
4
The Graph Machine

4.1.Architecture

The Saint Thomas Aquinas Machine algebraic specification described in

Appendix A is mapped in object oriented architecture. Comparing to the algebraic

specification, commands and registers were added. Some commands were

removed. Design patterns [9] ware used intensively. This architecture is

implemented in Java and distributed as a standalone application. It also provides

an API to help integration with other applications. The project is intended to be a

generical solution; with modularity, low coupling, and robustness.

The machine’s primitive type is graph. Its memory stores only graphs, this

means that the programs are represented by graphs as well. Because of that, the

machine’s theoretical model describes a non-deterministic machine. The

architecture presented needs to use some criteria for the choice involved. This

choice is modularized so it can be changed easily. This is shown below.

The architecture is divided over two components: the machine’s memory

and the machine’s processing unit. The memory is called The Order of Preachers

Inference Model. It is a graph manipulation component that holds the machine’s

business model (in an MVC [9] cfr. section 1.2 sense). The processing unit is

called Saint Thomas Aquinas Machine. This component holds the fetch-decode-

execute cycle of the machine and also holds the implementation of the commands

of the machine’s assembler language.

The machine architecture was influenced by MVC (Model-View-Controller

Architectural Pattern). The pattern divides the architecture in tree layers: model,

controller and view. Model and view layers do not interface with each other; all of

its interaction is done through the third layer. The model layer in MVC is the layer

responsible for data access and knowledge of business rules.

Figure 1 shows the two components [18] of the machine, its interfaces and

interactions with external classes and artifacts. The shown interfaces conform to

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 25

design patterns [9]. Four design patterns where used in the interfaces: factory

method, singleton, façade and observer.

The interfaces in Figure 1 are:

• machine factory and inference model factory: part of the patterns

factory method and singleton

• Manager and facade are façades

• Choice listener is part of the design pattern observer.

Figure 1 Saint Thomas Aquinas Machine Component Diagram

The machine and the inference model interact trough the interface facade

provided by the inference model. This component provides only one port for

interaction with other components. The port holds the facade interface and the

inference model factory interface. When a machine is build, it invokes the

inference model factory to create an instance of the model that will serve as its

memory.

The Saint Thomas Aquinas Machine is the component that exposes

interfaces for interaction with the world outside the machine. It contains two

ports. The first port holds manager and machine factory. It is similar to the

inference model’s port. Its interfaces are used for component instantiation and

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 26

interaction. The second existing port holds choice listener, an implementation of

the design pattern observer, which treats special agent-machine interaction.

Figure 1 also contains external classes and artifacts that explain the possible

uses that can be made of the machine. The StarterAgent class is responsible for

the basic interaction. It invokes the factory to instantiate a new machine; it inserts

into the machine the artifacts rule definitions and graphs and it orders the machine

to be started.

The ChooserAgent class does the special interaction with the machine. The

machine’s execution can be viewed as a game from game theory [19]. Every

round a rule or a set of rules is applied to the formula to be proved (the goal). The

rules can be well succeeded and generate new formulae or not. After the round it

is time for a decision. Other rules should be applied to the same goal or the new

goals. The chooser agent makes these decisions along the game. It contains the

strategy desired to be used to prove the formula.

The Component Diagram also shows two other classes: DraughtsmanAgent

and UserAgent. These agents have an auxiliary role in the agency. The first

integrates the machine with drawing systems to draw the proof. It can make a

drawing of it in the end of the proof or at every round. The interfaces manager and

choice listener return, up on invocation, graphs artifacts with the proof to be

drawn. The second class integrates the machine with a human-computer interface

that can either be a command prompt or a GUI.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 27

4.2.Functionality

This section describes the functionality of the graph machine. This virtual

machine interprets an assembly language designed for it – described in section

4.3. The architecture bellow contains many details. It was done in this way

because of the project decision towards a generical solution; with modularity, low

coupling, and robustness. The architecture also is influenced by the existing

Algebraic Specification (Appendix A), that led the solution to use the presented

registers.

In order to make a theorem proving platform based on graph

transformations; more than graph transformations is needed. The complexity

involved in theorem proving with strategies can better be accomplished by a

directed approach that led the specifier to the presented machine with its registers

and its running cycle.

In order to interpret the assembly commands, the machine runs through a

fetch-decode-execute cycle just as any physical processor does with byte code.

With this architecture, it is possible to migrate the machine from this assembly-

oriented implementation into a byte-code-oriented implementation if the change is

a tuning. It also gives the program good levels of maintainability, modularity and

elegance.

As any physical machine, Saint Thomas Aquinas Machine has some

registers and is connected to a memory. Its internal architecture is illustrated as a

block diagram (just as any CPU would be) in Figure 2. The machine’s memory is

The Order of Preachers Inference Model described as a component in section 4.1

and shown as a large block with a façade block on its interface and other blocks

on the inside.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 28

FR

facade

vertices edges adresses stack accessPoints

MR

IR

CR

WV

IQ

LS

GL

IP

GP

commands commandStack

executingCommand

Fetch Decode Execute

Figure 2 Saint Thomas Aquinas Machine Block Diagram

The machine’s memory works with graph vertices, with graph ordered edges

between two given vertices and with strings just as formalized in Appendix A. As

it is shown in Figure 2, the memory holds some sets: vertices, edges, addresses, a

stack and accessPoints. The vertices and the edges are sets of graph primitive

types. Addresses is a set of pointers to these objects or to strings used as variables.

Stack is a stack data-structure that can hold vertices, edges and strings.

AccessPoints is a set of vertices.

The machine’s memory stores a large graph of data and instructions. The

data can be indexes in the set vertices, in the set edges or in the set addresses. The

machine’s instructions are stored together with the data. The programs starting

points are indexed in a set called access points. Following de edges, the machine

is able to execute the instructions contained in the vertices. The memory also has a

stack in which its registers can be stored for a change in the execution context.

The machine registers are:

� The Instruction Queue (IQ): A queue data structure where the references

for the next commands are enqueued.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 29

� Instruction Pointer (IP): A reference to the command currently being

processed.

� commands: This register holds the definitions of the machines commands

(described in section 4.3) and the string that represents them in the

assembly language.

� executingCommand: it’s the register that holds the currently executing

command and its code.

� commandStack: it executes the commands and as instrumentation, it is

able to undo commands that were executed.

� Interupt Register (IR): a boolean value that interrupts the machine cycle

and waits for a decision. It makes the machine semi-automatic and

strategy-based.

� Compare Register (CR): a boolean value used by the comparison and

jump commands.

� Match Register (MR): holds the string found by a match command.

� Working Vertex (WV): an auxiliary register used to hold a vertex

reference.

� Function Register (FR): holds the return of a function.

� Goal Pointer (GP): The program current goal. It supports strategy-oriented

programs.

� Goal List (GL): The list of goals on hold. It is a list in order to be ranked

by the DeciderAgent (described in section 4.1). It supports strategy-

oriented programs.

� Local Strategy (LS): a queue of rules to be executed. It supports strategy-

oriented programs.

The fetch-decode-execute cycle depends on these registers. In the fetch

process, the machine gets from the IQ or from the memory’s accessPoints, the

next instruction’s reference and moves it to the IP. The decode phase consist of

getting the contents of the vertex referenced by the IP, finding its code in

commands, moving it to the executingCommand and adding the machine’s current

state to it (by coping the registers as its internal state). Execute is where the

command is executed by the commandStack and where the changed registers are

updated.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 30

The commands store the machine’s state in its attributes. In this way, after

execution, SaintThomasAquinasMachine can refresh its state according to the new

state stored in the command class. It is not the design pattern state; the machine’s

state corresponds to the different contents of its registers. Whenever a decision is

needed, the machine interrupt its execution in after execution, right before

fetching a new command.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 31

4.3.Assembler Language

The Saint Thomas Aquinas Machine receives as input an archive with a

program in an assembly-like programming language. This section is intended to

describe this programming language. Syntax errors can be found by applying the

machine’s parser to the input program.

First of all, it is important to notice that the machine is graph oriented. Its

memory is divided into vertexes and edges. The program is a graph as well. Its

instructions are vertices’ contents. The machine simulates non-determinism. It

works based on an instruction queue. Thus, an instruction (vertex) can have more

than one next instruction (vertices connected by a directed edge).

Vertices syntax – observe the presences or absences of spaces - is as

follows:

 id#content

• id: A unique identifier to this object (for any vertex, edge or

pointer), the vertex will be repeated in the program, the id will

distinguish it.

• content: The vertex’s content. For program instructions we may

use:

instr arg1,arg2,arg3,arg4

• instr: Instruction (described below).

• Arg1: First Argument (depends on the instruction).

• Arg2: Second Argument (depends on the

instruction).

• Arg3: Third Argument (depends on the instruction).

• Arg4: Fourth Argument (depends on the

instruction).

The edge syntax is as follows:

 vertex1$id#order,content$vertex2

• vertex1: Source vertex.

• vertex2: Target vertex.

• id: A unique identifier to this object (for any vertex, edge or

pointer), the edge should not be repeated in the program.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 32

• order: an integer number for reference (obligatory, -1 means

unordered and -2 cannot be used).

• content: The edge’s content (optional).

A simple program looks like this:

C1#vcreate V1 $e1,-1$ C2#vcreate V2

C2#vcreate V2 $e2,-1$ C3#vcreate V3

C3#vcreate V3 $e3,-1$ C4#ecreate V1,E1,V2

C4#ecreate V1, E1, V2 $e4,-1$ C5#ecreate V1,E2,V3

C5#ecreate V1, E2, V3$e5,-1$ C6#sto V1,A

C6#sto V1, A $e6,-1$ C7#sto V2,B

C7#sto V2, B $e7,-1$ C8#sto V3,C

Vertices can have more than one edge associated, as the example:

C8#sto V3, C $e8,-1$ C9#screate S

C9#screate S $e9,-1$ C10#screate SAB

C10#screate SAB $e10,-1$ C11#sedges S, V1

C11#sedges S, V1 $e11,-1$ C12#sreset S

C1#vcreate V1

C2#vcreate V2

C3#vcreate V3

C4#ecreate V1, E1, V2

C5#ecreate V1, E2, V3

C6#sto V1, A

C7#sto V2, B

C8#sto V3, C

Figure 3 Simple program

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 33

C12#sreset S $e12,-1$ C13#jse S

C12#sreset S $e13,-1$ C13b#jsne S

C13b#jsne S $e14,-1$ L#snext S,E

L#snext S,E $e15,-1$ C14#target V,E

C14#target V,E $e16,-1$ C15#sadd SAB,V

C15#sadd SAB,V $e17,-1$ C13#jse S

C15#sadd SAB,V $e18,-1$ C13b#jsne S

C13#jse S $e19,-1$ Laddr#mcreate M,B

Laddr#mcreate M,B $e20,-1$ C17#match SAB,M

C17#match SAB,M $e21,-1$ C18#sto V,MR

…

Every instruction must be connected to the graph starting at that vertex to be

executed. Bellow, the instructions are described with its parameters with its

functionality and its assertives. If an assertive is not respected, the instruction is

ignored.

Command: vcreate

C9#screate S

C10#screate SAB

C11#sedges S, V1

C12#sreset S

C13b#jsne S

L#snext S,E

C14#target V,E

C15#sadd SAB, V

C13#jse S

Laddr#mcreate M,B

C18#sto V,MR

C17#match SAB,M

Figure 4 Code Example

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 34

Parameters:

Vvar - > Id of the vertex to be created.

Syntax: vcreate VVar

Creates a vertex whose id is VVar. This vertex can be referenced in the

rest of the program through this id. If the id already references another

object, the old reference will be lost. With trace on, the destroyed object will

be shown.

Command: uvcreate

Parameters:

Addr - > Address of the pointer to be created.

String - > content (opcional).

Syntax: uvcreate Addr [, String]

Creates a vertex whose id is unspecified and a pointer (Addr) to this

vertex. If content is provided, it will be set as vertex’s content. This vertex

can be referenced in the rest of the program through this pointer. If the

pointer already references another object, the old reference will be lost.

With trace on, the destroyed object will be shown.

Command: ecreate

Parameters:

VVar - > Source vertex.

EVar - > Edge id.

VVar - > Target vertex.

Syntax: ecreate VVar, EVar, VVar

Creates an edge whose id is Evar and whose extremities are the first and

the second VVar parameters, respectively origin and destination. The source

and target vertex are obligatory, if not provided or if the vertices do not

exist, the edge will not be created. This edge can be referenced in the rest of

the program through its EVar. If the pointer already references another

object, the old reference will be lost. With trace on, the destroyed object will

be shown.

Command: uecreate

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 35

Parameters:

(VVar or WV) - > Source vertex (id or Working Vertex register).

(VVar or WV) - > Target vertex (id or Working Vertex register).

order - > Order integer.

String - > content (optional).

Syntax: uecreate (VVar or WV), (VVar or WV), order [, String]

Creates an edge whose id is unspecified and whose extremities are the first

and the second (VVar or WV) parameters, respectively origin and

destination. The source and target vertex are obligatory, if not provided or if

the vertices do not exist, the edge will not be created. The parameters order

and content will be set to the created edge.

Command: eorder

Parameters:

EVar - > Edge id.

order - > Order integer.

Syntax: eorder EVar, order

The parameter order will be set to the edge whose id is EVar.

Command: sto

Parameters:

Addr - > Address.

(String or MR) - > Content (String or Match Register).

Syntax: sto Addr, (String or MR)

Store places string as content of the vertex, edge, match or pointer whose

id was passed in Addr. The Addr must be valid.

Command: pcreate

Parameters:

Addr - > Address of the pointer to be created.

(VVar, EVar, Addr, GP or WV) - > object to be referenced.

Syntax: pcreate Addr, (VVar, EVar, Addr, GP or WV)

Creates a pointer Addr referencing the given object. This object can be

referenced in the rest of the program through this pointer. If the pointer

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 36

whose name is Addr already exists and references another object, the old

reference will be lost. With trace on, the destroyed object will be shown.

The object must be valid (VVar, EVar, Addr must exist, Goal Pointer or

Working Vertex needs to be not null).

Command: copysg

Parameters:

Addr - > Address of the new pointer, to the copy.

Addr - > Address of the subgraph to be copied.

Syntax: copysg Addr, Addr

Creates a copy of the subgraph started at the vertex whose id is Addr or

referenced by Addr. This subgraph can be referenced in the rest of the

program through this pointer Addr. If the pointer already references another

object, the old reference will be lost. With trace on, the destroyed object will

be shown. The Addr must exist and reference a Vertex.

Command: work

Parameters:

(Addr, VVar or GP) - > Address of the vertex.

Syntax: work (Addr, VVar or GP)

Moves the informed Vertex to the Working Vertex register (WV). The

Addr or VVar must exist and reference a Vertex, if the parameter is GP, the

Goal Pointer register must be not null.

Command: label

Parameters:

StringVar - > Address of new label.

VVar - > address of the vertex.

Syntax: label StringVar, VVar

Label places in StringVar the content of the vertex whose id is VVar (it

must exist). This label can be referenced in the rest of the program through

this pointer StringVar. If the pointer already references another object, the

old reference will be lost. With trace on, the destroyed object will be shown.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 37

Command: source

Parameters:

VVar - > Id that will receive the vertex.

EVar - > Edge’s id.

Syntax: source VVar, EVar

Places in VVar the vertex that is the origin of EVar (it must exist). This

vertex can be referenced in the rest of the program through this pointer

VVAr. If the pointer already references another object, the old reference

will be lost. With trace on, the destroyed object will be shown.

Command: target

Parameters:

VVar - > Id that will receive the vertex.

EVar - > Edge’s id.

Syntax: target VVar, EVar

Places in VVar the vertex that is the destination of EVar (it must exist).

This vertex can be referenced in the rest of the program through this pointer

VVAr. If the pointer already references another object, the old reference

will be lost. With trace on, the destroyed object will be shown.

Command: sedges

Parameters:

SVar - > Set that will receive the edges.

VVar - > Vertex’s id or pointer.

Syntax: sedges SVar, VVar

Places in SVar the set of edges whose origin (source edges) is VVar. VVar

and SVar must exist.

Command: tedges

Parameters:

SVar - > Set that will receive the edges.

VVar - > Vertex’s id or pointer.

Syntax: tedges SVar, VVar

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 38

Places in SVar the set of edges whose target (target edges) is VVar. VVar

and SVar must exist.

Command: eremove

Parameters:

EVar - > Edge’s id.

Syntax: eremove EVar

Deletes the edge whose id is EVar. EVar must exist.

Command: cmp

Parameters:

(Addr or WV) - > Address.

(String or StringVar) - > Content.

Syntax: cmp (Addr or WV), (String or StringVar)

Compares the content of the vertex, edge, pointer or of the register WV

passed with string or StringVar. If equal, sets Compare Register (CR) true,

else sets CR false. The Address must exist; else CR will be set as false. If

trace is on, null or invalid addresses will be shown.

Command: cmpeorder

Parameters:

EVar - > Edge’s id.

order - >Order integer.

Syntax: cmpeorder EVar, order

Compares the order of the given edge with order integer. If equal, sets

Compare Register (CR) true, else sets CR false. The edge must exist; else

CR will be set as false. If trace is on, null or invalid addresses will be

shown.

Command: cmpedge

Parameters:

EVar - > First edge id.

EVar - > Second edge id.

Syntax: cmpedge EVar, EVar

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 39

Compares the order and content of two given edges. If equal,

setsCompareRegister (CR) true, else sets CR false. The edges must exist;

else CR will be set as false. If trace is on, null or invalid addresses will be

shown.

Command: cmpvertex

Parameters:

VVar - > First vertex id.

(VVar or WV) - > Second vertex reference.

Syntax: cmpvertex VVar, (VVar or WV)

Compares the order and content of two given vertices. If equal, sets

Compare Register (CR) true, else sets CR false. The vertices must exist; else

CR will be set as false. If trace is on, null or invalid addresses will be

shown.

Command: sgcmp

Parameters:

VVar - > First subgraph starting vertex id.

(VVar or WV) - > Second subgraph starting vertex reference.

Syntax: sgcmp VVar, (VVar or WV)

Compares the content of two given subgraphs. If equal, sets Compare

Register (CR) true, else sets CR false. The starting vertices must exist; else

CR will be set as false. If trace is on, null or invalid addresses will be

shown.

Command: setCR

Parameters:

(true or false) - > Boolean value.

Syntax: setCR (true or false)

Sets Compare Register (CR) with the Boolean value.

Command: je

Syntax: je

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 40

If that CR is true, advances for the next instruction, else it does not

advance.

Command: jne

Syntax: jne

If that CR is false, advances for the next instruction, else it does not

advance.

Command: mov

Parameters:

(GP, IP, CR or FR) - > First register.

(WV, CR or FR) - > Second register.

Syntax: mov (GP, IP, CR or FR), (WV, CR or FR)

Moves the contents of the second register to the first register. Compare

Register (CR) can only be moved to Function Register (FR) and can only

receive it also. The remaining combinations of register have no restrictions.

Command: clean

Parameters:

(ALL or GL) - > Register.

Syntax: clear (ALL or GL)

Clear the Goal List (GL) or cleans the machine’s internal state (ALL).

Command: gladd

Parameters:

VVar - > Vertex id or pointer.

Syntax: gladd VVar

Adds the referenced vertex to the Goal List (GL). The vertex must exist.

Command: glload

Syntax: glload

Moves the first vertex in Goal List (GL) to Goal Pointer (GP).

Command: lsload

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 41

Syntax: lsload

Clear the machine’s access points and moves the first vertex in Local

Strategy (LS) to it.

Command: mcreate

Parameters:

MVar - > id of match to be created

(String or StringVar) - > content

Syntax: mcreate MVar, (String or StringVar)

Creates the search variable (match) under id MVar and with the content

string or StringVar. If MVar already references another object, the old

reference will be lost. With trace on, the destroyed object will be shown.

Command: match

Parameters:

SVar - > Id of the set.

MVar - > Id of match.

Syntax: match SVar, MVar

Iterates on the set SVar searching for an element whose content is equal to

the content of MVar, in case that it finds, it sets MR (MatchRegister) with it,

else it sets MR null. MVar and SVar must exist.

Command: jm

Syntax: jm

If MR is true, advances for the next instruction, else it does not advance.

Command: jnm

Syntax: jnm

If MR is false, advances for the next instruction, else it does not advance.

Command: screate

Parameters:

Svar - > Id of the set to be created.

Syntax: screate SVar

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 42

Creates a set whose id is SVar. If SVar already references another object,

the old reference will be lost. With trace on, the destroyed object will be

shown.

Command: sadd

Parameters:

SVar - > Set.

Addr - > Object.

Syntax: sadd SVar, Addr

Adds the content of Addr to the Set. SVar and Addr must exist.

Command: sreset

Parameters:

SVar - > Set.

Syntax: sreset SVar

Creates a new iterator over the set SVar (it must exist).

Command: snext

Parameters:

SVar - > Set.

Addr - > Address.

Syntax: snext SVar, Addr

Places in Addr the reference to the next element in the iteration over Svar

(it must exist). If the pointer already references another object, the old

reference will be lost. With trace on, the destroyed object will be shown.

Command: jse

SVar - > Set.

Syntax: jse SVar

If SVar is empty, advances for the next instruction, else it does not

advance. SVar must exist.

Command: jsne

SVar - > Set.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 43

Syntax: jsne SVar

If SVar is not empty, advances for the next instruction, it does not

advance. SVar must exist.

Command: push

Parameters:

(IQ, IP, MR, CR, IR, WV ALL or Addr) - > Object.

Syntax: push (IQ, IP, MR, CR, IR, WV ALL or Addr)

Piles up one of the machine’s object: IQ - Instruction Queue, IP -

Instruction Pointer, MR - Match Register, CR - Compares Register, IR –

Interrupt Register, WV – Working Vertex ALL - Current State of the

machine or Addr – the object referenced by the pointer.

Command: pop

Syntax: pop

Unpiles one of the objects of the machine, the top object of the stack.

Command: jmp

Syntax: jmp

Unconditional Jump, is equivalent to NOP (no operation).

Command: int

Syntax: int

Interrupts the machine and waits for the decision of an external agent with

the program’s strategy.

Command: call

Parameters:

Addr - > Vertex id or pointer.

Syntax: call Addr

Make a function call to the vertex. It stores the machine state to be loaded

when the instruction ret is executed. The program jumps to the vertex and

continues execution there. The vertex must exist.

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 44

Command: ret

Syntax: ret

Makes the function return, loading the previous machine state and

continuing execution where it made the function call.

Command: print

Parameters:

(LS, IQ, IP, GL or GP) - > Register.

Syntax: print (LS, IQ, IP, GL or GP)

Prints in the output stream the register’s name and content.

Command: printsg

Parameters:

(VVar or GP) - > Reference to the starting vertex of the subgraph.

Syntax: printsg (VVar or GP)

Prints the subgraph started on vertex. The vertex must exist.

Command: printsgi

Parameters:

(VVar or GP) - > Reference to the starting vertex of the subgraph.

Syntax: printsgi (VVar or GP)

Prints the subgraph started on vertex ignoring the edges whose content is

contained in the set passed in the machine’s start. The vertex must exist.

Command: message

Parameters:

String - > message.

Syntax: message String

Print in the output print stream the message parameter.

List of commands for fast reference:

vcreate VVar

uvcreate Addr [, String]

ecreate VVar, EVar, VVar

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 45

uecreate (VVar or WV), (VVar or WV), order [, String]

eorder EVar, order

sto Addr, (String or MR)

pcreate Addr, (VVar, EVar, Addr, GP or WV)

copysg Addr, Addr

work (Addr, VVar or GP)

label StringVar, VVar

source VVar, EVar

target VVar, EVar

sedges SVar, (VVar or WV)

tedges SVar, (VVar or WV)

eremove EVar

cmp (Addr or WV), (String or StringVar)

cmpeorder EVar, order

cmpedge EVar, EVar

cmpvertex VVar, (VVar or WV)

sgcmp VVar, (VVAR or WV)

setCR (true or false)

je

jne

mov (GP, IP, CR or FR), (WV, CR or FR)

clean (ALL or GL)

gladd VVar

glload

lsload

mcreate MVar, (String or StringVar)

match SVar, MVar

jm

jnm

screate SVar

sadd SVar, Addr

sreset SVar

snext SVar, Addr

jse SVar

jsne SVar

push (IQ, IP, MR, CR, IR, WV, ALL or Addr)

pop [Addr]

jmp

int

call Addr

ret

print (LS, IQ, IP, GL or GP)

printsg (VVar or GP)

printsgi (VVar or GP)

message String

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 46

4.4.Inference Model Façade

The machine’s interface with its memory is made by the façade shown in

Figure 1. In order to understand better the interaction between the machine’s

processing unit and its memory, the methods signature is copied here. It is a Java

[15] interface, but no Java knowledge is needed to understand it. The code relates

input and output of each method. These are the methods used by the commands

explained in section 4.3.

public interface IInferenceModelFacade {

 public static final String TOKEN_ID_SEPARATOR = "#";

 public static final String TOKEN_PARAMETER_SEPARATOR =

",";

 public static final String TOKEN_EXTRA_SEPARATOR =

"&";

 public static final String TOKEN_EDGE_DELIMITER = "$";

 public static final int

EDGE_ORDER_INDICATOR_UNORDERED_EDGE = -1;
 public static final int EDGE_ORDER_INDICATOR_NOT_EDGE

= -2;

 public static final String SPACE = " ";

 public abstract Object getVertex(String id);

 public abstract Object getEdge(String id);

 public abstract Object getObject(String address);

 public abstract void createVertex(String id, String

content);

 public abstract void createUnamedVertex(String

pointer, String content);

 public abstract void createEdge(String id, String

content, int order, String idSource, String idTarget);

 public abstract void createEdge(String id, String

content, int order, Object source, Object target);

 public abstract void createUnamedEdge(String content,

int order, Object source, Object target);

 public abstract void createObject(String address,

Object object);

 public abstract void destroyVertex(String id);

 public abstract void destroyEdge(String id);

 public abstract void destroyObject(String id);

 public abstract void copySubgraph(String copyPointer,

Object vertex, Collection<String> edgeContentIgnore);

 public abstract Object getSource(Object edge);

 public abstract Object getTarget(Object edge);

 public abstract int getOrder(Object edge);

 public abstract Collection<Edge> getSourceEdges(Object

vertex);

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

The Graph Machine 47

 public abstract Collection<Edge> getTargetEdges(Object

vertex);

 public abstract String getContent(Object object);

 public abstract String getId(Object object);

 public abstract void setOrder(Object edge, int order);

 public abstract void setContent(Object object, String

string);

 public abstract void push(Object object);

 public abstract Object pop();

 public abstract void addAccessPoint(String id);

 public abstract void addAccessPoint(Object vertex);

 public abstract void clearAccessPoints();

 public abstract List<Object>

getNextInstructions(List<Object> queue);

 public abstract void printAll(PrintStream

printStream);

 public abstract void printMessage(PrintStream

printStream, String message);

 public abstract void printSubgraph(PrintStream

printStream, Object object,

 Collection<String> edgeContentIgnore);

}

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA

