Pontifícia Universidade Católica do Rio de Janeiro

Bruno Schroeder

A Graph Based Theorem Proving Platform with Strategies

MsC Thesis

Thesis presented to the Pos-graduate Program of Departamento de Informática, PUC-Rio, as a partial fulfillment of the requirements for the degree of Master in Computer Science.

Advisor: Prof. Edward Hermann Haeusler

Pontifícia Universidade Católica do Rio de Janeiro

Bruno Schroeder

A Graph Based Theorem Proving Platform with Strategies

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Edward Hermann Haeusler Orientador PUC-Rio

Prof. Mario Roberto Folhadela Benevides
UFRJ

Prof. Geiza Maria Hamazaki da Silva PUC-Rio

Prof. José Eugenio Leal

Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Bruno Schroeder

Graduou-se em Engenharia de Computação pela Pontificia Universidade Católica do Rio de Janeiro – PUC-Rio.

Ficha Catalográfica

Schroeder, Bruno

A graph based theorem proving platform with strategies / Bruno Schroeder ; adviser: Edward Herman Haeusler. – 2008.

91 f.: il.; 30 cm

Dissertação (Mestrado em Informática)—Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Informática – Teses. 2. Lógica. 3. Provadores automáticos de teoremas. 4. Assistentes automáticos de demonstração. 5. Ferramentas para especificação de lógicas. 6. Deduções estruturadas como circuitos. I.Haeusler, Edward Hermann. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

Agradecimentos

Nossa Senhora Aparecida, padroeira do Brasil, agradeço-vos, mais uma vez por ser patrona tão amável dos meus estudos. Agradeço também, ao meu orientador e amigo Prof. Edward Hermann Haeusler. Tive a honra se ser guiado por este professor.

Muito obrigado aos meus colegas: Frederico Paes Barreto Pessoa, Luiz Paulo Toniazzo Martins, Thoran Rodrigues, Carlos Eduardo Meguer Crestana e Cecília Englander Lustosa. Obrigado, meu frate Heitor Abdala Buchaul. Obrigado, colegas do TecMF: Geiza, Vaston, David e Basílio.

Não há palavras que possam honrar e agradescer minha família a altura. Aos membros, que rezo para que hoje sejam da Igreja Triumfante: João Rolim Cabral (avô materno, cinco vezes engenheiro) e Zenilda Aparecida Tessetor (avó paterna, minha segunda mãe). Aos membros, que rezo para que sejam da Igreja Militante: Avane Francescone do Valle Cabral; Fernando de Lacerda Schroeder e Cristina Maria Cabral Schroeder.

Agradeço ainda a Dna. Lucília Ribeiro dos Santos.

Abstract

Schroeder, Bruno; Haeusler, Edward Hermann. **A Graph Based Theorem Proving Platform with Strategies**. Rio de Janeiro, 2008. 91p. MSc Thesis – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Proofs in logic can become very big and complex. For problem solving, and to teach logic, it is common the use of proof assistants. A general proof assistant should integrate tools to help users on specifying the logics, the formulas, the sets of rules, and the very strategy to perform (semi) automatic proof search. The Automatic Theorem Provers community is aware of some tools that were designed to fulfill these requirements. However, these tools do not take the (possibly) huge size of a proof. Recent works have pointed out that a good way to achieve shorter proofs is the use of graphs, instead of trees, to represent proofs. This dissertation describes and implements a graph-based virtual machine and a compiler for the production of graph-based theorem provers. Some case studies, standard as well as graph-based theorem prover, are illustrated in order to validate the tool.

Keywords

Logic; Automatic Theorem Proving; General Proof Assistants; Logic Specification Tools; Circuit-structured Deductions

Resumo

Schroeder, Bruno; Haeusler, Edward Hermann. **Uma Plataforma de Demonstração de Teoremas Baseada em Grafos**. Rio de Janeiro, 2008. 91p. Dissertação de Mestrado — Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Demonstrações em lógica podem tornar-se muito grandes e complexas. Para resolver problemas, e para estudar lógica, é comum valer-se de assistentes de demonstração. Um assistente de demonstração geral deve integrar ferramentas que ajudem a especificar as lógicas, as equações, os conjuntos de regras, e as estratégias de busca (semi) automática de demonstrações. A comunidade usuária de Provadores Automáticos de Teoremas conhece algumas ferramentas que atendem a estes requisitos. Entretanto, estas ferramentas não estão preparadas para lidar com demonstrações muito grandes. Trabalhos recentes sugerem que uma boa forma de chegar a demonstrações menores é usar grafos, ao invés de árvores, para representar demonstrações. Esta dissertação descreve e implementa uma máquina virtual baseada em grafo e um compilador para a confecção de provadores de teoremas baseados em grafo. Para validar a ferramenta, alguns estudos de casos e provadores de teoremas baseados em grafo são apresentados.

Palavras-chave

Lógica; Provadores Automáticos de Teoremas; Assistentes Automáticos de Demonstração; Ferramentas para Especificação de Lógicas; Deduções Estruturadas como Circuitos

Contents

1 Introduction	11
2 Proof Compression	12
2.1. Sequent Calculus SEQ ₀	12
2.1.1. Syntax	12
2.1.2. Axioms and rules	13
2.1.3. Auxiliary Rules	13
2.1.4. Tree-structured deductions	14
2.1.5. Circuit-structured derivations	14
2.1.6. Properties	16
2.1.7. Completeness and admissibility	16
2.2. Proof Compression Example	18
3 State-of-the-art	22
4 The Graph Machine	24
4.1. Architecture	24
4.2. Functionality	27
4.3. Assembler Language	31
4.4. Inference Model Façade	46
5 The Auxiliary Language	48
5.1. Proof Building Example	49
5.2. Compiler's Functionality	56
5.3. Strategy-based Programs	60
6 Conclusion	63
Bibliographical References	66

Appendix A Algebraic Specification of the Graph Machine	68
Appendix B Attribute Grammar of the Upper Level Language	73
Appendix C Logic Description Manual	88

List of Figures

Figure 1 Saint Thomas Aquinas Machine Component Diagram	
Figure 2 Saint Thomas Aquinas Machine Block Diagram	28
Figure 3 Simple program	32
Figure 4 Code Example	33
Figure 5 Left weakening rule definition	57
Figure 7 Identity rule definition	59
Figure 8 Different representations of formulae as graph	59
Figure 9 Examples of proofs represented as graph	60
Figure 10 Failure auxiliary function example	62
Figure 11 The Saint Thomas Aquinas Cathedral Plug-in Architecture	64
Figure 12 Matching Edge code snippet	79
Figure 13 Matching Edge code snippet	80
Figure 14 Matching Edge code snippet	80
Figure 15 Vertex code snippet	82
Figure 16 Terminal Edge code snippet	85
Figure 17 Terminal Edge code snippet	85
Figure 18 Terminal Edge code snippet	86