded better results 

than the best unimodal biometric system, in terms of lower Equal Error Rates and 

higher Genuine Acceptance Rates and Classification Accuracy. In particular, 

between all fusion approaches tested, the density-based approaches attained the 

highest values of GAR and the minimum values of EER. In Figure 5-5 are shown 

the configurations of individual classifiers that provided the minimum value of EER 

for both databases, which is the Product of likelihood ratio using KDE for the 

Virtual database and the Mixture of Gaussians for the MOBIO. 

  

 Figure 5-5: Best Configurations for Virtual database and MOBIO database 

 

The results obtained in this work confirm other studies carried out to find the 

best fusion scheme among several tested, using different biometric modalities [44]. 

These studies concluded that density estimation-based approaches are the most 

accurate methods of fusion, but they are complex to implement as they rely on the 

estimation of the probability density functions, which is intrinsically a complex 

process.  

It is important to remark that, in this work, the MoG method was preferable 

over the KDE because it was easier to implement and did not require any parameter 

tuning process. 

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



80 
Chapter 5. MULTIMODAL FUSION 
 

Simple methods like Minmax normalization and Average Sum on the other 

hand provided very good results in our experiments in the transformation-based 

approaches. These methods are very convenient to use, given their simplicity to 

implement and their computational low cost.  

Finally, the classifier approaches also shown good classification accuracy, 

being the SVM the best between the two.  

DBD
PUC-Rio - Certificação Digital Nº 1412767/CA



81 
Chapter 6. CONCLUSIONS AND FUTURE WORKS 
 

  
CONCLUSIONS AND FUTURE WORKS 

In this work, we have compared several techniques for score-level fusion in 

a bimodal system that combine independent speaker and facial recognition systems. 

For this purpose we tested four different combinations of matchers, two speaker 

recognition systems and two facial recognition systems.  

The experimental analysis followed on Chapter 4 for configuring and 

assessing the performance of the unimodal systems, under verification and 

identification tasks, using a Virtual bimodal database and a real bimodal database, 

suggested that in applications with controlled conditions, these unimodal biometric 

matchers provide reasonable accuracy rates, sufficient for real scenarios. This was 

confirmed by the good results obtained using a Virtual database formed by two 

well-controlled databases of speeches and faces, such as TIMIT and FERET 

databases respectively. As the conditions deteriorate, and variations and noise start 

to appear in the acquired data, the recognition systems suffered to preserve 

acceptable recognition rates. With the use of a more challenging database such as 

MOBIO, we could observe that behavior. 

In Chapter 5, we investigated three main approaches for combining the scores 

output by the unimodal classifiers in order to overcome their intrinsic limitations 

under more adverse conditions. These approaches are the Transformation-based 

score fusion, the Density-based score fusion and the Classifier-based score fusion. 

By comparing throughout our experiments the ROC Curves, the Equal Error 

Rate (EER), the Area under ROC curve (AUC) and the Genuine Acceptance Rates 

(GAR) metrics for each of these approaches, we concluded that the Density-based 

score fusion provided the most consistent results among all configurations of 

bimodal fusion.  

Among the Transformation-based approach, the Minmax normalization 

scheme with the Average Sum rule exhibited a very good performance, being 

behind the density-based methods by a small margin in every tested configuration. 

The Classifier-based methods on the other hand also performed reasonable good, 
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but these methods have the limitation that they cannot provide high GARs at low 

FARs, and cannot be compared directly with the other methods using ROC curves. 

Finally, the good multimodal results obtained from the Virtual database 

indicate that the initial statistical independence assumption made between the voice 

and facial biometric traits was reasonable. 

A desirable extension of this work would include the configuration of the 

parameters for the unimodal biometric systems using the MOBIO database, because 

the parameters in this work were fixed for the MOBIO database, in contrast with 

the Virtual database, that it was completely parameterized.  

It would also be interesting to further investigate the multialgorithm and 

multimodal fusion between the implemented unimodal systems to see if this 

approach provide better recognition accuracy and higher values of GAR. Another 

possibility not covered in this work is the inclusion of the identification operating 

mode, since all experiments were tested only for verification mode. 
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